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Abstract 
 

Tropical sources and sinks of carbonyl sulfide constrained by atmospheric 
observations 

 
by 

James Robert Stinecipher 
Doctor of Philosophy in Environmental Systems 

University of California, Merced, 2020 
Professor J. Elliott Campbell, Advisor 

 
 

Carbonyl sulfide (OCS or COS) is the most common sulfur-containing species 
in the atmosphere and has the potential to function as a proxy for photosynthetic 
carbon uptake (gross primary productivity, GPP). In order to expand this technique to 
regional and global scales, additional questions about poorly constrained aspects of 
the carbonyl sulfide budget must be resolved. 

The first section of this work is devoted to developing a new, spatially 
resolved and temporally varying inventory of carbonyl sulfide emissions from 
biomass burning. By leveraging long-term, in situ observations of atmospheric 
carbonyl sulfide, we demonstrate that biomass burning emissions are heavily 
dependent on biome and are not sufficient to close the overall flux budget. 

The second section of this dissertation uses this biomass burning inventory in 
conjunction with a global chemical transport model in order to constrain plant fluxes 
in the Amazon basin. Using satellite data from the Michelson Interferometer for 
Passive Atmospheric Sounding (MIPAS) instrument, I show that downstream 
observations of carbonyl sulfide in the upper troposphere retain useful information 
about surface processes and can provide an independent constraint on gross primary 
production given sufficient convective transport. 

Finally, I conduct an observing system simulation experiment (OSSE) to 
investigate how future remote-sensing campaigns could yield more information and 
better constrain GPP using carbonyl sulfide. In addition to considering sampling 
density, sampling height and instrument noise in satellite observations, I address 
potential challenges in future aircraft sampling campaigns. 
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Chapter 1: Introduction 
 
Feedbacks between atmospheric carbon dioxide and photosynthesis are one of the 
largest sources of uncertainty in climate models (Arneth et al., 2010). On one hand, 
increases in atmospheric carbon dioxide could stimulate photosynthetic uptake, 
leading to increased uptake of CO2 and a negative feedback loop. On the other hand, 
as CO2 levels lead to warmer climates, plant productivity may decrease and reduce 
the amount of CO2 being removed from the atmosphere. Accurately balancing these 
competing effects remains a major challenge in assessing future climate scenarios. 
 
Constraining these feedbacks is complicated by a further challenge: the tropics, which 
account for over a third of global photosynthetic carbon uptake, are also the areas 
where ecosystem models are most likely to diverge (Beer et al., 2010; Malhi, 2012). 
Better constraints on the amount of carbon taken up by plants – gross primary 
production, or GPP – are needed. 
 
A variety of techniques exist to measure GPP. At the smallest scale, measurements 
may be made in leaf chambers, comparing mixing ratios of carbon dioxide over time 
and varied light conditions (Baldocchi, 2003; Baldocchi & Harley, 1995; Gara et al., 
2019; Harley & Baldocchi, 1995; Sprintsin et al., 2012). Extending these observations 
to regional or global scales, however, requires many assumptions. Natural variability 
across individual leaves or plants may be difficult to quantify with limited sampling, 
and the sampling chamber design itself may cause changes in light availability or 
local meteorology which are inconsistent with natural conditions. Upscaling requires 
information about the variety of plants and plant functional types in a region, as well 
as nutrient, water, and light availability. Assumptions about the vertical structure are 
also necessary to quantify the portion of leaves receiving direct or indirect sunlight. 
 
At a regional level, observations with eddy flux towers are a common approach (Beer 
et al., 2010; Billesbach et al., 2014; Joiner et al., 2011; Jung et al., 2011). Changes in 
CO2 concentrations can be partitioned into photosynthesis and respiration fluxes by 
using nighttime observations. Two challenges exist in using this technique to 
constrain global GPP. First, flux tower observations are sensitive to a small footprint 
and may be heavily influenced by regional meteorology or surface conditions. Second, 
the sparse network of flux tower sites may lead to under-sampling in key regions, like 
the Amazon. 
 
Global observations by satellites take many forms. Measurements of global CO2 
concentrations are commonplace, but these represent a net flux. Disentangling the 
collocated respiration source from the photosynthetic sink is challenging; the 
component fluxes are large and similar in magnitude, but the net flux is small (Steffen 
et al., 1998). As such, small changes in either component may yield large relative 
changes in the net flux.  
 
Satellite observations of solar-induced fluorescence (SIF) represent a relatively new 
approach to quantifying photosynthesis (Frankenberg et al., 2011; Guanter et al., 
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2014; Joiner et al., 2011; Parazoo et al., 2014). By measuring small emissions of 
excess light, one can infer the amount of photosynthesis at a given moment. This 
approach, too, has its challenges. Because the observations are made from the top of 
the canopy, complexity in the vertical structure may underestimate uptake in the 
understory. Additionally, contamination by clouds may limit the availability of 
observations, especially in the tropics. 
 
These limitations suggest the need for an approach that is scalable, able to partition 
photosynthesis and respiration, and integrative over both space and time. One 
potential approach is the use of atmospheric carbonyl sulfide (OCS), which has been 
shown in a variety of contexts to function as a proxy for GPP (Asaf et al., 2013; Berry 
et al., 2013; Campbell et al., 2008). Particularly in the Amazon basin, where sampling 
sparsity limits in situ studies and frequent cloudiness limits satellite observations, 
OCS could provide valuable information about surface processes.  
 
Atmospheric carbonyl sulfide concentrations are controlled primarily by a plant 
uptake sink and an oceanic source. OCS is taken up by plants through the stomata and 
follows similar metabolic pathways to CO2 (Protoschill-Krebs et al., 1996; Sandoval-
Soto et al., 2005; Seibt et al., 2010). Unlike CO2, however, OCS is irreversibly 
hydrolyzed to H2S. As a result, while CO2 concentrations are affected by both 
photosynthesis and respiration, changes in OCS fluxes from plants are one-directional 
and can therefore be used for estimating stomatal conductance and GPP.  
 
Ocean production of OCS takes the form of both direct OCS emissions and indirect 
emissions due to oxidation of carbon disulfide (CS2) and dimethyl sulfide (DMS) 
(Kettle et al., 2002). On a global scale, ocean activity is a source of OCS; however, at 
high latitudes in winter, oceans may take up OCS due to undersaturation.  
 
Other processes contribute to the overall OCS budget. Anthropogenic activity, both 
industrial and residential, is a source of OCS. Recent work by Zumkehr et al. (2017, 
2018) shows that a majority of these emissions now come from Asia, with large 
contributions from rayon production. Biomass burning is a small but variable source 
in the OCS budget. As demonstrated in this work (reprinting Stinecipher et al., 2019), 
OCS emissions from biomass burning vary significantly across biomes. Soils are 
typically OCS sinks, varying in intensity depending on biome, temperature, nutrient 
availability and soil moisture content. Under certain conditions (e.g., anoxic wetlands 
and agricultural soils) soils have also been shown to produce OCS (Whelan et al., 
2018). Particularly in the stratosphere, OCS is also destroyed by hydroxyl radicals.  
 
While much has been learned about the global OCS budget, our knowledge remains 
incomplete. Long-term observations of atmospheric OCS show moderate trends 
consistent with increasing GPP over the past century (Campbell et al., 2017). On the 
short-term, atmospheric OCS concentrations have been more stable, implying an 
overall balanced flux budget (Montzka et al., 2007). However, best estimates for each 
of these budget components still yield a gap of 200 to 600 Gg (S) yr-1. The present 
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work seeks to constrain two specific portions of this budget: global emissions from 
biomass burning and regional photosynthetic uptake in the Amazon basin.  
 
Chapter 2, “Biomass Burning Unlikely to Account for Missing Source of Carbonyl 
Sulfide,” investigates the contributions to the overall OCS flux budget from biomass 
burning. This dataset is an initial attempt at developing a spatially and temporally 
varying biomass burning inventory that accounts for differences in OCS emission 
factors across a variety of biomes. These biome-specific emission factors provide an 
updated understanding of both the spatial distribution and magnitude of OCS 
emissions from each fuel category. The flux data are validated against long-term 
atmospheric observations of OCS, constraining both the overall magnitude of fluxes 
and the contributions of particular emission sources (e.g., tropical peat). 
 
Chapter 3, “Remotely Sensed Carbonyl Sulfide Constrains Model Estimates of Gross 
Primary Production,” builds on the inventory developed in Chapter 2, implementing 
the results in a 4-dimensional atmospheric transport and chemistry model. Using 
upper-troposphere observations of OCS measured by satellite, the modeling work in 
Chapter 3 seeks to constrain the largest sink in the OCS budget, that of plant uptake. 
This work shows that ecosystem models which assume lower GPP in the Amazon 
basin are most consistent with the observed upper-troposphere depletion in OCS. In 
addition, this work demonstrates the value of OCS as a “downstream” tracer of GPP. 
Provided sufficient convection exists, models can be used to identify regions in the 
upper-troposphere which are sensitive to changes at the surface. 
 
Chapter 4 of this work, “Observing System Simulation Experiments Underscore Need 
for Future Carbonyl Sulfide Sampling Campaigns,” lays the groundwork for future 
OCS research using an observing system simulation experiment (OSSE). Because of 
inherent challenges working with the observational data in Chapter 3, this work 
provides valuable insight on ways data collection can be improved and the extent to 
which uncertainty in the results from Chapter 3 can be mitigated. In particular, this 
work shows that increases in tropical sampling density, lower sampling altitudes and 
reductions in instrument noise all yield improvements to the overall retrieval. 
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Chapter 2: Biomass Burning Unlikely to Account for Missing 
Source of Carbonyl Sulfide 
 
2.1 Abstract 
 
Carbonyl sulfide (OCS) provides a proxy for measuring photosynthesis and is the 
primary background source of stratospheric aerosols. OCS emissions due to biomass 
burning are a variable and substantial (over 10%) part of the current OCS budget. 
OCS emission ratios from open burning fires, coupled with 1997-2016 data from the 
Global Fire Emissions Database (GFED4), yield OCS biomass burning emissions 
with a global average annual flux of 60 ± 37 Gg (S) yr-1. A global box model suggests 
these emissions are more consistent with observations from global atmospheric 
composition monitoring networks than fluxes derived from previous synthesis papers. 
Even after considering the uncertainty in emission factor observations for each 
category of emissions and the interannual variation in total burned dry matter, the 
total OCS emissions from open burning are insufficient to account for the large 

imbalance between current estimates of global OCS sources and sinks. 
 
2.2 Background 
 
Carbonyl sulfide (abbreviated OCS or COS) is the most abundant sulfur gas in the 
atmosphere and is important both as a tracer for gross primary production and as a 
source of stratospheric aerosols. Current estimates of surface fluxes and atmospheric 
sinks of OCS do not fully account for all processes necessary to balance the OCS 
budget. For example, Berry et al. (2013) assume a deficit in the OCS source of 
approximately 600 Gg (S) yr-1 (annual mass of sulfur emitted as OCS), compared to a 
total sink of approximately 1200 Gg (S) yr-1. While ocean chemistry has been 
hypothesized as a possible way to close this budget gap (Berry et al., 2013; 
Suntharalingam et al., 2008), other sources including biomass burning, anthropogenic 
emissions, and anoxic soils may be partially responsible. 
 
Biomass burning has long been recognized as a source of OCS, particularly in 
smoldering fires (Chin & Davis, 1993; Crutzen et al., 1979, 1985; Crutzen & Andreae, 
1990; Kettle et al., 2002; Khalil & Rasmussen, 1984). However, due to differing 
methodologies and study assumptions, estimates of global total OCS emissions vary 
widely in the literature (11 Gg (S) yr-1 in Kettle et al., 2002, 136 Gg (S) yr-1 in Berry 
et al., 2013 and 68-144 Gg (S) yr-1 in Montzka et al., 2007). 
 
Emissions of OCS from biomass burning can be measured and reported in several 
ways (Akagi et al., 2011). Samples may be burned in a lab setting, allowing for 
simultaneous measurements of changes in mass and composition of the emitted 
plume (e.g., Yokelson et al., 1997). When the mass of fuel is known, measurements 
may be reported as emission factors (EFs), defined as the mass of a species emitted 
relative to the mass of dry matter (DM) burned (e.g., kg OCS / kg biomass). Samples 
may also be taken in the field where fires are present, either at ground level (e.g., 



 

 

5 

 

Meinardi et al., 2003; Nguyen et al., 1995) or by flying through a plume (e.g., Blake 
et al., 2004; Nguyen et al., 1995). In the field, it can be challenging to accurately 
measure the total mass burned, and hence, field measurements are frequently reported 
as emission ratios (ERs), that is, relative enhancements over background values (e.g., 
[mol OCSplume – mol OCSbackground] / [mol COplume – mol CObackground], yielding units 
of mol OCS / mol CO).  
 
The Global Fire Emissions Database (GFED Version 4, 
https://www.globalfiredata.org/) provides spatially and temporally resolved maps of 
fire emissions in a variety of categories based on satellite observations (Giglio et al., 
2013; Randerson et al., 2012; van der Werf et al., 2017), as well as a summary table 
of emission factors for a variety of species (not including OCS), primarily based on 
Andreae and Merlet (2001) and Akagi et al. (2011). We seek to expand these existing 
works with updated average emission ratios for OCS, suitable for use with burned 
totals from GFED.  
 
2.3 Methods 
 
We collected all the published emission factors and emission ratios for carbonyl 
sulfide, along with corresponding measurements of CO and CO2 emissions, as 
available (Table 2-1). Based on fuel type and sample location, we assigned samples to 
one of the six biomass burning categories used in GFED: savanna and grassland 
(SAVA), boreal forests (BORF), temperate forests (TEMF), tropical deforestation and 
degradation (DEFO), peatland fires (PEAT), and agricultural waste burning (AGRI). 
Categorized samples are shown in Table 2-2 with mean values for each category 
given in Table 2-3. 
 
Crutzen and Andreae (1990) and Meinardi et al. (2003) show that, while CO2 
emissions peak in the flaming stage, CO and OCS both peak during the later 
smoldering stage. Hence, in order to combine emission measurements between 
observational datasets, we compute all possible values as emission ratios relative to 
CO (mol OCS emitted / mol CO emitted). This has the benefit of including the many 
studies where the total mass burned was not available but does exclude several 
studies where CO was not measured. Where emission ratios are not given directly, we 
calculate them either as the ratio of OCS and CO emission factors or as an 
enhancement in OCS relative to CO as described above, depending on how data are 
presented in a given study (see Section 2.7.2).  
 
To test the impact of these emission ratios on global OCS concentrations, we first 
compute total CO emissions for each category in the GFED4 inventory, using 
emission factors provided by GFED to convert from total burned dry matter to CO. 
We then apply the emission ratios described above to these CO totals to obtain global 
total emissions of OCS in each category.  
 
The OCS emissions are used as an input in a one-box global model, run at monthly 
timesteps and driven by zero-order sources (biomass burning, biofuels, anthropogenic 
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emissions and oceanic emissions), a zero-order soil sink, and first-order sinks for 
plant uptake and destruction of OCS by hydroxyl radicals. Zero-order fluxes vary 
independently of ambient atmospheric OCS concentrations, while first-order fluxes 
vary proportionally to ambient atmospheric OCS concentrations. A constant, 
supplemental source is added to maintain a balanced budget. Previous works (Berry 
et al., 2013; Campbell et al., 2017; Suntharalingam et al., 2008) ascribe this flux to a 
missing ocean source; however, more recent estimates by Lennartz et al. (2017, 2019) 
find that ocean emissions are insufficient to close the budget and other fluxes must be 
involved. The model assumes the atmosphere is well-mixed at every timestep, which 
is reasonable because the atmospheric lifetime of OCS is approximately 2 years 
(Campbell et al., 2008; Khalil & Rasmussen, 1984; Montzka et al., 2007). Additional 
details are given in Section 2.7.3. 
 
We compare the outputs of this box model to NOAA ground-based flask samples 
taken at a variety of sites since approximately 2000 (Montzka et al., 2007) and 
annually averaged tropospheric mixing ratios derived from Fourier Transform 
InfraRed (FTIR) solar spectra recorded at the Jungfraujoch station (Swiss Alps) since 
1984 (Lejeune et al., 2017). The NOAA datasets provide a global perspective on OCS 
trends from 2000 onward, whereas the Jungfraujoch dataset provides one of the only 
time series of OCS mixing ratios covering the entire GFED4 data period (1997 to 
2016). Measurements at Jungfraujoch are specific to that site but are still influenced 
by changes in global concentrations like those predicted by the global box model 
because of the long atmospheric lifetime of OCS.  

