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Abstract: Light-cured composite resins are widely used in dental restorations to fill cavities and
fabricate temporary crowns. After curing, the residual monomer is a known to be cytotoxic, but
increasing the curing time should improve biocompatibility. However, a biologically optimized cure
time has not been determined through systematic experimentation. The objective of this study was
to examine the behavior and function of human gingival fibroblasts cultured with flowable and
bulk-fill composites cured for different periods of time, while considering the physical location of
the cells with regard to the materials. Biological effects were separately evaluated for cells in direct
contact with, and in close proximity to, the two composite materials. Curing time varied from the
recommended 20 s to 40, 60, and 80 s. Pre-cured, milled-acrylic resin was used as a control. No cell
survived and attached to or around the flowable composite, regardless of curing time. Some cells
survived and attached close to (but not on) the bulk-fill composite, with survival increasing with
a longer curing time, albeit to <20% of the numbers growing on milled acrylic even after 80 s of
curing. A few cells (<5% of milled acrylic) survived and attached around the flowable composite
after removal of the surface layer, but attachment was not cure-time dependent. Removing the
surface layer increased cell survival and attachment around the bulk-fill composite after a 20-s cure,
but survival was reduced after an 80-s cure. Dental-composite materials are lethal to contacting
fibroblasts, regardless of curing time. However, longer curing times mitigated material cytotoxicity
exclusively for bulk-fill composites when the cells were not in direct contact. Removing the surface
layer slightly improved biocompatibility for cells in proximity to the materials, but not in proportion
to cure time. In conclusion, mitigating the cytotoxicity of composite materials by increasing cure time
is conditional on the physical location of cells, the type of material, and the finish of the surface layer.
This study provides valuable information for clinical decision making and novel insights into the
polymerization behavior of composite materials.

Keywords: composite; light-curing; curing time; cytotoxicity; fibroblast

1. Introduction

Light-cured composite resin materials are tooth-colored materials widely used in
dental restorative treatment to fill cavities and fabricate temporary crowns [1,2]. They
are mainly composed of inorganic filler, photoinitiator, and matrix monomer such as
bisphenol A glycidyl methacrylate (bis-GMA) and urethane dimethacrylate (UDMA) [3–5].
Depending on the ratio of components, they are classified into flowable composites, which
have low viscosity, and bulk-fill composites, which have high viscosity. These different
properties make them suitable for different purposes [6,7].

The polymerization reaction occurs when the photoinitiator is activated by visible-light
wavelengths between 450 and 490 nm, followed by the generation of free radicals and the
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formation of polymers [8]. Like other polymer-based materials, their chemical composition
alters the biological properties and responses of soft tissues [9–18]. Many studies have reported
cytotoxicity of monomer components, which varies with chemical composition, type, and
amount of residual monomer leached [19–31]. In addition, the free radicals generated during
and after polymerization cause significant cellular damage [11,13–15,32,33]. Even after photo-
polymerization, bis-GMA is eluted as residual monomer for over a month [34]. It is also
known that light-cured composites do not polymerize in areas in contact with oxygen, with
an unpolymerized layer formed at the surface [35].

Since composite materials are often used in direct contact with, or close to, the gingival
tissue, their cytocompatibility is important. Nevertheless, materials are usually selected
based on user preference, user friendliness, or esthetics. Cytocompatibility is almost never
considered when selecting the material.

For many composite materials, the manufacturers recommend a cure time of 20 s, but it
is unclear whether this is biologically sufficient. Both clinically and theoretically, extending
the cure time is expected to improve cytocompatibility by reducing the amount of residual
monomer. A few studies have reported that extending the cure time improves cytocompati-
bility by reducing residual monomer [24,36]. However, the optimized cure time from the
biological perspective has not been determined through systematic experimentation.

We have established an experimental method that simultaneously evaluates the behavior
of cells in contact with, and close to, the test material [37,38]. Exploiting this approach, here
we examined the behavior and function of human gingival fibroblasts cultured with two
different composite materials (flowable and bulk-fill) cured for different periods of time,
with a consideration of the physical location of the cells in relation to the materials: in direct
contact with, and in close proximity to, each material. In addition, the effect of removing the
unpolymerized layer on cytocompatibility was investigated. The null hypotheses are that
cytocompatibility of composite materials is dependent on the curing time and the removal of
the unpolymerized layer significantly reduces the adverse effects on fibroblasts.

