Title

Examples of algebras of small Gelfand-Kirillov dimension

Permalink

https://escholarship.org/uc/item/9ck366ti

Author

Young, Alexander Arthur
Publication Date
2012
Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Examples of Algebras of Small Gelfand-Kirillov Dimension

A dissertation submitted in partial satisfaction of the requirements for the degree
Doctor of Philosophy
in
Mathematics
by

Alexander A. Young

Committee in charge:
Professor Efim Zelmanov, Chair
Professor Vitaly Nesterenko
Professor Daniel Rogalski
Professor Lance Small
Professor Alexander Vardy

Copyright
Alexander A. Young, 2012
All rights reserved.

The dissertation of Alexander A. Young is approved, and it is acceptable in quality and form for publication on microfilm and electronically:
\qquad
\qquad
\qquad
\qquad

University of California, San Diego

2012

DEDICATION

To my sisters, mother, father, and especially my grandparents.

TABLE OF CONTENTS

Signature Page iii
Dedication iv
Table of Contents v
Acknowledgements vi
Vita and Publications vii
Abstract of the Dissertation viii
Chapter 1 Introduction 1
1.1 Preliminaries 1
1.2 The Jacobson radical 3
1.3 The growth of algebras 5
1.4 The Kurosh Problem 9
Chapter 2 Nil Algebras with Restricted Growth 11
2.1 The subspaces $\left\{U_{2^{n}}\right\}$ 12
2.2 The subspaces $\left\{F_{i}\right\}$ 14
2.3 The size of A / I 19
Chapter 3 The Kurosh Problem for Algebras Over a General Field 26
Chapter 4 Jacobson radical algebras with quadratic growth 32
4.1 The subspaces $\left\{U_{2^{n}}\right\}$ 33
4.2 The size of A_{n} / I_{n} 37
4.3 The subspaces $\left\{F_{i}\right\}$ 38
Bibliography 42

ACKNOWLEDGEMENTS

I wish to express heartfelt thanks to my advisor Efim Zelmanov for his encouragement, ideas and generous support. I would also wish to express the utmost gratitude to Agata Smoktunowicz, Jason Bell and Tom Lenagan, without whom all of these results would have certainly not have been possible. Finally, I would like to extend thanks to Lance Small and Dan Rogalski, for their helpful discussions and advice.

Chapters 2, 3, and 4 include reinterpretations of, and borrow heavily from Nil algebras with restricted growth (T. H. Lenagan, A. Smoktunowicz, A. A. Young), On the Kurosh problem for algebras over a general field (J. P. Bell, A. A. Young), and Jacobson radical algebras with quadratic growth (A. Smoktunowicz, A. A. Young), respectively. All three of these papers have been submitted for publication with the dissertation author as a co-author, and may appear in Proc. Edin. Math. Soc., J. Algebra, and Glasgow Math. J., respectively.

2007

2007-2012

2009
2012
B.S. with honors in Mathematics, Brown University, Providence RI

Graduate Teaching Assistant, University of California, San Diego CA
M.A. in Mathematics, University of California, San Diego CA Ph.D. in Mathematics, University of California, San Diego CA

PUBLICATIONS

T. H. Lenagan, A. Smoktunowicz, A. A. Young, Nil algebras with restricted growth, to appear in Proc. Edin. Math. Soc., arXiv: 1008.4461v1.
J. P. Bell, A. A. Young, On the Kurosh problem for algebras over a general field, to appear in J. Algebra, arXiv:1102.0362v1.
A. Smoktunowicz, A. A. Young Jacobson radical algebras with quadratic growth, under consideration in Glasgow Math. J.

ABSTRACT OF THE DISSERTATION

Examples of Algebras of Small Gelfand-Kirillov Dimension

by

Alexander A. Young
Doctor of Philosophy in Mathematics
University of California, San Diego, 2012
Professor Efim Zelmanov, Chair

We construct three examples of affine, associative algebras with relatively low growth. We construct an algebra over an arbitrary countable field that is affine, infinite dimensional, nil, \mathbb{N}-graded, and has Gelfand-Kirillov dimension at most 3. We construct an algebra over an arbitrary field that is affine, infinite dimensional, nil, \mathbb{N}-graded, and whose growth can be asymptotically bounded above by an arbitrary non-polynomial function. We construct an algebra over an arbitrary, algebraically closed field that is affine, infinite dimensional, \mathbb{N}-graded, Jacobson radical, and has quadratic growth.

Chapter 1

Introduction

1.1 Preliminaries

In this paper, we consider associative algebras over a field \mathbb{K}. Unless otherwise stated, algebras will not be assumed to be unital.

A generating space of an algebra A is a subspace V such that:

$$
A=\sum_{i=1}^{\infty} V^{i}
$$

A set will be said to generate A if its \mathbb{K}-span is a generating space.
An algebra is affine if it can be generated by a finite dimensional space.
If every affine subalgebra of an algebra is finite dimensional, then we say that algebra is locally finite. Trivially, all locally finite affine algebras are finite dimensional.

The notation $\mathbb{K}\left\langle x_{1}, \ldots, x_{r}\right\rangle$ will be used to refer to the unital, affine free algebra over indeterminates $\left\{x_{1}, \ldots, x_{r}\right\}$. Any affine algebra can be represented as $\mathbb{K}\left\langle x_{1}, \ldots, x_{r}\right\rangle / I$ for some generating set $\left\{x_{1}, \ldots, x_{r}\right\}$ and some ideal $I \triangleleft \mathbb{K}\left\langle x_{1}, \ldots, x_{r}\right\rangle$.

For any monoid \mathbb{G}, an algebra A is \mathbb{G}-graded if it can be decomposed into subspaces:

$$
A=\bigoplus_{i \in \mathbb{G}} A_{i}
$$

with $A_{i} A_{j} \subseteq A_{i \cdot j}$. The elements of A_{i} are called homogeneous of degree i under this grading. This paper will for the most part only concern itself with \mathbb{N}-gradings of
a certain species: let $A_{0}=\mathbb{K} \cap A$ (i.e. either \mathbb{K} or (0)), A_{1} be a finite dimensional generating subspace of A, and $A_{k}=A_{1}^{k}$. If $A_{i} \cap \sum_{j=0}^{i-1} A_{j}=(0)$ for each i, then $A=\bigoplus_{i=0}^{\infty} A_{i}$ is an \mathbb{N}-grading.

If an affine algebra has such a grading, and $A_{0}=\mathbb{K}$, then it is called connected. Every connected algebra A has a subalgebra $\bar{A}=\sum_{i=1}^{\infty} A_{i}$ that may use the same grading, with $\bar{A}_{i}=A_{i}$ for all $i>0$, and $\bar{A}_{0}=(0)$. This paper will call such an algebra almost connected. Every almost connected algebra can be extended to $\bar{A} \oplus \mathbb{K}$, using multiplication $(a, x) \cdot(b, y)=(a b+x b+y a, x y)$, to make a fully connected algebra isomorphic to A, with $(\bar{A} \oplus \mathbb{K})_{i}=A_{i} \oplus(0)$ for each $i>0$, and $(\bar{A} \oplus \mathbb{K})_{0}=(0) \oplus \mathbb{K}$.

If A has a grading $\left\{A_{i}\right\}_{i \in \mathbb{G}}$ and $I \triangleleft A$ is an ideal, we say the ideal is graded if it is spanned by elements from the A_{i} subspaces. In other words, $I=\bigoplus_{i \in \mathbb{G}} A_{i} \cap I$.

In a connected or almost connected algebra, the easiest way of procuring a generating subspace is to use $A_{0}+A_{1}$. If the algebra is almost connected, then $A_{0}+A_{1}=A_{1}$, and powers of this generating space form a direct sum.

Every affine free algebra is connected. If a connected algebra is generated by degree- 1 elements x_{1}, \ldots, x_{n}, the homogeneous elements of degree k can be thought of as the degree k non-commutative homogenous polynomials using these indeterminates. If $A=\mathbb{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is free, and $I \triangleleft A$ is an ideal, then A / I is connected if and only if I is a graded ideal, yielding the grading $(A / I)_{k}=\left(A_{k}+I\right) / I \cong A_{k} /\left(I \cap A_{k}\right)$. If we don't count the trivial case when $I=A$, then $I \cap \mathbb{K}=(0), I \triangleleft \bar{A}$, and \bar{A} / I is \mathbb{N}-graded similarly.

An element $a \in A$ of an algebra over \mathbb{K} is algebraic if there exists a polynomial $p(x) \in \mathbb{K}[x]$ such that $p(a)=0$. If every element of A is algebraic, then we say that A is an algebraic algebra.

An element of an algebra is nilpotent if it has a zero exponent; i.e. $a \in A$ is nilpotent if there exists some exponent $a^{n}=0$. Being nilpotent is a stronger condition that being algebraic. An algebra A comprised of nothing but nilpotent elements is nil, likewise a stronger condition than being an algebraic algebra. Nonzero nil algebras can clearly never contain their ground field.

An algebra A satisfies a polynomial identity (or, more commonly, is a
"PI algebra") if, for some nonzero non-communtative polynomial $P\left(x_{1}, \ldots, x_{n}\right) \in$ $\mathbb{K}\left\langle x_{1}, \ldots, x_{n}\right\rangle, P\left(a_{1}, \ldots, a_{n}\right)=0$ for all $a_{1}, \ldots, a_{n} \in A$. All commutative algebras are PI; they satisfy the identity $x y-y x=0$.

If there exists an n such that for any $a_{1}, \ldots, a_{n} \in A, a_{1} \cdots a_{n}=0$, then A is nilpotent, and the minimal such n is its nilpotence degree. In other words, A is nilpotent with nilpotence degree $\leq n$ if $A^{n}=(0)$. This implies being both nil and PI.

Conversely, J. Levitzki [1] and I. Kaplansky [2] proved that all nil PI algebras are locally nilpotent.

Suppose that A is affine and nilpotent, with nilpotence degree n. If V is a finite dimensional space that generates A, then $V^{n}=(0)$, and $\operatorname{dim} A \leq$ $\sum_{i=1}^{n} \operatorname{dim} V^{i}<\infty$. Furthermore, since subalgebras of nilpotent algebras are themselves nilpotent, all nilpotent algebras are locally finite.

If A is affine, nil, and commutative, let $V=\mathbb{K}\left\{v_{1}, \ldots, v_{k}\right\}$ be a finite k dimensional space that generates A. If n is such that each $v_{i}^{n}=0$, then $V^{k n}=(0)$, and A is nilpotent.

1.2 The Jacobson radical

A nonzero right module M of an algebra A is irreducible if there exist no proper submodules, and $M A \neq(0)$. Irredicuble left A-modules are defined symmetrically. Note that this is a sightly different definition than some sources; some authors specify that all rings are unital, and $m 1_{A}=m$ for all $m \in M$, in which case $M A \neq(0)$ is not needed. If $m \in M$, then $m A$ is a submodule of M, and either $m A=(0)$ or $m A=M$. Further, the set $\{m \in M \mid m A=(0)\}$ of all "trivially acting" elements is a submodule as well, so it must either be M or (0). The constraint $M A \neq(0)$ eliminates the possibility for all of M being trivially acting, proving that only $0 \in M$ annihilates all of A and for any nonzero $m \in M$, $m A=M$.
(If we ignore the constraint that $M A \neq(0)$, then we leave open the possibility of irreducible right modules where all elements act trivially. In any such
module, every \mathbb{K}-subspace is a submodule, and irreducible modules are simply one dimensional spaces. This is a very inelegant idea, and one that doesn't work with our following definition of the Jacobson radical, so we discount the possibility.)

The Jacobson radical $J(A)$ of an algebra A is the ideal of elements that annihilate all irreducible right modules of A, though it has many equivalent definitions:

- The ideal of elements that annihilate all irreducible left modules of A.
- The intersection of all maximal right ideals of $A .{ }^{1}$
- The intersection of all maximal left ideals of $A .{ }^{1}$
- The (unique) maximal right ideal of elements $a \in A$ such that $\exists b \in A$: $a+b+a b=0$, i.e. are right-quasiregular.
- The (unique) maximal left ideal of left-quasiregular elements $(a+b+b a=0)$.

Since right units of A are never elements of maximal right ideals, none of them are located in $J(A)$. The same can be said about left units.

An algebra A is itself called Jacobson radical if $A=J(A)$, i.e. no irreducible modules exist. (Remember, if all of A annihilates a module, it doesn't count as irreducible.)

Examples:

- If A is a field or a division ring, then $J(A)=(0)$.
- All maximal ideals of \mathbb{K}^{n}, are of the form $\mathbb{K} \oplus \cdots \oplus \mathbb{K} \oplus(0) \oplus \mathbb{K} \oplus \cdots \oplus \mathbb{K}$, and therefore $J\left(\mathbb{K}^{n}\right)=(0)$.
- The Jacobson radical of the algebra of $n \times n$ upper triangular matrices of \mathbb{K} is the ideal of strictly upper trianglar matrices (i.e. with zero diagonals).

[^0]- All nil algebras are Jacobson radical. If $x^{n}=0$ and $y=-x+x^{2}-\cdots \pm x^{n-1}$, then $x+y+x y=0$, and thus all nilpotent elements are quasiregular.

If $I \triangleleft A$ is a proper ideal of A, every right module M of A / I can be naturally extended to a right module of A by setting $M \cdot I=(0)$. If M is irreducible as a right A / I-module, then for any nonzero $m \in M, m A=m(A / I)=M$, and M is an irreducible A-module. Thus, if $x \in J(A)$, then $x+I$ annihilates all irreducible right modules of A / I, and $(J(A)+I) / I \subseteq J(A / I)$.

In the particular case when $I=J(A)$, any irreducible right A-module M can conversely be defined as a right module of $A / J(A)$, as $M \cdot J(A)=(0)$. Annihilating all irreducible right A-modules is equivalent to annihilating all irreducible right $A / J(A)$-modules, and $J(A / J(A))=(0)$.

1.3 The growth of algebras

Let A be an affine algebra over a field \mathbb{K}, and let $V \subseteq A$ be a subspace that generates it:

$$
A=\sum_{i=1}^{\infty} V^{i}
$$

We can define a monotonically increasing growth function $f_{A, V}$ using this space:

$$
f_{A, V}(n)=\operatorname{dim} \sum_{i=1}^{n} V^{i}
$$

While the value of this function depends on the choice of V, we can show its long-term ("asymptotic") behavior does not.

For any two functions $f, g: \mathbb{N} \rightarrow \mathbb{R}_{>0}$, we say that f is asymptotically bounded above by g if there exists $A, B>0$ such that $A g(B x) \geq f(x)$ for all $x \in \mathbb{N}$. We can write this relation as $f \precsim g$. If both $f \precsim g$ and $g \precsim f$, then we say that f and g are asymptotically equivalent, or $f \sim g$.

Examples of asymptotic growth relations:

- For any monotonically increasing nonzero f, g, if f is a bounded function, then $f \precsim g$. All monotonically increasing nonzero bounded functions are equivalent.
- If f is a polynomial of degree $n, f \sim x^{n}$.
- $x^{n} \precsim x^{m}$ if and only if $n \leq m$. Polynomials are equivalent if and only if they have the same degree.
- $x^{n} \precsim x^{n} \ln ^{m} x$ for any $m>0$.
- If $f(x) \precsim x^{n}$ for some n, we say that f has polynomial growth.
- For any $a, b>1, a^{x} \sim b^{x}$. We say that any function in this class has exponential growth.
- For any n and any $a>1, x^{n} \npreceq e^{\sqrt{x}} \npreceq a^{x}$. We thus say that $e^{\sqrt{x}}$ is an example of a function with intermediate growth.

Proposition 1.3.1. If V and V^{\prime} are both finite dimensional subspaces that generate an affine algebra A, then $f_{A, V} \sim f_{A, V^{\prime}}$.