 
2.4 Results 
 
Figure 2-1 shows the range of observed emission ratios for the six categories used in 
GFED. Emission ratios from both lab and field studies are shown as black X’s. 
Previous estimates from Andreae and Merlet (2001) and Akagi et al. (2011) use 
subsets of these data to estimate average emission factors by ecosystem type. As 
neither inventory covers all of the biome categories, we combine both inventories by 
using the reported value (if only one study provides a value) or averaging values from 
both studies, if available. 
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Figure 2-1: Comparison of emission ratio estimates from various literature sources. 
In order to span the wide range of values, the grey region of the top panel is shown 
with an expanded scale in the bottom panel. Black x’s are individual studies or 
measurements. Blue dots are the averages used in this paper. Red circles and triangles 
are average values from Andreae and Merlet (2001) and Akagi et al. (2011), 
respectively. Error bars represent the standard deviation of emission ratio 
observations included in the average value for each category. Categories are 
described in the Methods (Section 2.3). Additional details and numerical data are 
given in Section 2.7. 
 
 
Akagi et al. (2011) present OCS and CO emission factors for boreal, temperate 
(extratropical) and peat ecosystems that are an order of magnitude larger than the 
other three categories (the three highest red triangles in Figure 2-1). This is due to the 
inclusion of an anomalously high observation of OCS emitted from a boreal peat 
sample in a chamber experiment (Yokelson et al., 1997 – Table 1, Minnesota Peat). 
Compared to another peat sample from the same study (Yokelson et al., 1997 – Table 
1, Alaska Peat), this sample yielded over 25 times the OCS per dry matter burned and 
35 times the OCS relative to CO. The emission ratio for this sample relative to CO is 
also more than 40 times larger than the emission ratio computed for a sample of 
Indonesian peat in Stockwell et al. (2016). Dixon's Q-test (Dean & Dixon, 1951) 
identifies this largest peat sample as an outlier with 95% confidence and we thus 
exclude it from our averages. 
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Our goal is to compare the impact of different possible emission factors against 
observed OCS concentrations. Specifically, we compare the impact of prior emission 
estimates to an updated calculation of average emission ratios which includes a wider 
set of observational data than in previous studies, while excluding the anomalously 
high peat observation on the basis that it may not be representative of most locations. 
Our emission ratios for boreal, temperate, and peat ecosystems are an order of 
magnitude lower than estimates from Akagi et al. (2011), but within 25% of those 
presented in Andreae and Merlet (2001). Average emission ratios for savanna, 
tropical deforestation and agricultural waste are within 40% of those presented in 
Akagi et al. (2011) and Andreae and Merlet (2001). Across categories, our emission 
ratios range from 1×10-4 mol OCS / mol CO (savanna and grassland) to 3×10-4 mol 
OCS / mol CO (agricultural waste burning).  
 

 
 

Figure 2-2: Annual total GFED4 estimates of (a) burned dry matter (DM) and (b) 
associated emissions of CO based on GFED4 emission factors. OCS emissions based 
on (c) combined emission ratios from Andreae and Merlet (2001) and Akagi et al. 
(2011) and (d) this study. Dotted lines on panels (c) and (d) represent the average 
annual total across all years. Error bars in panel (d) are derived from the relative 
uncertainty in CO emission factors and OCS emission ratios, described in Section 
2.7.3. Note the change in y-axis scaling between panels (c) and (d).  
 
We apply these emission ratios to global biomass burning inventories from GFED in 
order to estimate the corresponding OCS emissions. The GFED estimates of burned 
dry matter are dominated by savannas, followed by tropical deforestation and boreal 
forests (Figure 2-2a). The GFED estimates show particularly large interannual 
variability for peatlands, with nearly 10 times more peat burned in 1997 than the 
19982016 average due to massive fires in Indonesia during a large El Niño event 
(Page et al., 2002). A similar, smaller spike occurs during the 2015 El Niño event. 
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As mentioned above, we use CO as a reference species to compute OCS emissions. 
These CO emissions are computed from the emission factors provided by GFED and 
are shown in Figure 2-2b. 

 
We combine these GFED CO emissions with (i) OCS emission ratio averages from 
Andreae and Merlet (2001) and Akagi et al. (2011), and (ii) the emission ratio 
averages we calculated to create a temporally and spatially varying OCS burning 
inventory (Figures 2-2c and 2-2d, respectively). Note that while savannas and 
grassland (SAVA) account for 52% to 78% of burned matter depending on the year 
(Figure 2-2a), they are a small source of OCS (3% to 26% of biomass burning 
emissions using emission ratios from previous synthesis papers and 21-51% of 
emissions using the present emission ratios) due to the relatively small emission ratio 
(Figure 2-2c and 2-2d). Conversely, peatland emissions (PEAT) are a small and 
variable part of the dry matter total (0.2% to 15%) but a major source of OCS, 
especially using emission ratios derived from previous synthesis papers (8% to 88% 
of emissions using previous emission ratios, 1% to 42% using present emission 
ratios).  

 
Fluxes derived from previous emission ratio inventories are larger in magnitude and 
in interannual variability (mean 203 Gg (S) yr-1, standard deviation 161 Gg (S) yr-1 
over all available years) than those derived from our present estimates (mean 60 Gg 
(S) yr-1, standard deviation 15 Gg (S) yr-1 over all available years). Additionally, 
while 1997 is an exceptional year for both sets of emission factors, the spike in 
emissions is more pronounced in the previous estimates: total 1997 OCS emissions 
are 4.6 times larger than the mean from 1998 to 2016 (compared to 1.9 times using 
our emission ratios). In the years following 1997, the previous emission ratios also 
yield emissions with coefficients of variation (standard deviation divided by mean) 
twice as large as those from our present emission ratios. 
 
We examine the validity of these two alternative OCS emission scenarios through two 
runs of a global atmospheric box model, validated against atmospheric observations 
(Figure 2-3a). As in previous work, the simulation budget is balanced by adding a 
supplemental constant source (Berry et al., 2013; Campbell et al., 2017; 
Suntharalingam et al., 2008) to other sources and sinks described above (Figures 2-3b 
and 2-3c). Note that the supplemental source for the previous inventories is 
considerably smaller due to their larger average biomass burning contribution. 
  
Observed atmospheric surface mixing ratios from global and hemispheric averages of 
NOAA air monitoring sites (Montzka et al., 2007), as well as annually averaged 
tropospheric mixing ratios from Jungfraujoch (Lejeune et al., 2017), show a moderate 
decline in the 1990’s followed by similarly moderate growth in the 2000’s (both 
approximately 1% yr-1), with relatively little interannual variation. These time trends 
have been attributed to trends in the anthropogenic inventory, driven by a decline in 
residential coal in the early 1990’s and the decline and growth of the rayon industry 
from 1990 onward (Campbell et al., 2015; Du et al., 2016; Zumkehr et al., 2017, 
2018).  
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Figure 2-3: Panel (a) shows box model outputs and observations from NOAA air 
monitoring sites (Montzka et al., 2007) and the tropospheric FTIR data from 
Jungfraujoch, Switzerland (Lejeune et al., 2017). Previous emission factors are based 
on Andreae and Merlet (2001), Akagi et al. (2011) or an average of both. The shaded 
region represents the uncertainty due to the range in emission factors and emission 
ratios. Panels (b) and (c) show annual fluxes of OCS by category as used in the 
“previous” and “current” models, with net fluxes indicated by the white dotted line. 
In both (b) and (c), a supplemental flux is added to close the budget, described in the 
Methods. Additional details are given in Section 2.7.3. 
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A simulation using our new emission ratios yields concentrations and interannual 
variations that are broadly consistent with the observational records. In contrast, a 
simulation using emission ratios from the previous inventories is unable to capture 
these trends. In particular, the spike in concentrations following emissions in 1997 
and the rapid growth from 2012 onward are accentuated in the model output, but 
largely absent in the observations.  
  
We quantitatively assess these differences in two ways. We first consider the spike in 
concentrations following the 1997 peat fires by taking the difference in 
concentrations between 1998 (the first full year after the event) and an average from 
2000 to 2004 (after concentrations had stabilized). The Jungfraujoch dataset shows a 
decrease of 18 ppt (4%), while the models based on previous studies and our present 
emission ratios show decreases of 98 ppt (21%) and 25 ppt (5%), respectively. To 
compare slopes while minimizing bias due to the choice of time period, we perform 
linear regressions on the annual average concentrations in each model time series for 
every combination of years starting and ending between 2000 and 2016, inclusive. In 
each case, we compute root mean square errors against the corresponding slopes of 
the NOAA global average and the Jungfraujoch data. On average, our model using 
the present emission ratios yields RMSE values that are half as large as the model 
based on previous synthesis papers (reducing from 6.29 to 2.69 ppt OCS yr-1 
compared to NOAA and from 7.10 to 3.66 ppt OCS yr-1 compared to Jungfraujoch). 
 
2.5 Discussion 
 
The large discrepancy between the two box model simulations, with our new 
emission factors giving a much closer match to observations, suggests that the 
anomalous peat observation is not representative of peat emissions generally and its 
inclusion could bias global biomass burning inventories. Our estimates show major 
reductions in OCS emissions from boreal forests (from an average of 45 to 9 Gg (S) 
yr-1), temperate forests (from 10 to 1 Gg (S) yr-1), and peatlands (from 104 to 7 Gg 
(S) yr-1) due to the exclusion of the aforementioned sample. The observational 
constraints on the interannual variability in OCS emissions from biomass burning 
also constrain the annual average emissions. Unfortunately, even in years with larger-
than-average OCS emissions, our estimated biomass burning flux is too small to fully 
close the existing OCS budget gap, so other fluxes must be involved. 

 
Several sources of uncertainty exist in these estimates. First, although the current 
work includes more studies than in previous synthesis papers (Akagi et al., 2011; 
Andreae, 2019; Andreae & Merlet, 2001), observational studies measuring OCS 
emissions from fires are still few, making it difficult to gauge representativeness of 
the observations. We quantify the uncertainty using the spread in reported emission 
factors/ratios for each category, both for OCS (presented here) and for reference 
species (CO and CO2) presented in the GFED documentation and Akagi et al. (2011). 
For each category, we add relative uncertainties (standard deviation divided by mean) 
for both emission factors/ratios (CO/DM and OCS/CO) in quadrature, then apply the 
result to the total OCS emissions for that category. Relative uncertainties are largest 
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for temperate forest (105%) and tropical deforestation (82%) categories, followed by 
savannas (69%). On an absolute basis, savanna uncertainty dominates due to the 
larger overall contribution. Total uncertainty across all categories is added linearly in 
order to more conservatively account for correlation in the underlying burned matter 
dataset. 
 
A second source of uncertainty is the choice of reference species in the emission 
ratios. OCS emissions derived from CO2 tend to more closely follow the distribution 
of burned dry matter, as CO2 emission factors (ranging from 1489 to 1703 g CO2 / kg 
DM in the GFED4 documentation) are less variable than CO (63 to 210 g CO / kg 
DM) across the six biomass burning categories. Estimates derived from CO2 yield 
higher total OCS emissions than those derived from CO (70 ± 37 Gg (S) yr-1 versus 
60 ± 37 Gg (S) yr-1, respectively), owing primarily to larger emissions from savanna 
and grasslands. Additional results obtained using CO2 are presented in Table 2-4. 
 
Other sources of uncertainty are more difficult to quantify. As noted, relatively few 
studies report OCS emission data, especially for peat and agriculture categories. 
Further, studies vary in instrumentation, calibration, and approaches to calculating 
emission factors or ratios. Additionally, emissions vary over the life of the fire and 
measurements may yield different values based on sampling location (near a fire, 
downwind, or in a lab). Despite these factors, the difference in the variety of samples 
used in our averages is significantly smaller than the effect of including or excluding 
the previously identified peat observation. 
 
Our best estimate of annual-mean global OCS emissions from biomass burning (60 ± 
37 Gg (S) yr-1) is broadly consistent with existing estimates, which have typically 
been computed using global, fixed emission factors. Chin and Davis (1993) estimate 
the global biomass burning flux as 74.7 (21.3 to 138.7) Gg (S) yr-1, based primarily 
on tropical fires. Nguyen et al. (1995) report global totals of 70 (30 to 110) Gg (S) yr-

1, later cited in Watts (2000) and Kettle et al. (2002). Andreae and Merlet (2001) 
present a global total of 144 Gg (S) yr-1. This value includes 65 Gg (S) yr-1 in 
emissions from biofuel and charcoal, categories which are not considered in our 
estimate; subtracting these yields 79 Gg (S) yr-1. Montzka et al. (2007) calculate an 
estimate of 65 Gg (S) yr-1, based on CO emissions from Andreae and Merlet (2001) 
and Duncan (2003) and emission ratios from Nguyen et al. (1995). Berry et al. (2013) 
chose a value from the high end of the published range (136 Gg (S) yr-1) to study the 
impact of emissions from different sources. Campbell et al. (2015) estimate OCS 
emissions from open burning (33 to 96 Gg (S) yr-1) and agriculture waste burning (8 
to 18 Gg (S) yr-1), totaling 41 to 114 Gg (S) yr-1. Finally, applying the emission 
factors computed in a similar review by Andreae (2019) to the GFED dataset used 
here yields an average of 86 Gg (S) yr-1. 
 
A further benefit of this work is the ability to derive spatially and temporally resolved 
OCS emission distributions using datasets such as GFED that provide biome-specific 
biomass burning totals. Applying the average emission ratios from this work to 
existing CO totals from GFED yields global maps of OCS emissions, such as the 
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annually averaged fluxes shown in Figure 2-4a. While the present work has primarily 
relied on burned area data from GFED, the emission ratios presented are generally 
applicable to other datasets, which may be higher-resolution or more suitable for 
regional applications. For example, applying the present emission ratios to average 
burned matter data from the Fire INventory from NCAR (FINN; see Wiedinmyer et 
al., 2011) yields global biomass burning emissions of 84 Gg (S) yr-1, primarily due to 
increased tropical emissions (though FINN does not explicitly account for peat). 
Future studies comparing emissions derived from these datasets to in situ 
measurements could further constrain emission magnitudes and distributions. 
  
Additionally, variation in emission ratios across biomes yields different spatial 
patterns and categorical totals than estimates which scale all fuel types evenly. To 
demonstrate this, we scale the total burned dry matter up to the same global annual 
OCS totals calculated above, disregarding differences in emission factors between 
biomes. On average, our biome-specific estimate predicts savanna and grassland 
emissions which are 17 Gg (S) yr-1 less than the upscaled dry matter estimate (21 
versus 39 Gg (S) yr-1, respectively) with corresponding increases in emissions in 
other categories, especially peat (increase of 5 Gg (S) yr-1) and agriculture (increase 
of 6 Gg (S) yr-1) (Figure 2-4b). The categorical and spatial differences between 
burned matter and OCS emissions highlight the need for an emissions database that 
accounts for different sources of biomass burning. 
 

 
 
Figure 2-4: Maps showing (a) spatial distribution of average (1997-2016) annual 
OCS open burning emissions based on biome-specific emission ratios (relative to 
CO) presented in this work, and (b) difference between the biome-specific OCS 
estimate and an estimate based on total burned dry matter, scaled up to the same 
global total (i.e., without specific scaling between biomes).  
 
2.6 Conclusion 
 
Biomass burning represents an important component in global OCS emissions, and 
estimates can vary significantly in space and magnitude depending on which emission 
data are used. Our analysis shows that, while biomass burning emissions are highly 
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variable from year to year, the total OCS emitted is, on average, not sufficient to close 
the existing OCS budget gap (60 ± 37 Gg (S) yr-1, compared to a deficit of 
approximately 200 to 600 Gg (S) yr-1). Further, previous emission factor averages 
yield unrealistic OCS concentration trends when implemented in a global box model, 
whereas inventories derived in this work better match observations. 
 
This work provides a spatially resolved inventory of OCS biomass burning fluxes that 
can be implemented in atmospheric transport and chemistry modeling studies. While 
uncertainties remain in our present estimates, new observation campaigns (WE-CAN, 
FIREX, etc.) are already underway, and it is our hope that this work will spur 
additional campaigns to measure OCS emissions from biomass burning in the future. 
 
2.7 Supplemental Information for Chapter 2 
 
2.7.1 Introduction  
 
Sections 2.7.2 through 2.7.4 provide additional information into how existing 
emission data was incorporated into the study’s model and how output files may be 
obtained. Figure 2-5 shows the data from Figure 2-1 of the main text, plotted on a 
logarithmic scale. Tables 2-1 and 2-2 summarize emission data collected from 
existing literature. Table 2-3 provides quantitative values for the data displayed in 
Figure 2-1 of the main text. Table 2-4 provides categorical totals and ranges for the 
emissions calculated in the main text, as well as comparable estimates using CO2 as a 
reference species.  
 
2.7.2 Approach to Standardizing and Combining Existing Emission Data 
 
In order to use the broadest set of OCS emission data, we compute all values as 
emission ratios of OCS relative to CO (mol/mol). The approaches are identical for 
computing ratios relative to CO2. Here, we address three cases for standardizing 
emission data reported in literature: 
 
Case 1: Study reports OCS emission ratio relative to CO (e.g., Friedli et al., 2001) 
In the event a work lists an OCS emission ratio relative to CO, we report the value 
as-is. 
 