2. Materials and Methods
2.1. Material Preparation and Characterization

Flowable and bulk-fill composites were prepared in rectangular plate form (6 mm× 14 mm,
2 mm thickness) for evaluation (Figure 1A). Four different curing times were tested: 20, 40, 60,
and 80 s. A light curing device (Coltolux LED; Coltène, Altstätten, Switzerland) was used to
polymerize the samples with a wavelength of 450–470 nm and an intensity of 1275 mW/cm2.
Milled-acrylic plates were designed using CAD software (123D Design, Hyperdent®, Synergy
Health, Sydney, Australia) and manufactured from poly(methyl methacrylate) (PMMA) disks
with a milling machine (Versamill 5× 200, Axsys Dental Solutions, Wixom, MI, USA). These
materials and their principal constituents are shown in Table 1 and Figure 1A. After prepa-
ration, all plates were washed with a steam cleaner and disinfected with 75% ethanol. Each
test plate was placed on the center of each culture well, to standardize the physical distance
between the plate and the cells in close proximity to the plate.
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Figure 1. Test materials and culture-experiment design. (A) Test rectangular plates made of flowable
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performed separately, to mimic cellular reactions in vivo.
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Table 1. Materials used in this study.

Materials (Product Name, Manufacturer) Main Ingredients Curing Time
(seconds) Notations

Flowable composite
(Aeliteflo™, BISCO Inc., Schaumburg, IL, USA)

20 F20
Bis-GMA 40 F40

60
80

F60
F80

Bulk-fill composite
(Aelite™ Aesthetic Enamel, BISCO Inc.)

20 B20

Bis-GMA, UDMA 40
60
80

B40
B60
B80

Milled acrylic
(Vivid PMMA Disc, Pearson™ Dental Supply Co.) PMMA – –

Abbreviations: Bis-GMA, bisphenol A glycidyl methacrylate; UDMA, urethan dimethacrylate, PMMA, poly
(methyl methacrylate).

2.2. Cell Culture

Human gingival fibroblasts were purchased from ScienCell Research Laboratories
(Carlsbad, CA, USA) and grown in fibroblast medium supplemented with 5% fetal bovine
serum (FBS), 1% fibroblast growth supplement-2, and 1% penicillin/streptomycin solution.
At 80% confluence, the cells were detached using 0.05% trypsin-EDTA solution, and seeded
onto culture plates. Passage 5–8 cells were seeded onto test material placed in each well
(20 mm diameter) of 12-well culture plates at a density of 4 × 104 cells/well. The culture
medium was renewed every three days. The UCLA Institutional Biosafety Committee
(BUA-2-22-036-001) approved the study protocol.

2.3. Quantification of Attached and Propagated Cells

The number of attached fibroblasts was counted, to quantify the contact effect and
proximity effect. The contact effect was defined as the quantification of fibroblasts attached
to test materials, while the proximity effect was defined as the quantification of fibroblasts
attached to the well of the culture dish around the material (Figure 1B). Attached fibroblasts
were measured two days after seeding, and propagated fibroblasts were measured four
and six days after seeding. The water-soluble tetrazolium salt (WST-1)-based colorimetric
assay was used to quantify the number of cells, as reported elsewhere [39,40]. The amount
of formazan product was measured at an absorbance of 450 nm, using a microplate reader
(Synergy H1, BioTek Instruments, Winooski, VT, USA).

2.4. Fluorescent Microscopy

The cell structure on and around test materials was visualized by fluorescence mi-
croscopy (DMI6000B, Leica Microsystems, Wetzlar, Germany) two days after seeding.
For this experiment, fibroblasts were cultured on glass-bottom 35 mm dishes, to stain
cells around the test materials. Fibroblasts were dual stained with fluorescent dyes: 4′,6-
diamidino-2-phenylindole (DAPI) to identify nuclei, and rhodamine-phalloidin for actin
filaments. Fibroblast density was quantified by counting the cells in the images.