Proof. Since V generates A, let k be such that $V^{\prime} \subseteq \sum_{i=1}^{k} V^{i}$.

$$
f_{A, V^{\prime}}(n)=\operatorname{dim} \sum_{i=1}^{n} V^{\prime i} \leq \operatorname{dim} \sum_{i=1}^{k n} V^{i}=f_{A, V}(k n) .
$$

The fastest possible type of asymptotic growth occurs in free algebras (over more than one indeterminate). If $A=\mathbb{K}\left\langle x_{1}, \ldots, x_{r}\right\rangle$ and $V=\mathbb{K}\left\{1, x_{1}, \ldots, x_{r}\right\}$, then $f_{A, V}(n)=\frac{2^{r(n+1)}-1}{2^{r}-1}$, which is exponential.

It's worth mentioning for comparison the analoguous aspect in group theory. The growth of a finitely generated group G, with generating subset $S=S^{-1}$, is the function $f_{G, S}(n)=\left|S^{n}\right|$. Again, this function is asymptotically invariant under the choice of S, and can be categorized into exponential, polynomial, and intermediate growth. In 1980, M. Gromov proved [3] that a group has polynomial growth if and only if it has a finite index subgroup that's nilpotent, thereby expanding what was known about polynomial growth groups considerably. (See also [4][5]) Little is known about intermediate groups other than the fact that they exist; see also [6].

Another stratification of polynomial growth algebras is the Gelfand-Kirillov dimension. It is defined:

$$
\text { GKdim } A=\underset{n \rightarrow \infty}{\limsup } \log _{n} f_{A, V}(n)=\limsup _{n \rightarrow \infty} \log _{n} \operatorname{dim} \sum_{i=1}^{n} V^{n} .
$$

If $f \sim g$ then $\lim \sup _{n \rightarrow \infty} \log _{n} f(n)=\lim \sup _{n \rightarrow \infty} \log _{n} g(n)$, so Gelfand Kirillov dimension is invariant over the choice of V, and has the same value for algebras with asymptotically equivalent growth. However, the converse is not true in general. For example, if $f_{A, V}(n) \sim n^{3}$ and $f_{B, W}(n) \sim n^{3} \ln n$, then $f_{A, V} \nsim g_{B, W}$, but $\operatorname{GKdim} A=\operatorname{GKdim} B=3$.

All exponential and intermediate growth algebras have infinite dimensional Gelfand-Kirillov dimension.

If A is not unital, and is generated by V, then the extension $A \oplus \mathbb{K}$ can be generated by $V \oplus \mathbb{K}$. Note that:

$$
f_{A \oplus \mathbb{K}, V \oplus \mathbb{K}}(n)=\operatorname{dim} \sum_{i=1}^{n}(V \oplus \mathbb{K})^{i}=\operatorname{dim}\left(\sum_{i=1}^{n} V^{i} \oplus \mathbb{K}\right)=f_{A, V}(n)+1
$$

The algebras A and $A \oplus \mathbb{K}$ have asymptotically equivalent growth, and thus the same Gelfand-Kirillov dimension. For the rest of this section, we will assume that A is unital.

If A is connected, then its Gelfand-Kirillov dimension can be calculated by setting $V=A_{0}+A_{1}$:

$$
\operatorname{GK} \operatorname{dim} A=\limsup _{n \rightarrow \infty} \log _{n} \sum_{i=0}^{n} \operatorname{dim} A_{i} .
$$

If each A_{n} can be bounded in size polynomially, i.e. each $\operatorname{dim} A_{n} \leq a n^{b}$ for some $a, b>0$, then:

$$
\text { GKdim } A \leq \limsup _{n \rightarrow \infty} \log _{n} \sum_{i=0}^{n} a i^{b} \leq \limsup _{n \rightarrow \infty} \log _{n} \frac{a}{b+1}(n+1)^{b+1}=b+1
$$

If A is not affine, the definition of Gelfand-Kirillov dimension can be extended:

$$
\mathrm{GK} \operatorname{dim} A=\sup _{B \subseteq A}\{\operatorname{GK} \operatorname{dim} B \mid B \text { is affine }\}
$$

or, equivalently:

$$
\text { GKdim } A=\sup _{V \subseteq A, \operatorname{dim} V<\infty}\left\{\limsup _{n \rightarrow \infty} \log _{n} \operatorname{dim} \sum_{i=1} V^{i}\right\} .
$$

Basic properties of Gelfand-Kirillov dimension include:

- If $B \subseteq A$ are algebras, then $G K \operatorname{dim} B \leq \operatorname{GKdim} A$.
- For any ideal $I \triangleleft A$, GKdim $A / I \leq \operatorname{GKdim} A$.
- $\operatorname{GK} \operatorname{dim} A \oplus B=\sup \{\operatorname{GKdim} A, G K \operatorname{dim} B\}$.
- Assuming A and B are unital, GKdim $A \otimes B=G K \operatorname{dim} A+\operatorname{GKdim} B$.

Some examples:

- Every finite dimensional algebra trivially has Gelfand-Kirillov dimension 0.
- $\operatorname{GK} \operatorname{dim} \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=n$.
- The Gelfand-Kirillov dimension of the nth Weyl algebra $\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right|$ $\left.x_{i} x_{j}-x_{j} x_{i}, y_{i} y_{j}-y_{j} y_{i}, x_{i} y_{j}-y_{j} x_{i}-\delta_{i, j}\right\rangle_{\mathbb{K}}$ is $2 n$.
- The Gelfand-Kirillov dimension of any free algebra (over more than one indeterminate) is infinite.
- $\operatorname{GKdim} \mathbb{K}\langle x, y\rangle /(A y)^{n} A=n$.

There is, relatively speaking, quite a bit known about affine algebras with low (<2) Gelfand-Kirillov dimension.

Proposition 1.3.2. If A is an affine algebra with $\mathrm{GK} \operatorname{dim} A<1$, then A is finite dimensional (and thus GKdim $A=0$).

Proof. Let V be a finite dimensional \mathbb{K}-space that generates A. If A is not finite dimensional, then V^{n+1} is always strictly larger than V^{n}; if it weren't, then $V^{m}=$ V^{n} for all $m>n$ and $\operatorname{dim} A=\operatorname{dim} V^{n} \leq(\operatorname{dim} V)^{n}<\infty$. It follows that $\operatorname{dim} V^{n} \geq$ n, and $\log _{n} \operatorname{dim} V^{n} \geq 1$.

Corollary 1.3.1. If A is an algebra with $\operatorname{GKdim} A<1$, then $\operatorname{GKdim} A=0$, and A is locally finite.

Proof. Every affine subalgebra $B \subseteq A$ must have GKdim $B<1$, and thus be finite dimensional.

Bergman's Gap Theorem [p. 18][7] proves that no algebras exist with Gelfand-Kirillov dimension in the interval $(1,2)$. Together these results show 1 to be an "isolated" value of Gelfand-Kirillov dimension, with the nearest other possible values being 2 and 0 . On the other hand, there also exists a method [8] to construct an algebra of arbitrary Gelfand-Kirillov dimension ≥ 2.

In the case when A is an affine algebra of Gelfand-Kirillov dimension 1, L . W. Small, J. T. Stafford and R. B. Warfield [9] proved that:

- the Jacobson radical $J(A)$ is nilpotent, and
- the semisimple quotient algebra $A / J(A)$ has a nonzero center Z, GKdim $Z=$ 1 , and $A / J(A)$ can be finitely generated as a Z-module.

In particular, A is PI .

1.4 The Kurosh Problem

In 1940, A. G. Kurosh [10] and J. Levitzki [11] (independently) posed what is now known as the Kurosh problem: are all affine algebraic algebras finite dimensional? The answer was provided in 1964 [12] when E. S. Golod and I. R. Shafarevich produced a counterexample.

This problem was an analog of the Burnside problem: if, in a finitely generated group, all elements have finite order, is the group finite? Again the answer is negative, using a group adapted from the Golod-Shafarevich algebra example.

Since then, there has been effort to determine the status of the Kurosh and Burnside problems under certain restrictions [13]. For example: since both the group and algebra counterexamples supplied by E. S. Golod and I. R. Shafarevich
have exponential growth, does the Burnside conjecture apply to groups with polynomial growth? As M. Gromov proved [3] that all such groups must have a finite index subgroup that's nilpotent, the conjecture can easily follow.

Eventually, it was asked [9] whether an affine nil algebra that has finite Gelfand-Kirillov dimension could be non-nilpotent, i.e. have infinite dimension. In 2007 [14], T. H. Lenagan and A. Smoktunowicz disproved the conjecture by constructing an example of an affine, infinite dimensional algebra with finite (≤ 20) Gelfand-Kirillov dimension that is nil and almost connected as well.

The dissertation author co-wrote a paper with T. H. Lenagan and A. Smoktunowicz, streamlining this method and lowering the upper bound of GelfandKirillov dimension to ≤ 3. The methods of this paper will be discussed in detail in chapter 2. It works over any ground field, provided the field is countable. In the case of uncountable fields, the method fails, and in fact it is conjectured that no such example exists, or at the very least, it would have to not be almost connected.

In the case of algebras over uncountable fields, a slightly different method must be used. The dissertation author and J. P. Bell put together a paper that constructs a nil, almost connected, infinite dimensional algebra over an arbitrary uncountable field whose growth is asymptotically bounded above by an arbitrary greater-than-polynomial (i.e. exponential or intermediate) function. This paper's method will be discussed in chapter 3.

Another question under consideration concerned affine Jacobson radical algebras: how low can the growth of such an algebra be, assuming it's infinite dimensional? In [9] it was proven that if the Gelfand-Kirillov dimension is 1 , the Jacobson radical must be nilpotent, and therefore not equal to the entire algebra. On the other hand, A. Smoktunowicz and L. Bartholdi [15] successfully constructed an example of an affine Jacobson radical algebra with Gelfand-Kirillov dimension 2. Following this, the dissertation author and A. Smoktunowicz wrote a paper constructing an example of one with quadratic growth, establishing once and for all the lowest possible asymptotic growth category for these algebras. This construction will be discussed in chapter 4 .

Chapter 2

Nil Algebras with Restricted Growth

The dissertation author has collaborated with T. H. Lenagan, A. Smoktunowicz and J. P. Bell to produce three papers, two of which [16, 17] are to be published and one [18] still currently under review.

The methods used in these papers with be explained in their respective chapters. While some of the notation and theorems won't be exactly the same, the broad approach will be effectively as previously written.

The first paper provides a refinement of a previous Kurosh conjecture counterexample: an affine, nil, almost connected, infinite dimensional algebra with Gelfand-Kirillov dimension ≤ 3.

By Proposition 1.3.2 and Bergman's Gap Theorem, if A is infinite dimensional with GKdim $A<2$, then $G K \operatorname{dim} A=1$. If this is the case, [9] proves that A is PI. Since all algebraic affine PI algebras are finite dimensional, this eliminates the possibility of a Kurosh counterexample with Gelfand-Kirillov dimension <2.

Let \mathbb{K} be an arbitrary countable field, and let $A=\mathbb{K}\langle x, y\rangle . A$ has a natural \mathbb{N}-grading (where \mathbb{N} in this instance includes zero) from setting $A_{0}=\mathbb{K}, A_{1}=$ $\mathbb{K} x+\mathbb{K} y$, and $A_{n}=A_{1}^{n}$ for all $n \geq 1$. Let $\bar{A}=\bigoplus_{n=1}^{\infty} A_{n} \subset A$ be the subalgebra of elements with no constant term. To make an algebra guaranteed to be nil, we will use the countability of \bar{A} to make an enumeration $\left\{g_{1}, g_{2}, \ldots\right\}=\bar{A}$, then for each g_{i}, select an $n_{i}>0$, and construct an ideal $I \triangleleft \bar{A}$ that contains each $g_{i}^{n_{i}}$.

The trick will be to make I large enough to make GKdim \bar{A} / I finite and as small as possible, but not so large as to force \bar{A} / I to be finite dimensional.

2.1 The subspaces $\left\{U_{2^{n}}\right\}$

Consider a sequence of proper subspaces $U_{2^{n}} \varsubsetneqq A_{2^{n}}$ for each $n \geq 0$, such that $U_{2^{n}} A_{2^{n}}+A_{2^{n}} U_{2^{n}} \subseteq U_{2^{n+1}}$. The space $\sum_{n=0}^{\infty} U_{2^{n}}$ can be thought of as "ideallike" in this manner, despite it clearly not being one. For each $n \geq 1$, let $U_{2^{n}}^{\prime}=$ $U_{2^{n-1}} A_{2^{n-1}}+A_{2^{n-1}} U_{2^{n-1}} \subseteq U_{2^{n}}$.

One useful proposition immediately follows:
Proposition 2.1.1. For any $n<m$ and any $0 \leq i<2^{m-n}$,

$$
A_{i 2^{n}} U_{2^{n}} A_{2^{m}-(i+1) 2^{n}} \subseteq U_{2^{m}}^{\prime}
$$

Proof. This is just simple induction on the value of $m-n$. If $m=n+1$, then the proposition is trivial.

If the proposition is true for some n, m, then seek to prove it for $m+1$. For any $0 \leq i<2^{m-n}$,

$$
A_{i 2^{n}} U_{2^{n}} A_{2^{m+1}-(i+1) 2^{n}}=A_{i 2^{n}} U_{2^{n}} A_{2^{m}-(i+1) 2^{n}} A_{2^{m}} \subseteq U_{2^{m}}^{\prime} A_{2^{m}} \subseteq U_{2^{m}} A_{2^{m}} \subseteq U_{2^{m+1}}^{\prime},
$$

and for any $2^{m-n} \leq i<2^{m-n+1}$,

$$
\begin{gathered}
A_{i 2^{n}} U_{2^{n}} A_{2^{m+1}-(i+1) 2^{n}}=A_{2^{m}} A_{\left(i-2^{m-n}\right) 2^{n}} U_{2^{n}} A_{2^{m-\left(i+1-2^{m-n}\right) 2^{n}}} \subseteq \\
A_{2^{m}} U_{2^{m}}^{\prime} \subseteq A_{2^{m}} U_{2^{m}} \subseteq U_{2^{m+1}}^{\prime}
\end{gathered}
$$

Using these spaces, we can define a graded ideal $I=\bigoplus_{n=1}^{\infty} I_{n}$ with each $I_{n} \subset A_{n}$. For any $n \in \mathbb{N}$, if $m=\left\lfloor\log _{2} n\right\rfloor$, i.e. $2^{m} \leq n<2^{m+1}$, then we define:

$$
I_{n}=\left\{r \in A_{n} \mid \forall 0 \leq k \leq 2^{m+2}-n, A_{k} r A_{2^{m+2}-k-n} \subseteq U_{2^{m+2}}^{\prime}\right\}
$$

To show that I is ideal, it's sufficient to prove that $I_{n} A_{1}+A_{1} I_{n} \subseteq I_{n+1}$ for all $n \geq 1$. If $n<2^{m+1}-1$, then for any $r \in I_{n}$ and any $0 \leq k \leq 2^{m+2}-n-1$,

$$
A_{k} \cdot r A_{1} \cdot A_{2^{m+2}-k-n-1}=A_{k} r A_{2^{m+2}-k-n} \subseteq U_{2^{m+2}}^{\prime}
$$

$$
A_{k} \cdot A_{1} r \cdot A_{2^{m+2}-k-n-1}=A_{k+1} r A_{2^{m+2}-k-n-1} \subseteq U_{2^{m+2}}^{\prime}
$$

