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ABSTRACT OF THE DISSERTATION

Examples of Algebras of Small Gelfand-Kirillov Dimension

by

Alexander A. Young

Doctor of Philosophy in Mathematics

University of California, San Diego, 2012

Professor Efim Zelmanov, Chair

We construct three examples of affine, associative algebras with relatively
low growth. We construct an algebra over an arbitrary countable field that is affine,
infinite dimensional, nil, N-graded, and has Gelfand-Kirillov dimension at most 3.
We construct an algebra over an arbitrary field that is affine, infinite dimensional,
nil, N-graded, and whose growth can be asymptotically bounded above by an
arbitrary non-polynomial function. We construct an algebra over an arbitrary,
algebraically closed field that is affine, infinite dimensional, N-graded, Jacobson

radical, and has quadratic growth.
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Chapter 1

Introduction

1.1 Preliminaries

In this paper, we consider associative algebras over a field K. Unless oth-
erwise stated, algebras will not be assumed to be unital.

A generating space of an algebra A is a subspace V' such that:

A= i Vi
=1

A set will be said to generate A if its K-span is a generating space.

An algebra is affine if it can be generated by a finite dimensional space.

If every affine subalgebra of an algebra is finite dimensional, then we say
that algebra is locally finite. Trivially, all locally finite affine algebras are finite
dimensional.

The notation K(zy,...,z,) will be used to refer to the unital, affine free
algebra over indeterminates {z1, ..., z,}. Any affine algebra can be represented as
K(x1, ..., x,)/I for some generating set {z1, ..., z,} and some ideal I <K(x1, ..., z,).

For any monoid G, an algebra A is G-graded if it can be decomposed into

A=A,

i€G

subspaces:

with A;A; C A;.;. The elements of A; are called homogeneous of degree i under this
grading. This paper will for the most part only concern itself with N-gradings of



a certain species: let Ag = KN A (i.e. either K or (0)), A; be a finite dimensional
generating subspace of A, and A, = A¥. If A; N Z;;B A; = (0) for each ¢, then
A=@®;2, A is an N-grading.

If an affine algebra has such a grading, and Ay = K, then it is called
connected. Every connected algebra A has a subalgebra A = Y 7°| A; that may
use the same grading, with A; = A; for all i > 0, and Ay = (0). This paper will
call such an algebra almost connected. Every almost connected algebra can be
extended to A ® K, using multiplication (a, z) - (b,y) = (ab+ zb+ ya, zy), to make
a fully connected algebra isomorphic to A, with (A@K); = A4; ® (0) for each i > 0,
and (A ® K)o = (0) ® K.

If A has a grading {A; };ec and I <1 A is an ideal, we say the ideal is graded if
it is spanned by elements from the A; subspaces. In other words, I = @, ., AiNI.

In a connected or almost connected algebra, the easiest way of procuring
a generating subspace is to use Ag + A;. If the algebra is almost connected, then
Ao+ Ay = Ay, and powers of this generating space form a direct sum.

Every affine free algebra is connected. If a connected algebra is gener-
ated by degree-1 elements x1, ..., x,, the homogeneous elements of degree k£ can
be thought of as the degree k non-commutative homogenous polynomials us-
ing these indeterminates. If A = K(zy,...,x,) is free, and I < A is an ideal,
then A/I is connected if and only if I is a graded ideal, yielding the grading
(A/D)k = (Ax + I)/I = Ar/(I N Ag). If we don’t count the trivial case when
I=A then INK = (0), I < A, and A/I is N-graded similarly.

An element a € A of an algebra over K is algebraic if there exists a poly-
nomial p(z) € K[z] such that p(a) = 0. If every element of A is algebraic, then we
say that A is an algebraic algebra.

An element of an algebra is nilpotent if it has a zero exponent; i.e. a € A
is nilpotent if there exists some exponent a” = 0. Being nilpotent is a stronger
condition that being algebraic. An algebra A comprised of nothing but nilpo-
tent elements is nil, likewise a stronger condition than being an algebraic algebra.
Nonzero nil algebras can clearly never contain their ground field.

An algebra A satisfies a polynomial identity (or, more commonly, is a



“PI algebra”) if, for some nonzero non-communtative polynomial P(xy,...,z,) €
K(z1,...,x,), Play,...,a,) = 0 for all ay,...,a, € A. All commutative algebras are
PI; they satisfy the identity xy — yx = 0.

If there exists an n such that for any ay,...,a, € A, a;---a, = 0, then A
is milpotent, and the minimal such n is its nilpotence degree. In other words, A is
nilpotent with nilpotence degree < n if A® = (0). This implies being both nil and
PIL

Conversely, J. Levitzki [1] and I. Kaplansky [2] proved that all nil PI alge-
bras are locally nilpotent.

Suppose that A is affine and nilpotent, with nilpotence degree n. If V
is a finite dimensional space that generates A, then V" = (0), and dimA <
S, dimV* < co. Furthermore, since subalgebras of nilpotent algebras are them-
selves nilpotent, all nilpotent algebras are locally finite.

If A is affine, nil, and commutative, let V' = K{vy,...,v;} be a finite k-
dimensional space that generates A. If n is such that each v? = 0, then V** = (0),

and A is nilpotent.

1.2 The Jacobson radical

A nonzero right module M of an algebra A is wrreducible if there exist
no proper submodules, and MA # (0). Irredicuble left A-modules are defined
symmetrically. Note that this is a sightly different definition than some sources;
some authors specify that all rings are unital, and ml4 = m for all m € M, in
which case MA # (0) is not needed. If m € M, then mA is a submodule of M,
and either mA = (0) or mA = M. Further, the set {m € M|mA = (0)} of all
“trivially acting” elements is a submodule as well, so it must either be M or (0).
The constraint M A # (0) eliminates the possibility for all of M being trivially
acting, proving that only 0 € M annihilates all of A and for any nonzero m € M,
mA = M.

(If we ignore the constraint that M A # (0), then we leave open the pos-

sibility of irreducible right modules where all elements act trivially. In any such



module, every K-subspace is a submodule, and irreducible modules are simply one
dimensional spaces. This is a very inelegant idea, and one that doesn’t work with
our following definition of the Jacobson radical, so we discount the possibility.)
The Jacobson radical J(A) of an algebra A is the ideal of elements that
annihilate all irreducible right modules of A, though it has many equivalent defi-

nitions:
e The ideal of elements that annihilate all irreducible left modules of A.

The intersection of all maximal right ideals of A.!

.

e The intersection of all maximal left ideals of A.!

e The (unique) maximal right ideal of elements a € A such that 3b € A :
a+b+ab=0,ie. are right-quasiregular.

e The (unique) maximal left ideal of left-quasiregular elements (a+b+ba = 0).

Since right units of A are never elements of maximal right ideals, none of
them are located in J(A). The same can be said about left units.

An algebra A is itself called Jacobson radical if A = J(A), i.e. no irreducible
modules exist. (Remember, if all of A annihilates a module, it doesn’t count as
irreducible.)

Examples:
e If Ais a field or a division ring, then J(A) = (0).

o All maximal ideals of K", are of the fom K& --- K@ (0) K& --- @ K,
and therefore J(K™) = (0).

e The Jacobson radical of the algebra of n x n upper triangular matrices of K

is the ideal of strictly upper trianglar matrices (i.e. with zero diagonals).

'We define a maximal right (left) ideal I of an algebra A as a right (left) ideal such that the
only right (left) ideals that contain it are A and I, and that A% ¢ I. The latter stipulation is
not included in some sources, but is analogous to our stipulation that if M is an irreducible right
(left) module, M A # (0).



e All nil algebras are Jacobson radical. If 2" =0 and y = —a+ 2% —-- - £a"" L,

then x + y + zy = 0, and thus all nilpotent elements are quasiregular.

If 1 <A is a proper ideal of A, every right module M of A/I can be naturally
extended to a right module of A by setting M - I = (0). If M is irreducible as a
right A/I-module, then for any nonzero m € M, mA = m(A/I) = M, and M is
an irreducible A-module. Thus, if x € J(A), then = + I annihilates all irreducible
right modules of A/I, and (J(A)+1)/I C J(A/I).

In the particular case when I = J(A), any irreducible right A-module M can
conversely be defined as a right module of A/J(A), as M-J(A) = (0). Annihilating
all irreducible right A-modules is equivalent to annihilating all irreducible right
A/J(A)-modules, and J(A/J(A)) = (0).

1.3 The growth of algebras

Let A be an affine algebra over a field K, and let V' C A be a subspace that

generates it:
oo
A=>"VE
i=1

We can define a monotonically increasing growth function fay using this

Space:
fA7v(n) = dlm Z VZ
=1

While the value of this function depends on the choice of V', we can show
its long-term (“asymptotic”) behavior does not.