2.5. Collagen Production

Fibroblast collagen production was determined by Picrosirius-red staining (Picrosirius
Red Staining Kit, Polysciences Inc., Warrington, PA, USA). As reported elsewhere [41–43],
Picrosirius red stains collagen by reacting with basic groups present in the collagen molecule,
via its sulfonic acid groups. Four days after seeding, cells were fixed in 10% formaldehyde.
After binding Picrosirius red to produced collagen, 0.1 N sodium hydroxide was added
and left for 60 min, to elute the binding dye. Then, the supernatant was measured at an
absorbance of 550 nm, using a microplate reader.
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2.6. Statistical Analysis

All cell-culture experiments were conducted in triplicate (n = 3). Results are expressed
as mean ± standard deviations (SD). The test materials were compared using one-way
analysis of variance (ANOVA) followed by the Tukey–Kramer post hoc test. p-values less
than 0.05 were deemed statistically significant.

3. Results
3.1. Initial Cell Attachment

To evaluate the successful settlement of human fibroblasts after seeding, fibroblasts
attached on or around the test material were counted, using the WST-1 assay, two days after
seeding. There was no cell attachment in the contact experiment for either composite cured
at 20 s, the manufacturer’s recommended time (Figure 2A). Similarly, in the proximity
experiment, no cells attached around the flowable composite. Some fibroblasts attached
around the bulk-fill composite, but only <10% of the number attaching around the milled-
acrylic controls (Figure 2B).

J. Funct. Biomater. 2023, 14, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. Initial attachment of fibroblasts on and around test materials cured for the manufacturer’s 
recommended time of 20 s. The number of attached fibroblasts (A) on each material (contact exper-
iment) and (B) around each material (proximity experiment). Data shown are mean ± SD. 

 
Figure 3. Initial attachment on and around test materials cured for different amounts of time. The 
number of attached fibroblasts (A) on each material and (B) around each material. Data shown are 
mean ± SD. Significant differences between groups are shown (one-way ANOVA followed by 
Tukey’s post hoc test, * p < 0.05). 

3.2. Cell Proliferation 
Cell proliferation was evaluated by measuring the number of propagated cells four 

and six days after seeding. No cells attached to either composite on day 4 (Figure 4A). 
There were no propagated cells around flowable composite in the proximity experiment 
at either timepoint. The number of cells propagating around bulk-fill composite increased 
with cure time, although to levels < 15% of milled-acrylic controls (Figure 4B). The number 
of propagated cells around B20, B40, B60, B80 and milled acrylic were 0.023 ± 0.001, 0.046 
± 0.009, 0.055 ± 0.009, 0.059 ± 0.006 and 0.582 ± 0.008 arbitrary units, respectively. 

Figure 2. Initial attachment of fibroblasts on and around test materials cured for the manufac-
turer’s recommended time of 20 s. The number of attached fibroblasts (A) on each material (contact
experiment) and (B) around each material (proximity experiment). Data shown are mean ± SD.

Next, both materials were cured for 40, 60, or 80 s, and the same assay performed.
No cells attached to either composite, regardless of the cure time in contact experiments
(Figure 3A). As in the contact experiment, no cells attached around the d flowable composite
in the proximity experiment at any timepoint. However, some cells attached around the
bulk-fill composite, with the number increasing with a longer cure time, although the
number was <20% of the number of cells attaching around the milled acrylic after 80 s of
curing (Figure 3B). The number of cells around B80 was approximately three times higher
than that of B20 (p < 0.05). The number of cells around B20, B40, B60, B80 and the milled
acrylic were 0.013 ± 0.009, 0.022 ± 0.006, 0.029 ± 0.005, 0.034 ± 0.004 and 0.161 ± 0.012
arbitrary units, respectively.