Suppose $n=2^{m+1}-1$. If $0 \leq k<2^{m+2}-n$, then:

$$
\begin{aligned}
& \quad A_{k} \cdot r A_{1} \cdot A_{2^{m+3-k-n-1}}=A_{k} r A_{2^{m+2}-k-n} A_{2^{m+2}} \subseteq U_{2^{m+2}}^{\prime} A_{2^{m+2}} \subseteq U_{2^{m+3}}^{\prime} \\
& \quad A_{k} \cdot A_{1} r \cdot A_{2^{m+3}-k-n-1}=A_{k+1} r A_{2^{m+2}-k-n-1} A_{2^{m+2}} \subseteq U_{2^{m+2}}^{\prime} A_{2^{m+2}} \subseteq U_{2^{m+3}}^{\prime} \\
& \text { If } 2^{m+2}-n \leq k<3 \cdot 2^{m+1}-n, \text { then: }
\end{aligned}
$$

$$
\begin{gathered}
A_{k} \cdot r A_{1} \cdot A_{2^{m+3}-k-n-1}=A_{2^{m+1}} A_{k-2^{m+1}} r A_{3 \cdot 2^{m+1}-k-n} A_{2^{m+1}} \subseteq \\
A_{2^{m+1}} U_{2^{m+2}}^{\prime} A_{2^{m+1}}=A_{2^{m+1}} U_{2^{m+1}} A_{2^{m+2}}+A_{2^{m+2}} U_{2^{m+1}} A_{2^{m+1}} \subseteq \\
U_{2^{m+2}} A_{2^{m+2}}+A_{2^{m+2}} U_{2^{m+2}}=U_{2^{m+3}}^{\prime} \\
A_{k} \cdot A_{1} r \cdot A_{2^{m+3}-k-n-1}=A_{2^{m+1}} A_{k-2^{m+1}+1} r A_{3 \cdot 2^{m+1}-k-n-1} A_{2^{m+1}} \subseteq \\
A_{2^{m+1}} U_{2^{m+2}}^{\prime} A_{2^{m+1}} \subseteq U_{2^{m+3}}^{\prime}
\end{gathered}
$$

Finally, if $3 \cdot 2^{m+1}-n \leq k \leq 2^{m+3}-n-1$, then:

$$
A_{k} \cdot r A_{1} \cdot A_{2^{m+3}-k-n-1}=A_{2^{m+2}} A_{k-2^{m+2}} r A_{2^{m+3}-k-n} \subseteq A_{2^{m+2}} U_{2^{m+2}}^{\prime} \subseteq U_{2^{m+3}}^{\prime}
$$

$$
A_{k} \cdot A_{1} r \cdot A_{2^{m+3}-k-n-1}=A_{2^{m+2}} A_{k-2^{m+2}+1} r A_{2^{m+3}-k-n-1} \subseteq A_{2^{m+2}} U_{2^{m+2}}^{\prime} \subseteq U_{2^{m+3}}^{\prime}
$$

Since I is graded, A / I is connected, and \bar{A} / I is almost connected.
The advantage of using this method to construct I is control over the growth of \bar{A} / I. We will see more of how this works later on, but for now, we can note that if $I_{2^{n}}=A_{2^{n}}$, then $A_{2^{n}} \cdot A_{3 \cdot 2^{n}}=A_{2^{n+2}} \subseteq U_{2^{n+2}}^{\prime} \subseteq U_{2^{n+2}}$, which is contradicted by $U_{2^{n+2}} \neq A_{2^{n+2}}$. This proves that each $I_{2^{n}} \neq A_{2^{n}}$, and \bar{A} / I is infinite dimensional. With our definition of I, we don't have to worry about it being "too big" to work as a counterexample to the Kurosh conjecture.

2.2 The subspaces $\left\{F_{i}\right\}$

As mentioned before, we want an enumeration $\left\{g_{1}, g_{2}, \ldots\right\}$ of \bar{A} and a sequence $m_{1}, m_{2}, \ldots \in \mathbb{N}$ such that each $g_{i}^{m_{i}} \in I$. In general, the elements g_{i} are (non-commutative) polynomials over x, y of with many terms, and yield complicated exponents. However, there is a nice property of these exponents than can be used to our advantage.

For any homogeneous subspace $F \subseteq A_{N}$, we will use $\mathcal{E}(F)$ to represent the graded right A-ideal:

$$
\mathcal{E}\left(F_{N}\right)=\sum_{k=1}^{\infty} A_{k N} F A
$$

Proposition 2.2.1. For any $n \geq 1$, and any $g \in \bar{A}$, if the ideal generated by g is a subspace of $\mathcal{E}\left(U_{2^{n}}\right)$, then $g \in I$.

Proof. Let $g=g_{(1)}+g_{(2)}+\cdots+g_{(d)}$ be the decomposition of g into homogeneous terms, i.e. with each $g_{(i)} \in A_{i}$. Since I is graded, it is equivalent to prove that each $g_{(i)} \in I$, and since $\mathcal{E}\left(U_{2^{n}}\right)$ is graded, we can say that each $A g_{(i)} A \subseteq \mathcal{E}\left(U_{2^{n}}\right)$.

Let q be such that $2^{q} \leq i<2^{q+1}$. For any $0 \leq \ell \leq 2^{q+2}-i-\ell$,

$$
A_{\ell} g_{(i)} A_{2^{q+2}-i-\ell} \subseteq A_{2^{q+2}} \cap \mathcal{E}\left(U_{2^{n}}\right)
$$

If $q+1 \leq n$, then this intersection is trivial, and $g_{(i)}=0$. Otherwise, by Proposition 2.1.1,

$$
A_{2^{q+2}} \cap \mathcal{E}\left(U_{2^{n}}\right)=\sum_{k=1}^{2^{q-n+2}-1} A_{k 2^{n}} U_{2^{n}} A_{2^{q+2}-(k+1) 2^{n}} \subseteq U_{2^{q+2}}^{\prime}
$$

and by definition, $g \in I$.
Lemma 2.2.1. Let $g \in \bar{A}$ and $d>0$ be such that $g \in \sum_{i=1}^{d} A_{i}$. For any $I, J \in \mathbb{N}$ with $0<I<J-2 d$ and any $m>J$, there exists subspaces $F_{a, b} \subseteq A_{I-J-a-b}$ for each $0 \leq a<d, 0 \leq b<d$ such that $\operatorname{dim} F_{a, b} \leq I-J-a-b$, and:

$$
g^{m} \in \sum_{a=0}^{d-1} \sum_{b=0}^{d-1} A_{I+a} F_{a, b} A_{b} A
$$

Proof. Let $g=g_{(1)}+g_{(2)}+\cdots+g_{(d)}$ be the decomposition of g into homogeneous terms. Let $g^{m}=g_{(m)}^{m}+\cdots+g_{(d m)}^{m}$ be defined similarly.

For any $p, q \in \mathbb{N}$, let S_{q}^{p} be the set of all functions $\{1, \ldots, p\} \rightarrow\{1, \ldots, q\}$. For any $\sigma \in S_{q}^{p}$, we define the "sum" of σ to be $\sum_{k=1}^{p} \sigma(k)$. We can write that:

$$
g^{m}=\sum_{\sigma \in S_{d}^{m}} g_{(\sigma(1))} \cdots g_{(\sigma(m))}=\sum_{i=m}^{d m} \sum_{\sigma \in S_{d}^{m} \mid \operatorname{sum}} g_{\sigma=i} g_{(\sigma(1))} \cdots g_{(\sigma(m))},
$$

and that:

$$
g_{(i)}^{m}=\sum_{\sigma \in S_{d}^{m} \operatorname{sum}} g_{\sigma=i} g_{(\sigma(1))} \cdots g_{(\sigma(m))} .
$$

For any $\sigma \in S_{d}^{m}$, we say that for every $1 \leq i \leq m, \sum_{k=1}^{i} \sigma(k)$ is a splitting point of σ. The difference between the i th splitting point and the subsequent one is the value of $\sigma(i+1)$, so we know that no adjacent splitting points are more than d apart.

For any a, b, x, y with $0 \leq a, b<d$ and $0<x \leq y<m$, we will define the subset $T_{\{a, b, x, y\}} \subseteq S_{d}^{m}$ as the set of all functions whose lowest splitting point $\geq I$ is $I+a$, whose highest splitting point $\leq J$ is $J-b, \sum_{k=1}^{x} \sigma(k)=I+a$, and $\sum_{k=1}^{y} \sigma(k)=J-b$. We can partition S_{d}^{m} into disjoint subsets on distinct values of (a, b, x, y).

Working backwards, for any $a, b, a^{\prime}, b^{\prime}, x, y \in \mathbb{N}$ such that:

$$
\begin{gathered}
0 \leq a, b<d, \quad 0<a^{\prime} \leq a-d, \quad 0<b^{\prime} \leq b-d, \\
0<y-x \leq J-I-a-b
\end{gathered}
$$

and any $\sigma_{1} \in S_{d}^{x-1}, \sigma_{2} \in S_{d}^{y-x}, \sigma_{3} \in S_{d}^{m-y+1}$, with sum $\sigma_{1}=I-a^{\prime}$ and sum $\sigma_{2}=$ $J-I-a-b$, there exists a (certainly unique) $\sigma \in T_{\{a, b, x, y\}}$ such that:

$$
\begin{gathered}
(\sigma(1), \ldots, \sigma(m))= \\
\left(\sigma_{1}(1), \ldots, \sigma_{1}(x-1), a+a^{\prime}, \sigma_{2}(1), \ldots, \sigma_{2}(y-x), b+b^{\prime}, \sigma_{3}(1), \ldots, \sigma_{3}(m-y-1)\right)
\end{gathered}
$$

Therefore,

$$
\sum_{\sigma \in T_{\{a, b, x, y\}}} g_{(\sigma(1))} \cdots g_{(\sigma(m))}=
$$

$$
\begin{gathered}
\sum_{a^{\prime}=1}^{a-d} \sum_{b^{\prime}=1}^{b-d} \sum_{\left(\sigma_{1} \in S_{d}^{x-1} \mid \operatorname{sum}\right.} \sum_{\left.\sigma_{1}=I-a^{\prime}\right)} \sum_{\left(\sigma_{2} \in S_{d}^{y-x} \mid \operatorname{sum} \sigma_{2}=J-I-a-b\right)} \sum_{\left(\sigma_{3} \in S_{d}^{m-y+1}\right)} \\
\left(\sum_{a^{\prime}=1}^{a-d} \sum_{\left.\sigma_{1} \in S_{d}^{x-1} \mid \operatorname{sum}\right)} \cdots g_{\left(\sigma_{1}(x-1)\right)}\right) \cdot g_{\left(a+a^{\prime}\right)} \cdot\left(g_{\left(\sigma_{2}(1)\right)} \cdots g_{\left(\sigma_{2}(y-x)\right)}\right) \cdot g_{\left(b+b^{\prime}\right)} \cdot\left(g_{\left(\sigma_{3}(1)\right)} \cdots g_{\left(\sigma_{3}(m-y+1)\right)}\right)= \\
\left(\sum_{\left(\sigma_{1}(1)\right)} \cdots g_{\left(\sigma_{1}(x-1)\right)} \cdot g_{\left(a+a^{\prime}\right)}\right) \cdot \\
\left.\sum_{\sigma_{2} \in S_{d}^{y-x} \mid \operatorname{sum} \sigma_{2}=J-I-a-b} g_{\left(\sigma_{2}(1)\right)} \cdots g_{\left(\sigma_{2}(y-x)\right)}\right) \cdot\left(\sum_{b^{\prime}=1}^{b-d} g_{\left(b+b^{\prime}\right)}\right) \cdot \\
\left.\sum_{\sigma_{3} \in S_{d}^{m-y+1}} g_{\left(\sigma_{3}(1)\right)} \cdots g_{\left(\sigma_{3}(m-y+1)\right)}\right) \in \\
\left.\sum_{\sigma_{2} \in S_{d}^{y-x} \mid \operatorname{sum} \sigma_{2}=J-I-a-b} g_{\left(\sigma_{2}(1)\right)} \cdots g_{\left(\sigma_{2}(y-x)\right)}\right) \cdot A_{b} A .
\end{gathered}
$$

Thus, if we set:

$$
F_{a, b}=\sum_{c=1}^{J-I-a-b} \mathbb{K}\left(\sum_{\sigma \in S_{d}^{c} \mid \operatorname{sum}} g_{\sigma=J-I-a-b} g_{(\sigma(1))} \cdots g_{(\sigma(c))}\right),
$$

then $\operatorname{dim} F_{a, b} \leq I-J-a-b$, and:

$$
\begin{aligned}
g^{m}=\sum_{\sigma \in S_{d}^{m}} g_{\sigma(1)} \cdots g_{\sigma(m)}= & \sum_{a=0}^{d-1} \sum_{b=0}^{d-1} \sum_{x=1}^{I+a} \sum_{y=x}^{J-I-b-a} \sum_{\sigma \in T_{\{a, b, x, y\}}} g_{\sigma(1)} \cdots g_{\sigma(m)} \in \\
& \sum_{a=0}^{d-1} \sum_{b=0}^{d-1} A_{I+a} F_{a, b} A_{b} A .
\end{aligned}
$$

Theorem 2.2.2. Let $g \in \bar{A}$ and $d>0$ be such that $g \in \sum_{i=1}^{d} A_{i}$. For any $n>2 d$ and any $m>2 n$, there exists a subspace $F \subseteq A_{n}$ with $\operatorname{dim} F<d^{2} 2^{2 d} n$ such that $g \in \mathcal{E}(F)$.

Proof. It is sufficient to show that $A_{i} g^{m} \in \mathcal{E}(F)$ for each $i \geq 0$. If this can be proven for all $0 \leq i<n$, then it follows for all $i \geq n$ as well; if $i=q n+i^{\prime}$ with $q \in \mathbb{N}$ and $0 \leq i<n$, then:

$$
A_{i} g^{m}=A_{q n} A_{i^{\prime}} g^{m} \subseteq A_{q n} \cdot \sum_{k=1}^{\left\lfloor\left(i^{\prime}+j\right) / n\right\rfloor-1} A_{k n} F A=\sum_{k=q+1}^{\lfloor(i+j) / n\rfloor-1} A_{k n} F A
$$

Assume $0 \leq i<n$. Suppose we set $I=n-i$ and $J=I+n$. Using Lemma 2.2.1,

$$
A_{i} g^{m} \in A_{n} \sum_{a=0}^{d-1} \sum_{b=0}^{d-1} A_{a} F_{a, b} A_{b} A
$$

with each $F_{a, b} \subseteq A_{n-a-b}$ and $\operatorname{dim} F_{a, b} \leq n-a-b$. If we set:

$$
F=\sum_{a=0}^{d-1} \sum_{b=0}^{d-1} A_{a} F_{a, b} A_{b} \subseteq A_{n}
$$

then $A_{i} g^{m} \in A_{n} F A \subseteq \mathcal{E}(F)$ and:

$$
\operatorname{dim} F<\sum_{a=0}^{d-1} \sum_{b=0}^{d-1} n 2^{a+b}<d^{2} 2^{2 d} n
$$

Let $g_{1}, g_{2}, g_{3}, \ldots$ be an enumeration of \bar{A}. Let $\left\{d_{i}\right\}$ each be minimal such that $g_{i} \in \sum_{k=1}^{d_{i}} A_{k}$. Start with $z_{1}=\sup \left\{8,2 d_{1}+2\left\lceil\log _{2} d_{1}\right\rceil+1\right\}$. Then, recusively, for each $i>1$, define z_{i} as $\sup \left\{2^{z_{i-1}}+z_{i-1}+7,2 d_{i}+2\left\lceil\log _{2} d_{i}\right\rceil+1\right\}$. In effect, $\left\{z_{i}\right\}$ will be "sparse" enough to get the growth we need. As we shall see, making it more sparse would keep lowering the growth, though not enough to prove GKdim $\bar{A} / I<3$.

Apply Theorem 2.2.2 to each g_{i}, setting $n=2^{2^{z_{i}-z_{i}}}$ and setting $m=2 n+1$ to find a subspace $F_{i} \subseteq A_{2^{z_{i}-z_{i}}}$ such that $\operatorname{dim} F_{i}<d_{i}^{2} 2^{2^{z_{i}-z_{i}+2 d_{i}}}$. By Proposition 2.2.1, if $F_{i} \subseteq U_{2^{z^{z_{i}-z_{i}}}}$, and thus $\mathcal{E}\left(F_{i}\right) \subseteq \mathcal{E}\left(U_{2^{2^{z_{i}-z_{i}}}}\right)$, then a power of g_{i} lies within I.