For any two functions f,g : N — R.o, we say that f is asymptotically
bounded above by g if there exists A, B > 0 such that Ag(Bx) > f(x) for all
x € N. We can write this relation as f = ¢g. If both f = g and g = f, then we say
that f and g are asymptotically equivalent, or f ~ g.

Examples of asymptotic growth relations:

e For any monotonically increasing nonzero f, g, if f is a bounded function,
then f = ¢g. All monotonically increasing nonzero bounded functions are

equivalent.



o If f is a polynomial of degree n, f ~ x™.

e " = 2™ if and only if n < m. Polynomials are equivalent if and only if they

have the same degree.
o 2" 3 2" In™ z for any m > 0.
o If f(z) 2 2" for some n, we say that f has polynomial growth.

e For any a,b > 1, a® ~ b". We say that any function in this class has

exponential growth.

e For any n and any a > 1, 2" 3 ev® = a®. We thus say that eV? is an example

of a function with intermediate growth.

Proposition 1.3.1. IfV and V' are both finite dimensional subspaces that generate
an affine algebra A, then fay ~ fay.

Proof. Since V' generates A, let k be such that V' C Zle Vv

fav( dlmg:‘/'Z < dlmz:VZ fav(kn).

]

The fastest possible type of asymptotic growth occurs in free algebras (over

more than one indeterminate). If A = K(xy,...,z,) and V = K{1,z, ..., 2.}, then

fav(n) = 2T<;:r_1>1_1, which is exponential.

It’s worth mentioning for comparison the analoguous aspect in group theory.
The growth of a finitely generated group G, with generating subset S = S~!, is the
function fg g(n) = |S™|. Again, this function is asymptotically invariant under the
choice of S, and can be categorized into exponential, polynomial, and intermediate
growth. In 1980, M. Gromov proved [3] that a group has polynomial growth if and
only if it has a finite index subgroup that’s nilpotent, thereby expanding what

was known about polynomial growth groups considerably. (See also [4][5]) Little

is known about intermediate groups other than the fact that they exist; see also

[6]-



Another stratification of polynomial growth algebras is the Gelfand-Kirillov

dimension. It is defined:
GKdim A = limsuplog,, fa,v(n) = limsup log, dim Z |7
oo oo i=1

If f ~ g then limsup,, .. log, f(n) = limsup,_,. log, g(n), so Gelfand Kirillov
dimension is invariant over the choice of V', and has the same value for algebras with
asymptotically equivalent growth. However, the converse is not true in general.
For example, if fay(n) ~ n® and fpw(n) ~ n*lnn, then fay ~ ggw, but
GKdim A = GKdim B = 3.

All exponential and intermediate growth algebras have infinite dimensional
Gelfand-Kirillov dimension.

If A is not unital, and is generated by V', then the extension A ® K can be
generated by V @ K. Note that:

n

fask ver(n) = dim Z(V ¢ K)' = dim <Z Vi K) = fav(n)+ 1.

i=1
The algebras A and A @ K have asymptotically equivalent growth, and thus the
same Gelfand-Kirillov dimension. For the rest of this section, we will assume that
A is unital.

If A is connected, then its Gelfand-Kirillov dimension can be calculated by

setting V' = Ay + A;:

GKdim A = limsup log,, Z dim A;.
n—o0 i—0
If each A,, can be bounded in size polynomially, i.e. each dim A, < an® for

some a, b > 0, then:

GKdim A < limsup log,, Z ai® < limsuplog, L(n + 1) =b41.

n—oo i=0 n—oo b + 1

If A is not affine, the definition of Gelfand-Kirillov dimension can be ex-
tended:

GKdim A = sup{GKdim B|B is affine},
BCA



or, equivalently:

GKdim A = sup  {limsuplog, dim Z Vil
i=1

VCAdimV<oo n—oo

Basic properties of Gelfand-Kirillov dimension include:

o If B C A are algebras, then GKdim B < GKdim A.

e For any ideal I < A, GKdim A/I < GKdim A.

e GKdim A @ B = sup{GKdim A, GKdim B}.

e Assuming A and B are unital, GKdim A ® B = GKdim A + GKdim B.
Some examples:

e Every finite dimensional algebra trivially has Gelfand-Kirillov dimension 0.

o GKdimK]|zy,...,x,] = n.

e The Gelfand-Kirillov dimension of the nth Weyl algebra (x1, ..., Zp, Y1, -, Yn|

TiTj — TiTi, YilYj — YiYi, TiYj — YiTi — Oij)i 1S 2n.

e The Gelfand-Kirillov dimension of any free algebra (over more than one in-

determinate) is infinite.
e GKdimK(z,y)/(Ay)"A =n.

There is, relatively speaking, quite a bit known about affine algebras with

low (< 2) Gelfand-Kirillov dimension.

Proposition 1.3.2. If A is an affine algebra with GKdim A < 1, then A is finite
dimensional (and thus GKdim A =0).

Proof. Let V be a finite dimensional K-space that generates A. If A is not finite
dimensional, then V™" is always strictly larger than V" if it weren’t, then V™ =
V™ for all m > n and dim A = dim V" < (dim V)™ < oo. It follows that dim V" >
n, and log, dim V" > 1. [



Corollary 1.3.1. If A is an algebra with GKdim A < 1, then GKdim A = 0, and
A is locally finite.

Proof. Every affine subalgebra B C A must have GKdim B < 1, and thus be finite

dimensional. ]

Bergman’s Gap Theorem [p. 18][7] proves that no algebras exist with
Gelfand-Kirillov dimension in the interval (1,2). Together these results show 1
to be an “isolated” value of Gelfand-Kirillov dimension, with the nearest other
possible values being 2 and 0. On the other hand, there also exists a method [8]
to construct an algebra of arbitrary Gelfand-Kirillov dimension > 2.

In the case when A is an affine algebra of Gelfand-Kirillov dimension 1, L.

W. Small, J. T. Stafford and R. B. Warfield [9] proved that:
e the Jacobson radical J(A) is nilpotent, and

e the semisimple quotient algebra A/J(A) has a nonzero center Z, GKdim Z =
1, and A/J(A) can be finitely generated as a Z-module.

In particular, A is PI.

1.4 The Kurosh Problem

In 1940, A. G. Kurosh [10] and J. Levitzki [11] (independently) posed what
is now known as the Kurosh problem: are all affine algebraic algebras finite di-
mensional? The answer was provided in 1964 [12] when E. S. Golod and I. R.
Shafarevich produced a counterexample.

This problem was an analog of the Burnside problem: if, in a finitely gen-
erated group, all elements have finite order, is the group finite? Again the answer
is negative, using a group adapted from the Golod-Shafarevich algebra example.

Since then, there has been effort to determine the status of the Kurosh and
Burnside problems under certain restrictions [13]. For example: since both the

group and algebra counterexamples supplied by E. S. Golod and I. R. Shafarevich
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have exponential growth, does the Burnside conjecture apply to groups with poly-
nomial growth? As M. Gromov proved [3] that all such groups must have a finite
index subgroup that’s nilpotent, the conjecture can easily follow.

Eventually, it was asked [9] whether an affine nil algebra that has finite
Gelfand-Kirillov dimension could be non-nilpotent, i.e. have infinite dimension.
In 2007 [14], T. H. Lenagan and A. Smoktunowicz disproved the conjecture by
constructing an example of an affine, infinite dimensional algebra with finite (< 20)
Gelfand-Kirillov dimension that is nil and almost connected as well.

The dissertation author co-wrote a paper with T. H. Lenagan and A. Smok-
tunowicz, streamlining this method and lowering the upper bound of Gelfand-
Kirillov dimension to < 3. The methods of this paper will be discussed in detail in
chapter 2. It works over any ground field, provided the field is countable. In the
case of uncountable fields, the method fails, and in fact it is conjectured that no
such example exists, or at the very least, it would have to not be almost connected.

In the case of algebras over uncountable fields, a slightly different method
must be used. The dissertation author and J. P. Bell put together a paper that
constructs a nil, almost connected, infinite dimensional algebra over an arbitrary
uncountable field whose growth is asymptotically bounded above by an arbitrary
greater-than-polynomial (i.e. exponential or intermediate) function. This paper’s
method will be discussed in chapter 3.