Example: Friedli et al. (2001) present a “Temperate Composite” emission ratio of 
1.23 × 10-4 mol OCS / mol CO. This value is used in the Temperate Forest category 
of Table 2-2. 
 
Case 2: Study reports OCS emission factors (e.g., Liu et al., 2017) 
In cases where OCS emissions are reported relative to the amount of mass burned, we 
divide the reported OCS emission factor with the reported CO emission factor, 
converting to moles if necessary. 
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In cases where multiple fires or samples are taken, we compute the emission ratio 
with the same sample for both OCS and CO. For example, Liu et al. (2017) present 
emission data for multiple fires, but OCS was only measured in the Rim Fire. Hence, 
for this case, we compute the OCS emission ratio relative only to CO emissions from 
the Rim Fire (rather than the study average). 
 
Example: Liu et al. (2017) present emission factors of 5.9 × 10-3 g OCS / kg DM and 
78.7 g CO / kg DM measured during the Rim Fire in California. 
5.9 × 10-3 g OCS = 9.8 × 10-5 mol OCS 
78.7 g CO = 2.8 mol CO 
The calculated emission ratio of [9.8 × 10-5] / [2.8] = 3.5 × 10-5 mol OCS / mol CO is 
used in the Temperate Forest category. 
 
Case 3: Study reports OCS enhancement in plume (e.g., Bingemer et al., 2001) 
In cases where OCS emissions are reported as an enhancement over background 
values, we divide the enhancement in the volumetric mixing ratio of OCS by the 
enhancement in CO. 
 
As before, where multiple fires are given, we compute the emission ratio using the 
same sample for OCS and CO. 
 
Example: Bingemer et al. (1992) compare mixing ratios of OCS and CO2 in the free 
troposphere to two boundary layer measurements at different altitudes. The average 
of the resulting range ([6.1 to 41] × 10-6 mol OCS / mol CO2) is used in the Tropical 
Forest category. 
 
2.7.3 Box Model Details 
 
We use a one-box model of the global atmosphere to simulate the effect of different 
biomass burning emissions factors on OCS mixing ratios. The box model includes 
both concentration-independent (zero-order) and concentration-dependent (first-
order) fluxes and was allowed to spin up for 20 years at monthly timesteps from a 
constant mixing ratio of 500 ppt in until 1980 when annually varying inventories of 
OCS emissions from anthropogenic activity are first available.  
 
In each version of the model we repeat an average (1997 - 2016) of the estimated 
biomass burning fluxes until 1997, after which we use the time-varying biomass 
burning fluxes based on GFED4 burned dry matter. These fluxes are based on 
emission factors for CO provided in the GFED documentation and emission ratios of 
OCS relative to CO from either (i) Andreae and Merlet (2001) and Akagi et al. (2011) 
or (ii) the inventory calculated in the main text. In case (i), the biomass burning 
source ranges from 112 Gg (S) yr-1 to 815 Gg (S) yr-1, with a mean flux of 242 Gg (S) 
yr-1. In case (ii), the source ranges from 46 Gg (S) yr-1 to 111 Gg (S) yr-1, with a mean 
flux of 60 Gg (S) yr-1. 
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Biofuel emissions are based on a total of 21 Gg (S) yr-1 as calculated from Andreae 
(2019). This flux is implemented as an aseasonal, zero-order source. 

 
Anthropogenic emissions are based on an inventory from Zumkehr et al. (2017). As 
these fluxes vary on a yearly (rather than monthly) basis, we distribute the fluxes 
evenly over the year. Since these data are available from 1980 to 2012, we repeat the 
estimated fluxes from 1980 for years prior to 1980, and we repeat the estimated 
anthropogenic fluxes from 2012 for years after 2012. Emissions in this inventory 
range from 311 Gg (S) yr-1 to 409 Gg (S) yr-1 with a mean value of 359 Gg (S) yr-1. 

 
We include a concentration-dependent OH sink with a rate constant derived to yield 
110 Gg (S) yr-1 of uptake given an ambient concentration of 520 ppt (estimated total 
burden of 2995 Gg S), consistent with modeling conducted by Kuai et al. (2015). 
Concentrations during the model run yield an OH sink ranging from 100 Gg (S) yr-1 
to 108 Gg (S) yr-1, with a mean of 103 Gg (S) yr-1.  
 
Soil uptake is based on monthly varying, concentration-independent fluxes from 2006 
as computed with the ecosystem model SiB4, repeated each year. Annual uptake from 
soils is estimated by SiB4 at 176 Gg (S) yr-1. This value is between the estimates of 
130 Gg (S) yr-1 from Kettle et al. (2002) and 355 Gg (S) yr-1 used in Berry et al. 
(2013). Although the soil flux is parameterized in SiB as a zero-order sink, Conrad 
(1994) and Whelan et al. (2016) show that the flux is in fact first-order.  
 
Plant uptake fluxes in the model are also based on monthly totals from 2006 from 
SiB4 but are scaled by the ratio of the current time step’s concentration to 450 ppt 
(the concentration at which SiB was run) to account for linear dependence on 
atmospheric concentration of OCS. As SiB was run with a fixed concentration, this 
correction is necessary to account for the concentration dependence. We note that, 
had plant fluxes been implemented without this correction, the large changes in 
concentration in the model using previous emission factors would be even more 
dramatic than reported in the text. The resulting plant uptake in the model varies from 
815 Gg (S) yr-1 to 878 Gg (S) yr-1, with a mean value of 841 Gg (S) yr-1. 
 
Ocean fluxes are implemented in the model as an aseasonal, zero-order source with 
total annual emissions (both directly as OCS and indirectly from CS2 and DMS) of 
485 Gg (S) yr-1, as calculated by Lennartz et al. (2017, 2019).  
 
In addition to these fluxes, we include a constant, concentration-independent flux to 
close the average annual budget, with a magnitude set such that concentrations in 
1996 reach 500 ppt before divergent biomass burning emissions scenarios begin in 
1997. 500 ppt was chosen for this point and for the initial condition as it is commonly 
cited as the average atmospheric mixing ratio of OCS (Asaf et al., 2013; Blake et al., 
2004; Khalil & Rasmussen, 1984; Kuai et al., 2014).  
 
Previous studies (Berry et al., 2013; Campbell et al., 2008; Suntharalingam et al., 
2008) attribute this supplemental source to uncertainty in the ocean source, which 
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typically exhibits low interannual variation. However, Lennartz et al. (2017, 2019) 
show that, while the ocean source is larger than that presented by Kettle et al. (2002), 
it is insufficiently large to close the budget gap. 
 
Although the budget in the model using previous emission factors is nearly closed 
(requiring a supplemental flux of only 14.5 Gg (S) yr-1), the disagreement with 
observed concentration trends excludes this scenario as a viable solution. In contrast, 
the model using the emissions computed in this work (which better match the bottom-
up and top-down observational constraints) requires a supplemental flux of 197 Gg 
(S) yr-1 to close the budget.   
 
In comparing model output with observational datasets, we focus primarily on 
relative changes in concentration, as differences in standards and calibration methods 
between studies could hamper our ability to predict absolute concentrations. 
 
Uncertainties are calculated based on the standard deviations of observed emission 
factors and emission ratios. For each category of burning, we add the relative 
uncertainties for the CO emission factors (computed as the mean value reported by 
GFED divided by the uncertainty reported in Akagi et al. (2011)) and the OCS 
emission ratios calculated here (computed as the mean value divided by the standard 
deviation in the observations for that category) in quadrature, then multiply this 
combined value against each category of OCS emissions.  
 
The corresponding range in estimates is shown in the error bars in Figure 2-2d. Using 
these high and low biomass burning estimates and compensating with changes in the 
supplemental flux, we run two additional iterations of the model to yield the shaded 
region in Figure 2-3a. 
 
2.7.4 Availability of Gridded Data 
 
Files generated for use in this work are available at 
https://portal.nersc.gov/project/m2319/. We provide NetCDF files for each year of 
OCS fluxes at monthly timesteps and 2° x 2.5° resolution. These files are based on 
the GFED datasets scaled by GFED’s recommended EFs for CO (all available 
https://www.globalfiredata.org/), then to OCS using the molar emission ratios 
presented in this study. Uncertainty totals (based on relative uncertainty of the CO or 
CO2 emission factors and OCS emission ratios, as described in the main text) of each 
category are also included. A corresponding set of files using CO2 emission ratios is 
available in the same directory.  
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All units are g S-OCS km-2 month-1 and the variables in each file are as follows: 
flux_sava – OCS flux from savanna burning 
flux_borf – OCS flux from boreal forest burning 
flux_temf – OCS flux from temperate forest burning 
flux_defo – OCS flux from tropical deforestation and degradation 
flux_peat – OCS flux from peatland burning 
flux_agri – OCS flux from agriculture burning 
flux_total – Sum of OCS fluxes over all six categories 
 
unc_sava – Uncertainty in OCS savanna emissions 
unc_borf – Uncertainty in OCS boreal forest emissions 
unc_temf – Uncertainty in OCS temperate forest emissions 
unc_defo – Uncertainty in OCS tropical emissions 
unc_peat – Uncertainty in OCS peat emissions 
unc_agri – Uncertainty in OCS agriculture emissions 
unc_total – Sum of uncertainty across all six categories 
 

Positive fluxes indicate a flux into the atmosphere. 
 
 
 

 
Figure 2-5: Results from Figure 2-1 comparing emission ratios in literature, plotted 
on a logarithmic scale.  
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Table 2-1: Emissions factors and ratios as reported in existing literature.  
DM = dry matter. 
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Table 2-1 (continued) 
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Table 2-1 (continued) 
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Table 2-1 (continued) 
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Table 2-1 (continued) 
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 16
16

 ±
 1

80
 g

 C
O
2 /

 k
g 

D
M

 
 To

ta
l b

or
ea

l 4
1 

± 
26

 T
g 

CO
 / 

yr
 

To
ta

l b
or

ea
l 1

0.
5 

± 
2.

5 
G

g 
O

CS
 / 

yr
 

Ty
pe

 / 
Lo

ca
tio

n 
 

A
gr

ic
ul

tu
re

 / 
Tr

op
ic

al
 

Fo
re

st  
 V

ie
tn

am
 

Fi
el

d 
Ex

pe
rim

en
t 

Sa
va

nn
a 

 Iv
or

y 
Co

as
t 

Fi
el

d 
Ex

pe
rim

en
t 

Bo
re

al
 F

or
es

t 
 Ca

na
da

 
Fi

el
d 

Ex
pe

rim
en

t 
(A

RC
TA

S 
20

08
) 

So
ur

ce
 

N
gu

ye
n 

et
 a

l. 
(1

99
4)

 
Ta

bl
e 

3 
 U

sin
g 

av
er

ag
e 

of
 w

et
 a

nd
 d

ry
 

se
as

on
 v

al
ue

s  

N
gu

ye
n 

et
 a

l. 
(1

99
5)

 

Si
m

ps
on

 e
t a

l. 
(2

01
1)
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Table 2-1 (continued) 
 

C
om

pu
te

d/
R

ep
or

te
d 

ER
 

Pr
im

ar
y 

da
ta

, c
on

ve
rti

bl
e 

to
 O

CS
 / 

CO
 a

nd
/o

r O
CS

 / 
CO

2 

3.
18

 ×
 1

0-
4  m

ol
 O

CS
 / 

m
ol

 C
O

 
 2.

58
 ×

 1
0-
5  m

ol
 O

CS
 / 

m
ol

 C
O
2 

1.
76

 ×
 1

0-
4  m

ol
 O

CS
 / 

m
ol

 C
O

 
 5.

16
 ×

 1
0-
5  m

ol
 O

CS
 / 

m
ol

 C
O
2  

3.
3 

× 
10
- 4

 m
ol

 O
CS

 / 
m

ol
 C

O
 

8 
× 

10
- 5

 m
ol

 O
CS

 / 
m

ol
 C

O
 

2 
× 

10
- 4

 m
ol

 O
CS

 / 
m

ol
 C

O
 

2.
1 

× 
10
-4

 m
ol

 O
CS

 / 
m

ol
 C

O
 

R
ep

or
te

d 
va

lu
es

 

O
CS

: 
4.

93
 ×

 1
0-
2  

(3
.4

7 
× 

10
-2

) 
g 

O
CS

 / 
kg

 D
M

 
CO

: 7
2.

3 
(2

3.
9)

 g
 C

O
 / 

kg
 D

M
 

CO
2: 

14
01

 (6
8)

 g
 C

O
2 /

 k
g 

D
M

 

0.
11

0 
(0

.0
36

) g
 O

CS
 / 

kg
 D

M
 

29
1 

(4
9)

 g
 C

O
 / 

kg
 D

M
 

15
64

 (7
7)

 g
 C

O
2 /

 k
g 

D
M

 

3.
3 

× 
10
- 4

 m
ol

 O
CS

 / 
m

ol
 C

O
 

8 
× 

10
- 5

 m
ol

 O
CS

 / 
m

ol
 C

O
 

2 
× 

10
- 4

 m
ol

 O
CS

 / 
m

ol
 C

O
 

2.
1 

× 
10
- 4

 m
ol

 O
CS

 / 
m

ol
 C

O
 

Ty
pe

 / 
Lo

ca
tio

n 
 

A
g 

Re
sid

ue
 (T

ab
le

 S
9)

 
 (a

lso
 in

cl
ud

es
 g

ar
ba

ge
 a

nd
 

co
ok

in
g)

 
 (N

A
M

aS
TE

)  

Tr
op

ic
al

 P
ea

t 
In

do
ne

sia
 

El
 N

iñ
o 

ye
ar

 
35

 p
lu

m
es

 

Tr
op

ic
al

 F
or

es
t  

A
m

az
on

 P
lu

m
e 

- T
ab

le
 1

 

Tr
op

ic
al

 F
or

es
t 

Co
ng

o 
Pl

um
e 

-  T
ab

le
 1

 

Sa
va

nn
a 

N
or

th
er

n 
A

us
tra

lia
 P

lu
m

e  
Ta

bl
e 

1 

Bo
re

al
 F

or
es

t 
Ca

na
da

 P
lu

m
e 

-  T
ab

le
 1

 

So
ur

ce
 

St
oc

kw
el

l e
t a

l. 
(2

01
6)

 
  St

oc
kw

el
l e

t a
l. 

(2
01

6)
 

Te
re

sz
ch

uk
 e

t a
l. 

(2
01

1)
 

Te
re

sz
ch

uk
 e

t a
l. 

(2
01

1)
 

Te
re

sz
ch

uk
 e

t a
l. 

(2
01

1)
 

Te
re

sz
ch

uk
 e

t a
l. 

(2
01

1)
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Table 2-1 (continued) 
 

C
om

pu
te

d/
R

ep
or

te
d 

ER
 

Pr
im

ar
y 

da
ta

, c
on

ve
rti

bl
e 

to
 O

CS
 / 

CO
 a

nd
/o

r O
CS

 / 
CO

2 

13
 ×

 1
0-
6  m

ol
 O

CS
 / 

m
ol

 C
O
2 

M
N

: 
8.

36
 ×

 1
0-
3  m

ol
 O

CS
 / 

m
ol

 C
O

 
1.

62
 ×

 1
0-
3  m

ol
 O

CS
 / 

m
ol

 C
O
2 

 A
K

:  
2.

37
 ×

 1
0-
4  m

ol
 O

CS
 / 

m
ol

 C
O

 
6.

61
 ×

 1
0-
5  m

ol
 O

CS
 / 

m
ol

 C
O
2 

R
ep

or
te

d 
va

lu
es

 

13
 ×

 1
0-
6  m

ol
 O

CS
 / 

m
ol

 C
O
2 

M
in

ne
so

ta
: 

49
3.

7 
g 

C 
/ k

g 
dm

 
0.

12
7 

m
ol

 O
CS

 / 
10

0 
m

ol
 C

 
15

.2
 m

ol
 C

O
 / 

10
0 

m
ol

 C
 

78
.5

 m
ol

 C
O
2 /

 1
00

 m
ol

 C
 

 A
la

sk
a:

 
[n

o 
es

tim
at

e 
of

 C
/D

M
] 

0.
00

5 
m

ol
 O

CS
 / 

10
0 

m
ol

 C
 

21
.1

 m
ol

 C
O

 / 
10

0 
m

ol
 C

 
75

.6
 m

ol
 C

O
2 /

 1
00

 m
ol

 C
 

 M
N

 C
 x

 M
N

 O
C

S 
3.

13
 g

 O
CS

 / 
kg

 D
M

 
M

N
 C

 x
 A

K
 O

C
S  

0.
12

 g
 O

CS
 / 

kg
 D

M
 

A
ve

ra
ge

 (1
.6

2)
 a

nd
 ra

ng
e 

(3
.0

1)
 

us
ed

 in
 “

bo
re

al
 p

ea
t”

 c
om

po
ne

nt
 

of
 A

ka
gi

 2
01

1’
s f

ac
to

rs
. 