Let $n_{i}=2^{z_{i}}-z_{i}$ for each $i>0$, and let $n_{0}=0$. We need to have $U_{2^{n_{i}-1}}$ small enough so that:

$$
U_{2^{n_{i}}}^{\prime}+F_{i} \subseteq U_{2^{n_{i}}} \neq A_{2^{n_{i}}} .
$$

On the other hand, the larger each $U_{2^{n}}$ is, the larger I is, and the smaller the Gelfand-Kirillov dimension of \bar{A} / I is. So we want each $U_{2^{n}}$ to be as large as possible, but not so large that it "traps" $U_{2^{n_{i}}}=A_{2^{n_{i}}}$.

In practice, the process of defining a particular enumeration of \bar{A} is chaotic, especially when nothing is known about \mathbb{K} besides its countability. We don't much about F_{i} at all besides $F_{i} \subseteq A_{2^{n_{1}}}$ and $\operatorname{dim} F_{i}<d_{i}^{2} 2^{n_{i}+2 d_{i}} \leq 2^{n_{i}+z_{i}-1}$. Our method will work using that knowledge alone. If more were known about each F_{i}, then perhaps the result could be further refined.

Theorem 2.2.3. There exists sequences of subspaces $U_{2^{n}}, V_{2^{n}} \subseteq A_{2^{n}}$ with the properties that, for each $n \geq 0$:

- $U_{2^{n}} \oplus V_{2^{n}}=A_{2^{n}}$,
- $U_{2^{n+1}}^{\prime}=U_{2^{n}} A_{2^{n}}+A_{2^{n}} U_{2^{n}} \subseteq U_{2^{n+1}}$
- $V_{2^{n+1}} \subseteq V_{2^{n}}^{2}$,
- $V_{2^{n}}$ can be generated by monomials (i.e. elements of the semigroup $\langle x, y\rangle$),
- if $n=n_{i}$ for some i, then $F_{i} \subseteq U_{2^{n_{i}}}$,
- if $n_{i}-z_{i} \leq n<n_{i}$ for some i, then $\operatorname{dim} V_{2^{n}}=2^{2^{n-n_{i}+z_{i}}}$. Otherwise, $\operatorname{dim} V_{2^{n}}=$ 2. In the latter case, there exists a monomial $m \in V_{2^{n}}$ such that $m A_{2^{n}} \subseteq$ $U_{2^{n+1}}$.

Proof. We are going to build $U_{2^{n}}$ and $V_{2^{n}}$ inductively on the value of n.
Start with $U_{1}=(0)$ and $V_{1}=A_{1}$. Then, suppose $U_{2^{m}}$ and $V_{2^{m}}$ are defined for all $m<n$ and seek to build $U_{2^{n}}$ and $V_{2^{n}}$. Define $U_{2^{n}}^{\prime}=U_{2^{n-1}} A_{2^{n-1}}+A_{2^{n-1}} U_{2^{n-1}}$. Consider three cases:

Case 1: There does not exist an i such that $n_{i}-z_{i}<n \leq n_{i}$.
We need to have $\operatorname{dim} V_{2^{n}}=2$. We can say $V_{2^{n-1}}=\mathbb{K} v_{1}+\mathbb{K} v_{2}$, where v_{1} and v_{2} are monomials. Set $V_{2^{n}}=v_{1} V_{2^{n-1}}$ and set $U_{2^{n}}=U_{2^{n}}^{\prime}+v_{2} A_{2^{n-1}}$.

Case 2: There exists some i such that $n_{i}-z_{i}<n<n_{i}$.
In this case, we simply set $U_{2^{n}}=U_{2^{n}}^{\prime}$ and $V_{2^{n}}=V_{2^{n-1}}^{2}$. Note that $\operatorname{dim} V_{2^{n-1}}$ $=2^{2^{n-n_{i}+z_{i}-1}}$, even if $n-1=n_{i}-z_{i}$, so $\operatorname{dim} V_{2^{n}}=2^{2^{n-n_{i}+z_{i}}}$.

Case 3: $n=n_{i}$ for some i.
$\operatorname{dim} U_{2^{n}}^{\prime}+F \leq \operatorname{dim} A_{2^{n}}-\operatorname{dim} V_{2_{n-1}}^{2}+\operatorname{dim} F<\operatorname{dim} A_{2^{n}}-2^{2^{z_{i}}}+2^{n_{i}+z_{i}-1}<\operatorname{dim} A_{2^{n}}-2$. Therefore, there exists a two dimensional subspace $V_{2^{n_{i}}} \subset A_{2^{n_{i}}}$, generated by monomials, such that $V_{2^{n_{i}}} \cap\left(U_{2^{n_{i}}}^{\prime}+F_{i}\right)=(0)$. We can set $U_{2^{n_{i}}}$ to be a space containing $U_{2^{n_{i}}}^{\prime}+F_{i}$ such that $U_{2^{n_{i}}} \oplus V_{2^{n_{i}}}=A_{2^{n_{i}}}$.

Conceptually, each F_{i} is an obstacle to include. The farther apart we keep the values of $\left\{z_{i}\right\}$, the smaller the difficulty of these obstacles. These obstacles necessitate the rapid surge in the sizes of $V_{2^{n}}$ in case 2 of Theorem 2.2.3. Our estimate of the growth of \bar{A} / I will depend on the sizes of the spaces $V_{2^{n}}$, and this hundle will the "limiting factor" of the strength of this estimate.

2.3 The size of A / I

For any $n \geq 1$, let m be such that $2^{m} \leq n<2^{m+1}$. Define $R_{n} \subseteq A_{n}$ to be the space of all $r \in A_{n}$ such that $r A_{2^{m+1}-n} \subseteq U_{2^{m+1}}$, and $S_{n} \subseteq A_{n}$ to be the space of all $r \in A_{n}$ such that $A_{2^{m+1}-n} \subseteq \subseteq U_{2^{m+1}}$. Additionally, set $S_{0}=R_{0}=(0)$.

For any m such that $2^{m}>n$, Proposition 2.1 .1 can be used to show that $R_{n} A_{2^{m}-n}+A_{2^{m}-n} S_{n} \subseteq U_{2^{m}}$.

Proposition 2.3.1. Suppose that n has a binary decomposition $2^{p_{0}}+\cdots+2^{p_{r}}$, with $0 \leq p_{0}<\ldots<p_{r}$.

$$
\begin{aligned}
& \sum_{i=0}^{r} A_{2^{p_{r}}+\cdots+2^{p_{i+1}}} U_{2^{p_{i}}} A_{2^{p_{i-1}}+\cdots+2^{p_{0}}} \subseteq R_{n}, \\
& \sum_{i=0} A_{2^{p_{0}}+\cdots+2^{p_{i-1}}} U_{2^{p_{i}}} A_{2^{p_{i+1}}+\cdots+2^{p_{r}}} \subseteq S_{n} .
\end{aligned}
$$

Proof. First examine the first claim. It's equivalent to show that, for any $0 \leq i \leq r$,

$$
A_{2^{p_{r}}+\cdots+2^{p_{i+1}}} U_{2^{p_{i}}} A_{2^{p_{r}+1}-\left(2^{p_{r}}+\cdots+2^{p_{i}}\right)} \subseteq U_{2^{p_{r}+1}}
$$

Since $2^{p_{i}}$ divides each of the subscripts, the statement follows from 2.1.1. A symmetrical argument can prove the second claim.

Since $U_{2^{m}} \oplus V_{2^{m}}=A_{2^{m}}$ for each m,

$$
\begin{aligned}
& \left(\sum_{i=0}^{r} A_{2^{p_{r}}+\cdots+2^{p_{i+1}}} U_{2^{p_{i}}} A_{2^{p_{i-1}}+\cdots+2^{p_{0}}}\right) \oplus\left(V_{2^{p_{r}}} \cdots V_{2^{p_{0}}}\right)=A_{n}, \\
& \left(\sum_{i=0} A_{2^{p_{0}}+\cdots+2^{p_{i-1}}} U_{2^{p_{i}}} A_{2^{p_{i+1}}+\cdots+2^{p_{r}}}\right) \oplus\left(V_{2^{p_{0}}} \cdots V_{2^{p_{r}}}\right)=A_{n} .
\end{aligned}
$$

Since each $V_{2^{i}}$ is generated by monomials, we can choose subspaces $Q_{n} \subseteq V_{2^{p_{r}}} \ldots$ $V_{2^{p_{0}}}$ and $W_{n} \subseteq V_{2^{p_{0}}} \cdots V_{2^{p_{r}}}$, both generated by monomials, such that $R_{n} \oplus Q_{n}=$ $S_{n} \oplus W_{n}=A_{n}$. These new spaces will be instrumental in establishing an upper bound of $\operatorname{dim} A_{n} / I_{n}$.

Theorem 2.3.1. For any $n \geq 0$,

$$
\bigcap_{i=0}^{n} S_{i} A_{n-i}+A_{i} R_{n-i} \subseteq I_{n}
$$

Proof. Suppose that $r \in \bigcap_{i=0}^{n} S_{i} A_{n-i}+A_{i} R_{n-i}$. If $2^{m} \leq n<2^{m+1}$ and $0 \leq k \leq$ $2^{m+1}-n$, then:

$$
\begin{gathered}
A_{k} r A_{2^{m+2}-n-k} \subseteq A_{k} S_{2^{m}-k} A_{3 \cdot 2^{m}}+A_{2^{m}} R_{n-2^{m}+k} A_{2^{m+2}-n-k} \subseteq \\
U_{2^{m}} A_{3 \cdot 2^{m}}+A_{2^{m}} U_{2^{m}} A_{2^{m+1}} \subseteq U_{2^{m+1}} A_{2^{m+1}} \subseteq U_{2^{m+2}}^{\prime}
\end{gathered}
$$

if $2^{m+1}-n<k \leq 2^{m+1}$, then:

$$
\begin{gathered}
A_{k} r A_{2^{m+2}-n-k} \subseteq A_{k} S_{2^{m+1}-k} A_{2^{m+1}}+A_{2^{m+1}} R_{n-2^{m+1}+k} A_{2^{m+2}-n-k} \subseteq \\
U_{2^{m+1}} A_{2^{m+1}}+A_{2^{m+1}} U_{2^{m+1}}=U_{2^{m+2}}^{\prime},
\end{gathered}
$$

and if $2^{m+1}<k \leq 2^{m+2}-n$, then:

$$
\begin{gathered}
A_{k} r A_{2^{m+2}-n-k} \subseteq A_{k} S_{3 \cdot 2^{m}-k} A_{m}+A_{3 \cdot 2^{m}} R_{k+n-3 \cdot 2^{m}} A_{2^{m+2}-n-k} \subseteq \\
A_{2^{m+1}} U_{m} A_{m}+A_{3 \cdot 2^{m}} U_{m} \subseteq A_{2^{m+1}} U_{2^{m+1}} \subseteq U_{2^{m+2}}^{\prime},
\end{gathered}
$$

proving that $r \in I_{n}$.
This allows us to put together an upper bound on size of each A_{n} / I_{n} :

Corollary 2.3.2. For any $n \geq 1$,

$$
\operatorname{dim} A_{n} / I_{n} \leq \sum_{i=0}^{n} \operatorname{dim} W_{i} \operatorname{dim} Q_{n-i}
$$

Proof. Since $\left(S_{i} A_{n-i}+A_{i} R_{n-i}\right) \oplus W_{i} Q_{n-i}=A_{n}$,

$$
\begin{gathered}
\operatorname{dim} A_{n} / I_{n} \leq \operatorname{dim} A_{n} /\left(\bigcap_{i=0}^{n} S_{i} A_{n-i}+A_{i} R_{n-i}\right) \leq \sum_{i=0}^{n} \operatorname{dim} A_{n} /\left(S_{i} A_{n-i}+A_{i} R_{n-i}\right)= \\
\sum_{i=0}^{n} \operatorname{dim} W_{i} Q_{n-i}=\sum_{i=0}^{n} \operatorname{dim} W_{i} \operatorname{dim} Q_{n-i}
\end{gathered}
$$

A few lemmas help us narrow down the sizes of W_{n} and Q_{n}.
Lemma 2.3.3. For any $n \geq 1$, let m be such that $2^{m} \leq n<2^{m+1}$.

$$
\begin{aligned}
& \operatorname{dim} Q_{n} \leq \operatorname{dim} V_{2^{m+1}} \operatorname{dim} W_{2^{m+1}-n} \\
& \operatorname{dim} W_{n} \leq \operatorname{dim} V_{2^{m+1}} \operatorname{dim} Q_{2^{m+1}-n}
\end{aligned}
$$

Proof. Examine the first claim first. Let $D=\operatorname{dim} W_{2^{m+1}-n}$, and let $\left\{w_{1}, \ldots, w_{D}\right\}$ be a basis of $W_{2^{m+1}-n}$.

We can define a linear transformation $\phi: Q_{n} \rightarrow\left(A_{2^{m+1}} / U_{2^{m+1}}\right)^{D}$ by:

$$
\phi: x \mapsto\left(x w_{1}+U_{2^{m+1}}, \ldots, x w_{D}+U_{2^{m+1}}\right)
$$

If $x \in \operatorname{ker} \phi$, then $x W_{2^{m+1}-n} \subseteq U_{2^{m+1}}$. Recall that, by definition, $x S_{2^{m+1}-n} \subseteq U_{2^{m+1}}$, and since $A_{2^{m+1}-n}=S_{2^{m+1}-n} \oplus W_{2^{m+1}-n}, x A_{2^{m+1}-n} \subseteq A_{2^{m+1}}$, and $x \subseteq R_{2^{m+1}-n}$. Since $R_{2^{m+1}-n} \cap Q_{2^{m+1}-n}=(0)$, ker $\phi=(0)$. The injectivity of ϕ establishes that $\operatorname{dim} Q_{n} \leq \operatorname{dim}\left(A_{2^{m+1}} / U_{2^{m+1}}\right)^{D}=\operatorname{dim} V_{2^{m+1}} \operatorname{dim} W_{2^{m+1}-n}$.

To prove the second claim, use a symmetrical argument: use any basis $\left(q_{1}, q_{2}, \ldots\right)$ of $Q_{2^{m+1}-n}$ and define $\phi: W_{n} \rightarrow\left(A_{2^{m+1}} / U_{2^{m+1}}\right)^{\operatorname{dim} Q_{2^{m+1}-n}}$ through left multiplication:

$$
\phi: x \rightarrow\left(q_{1} x+U_{2^{m+1}}, q_{2} x+U_{2^{m+1}}, \ldots\right)
$$

We can prove this ϕ to be injective the same way.

Lemma 2.3.4. Let $n, i \in \mathbb{N}$ be such that $n<2^{n_{i}-z_{i}}$ and n is divisible by $2^{n_{i-1}}$.

$$
\operatorname{dim} Q_{n}=1, \quad \operatorname{dim} W_{n} \leq 2
$$

Proof. Let $n=2^{p_{0}}+\cdots+2^{p_{r}}$ be a binary decomposition of n, with $n_{i-1} \leq p_{0}<$ $\ldots<p_{r}<n_{i}-z_{i}$. We know that:

$$
Q_{n} \subseteq V_{2^{p_{r}}} \cdots V_{2^{p_{0}}}
$$

and each $V_{2^{p_{i}}}$ generated by two monomials. As Q_{n} is also generated by monomials, it's sufficient to prove that all monomials of $V_{2^{p_{r}}} \cdots V_{2^{p_{0}}}$ except one lie within R_{n}.

We know that for each $2^{p_{i}}$, there is a monomial $m_{i} \in V_{2^{p_{i}}}$ such that $m_{i} A_{2^{p_{i}}} \subseteq$ $U_{2^{p_{i}}}$. Let m_{i}^{\prime} be the other monomial that generates $V_{2^{p_{i}}}$. Using Proposition 2.1.1,

$$
\begin{gathered}
V_{2^{p_{r}}} \cdots V_{2^{p_{i+1}}} \cdot m_{i} \cdot V_{2^{p_{i-1}}}^{\cdots} V_{2^{p_{0}}} \cdot A_{2^{p_{r}+1}-n} \subseteq \\
A_{2^{p_{r}}+\cdots 2^{p_{i+1}}} U_{2^{p_{i}}} A_{2^{p_{r}+1}-\left(2^{p_{r}}+\cdots+2^{p_{i}}\right.} \subseteq U_{2^{p_{r}+1}}
\end{gathered}
$$

Therefore $V_{2^{p_{r}}} \cdots V_{2^{p_{i+1}}} \cdot m_{i} \cdot V_{2^{p_{i-1}}} \cdots V_{2^{p_{0}}} \subseteq R_{n}$, and the only monomial of that space that doesn't lie within R_{n} is $m_{r}^{\prime} \cdots m_{0}^{\prime}$.