3.2. Cell Proliferation

Cell proliferation was evaluated by measuring the number of propagated cells four
and six days after seeding. No cells attached to either composite on day 4 (Figure 4A).
There were no propagated cells around flowable composite in the proximity experiment at
either timepoint. The number of cells propagating around bulk-fill composite increased
with cure time, although to levels < 15% of milled-acrylic controls (Figure 4B). The number
of propagated cells around B20, B40, B60, B80 and milled acrylic were 0.023 ± 0.001,
0.046 ± 0.009, 0.055 ± 0.009, 0.059 ± 0.006 and 0.582 ± 0.008 arbitrary units, respectively.
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are mean ± SD. Significant differences between groups are shown (one-way ANOVA followed by
Tukey’s post hoc test, * p < 0.05).
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Figure 4. Propagation of fibroblasts on and around materials cured for different amounts of time. The
number of propagated fibroblasts (A) on each material and (B) around each material. Data shown are
mean ± SD.

3.3. Cell Visualization

Fibroblasts around test materials showing cell adherence were visualized on culture
day two by dual staining with DAPI, to identify nuclei and rhodamine-phalloidin to stain
actin filaments. The flowable composite was excluded because the fibroblasts did not
adhere. The abundant propagated cells around milled acrylic were spindle shaped with
positive cytoskeletal and outline staining. Some cells with small cell outlines were present
around the bulk-fill composite (Figure 5A). Similar to the WST-1 assay results, cell density
increased with cure time, albeit to <15% of the milled-acrylic controls (Figure 5B). The
cell density of B80 was significantly higher than that of B20 (p < 0.001) and B40 (p < 0.01).
B60 showed higher cell density than B40 (p < 0.05). The cell density of B20, B40, B60,
B80 and milled acrylic were 27.78 ± 6.94, 36.67 ± 5.77, 48.89 ± 8.39, 66.67 ± 6.67 and
315.56 ± 25.24 cells/mm2, respectively.

3.4. Collagen Production

To evaluate fibroblast function around test materials, Picrosirius-red staining was
performed to measure collagen production. The flowable composite was excluded because
the fibroblasts did not adhere. Fibroblast collagen production around the bulk-fill com-
posite was <15% of that around the milled acrylic, with production slightly increasing
in proportion to cure time (Figure 6). The collagen production of both B60 and B80 was
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significantly higher than that of B20 (p < 0.05). The collagen production of B20, B40, B60,
B80 and milled acrylic was 0.028 ± 0.001, 0.033 ± 0.002, 0.035 ± 0.002, 0.035 ± 0.004 and
0.271 ± 0.024 arbitrary units, respectively.
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Figure 5. Visualized fibroblasts around test materials 2 days after seeding. (A) Fluorescent micro-
scopic images of fibroblasts stained for nuclei (blue) and cytoskeletal actin filaments (red). (B) Cell
density quantified in these images. Data shown are mean ± SD. Significant differences between
test materials are shown (one-way ANOVA followed by Tukey’s post hoc test, p * < 0.05, p ** < 0.01,
p *** < 0.001).
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3.5. Improvement in Cell Attachment after Surface Removal

To determine whether removal of the unpolymerized layer increases the number of
attached fibroblasts 2 days after seeding, the WST-1 assay was performed. Regardless
of removal, no cells attached to either composite (Figure 7A). A limited number of cells
attached around the flowable composite in the proximity experiment. The number of
cells around F20, F40, F60, F80 with surface removed were 0.006 ± 0.001, 0.004 ± 0.001,
0.006 ± 0.002, 0.006 ± 0.003 arbitrary units, respectively. An increased number of cells
were observed around B20 and B40 and a decreased number of cells around B60 and B80
(Figure 7B). The number of cells around B20, B40, B60, B80 and milled acrylic with surface
removed were 0.035 ± 0.011, 0.030 ± 0.013, 0.021 ± 0.004, 0.012 ± 0.003 and 0.161 ± 0.009
arbitrary units, respectively.
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4. Discussion

Here, we investigated the behavior and function of human gingival fibroblasts cultured
with two different composite materials cured for different amounts of time. To model the
physical location of cells in relation to the material, the properties of human gingival
fibroblasts were evaluated on and around the materials. This allowed us to determine
whether the cure time of the materials altered the compatibility of fibroblasts, both in
direct contact with and in close proximity to, the materials. In addition, the effect of
removal of the unpolymerized surface layer of the materials on initial fibroblast attachment
was determined.