Ty
pe

 / 
Lo

ca
tio

n 
 

Tr
op

ic
al

 F
or

es
t 

 2 
pl

um
es

 sa
m

pl
ed

 o
ve

r 
Pa

ci
fic

 F
ie

ld
 E

xp
er

im
en

ts  
 (P

EM
 W

es
t- A

) 

Bo
re

al
 P

ea
t 

 M
N

 a
nd

 A
K

 
La

b 
Ex

pe
rim

en
ts

 

So
ur

ce
 

Th
or

nt
on

 e
t a

l. 
( 1

99
6)

 
Ta

bl
e 

3 
/ P

ag
e 

18
78

 
Te

xt
 / 

Pa
ge

 1
87

5 
 (O

nl
y 

us
ed

 fo
r C

O
2)  

Y
ok

el
so

n 
et

 a
l. 

(1
99

7)
 

Ta
bl

e 
1 

O
nl

y 
us

in
g 

A
la

sk
a 

pe
at

 v
al

ue
 in

 
av

er
ag

e.
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Table 2-1 (continued) 
 

C
om

pu
te

d/
R

ep
or

te
d 

ER
 

Pr
im

ar
y 

da
ta

, c
on

ve
rti

bl
e 

to
 O

CS
 / 

CO
 a

nd
/o

r O
CS

 / 
CO

2 

1.
92

 ×
 1

0-
4  m

ol
 O

CS
 / 

m
ol

 C
O

 
(u

sin
g 

sa
m

e -
fli

gh
t C

O
) 

 1.
08

 ×
 1

0-
5  m

ol
 O

CS
 / 

m
ol

 C
O
2 

(u
sin

g 
sa

m
e-

fli
gh

t C
O
2)  

 1.
14

 ×
 1

0-
4  m

ol
 O

CS
 / 

m
ol

 C
O

 
(u

sin
g 

av
er

ag
e 

CO
) 

 1.
12

 ×
 1

0-
5  m

ol
 O

CS
 / 

m
ol

 C
O
2 

(u
sin

g 
av

er
ag

e 
CO

2) 

Pr
im

ar
y 

da
ta

 e
xc

lu
de

d 
fr

om
 a

na
ly

sis
 

Ex
cl

ud
ed

 fr
om

 a
na

ly
sis

 b
ec

au
se

 
si

gn
al

 in
cl

ud
es

 b
io

fu
el

s. 

R
ep

or
te

d 
va

lu
es

 

0.
02

47
 g

 O
CS

 / 
kg

 D
M

 
 59

.9
1 

g 
CO

 / 
kg

 D
M

 (s
am

e 
fir

e/
fli

gh
t) 

10
1.

41
 ±

 2
3.

78
 g

 C
O

 / 
kg

 D
M

 
(a

ve
ra

ge
) 

 16
79

 g
 C

O
2 /

 k
g 

D
M

 (s
am

e 
fir

e/
fli

gh
t)  

16
15

 ±
 4

0 
g 

CO
2 /

 k
g 

D
M

 (a
ve

ra
ge

) 
 Y

ok
el

so
n 

et
 a

l. 
(2

00
8)

 a
lso

 sc
al

e 
th

is 
up

 to
 a

n 
A

m
az

on
 to

ta
l o

f 
0.

01
19

 T
g 

(2
40

 T
g 

D
M

), 
gl

ob
al

 
to

ta
l o

f 0
.0

32
9 

Tg
 (1

33
0 

Tg
 D

M
) 

Ta
bl

e 
2 

 22
 (7

 - 
46

) ×
 1

0-
6  m

ol
 O

CS
 / 

CO
2 

0.
75

 (0
.3

5 
- 0

.9
6)

 ×
 1

0-
3  m

ol
 O

CS
 / 

CO
 

 A
lso

 p
ro

vi
de

s g
lo

ba
l B

M
B 

O
CS

 
to

ta
ls 

fro
m

 W
at

ts 
20

00
 (7

0G
g)

, 
K

ha
lil

 1
98

4 
(2

00
 G

g)
 a

nd
 C

hi
n 

19
93

 (1
40

 G
g)

 

Ty
pe

 / 
Lo

ca
tio

n 
 

Tr
op

ic
al

 F
or

es
t 

 O
ne

 p
la

nn
ed

 fi
re

 / 
Br

az
il  

 Fi
el

d 
Ex

pe
rim

en
t 

(T
RO

FF
EE

 2
00

4 )
 

A
sia

n 
A

nt
hr

op
og

en
ic

 a
nd

 
Bi

om
as

s b
ur

ni
ng

 
 Fi

el
d 

ex
pe

rim
en

t 
(T

RA
CE

- P
 2

00
1)

 
 N

ot
e:

 th
es

e 
se

em
 to

 
in

cl
ud

e 
bi

of
ue

l a
nd

 o
th

er
 

so
ur

ce
s  

So
ur

ce
 

Y
ok

el
so

n 
et

 a
l. 

(2
00

7)
 

 [c
ite

d 
in

 Y
ok

el
so

n 
20

08
] 

 O
nl

y 
us

in
g 

sa
m

e-
fli

gh
t C

O
 a

nd
 C

O
2 

da
ta

. 

Bl
ak

e 
et

 a
l. 

(2
00

4)
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Table 2-1 (continued) 
 

C
om

pu
te

d/
R

ep
or

te
d 

ER
 

Pr
im

ar
y 

da
ta

 e
xc

lu
de

d 
fr

om
 a

na
ly

sis
 

Ex
cl

ud
ed

 fr
om

 a
na

ly
si

s b
ec

au
se

 o
nl

y 
on

e 
or

 tw
o 

sa
m

pl
es

 a
re

 a
va

ila
bl

e.
 

  Ex
cl

ud
ed

 fr
om

 a
na

ly
si

s -
-  

D
at

a 
in

cl
ud

ed
 in

 N
gu

ye
n 

19
95

 

4 
× 

10
- 4

 m
ol

 O
CS

 / 
m

ol
 C

O
 

Ex
cl

ud
ed

 fr
om

 a
na

ly
si

s -
-  n

o 
C

O
 o

r 
CO

2 r
el

at
io

ns
hi

p 
av

ai
la

bl
e.

 

R
ep

or
te

d 
va

lu
es

 

Ca
na

di
an

 P
ea

t 
O

CS
 / 

CO
 =

 1
.3

6 
× 

10
- 4

  
O

CS
 / 

CO
2 =

 3
.3

2 
× 

10
-5

  
CO

 / 
CO

2 =
 0

.2
45

 
 In

do
ne

sia
n 

P e
at

: 
O

CS
 / 

CO
 =

 9
.6

8 
× 

10
- 6

  
O

CS
 / 

CO
2 =

 2
.7

9 
× 

10
- 6

  
CO

 / 
CO

2 =
 0

.2
88

 

3 
to

 2
0 

× 
10
-6

 m
ol

 O
CS

 / 
m

ol
 C

O
2 

Re
po

rte
d 

in
 C

hi
n 

19
93

 
 10

.0
8 

× 
10
-6

 m
ol

 O
CS

 / 
m

ol
 C

O
2 

5.
4 

× 
10
- 4

 T
g 

O
CS

 (s
av

an
na

) 
2.

5 
× 

10
-4

 T
g 

O
CS

 (f
or

es
t) 

Re
po

rte
d 

in
 A

ke
re

do
lu

 1
99

1 

0.
04

 m
ol

 O
CS

 / 
10

0 
m

ol
 C

O
 

M
ai

ze
: 2

.7
5 

± 
0.

23
 g

 O
CS

/to
n 

(n
=7

) 
Ri

ce
: 1

.8
0 

± 
0.

12
 g

 O
CS

 / 
to

n 
(n

=9
)  

W
he

at
: 2

.0
5 

± 
0.

19
 g

 O
CS

 / 
to

n 
(n

=7
) 

Ty
pe

 / 
Lo

ca
tio

n 
 

Ca
na

di
an

 / 
In

do
ne

sia
n 

Pe
at

 
 Fl

ig
ht

 / 
fie

ld
 m

ea
su

re
m

en
t  

Sa
va

nn
a 

/ f
or

es
t 

Iv
or

y 
Co

as
t /

 N
ig

er
ia

 
 Fi

el
d 

Ex
pe

rim
en

t 

A
ve

ra
ge

 
 La

b 
Ex

pe
rim

en
ts

 

Cr
op

 R
es

id
ue

 
Ch

in
a 

 
La

b 
Ex

pe
rim

en
t 

So
ur

ce
 

Bl
ak

e 
/ S

im
ps

on
 F

LA
M

E4
 D

at
a  

 Pe
rs

on
al

 c
om

m
un

ic
at

io
n 

w
ith

 Is
ob

el
 

Si
m

ps
on

  

N
gu

ye
n 

19
90

  
 Ci

te
d 

in
 C

hi
n 

19
93

 a
nd

 A
ke

re
do

lu
 

19
91

 
 Y

ok
el

so
n 

et
 a

l . 
(1

99
7)

 
Ta

bl
e 

3 
 [c

ite
d 

in
 Y

ok
el

so
n 

et
 a

l. 
(1

99
9)

 a
nd

 
G

oo
de

 e
t a

l. 
( 2

00
0)

]  

Zh
ua

ng
 1

99
6 

[T
 7

1.
3]

 
[In

 B
io

m
as

s B
ur

ni
ng

 a
nd

 G
lo

ba
l 

Ch
an

ge
 v

.2
] 
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Table 2-1 (continued) 
 

C
om

pu
te

d/
R

ep
or

te
d 

ER
 

Su
m

m
ar

y 
pa

pe
rs

, s
om

e 
wi

th
 O

CS
 v

s. 
CO

 c
om

pa
ris

on
 

1.
08

 ×
 1

0-
4  m

ol
 O

CS
 / 

m
ol

 C
O

 
 U

sin
g 

O
CS

 v
al

ue
 fr

om
 N

gu
ye

n 
19

90
  

an
d 

CO
 v

al
ue

 fr
om

 G
re

en
be

rg
 e

t a
l . 

(1
98

4)
 a

nd
/o

r C
ru

tz
en

 e
t a

l . 
( 1

97
9)

 

1.
6 

× 
10
- 4

 m
ol

 O
CS

 / 
m

ol
 C

O
 

 

R
ep

or
te

d 
va

lu
es

 

0.
1 

m
ol

 C
O

 / 
m

ol
 C

O
2 

ba
se

d 
on

 G
re

en
be

rg
 e

t a
l . 

(1
98

4)
 

an
d 

Cr
ut

ze
n 

et
 a

l . 
(1

97
9)

 
2.

4 
Tg

 C
O

 (s
av

an
na

)  
1.

1 
Tg

 C
O

 (f
or

es
t)  

O
CS

 
0.

01
 ×

 1
0-

3 
m

ol
 O

CS
 / 

m
ol

 C
O
2 

0.
02

 g
 O

CS
 /  

kg
 D

M
 

0.
04

 T
g 

(A
fri

ca
 sa

va
nn

a)
 

0.
07

 T
g 

(g
lo

ba
l s

av
an

na
) 

0.
21

 T
g 

bi
om

as
s b

ur
ni

ng
 

0.
38

 T
g 

al
l a

nt
hr

o p
og

en
ic

 
(b

as
ed

 o
n 

Ch
in

 a
nd

 D
av

is 
19

93
) 

  CO
 

62
 ×

 1
0-

3 
m

ol
 C

O
 / 

m
ol

 C
O
2 

65
 g

 C
O

 / 
kg

 D
M

 
13

0 
Tg

 A
fri

ca
n 

sa
va

nn
a 

24
0 

Tg
 g

lo
ba

l s
av

an
na

 
68

0 
Tg

 b
io

m
as

s b
ur

ni
ng

 
16

00
 T

g 
a l

l a
nt

hr
op

og
en

ic
 

ba
se

d 
on

 H
ou

gh
to

n 
19

95
 

 Ta
bl

e 
1.

4 
gi

ve
s 

O
CS

 (f
ie

ld
) 0

.0
05

 to
 0

.0
16

 ×
 1

0-
3 

m
ol

 O
CS

 / 
m

ol
 C

O
2 

CO
 (f

ie
ld

) 6
5  

to
 1

40
 m

ol
 C

O
 / 

10
00

 
m

ol
 C

O
2 

CO
 (l

ab
) 5

9  
to

 1
05

 m
ol

 C
O

 / 
10

00
 

m
ol

 C
O
2 

CO
 b

es
t g

ue
ss

 1
00

 m
ol

 C
O

 / 
10

00
 m

ol
 

CO
2 

Ty
pe

 / 
Lo

ca
tio

n 
 

SU
M

M
A

RY
 

 Tr
op

ic
al

 S
av

an
na

 / 
Fo

re
st

 
N

ig
er

ia
 

SU
M

M
A

RY
 

So
ur

ce
 

A
ke

re
do

lu
 1

99
1 

Ci
tin

g 
N

gu
ye

n 
19

90
 

[in
 G

lo
ba

l B
io

m
as

s B
ur

ni
ng

]  

A
nd

re
ae

 1
99

1 
[in

 G
lo

ba
l B

io
m

as
s B

ur
ni

ng
]  
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Table 2-1 (continued) 
 

C
om

pu
te

d/
R

ep
or

te
d 

ER
 

Su
m

m
ar

y 
pa

pe
rs

, s
om

e 
wi

th
 O

CS
 v

s. 
CO

 c
om

pa
ris

on
 

m
ol

 O
CS

 / 
m

ol
 C

O
 

 Sa
va

nn
a:

 1
.0

8 
× 

10
-4

  
Tr

op
ic

al
: 1

.7
9 

× 
10

- 4
  

Ex
tra

tro
pi

ca
l: 

1.
44

 ×
 1

0-
4 

 
Bi

of
ue

l: 
2.

39
 ×

 1
0 -

4  
 

Ch
ar

co
al

 M
ak

in
g:

 2
.6

7 
× 

10
- 4

  
Ch

ar
co

al
 B

ur
ni

ng
: 9

.3
3 

× 
10

-5
  

A
g 

W
as

te
: 3

.3
0 

× 
10

- 4
  

  m
ol

 O
CS

 / 
m

ol
 C

O
2 

 Sa
va

nn
a:

 6
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Table 2-1 (continued) 
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Table 2-1 (continued) 
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Table 2-2: Summary of literature estimates assigned to ecosystem categories for this 
work. 
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Table 2-2 (continued) 
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Table 2-3: Table of Values for Average ERs in Figure 2-1. 
 
 SAVA BORF TEMF DEFO PEAT AGRI 

Andreae & 
Merlet, 2001 1.08 × 10-4 1.44 × 10-4 1.79 × 10-4 NR 3.30 × 10-4 

Akagi et al., 
2011 NR 1.69 × 10-3 1.76 × 10-3* 1.25 × 10-4 3.08 × 10-3 NR 

Previous 
Study 

Average 
1.08 × 10-4 9.17 × 10-4 9.52 × 10-4 1.52 × 10-4 3.08 × 10-3 3.30 × 10-4 

This Paper 1.03 × 10-4 1.78 × 10-4 1.12 × 10-4 1.64 × 10-4 2.07 × 10-4 3.01 × 10-4 

 
Emission ratios for 6 categories of burning included in GFED. Units are mol OCS / 
mol CO. Andreae and Merlet (2001) report a value for “extratropical forest” which 
we have used for both boreal and temperate forests. Akagi et al. (2011) provide a 
value for “extratropical forest” which we use for temperate forests. The Previous 
Study Average is the value used in the box model simulation and is equal to either the 
emission ratio from Andreae and Merlet (2001) or Akagi et al. (2011) (when only one 
study provides a value) or an evenly weighted average of emission ratios from both 
studies (when both studies report a value). NR = not reported. 
 
*[9.28 × 10-5 in an updated version of the data maintained by the original authors and 
posted at http://bai.acom.ucar.edu/Data/fire/ (accessed 07/30/2019)] 
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Table 2-4: Summary of average annual OCS emissions (Gg (S) yr-1) based on CO 
and CO2 totals from all complete years of GFED data (1997-2016).  
 