To prove that $\operatorname{dim} W_{n} \leq 2$, apply Lemma 2.3.3:

$$
\operatorname{dim} W_{n} \leq \operatorname{dim} V_{2^{p r+1}} \operatorname{dim} Q_{2^{p_{r}+1}-n}=2
$$

Lemma 2.3.5. For any $n_{1}, n_{2} \in \mathbb{N}$, if there exists an $m \in \mathbb{N}$ such that $n_{1}<2^{m}$ and 2^{m} divides n_{2}, then:

$$
\begin{gathered}
\operatorname{dim} Q_{n_{1}+n_{2}} \leq \operatorname{dim} Q_{n_{1}} \operatorname{dim} Q_{n_{2}} \\
\operatorname{dim} W_{n_{1}+n_{2}} \leq \operatorname{dim} W_{n_{1}} \operatorname{dim} W_{n_{2}}
\end{gathered}
$$

Proof. Let $n_{1}=2^{p_{k+1}}+\cdots+2^{p_{r}}$ and $n_{2}=2^{p_{0}}+\cdots+2^{p_{k}}$ be binary decompositions of n_{1} and n_{2}, with $0 \leq p_{0}<\ldots<p_{k}<m \leq p_{k+1}<\ldots<p_{r}$. Without loss of generality, assume $m=p_{k}+1$. Recalling the definition of R_{n} and Proposition 2.1.1,

$$
R_{n_{1}} A_{n_{2}} \cdot A_{2^{p_{r}+1}-n_{1}-n_{2}}=R_{n_{1}} A_{2^{p_{r}+1}-n_{1}} \subseteq U_{2^{p_{r}+1}}
$$

$$
A_{n_{1}} R_{n_{2}} A_{2^{p_{r}+1}-n_{1}-n_{2}} \subseteq A_{n_{1}} U_{2^{m}} A_{2^{p_{r}+1}-2^{m}-n_{1}} \subseteq U_{2^{p_{r}+1}}
$$

and therefore,

$$
R_{n_{1}} A_{n_{2}}+A_{n_{1}} R_{n_{2}} \subseteq R_{n_{1}+n_{2}}
$$

Since $Q_{n+1} Q_{n+2} \oplus R_{n_{1}} A_{n_{2}}+A_{n_{1}} R_{n_{2}}=A_{n_{1}+n_{2}}$,

$$
\begin{gathered}
\operatorname{dim} Q_{n_{1}+n_{2}}=\operatorname{dim} A_{n_{1}+n_{2}}-\operatorname{dim} R_{n_{1}+n_{2}} \leq \\
\operatorname{dim} A_{n_{1}+n_{2}}-\operatorname{dim}\left(R_{n_{1}} A_{n_{2}}+A_{n_{1}} R_{n_{2}}\right)=\operatorname{dim} Q_{n_{1}} \operatorname{dim} Q_{n_{2}} .
\end{gathered}
$$

Once again, to prove $\operatorname{dim} W_{n_{1}+n_{2}} \leq \operatorname{dim} W_{n_{1}} \operatorname{dim} W_{n_{2}}$, use a symmetrical argument.

Theorem 2.3.6. For all $k, i \geq 1$, if $k<2^{n_{i}-z_{i}}$, then:

$$
\operatorname{dim} Q_{k}, \operatorname{dim} W_{k} \leq n_{i-1} 2^{\frac{1}{2} n_{i-1}+2}
$$

and if $k<2^{n_{i}-1}$, then:

$$
\operatorname{dim} Q_{k}, \operatorname{dim} W_{k} \leq n_{i} \sqrt{k}
$$

Proof. We will prove this inductively on the value of i.
For the base case, seek to prove that for all $k<2^{n_{1}-z_{1}}, \operatorname{dim} Q_{k}, \operatorname{dim} W_{k} \leq$ $n_{0} 2^{\frac{1}{2} n_{0}+2}=2^{5 / 2}$. This follows immediately from Lemma 2.3.4.

We attack the inductive step with three cases:
Case 1: Suppose $k<2^{n_{i}-1}$, and assume that:

- for all $j<2^{n_{i}-z_{i}}, \operatorname{dim} Q_{j}, \operatorname{dim} W_{j} \leq n_{i-1} 2^{\frac{1}{2} n_{i-1}+2}$,
- for all $j<2^{n_{i-1}-1}, \operatorname{dim} Q_{j}, \operatorname{dim} W_{j} \leq n_{i-1} \sqrt{j}$.

We want this step to prove that $\operatorname{dim} Q_{k}, \operatorname{dim} W_{k} \leq n_{i} \sqrt{k}$.
If $k<2^{n_{i-1}-1}$, then the claim follows from $n_{i-1}<n_{i}$.
If $2^{n_{i-1}-1} \leq k<2^{n_{i}-z_{i}}$, then:
$\operatorname{dim} Q_{k}, \operatorname{dim} W_{k} \leq n_{i-1} 2^{\frac{1}{2} n_{i-1}+2}<2^{2^{z_{i-1}}+\frac{1}{2} z_{i-1}+2}<2^{z_{i}-1}<n_{i}<n_{i} \sqrt{k}$.
Assume that $2^{n_{i}-z_{i}} \leq k<2^{n_{i}-1}$. Let $k=j+2^{p_{0}}+\cdots+2^{p_{r}}$, with $n_{i}-z_{i} \leq$ $p_{0}<\ldots<p_{r}<n_{i}-1$ and $j<2^{n_{i}-z_{i}}$. Using Lemma 2.3.5,
$\operatorname{dim} Q_{k} \leq \operatorname{dim} Q_{2^{p_{0}+\cdots+2^{p_{r}}}} \operatorname{dim} Q_{j} \leq \operatorname{dim} V_{2^{p_{r}}} \cdots \operatorname{dim} V_{2^{p_{0}}} \operatorname{dim} Q_{j} \leq$

$$
\begin{gathered}
2^{2^{p_{r}-n_{i}+z_{i}}+\cdots 2^{p_{0}-n_{i}+z_{i}}+\frac{1}{2} n_{i-1}+2} n_{i-1}<2^{2^{z_{i}-n_{i}} k+\frac{1}{2} n_{i-1}+z_{i-1}+2} \\
\operatorname{dim} W_{k} \leq \operatorname{dim} V_{2^{p_{0}}} \cdots \operatorname{dim} V_{2^{p_{r}}} \operatorname{dim} W_{j} \leq 2^{2^{z_{i}-n_{i}} k+\frac{1}{2} n_{i-1}+z_{i-1}+2} .
\end{gathered}
$$

If we set:
$f(k)=\log _{2} \frac{2^{2^{z_{i}-n_{i}} k+\frac{1}{2} n_{i-1}+z_{i-1}+2}}{n_{i} \sqrt{k}}=2^{z_{i}-n_{i}} k-\frac{1}{2} \log _{2} k+\frac{1}{2} n_{i-1}+z_{i-1}-\log _{2} n_{i}+2$,
then it suffices to show that f is never positive for any $2^{n_{i}-z_{i}} \leq k<2^{n_{i}-1}$. Calculating the derivative,

$$
f^{\prime}(k)=2^{z_{i}-n_{i}}-\frac{1}{k \ln 4} \geq 2^{z_{i}-n_{i}}\left(1-\frac{1}{\ln 4}\right)>0
$$

and thus is it sufficient to prove that $f\left(2^{n_{i}-1}\right) \leq 0$. Since $z_{i} \geq 2^{z_{i-1}}+z_{i-1}+7$,
$f\left(2^{n_{i}-1}\right)=2^{z_{i}-1}+\frac{1}{2}\left(-n_{i}+n_{i-1}+5\right)+z_{i-1}-\log _{2} n_{i}<\frac{1}{2}\left(z_{i}+2^{z_{i-1}}+z_{i-1}+7\right)-z_{i} \leq 0$.
Case 2: Suppose $k<2^{n_{i}}$, and assume that for all $j<2^{n_{i}-1}$, $\operatorname{dim} Q_{j}$, $\operatorname{dim} W_{j} \leq n_{i} \sqrt{k}<n_{i} 2^{\frac{1}{2}\left(n_{i}-1\right)}$. We want this step to prove that $\operatorname{dim} Q_{k}, \operatorname{dim} W_{k} \leq$ $n_{i} 2^{\frac{1}{2} n_{i}+1}$.

If $k<2^{n_{i}-1}$, the assumption is sufficient. Otherwise, recalling Lemma 2.3.3:

$$
\begin{aligned}
& \operatorname{dim} Q_{k} \leq \operatorname{dim} V_{2^{n_{i}}} \operatorname{dim} W_{2^{n_{i}}-k}<n_{i} 2^{\frac{1}{2} n_{i}+1} \\
& \operatorname{dim} W_{k} \leq \operatorname{dim} V_{2^{n_{i}}} \operatorname{dim} Q_{2^{n_{i}-k}}<n_{i} 2^{\frac{1}{2} n_{i}+1} .
\end{aligned}
$$

Case 3: Suppose $k<2^{n_{i+1}-z_{i+1}}$, and assume that for all $j<2^{n_{i}}$, $\operatorname{dim} Q_{j}$, $\operatorname{dim} W_{j} \leq n_{i} 2^{\frac{1}{2} n_{i}+1}$.

If $k<2^{n_{i}}$, the assumption is sufficient. Otherwise, let $k=j+m$, with $j<2^{n_{i}}$ and m divisible by $2^{n_{i}}$. Recalling Lemmas 2.3.4 and 2.3.5,

$$
\begin{gathered}
\operatorname{dim} Q_{k} \leq \operatorname{dim} Q_{m} \operatorname{dim} Q_{j} \leq 2^{\frac{1}{2} n_{i}+2} \\
\operatorname{dim} W_{k} \leq \operatorname{dim} W_{m} \operatorname{dim} W_{j} \leq 2^{\frac{1}{2} n_{i}+2}
\end{gathered}
$$

This completes the induction.
Corollary 2.3.7. For all $k \geq 1$,

$$
\operatorname{dim} Q_{k}, \operatorname{dim} W_{k} \leq 4 \sqrt{k} \log _{2} k
$$

Proof. Let $i \geq 1$ be such that $2^{n_{i-1}-1} \leq k<2^{n_{i}-1}$. If $2^{n_{i-1}-1} \leq k<2^{n_{i}-z_{i}}$, then Theorem 2.3.6 proves:

$$
\operatorname{dim} Q_{k}, \operatorname{dim} W_{k} \leq n_{i-1} 2^{\frac{1}{2} n_{i-1}+2}<n_{i-1} 2^{5 / 2} \sqrt{k}<4 \sqrt{k} \log _{2} k,
$$

and if $2^{n_{i}-z_{i}} \leq k<2^{n_{i}-1}$, then:

$$
\operatorname{dim} Q_{k}, \operatorname{dim} W_{k} \leq n_{i} \sqrt{k}<2\left(n_{i}-z_{i}\right) \sqrt{k} \leq 2 \sqrt{k} \log _{2} k .
$$

Applying Corollary 2.3.2, we can conclude:

$$
\begin{gathered}
\operatorname{dim} A_{n} / I_{n} \leq \sum_{i=0}^{n} 4 \sqrt{i} \log _{2} i \cdot 4 \sqrt{n-i} \log _{2}(n-i)< \\
\sum_{i=0}^{n} 16 n\left(\log _{2} n\right)^{2}=16 n(n+1)\left(\log _{2} n\right)^{2}
\end{gathered}
$$

$\operatorname{GK} \operatorname{dim} \bar{A} / I=\limsup _{n \rightarrow \infty} \log _{n} \sum_{i=1}^{n} \operatorname{dim} A_{i} / I_{i} \leq \limsup _{n \rightarrow \infty} \log _{n}\left(16 n^{2}(n+1)\left(\log _{2} n\right)^{2}\right)=3$.
The example is complete: \bar{A} / I is nil, infinite dimensional, almost connected, and has a Gelfand-Kirillov dimension ≤ 3.

Chapter 2, includes a reinterpretation of, and borrows heavily from, [16]. This paper has been submitted for publication with the dissertation author as a co-author.

Chapter 3

The Kurosh Problem for Algebras Over a General Field

This chapter reiterates a result from a paper [17] by the dissertation author and J. P. Bell: over an arbitrary uncountable field, for any non-polynomial function f, there exists an algebra that's nil, infinite dimensional, almost connected, and with growth that's asymptotically bounded above by f. Recall that we designate f to be non-polynomial if there exist no $\alpha, C>0$ such that $f(n) \leq C n^{\alpha}$ for all n. Combining this result with [16] proves it for the case of general fields.

The method of this paper shares a lot of its reasoning with [16]. Let \mathbb{K} an uncountable field, let $A=\mathbb{K}\langle x, y\rangle$ be the free algebra of two indeterminates over \mathbb{K} with \mathbb{N}-grading $A_{0}=\mathbb{K}, A_{i}=(\mathbb{K} x+\mathbb{K} y)^{i}$, and let $\bar{A}=\sum_{i=1}^{\infty} A_{i}$. The objective will be to find a graded ideal $I=\sum_{i=1}^{\infty} I_{i} \triangleleft \bar{A}$ such that \bar{A} / I is nil, and $f_{\bar{A} / I,\left(A_{1}+I\right) / I} \precsim f$. In other words, every $g \in \bar{A}$ has an exponent $g^{m} \in I$, and there exists some $C, D>0$ such that for all $n>0$,

$$
C f(D n) \geq f_{\bar{A} / I,\left(A_{1}+I\right) / I}(n)=\sum_{i=1}^{n} \operatorname{dim} A_{i} / I_{i} .
$$

We will be borrowing much of the construction of the subspaces $\left\{U_{2^{n}}\right\}$ from section 2.1. The paths of the two papers begin to diverge at the construction of the subspaces $\left\{F_{n}\right\}$. As no enumeration of \bar{A} exists, we cannot use the same method.

Lemma 3.0.8. Let $d>0$. For any $I, J \in \mathbb{N}$ with $0<I<J-2 d$ and any $m>J$, there exists subspaces $F_{a, b} \subseteq A_{I-J-a-b}$ for each $0 \leq a<d, 0 \leq b<d$ such that $\operatorname{dim} F_{a, b} \leq(J-I-a-b)^{d}$, and for any $g \in \sum_{i=1}^{d} A_{i}$,

$$
g^{m} \in \sum_{a=0}^{d-1} \sum_{b=0}^{d-1} A_{a+I} F_{a, b} A_{b} A
$$

Proof. Let $W=\{x, y, 1\}^{d} \backslash\{1\}$, i.e. the set of all non-trivial monomials of length $\leq d$ using letters x, y. We can write $\sum_{i=1}^{d} A_{i}=\mathbb{K} W$.

Let $T=\left\{t_{w}\right\}_{w \in W}$ be a set of indeterminates, and consider the algebra $A[T]$. Let $g=\sum_{w \in W} t_{w} w$. We can decompose $g=g_{(1)}+\cdots+g_{(d)}$ with each $g_{(i)}=\sum_{|w|=i} t_{w} w$.