Another question under consideration concerned affine Jacobson radical al-
gebras: how low can the growth of such an algebra be, assuming it’s infinite
dimensional? In [9] it was proven that if the Gelfand-Kirillov dimension is 1, the
Jacobson radical must be nilpotent, and therefore not equal to the entire algebra.
On the other hand, A. Smoktunowicz and L. Bartholdi [15] successfully constructed
an example of an affine Jacobson radical algebra with Gelfand-Kirillov dimension
2. Following this, the dissertation author and A. Smoktunowicz wrote a paper con-
structing an example of one with quadratic growth, establishing once and for all the
lowest possible asymptotic growth category for these algebras. This construction

will be discussed in chapter 4.



Chapter 2

Nil Algebras with Restricted
Growth

The dissertation author has collaborated with T. H. Lenagan, A. Smok-
tunowicz and J. P. Bell to produce three papers, two of which [16, 17] are to be
published and one [18] still currently under review.

The methods used in these papers with be explained in their respective
chapters. While some of the notation and theorems won’t be exactly the same,
the broad approach will be effectively as previously written.

The first paper provides a refinement of a previous Kurosh conjecture coun-
terexample: an affine, nil, almost connected, infinite dimensional algebra with
Gelfand-Kirillov dimension < 3.

By Proposition 1.3.2 and Bergman’s Gap Theorem, if A is infinite dimen-
sional with GKdim A < 2, then GKdim A = 1. If this is the case, [9] proves that
A is PI. Since all algebraic affine PI algebras are finite dimensional, this eliminates
the possibility of a Kurosh counterexample with Gelfand-Kirillov dimension < 2.

Let K be an arbitrary countable field, and let A = K(z,y). A has a natural
N-grading (where N in this instance includes zero) from setting A = K, A; =
Kz + Ky, and A, = A} for alln > 1. Let A= °", A, C A be the subalgebra of
elements with no constant term. To make an algebra guaranteed to be nil, we will
use the countability of A to make an enumeration {gi, gs,...} = A, then for each

gi, select an n; > 0, and construct an ideal I <1 A that contains each g}".

11
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The trick will be to make I large enough to make GKdim A/I finite and as

small as possible, but not so large as to force A/I to be finite dimensional.

2.1 The subspaces {Usn}

Consider a sequence of proper subspaces Usn ; Agn for each n > 0, such
that Usn Agn + AgnUsn C Ugnt1. The space ZZ"ZO Usn can be thought of as “ideal-
like” in this manner, despite it clearly not being one. For each n > 1, let U}, =
Upn—1Agn—1 + Agn-1Ugn-1 C Usn.

One useful proposition immediately follows:
Proposition 2.1.1. For anyn < m and any 0 <1 < 2™,
AionUsn Agm _(i41y20 S Ugnm.

Proof. This is just simple induction on the value of m —n. If m = n + 1, then the
proposition is trivial.
If the proposition is true for some n, m, then seek to prove it for m+ 1. For

any 0 <7¢ < 2m7",
AignUan Agmi1_ (i 11)0n = AignUsn Agm_(i11)2n Agm C U Agm € Ugm Agm C Upma,
and for any 2m™" < ¢ < 2m-ntl
AjgnUpn Agmr _(iq1y2n = Agm A(j_gm—nyonUsn Agm _(i41_gm-nygn C

Agn U C Agen Uy € Ul
0

Using these spaces, we can define a graded ideal I = €, I, with each
I, C A,. For any n € N, if m = |logyn], i.e. 2™ < n < 2™ then we define:

I = {r € A,[V0 <k < 2" —n, AgrAgmiz_j_p C Upmiz}

To show that [ is ideal, it’s sufficient to prove that I,,A; + A1, C I, for
alln > 1. If n < 2™ — 1, then for any r € I, and any 0 < k < 2"+ —n — 1,

Ak . T’Al . A2m+2—k—n—1 = AkTAQerQ_k_n g Uvém-m7
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!
Ay - Ay Agmaz g1 = AgparAgmre_g_n 1 C Upmsa.

Suppose n = 2™t — 1. If 0 < k < 2™*2 — n, then:
Ak- . TA]_ . A2m+3_k_n_1 - AkTA2m+2_k_nA2m+2 g Uém+2A2m+2 g Uém+37

! /
A - Ay Agmas 1 = ApparAgmre_j 1 Agmez C Uiz Agmiz © Ugms.

If 2m+2 - <k < 3-2™ — n, then:
Ak . T'Al : A2m+3—k—n—1 = A2m+1Ak_2m+1TA3.2m+1_k_nA2m+1 g

Agm+1 U£m+2A2m+1 = Agm+1Ugm+1 Agmr2 + Agmr2Ugmt1 Agm+1 C
Ugm+2 Agm+2 + Agmi2Ugmr2 = Uéerg,
Ag - Ayr - Agmes 1 = Agmr Ap_gmer (17 Aggm1 g1 Agmis C
Agmi1 Uém-}—QAQerl - UQ,m+3.

Finally, if 3-2mT! —n <k < 2™ —n — 1, then:

/ /
Ak . TAl : A2m+3,k,n,1 = A2m+2Ak,2m+27’A2m+3,k,n - A2m+2 U2m+2 - U2m+37

! !
Ap - Arr - Agmis g1 = Agmi2 Ap_gmi2 17 Agmis 1 C© Agmi2Upmis C Upmys.

Since [ is graded, A/I is connected, and A/ is almost connected.

The advantage of using this method to construct [ is control over the growth
of A/I. We will see more of how this works later on, but for now, we can note that
if Ion = Agn, then Agn - Agon = Agniz C Ujuys C Upnt2, which is contradicted by
Uspnt2 # Agni2. This proves that each Ion # Agn, and A/I is infinite dimensional.
With our definition of I, we don’t have to worry about it being “too big” to work

as a counterexample to the Kurosh conjecture.
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2.2 The subspaces {F;}

As mentioned before, we want an enumeration {g,go,...} of A and a se-
quence my, ma,... € N such that each ¢/ € I. In general, the elements g; are
(non-commutative) polynomials over z,y of with many terms, and yield compli-
cated exponents. However, there is a nice property of these exponents than can
be used to our advantage.

For any homogeneous subspace F' C Ay, we will use E(F') to represent the

graded right A-ideal:
E(Fy) =Y AwFA
k=1

Proposition 2.2.1. For anyn > 1, and any g € A, if the ideal generated by g is
a subspace of E(Uan), then g € 1.

Proof. Let g = ga) + g) + -+ + g(a) be the decomposition of g into homogeneous

terms, i.e. with each g; € A;. Since I is graded, it is equivalent to prove that

each g;) € I, and since £(Usn) is graded, we can say that each AguyA C E(Usn).
Let ¢ be such that 2¢ < i < 291, For any 0 < £ < 29%2 —j — ¢,

Agg(i)quH,i,g g A2q+2 N S(Ugn)

If g+1 < n, then this intersection is trivial, and g; = 0. Otherwise, by Proposition
2.1.1,

20—n+2_1
A2q+2 N g(UQn) = Z AanUQnA2q+2_(k+1)2n Q UéquQ;
k=1
and by definition, g € I. O]

Lemma 2.2.1. Let g € A and d > 0 be such that g € Z?Zl A;. ForanyI,J € N
with 0 < I < J —2d and any m > J, there exists subspaces Fop, C Aj_j_q_p for
each 0 <a<d, 0<0b<d such that dim Fo, <1 —J —a—b, and:

g" e AryaFapApA.
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Proof. Let g = ga) + ge2) + - - - + g(a) be the decomposition of g into homogeneous
terms. Let ¢™ = Ylmy T Ilim) be defined similarly.
For any p,q € N, let S? be the set of all functions {1,...,p} — {1,...,q}.

For any o € SP, we define the “sum” of ¢ to be Y}, o(k). We can write that:

dm
9" = Z 9(o(1) " Ylo(m)) = Z Z 9o (1) " Yla(m))>

oeST i=m geS}|sum o=i
and that:
aBm= D Yew) Yom):

oEST sum o=i

For any o € S7', we say that for every 1 <i < m, 2221 o(k) is a splitting
point of o. The difference between the ith splitting point and the subsequent one
is the value of o(i+ 1), so we know that no adjacent splitting points are more than
d apart.

For any a,b,x,y with 0 < a,b < d and 0 < z < y < m, we will define
the subset Tq 55,3 € Sy as the set of all functions whose lowest splitting point
> I is I + a, whose highest splitting point < Jis J —b, Y ,_, 0(k) = I + a, and

Y_,o(k) =J —b. We can partition SJ" into disjoint subsets on distinct values
of (a,b,z,y).