Category Current Study 
CO-based Estimate 

Previous Studies 
CO-based Estimate 

SAVA 
BORF 
TEMF 
DEFO 
PEAT 
AGRI 
Total:  

21.4 (18.7 - 27.2)   ± 14.8 
8.8   (4.7 - 18.0)     ± 5.5 
1.1   (0.7 - 1.9)       ± 1.2 
11.5 (5.2 - 22.4)     ± 9.5 
7.0   (0.5 - 46.6)     ± 2.5 
9.9   (7.4 - 13.2)     ± 3.3 
59.8 (45.9 - 111.0) ± 36.7 

22.5   (19.6 - 28.5) 
45.4   (24.2 - 92.5) 
9.6     (5.6 - 15.8) 
10.7   (4.8 - 20.7) 
104.2 (7.4 - 692.6) 
10.8   (8.2 - 14.5) 
203.1 (88.0 - 790.8) 

Category Current Study 
CO2-based Estimate 

Previous Studies 
CO2-based Estimate 

SAVA 
BORF 
TEMF 
DEFO 
PEAT 
AGRI 
Total:  

27.3 (23.8 - 34.6)   ± 18.6 
5.4   (2.9 - 11.0)     ± 0.9 
2.1   (1.3 - 3.5)       ± 3.0 
11.0 (4.9 - 21.3)     ± 5.3 
10.3 (0.7 - 68.4)     ± 1.8 
13.5 (10.2 - 18.2)   ± 7.4 
69.6 (52.5 - 141.6) ± 37.0 

24.2 (21.0 - 30.7) 
44.7 (23.8 - 91.1) 
14.3 (8.5 - 23.7) 
11.8 (5.3 - 22.8) 
97.8 (6.9 - 649.9) 
10.2 (7.7 - 13.7) 
203.0 (93.3 - 756.7) 

 
Minimum and maximum annual totals are given in parentheses. For estimates derived 
in this paper, uncertainty estimates based on the spread of observations are also given. 
Previous Studies refers to estimates from Andreae and Merlet (2001), Akagi et al. 
(2011) or an average of both, as described in the main text. 
 
In general, both CO- and CO2-based approaches show similar total emissions of OCS, 
but as CO2 emission factors vary less between categories (standard deviation of CO2 
EFs across categories is 5% of mean, compared to 45% for CO), estimates based on 
CO2 more closely follow the distribution of emissions shown in Figure 2-2a (Dry 
Matter Emissions by Category) in the main text.  
 
 
 
 
 
 
 
 
 



 

 36 

Chapter 3: Remotely Sensed Carbonyl Sulfide Constrains 
Model Estimates of Amazon Primary Productivity 
 
3.1 Abstract 
 
Understanding the magnitude of tropical gross primary production (GPP) is critical 
for carbon cycle modeling, and hence future climate projections, but this quantity is 
poorly constrained at regional scales. One promising approach is the use of 
atmospheric carbonyl sulfide (OCS) uptake as a proxy for regional GPP. Here, we 
simulate OCS concentrations driven by surface flux scenarios encompassing a wide 
range of GPP estimates for the Amazon basin. We compare the transport model 
output to satellite retrievals and find a regional GPP estimate of 1051 ± 581 g C m-2 
yr-1, which is near the low end of previous estimates, including the TRENDY model 
range.  
 
3.2 Background 
 
Accurate quantification of photosynthetic carbon uptake (gross primary production, 
GPP) in the tropics is critical to improving ecosystem models and climate predictions. 
The net flux between respiration and GPP is relatively small relative to the magnitude 
of each component (e.g., Steffen et al., 1998), and changes in either component can 
lead to significant changes in the net carbon balance. As such, feedbacks between 
climate and GPP represent some of the largest sources of uncertainty in climate 
projections (Arneth et al., 2010; Wenzel et al., 2016). In order to address these 
uncertainties, it is arguably first necessary to accurately quantify GPP, estimates of 
which vary widely between models, particularly in the tropics (Figure 3-1). 
 
Previous work has sought to constrain the magnitude of regional GPP estimates 
primarily by upscaling of eddy covariance (Beer et al., 2010; Jung et al., 2011) 
measurements or regression with solar-induced fluorescence (SIF) measurements 
(Frankenberg et al., 2011, 2012; Guanter et al., 2014; Parazoo et al., 2014; van der 
Tol et al., 2009). While much has been learned from such approaches, spatiotemporal 
uncertainties in regional GPP estimates persist; measurements of SIF represent 
photosynthetic activity only at a given instant, eddy covariance data is limited by the 
sparse network of sites, and remote sensing approaches in general often face 
complications from cloud contamination. These challenges suggest the need for a 
complementary approach that is integrative over space and time. 
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Figure 3-1: Variation of GPP within the TRENDY model ensemble expressed (A) by 
1° latitudinal averages and (B) by standard deviation across models. Data are annual 
averages from the most recent simulation year in the Trendy data (2010). Also 
included in Figure 3-1a are observation-based GPP estimates from previously 
published flux tower (red, Beer et al., 2010) and solar-induced fluorescence (cyan, 
Parazoo et al., 2014) measurements. 
 
One such approach involves the use of atmospheric carbonyl sulfide (OCS or COS) 
as a tracer for regional and global GPP (Berry et al., 2013; Campbell et al., 2008, 
2017; Montzka et al., 2007). The primary OCS sink is terrestrial plant uptake, which 
is controlled by stomatal conductance and strongly correlated with GPP at regional 
scales (Berry et al., 2013; Hilton et al., 2017; Sandoval-Soto et al., 2005; Stimler et 
al., 2010). The primary sources are ocean chemical cycling and industrial activity 
(Campbell et al., 2015; Launois, Belviso, et al., 2015; Launois, Peylin, et al., 2015; 
Zumkehr et al., 2017, 2018). Soil uptake, soil efflux and emissions from biomass 
burning also contribute to the OCS budget (Kettle et al., 2002; Stinecipher et al., 
2019; Whelan et al., 2016). 
 
Although large-scale OCS analyses have thus far focused on global or North 
American domains (Berry et al., 2013; Campbell et al., 2008, 2017; Hilton et al., 
2017; Wang et al., 2016), recently published satellite retrievals of OCS concentrations 
provide more detailed spatial coverage that may support a broader range of regional 
applications (Glatthor et al., 2015, 2017; Kuai et al., 2014, 2015; Vincent & Dudhia, 
2017). Satellite OCS data over continental regions are currently available for the 
upper troposphere, which is generally too high of an altitude to be useful for inferring 
the land surface plant sink, unless there is sufficient convective transport (Figure 3-2). 
 
Such meteorological conditions, however, are fortuitously met in the Amazon region, 
where satellite retrievals from the Michelson Interferometer for Passive Atmospheric 
Sounding (MIPAS) yield the lowest global OCS concentrations, consistent with both 
significant OCS uptake and strong convective transport (Figure 3-2a, see also 
Glatthor et al., 2015, 2017). The spatial separation of the dominant regional sink 
(plant uptake) from other regional sources (particularly ocean chemistry and 
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industrial activity) further accentuates this gradient (Campbell et al., 2015; Glatthor et 
al., 2015).  
 
In contrast, satellite-constrained model estimates of CO2 concentrations in the upper 
troposphere do not show a similar drawdown over the Amazon, as the photosynthesis 
sink and respiration source are co-located (Figure 3-2b). Furthermore, even given 
sufficiently large changes in CO2 concentrations (e.g., near the surface), these 
changes only represent the net carbon flux, without addressing the underlying 
components. 
 

 
Figure 3-2: Upper troposphere measurements show stronger relative deviations in 
(A) OCS concentration from MIPAS (average binned observations, 2002 - 2012) 
compared to (B) CO2 concentration from GOSAT’s Level 4B product (averaged 2010 
- 2013). Both plots express changes in concentration as percent deviation from the 
global annual mean at 250 hPa. 
 
3.3 Methods 
 
Here we seek to estimate the regional GPP flux that is most consistent with the large 
depletion of OCS over the Amazon and the tropical Atlantic identified by MIPAS, a 
limb-sounding instrument operating aboard the Envisat satellite from 2002 to 2012 
(Glatthor et al., 2015, 2017). Glatthor et al. (2015) attribute this depletion to 
Amazonian plant uptake but do not provide an estimate for that uptake. We consider 
multiple scenarios for plant uptake of OCS in the Amazon basin, corresponding to the 
high and low extremes of the regional GPP fluxes from the TRENDY ecosystem 
model intercomparison project (Figure 3-1; see also Sitch et al., 2015).  
 
A baseline set of OCS plant uptake fluxes is estimated from SIF-optimized GPP using 
the linear relationship between canopy OCS and GPP computed by the Simple 
Biosphere Model (SiB3). Using the linear relationship between GPP and OCS uptake, 
we scale these baseline plant fluxes in the Amazon region (defined for this purpose as 
extending from 7° N to 19° S and from 51.25° W to 76.25° W) to match the lowest 
and highest GPP estimates from the TRENDY ensemble. Although the relationship 
between OCS uptake and GPP depends on a variety of factors (including diurnal 
variation, ambient concentrations, humidity, stomatal conductance, and plant 
functional type), at aggregate spatial and temporal scales, the linear relationship is 
both strong and consistent with findings of Hilton et al. (2017) that mechanistically 
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calculated OCS uptake and uptake computed from linearly scaled GPP yield similar 
results.  
 
We simulate OCS concentrations in the atmosphere by running a modified version of 
the GEOS-Chem atmospheric transport and chemistry model with 2° latitude by 2.5° 
longitude resolution, 47 vertical levels and GEOS5 meteorology from 2004 to 2012 
(Kuai et al., 2015; Suntharalingam et al., 2008). OCS was implemented with surface 
fluxes that are independent of the atmospheric OCS concentration and a first-order 
loss from reaction of OCS with the OH radical in the atmosphere, calculated from a 
prescribed OH field, following Kuai et al. (2015). 
 
Retrieved MIPAS vertical profiles were quality-filtered based on averaging kernel 
weights and clear-sky flags and interpolated to 250 hPa as in Glatthor et al. (2015). 
250 hPa was selected because it was the lowest altitude with near-complete global 
coverage when data are binned. Although MIPAS observations are available from 
2002-2012, due to limitations in available meteorological data for our modeling, we 
exclude the first two years from the analysis.  
 
To maintain consistent spatial weighting between the modeled and observed data, we 
sample the model output at the locations and times of MIPAS observations using a 
nearest-neighbor scheme. We combine all observations (and their corresponding 
model points) in a given month across the entire model period (e.g., all January 
observations, regardless of year). Although this yields estimates on a coarser, 
climatological timescale, it allows for the inclusion of far more points in each 
monthly average. 
 
Glatthor et al. (2015) compare observed and modeled values within a fixed region, 
but preliminary tests found this approach to be too sensitive to the choice of 
boundaries for the current work. In order to increase the robustness of the estimate, 
we dynamically define signal and background regions as follows. 
 
At each extracted point, we compute a “sensitivity ratio” Rsens by dividing the low-
GPP model concentrations by the high-GPP model concentrations, akin to a Jacobian. 
As the primary difference between runs is the change in Amazon plant uptake fluxes, 
this ratio represents the change in concentration at a given point due to changes in 
surface fluxes. By aggregating and averaging points where Rsens is relatively large, we 
can determine the subset of upper-tropospheric observations most sensitive to plant 
uptake in the Amazon.  
 
The value of this approach is highlighted in Figure 3-3. In months with sufficient 
convection (i.e., during the wet season), a strong signal region is identifiable 
downstream of the actual uptake, even though retrievals directly over the Amazon 
and elsewhere in the tropics are hampered by cloud cover. Conversely, during the dry 
season (shown here for July), more observations are available directly above the 
tropics, but are less affected by changes at the surface.  
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Figure 3-3: Sensitivity ratios indicate strong, decentralized influence of surface 
fluxes in January (left), but weaker influences in July (right). Values are the ratio of 
the low-GPP model concentration divided by the high-GPP model concentration at 
the location of each valid MIPAS OCS observation at 250 hPa. Values are aggregated 
over all model years (2004-2012). 
 
We extract mean concentrations from two regions: a signal region sensitive to the 
Amazon (i.e., points with a high Rsens value) and a background region against which 
the former value can be standardized between datasets. We then relate the difference 
in mixing ratios between the regions to the monthly OCS fluxes in the Amazon by a 
linear regression. This procedure yields an estimate for the net OCS flux in the region 
for a given month, from which we subtract non-plant fluxes to obtain an estimate for 
the amount of OCS plant uptake responsible for the signal in the satellite data. We 
repeat the analysis across a range of thresholds to reduce bias from any particular 
choice of threshold values for Rsens and estimate the uncertainty in our method (see 
Section 3.7.2). 
 
3.4 Results 
 
Model results generally follow the observed seasonal pattern, with the low-GPP 
model yielding the best correspondence in overall magnitude. Figure 3-4 shows the 
mean difference in concentrations between the signal and background regions 
described above, and the resulting monthly flux estimates based on the regression. In 
the dry season (June through October), convection is limited and therefore fewer 
points during this period meet the sensitivity thresholds, making values highly 
uncertain.  
 
While additional post-analysis sources of uncertainty are described below, monthly 
uncertainty shown in Figure 3-4 is computed as the sum of two factors: the standard 
error of the mean within each signal and background region, as well as the standard 
deviation of the estimates across all thresholds. 
 
On average, observed concentrations in the signal region have a standard error of the 
mean (SEM) ranging from 3 to 21 ppt, depending on the month. In contrast, the 
average SEM for the background region is less than 1 ppt due to the vastly larger 
number of observations. This range in concentrations propagates to create a 
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corresponding range of flux estimates with a relative error between 19% and 178% of 
each month’s estimate. 
 
The second source of uncertainty is the choice of threshold used to define the two 
averaging regions. Across the combinations of thresholds described above, we find a 
standard deviation between 17% and 136% of the estimated flux. The largest 
uncertainties occur during the dry season months due to limited convective transport, 
which reduces the number of upper troposphere observations sensitive to surface 
fluxes. 
 
When added in quadrature, the uncertainties yield overall monthly relative errors 
between 28% and 188% of the monthly retrieved plant flux. As before, the largest 
combined uncertainties occur during the dry season. 
 
 

 

 
 
Figure 3-4: During months with sufficient convection, observed OCS concentrations 
are more consistent with values from lower GPP models. Average OCS 
concentrations in signal regions relative to background regions are shown in (A), with 
corresponding monthly estimates of net OCS flux (B) and plant-only OCS flux (C) 
for perturbed Amazon region. Error bars are 95% confidence intervals. 
 
Given the large uncertainty from May to October, we estimate annual OCS fluxes 
using a weighted mean of the monthly plant flux with weights based on the squared 
inverse of the calculated monthly uncertainties. The months with the largest weights 
(November to April) correspond to the time when convection is strong enough to 
yield sufficient observations, while months with large uncertainty (July to September) 
contribute little information. Using this weighting, we obtain average plant fluxes of -
70.7 ± 24.3 Gg S yr-1 and corresponding GPP fluxes of 8.6 ± 3.4 Pg C yr-1 using the 
OCS-GPP relationship from the flux generation step.  
 
Several factors contribute additional uncertainty and bias to this initial estimate. 
These include uncertainty in the relationship between GPP and OCS uptake by plants, 
bias due to weighting and flux seasonality, surface flux uncertainty, and choice of 
transport model. 
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Uncertainty in the relationship between OCS uptake and GPP is difficult to quantify, 
given the lack of observational data in the region. We approach this uncertainty by 
considering the leaf-scale relative uptake (LRU), which is the ratio of OCS uptake to 
GPP, normalized by ambient concentrations. Hilton et al. (2017) argue that for 
seasonal analyses at regional scales, LRU represents a small source of uncertainty 
relative to other factors, particularly the spatial distribution of fluxes.  
 
Over the region of interest, the baseline (medium) flux is 128 Gg S OCS 
corresponding to 17 Pg C GPP annually, as estimated using the SiB3 mechanistic 
model. Assuming an ambient concentration ratio of 1.1 pptv OCS / ppmv CO2 (Hilton 
et al., 2017), this calculation yields an LRU of 2.6. This estimate is within the range 
of 1.7 to 3.6 that has been reported for tropical forests (See Table 3 of Sandoval-Soto 
et al., 2005). Given this overall range, we estimate a standard deviation of 0.475 and 
obtain a relative uncertainty of 18.2%, or 1.56 Pg C when applied to the retrieved 
GPP. 
 
Models in the TRENDY ensemble tend to show a decrease in GPP during the months 
of low convection (May to October). As such, our weighting scheme favoring high-
convection months may in fact be overestimating GPP. To assess this bias, we apply 
the same weighting to the suite of TRENDY models and compare the GPP calculated 
using both weighted and unweighted averages. Across all TRENDY models, the 
weighted average predicts GPP that is 0% to 6% higher than that calculated using all 
months of data, hence the estimate derived here may overestimate GPP by a similar 
amount. To account for this, we reduce the final weighted mean value by 3% while 
including a relative error of ± 3% (0.26 Pg C). 
 
Uncertainties due to non-plant surface fluxes are relatively small. We estimate the 
standard deviation of the total range in non-plant fluxes as 10 Gg S yr-1 which, when 
compared to the range in regional plant fluxes, yields a corresponding uncertainty in 
GPP of 1.4 Pg C yr-1. 
 