In culture experiments, fibroblasts attach to or around the material, and those that do
not attach may undergo cell death. We used an indirect method to measure the viability of
cells exposed to material cytotoxicity by quantifying the number of cells attached to either
the test material (“contact experiments”) or to the culture wells around the material (“prox-
imity experiments”). We studied two types of composite material (flowable composite and
bulk-fill composite), with milled acrylic as a control. The milled acrylic was made from
a poly(methyl methacrylate) (PMMA) block/disc pre-polymerized at a high temperature
and pressure [44,45]. Milled acrylic has the lowest amount of residual monomer and the
highest cytocompatibility with fibroblasts of the resin-based materials, so was considered
suitable as a positive control [26,46].

In contact experiments, fibroblasts did not adhere to the flowable or the bulk-fill
composites after 20 s of curing (recommended by the manufacturer). Both composites
had detrimental effects on cell growth. In the proximity experiments, fibroblasts did not
adhere in proximity to the flowable composite, but there was some minimal cell attachment
around the bulk-fill composite. This suggest that even though composite materials may



J. Funct. Biomater. 2023, 14, 119 8 of 13

seemingly have the same clinical properties, apart from viscosity, the cytocompatibility
with cells in proximity was substantially different.

Several studies have shown that the cytotoxicity of a composite material depends
on its monomer, photoinitiator, and inorganic-filler-particle components [22,47]. In
any polymer-based materials, unreacted monomers have negative effects on various
cells [10,12,13,16,17,28,33,48–50]. Bis-GMA and UDMA are the main components of
composites, the former eluting at higher concentrations than the latter [51]. Both
monomers cause DNA-strand breaks in fibroblasts, providing a plausible cytotoxic
mechanism [52,53]. Flowable composite has a lower filler content and a higher percent-
age of bis-GMA to reduce viscosity, which might explain our observations of differing
cytotoxic effects of the monomers.

We evaluated the behavior and function of fibroblasts cultured with composites for
variable curing times of 40, 60, and 80 s. Interestingly, no fibroblasts attached to the flowable
composite, regardless of the cure time or physical location. In the contact experiments with
the bulk-fill composite, there was similarly no fibroblast adhesion, regardless of the cure
time. In the proximity experiments, however, the number of fibroblasts around the bulk-fill
composite increased proportionately with the cure time. However, the number of attach-
ing/growing cells was considerably less than that around the milled acrylic. As expected,
the number of cells attaching around the bulk-fill composite increased proportionately
with the cure time. However, unexpectedly, there was only 20% cell attachment around the
bulk-fill composite at a cure time of 80 s, so mitigating cytotoxicity with increased curing is
insufficient to solve the cytotoxicity problem.

When composite materials thicker than 2 mm are required, laminate filling is used
to compensate for shrinkage during polymerization [54]. We evaluated this up to 80 s,
because, depending on the tooth size, the composite resin filled at first may be exposed to
light 3–4 times longer than the manufacturer’s recommended time. Further extension of
cure time might improve cytocompatibility and reach a plateau, but such long cure times
for an intraoral procedure may not be tolerated in practice.

Cells attached around the bulk-fill composite on day 2 had a less well-developed
cytoskeleton and were less numerous than those around the milled acrylic, but the number
of cells increased on day 4 and day 6. Collagen production also increased in proportion to
the curing time. Fibroblasts close to the material were adversely affected, but the curing
time did seem to have at least some positive effect in cell proliferation ability and function.

The test materials used in this study were 2 mm thick, and a single irradiation was
considered sufficient for polymerization [55,56]. The distance between the light-curing
device and the material and its position were fixed, for consistency. Thus, the degree of
polymerization at the bottom of the material, furthest from the tip of the light-curing device,
was considered to depend on the curing time. As a result, the amount of monomer eluted
into the medium varied in proportion to the cure time, and the eluted monomer might
have acted on adjacent cells.