Working backwards, for any a,b,d’, V', z,y € N such that:

0<ab<d, 0<d<a-d, 0<V<b—d,

O<y—ax<J—-I—-a—b,

_ — —y+1 .
and any 0, € S%' 0y € 5477, 03 € ST vt with sum 0y = I — @ and sum oy =

J — I — a—b, there exists a (certainly unique) o € T{apey) such that:

(01(1)7 "'ao—l(x o 1),a+a',02(1), "'702<y - [L'),b—l— b/70_3(1)7 "'703(m —Y— 1))
Therefore,

Z 9e) " Ylo(m)) =

o€ ab,,y}
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Sy Y% S 5

a'=1b'=1 (g, Gngl\sum o1=I—-a’) (62€SY ™ “|sum oo=J—I—a—b) (U3€S?7y+l)
(9e1(1)) ** Glor(e—1))) “Gtarar) (I(o2(1)) -~ Goaty—2))) G40 (Go3(1)) =~ Yos(m—yt1))) =

a—d
Z Z 9(o1(1) " Y(o1(z-1)) * Y(a+a’)

a’'=1 gy 65;71 |[sum o1=I—a’

Z 9(02(1)) " G(oa(y—2)) (Zg bty > .

UQESg_x\sum oo=J—I—a—b b'=1

Z 9(o3(1) """ Y(os(m—y+1)) | €

zes vt

Affa- > oa1) " Yooty | * AbA-

UQESg_w\sum oo=J—I—a—-b

Thus, if we set:

J—I—a—b

> K > Y1) () | »
c=1

o€S§lsum o=J—I—a—b
then dim £, <I —J —a — b, and:

d—1 d-1 I+a J—I-b—a

_ Z Go() " Go(m) = Z Z 9o(1) """ Go(m) €

oSy a=0 =0 z=1 y=z o0€T g0y}
d—1 d—1
ArvoFapApA.
a=0 b=0

O

Theorem 2.2.2. Let g € A and d > 0 be such that g € Z?zl A;. For any n > 2d
and any m > 2n, there exists a subspace F C A, with dim F' < d?2%'n such that

ge&(F).
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Proof. 1t is sufficient to show that A;g™ € E(F) for each i > 0. If this can be
proven for all 0 < i < n, then it follows for all i > n as well; if i = gn + ¢’ with

g € Nand 0 <i < n, then:

[(#'+5)/n] -1 [(i+5)/n]-1
Aig™ = A Avg™ C Ay - Z Ay FA = Z A FA.
k=q+1

Assume 0 < 7 < n. Suppose we set [ =n —i and J = [ +n. Using Lemma

2.2.1,

U

-1

IS

-1

Aigm € An AaFa,bAbAa

(]

Il
=)

b

I
o

a

with each F,;, C A,,_,— and dim Fi,, <n —a — b. If we set:
d—1 d—1
F= Ao Ay C Ay,
a=0 b=0

then A;g™ € A, FA C E(F) and:

d—1 d—1
dim F < n20tt < ¢?29%dy,
a=0 b

&.

I
=)

]

Let g1, g2, g3, ... be an enumeration of A. Let {d;} each be minimal such that
gi € % | Ay Start with z; = sup{8, 2d; + 2[log, d;] + 1}. Then, recusively, for
each i > 1, define z; as sup{2%—+z;_1+7,2d;+2[log, d;|+1}. In effect, {2;} will be
“sparse” enough to get the growth we need. As we shall see, making it more sparse
would keep lowering the growth, though not enough to prove GKdim A/I < 3.

Apply Theorem 2.2.2 to each g;, setting n = 227 =% and setting m = 2n +1
to find a subspace F; C Ay ., such that dim F; < d72?"#*24 By Proposition
2.2.1, if F; C Uysi—.,, and thus E(F;) C E(Uysi—-,), then a power of g; lies within
I.

Let n; = 2% — z; for each ¢ > 0, and let nyg = 0. We need to have Uyn;—1
small enough so that:

Upni + F; C Upni # Agni.
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On the other hand, the larger each Usj. is, the larger I is, and the smaller the
Gelfand-Kirillov dimension of A/l is. So we want each Us. to be as large as
possible, but not so large that it “traps” Usn, = Agn;.

In practice, the process of defining a particular enumeration of A is chaotic,
especially when nothing is known about K besides its countability. We don’t much
about F} at all besides F; C Agny and dim F; < d?2m+2di < 2nitzi=1 Qur method
will work using that knowledge alone. If more were known about each Fj, then

perhaps the result could be further refined.

Theorem 2.2.3. There exists sequences of subspaces Usn,Von C Agn with the
properties that, for each n > 0:

o Usn @ Von = Agn,

o Uyir = Usn Agn + AgnUsn C Upnin

o Voui1 C V2,

o Von can be generated by monomials (i.e. elements of the semigroup (z,vy) ),
e if n=n; for some i, then F; C Usn;,

o ifni—z < n <mn; for somei, then dim Von = 22" """ Otherwise, dim Van =
2. In the latter case, there exists a monomial m € Van such that mAg. C

U2n+1 .

Proof. We are going to build U« and V5 inductively on the value of n.

Start with U; = (0) and Vi = A;. Then, suppose Uyn and Vom are defined
for all m < n and seek to build Uy and Van. Define Ul = Ugn-1 Agn—14 Agn-1Usn-1.

Consider three cases:

Case 1: There does not exist an ¢ such that n; — z; <n <n;,.

We need to have dim Von = 2. We can say Von-1 = Koy + Kuvy, where v; and
vy are monomials. Set Von = v1Von-1 and set Usn = UL, + vy Agn-1.

Case 2: There exists some 7 such that n; — z; < n <n;.

In this case, we simply set Usn = Uj, and Von = V2, Note that dim Va1

2n7ni+z,i

n—m;+z;—1 . .
=227 evenif n — 1 =n; — z;, so dim Von = 2
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Case 3: n = n; for some 1.
dim U, +F < dim Agn —dim V22n_1—|—dimF < dim Agn —2%" 42M 571 < dim Agn —2.

Therefore, there exists a two dimensional subspace Von; C Agn;, generated by
monomials, such that Vin; N (Un, + F;) = (0). We can set Usn; to be a space
containing Uj., + F; such that Uyn; @ Von, = Agn;. [

Conceptually, each F; is an obstacle to include. The farther apart we keep
the values of {z;}, the smaller the difficulty of these obstacles. These obstacles
necessitate the rapid surge in the sizes of Von in case 2 of Theorem 2.2.3. Our
estimate of the growth of A/I will depend on the sizes of the spaces Van, and this
hundle will the “limiting factor” of the strength of this estimate.

2.3 The size of A/I

For any n > 1, let m be such that 2™ < n < 2%, Define R, C A, to be
the space of all r € A,, such that rAgm+1_,, C Uym+1, and S,, C A, to be the space
of all r € A,, such that Agm+1_,,r C Usm+1. Additionally, set Sop = Ry = (0).

For any m such that 2™ > n, Proposition 2.1.1 can be used to show that
R,Agm_p, + Agm_, S, C Ugm.

Proposition 2.3.1. Suppose that n has a binary decomposition 2P0 + ... 4 2Pr
with 0 < py < ... < py.

T
E A2pr+...+2pi+1 UQPiAQpi—1+...+2p0 Q Rn,

=0

E A2P0+...+2Pi71 UQPZ' A2pi+1+._.+2p7~ g Sn

1=0

Proof. First examine the first claim. It’s equivalent to show that, for any 0 <17 < r,
A2pr+...+2pi+1 UQpiA2pr+1_(2Pr+...+2pi) Q Uzpr+1

Since 2P divides each of the subscripts, the statement follows from 2.1.1. A sym-

metrical argument can prove the second claim. O]
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Since Uym @ Vom = Agm for each m,

1=0

<Z Agpr+...+21’i+1 U2Pi Agpifl +...+2P0> @ (‘/2197" c ‘/2170) = An,

1=0

<Z A2p0+...+2Pi71 ngiA2pi+1+...+2pr> @ (‘/on e ‘/2177*) = An

Since each Vyi is generated by monomials, we can choose subspaces @, C Vop, - - -
Vapo and W,, C Vipg - - - Vour, both generated by monomials, such that R, & Q,, =
S, ® W, = A,. These new spaces will be instrumental in establishing an upper

bound of dim A,,/I,.