Using this value of g, we can copy almost all the work done in the proof of Lemma 2.2.1, and end up with:

$$
\begin{gathered}
F_{a, b}^{\prime}=\sum_{c=1}^{J-I-a-b} \mathbb{K}\left(\sum_{\sigma \in S_{d}^{c} \mid \operatorname{sum}}^{\sigma=J-I-a-b}\right. \\
\left.g_{(\sigma(1))} \cdots g_{(\sigma(c))}\right) \subseteq A_{J-I-a-b}[T] \\
g^{m} \in \sum_{a=0}^{d-1} \sum_{b=0}^{d-1} A_{a+I} F_{a, b}^{\prime} A_{b} A .
\end{gathered}
$$

Let $F_{a, b, c}^{\prime}$ be the element:

$$
\sum_{\sigma \in S_{d}^{c} \mid \operatorname{sum}}^{\sigma=J-I-a-b} g_{(\sigma(1))} \cdots g_{(\sigma(c))} \in A_{J-I-a-b} \cdot T^{c}
$$

so that $F_{a, b}^{\prime}=\sum_{c=1}^{J-I-a-b} \mathbb{K} F_{a, b, c}^{\prime}$.
Let $E(c, m)$ be the set of all sequences $\left\{i_{w}\right\}_{w \in W}$ of non-negative integers such that:

$$
\sum_{w \in W} i_{w}=c, \quad \sum_{w \in W}|w| i_{w}=m
$$

This way,

$$
F_{a, b, c}^{\prime} \in A_{J-I-a-b} \cdot\left\{\prod_{w \in W} t_{w}^{i_{w}} \mid\left\{i_{w}\right\} \in E(c, J-I-a-b)\right\} .
$$

Note that there are at most $(m+1)^{d-1}$ elements of $E(c, m)$.

For any $h \in \sum_{i=1}^{d} A_{i}$, there exists a homomorphism $\phi_{h}: A[T] \rightarrow A$ that maps $g \mapsto h$ by mapping each t_{w} to the w-coefficient of h, an element of \mathbb{K}. We can compute that:

$$
\operatorname{dim} \sum_{h \in \mathbb{K} W} \mathbb{K} \phi_{h}\left(F_{a, b, c}^{\prime}\right) \leq|E(c, J-I-a-b)| \leq(J-I-a-b)^{d-1}
$$

If we set $F_{a, b}=\sum_{h \in \mathbb{K} W} \phi_{h}\left(F_{a, b}^{\prime}\right)$, then $F_{a, b} \subseteq A_{J-I-a-b}$,

$$
h^{m} \in \sum_{a=0}^{d-1} \sum_{b=0}^{d-1} A_{a+I} F_{a, b} A_{b} A,
$$

and:

$$
\begin{gathered}
\operatorname{dim} F_{a, b}=\operatorname{dim} \sum_{h \in \mathbb{K} W} \phi_{h}\left(F_{a, b}^{\prime}\right) \leq \\
\sum_{c=1}^{J-I-a-b} \operatorname{dim} \sum_{h \in \mathbb{K} W} \mathbb{K} \phi_{h}\left(F_{a, b, c}^{\prime}\right) \leq(J-I-a-b)^{d} .
\end{gathered}
$$

Theorem 3.0.9. For any $d>0$ any $n>2 d$, and any $m>2 n$, there exists a subspace $F \subseteq A_{n}$ with $\operatorname{dim} F<d^{2}(4 n)^{d}$ such that for any $g \in \sum_{i=1}^{d} A_{i}, A g^{m} A \in$ $\mathcal{E}(F)$.

Proof. As Lemma 3.0.8 copies from Lemma 2.2.1, this theorem uses the same steps as 2.2.2, which gives us:

$$
F=\sum_{a=0}^{d-1} \sum_{b=0}^{d-1} A_{a} F_{a, b} A_{b} \subseteq A_{n}
$$

and $\operatorname{dim} F<d^{2} 2^{2 d} n^{d}$.
Recall our non-polynomial function f. For each $\alpha \in \mathbb{N}, n^{\alpha} \precsim f(n)$, and there exists a $C>0$ such that $n^{\alpha}<f(C n)$ for all $n \in \mathbb{N}$, and if $n \geq C^{\alpha}$, then $n^{\alpha-1}<f(n)$. Thus, for each $\alpha>0$, we can choose a B_{α} such that for all $n \geq B_{\alpha}$, $n^{\alpha}<f(n)$.

Define the sequence $\left\{z_{i}\right\}_{i=1}^{\infty}$ recursively, by setting $z_{1}=5$ and each $z_{i}=$ $\sup \left\{z_{i-1}+2, \log _{2}\left(i\left(\log _{2} B_{9 i+20}+5\right)\right)\right\}$. Given this sequence, define $\left\{n_{i}\right\}_{i=0}^{\infty}$ by setting
$n_{i}=\left\lfloor i^{-1} 2^{z_{i}}\right\rfloor-4$ for each $i>0$ and setting $n_{0}=0$. Finally, use Theorem 3.0.9 to select $F_{i} \subseteq A_{2^{n_{i}}}$ as a subspace with $\operatorname{dim} F_{i}<i^{2} 2^{i\left(n_{i}+2\right)}$ such that for each $g \in \sum_{k=1}^{i} A_{k}, A g^{2^{n_{i}+1}+1} A \in \mathcal{E}\left(F_{i}\right)$.

With this established, we're going to build the spaces $\left\{U_{2^{i}}, V_{2^{i}}\right\}$ in much the same way as in Theorem 2.2.3.

Theorem 3.0.10. There exists sequences of subspaces $U_{2^{n}}, V_{2^{n}} \subseteq A_{2^{n}}$ with the properties that, for each $n \geq 0$:

- $U_{2^{n}} \oplus V_{2^{n}}=A_{2^{n}}$,
- $U_{2^{n+1}}^{\prime}=U_{2^{n}} A_{2^{n}}+A_{2^{n}} U_{2^{n}} \subseteq U_{2^{n+1}}$
- $V_{2^{n+1}} \subseteq V_{2^{n}}^{2}$,
- $V_{2^{n}}$ can be generated by monomials (i.e. elements of the semigroup $\langle x, y\rangle$),
- if $n=n_{i}$ for some i, then $F_{i} \subseteq U_{2^{n_{i}}}$,
- if $n_{i}-z_{i} \leq n<n_{i}$ for some i, then $\operatorname{dim} V_{2^{n}}=2^{2^{n-n_{i}+z_{i}}}$. Otherwise, $\operatorname{dim} V_{2^{n}}=$ 2. In the latter case, there exists a monomial $m \in V_{2^{n}}$ such that $m A_{2^{n}} \subseteq$ $U_{2^{n+1}}$.

Proof. This can be done with the exact same proof as 2.2 .3 . The only relevant difference is the size of F and the spacing between each n_{i}; it's needed to show that $n_{i}-z_{i}-n_{i-1} \geq 0$ and $\operatorname{dim} U_{2^{n_{i}}}^{\prime}+F_{i}<\operatorname{dim} A_{2^{n_{i}}}-2$ for each n_{i}.

For the first inequality,

$$
\begin{gathered}
n_{i}-z_{i}-n_{i-1}=\left\lfloor i^{-1} 2^{z_{i}}\right\rfloor-z_{i}-\left\lfloor(i-1)^{-1} 2^{z_{i-1}}\right\rfloor \geq \\
i^{-1}\left(2^{z_{i}}-2^{z_{i-1}+1}\right)-z_{i}-1 \geq i^{-1}\left(3 \cdot 2^{z_{i}-2}-\frac{1}{2}\left(z_{i}-4\right)\left(z_{i}+1\right)\right)>0
\end{gathered}
$$

For the second,

$$
\begin{gathered}
\operatorname{dim} U_{2^{n_{i}}}^{\prime}+F_{i}=\operatorname{dim} A_{2^{n_{i}}}-\operatorname{dim} V_{2^{n_{i}}}+\operatorname{dim} F_{i}<\operatorname{dim} A_{2^{n_{i}}}-2^{2^{z_{i}}}+i^{2} 2^{i\left(n_{i}+2\right)} \leq \\
\operatorname{dim} A_{2^{n_{i}}}-2^{2^{z_{i}}}+i^{2} 2^{i\left(i^{-1} 2^{z_{i}-i^{-1}}-1\right)}=\operatorname{dim} A_{2^{n_{i}}}+2^{2^{z_{i}}}\left(i^{2} 2^{-i-1}-1\right)<\operatorname{dim} A^{2^{n_{i}}}-2 .
\end{gathered}
$$

The construction of $I \triangleleft \bar{A}$ will be the same as in section 2.1, using this version of $\left\{U_{2^{n}}\right\}$. As before, we can show that each $I_{2^{n}} \neq A_{2^{n}}$, and \bar{A} / I is infinite dimensional. Finally, Theorem 3.0.9 combined with Proposition 2.2 .1 shows that if $g \in \sum_{k=1}^{i} A_{k}$, then $g^{2^{n_{i}+1}+1} \in I$.

The one remaining piece of this section is to prove that the growth of A / I is asymptotically bounded above by f.

Recall the definitions of R_{n} and S_{n} from section 2.3, and the existence of Q_{n} and W_{n} such that $R_{n} \oplus Q_{n}=S_{n} \oplus W_{n}=A_{n}$ and, if $n=2^{p_{0}}+\cdots+2^{p_{r}}$ is a binary decomposition of n with $0 \leq p_{0}<\ldots<p_{r}$,

$$
\begin{aligned}
& Q_{n} \subseteq V_{2^{p_{r}}} \cdots V_{2^{p_{0}}} \\
& W_{n} \subseteq V_{2^{p_{0}}} \cdots V_{2^{p_{r}}}
\end{aligned}
$$

Lemmas 2.3.4 and 2.3.5 and Corollary 2.3.2 apply as well.
Lemma 3.0.11. For any $n, i \geq 1$, if $n<2^{n_{i}-z_{i}}$, then:

$$
\operatorname{dim} Q_{n}, \operatorname{dim} W_{n} \leq 2^{2^{z_{i-1}+2}}
$$

Proof. We can decompose $n=b_{i}+a_{i-1}+b_{i-1}+\cdots+a_{1}+b_{1}$, with each $b_{k}<2^{n_{k}-z_{k}}$, $2^{n_{k-1}} \mid b_{k}$, and each $a_{k}<2^{n_{k}}, 2^{n_{k}-z_{k}} \mid a_{k}$. Using Lemma 2.3.4, each $\operatorname{dim} Q_{b_{k}}, \operatorname{dim} W_{b_{k}}$ ≤ 2, and using Lemma 2.3.5,

$$
\begin{gathered}
\operatorname{dim} Q_{n} \leq \prod_{k=1}^{i-1} \operatorname{dim} Q_{a_{k}} \cdot \prod_{k=1}^{i} \operatorname{dim} Q_{b_{k}}<2^{i} \cdot \prod_{k=1}^{i-1} \operatorname{dim} V_{2^{n_{k}-z_{k}}} \cdots \operatorname{dim} V_{2^{n_{k}-1}} \leq \\
2^{i} \cdot \prod_{k=1}^{i-1} 2^{2^{0}+2^{z_{k}}}=2^{i} \cdot \prod_{k=1}^{i-1} 2^{2^{z_{k}+1}-1}=2^{\sum_{k=1}^{i-1} 2^{z_{k}+1}}<2^{2^{z_{i-1}+2}} \\
\quad \operatorname{dim} W_{n} \leq \prod_{k=1}^{i-1} \operatorname{dim} W_{a_{k}} \cdot \prod_{k=1}^{i} \operatorname{dim} W_{b_{k}}<2^{2^{z_{i}-1+2}} .
\end{gathered}
$$

Theorem 3.0.12.

$$
f_{\bar{A} / I,\left(A_{1}+I\right) / I} \precsim f .
$$

Proof. Consider two cases: when $n<2^{n_{2}-z_{2}}$, and when $n \geq 2^{n_{2}-z_{2}}$.
In the former case, the size of $f_{\bar{A} / I,\left(A_{1}+I\right) / I}(n)$ is bounded, and it's clear that there exists some $C \geq 1$ such that $f_{\bar{A} / I,\left(A_{1}+I\right) / I}(n) \leq f(C n)$ for all such values of n.

In the latter case, it's sufficient to prove that $f_{\bar{A} / I,\left(A_{1}+I\right) / I}(n)<f(n)$.
Let $i \geq 3$ be such that $2^{n_{i-1}-z_{i-1}} \leq n<2^{n_{i}-z_{i}}$. We can show:

$$
n \geq 2^{n_{i-1}-z_{i-1}} \geq 2^{n_{i-2}} \geq 2^{(i-2)^{-1} 2^{z_{i-2}-5}} \geq B_{9 i+2}
$$

and therefore $f(n) \geq n^{9 i+2}$.
From Corollary 2.3.2 and Lemma 3.0.11,

$$
\begin{gathered}
\operatorname{dim} A_{n} / I_{n} \leq \sum_{k=0}^{n} \operatorname{dim} W_{k} \operatorname{dim} Q_{n-k} \leq \sum_{k=0}^{n}\left(2^{2^{z_{i-1}+2}}\right)^{2}=(n+1) 2^{2^{z_{i-1}+3}} \\
\sum_{k=1}^{n} \operatorname{dim} A_{k} / I_{k} \leq \sum_{k=1}^{n}(k+1) 2^{2^{z_{i-1}+3}}<n^{2} 2^{2^{z_{i-1}+3}}<n^{2} 2^{9 \cdot 2^{z_{i-1}}-9 z_{i-1}-45(i-1)} \leq \\
n^{2} 2^{9 i\left(n_{i-1}-z_{i-1}\right)} \leq n^{2+9 i} \leq f(n)
\end{gathered}
$$

Chapter 3 includes a reinterpretation of, and borrows heavily from, [17]. This paper has been submitted for publication with the dissertation author as a co-author.

Chapter 4

Jacobson radical algebras with quadratic growth

In this chapter, we will discuss a paper [18] by the dissertation author and A. Smoktunowicz that producesan almost connected Jacobson radical algebra over an arbitrary countable and algebraically closed field that has precisely quadratic growth.

As mentioned above, if an algebra has growth that is strictly less than quadratic, then it has Gelfand-Kirillov dimension either 1 or 0 . In the former case, it can be proven that the algebra is not Jacobson radical (see [9]), and in the latter, it is finite dimensional. Therefore, it's sufficient to take a countable, algebraically closed field \mathbb{K}, a pair of indeterminates x, y, and an ideal $I \triangleleft A=\mathbb{K}\langle x, y\rangle$ such that:

- $I=\bigoplus_{n=1}^{\infty} I_{n}$, where each $I_{n} \subseteq A_{n}=\mathbb{K}\{x, y\}^{n}$,
- $I_{n} \neq A_{n}$ for an infinite number of values of n,
- $\sum_{k=1}^{n} \operatorname{dim} A_{k} / I_{k} \precsim n^{2}$,
- For every $g \in A$, there exists an h such that $g+h+g h \in I$.

Once again, we will stay close to the method in chapter 2.

4.1 The subspaces $\left\{U_{2^{n}}\right\}$

Suppose we have a strictly increasing sequence of natural numbers $\left\{N_{i}\right\}_{i=0}^{\infty}$ with $N_{0}=1$ and a sequence of homogeneous subspaces $\left\{F_{i}\right\}_{i=0}^{\infty}$ with each $F_{i} \subseteq A_{2^{N_{i}}}$ and $F_{0}=(0)$.

In this section, we ask the question: does there exist, for every $i \geq 0$, a subspace $U_{2^{i}} \subset A_{2^{i}}$ and two elements $v_{i, 1}, v_{i, 2} \in\{x, y\}^{2^{i}}$ such that, for each $i \geq 0$:

- $U_{2^{i}} \oplus \mathbb{K} v_{i, 1} \oplus \mathbb{K} v_{i, 2}=A_{2^{i}}$,
- There exists a $v \in \mathbb{K} v_{i, 1}+\mathbb{K} v_{i, 2}$ such that $U_{2^{i+1}}=A_{2^{i}} U_{2^{i}}+U_{2^{i}} A_{2^{i}}+v A_{2^{i}}$,
- $F_{i} \subseteq U_{2^{N_{i}}}$.

We shall attack the question with induction. For the base case, set $U_{1}=(0)$, $v_{0,1}=x, v_{0,2}=y$.