The surface layer of composite material does not polymerize when in contact with
oxygen, forming an unpolymerized layer due to its polymerization mechanism [13,24,33,35].
We therefore compared composite material with and without the unpolymerized surface
layer. Surprisingly, the contact toxicity of both composites did not decrease, despite
removing the layer. In proximity experiments, however, removal of the surface layer
mitigated the cytotoxicity, but only a few cells attached around the flowable composite.
With respect to the bulk-fill composite, the number of cells increased at 20 and 40 s, but
decreased at 60 and 80 s. Therefore, removing the surface layer slightly improved the
biocompatibility with cells in proximity, but the effect was not proportional to the cure time.

From a clinical point of view, composite materials are often used in the treatment of
caries and tooth defect close to the gingival margin. Gingival inflammation and recession
of the cervical gingiva are generally considered to be caused by plaque accumulation
on the composite materials [57,58]. Hence, differences in bacterial adhesion and biofilm
formation due to various curing times and surface treatments should be investigated.
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In addition, the results of this study suggested that the deleterious effect of composite
materials filled in the cervical area may cause cell damage, gingival inflammation, and
gingival recession. However, how this cytotoxicity affects the gingival tissue is unclear.
Therefore, it is necessary to evaluate host mechanisms or responses to composite materials,
for instance by measuring the inflammatory cytokine expression of gingival tissues in direct
and close contact with composite materials, in vivo.

The results of this study showed that composite materials are highly harmful to
human gingival fibroblasts. A previous study reported that the resistance to negative
effects varied among cell types, such as dental pulp stem cells or periodontal ligament
cells [59]. There is also a difference between fibroblasts and osteoblasts in terms of their
proliferation and differentiation [38]. In addition, many studies have used the experimental
method of adding the eluate from the test materials to the culture medium [27,60,61]. The
eluate from the material initially releases a large amount of residual components, and
then the amount gradually decreases. In our experiment, on the other hand, the test
materials were added directly to the culture medium, resulting in the continuous elution
of higher concentrations of residual components. Thus, cells could not survive as in the
previously reported experiment, due to differences in the resistance of the cells to the
material components and to the effects of the different methods of eluting the residual
components. Chromatographic analysis is necessary to measure the elution of components
over time [18,60].

This study showed that currently used dental-composite materials are non-negligibly
cytotoxic. It would now be interesting to assess the host mechanisms or response to the
composites, for instance, by the inflammatory cytokine expression of the gingival tissues in
direct and close contact with the composite materials, in vivo. The mitigation of composite
cytotoxicity with increasing cure time depended on the physical location of the cells, the
type of material, and the surface-layer treatment. In light of other potential methods to
improve composite materials, N-acetyl cysteine, a precursor of glutathione, the most potent
antioxidant in the body, effectively scavenges polymerization radicals and neutralizes
chemicals that cause oxidative stress [9,10,15,17,62–71]. Tri-n-butyl borane, a polymer-
ization initiator, also reduces cytotoxicity, due to the suppressive role of polymerization
radicals [11,13,14,18,33,72]. These data provide design rules for the use of monomers and
initiators to create novel composite materials with higher biocompatibility. Although this
study focused on the effect on gingival fibroblasts, the effects on other cell types routinely
exposed to composite materials, such as epithelial cells, whose origin is ectoderm and dif-
ferent from fibroblasts [39,73], and osteoblasts, differentiating cells that uniquely respond
to oxidative stress [9,11,74–78], remain to be studied in order to comprehensively assess
the biocompatibility of composite materials.

5. Conclusions

Here, we examined the behavior and function of human gingival fibroblasts cultured
on or around two different composite materials which were cured for different lengths of
time. In addition, we examined the effect of removal of the unpolymerized surface layer
on cytocompatibility. No cells survived and attached to or around the flowable composite,
regardless of cure time. Although no cells attached to the bulk-fill composite, regardless
of cure time, some cells survived around the material, and the number increased with
longer cure times. Removal of the surface layer slightly improved biocompatibility for
cells in proximity, but the effect was not proportional to cure time. In conclusion, the
mitigation of cytotoxicity in composites due to an increase in the curing time depends
on the physical location of the cells, the type of material, and the finish of the surface
layer. These results provide valuable information for clinical decision making and new
insights into the polymerization behavior of composite materials. Further in vivo studies
are needed to explore changes in biocompatibility at the tissue level.
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