Theorem 2.3.1. For any n > 0,

ﬁ SiAp_i + AiR,—; C I,

i=0
Proof. Suppose that r € ﬂ?:o SiAp_i + AR, f2" <n< 2™l and 0 < k <

2m+l _ n then:
AprAgmiz_y_ gy © ApSom_Asgm + Agm Ry _gm j Agmiz_y_j; C

U2mA3.2m + AszzmA2m+1 g U2m+1A2m+1 g U£m+2,

if 27+t —n < k < 2™+ then:
AkTA2m+2_n_k g AkS2m+1_kA2m+l + A2m+1Rn_2m+l+kA2m+2_n_k g
U2m+1 A2m+1 —|— A2m+1 U2m+1 — U£m+27
and if 2™t < k < 2m*+2 — n, then:
AprAgmia_p_j, © ApSsom_p Apm + Agom Riqn_3.9m Agmia_p_j, C
A2m+1 UmAm + A3‘2m Un C A2m+1 Upm+1 C Uém+27
proving that r € I,,. [

This allows us to put together an upper bound on size of each A,,/I,:



21

Corollary 2.3.2. For anyn > 1,
dim A, /I, <> dim W; dim Q.
i=0
P’I"OOf. Since (SzAn—z + Aan_z) D Wan_Z = An,

dim A, /I, < dim A,/ (ﬂ SiAn_i + AiRn_i) <Y dim A/ (SiAn_i + AiR) =

1=0 1=0

i dim W;Q,,—; = i dim W; dim Q,,_;.
i=0 i=0

A few lemmas help us narrow down the sizes of W,, and @,,.

Lemma 2.3.3. For any n > 1, let m be such that 2™ < n < 2m*1,
dim @Q,, < dim Vom+1 dim Womt1_,,,
dim Wn < dim %m-&—l dim Q2m+1,n.

Proof. Examine the first claim first. Let D = dim Wam+1_,,, and let {wy,...,wp}
be a basis of Wym+1_,,.

We can define a linear transformation ¢ : Q,, — (Agm+1/Usm+1)? by:
O x> (SL’wl + Ugm+1, ..., zwp + U2m+1).

If x € ker ¢, then xWom+1_,, C Usm+1. Recall that, by definition, 2.Sym+1_,, C Ugm+1,
and since Agmi1_, = Som+1_p, B Womt1_p, Agm+1_,, C Agm+1, and  C Rom+1_,.
Since Rom+1_p, N Qam+1_,, = (0), ker ¢ = (0). The injectivity of ¢ establishes that
dim Q,, < dim(Agm+1/Ugm+1)? = dim Vam+r dim Wam+1_,,.

To prove the second claim, use a symmetrical argument: use any basis
(41,2, ...) of Qams+1_,, and define ¢ : W, — (Agms1/Upmir )™ @2m+1-n through left
multiplication:

¢:x— (qlx + Ugm+1, qo + Ugm+1, )

We can prove this ¢ to be injective the same way. O
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Lemma 2.3.4. Let n,i € N be such that n < 2™~ % and n s divisible by 2"-1.
dim@, =1, dimW, <2.

Proof. Let n = 2P0 4 ... + 2P be a binary decomposition of n, with n;_; < pg <
v < pr <y — 2z;. We know that:

Qn C Vapr -+« Varo,

and each Vor; generated by two monomials. As @, is also generated by monomials,
it’s sufficient to prove that all monomials of Vo, - - - Vore except one lie within R,,.
We know that for each 2Pi, there is a monomial m; € Vapr; such that m; Agp; C

Uspi. Let m! be the other monomial that generates Vor;. Using Proposition 2.1.1,
Vv2pr ce ‘/Qpi+1 -my - ‘/Qpi—1 cee ‘/on . AQpr+1_n C

Agpr+...21’i+1 UQPi Agpr+1_(2pr+...+2m) g U2pr+1.

Therefore Vop, «++ Vopirr - my; - Vopi1 -+ - Vory C R,,, and the only monomial of that
space that doesn’t lie within R, is m,, - --myj,.

To prove that dim W,, < 2, apply Lemma 2.3.3:
dim Wn < dim ‘/2p7-+1 dim Qgpﬁ-l,n = 2.
O

Lemma 2.3.5. For any ny,ny € N, if there exists an m € N such that n; < 2™

and 2™ divides no, then:

dim Qn1+n2 S dim in dim Qn27
dim Wy, 1, < dim W,,, dim W,,,.

Proof. Let ny = 2Pk+1 4. .. + 2P and ngy = 2P0 + - - - 4 2Pk be binary decompositions
of ny and ng, with 0 < py < ... < ppr < m < pr1 < ... < p.. Without loss of
generality, assume m = p; + 1. Recalling the definition of R, and Proposition
2.1.1,

Ry, Ay - Aspr1i g —ny = Ry Agprs1_py, C Usgprta,
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AannzAZ”?"‘anlfng g AnlUQmAQpT-H,Qm,nI g U2P1"+17

and therefore,
Rm Anz + Anl RTZQ - Rn1+n2'

Since Qn+1Qn+2 ) Rnl An2 + A'I’Ll RnZ = An1+n2,
dim Qn1+n2 = dim An1+n2 — dim Rn1+n2 S

dim A, 4, — dim(R,, Ay, + Ay Rp,) = dim Q,,, dim @,

Once again, to prove dim W, 1,, < dim W, dimW,,,, use a symmetrical

argument. O

Theorem 2.3.6. For all k,i > 1, if k < 2™~ % then:
dim Qy, dim Wy, < ni_12%n¢71+2

and if k < 2%~ then:
dim Qy, dim Wy, < nivVk

Proof. We will prove this inductively on the value of 7.

For the base case, seek to prove that for all £ < 2" 7% dim Q, dim W, <
ne22m0+2 = 25/2 This follows immediately from Lemma 2.3.4.

We attack the inductive step with three cases:

Case 1: Suppose k < 2%~! and assume that:
o for all j <2™7% dimQ;,dimW; < n;_ 23M-112,
e for all j <2171 dim Q;, dim W; < n;_1/7.

We want this step to prove that dim Qy, dim W, < n;Vk.
If k < 2%-1=1 then the claim follows from n;_; < n;.

If 2ni-1=t <k < 2%~%  then:
. . 1. Zi—14 L1, o
dim Qy, dim Wy, < m,;_ 237172 < 92 435iat2 o5l oy < V/E,

Assume that 2% <k < 2% 7L Let k=5 + 2P0 4 - + 2P with n; — 2 <
Po < ..<p.<n;—1and j < 2" %, Using Lemma 2.3.5,

dim @y < dim Qaro4...p20- dim Q5 < dim Vap, - - - dim Vopo dim Q5 <



24

Dr—ni+z; .. pO,n.+z. 1. Z5—"ny 1 .
22 iTZi4...2 i 2+2’n1_1+2ni_1 <221 1I€+2n1—1+21—1+27

. . . . z;j—n; 1. .
dim Wy, < dim Vaw - - - dim Vop, dim W; < Q2H T kA g1z 42

If we set:

2221'*"2' k+%ni71+zz‘71+2

then it suffices to show that f is never positive for any 2"%~% < k < 2%~!_ Calcu-

1 1
f(k) =log, = Q% Ml _ 3 log, k + Shi-1 + 21 —logyn; + 2,

lating the derivative,

1 1
"(k) =257 — >257M 1 —— ] >0
J'(k) klnd — ( ln4) ’

and thus is it sufficient to prove that f(2"%~1) < 0. Since z; > 21 + 2; 1 + 7,

1 1
fmh = 2Zi_1+§(_ni+nz‘—1+5)+zi—l_10g2 n; < §(Zi+2zi_1+zi—1+7)_zi <0.

Case 2: Suppose k < 2", and assume that for all j < 271 dim@Q);,

dim W; < nivk < niZ%("i_l). We want this step to prove that dim @y, dim W), <

niZ%”i“ .

If k < 2"~ the assumption is sufficient. Otherwise, recalling Lemma 2.3.3:
dim @, < dim Von,; dim Won,_j, < ni2%"i+17

. . . 1,
dim Wy, < dim Vi, dim Qoni_jp < 1,227,

Case 3: Suppose k < 2"+17%+1 and assume that for all j < 2™, dim Q);,
dim W; < niQ%"i“.

If £ < 2™, the assumption is sufficient. Otherwise, let & = j + m, with
J < 2™ and m divisible by 2™. Recalling Lemmas 2.3.4 and 2.3.5,

dim @y, < dim @, dim Q; < 2%”#2,
dim Wy, < dim W, dim W, < 227+2,
This completes the induction. O]

Corollary 2.3.7. For all k > 1,

dim Qy,, dim W), < 4v'klog, k
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Proof. Let i > 1 be such that 2%-17! < k < 2n—L If 211 < k< 273 then

Theorem 2.3.6 proves:

dim Qp,, dim Wy, < n;_122"%2 < 1252k < 4v/klog, k,
and if 2% % < k < 2%~1 then:

dim Q, dim W), < niVk < 2(n; — zz)\/E < 2\/Elog2 k.

Applying Corollary 2.3.2, we can conclude:

dim A, /I, <Y 4Vilogyi - 4v/n —ilogy(n — i) <
=0

Z 16n(logy n)? = 16n(n + 1)(log, n)?,
=0

GKdim A/I = limsup log,, Z dim A;/I; < limsuplog,,(16n*(n + 1)(logy n)?) = 3.