While non-plant fluxes within the region of interest have a direct effect on the overall 
retrieval, the effect of these fluxes elsewhere in the globe is more like a representation 
error; although the overall total remains approximately the same, the spatial 
distribution is impacted. We compare the present model simulations with another set 
using larger biomass burning fluxes (based on scaling factors from Campbell et al., 
2017) and smaller anthropogenic fluxes from Kettle et al. (2002), with corresponding 
changes to the supplemental ocean flux to balance the flux budget. Comparing the 
range in retrieved values to the overall range in plant fluxes, we estimate an 
uncertainty of 8.9 Gg S yr-1, corresponding to 1.3 Pg C yr-1. 
 
Estimates of uncertainty due to different transport models are likewise small relative 
to the range of GPP estimates. An additional pair of runs was performed to test the 
sensitivity to different transport models. We ran the Parameterized Chemical 
Transport Model (PCTM, see Berry et al., 2013; Kawa, 2004) and a corresponding 
GEOS-Chem simulation with the same surface fluxes, for two years. The average 
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RMSE between models was 2.4 pptv. We compare this value to the average 
difference between the low- and high-GPP model depressions (25.9 pptv), which 
yields a corresponding uncertainty of approximately 1.8 Pg C yr-1 when compared to 
the underlying GPP values. 
 
When added in quadrature, the overall estimate obtained is 8.3 ± 4.6 Pg C yr-1 (mean 
± sd), or 1051 ± 581 g C m-2 yr-1, which encompasses the lower end of estimates 
predicted by TRENDY. 
 
3.5 Discussion 
 
Concentrations within the signal region are generally lower than those in the 
background region because, by definition, the region is strongly influenced by plant 
uptake of OCS in the Amazon at the surface. In general, the signal region is also more 
uncertain than the background region, with fewer observations leading to standard 
errors of the signal mean an order of magnitude larger than that of the background. 
Additionally, since these signal regions include fewer total retrievals (each of which 
has associated noise and errors), the averages are more sensitive to changes in the 
thresholds. This highlights the need for more, higher-resolution satellite 
measurements of OCS over the tropics.  
 
Net fluxes in the model increase between August and October due to increases in 
biomass burning. Biomass burning emissions show significant seasonal and 
interannual variation (Stinecipher et al., 2019); however, two factors mitigate 
sensitivities of our estimates to uncertainties in the location, timing and magnitude of 
our fire emissions. First, by attempting to constrain fluxes only on a climatological 
basis, we avoid the challenge of predicting fluxes in any particular year. Further, 
since the period when biomass burning spikes (the dry season) is also the same period 
where deep convection weakens, our model already shows little to no skill at 
differentiating between GPP scenarios at this time, and therefore these months 
already receive a low weighting.  
 
Beyond the existing ecosystem model results, two independent approaches provide 
measurement-based context for this estimate of GPP. We calculate an additional 
constraint on GPP using estimates derived from the FLUXNET observation network, 
as described in Beer et al. (2010). Across the six approaches described in that paper, 
the mean GPP within the Amazon basin was determined to be 2604 g C m-2 yr-1 with 
a standard deviation of 253 g C m-2 yr-1. We calculate a separate constraint for GPP 
based on solar-induced fluorescence observations from GOSAT from 2009-2013 
(Parazoo et al., 2014), yielding 3060 g C m-2 yr-1. These independent estimates, as 
well as the estimates computed above, are shown in Figure 3-5. 
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Figure 3-5: Our OCS-based estimates for GPP in the Amazon basin are more 
consistent with the lower-GPP TRENDY models. Grey crosses are individual 
TRENDY model averages over the last decade of simulation. Black diamond is the 
mean across all TRENDY models. Red diamond is GOSAT-observed SIF constraint 
from Parazoo et al. (2014). Blue diamond is FLUXNET constraint from Beer et al. 
(2010). MIPAS-based OCS constraint with errors based on those in Figure 3-4 (light 
green diamond) or with additional sources of error included and with mean shifted to 
account for seasonal bias (dark green diamond). Error bars represent 95% confidence 
intervals. 
 
In light of these uncertainties, it remains challenging to use the MIPAS OCS dataset 
to estimate Amazonian carbon uptake for any given month or year. However, the 
current work demonstrates that this method can yield valuable information about 
regional GPP on a climatological timescale. These in turn could be used to calibrate 
short-term flux variability derived from emerging carbon cycle assimilation systems 
(e.g., Bowman et al., 2017, Liu et al., 2017), yielding a synthesis between 
instantaneous approaches like SIF and climatological information from OCS. The 
encouraging spatial patterns underscore both the importance of OCS as a tracer for 
primary productivity and stomatal conductance, as well as the need for additional 
measurements of OCS at higher spatial and temporal resolutions. Measurements at 
lower altitudes would further constrain estimates, especially during months with 
reduced convective transport. 
 
3.6 Conclusion 
 
This approach yields information about a region that other satellite products (SIF, 
NDVI) struggle to capture amid frequent cloud contamination. Even though few OCS 
observations are available directly above the Amazon, information is still available 
“downstream” of the region due to the spatially and temporally integrative nature of 
the tracer approach.  
 
While much of the discussion on the global OCS budget has centered on missing 
sources (Lennartz et al., 2017; Stinecipher et al., 2019), we note that the smaller plant 
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sink described here would also help to close the budget. This would reduce the need 
for a large, supplemental ocean source (e.g., Berry et al., 2013), consistent with recent 
analyses by Lennartz et al. (2017, 2019).  
 
If our lower estimates of GPP are borne out in future, this result will have profound 
impacts on our understanding of the global carbon cycle, particularly the ability of 
tropical forests to sequester carbon. 
 
3.7 Supplemental Information for Chapter 3 
 
3.7.1 Details on GEOS-Chem Setup 
 
Process Model Estimates of GPP 
Process-based estimates of GPP were taken from the TRENDY Version 1 S1 and S2 
datasets (Sitch et al., 2015), including the following models: CLM, HYLAND, LPJ-
Guess, LPJ, OCN, ORCHIDEE, SDGVM, TRIFFID and VEGAS. Over the region of 
interest (76.25°W-51.25°W, 19°S-7°N), model estimates of GPP ranged from 11.3 Pg 
C yr-1 (LPJ-Guess) to 30.2 Pg C yr-1 (CLM), averaged over the most recent 10 years 
of simulation (2001 - 2010). See Figure 3-6, Panel (A). 
 
OCS Transport Model Fluxes 
Canopy Uptake: Initial estimates of OCS uptake by plants (totaling 691 Gg S yr-1 
globally) followed spatial distributions of GPP inferred through solar-induced 
fluorescence (SIF) as measured by GOME-2 (Parazoo et al., 2014). Flux totals were 
calculated using the Simple Biosphere Model (SiB3); see Baker et al., 2008), which 
mechanistically simulates the relationship between regional GPP and OCS flux 
(Baker et al., 2008; Berry et al., 2013). These fluxes are scaled by atmospheric 
concentrations predicted from a previous GEOS-Chem simulation and normalized by 
the constant boundary layer value assumed by SiB (450 ppt). The unscaled (medium) 
total in the region of interest was 128 Gg S yr-1, corresponding to 16.6 Pg C yr-1 in 
GPP. 
 
Two additional sets of canopy fluxes were generated to conduct high- and low-
productivity runs, based on end members in the TRENDY dataset (described above). 
We scale the canopy uptake in the region of interest based on the total GPP fluxes in 
this region from the LPJ-Guess and CLM models, yielding scaling factors of 0.7 and 
1.8, respectively. This yielded regional plant sinks ranging from 90 to 224 Gg S yr-1, 
respectively. This linear scaling relationship is consistent with approaches based on 
leaf-scale relative uptake and process models (Hilton et al., 2017). 
 
Soil uptake: Soil uptake was implemented using zero-order soil fluxes from SiB4, 
yielding a global total of 177 Gg S yr-1. 
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Figure 3-6: Impact of weighting on final estimated totals for the Amazon region. 
Panel A shows the GPP values from TRENDY (dotted) and the SiB-based values 
used for the model runs (solid). Error bars are 95% confidence intervals based on 
mean values for the last decade of simulation. Panel B shows the seasonal variation 
across these models, normalizing each model against its maximum value. Panel C 
plots the relative weights for each month as determined from the monthly error 
estimates (see Figure 3-4). Panel D plots the unweighted and weighted totals of 
TRENDY models, using the weights in Panel C. The 1-1 line indicates that the 
weighting typically results in an overestimation of annual GPP of 0-6%. A 3% 
overestimation is shown with the dotted line for comparison.  
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Ocean Emissions: We include direct (OCS) and indirect (DMS and CS2) ocean 
sources from Kettle et al. (2002), totaling 39, 156 and 81 Gg S yr-1, respectively. A 
supplemental ocean source optimized using data from TES observations of OCS was 
added to balance the flux budget (Kuai et al., 2015), following literature (Berry et al., 
2013; Launois, Belviso, et al., 2015) suggesting that the ocean source was 
significantly larger than reported in Kettle et al. (2002). The supplemental source 
ranges from 239 Gg S yr-1 for the low-GPP model to 373 Gg S yr-1 for the high-GPP 
model. 
 
Lennartz et al. (2017, 2019) show that, while oceanic emissions are larger than Kettle 
et al. (2002), the emissions are not necessarily large enough to fully account for the 
existing gap in the OCS budget. We note that a smaller OCS plant sink, as found here, 
further reduces the need for a large ocean source.  
 
Anthropogenic Emissions:  
Anthropogenic fluxes were based on a recent inventory by Zumkehr et al. (2017, 
2018), averaging 363 Gg S yr-1 between 2004 and 2012. Compared to sources in 
Kettle et al. (2002), which yield 62 Gg S yr-1 for direct emissions of OCS and 122 Gg 
S yr-1 for indirect emissions, these fluxes are larger and primarily influenced by 
industrial sources in Asia. These latest fluxes, however, show little change in the 
Amazon region. As with changes to the ocean, changes to this flux primarily act as 
boundary conditions, accounted for in the background region. 
 
Biomass Burning Emissions: OCS emissions due to biomass burning are based on an 
average of fluxes from Stinecipher et al. (2019) yielding 55 Gg S yr-1 between 2004 
and 2012. This total is lower than the average of 116 Gg S yr-1 given in Campbell et 
al. (2015), but accounts more specifically for emissions between different biomes. 
 
OH Chemical Sink: A hydroxyl radical sink is implemented in the model as described 
in Kuai et al. (2015), yielding a sink of approximately 106 Gg S yr-1. 
 
Annual fluxes are shown in Table 3-1 and Figure 3-7. 
 
Atmospheric Transport and Chemistry Modeling 
The above fluxes were used to drive multiple GEOS-Chem runs at 2° x 2.5° latitude-
longitude resolution at 3-hourly time steps for 2004 to 2012 (the years for which both 
GEOS5 meteorology and MIPAS observations were available). Each setup was spun 
up from a constant initial condition file for four years with repeated meteorology and 
fluxes, prior to running the full simulation period. 
 
Due to differences in sampling years and model data availability, we repeat surface 
fluxes annually and limit our analysis to a climatological time scale. However, for all 
TRENDY models, annual estimates of GPP from the last decade of simulations vary 
by less than 1.1% of the total GPP (standard deviation/mean) in the region of interest, 
mitigating concerns about interannual variability for the purposes of this study. 
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Table 3-1: Global flux totals as implemented in the GEOS-Chem simulations. 
 

Flux Category 
Low GPP 

Model 
Medium GPP 

Model 
High GPP 

Model 
Ocean (Direct OCS) 40 40 40 
Ocean (Indirect from DMS) 155 155 155 
Ocean (Indirect from CS2) 83 83 83 
Ocean (Supplemental Flux) 239 277 373 
Anthropogenic Source 363 363 363 
Biomass Burning Source 56 56 56 
OH Chemical Sink -106 -106 -106 
Soil Uptake -177 -177 -177 
Plant Uptake -691 -691 -691 
Amazon Plant Uptake Adjustment 37 0 -96 
Net Flux 0 0 0 
 
Italicized rows highlight changes between models. All fluxes are in terms of Gg S yr-1, 
where positive fluxes signify a source of OCS into the atmosphere. See Figure 3-7 for 
more information on the spatial distribution of fluxes. 
 
 
3.7.2 Point Sampling Approach 
 
Observations from MIPAS (Glatthor et al., 2015, 2017) were used as comparison 
products for the GEOS-Chem simulations. MIPAS data were quality-filtered per data 
use guidelines and interpolated to 250 hPa as in Glatthor et al. (2015). 250 hPa was 
selected because it was the lowest altitude with near-complete global coverage when 
data are binned (e.g., Figure 3-2). We note that additional OCS total column 
abundance data measured by the nadir-sounding Tropospheric Emission Spectrometer 
(TES) onboard the Aura satellite is available, but for a smaller period of time and 
only over oceans (Kuai et al., 2014, 2015). 
 
GEOS-Chem models the atmosphere through an Eulerian (rather than Lagrangian) 
framework (Henze et al., 2007). In this case, the model solves the continuity equation 
to determine mixing ratios in each grid cell, as opposed to tracing specific parcels of 
air. While this allows for efficient computation of global mixing ratios, it complicates 
the task of identifying a parcel's origin (Henze et al., 2007; Reynolds et al., 1973). 
However, by perturbing a region in the model (in this case, the Amazon basin) and 
comparing the concentration fields downwind, we can effectively determine the 
atmospheric region influenced by certain surface fluxes. 
 
This task is similar to calculating a Jacobian in that we are interested in determining 
the sensitivity of concentrations in grid cells (the observation vector) to perturbations 
of surface fluxes (the state vector). Such an approach is often computationally 
prohibitive when many regions or fluxes are being changed, as many forward model 
runs are required (Henze et al., 2007; Rigby et al., 2011). However, by limiting the 
focus of this work to one region, we mitigate these challenges. 
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Figure 3-7: Annual OCS fluxes (kg S km-2 yr-1) from different components of 
baseline (medium) budget. The dashed box on the Plant Flux panel denotes the region 
perturbed between simulations. 
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For each satellite observation and its associated model estimates, a sensitivity ratio 
Rsens is defined as the low-GPP model concentration divided by the high-GPP model 
concentration. In regions that are strongly influenced by changes to surface fluxes in 
the Amazon, the low-GPP model will yield less OCS uptake and higher 
concentrations, leading to sensitivity ratios greater than 1. Collections of points where 
Rsens is greater than 1 therefore represent upper-troposphere regions sensitive to the 
region of interest at the surface. Conversely, regions of points where Rsens is less than 
or approximately equal to 1 represent background regions that are relatively 
unchanged between simulations. 
 
We demonstrate the approach by comparing an inner region with Rsens ≥ 1.035, to an 
outer region with sensitivity values 1.005 ≤ Rsens ≤ 1.01, truncated to values between 
± 30° latitude. The latter region serves as a background or inflow value against which 
the former value can be standardized between datasets. Figure 3-8 shows the point 
clouds for January observations. This spatial pattern is consistent with westerly winds 
of the Atlantic Walker cell in the upper troposphere.  
 
To reduce bias from an arbitrary choice of thresholds, we test an ensemble of 576 
combinations (12 inner thresholds x 12 outer thresholds x 4 outer latitude bounds in 
order to focus only on the tropics). The list of thresholds is given in Table 3-2. 
 
For illustrative purposes, we plot histograms of concentrations for these regions in 
Figure 3-9 for both January and July. Note that in January, the histogram for the 
observations shows far less variance and tends to yield values consistent with the 
low-GPP model, while in July, the histogram spans the entire range of model 
scenarios. 
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Figure 3-8: (A) Schematic of signal / background regions. (B) All measurement 
locations, with colors corresponding to sensitivity ratio calculated by model output. 
(C-D) Demonstration point distribution for one pair of signal (C) and background (D) 
regions for all January observations, with colors corresponding to medium-GPP 
model concentrations at 250 hPa. 
 
 
 
 
Table 3-2: Thresholds for sensitivity levels, as well as constraints on latitudinal 
variation. 
 
Inner/Signal Region 
Sensitivity Thresholds 

Outer/Background Region 
Sensitivity Thresholds 

Outer/Background Region 
Latitude Bounds 

Rsens ≥ 1.03 
Rsens ≥ 1.0325 
Rsens ≥ 1.035 
Rsens ≥ 1.0375 
Rsens ≥ 1.04 
Rsens ≥ 1.0425 
Rsens ≥ 1.045 
Rsens ≥ 1.0475 
Rsens ≥ 1.05 
Rsens ≥ 1.0525 
Rsens ≥ 1.055 
Rsens ≥ 1.0575 

0 ≤ Rsens ≤ 1 
0 ≤ Rsens ≤ 1.0025 
0 ≤ Rsens ≤ 1.005 
0 ≤ Rsens ≤ 1.0075 
0 ≤ Rsens ≤ 1.01 
0 ≤ Rsens ≤ 1.0125  
0 ≤ Rsens ≤ 1.015 
1 ≤ Rsens ≤ 1.005 
1.0025 ≤ Rsens ≤ 1.0075 
1.005 ≤ Rsens ≤ 1.01 
1.0075 ≤ Rsens ≤ 1.0125 
1.01 ≤ Rsens ≤ 1.015 

30°N to 30°S 
35°N to 35°S 
40°N to 40°S 
45°N to 45°S 
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Figure 3-9: Histograms for average inner (signal), outer (background), and difference 
(inner-outer) concentrations across all threshold combinations. In January (top row), 
MIPAS values are most similar to the low model. In July (bottom row), observations 
span all three models and cannot be constrained. 
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3.7.3 Error Analysis 
 
We divide the error analysis into two components: those sources of uncertainty due to 
the point-sampling method itself and post-analysis sources of uncertainty which are 
more systemic in nature. 
 