For the inductive step, assume the existence of $U_{2^{N_{i}}}, v_{N_{i}, 1}, v_{N_{i}, 2}$ for some $i \geq 0$, and find possible $U_{2^{k}}, v_{k, 1}, v_{k, 2}$ for all $N_{i}<k \leq N_{i+1}$.

Let $W \cong \mathbb{K}^{2\left(N_{i+1}-N_{i}\right)}$ be a subspace with indices $\left\{x_{k, 1}, x_{k, 2}\right\}_{k=N_{i}}^{N_{i+1}-1}$, let W_{k} be the subspace of all elements where $\left(x_{k, 1}, x_{k, 2}\right)=(0,0)$, and let $\bar{W}=$ $W \backslash \bigcup_{k=N_{i}}^{N_{i+1}-1} W_{k}$.

Given some vector $\vec{w} \in \bar{W}$, define $U_{2^{k}}(\vec{w})$, $v_{k, 1}(\vec{w}), v_{k, 2}(\vec{w})$ recursively for each $N_{i} \leq k \leq N_{i+1}$, as follows: first, set $U_{2^{N_{i}}}(\vec{w})=U_{2^{N_{i}}}, v_{N_{i}, 1}(\vec{w})=v_{N_{i}, 1}$, $v_{N_{i}, 2}(\vec{w})=v_{N_{i}, 2}$.

Then, assuming $U_{2^{k}}(\vec{w}), v_{k, 1}(\vec{w}), v_{k, 2}(\vec{w})$ are defined for some $N_{i} \leq k<N_{i+1}$:

$$
U_{2^{k+1}}(\vec{w})=A_{2^{k}} U_{2^{k}}(\vec{w})+U_{2^{k}}(\vec{w}) A_{2^{k}}+\left(x_{k, 2}(\vec{w}) v_{k, 1}(\vec{w})-x_{k, 1}(\vec{w}) v_{k, 2}(\vec{w})\right) A_{2^{k}}
$$

If $x_{k, 1}(\vec{w}) \neq 0$, set:

$$
\begin{gathered}
v_{k+1,1}(\vec{w})=x_{k, 1}(\vec{w})^{-1} v_{k, 1}^{2}(\vec{w}), \\
v_{k+1,2}(\vec{w})=x_{k, 1}(\vec{w})^{-1} v_{k, 1}(\vec{w}) v_{k, 2}(\vec{w}),
\end{gathered}
$$

and if $x_{k, 1}(\vec{w})=0$, then $x_{k, 2}(\vec{w}) \neq 0$, so set:

$$
v_{k+1,1}(\vec{w})=x_{k, 2}(\vec{w})^{-1} v_{k, 2}(\vec{w}) v_{k, 1}(\vec{w}),
$$

$$
v_{k+1,2}(\vec{w})=x_{k, 2}(\vec{w})^{-1} v_{k, 2}^{2}(\vec{w}) .
$$

The only task remaining in this section is to determine a sufficient condition of a $\vec{w} \in \bar{W}$ such that $F_{i+1} \subseteq U_{2^{N_{i+1}}}(\vec{w})$.

Lemma 4.1.1. For any $N_{i} \leq k<N_{i+1}, a, b \in\{1,2\}, \vec{w} \in \bar{W}$,

$$
v_{k, a}(\vec{w}) v_{k, b}(\vec{w}) \in x_{k, a}(\vec{w}) v_{k+1, b}(\vec{w})+U_{2^{k+1}}(\vec{w}) .
$$

Proof. If $x_{k, 1}(\vec{w}) \neq 0$, and $a=1, v_{k, a}(\vec{w}) v_{k, b}(\vec{w})=x_{k, a}(\vec{w}) v_{k+1, b}(\vec{w})$.
If $x_{k, 1}(\vec{w}) \neq 0$, and $a=2$,

$$
\begin{gathered}
v_{k, a}(\vec{w}) v_{k, b}(\vec{w})= \\
x_{k, a}(\vec{w}) v_{k+1, b}(\vec{w})+x_{k, 1}(\vec{w})^{-1}\left(x_{k, 2}(\vec{w}) v_{k, 1}(\vec{w})-x_{k, 1}(\vec{w}) v_{k, 2}(\vec{w})\right) v_{k, b}(\vec{w}) .
\end{gathered}
$$

If $x_{k, 1}(\vec{w})=0$ and $a=1$,

$$
v_{k, a}(\vec{w}) v_{k, b}(\vec{w})=x_{k, 2}(\vec{w})^{-1}\left(x_{k, 2}(\vec{w}) v_{k, 1}(\vec{w})-x_{k, 1}(\vec{w}) v_{k, 2}(\vec{w})\right) v_{k, b}(\vec{w}) .
$$

And if $x_{k, 1}(\vec{w})=0$ and $a=2, v_{k, a}(\vec{w}) v_{k, b}(\vec{w})=x_{k, 2}(\vec{w}) v_{k+1, b}(\vec{w})$.
Let $P=\mathbb{K}\left[x_{k, 1}, x_{k, 2}\right]_{k=N_{i}}^{N_{i+1}-1}$, i.e. the (commutative) algebra of polynomial functions $W \rightarrow \mathbb{K}$. Let $Q=\prod_{k=N_{i}}^{N_{i+1}-1}\left(\mathbb{K} x_{k, 1}+\mathbb{K} x_{k, 2}\right)^{2^{N_{i+1}-k-1}}$ be a homogenous subspace of P.

Theorem 4.1.2. For any sequence $\left\{s_{k}\right\}_{k=1}^{2^{N_{i+1}-N_{i}}}$ of $\{1,2\}^{2^{N_{i+1}-N_{i}}}$, there exists some $p_{s} \in Q$ such that for any $\vec{w} \in \bar{W}$,

$$
\prod_{k=1}^{2^{N_{i+1}-N_{i}}} v_{N_{i}, s_{k}} \in p_{s}(\vec{w}) v_{N_{i+1}, s_{2} N_{i+1}-N_{i}}(\vec{w})+U_{2^{N_{i+1}}}(\vec{w}) .
$$

Proof. We will use induction to show that, for any $0 \leq h \leq N_{i+1}-N_{i}$ and any sequence $\left\{s_{k}\right\}_{k=1}^{2^{h}}$ of $\{1,2\}^{2^{h}}$,

$$
\prod_{k=1}^{2^{h}} v_{N_{i}, s_{k}} \in\left(\prod_{j=0}^{h-1} \prod_{k=1}^{2^{h-j-1}} x_{N_{i}+j, s_{2 j}(2 k-1)}(\vec{w})\right) v_{N_{i}+h, s_{2^{h}}}(\vec{w})+U_{2^{N_{i}+h}}(\vec{w})
$$

with the end result of the theorem proven when $h=N_{i+1}-N_{i}$.
The base case is simply $v_{N_{i}, s_{1}} \in v_{N_{i}, s_{1}}(\vec{w})+U_{2^{N_{i}}}(\vec{w})$.
For the inductive step, let $\left\{s_{k}\right\}_{k=1}^{2^{h+1}}$ be a sequence of $\{1,2\}^{2^{h+1}}$, and assume the inductive statement is true for $\left\{s_{k}\right\}_{k=1}^{2^{h}}$ and $\left\{s_{k}\right\}_{k=2^{h}+1}^{2^{h+1}}$. Lemma 4.1.1 shows that:

$$
v_{N_{i}+h, s_{2} h}(\vec{w}) v_{N_{i}+h, s_{2} h+1}(\vec{w}) \in x_{N_{i}+h, s_{2} h}(\vec{w}) v_{N_{i}+h+1, s_{2} h+1}(\vec{w})+U_{2^{N_{i}+h+1}}(\vec{w}) .
$$

Therefore,

$$
\begin{aligned}
& \prod_{k=1}^{2^{h+1}} v_{N_{i}, s_{k}} \in\left(\left(\prod_{j=0}^{h-1} \prod_{k=1}^{2^{h-j-1}} x_{N_{i}+j, s_{2 j}(2 k-1)}(\vec{w})\right) v_{N_{i}+h, s_{2 h}}(\vec{w})+U_{N_{i}+h}(\vec{w})\right) . \\
& \left(\left(\prod_{j=0}^{h-1} \prod_{k=1}^{2^{h-j-1}} x_{N_{i}+j, s_{2 j}(2 k-1)+2^{h}}(\vec{w})\right) v_{N_{i}+h, s_{2} h+1}(\vec{w})+U_{2^{N_{i}+h}}(\vec{w})\right) \subseteq \\
& \left(\prod_{j=0}^{h-1} \prod_{k=1}^{2^{h-j}} x_{N_{i}+j, s_{2 j}(2 k-1)}(\vec{w})\right) x_{N_{i}+h, s_{2 h}}(\vec{w}) v_{N_{i}+h+1, s_{2} h+1}(\vec{w})+U_{2^{N_{i}+h+1}}(\vec{w})= \\
& \left(\prod_{j=0}^{h} \prod_{k=1}^{2^{h-j}} x_{N_{i}+j, s_{2 j}(2 k-1)}(\vec{w})\right) v_{N_{i}+h+1, s_{2} h+1}(\vec{w})+U_{2^{N_{i}+h+1}}(\vec{w}) .
\end{aligned}
$$

Corollary 4.1.3. For any $f \in A_{2^{N_{i+1}}}$, there exists $p, q \in Q$ such that $\forall \vec{w} \in \bar{W}$, $f \in p(\vec{w}) v_{N_{i+1}, 1}(\vec{w})+q(\vec{w}) v_{N_{i+1}, 2}(\vec{w})+U_{2^{N_{i+1}}}(\vec{w})$.

Proof. First, note that:

$$
\begin{gathered}
A_{2^{N_{i+1}}}=\left(U_{2^{N_{i}}}+\mathbb{K} v_{N_{i}, 1}+\mathbb{K} v_{N_{i}, 2}\right)^{2^{N_{i+1}-N_{i}}}= \\
\left(\mathbb{K} v_{N_{i}, 1}+\mathbb{K} v_{N_{i}, 2}\right)^{2^{N_{i+1}-N_{i}}}+\sum_{k=1}^{2^{N_{i+1}-N_{i}}} A_{(k-1) 2^{N_{i}}} U_{2^{N_{i}}} A_{2^{N_{i+1}-k 2^{N_{i}}}},
\end{gathered}
$$

and for each $f \in A_{2^{N_{i+1}}}$, there exists a $f^{\prime} \in\left(\mathbb{K} v_{N_{i}, 1}+\mathbb{K} v_{N_{i}, 2}\right)^{2^{N_{i+1}-N_{i}}}$ such that, for any $\vec{w} \in \bar{W}, f \in f^{\prime}+U_{2^{N_{i+1}}}(\vec{w})$.

Since f^{\prime} can be written as a linear combination of the elements of the form $\prod_{k=1}^{2^{N_{i+1}}} v_{N_{i}, s_{k}}$, it's sufficient to prove the corollary over these elements, which is done in Theorem 4.1.2.

Let $d=\operatorname{dim} F_{i+1}$, let $\left\{f_{k}\right\}_{k=1}^{d}$ be elements that generate F_{i+1}, and let $\left\{p_{k}, q_{k}\right\} \subseteq Q$ be such that $\forall \vec{w} \in \bar{W}, f_{k} \in p_{k}(\vec{w}) v_{N_{i+1}, 1}(\vec{w})+q_{k}(\vec{w}) v_{N_{i+1}, 2}(\vec{w})+$ $U_{2^{N_{i+1}}}(\vec{w})$, as detailed in Corollary 4.1.3. If there exists a $\vec{w} \in \bar{W}$ such that each $p_{k}(\vec{w})=q_{k}(\vec{w})=0$, then $F_{i+1} \subseteq U_{2^{N_{i+1}}}(\vec{w})$.

Let $G=\sum_{k=1}^{d} \mathbb{K} p_{k}+\mathbb{K} q_{k} \subseteq Q$ be the vector space generated by $\left\{p_{k}, q_{k}\right\}$. Our remaining goal is to show $\exists \vec{w} \in \bar{W}: G(\vec{w})=(0)$.

Let R be the algebra over \mathbb{K} generated by Q, i.e. $R=\bigoplus_{k=1}^{\infty} Q^{k}$.
Lemma 4.1.4. If G, P are defined as above, then:

$$
R \cap G P \subseteq G+G R
$$

Proof. Let $M=\bigcup_{n=1}^{\infty}\left\{x_{N_{i}, 1}, x_{N_{i}, 2}, \ldots, x_{N_{i+1}-1,1}, x_{N_{i+1}-1,2}\right\}^{n}$, i.e. the set of all nontrivial monomials of P (without coefficient). Let M_{Q} be the monomials that generate Q, let $M_{R}=\bigcup_{j=1}^{\infty} M_{Q}^{j}$ be the monomials that generate R, and let $M_{R}^{\prime}=M \backslash M_{R} . P$ can be decomposed: $P=\mathbb{K} \oplus R \oplus \mathbb{K} M_{R}^{\prime}$.

Note that for any $m \in M_{Q}$ and any $m^{\prime} \in M_{R}^{\prime}, m m^{\prime} \in M_{R}^{\prime}$. As R is generated by monomials, $R \cap Q M_{R}^{\prime}=(0)$.

Let $g \in G$, and let $p \in P$ have the decomposition $p=k+r+s$, with $k \in \mathbb{K}, r \in R$ and $s \in \mathbb{K} M_{R}^{\prime}$. Suppose that $g p \in R$. Since $g k+g r \in R$, $g s \in R \cap Q M_{R}^{\prime}=(0)$. Therefore, $g p \in \mathbb{K} g+g R$, and $R \cap G P \subseteq G+G R$.

Theorem 4.1.5. If $\{\vec{w} \in W: G(\vec{w})=(0)\} \subseteq W \backslash \bar{W}=\bigcup_{k=N_{i}}^{N_{i+1}-1} W_{k}$, then:

$$
d \geq \frac{1}{2}\left(N_{i+1}-N_{i}+1\right)
$$

Proof. Given an ideal I of P, we define $Z(I)=\{\vec{w} \in W: I(\vec{w})=(0)\}$. This is an affine subvariety of W. It's our goal to show that if $Z(G P) \subseteq \bigcup_{k=N_{i}}^{N_{i+1}-1} W_{k}$, then $d \geq \frac{1}{2}\left(N_{i+1}-N_{i}+1\right)$.

Since Q annihilates each W_{k}, it must annihilate $Z(G P)$ as well. Hilbert's Nullstellensatz states that since \mathbb{K} is algebraically closed, for each $q \in Q$, there must be an exponent $q^{\pi} \in G P$.

Using Lemma 4.1.4, $q^{\pi} \in R \cap G P \subseteq G+G R$, and so the quotient algebra $R /(G+G R)$ is nil. Since $G^{2} \subseteq G R, R / G R$ is nil as well. All affine commutative nil algebras are finite dimensional, so GKdim $R / G R=0$.

In Lemma 3.2 of [19], L. Bartholdi and A. Smoktunowicz prove that, if R is a affine commutative graded algebra, and $I=A g A \triangleleft R$ is an ideal generated by a simple homogeneous element g, then GKdim $R / I \geq G K \operatorname{dim} R-1$. Extrapolating this property, if I is generated by d homogeneous elements, then GKdim $R / I \geq$ GKdim $R-d$. In our case, $G R$ is generated by $2 d$ homogeneous elements, and so $G \operatorname{GKdim} R / G R \geq G K d i m ~ R-2 d=0$, and $d \geq \frac{1}{2} \operatorname{GKdim} R$.