The example is complete: A/I is nil, infinite dimensional, almost connected,

and has a Gelfand-Kirillov dimension < 3.
Chapter 2, includes a reinterpretation of, and borrows heavily from, [16].

This paper has been submitted for publication with the dissertation author as a

co-author.



Chapter 3

The Kurosh Problem for Algebras

Over a General Field

This chapter reiterates a result from a paper [17] by the dissertation author
and J. P. Bell: over an arbitrary uncountable field, for any non-polynomial function
f, there exists an algebra that’s nil, infinite dimensional, almost connected, and
with growth that’s asymptotically bounded above by f. Recall that we designate
f to be non-polynomial if there exist no a, C' > 0 such that f(n) < Cn® for all n.
Combining this result with [16] proves it for the case of general fields.

The method of this paper shares a lot of its reasoning with [16]. Let K
an uncountable field, let A = K(z,y) be the free algebra of two indeterminates
over K with N-grading Ay = K, A; = (Kz + Ky)’, and let A = >>° A;. The
objective will be to find a graded ideal I = Y >° I; < A such that A/I is nil, and
fa/ra+n/r S f- In other words, every g € A has an exponent g™ € I, and there
exists some C, D > 0 such that for all n > 0,

Cf(Dn) > fasraenyr(n) =Y dim A;/T;.
=1

We will be borrowing much of the construction of the subspaces {Uzn } from
section 2.1. The paths of the two papers begin to diverge at the construction of the

subspaces {F,}. As no enumeration of A exists, we cannot use the same method.

26
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Lemma 3.0.8. Letd > 0. Forany I,J € N with0 <1 < J—2d and any m > J,
there exists subspaces Fop € Ar_j_q_p for each 0 < a < d, 0 < b < d such that
dim F,, < (J =T —a —0b)%, and for any g € Y0 A;,

g" e Aqy1FapApA.

Proof. Let W = {x,y,1}%\{1}, i.e. the set of all non-trivial monomials of length
< d using letters z,y. We can write Zle A, =KW.

Let T = {ty}wew be a set of indeterminates, and consider the algebra
A[T]. Let g = > cwtww. We can decompose g = gu) + -+ + g with each
96 = Z|w|:i tyW.

Using this value of g, we can copy almost all the work done in the proof of

Lemma 2.2.1, and end up with:

J—I—a—b
;,b = Z K Z 9(o(1)) " " Y(o(c)) C AJ—I—a—b[T]7
c=1 o€S§lsum o=J—I—a—b
d—1 d-1
gm S Aa+[F(;7bAbA.
a=0 b=0
Let F} ;. be the element:
> 9o) " Gio(e)) € Av-1—a—b T,

o€S§|sum o=J—I—a—b

so that F), , = S/t KF, .

c=1

Let E(c,m) be the set of all sequences {i,}wew of non-negative integers

such that:
Z = C, Z |wli, = m.

weW weW

This way,

wbe € As—r—a—b - { IT

weWw

{iw}EE(c,J—]—a—b)}.

Note that there are at most (m + 1)?~! elements of E(c,m).
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For any h € Zle A;, there exists a homomorphism ¢, : A[T| — A that
maps g — h by mapping each ¢, to the w-coefficient of h, an element of K. We

can compute that:

dim Y Kéu(F,.) <|E(c,J —IT—a—b)| < (J—1—a—0b""

heKW

If we set Fa,b = thKW ¢h(Fé7b)’ then Fa,b Q AJ_[_a_b,

Q..
,_.

d—1
e A1 Fop b A,

=0

IS]
Il
o

>

and:

dim F,, = dim ) éu(F),) <
heKW

J—I—a—b

dim Y Key(Fy,.) < (J—I—a—Db)"

c=1 heKW
]

Theorem 3.0.9. For any d > 0 any n > 2d, and any m > 2n, there exists a
subspace ' C A, with dim F' < d?(4n)? such that for any g € Zle A;, AgmA €
E(F).

Proof. As Lemma 3.0.8 copies from Lemma 2.2.1, this theorem uses the same steps

as 2.2.2, which gives us:

a
L
a
L

F= AaFa,bAb g An,

=
Il
<)
o
I
<)

and dim F < d?2%in?, O

Recall our non-polynomial function f. For each a € N, n* = f(n), and
there exists a C' > 0 such that n* < f(Cn) for all n € N, and if n > C?%, then
n®~! < f(n). Thus, for each a > 0, we can choose a B, such that for all n > B,,
n® < f(n).

Define the sequence {z;}°, recursively, by setting z; = 5 and each z; =

sup{z;_1+2,log,(i(logy Boi+20+5))}. Given this sequence, define {n;}°, by setting
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n; = [i712%| — 4 for each i > 0 and setting ng = 0. Finally, use Theorem 3.0.9
to select F; C Aon; as a subspace with dim F; < i?24"+2) guch that for each
geEL Ay, AgPT A € E(F)).

With this established, we're going to build the spaces {Usi, V5i} in much

the same way as in Theorem 2.2.3.

Theorem 3.0.10. There exists sequences of subspaces Ugn,Von C Agn with the
properties that, for each n > 0:

o Upn @ Von = Agn,

o Ut = UpnAgn + AgnUsn C Ugnia

o Vony1 C V22n,

o Von can be generated by monomials (i.e. elements of the semigroup (z,vy) ),
e if n =mn; for some i, then F; C Usn,,

o ifni—z < n <mn; for somei, then dim Von = 22" Otherwise, dim Vin =
2. In the latter case, there exists a monomial m € Von such that mAs. C

U2n+1 .

Proof. This can be done with the exact same proof as 2.2.3. The only relevant
difference is the size of F' and the spacing between each n;; it’s needed to show
that n; — z; — n;—1 > 0 and dim U}, + F; < dim Agn; — 2 for each n;.

For the first inequality,

n; — 2 —Nj—1 = LleZiJ —zi— (i — 1)_1221'71J >
1
iR -2 5 12073277 - S(s - 45+ 1) > 0.
For the second,

dim U, + F; = dim Agn; — dim Vany + dim F; < dim Agn, — 227 221042 <

dim Agn; — 227 442210772271 — Qi Agn, + 2% (i227i71 — 1) < dim A" — 2.

]
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The construction of I <t A will be the same as in section 2.1, using this
version of {Uy}. As before, we can show that each Iyn # Agn, and A/I is infinite
dimensional. Finally, Theorem 3.0.9 combined with Proposition 2.2.1 shows that
if g€ 31 _, Ay, then gl e T

The one remaining piece of this section is to prove that the growth of A/l
is asymptotically bounded above by f.

Recall the definitions of R, and S, from section 2.3, and the existence of
Q, and W, such that R, Q, = S, ®W,, = A,, and, if n = 2P0 4 ... 4+ 2P7 {5 a

binary decomposition of n with 0 < py < ... < p,,
Qn € Vopr -+ Vigro,

WT’L g ‘/vQPO""/QP'r.

Lemmas 2.3.4 and 2.3.5 and Corollary 2.3.2 apply as well.

Lemma 3.0.11. For any n,i > 1, if n < 2™~ % then:

dim @,,,dim W,, < 9271
Proof. We can decompose n = b; +a;_1+b;_1+---+a;+ by, with each b, < 2™,
2™-1by,, and each aj < 2™, 2™~ *|q;. Using Lemma 2.3.4, each dim @y, , dim W},

< 2, and using Lemma 2.3.5,

i—1 7 i—1
dim Q, < [[dim Qq, - [] dim @, < 2"+ [ dim Vyn,—, - - dim Vg1 <
k=1 k=1 k=1

i1 i—1
; 0 E7 ; zp+1_ i—1 zp+1 zi_1+2
2@.H22+2 :21.H22 1_ o2 <

k=1 k=1

i—1 7
i—1+2

dim W, < [ dim W, - ] dimW;, <22

k=1 k=1

Theorem 3.0.12.

fara+nin 3T
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Proof. Consider two cases: when n < 2™7*2 and when n > 22772,

In the former case, the size of f1,7 (4,41 ,1(n) is bounded, and it’s clear that
there exists some C' > 1 such that fz,7 4,41),r(n) < f(Cn) for all such values of
n.

In the latter case, it’s sufficient to prove that fz,7 4,511(n) < f(n).