Analysis Sources of Error 
 
Measurement variation within each choice of threshold 
For every month, we extract and aggregate observations as described in Section 3.7.2. 
Each choice of threshold yields an associated standard error of the mean, which 
depends both on the number of observations which meet the threshold and the 
variation in those observations.  
 
Each month, we calculate the standard error of the mean (SEM) for the signal and 
background regions for each threshold combination and add the components in 
quadrature. We then average the combined SEM values across all threshold 
combinations.  
 
The SEM for the signal region dominates relative to the background due to the much 
smaller number of observations. We note that more extensive sampling would drive 
this error term lower (optimally to zero), as more samples would better approach the 
true mean concentration for a given region. 
 
Variation in estimated fluxes across threshold combinations 
Since each choice of threshold yields a different estimate for GPP, we repeat the 
analysis with a range of threshold values to minimize selection bias (see Section 
3.7.2). To account for the variation in the resulting estimated fluxes, we compute the 
standard deviation of surface flux estimates across all threshold setups.  
 
Total sources of error due to point-sampling method 
We add the above terms in quadrature for each month (see Figure 3-4 in the main 
text). In computing the annual total, we compute a weighted average based on the 
square inverse of this combined uncertainty.  
 
The resulting uncertainty for the weighted average is computed by an unbiased 
weighted sample variance  
 

𝑠! =
∑ 𝑤"(𝑥" − 𝜇∗)!$!
"%$

∑ 𝑤" − *
∑ 𝑤"!$!
"%$
∑ 𝑤"$!
"%$

+$!
"%$

 

 
where t is the month, wt and xt are the corresponding weights and monthly flux 
estimates respectively, and µ* is the overall weighted average.  
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Using these sources of error, we obtain an initial estimate of 8.6 ± 3.4 Pg C yr-1 for 
the region of interest. 
 
Systemic / Post-Analysis Sources of Error 
 
Relationship between OCS uptake and GPP 
A variety of factors influence the amount of OCS taken up by plants relative to GPP. 
A useful parameter for assessing the relationship between OCS uptake and GPP is the 
leaf-scale relative uptake (LRU), which relates the efficiencies with which plants take 
up OCS and CO2. These parameters are related through the following expression: 
 

FOCS = GPP × LRU × [OCS]/[CO2] 
 
where FOCS and GPP are the fluxes of OCS and CO2 into the plant, respectively, LRU 
is the leaf-scale relative uptake, and the final term is the ratio of ambient 
concentrations of OCS and CO2 (Hilton et al., 2017). 
 
Over the region of interest, the medium flux is 127.52 Gg S OCS vs. 16.63 Pg C GPP 
annually, computed directly from flux files or, in different units, 18.6 pmol OCS m-2 
s-1 vs. 5.54 µmol CO2 m-2 s-1. Given these values and assuming an ambient ratio of 
1.1 ppt OCS / ppm CO2 as in Hilton et al. (2017), we obtain an LRU of 2.6.  
 
Sandoval-Soto et al. (2005) report tropical forest LRU values ranging from 1.7 to 3.6. 
Given this range, we estimate a standard deviation of 0.475 and thus a relative 
uncertainty of 18% compared to the computed LRU. Applying this error to the 
retrieved GPP yields an uncertainty of 1.56 Pg C yr-1. 
 
Choice of Transport Model 
In order to determine the effect of transport model choice on the analysis, we ran 
GEOS-Chem and PCTM with identical surface fluxes. Due to model limitations, the 
atmospheric OH sink was excluded from the PCTM model run. For both runs, we 
extract and aggregate model concentrations as described above. We compare the root 
mean square error (RMSE) from estimated depressions over all regions in the 
ensemble for two years of model output. The average RMSE was 2.4 pptv OCS 
between models across all threshold setups. 
 
For comparison, the average difference between the GEOS-Chem model depressions 
is 25.9 pptv OCS (ranging from 22.7 in August to 29.1 in February). When compared 
to the overall range between the low and high model GPP (18.9 Pg C / yr), we obtain 
an uncertainty of 1.8 Pg C yr-1 (approximately 9.3%). 
 
Bias due to seasonality and weighting 
The weighted average computed in the text results in undersampling the period of 
time when TRENDY models predict a decrease in GPP (see Figure 3-6, panels B and 
C). To account for this, we apply the same weights to the TRENDY values, then 
compare the uncertainty-weighted and unweighted (evenly weighted) annual totals.  
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The weighted GPP values are 0% to 6% higher than the unweighted totals, suggesting 
a possible overestimation of GPP in our result by a similar magnitude. We reduce the 
initial estimate of the mean by 3% and add 3% to the overall error. 
 
Uncertainty in Non-Plant Fluxes 
Although we have sought to use the best available estimates for each type of surface 
flux, uncertainties remain in each category. To assess this variation, we extract the 
following ranges in flux estimates from literature, summed over the Amazon region.  
 
Estimates of soil fluxes in the region of interest range from -5 to -28 Gg S yr-1 (Kettle 
et al., 2002 versus mechanistic estimates from SiB), estimates of anthropogenic 
emissions range from 0.2 to 1.3 Gg S yr-1 (Zumkehr et al., 2017 versus Kettle et al., 
2002), and estimates of biomass burning range from 6 to 22 Gg S yr-1 (Stinecipher et 
al., 2019 versus the upper end of scaling factors from Campbell et al., 2017). In 
comparison, regional plant fluxes between the low- and high-GPP scenarios range 
from -90 to -224 Gg S yr-1. We estimate the standard deviation of the total range in 
non-plant fluxes as 10 Gg S yr-1 which, when compared to the range in plant fluxes, 
yields a corresponding GPP uncertainty of 1.4 Pg C yr-1 (approximately 7%). 
 
Representation Error in Flux Distribution 
We conducted an additional set of runs using lower anthropogenic fluxes from Kettle 
et al. (2002) and larger biomass burning fluxes based on scaling factors from 
Campbell et al. (2017). Supplemental ocean fluxes were increased by 118 Gg S yr-1 to 
account for the resulting deficit in emissions. Results from this experiment are shown 
in Figure 3-10 (compare with the results in Figure 3-4). 
 
 

 

 
 
Figure 3-10: Results from an additional set of model runs using different fluxes also 
suggest lower-GPP models are most consistent with observed OCS concentrations. 
See Figure 3-4 for additional details.  
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As before, retrievals are highly uncertain between June and September, while months 
with less uncertainty tend to correspond best with the low-GPP model. In this case, 
the total retrieved plant flux in the region was -106.3 Gg S yr-1, in contrast to the -
70.7 Gg S yr-1 calculated above. Comparing this range against the range in plant 
fluxes, we estimate an uncertainty of 8.9 Gg S yr-1, corresponding to 1.3 Pg C yr-1. 
 
Total Uncertainty 
 
The final estimate combines all categories of errors in quadrature, yielding an overall 
estimate of 8.3 ± 4.6 Pg C yr-1 (mean ± sd), or 1051 ± 581 g C m-2 yr-1. 
 
3.7.4 Vertical Profile Estimates 
 
While the primary focus of the present work is the use of upper-troposphere MIPAS 
observations, additional trends are evident in the vertical structure of model results. 
Figure 3-11 shows the modeled vertical profile over the perturbed Amazon region.  
 
Near the surface, the effect of modifying plant fluxes is highly visible; in both the wet 
and dry season, concentrations are nearly 100 ppt lower in the high-GPP model. In 
the upper troposphere, however, results are more seasonal. While the high-GPP 
model continues to yield lower OCS concentrations at 250 hPa, during the period of 
low convection (June to August), the high-GPP model shows only a slight depletion 
in OCS. Future studies collecting observations closer to the surface could better 
differentiate between models during this period.  
 
While MIPAS observations at 250 hPa over this region were still most similar to the 
low-GPP model, the use of fixed averaging regions proved to be overly sensitive to 
the manner in which regions were defined. Leveraging sensitivity ratios as described 
in the main text allows for the capture of additional, informative parcels which may 
have been transported outside the column. Similarly, the approach places less weight 
on background parcels which may have been transported into the column.  
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Figure 3-11: Modeled vertical profiles of OCS for simulations with low- and high-
uptake plant fluxes. Changes in model surface fluxes propagate to the tropopause (~ 
250 hPa), with the largest differences visible during wet season months. Modeled data 
from GEOS-Chem are evenly weighted across the region at each vertical level. 
MIPAS observations are the mean of all samples within the region interpolated to 250 
hPa, with 95% confidence intervals on the mean (µ ± 1.96 * s.e.). Pressure altitudes 
are calculated by interpolating values from the US Standard Atmosphere, 1976.  
(Table 1 - https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770009539.pdf). 
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Chapter 4: Observing System Simulation Experiments 
Underscore Need for Additional OCS Sampling 
 
4.1 Abstract 
 
Observing system simulation experiments (OSSEs) are a common approach to 
analyzing design aspects of future experiments. Particularly in remote-sensing 
contexts where cost constraints leave little room for error, OSSEs provide information 
about the feasibility of an experiment or instrument, while also assessing the relative 
benefits that changes to the design could have on the overall retrieval. Here, we 
consider a number of modifications which could be made to the MIPAS approach 
from the previous chapter. Increased sample density (especially in the tropics), lower 
sample altitudes and reductions in instrument noise all yield improvements to the 
retrieval, though often only to a point. In addition to considering satellite observations, 
we briefly assess some considerations for future studies with aircraft in the Amazon 
basin. 
 
4.2 Introduction 
 
Chapter 3 shows the value and limitations in using remotely sensed carbonyl sulfide 
to constrain gross primary production. While the data are sufficient to make broad 
estimates of photosynthetic uptake, changes to future sampling campaigns could lead 
to improved estimates. Among other aspects, changes to spatial and temporal 
resolution, sampling altitude, and instrument accuracy could each provide unique 
value in reducing the overall retrieval uncertainty (see e.g., Aghedo et al., 2011). 
 
Upper-troposphere retrievals contain limited information during the dry season, due 
primarily to a lack of deep convection. In the absence of this vertical transport, only a 
few parcels with sufficient information content from the surface reach the upper 
troposphere. 
 
More broadly, sampling the tropics (and the Amazon specifically) remains a 
challenge and leads to uncertainties year-round. Cloud contamination is a major issue, 
resulting in far fewer observations in the tropics than in temperate regions. Although 
Chapter 3 mitigates this issue through “downstream” sampling, additional 
observations closer to the area of interest could lead to improved estimates. 
 
Beyond the lack of sampling, instrument noise remains a source of error. The minute 
concentrations of ambient carbonyl sulfide make it challenging to sample in situ, let 
alone by remote sensing. As such, there is room for improvements to the instrument 
or the overall retrieval algorithm. A reduction in instrument noise could effectively 
reduce the need for more sampling. 
 
To this end, we incorporate these challenges into an observing system simulation 
experiment (OSSE), in order to assess the relative impact of various changes that 
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could be made in future studies. OSSE studies have been used extensively 
(particularly in the remote sensing community) to address the merits and feasibility of 
future missions with minimal cost (Chen et al., 2011; Errico et al., 2013; Masutani et 
al., 2010; Privé et al., 2013; Timmermans et al., 2015). 
 
In general, an OSSE is conducted by sampling known data (the “nature run”), adding 
appropriate instrument noise, and then using the retrieval approach in question to 
attempt to reconstruct the underlying variables of interest (Timmermans et al., 2015). 
In this case, we use the existing low-GPP model run from the previous chapter as 
truth, and, after sampling the model output and adding noise, we attempt to retrieve 
the low model fluxes. 
 
Finally, although satellite data provide broad, long-term coverage, future campaigns 
leveraging aircraft data could provide additional value at smaller spatial and temporal 
scales. While an in-depth study of the value of aircraft measurements is beyond the 
scope of the present paper, initial results highlight the value and some necessary 
considerations of future airborne sampling campaigns. For this work, we limit our 
analysis to patterns of surface sensitivity at different altitudes over the course of the 
year. 
 
4.3 Methods 
 
Nature Run and Synthetic Observations 
As mentioned, we use the low-GPP model as truth. Because the underlying fluxes of 
this model are known exactly, we can assess how differences in sampling and noise 
propagate to the retrieved signal. Ideally, the model used to create the nature run 
should be distinct from the model used for the inversion, but this is beyond the scope 
of the current study. We run the model from 2004 to 2012, the time period 
overlapping both the available MIPAS observations and the available model 
meteorology. 
 
Sampling Locations 
In order to capture the wide variety of possible improvements described above, we 
employ a number of different sampling scenarios. 
 
To investigate the effect of sampling density in general, without considering the role 
of cloud contamination, we conduct a set of three tests with fully random sampling 
locations. We denote these scenarios as A-15, A-30, and A-45, where the number 
corresponds to the number of observations in a given 3-hour model timestep. A-45 is 
most similar to the number of observations taken by MIPAS, though in practice these 
are not evenly distributed. 
 
The MIPAS sampling pattern forms the basis for the next set of experiments. We 
denote these sampling locations as scenario B. Note that, in general, very few 
observations are available in the tropics, although samples outside of this region are 
still sensitive to the Amazon surface fluxes. 
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Using a region defined by Glatthor et al. (2015), we consider the effect of additional 
sampling in the tropical Atlantic. We denote two scenarios as C-1 and C-5, where the 
value corresponds to the number of additional random samples per 3-hour model 
timestep in a box extending from 20°S to 10°N and from 75°W to 25°E. This box was 
selected to capture the large depletion of OCS observed by MIPAS in the upper 
troposphere resulting from the convective outflow of parcels sensitive to 
photosynthetic uptake in the tropics. Although Glatthor et al. (2015) do not attribute 
this depletion solely to uptake in the Amazon, results from the previous chapter show 
that the region contains significant information content about surface fluxes in the 
Amazon basin.  
 

 
 
Figure 4-1: Comparison of different sampling scenarios in July. Colors represent the 
sensitivity of the model concentrations at 250 hPa to changes in surface fluxes in the 
Amazon, defined as the low-GPP model concentration divided by the high-GPP 
model concentration. 
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In contrast to the Atlantic-based C scenarios, we also consider the effect of randomly 
sampling the entire tropical band defined in Glatthor et al. (2015). We conduct three 
scenarios, D-1, D-5 and D-10, with additional observations randomly sampled 
between 20°S and 10°N. As before, these scenarios include 1, 5, or 10 additional 
observations per 3-hour model timestep, respectively. 
 
Instrument Error Estimation 
To obtain a realistic estimate of the measurement noise in the MIPAS observations, it 
is necessary to account for differences in spatial and temporal distribution, as well as 
any bias in the global mean. 
 
An initial estimate for instrument is derived by first gridding points into boxes 5° by 
15° in size, following Glatthor et al. (2015). In this case, we compute the standard 
deviation of points in each grid cell, then average these across the entire globe for 
each month. The standard deviation obtained using this approach is 63.5 ppt. 
 
To reduce the impact of gridding on the overall estimate, a more precise approach is 
to consider each observation separately, while still accounting for spatial and 
temporal differences. We compute the following standard deviation for each month: 
 

𝜎&'( = 	𝜎.(OCS)*+ − OCS)*+222222222	) 	− 	(OCS,)- − OCS,)-222222222	)3 
	 

where OCS)*+222222222	  and OCS,)-222222222	  are the global mean mixing ratios for the MIPAS 
observations and low-GPP model values, respectively. 
 
By comparing to the low model (shown in Chapter 3 to more closely approximate the 
correct fluxes than other model runs), we reduce the effect that the spatial distribution 
has on the error. Removing the respective mean values mitigates any bias between the 
modeled and observed concentrations. The computed standard deviations for each 
month vary from 58 to 64 ppt OCS, with a mean value of 60.8. We use a normally 
distributed random variable with mean 0 and the mean standard deviation in place of 
measurement noise. 
 
In addition to the noise level calculated for the MIPAS observations (60.8), we 
conduct an additional series of tests using noise at various thresholds (0, 15, 30, 45, 
75 and 90 ppt). 
 