Remember that for any $j \geq 0, Q^{j}=\prod_{k=N_{i}}^{N_{i-1}-1}\left(\mathbb{K} x_{k, 1}+\mathbb{K} x_{k, 2}\right)^{j^{N_{i+1}-k-1}}$, and:

$$
\operatorname{dim} Q^{j}=\prod_{k=N_{i}}^{N_{i+1}-1}\left(j 2^{N_{i+1}-k-1}+1\right) \geq 2^{\frac{1}{2}\left(N_{i+1}-N_{i}-1\right)\left(N_{i+1}-N_{i}\right)} j^{N_{i+1}-N_{i}} .
$$

Therefore $d \geq \frac{1}{2}$ GKdim $R \geq \frac{1}{2}\left(N_{i+1}-N_{i}+1\right)$.
We can thus conclude that as long as $\operatorname{dim} F_{i+1}<\frac{1}{2}\left(N_{i+1}-N_{i}+1\right)$, there is a $\vec{w} \in \bar{W}$ such that $G(\vec{w})=0$, and we have an appropriate space $U_{2^{k}}=U_{2^{k}}(\vec{w})$ and monomials $v_{k, 1}=v_{k, 1}(\vec{w}), v_{k, 2}=v_{k, 2}(\vec{w})$ for each $k \leq N_{i+1}$. If this holds for all $i \geq 0$, the induction can proceed.

4.2 The size of A_{n} / I_{n}

We define $R_{n}, S_{n} \subseteq A_{n}$ the same way as in chapter 2: if m is such that $2^{m} \leq n<2^{m+1}$, then $R_{n}=\left\{r \in A_{n}: r A_{2^{m+1}-n} \subseteq U_{2^{m+1}}\right\}$ and $S_{n}=\left\{r \in A_{n}:\right.$ $\left.A_{2^{m+1}-n} r \subseteq U_{2^{m+1}}\right\}$.

For each $i \in \mathbb{N}$, let $v_{i} \in \mathbb{K} v_{i, 1}+\mathbb{K} v_{i, 2}$ be such that $U_{2^{i+1}}=A_{2^{i}} U_{2^{i}}+U_{2^{i}} A_{2^{i}}+$ $v_{i} A_{2^{i}}$, let $U_{2^{i}}^{\prime}=U_{2^{i}}+\mathbb{K} v_{i}$. If $v_{i, 1} \notin U_{2^{i}}^{\prime}$, then set $V_{2^{i}}^{\prime}=\mathbb{K} v_{i, 1}$, otherwise, set $V_{2^{i}}^{\prime}=\mathbb{K} v_{i, 2}$. This way,

$$
\begin{gathered}
U_{2^{i}} \subseteq U_{2^{i}}^{\prime}, \quad V_{2^{i}}^{\prime} \subseteq V_{2^{i}}, \quad U_{2^{i}}^{\prime} \oplus V_{2^{i}}^{\prime}=A_{2^{i}}, \\
U_{2^{i+1}}=A_{2^{i}} U_{2^{i}}+U_{2^{i}}^{\prime} A_{2^{i}} .
\end{gathered}
$$

For any $n \in \mathbb{N}$, and let $n=2^{p_{0}}+\cdots+2^{p_{r}}$ be the usual binary decomposition, with $0 \leq p_{0}<\ldots<p_{r}$. Define $Q_{n}=V_{2^{p_{r}}}^{\prime} \cdots V_{2^{p_{0}}}^{\prime}$. Note that $\operatorname{dim} Q_{n}=1$.

Lemma 4.2.1. For every $n \in \mathbb{N}, Q_{n} \oplus R_{n}=A_{n}$.

Proof. Use the same binary decomposition. Consider the space:

$$
R=\sum_{i=0}^{r} A_{2^{p_{r}}+\cdots+2^{p_{i+1}}} U_{2^{p_{i}}}^{\prime} A_{2^{p_{i-1}}+\cdots+2^{p_{0}}}
$$

Since each $U_{2^{p_{i}}}^{\prime} \oplus V_{2^{p_{i}}}^{\prime}=A_{2^{p_{i}}}, R \oplus Q_{n}=A_{n}$. It's sufficient to prove that $R \subseteq R_{n}$; since $\operatorname{dim} Q_{n}=1, R \subseteq R_{n}$ implies either $R=R_{n}$ or $R_{n}=A_{n}$, and the latter is contradicted by the definition of R_{n} and the fact that $U_{2^{p_{r}+1}} \neq A_{2^{p_{r}+1}}$.

For each $0 \leq i \leq r$, let $n_{i}=n-\left(2^{p_{i-1}}+\cdots 2^{p_{0}}\right)<2^{p_{r}+1}$. Since $n_{i}<2^{p_{r}+1}$ and $2^{p_{i}} \mid n_{i}, 2^{p_{r}+1}-n_{i} \geq 2^{p_{i}}$. Since Proposition 2.1.1 still applies,

$$
\begin{gathered}
R_{n} A_{2 p^{p+1}-n}=\sum_{i=0}^{r} A_{2 p_{r}+\cdots+2^{p_{i+1}} U_{2 p_{i}}^{\prime} A_{2^{p_{r}+1}-n_{i}}=}^{\sum_{i=0}^{r} A_{2 p_{r}+\cdots+2^{p_{i+1}}}\left(U_{2}^{\prime p_{i}} A_{2 p_{i}}\right) A_{2^{p_{r+1}-n_{i}}}=\sum_{i=0}^{r} A_{2 p_{r}+\cdots+2^{p_{i+1}}} U_{2 p_{i}+1} A_{2^{p r+1}-n_{i}} \subseteq U_{2^{p r+1}},}
\end{gathered}
$$ and $R \subseteq R_{n}$.

Copying our work in section 2.3, there also exists a subspace $W_{n} \subseteq V_{2^{p_{0}}} \cdots$ $V_{2^{p_{r}}}$ such that $W_{n} \oplus Q_{n}$. Lemma 2.3.3 still applies, with:

$$
\operatorname{dim} W_{n} \leq \operatorname{dim}\left(\mathbb{K} v_{p_{r}+1,1}+\mathbb{K} v_{p_{r}+1,2}\right) \operatorname{dim} Q_{2^{p r+1-n}}=2 .
$$

Corollary 2.3.2 still applies as well:

$$
\begin{gathered}
\operatorname{dim} A_{n} / I_{n} \leq \sum_{i=0}^{n} \operatorname{dim} W_{n} \operatorname{dim} Q_{n-i} \leq 2 n+2, \\
f_{\bar{A} / I,\left(A_{1}+I\right) / I}(n)=\sum_{i=1}^{n} 2 i+2=n^{2}+3 n .
\end{gathered}
$$

Therefore, \bar{A} / I has quadratic growth.

4.3 The subspaces $\left\{F_{i}\right\}$

Let $g \in \bar{A}$, and let d be minimal such that $g \in \sum_{i=1}^{d} A_{i}$. Let $g=g_{(1)}+\cdots g_{(d)}$ be the homogeneous decomposition of g, with each $g_{(i)} \in A_{i}$. For each $n \geq 0$, define the element $s_{n} \in A_{n}$ recursively:

- $s_{0}=1$,
- $s_{n}=-\sum_{i=1}^{\min \{n, d\}} g_{(i)} s_{n-i}$.

One can inductively show that:

$$
s_{n}=\sum_{k=0}^{n} \sum_{\left(1 \leq i_{1}, \ldots, i_{k} \leq d, i_{1}+\cdots+i_{k}=n\right)}(-1)^{k} g_{\left(i_{1}\right)} \cdots g_{\left(i_{k}\right)}
$$

and by symmetry,

$$
s_{n}=-\sum_{i=1}^{\min \{n, d\}} s_{n-i} g_{(i)} .
$$

Lemma 4.3.1. For any a, b, k with $0 \leq a \leq b-2 n \leq k-2 n$,

$$
s_{k} \in \sum_{i, j=0}^{d-1} A_{a+i} s_{b-a-j-i} A_{k-b+j} .
$$

Proof. First, we wish prove the claim:

$$
s_{k} \in \sum_{i=0}^{d-1} A_{a+i} s_{k-a-i}
$$

Use induction on the value of a. The base case, $a=0$, is trivial from the definition of s_{k}. For the inductive step,

$$
\begin{gathered}
s_{k} \in \sum_{i=0}^{d-1} A_{a+i} s_{k-a-i}=A_{a} s_{k-a}+\sum_{i=1}^{d-1} A_{a+i} s_{k-a-i}= \\
-\sum_{i=1}^{d} A_{a} g_{(i)} s_{k-a-i}+\sum_{i=1}^{d-1} A_{a+i} s_{k-a-i} \subseteq \sum_{i=0}^{d-1} A_{(a+1)+i} s_{k-(a+1)-i} .
\end{gathered}
$$

Through symmetry, and the fact that $s_{k}=\sum_{i=1}^{d} s_{k-i} g_{(i)}$, we can also prove, for each $0 \leq i \leq d-1$:

$$
s_{k-a-i} \in \sum_{j=0}^{d-1} s_{b-a-j-i} A_{k-b+j} .
$$

Combining these,

$$
s_{k} \in \sum_{i=0}^{d-1} A_{a+i} s_{k-a-i} \subseteq \sum_{i, j=0}^{d-1} A_{a+i} s_{b-a-j-i} A_{k-b+j} .
$$

For each $N \geq 2 d$, define the space $F_{N}(g) \subseteq A_{N}$ as:

$$
F_{N}(g)=\sum_{i, j=0}^{d-1} A_{i} s_{N-i-j} A_{j}
$$

Lemma 4.3.2. For any $k \geq 2 N$,

$$
A s_{k} A \in \mathcal{E}\left(F_{N}(g)\right)
$$

Proof. As $A_{N} \mathcal{E}\left(F_{N}(g)\right) A \subseteq \mathcal{E}\left(F_{N}(g)\right)$, it's sufficient to prove that $A_{m} s_{k} \in \mathcal{E}\left(F_{N}(g)\right)$ for any $0 \leq m<N$.

Using Lemma 4.3.1,

$$
A_{m} s_{k} \subseteq A_{m} \sum_{i, j=0}^{d-1} A_{N-m+i} s_{N-i-j} A_{k-2 N+j} \subseteq A_{N} F_{N}(g) \subseteq \mathcal{E}\left(F_{N}(g)\right)
$$

Theorem 4.3.3. For any $N \geq 2 d$, there exists an $h \in \bar{A}$ such that $g+h+g h \in$ $\mathcal{E}\left(F_{N}(g)\right)$.

Proof. Let $h=\sum_{i=1}^{2 N+d} s_{i}$.

$$
\begin{aligned}
& g+h=g+\sum_{i=1}^{2 N+d} s_{i}=g-\sum_{i=1}^{2 N+d} \sum_{j=1}^{\min \{i, d\}} g_{(j)} s_{i-j}=g-\sum_{j=1}^{d} \sum_{i=j}^{2 N+d} g_{(j)} s_{i-j}= \\
& -\sum_{j=1}^{d} \sum_{i=j+1}^{2 N+d} g_{(j)} s_{i-j}=-\sum_{j=1}^{d} \sum_{i=1}^{2 N+d-j} g_{(j)} s_{i}= \\
& -\left(\sum_{j=1}^{d} g_{(j)}\right)\left(\sum_{i=1}^{2 N+d} s_{i}\right)+\sum_{j=1}^{d} \sum_{i=2 N+d-j+1}^{2 N+d} g_{(j)} s_{i} \in-g h+\sum_{i=1}^{d} A s_{2 N+i} .
\end{aligned}
$$

Finally, lemma 4.3.2 proves that $\sum_{i=1}^{d} A s_{2 N+i} \subseteq \mathcal{E}\left(F_{N}(g)\right)$.
If we can get $F_{2^{n}}(g) \subseteq U_{2^{n}}$ for some n, then Theorem 4.3.3 and Proposition 2.2.1 combined prove that there exists an $h \in \bar{A}$ such that $g+h+g h \in I$. In other words, $g+I$ is right-quasiregular in \bar{A} / I.

As \mathbb{K} is countable, we can construct an enumeration $\bar{A}=\left\{g_{1}, g_{2}, \ldots\right\}$. Let each d_{i} be minimal such that $g_{i} \in \sum_{j=1}^{d_{i}} A_{j}$. Define the series $\left\{N_{i}\right\}_{i=0}^{\infty}$ recursively, with $N_{0}=0$, and for each $i>0, N_{i}=N_{i-1}+2^{2 d_{i}+1}-1$.

Set $F_{i}=F_{2^{N_{i}}}\left(g_{i}\right)$. Section 4.1 establishes that we can have each $F_{i} \subseteq U_{2^{N_{i}}}$, so long as $\operatorname{dim} F_{i}<\frac{1}{2}\left(N_{i}-N_{i-1}+1\right)$, which is indeed the case:

$$
\operatorname{dim} F_{i} \leq \sum_{j, k=0}^{d_{i}-1} \operatorname{dim} A_{j} \operatorname{dim} A_{k}=\sum_{j, k=0}^{d_{i}-1} 2^{j+k}<2^{2 d_{i}}=\frac{1}{2}\left(N_{i}-N_{i-1}+1\right)
$$

We have thus proven the existence of a set $\left\{U_{2^{n}}\right\}$, following the specifications of section 4.1, that results in an ideal $I \triangleleft \bar{A}$ such that every element of \bar{A} / I is rightquasiregular, from which it follows that \bar{A} / I is Jacobson radical.

Chapter 4 includes a reinterpretation of, and borrows heavily from, [18]. This paper has been submitted for publication with the dissertation author as a co-author.

Bibliography

[1] J. Levitzki, On a problem of A. Kurosch, Bull. Amer. Math. Soc. 52 (1946), 1033-1035.
[2] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948), 575-580.
[3] M. Gromov, Groups of polynomial growth and expanding maps, Publications mathematiques I.H.É.S. 53 (1981), 53-78.
[4] J. Milnor, A note on curvature and fundamental group, J. Diff. Goem. 2 (1968), 1-7.
[5] J. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Diff. Geom. 2 (1968), 421-446.
[6] R. Grigorchuk, I. Pak, Groups of intermediate growth: an introduction for beginners, Enseign. Math. (2) 54 no. 3-4 (2008), 251-272.
[7] G. R. Krause, T. H. Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension, revised edition. Graduate Studies in Mathematics, 22. American Mathematical Society, Providence, RI, 2000.
[8] R. B. Warfield, Jr., The Gelfand-Kirillov dimension of a tensor product, Math. Z. 185 (1984), 441-447.
[9] L. W. Small, J. T. Stafford, R. B. Warfield, Jr., Affine algebras of GelfandKirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 3, 407-414.
[10] A. G. Kurosh, Problems in ring theory which are related to the Burnside Problem for periodic groups, Izv. Akad. Nauk SSSR 5 (1941), no. 3, 233-240.
[11] S. A. Amitsur, Jacob Levitzki, 1904-1956, Israel J. Math. 19 (1974), 1-2.
[12] E. S. Golod, I. R. Shafarevich, On the class Field tower, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261-272.
[13] E. I. Zelmanov, Some open problems in the theory of infinite dimensional algebras J. Korean Math. Soc. 44 (2007), no. 5, 1185-1195.
[14] T. H. Lenagan, A. Smoktunowicz, An infinite dimensional affine nil algebra with finite Gelfand-Kirillov dimension, J. Amer. Math. Soc. 20 (2007), no. 4, 989-100.
[15] A. Smoktunowicz, L. Bartholdi, On a conjecture of Goodearl: Jacobson radical non-nil algebras of Gelfand-Kirillov dimension 2, to appear in Israel Journal of Mathematics, arXiv:1102.2697v1.
[16] T. H. Lenagan, A. Smoktunowicz, A. A. Young, Nil algebras with restricted growth, to appear in Proc. Edin. Math. Soc., arXiv: 1008.4461v1.
[17] J. P. Bell, A. A. Young, On the Kurosh problem for algebras over a general field, to appear in J. Algebra, arXiv:1102.0362v1.
[18] A. Smoktunowicz, A. A. Young Jacobson radical algebras with quadratic growth, under consideration in Glasgow Math. J.
[19] L. Bartholdi, A. Smoktunowcz, Images of Golod-Shafarevich algebras with small growth, arXiv:1108.4267v1.

[^0]: ${ }^{1}$ We define a maximal right (left) ideal I of an algebra A as a right (left) ideal such that the only right (left) ideals that contain it are A and I, and that $A^{2} \nsubseteq I$. The latter stipulation is not included in some sources, but is analogous to our stipulation that if M is an irreducible right (left) module, $M A \neq(0)$.