Let 7 > 3 be such that 2%-17%-1 < n < 2™ % We can show:

p > QM1TE > g2 > 9= TINESS 5

and therefore f(n) > n%*2,

From Corollary 2.3.2 and Lemma 3.0.11,

dim Ay, /1, < idim Wi, dim @, < Zn: (222i_1+2>2 = (n+1)22""",

k=0 k=0
n n
. z;_1+3 zi_1+3 9%i—1 _ . _ .
ZdlrnAk/[k < Z(k+ 1)22 1 < TL222 1 < n2292 1—-92; 1—-45(i—1) <
k=1 k=1

n299%ni-1=zi1) < 2491 < f(n).

O

Chapter 3 includes a reinterpretation of, and borrows heavily from, [17].
This paper has been submitted for publication with the dissertation author as a

co-author.



Chapter 4

Jacobson radical algebras with

quadratic growth

In this chapter, we will discuss a paper [18] by the dissertation author and
A. Smoktunowicz that producesan almost connected Jacobson radical algebra over
an arbitrary countable and algebraically closed field that has precisely quadratic
growth.

As mentioned above, if an algebra has growth that is strictly less than
quadratic, then it has Gelfand-Kirillov dimension either 1 or 0. In the former case,
it can be proven that the algebra is not Jacobson radical (see [9]), and in the latter,
it is finite dimensional. Therefore, it’s sufficient to take a countable, algebraically
closed field K, a pair of indeterminates x,y, and an ideal I < A = K(z,y) such
that:

I =6, I,, where each I, C A, = K{z,y}",

I, # A, for an infinite number of values of n,

ZZ:l dim Ak/[k: j 712,

For every g € A, there exists an h such that g + h + gh € I.

Once again, we will stay close to the method in chapter 2.

32
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4.1 The subspaces {Uy}

Suppose we have a strictly increasing sequence of natural numbers {N;}°,
with Ny = 1 and a sequence of homogeneous subspaces { F; }3°, with each F; C Ay,
and Fy = (0).

In this section, we ask the question: does there exist, for every ¢ > 0, a

subspace Uy C Ay and two elements v;1,v;2 € {z, y}2i such that, for each 7 > 0:
o Uy @ Kuv;1 @ Kuvjo = Ay,
e There exists a v € Kv; 1 + Kuv; o such that Uyiv1 = AgiUsgi + Ugi Agi + v Ay,
o [, C U,yp,.

We shall attack the question with induction. For the base case, set U; = (0),
Vo,1 = X, Vo2 = Y.

For the inductive step, assume the existence of U,n,,vn, 1,vVn, 2 for some
© > 0, and find possible Ugr, vy 1, Vg2 for all N; < k < Njyq.

Let W =2 K2Wi1=Ni) he a subspace with indices {xkvl,xm}gj}\z_l, let
Wy be the subspace of all elements where (r31,252) = (0,0), and let W =
WAUw, " W

Given some vector @ € W, define Uy (@), vy, 1 (W), vy 2 () recursively for
each N; < k < Ny, as follows: first, set Uy, (W) = Uy, vy, 1 (W) = vp, 1,
UNi,2<w) = UN;,2-

Then, assuming Usk (W), vy 1 (W), v 2(W) are defined for some N; < k < Nyyq:
U2k+1 (U_j) = AQk UQk (QI;) + ng (U_J’)Azlc + (:L‘kg (’LU)'Uk;J(Uj) - .TkJ(’lB)UkQ(Uj))AQk.

If 21 (W) # 0, set:
k41,1 (0) = 231 (@) 07 (),
Vp1,2(10) = 241 (D) g1 (0)vg o (W),

and if xy 1 (W) = 0, then z (W) # 0, so set:

V1.1 (W) = Ik,2(U7)_lvk,2(lU)Uk,1 (W),
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—

Ves1,2(W0) = T (@) 0 o ().
The only task remaining in this section is to determine a sufficient condition

of a @ € W such that Fj,; C Uyni 1 (W).

Lemma 4.1.1. For any N; < k < Ni,1, a,b€ {1,2}, & € W,
Uk,a(6) Uk p (W) € Zp,a (W) Vk41,4(W) + Ugiess (D).

Proof. If zp1 (W) # 0, and a = 1, vg (W) Vg4 (W) = @0 (W) Vg41,5(20).
If 241 (wW) # 0, and a = 2,

Uk,a (ID’)U]%(, (Iv) =

T, (0) V1,5 (0) + 2,1 (W) (2,2 (D) 0p,1 (F) — 21 (@) 03, 2(0) )0 (45).

If 21(wW) =0 and a =1,

Vpya(0) Uk (0) = 12 (W) ™ (0,2 (0) g1 (W) — o1 (W) 0 2(0) ) g, (D).
And if 241 (W) = 0 and a = 2, vy, o (W) vk p (W) = T 2(W)Vg1,5(20). O

Let P = Klzg 1,z g]kNR} ' ie. the (commutative) algebra of polynomial
functions W — K. Let Q = [0 (Kuyy + Kzj,2)2 ™" be a homogenous
subspace of P.

Theorem 4.1.2. For any sequence {si}7_] e of {1, 2}2NH17N1', there ezists some

ps € Q such that for any W € W,

oNit1—N;

H UN;,s, € pS( )UNH-LS oNit1-N; (’LU) + U2Ni+1 (ZB)
k=1

Proof. We will use induction to show that, for any 0 < h < N;;; — N; and any
sequence {sg Y2, of {1,2}%",

2h

h—12h—i=1
HUNi7sk € H H $Ni+j,52j(2k71)(lf}’) le-+h,th(u7)+U2N¢+h(1D’),
J=0 k=1

k=1
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with the end result of the theorem proven when h = N;,; — ;.

The base case is simply vy, 5, € Un;, s, (W) + Uy, (0).

}2h+1

For the inductive step, let {sk}z’;ll be a sequence of {1,2 , and assume

the inductive statement is true for {s;}2-, and {sk}ih:glh“ Lemma 4.1.1 shows

that:

UNi+h,s,p (w)UNi+h752h+l (217) S LNi+h,s,p (w)vNi+h+1,52h+1 (’lﬁ) + UZNi+h+1 (U_j)

Therefore,
2h+1 h—12h=Ji—1
[T omese € [ {TT T #vtsismon s (@) | 0ty (@) + Unign (@)
k=1 j=0 k=1
h—12h=J=1
H H TNi+,55 (o 1) 420 () UNithysyni1 (W) + Uyni+n (W) | C
j=0 k=1
h—12h—J
H H xNﬁ-j,SQj(Qk_l)(w) TNi+h,s,n (w)UNﬁ-h—i-l,thﬂ (’Lﬁ) + U2Ni+h+1 ('u_f) =
§=0 k=1
h 2h—i
H H xNi-i-j,SQj(Qk_l)(w) UNi+h+1,5,p41 (’Lﬁ) + Upni+nt (u_j)
§=0 k=1

O

Corollary 4.1.3. For any f € A,~,,,, there exists p,q € Q) such that Vi € W,
f S p(IU)UNth(w)) + q(w)UNi+1,2<w) + UQNHI (117)

Proof. First, note that:

)QNHl*Ni _

Agrvir = (Upni + Koy, 1 + Ko, o
oNit1—N;

oNiy1—N;
(Kon;,1 + Koy, 2) + E A(kfl)ZNi Uani AgNigs _pan
k=1

and for each f € A,n,,,, there exists a f’ € (Kuy, 1 +KUN“2)2N”17N1 such that, for
any @ € W, f € f' + Uyn,y, ().

Since f’ can be written as a linear combination of the elements of the form
Hiif ' UN,.s,, it’s sufficient to prove the corollary over these elements, which is

done in Theorem 4.1.2. O
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Let d = dim Fjyq, let {fx}¢_, be elements that generate Fj,;, and let
{pk, @} € Q be such that Vil € W, fi € pp(@)on,,,1(@) + qr(W)vn,,, (@) +
U,niiy (), as detailed in Corollary 4.1.3. If there exists a @ € W such that each
pi(W) = qp(W) = 0, then Fiyq C Uy, (W).

Let G = Zgzl Kpr + Kgr € @ be the vector space generated by {px, qx}-
Our remaining goal is to show 3w € W : G(w) = (0).

Let R be the algebra over K generated by @, i.e. R =, QF.

Lemma 4.1.4. If G, P are defined as above, then:
RNGP C G+ GR.

Proof. Let M = U, {Zn,1, TN25 - TNy —1,1, TN,y —1,2) ", €. the set of all non-
trivial monomials of P (without coeflicient). Let Mg be the monomials that
generate @), let Mp = U;’il Mg? be the monomials that generate R, and let
M}y = M\Mpg. P can be decomposed: P =K & R @ KM,

Note that for any m € Mg and any m' € My, mm' € My As R is
generated by monomials, R N QM = (0).