Flux Retrieval from Pseudodata 
For each set of sampling scenarios and noise levels, we sample the model output over 
the entire simulation period as in the previous chapter. We add noise to the sampled 
values and use these as inputs in the retrieval. A sample retrieval is shown in Figure 
4-2; in this case, we are attempting to retrieve the low-GPP model values when 
sampled at the same locations as MIPAS (Scenario B) with added noise. 
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Figure 4-2: One iteration of retrieval using pseudodata from MIPAS sampling 
locations. The retrieved values (black) are prescribed to most closely approximate the 
low-GPP model (red). Error bars are 95% confidence intervals as described in 
Chapter 3. 
 
 
Particularly in months with low convection, few observations at altitude are sensitive 
to changes at the surface. As a result, a few observations with significant amounts of 
noise can unduly influence the overall average value. Although this is difficult to 
account for in a field setting, we run 10 replications for each scenario, then take the 
mean and standard deviation in order to determine the effect of different random 
number seeds on our experiments. 
 
After each retrieval is completed, we analyze the performance through several root 
mean square error calculations. We compute the RMSE for the concentration and for 
the plant flux, comparing the values between the known model and the pseudodata 
retrieval over the full year. Because uncertainties can vary throughout the year, we 
compute both an unweighted RMSE and a weighted value using the inverse of the 
uncertainty. Differences between these two values show the impact that poorly 
computed months have on the overall value. 
 
We compute these errors for each simulation, then average the values over all 
replications. These average errors are used as the comparison metric between 
scenarios (Figure 4-3). 
 
Aircraft/Profile Analysis 
Gatti et al. (2014) used aircraft profiles in order to compare changes in CO and CO2 
across the Amazon basin. Following this work, we sample the model outputs from the 
previous chapter at six sites used for in situ measurement campaigns. Four sites (RBA, 
TAB, SAN, and ALF) are within the Amazon basin, while two others (RPB and 
ASC) serve as background sites for air parcels entering from the Atlantic. At the 
nearest grid cell for each site, we extract vertical profiles from one year of model 
results to determine spatial and temporal changes in sensitivity values. 
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Table 4-1: Site locations of aircraft profiles in Gatti et al. (2014) 
 
Code Name    Lat Lon  
RBA Rio Branco   -9.97 -67.81 
TAB Tabatinga   -4.25 -69.94 
SAN Santarém   -2.43 -54.72 
ALF Alta Floresta   -9.89 -56.09 
RPB Royal Point Barbados  13.16 -59.43 
ASC Ascension Island  -7.93 -14.37 
 
 
4.4 Results 
 
In comparing the different scenarios, we compute the root mean square error across 
the retrieved concentration and fluxes, both as an unweighted mean over the course of 
the year and weighted by the inverse of the retrieval error (Table 4-2 and Figure 4-3). 
For samples at 250 hPa, the error-weighted values are lower than the unweighted 
values, as these reduce the impact of the most uncertain (and typically least accurate) 
retrieval months on the overall RMSE. Samples at 500 hPa show little difference 
between the two averaging approaches. 
 
Table 4-2: Root mean square errors in retrieved values vary due to changes in 
sampling scenario, synthetic instrument noise sins, and sampling height (250 hPa and 
500 hPa). The starred row (Scenario B with 60.8 ppt of added noise, sampled at 250 
hPa) most closely matches the actual data observed by MIPAS and is therefore used 
as truth. Values are reported as mean ± sd, where the standard deviation is computed 
over 10 replications of each analysis. 
 

Scenario sins 
250 hPa  

Unweighted 
250 hPa 

Weighted 
500 hPa 

Unweighted 
500 hPa 

Weighted 
* B (MIPAS) 60.8 7.2 ± 12.9 5.5 ± 7.4 3.8 ± 6 3.9 ± 5.8 
A15 60.8 3.9 ± 6.7 3.8 ± 5.1 2.8 ± 4.1 2.8 ± 4 
A30 60.8 3 ± 5.2 2.9 ± 3.6 2 ± 3 2.1 ± 2.8 
A45 60.8 3 ± 5.1 3 ± 3.3 1.8 ± 2.6 1.8 ± 2.5 
B (MIPAS) 15 1.9 ± 0.7 1.9 ± 0.6 0.9 ± 0.2 1 ± 0.4 
B (MIPAS) 30 3.6 ± 0.7 3.2 ± 0.7 1.8 ± 0.2 1.9 ± 0.3 
B (MIPAS) 45 4.5 ± 0.9 3.7 ± 0.5 2.6 ± 0.3 2.8 ± 0.4 
B (MIPAS) 75 8.5 ± 1.9 6.9 ± 1.2 4.9 ± 0.7 5 ± 0.8 
B (MIPAS) 90 10.6 ± 3.4 7.6 ± 1.9 6.1 ± 1.6 5.9 ± 1.5 
C1 60.8 4.7 ± 8.3 4 ± 5 2.8 ± 4.2 2.9 ± 3.9 
C5 60.8 3.3 ± 5.9 3.2 ± 3.6 1.8 ± 2.7 2 ± 2.4 
D1 60.8 5.4 ± 9.6 4.5 ± 5.9 3 ± 4.6 3.1 ± 4.4 
D5 60.8 3.2 ± 5.6 3 ± 3.7 2.2 ± 3.3 2.3 ± 3.1 
D10 60.8 2.5 ± 4.4 2.4 ± 2.9 1.7 ± 2.6 1.9 ± 2.5 
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Figure 4-3: Increasing sample density (Panels A-C) and decreasing instrument noise 
(Panel D) yield improvements to overall retrieval errors. Samples at 500 hPa yield 
further improvements over samples at 250 hPa. Error bars are standard deviations 
across 10 replications of each analysis. 
 
 
In all cases, retrievals using values extracted at 500 hPa (mid-troposphere) are more 
accurate than those at 250 hPa (upper troposphere). As the upper-troposphere 
measurements require significant convective transport, fewer sensitive parcels reach 
the necessary sampling altitude. As these parcels are subject to atmospheric mixing 
and instrument noise, the average within the signal region may be unduly influenced 
by a few noisy observations. In contrast, although the observations at 500 hPa are 
subjected to the same level of noise, more parcels sensitive to the Amazon region are 
elevated to the sampling height (Figure 4-4). As such, the averages for the same 
signal regions contain far more observations and provide a better estimate of the 
mean values. In July, for example, the signal regions at 250 hPa contain an average of 
only 27 observations, whereas more than 142 samples at 500 hPa meet the thresholds 
for inclusion. 
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Figure 4-4: Sampling at MIPAS observation locations at both (A) 250 hPa and (B) 
500 hPa during July, aggregated over all model years. Colors are the computed 
sensitivity ratios for each observation location. 
 
 
In a similar manner, increases in sampling density yield lower errors (Figure 4-3, 
Panels A-C). In these cases, while the number of sensitive grid cells at a given level 
remains the same, the ability to sample them improves; greater sampling density 
increases the odds that a parcel of interest will be measured. 
 
Compared to the cloud-limited observations in the MIPAS data, the randomly 
sampled data all show improvement, even with fewer total samples (Figure 4-3). The 
A-15 scenario, which contains roughly one-third as many observations as MIPAS 
yields errors 45% (unweighted) to 48% (weighted) smaller than the MIPAS sampling 
scheme at 250 hPa. Such improvements, however, are not inexhaustible: while the 
error continues to decrease as the number of observations doubles between scenario 
A-15 and A-30, the improvement from scenario A-15 to A-30 is negligible. 
 
Although the randomly sampled data yield significant improvements over the actual 
satellite observation locations, such sampling belies current limitations due to cloud 
contamination. With the addition of only a few more samples within the Atlantic 
outflow box (Figure 4-3, Panel B) or the tropical band (Figure 4-3, Panel C), however, 
similar improvements in the overall retrieval are possible. 
 
To the extent observations can be increased close to the outflow of OCS-depleted air 
from the Amazon, improvements are immediately visible. In Figure 4-3, Panel B, 
scenario C-1 shows a decrease in the error of 35% compared to the MIPAS 
observations at 250 hPa. C-5 shows continued reduction in error, though at a slower 
pace for the upper-troposphere.  
 
Improvements that facilitate additional tropical sampling will yield more data across 
the globe (Figure 4-3, Panel D). Similar to the C-series, then, we find moderate 
improvement from B to D-1 (26%) and a substantial decrease from D-1 to D-5 (41%). 
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As before, the rate begins to decrease after a certain threshold; from D-5 to D-10, the 
error decreases by only 21%. 
 
The calculated error decreases roughly linearly as the applied noise decreases. 
Decreasing the error by 15 ppt (approximately 25% of the variation in the MIPAS 
measurements) yields a decrease in the RMSE of 37%. Given the linearity in the 
retrieval approach, this result is largely expected, but highlights the value in making 
even slight improvements to future measurement technology. 
 
Aircraft Results 

 
 
Figure 4-5: Sensitivity ratios for four sites over one year of simulation show differing 
patterns of surface sensitivity varying by altitude, season and location. Darker colors 
correspond to larger sensitivity ratios, that is, regions which are strongly influenced to 
changes in surface fluxes across the Amazon basin. The background map is from 
Gatti et al. (2014), with colors representing regions of influence computed by 
Lagrangian modeling of back trajectories. 
 
 
Future studies relying on aircraft profiles have the potential to yield far more accurate 
results on a regional scale, though at the cost of a variety of other confounding factors 
discussed below. Figure 4-5 shows the variation in sensitivity ratios at the sites 
sampled in Gatti et al. (2014). All four sites within the Amazon show strongest 
sensitivity in the boundary layer, but mid-tropospheric measurements vary with 
altitude, season and location. Two western sites, TAB and RBA, show sensitivity to 
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the surface throughout the entire column for nearly all months. In contrast, ALF only 
shows sensitivity during the wet season, similar to patterns seen in the upper-
troposphere satellite data. SAN shows little sensitivity above the boundary layer at 
any point in the year. These results are consistent with findings by Cassol et al. 
(2020) that the eastern sites (ALF and SAN) are significantly less sensitive to the 
interior of the Amazon basin. 
 
Gatti et al. (2014) leverage observations of SF6 and CO2 at RPB and ASC to 
determine the proportion of background CO2 coming from each of these sites and, by 
extension, each hemisphere. Although flask samples of OCS and CO2 are available at 
a variety of NOAA observation sites, these two specific sites do not currently provide 
OCS observations. In the absence of this data, two options for future modeling studies 
exist. Model outputs could average values from both sites to yield an approximate 
background signal, either weighting sites evenly or with existing SF6 observations. 
Alternatively, as these ocean sites are more remote and potentially costly or 
challenging to sample, the low sensitivity at the coastal Santarém location could also 
be used for background values. 
 
4.5 Discussion 
 
The above results show that even small improvements in sampling density or 
instrument noise can yield benefits in the overall retrieval. For comparison, in 
Chapter 3, the average difference between the high-GPP model and low-GPP model 
was 25.9 ppt, corresponding to a GPP difference of 18.9 Pg C yr-1. As such, an error 
reduction of 3.6 ppt (the improvement from reducing the applied instrument noise by 
50%) could correspond to a reduction in the flux error by 2.6 Pg C yr-1. Although 
other sources of error remain, this represents a significant portion of the previous 
chapter’s overall estimate of 8.3 ± 4.6 Pg C yr-1. 
 
The primary issue affecting retrievals in the tropics is cloud contamination and 
finding ways to diagnose cloudiness and better quantify cloud contamination in the 
satellite retrieval algorithm remains critical. In the absence of these broader 
improvements, one approach could be to decrease the observation footprint. The large 
footprint of limb-sounding instruments in general strongly increases the likelihood 
that samples will contain clouds. Conversely, smaller footprints increase the odds that 
a given observation will be cloud-free. 
 
Additional development of nadir-sounding OCS instruments could yield reduced 
measurement footprints while potentially providing greater sampling density in the 
tropics. TES has been shown by Kuai et al. (2015) to provide benefits in constraining 
OCS ocean fluxes. That instrument, however, is unable to measure over land, due to 
challenges in the retrieval algorithm from reflectance. In general, nadir-sounding 
instruments would further reduce the lateral sample footprint, but at the expense of 
vertical resolution. TES, for example, resolves 15 vertical levels, whereas MIPAS 
resolves 60.  
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Representation error is a major challenge inherent in the aircraft sampling (Hodyss & 
Nichols, 2015; Janjić et al., 2018). While the satellite observations represent an 
aggregate, integrative signal for the Amazon basin, samples close to the surface have 
a smaller footprint. As such, while measurements at a given site may be generally 
sensitive to changes in surface fluxes, there is insufficient evidence to show that they 
are sensitive to changes across the basin. To test this, future modeling studies could 
perturb smaller regions of the overall Amazon basin and determine regions of 
influence for given air profiles throughout the year. Lagrangian models like STILT 
and HYSPLIT have also been employed for this purpose. 
 
While the scope of this study was constrained to changes in the observation system, a 
more formal inversion approach coupled with more observations in the region of 
interest could also improve estimates. Recent work by Ma et al. (2020) combines 
flask, airborne, and satellite data in a global 4-dimensional variational inverse model 
in order to determine the spatial distribution of the missing flux necessary to close the 
OCS budget. Given sufficient data in the Amazon, this approach could be applied on 
a regional basis to address both the overall magnitude of basin productivity as well as 
spatial and seasonal nuances which are less readily apparent in the integrative satellite 
measurements. 
 
4.6 Conclusion 
 
The approach shown in the previous chapter is sufficient to yield broad results on a 
climatological time scale, however a variety of improvements could increase the 
feasibility of applying this method to questions at finer spatial and temporal scales. 
Because sampling density, particularly in the often-cloudy tropics, remains a large 
source of uncertainty, reductions in instrument noise and sampling height also show 
beneficial reductions in the overall retrieval error.  
 
While satellite observations of OCS provide significant value in constraining GPP 
over aggregated regions, finer-scale measurements by aircraft can better capture the 
nuances in surface fluxes. However, just as satellite measurements in the upper 
troposphere show relatively low sensitivity during the dry season, aircraft 
measurements must be selected in a way that maximizes the information content in 
the samples. Convection varies widely between sites, and, as such, additional care 
must be taken to determine the origin of sampled column parcels. 
 
Along with changes to the inversion approach itself, these improvements to the 
observing system have the potential to yield better estimates of atmospheric carbonyl 
sulfide. As these estimates improve, so too will vital constraints on GPP, carbon-
climate feedbacks, and the predictive capability of climate models at large. 
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Chapter 5: Conclusions and Future Work 
 
The value of this work is twofold. On one level, this research further addresses the as-
yet unresolved questions about the unbalanced carbonyl sulfide budget. On another 
level, these improvements are critical for using OCS as a tracer in answering wider 
questions about the carbon cycle. 
 
Chapter 2 yielded updated global estimates of open biomass burning, constrained by 
long-term atmospheric records from surface sites. While the present results use GFED 
as a burned matter database, applying this work to future fire databases could yield 
suitable flux maps at higher spatial and temporal resolution. Further, by coupling 
these results to ecosystem models, future studies could investigate the impact of 
changing land use, fire regimes, and fuel availability on OCS emissions. 
 
Chapter 3 demonstrated that, not only do upper-troposphere measurements of 
atmospheric carbonyl sulfide yield informative regional constraints, these constraints 
suggest an overestimation of the plant uptake sink in the Amazon. We note that this 
overestimation, coupled with increased anthropogenic emissions in Asia, moves the 
overall OCS budget towards closure. Additionally, these changes further reduce the 
need for a large missing ocean source, consistent with Lennartz et al. (2017). 
 
Chapter 4 presented a variety of ways to maximize the information content in such 
satellite observations. The OSSE study presented considered the impacts of sampling 
height, sampling density and instrument noise as applied to satellite observations. 
Although the work seeks to mimic samples from the MIPAS instrument, a similar 
approach could be applied to other, more recent satellite instruments. Further 
investigations into optimizing samples from aircraft are certainly warranted. These 
samples could provide high quality, localized data; however, questions about 
representation error and the origins of sampled parcels remain critically important. 
 
Ongoing work in the carbonyl sulfide community takes many forms. Improved 
estimates of ocean fluxes have leveraged data from both ship-borne (Lennartz et al., 
2017) and satellite (Kuai et al., 2015; Ma et al., 2020) campaigns to constrain both the 
magnitude and distribution of fluxes. Bottom-up estimates of anthropogenic 
emissions have shown changes in spatial distribution that must be accounted for in 
future studies, particularly in Asia (Zumkehr et al., 2018). Recent studies using stable 
sulfur isotopes have sought to further constrain the role of different fluxes in 
balancing the global OCS budget (Angert et al., 2019; Hattori et al., 2020). 
 
On a broader level, one of the primary goals in better constraining the sources and 
sinks of carbonyl sulfide is its use as a tracer or proxy for photosynthesis; better 
estimates of each of the various OCS budget components ultimately provide better 
constraints on GPP. Since parameterizations of carbon-climate feedbacks remain a 
large source of uncertainty across models, such constraints are vital for improving 
model estimates and, ultimately, our understanding of the linkages between 
photosynthesis and climate change.  
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