Let g € G, and let p € P have the decomposition p = k + r + s, with
ke K, re Rand s € KMy. Suppose that gp € R. Since gk + gr € R,
gs € RNQMp = (0). Therefore, gp € Kg+ gR, and RNGP C G + GR. H

Theorem 4.1.5. If {w € W : G(«&) = (0)} C W\W = U,]CV:R}_I Wy, then:

i> %(Nm _N 1),
Proof. Given an ideal I of P, we define Z(I) = {w € W : I(w/) = (0)}. This is an
affine subvariety of W. It’s our goal to show that if Z(GP) C Uffg{l Wi, then
d>1(Nig1 — N; +1).

Since () annihilates each W, it must annihilate Z(GP) as well. Hilbert’s
Nullstellensatz states that since K is algebraically closed, for each ¢ € @), there
must be an exponent ¢" € GP.

Using Lemma 4.1.4, ¢ € RNGP C G + GR, and so the quotient algebra
R/(G + GR) is nil. Since G* C GR, R/GR is nil as well. All affine commutative
nil algebras are finite dimensional, so GKdim R/GR = 0.
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In Lemma 3.2 of [19], L. Bartholdi and A. Smoktunowicz prove that, if R is
a affine commutative graded algebra, and I = AgA < R is an ideal generated by a
simple homogeneous element ¢, then GKdim R/I > GKdim R — 1. Extrapolating
this property, if I is generated by d homogeneous elements, then GKdim R/I >

GKdim R — d. In our case, GR is generated by 2d homogeneous elements, and so
GKdim R/GR > GKdim R — 2d = 0, and d > 5 GKdim R.

Remember that for any j > 0, Q7 = g:}\}_l(me +ka,2)j2Ni+1_k_l, and:
Niy1—1
dim Qj _ H (ijiJrl_k_l + 1) > 2%(Ni+l_Ni_1)(Ni+1_Ni)jNi+l_Ni.
k=N;
Therefore d > %GKdimR > %(qurl — N; +1). O

We can thus conclude that as long as dim Fj,; < %(NHI — N; + 1), there
is a W € W such that G () = 0, and we have an appropriate space Uy = Uy (1)
and monomials vy = vy 1 (W), Vg2 = vgo(W) for each k < N;iq. If this holds for

all + > 0, the induction can proceed.

4.2 The size of A, /I,

We define R,,S, C A, the same way as in chapter 2: if m is such that
2m < p < 2™ then R, = {r € A, : rAgmi1i_, C Upmnr} and S, = {r € A, :
Agm+1_p,r C Upmt1 }.

For each i € N, let v; € Kv; 1 +Kuv; 2 be such that Uyiv1 = AgiUsi + Usi Agi +
v;Agi, let Uy = Uy + Ku;. If vy ¢ U, then set V), = Kuv;, otherwise, set
Vi = Kuv; ». This way,

Uzi Q Uéb, szli Q ‘/Qi, Uéz S¥ ‘/2/1 - A2i7

U2i+1 — AQiUQi + U,iAQi.

For any n € N, and let n = 2P°4-...4+2P" be the usual binary decomposition,

with 0 < py < ... < p,. Define Q,, = V5, - -+ Vip,. Note that dim@Q,, = 1.

Lemma 4.2.1. For everyn € N, Q, ® R, = A,.
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Proof. Use the same binary decomposition. Consider the space:

T
/
R: E AQpr+...+2pi+1U2piA2Pifl+...+2PO

i=0
Since each Ujy, @ Vip, = Aowi, R® Q,, = A,,. It’s sufficient to prove that R C R,,;
since dim@Q,, = 1, R C R,, implies either R = R,, or R, = A,,, and the latter is
contradicted by the definition of R, and the fact that Usp.+1 # Agpr+1.

For each 0 < i < r, let n; =mn — (2Pi-1 + ... 2P0) < 2P+ Since n; < 2P 1!

and 2Pi|n;, 2P~T1 —n; > 2Pi. Since Proposition 2.1.1 still applies,

r
2 : !
RnAzprJrl,n — AQpr+...+2Pi+1 U2pi Agpr+1,ni ==

=0

r r
2 : ! § :
A2pr+...+2pi+1 (UQp,L-A2pi) A2pr+1,ni = Agpr+.,.+2Pi+1 U2Pi+1A2Pr+1fm Q U2p7»+1,

=0 i=0

and R C R,,. [l

Copying our work in section 2.3, there also exists a subspace W,, C Vo -« - -

Vapr such that W,, & Q,,. Lemma 2.3.3 still applies, with:
dim Wn S diIIl(K?Jpr_i_Ll + K,Upr-i-l,Q) dim Q2P7‘+1_n = 2.

Corollary 2.3.2 still applies as well:

dim A, /I, <> dim W, dim Q,_; < 2n +2,

1=0

=1

Therefore, A/I has quadratic growth.

4.3 The subspaces {F;}

Let g € A, and let d be minimal such that g € Z?Zl A;. Let g = gy +- -+ 9
be the homogeneous decomposition of g, with each g(; € A;. For each n > 0, define

the element s,, € A,, recursively:
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® Sy = 17
min{n,d
® Sy, = — Zi:l{ }g(i)snfi-

One can inductively show that:

Sn = Z Z <_1)kg(i1) © G

k=0 (1<i1,...,ix <d,i1++ir=n)

and by symmetry,
min{n,d}

Z Sn—i9(i)-
i=1

Lemma 4.3.1. For any a,b,k with 0 < a <b—2n <k — 2n,

d—1

s, € E AariSh—a—j—iAr—pyj-

i,j=0
Proof. First, we wish prove the claim:

d—1

Sk € E AayiSk—a—i-
i=0

Use induction on the value of a. The base case, a = 0, is trivial from the definition

of si. For the inductive step,

d—1 d—1
Sk € E AaJr'LSk a—i — =A aSk—a T E Aa+zsk a—i —
1=0 =1
d—

_ZAag i) Sk—a— z—l—ZAa-HSk a—i © A(a+1)+i8k—(a+1)—i-
0

Through symmetry, and the fact that s, = Zle Sk—ig(i), We can also prove, for

each 0 <i<d—1:
d—1

Sk—a—i € E Sp—a—j—iAk—btj-

=0
Combining these,

d—1 d—1

Sk € E AgtiSk—a—i C E AatiSr—a—j—iAk—br-

i=0 i,j=0
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For each N > 2d, define the space Fy(g) C Ay as:

d—1
Fn(g) = Z Aisn—i—jAj.

1,7=0

Lemma 4.3.2. For any k > 2N,
AspA € £(Fy(g)).

Proof. As ANE(Fn(g))A C E(Fn(g)), it’s sufficient to prove that A,,s, € E(Fn(g))
for any 0 <m < N.
Using Lemma 4.3.1,

d—1

Apse € Ay, Z AN_m+iSN—imjAk—an+j C AnEn(g) € E(Fn(g)).

1,j=0

]

Theorem 4.3.3. For any N > 2d, there exists an h € A such that g + h + gh €
E(Fn(g))-

Proof. Let h = Z?ivfrd S;.

2N+d 2N+d min{s,d} d 2N+d
gHh=g+ > si=9= 3 D 995 =9-2, D 90si-i =
i=1 =1 =1 j=1 i=j
d 2N+d d 2N-+d—j
I ITLEE LD DR TLE
j=1li=j+1 j=1 =1
d 2N+d d 2N+d d
() (Te) e T e Y
j=1 i=1 j=1 i=2N+d—j+1 i=1
Finally, lemma 4.3.2 proves that 3% | Asoni; € E(Fn(g)). O

If we can get Fon(g) C Uyn for some n, then Theorem 4.3.3 and Proposition
2.2.1 combined prove that there exists an h € A such that g+ h+ gh € I. In other
words, g + I is right-quasiregular in A/1.

As K is countable, we can construct an enumeration A= {91, 92,...}. Let
each d; be minimal such that g; € Z;.lizl A;. Define the series {N;}°, recursively,
with Ny = 0, and for each i > 0, N; = N;_; + 22%+1 — 1.
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Set F; = Fyn,(g;). Section 4.1 establishes that we can have each F; C Usn;,
so long as dim F; < %(Nz — N;_1 + 1), which is indeed the case:

di—1 di—1
T T . 1
. . T . +k 2d; _ AT
dim F, < kg OdlmAJdlmAk— kg 02] <2 —Z(NZ Ni_1+1).
]7 = J7 =

We have thus proven the existence of a set {Usn }, following the specifications
of section 4.1, that results in an ideal I <1 A such that every element of A/I is right-
quasiregular, from which it follows that A/l is Jacobson radical.

Chapter 4 includes a reinterpretation of, and borrows heavily from, [18].
This paper has been submitted for publication with the dissertation author as a

co-author.
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