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Abstract 
 
Rooftop and community solar are alternative product classes for residential solar in the 
United States. Community solar, where multiple households buy solar from shared 
systems, could make solar more accessible by reducing initial costs and removing 
adoption barriers for renters and multifamily building occupants. Here, we test whether 
existing community solar projects have expanded solar access in the United States. We 
find that community solar adopters are more likely to live in multifamily buildings than 
rooftop solar adopters, are more likely to rent, and to a lesser extent tend to earn less 
income. We do not find that community solar expands access in terms of race. These 
differences are driven, roughly evenly, by inherent differences between the two solar 
products and by policies that specifically target low-income community solar adoption. 
The results suggest that alternative solar products can effectively expand solar access 
and that policy could augment such benefits. 
 
Introduction 
 
Nearly four million residential electricity customers had adopted rooftop solar 
photovoltaics in the United States by the end of 20221. Rooftop solar adopters tend to be 
more affluent than the general population, are less likely to rent, and are less likely to 
self-identify as a racial minority2-4. Rooftop solar adoption inequity reflects various 
barriers to adoption for low- and moderate-income (LMI) households, such as high up-
front costs to purchase solar systems outright (as opposed to leasing), barriers for 
renters (e.g., split incentives), and barriers for multifamily building occupants (e.g., 
shared ownership of rooftop spaces)5. While adoption inequity is common among 
emerging technologies6, rooftop solar adoption inequity could pose unique challenges 
to clean energy transitions and grid decarbonization7,8. A growing number of policies 
seek to ensure equitable access to solar adoption9.  
 
Previous research suggests that alternative solar products can expand access to solar. 
Specifically, the development of solar leasing models with minimal up-front costs has 
driven a more equitable expansion of rooftop solar10,11, and the recent emergence of 
solar loans may similarly address up-front cost barriers. However, existing rooftop solar 
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products remain largely inaccessible to renters and families living in multifamily 
housing12,13. Another alternative class of solar products in the United States is 
community solar, wherein multiple customers buy output from a single solar system14. 
Like leasing, community solar typically entails no or minimal up-front costs. Unlike 
rooftop solar, community solar poses no specific barriers to adoption for renters or 
multifamily building occupants. As a result, community solar is often theorized to 
promote more equitable solar access13,15-18, and is increasingly integrated into U.S. solar 
adoption equity policies9. The federal Inflation Reduction Act includes tax credits for 
projects serving LMI communities or customers, and at least 17 states have incentives or 
regulations that promote LMI community solar19-21.  
 
The hypothesis that community solar promotes equitable access thus far lacks empirical 
evidence22,23, and there are several reasons to question whether community solar 
necessarily expands access. LMI participation in community solar can increase costs13, 
largely because LMI customers can be more challenging and costly to acquire24,25. In the 
absence of policy mandates to acquire LMI customers, profit-maximizing community 
solar providers may thus prioritize marketing to relatively affluent customers, 
consistent with evidence from rooftop solar markets26. Further, bill management and 
customer turnover represent substantial costs to community solar providers27. 
Community solar providers thus face economic incentives to minimize the number of 
customers by maximizing energy sold per customer. Community solar providers often 
reduce costs by reserving a large share of project capacity for a large non-residential 
anchor tenant13. For the remaining capacity, community solar providers may prioritize 
relatively large energy users over lighter energy users, such as LMI households and 
multifamily building occupants. Providers may also perceive renters as more costly 
insofar as renters pose a higher turnover risk. 
 
In this study, we explore whether existing community solar projects have expanded 
solar access by analyzing the demographic profiles of rooftop and community solar 
adopters. We analyze household-level data to explore how the two customer groups 
vary in terms of median income levels, housing tenure (whether adopters own or rent 
their homes), housing type (single or multifamily), and race. We organize our study 
around two research questions: 1) How do community solar adopters compare 
demographically to rooftop solar adopters? and 2) How much of any demographic 
differences are attributable to the inherent features of community solar as a product 
versus policies that promote community solar participation by LMI households 
specifically?  
 
Before proceeding to the results, we emphasize that our analysis is retrospective. 
Community solar is projected to grow rapidly and state policies effectively guarantee 
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that future community solar projects will differ substantially from the existing projects 
analyzed in our study. Our results should be interpreted primarily as retrospective, 
though we cautiously discuss the implications of our results for the future of the 
community solar market. 
 
Rooftop and community solar adopter demographics 
 
We draw on multiple sources to build adopter-level rooftop and community solar data 
sets (see Table 1 and Methods, for summary statistics see Supplementary Table 1). The 
community solar data represent customers of community solar projects as defined by 
the U.S. Department of Energy: solar projects where financial benefits flow to multiple 
customers within a defined geographic area. We use modeled demographic data to 
identify income levels, housing type and tenure, and the primary race of every adopter 
in the data set. We analyze race by bifurcating households into those whose primary 
modeled race was non-Hispanic White and those whose primary race was Black, 
Hispanic, Asian, or other, which we collectively refer to as “Non-White or Hispanic.” 
Modeled incomes and race are available for all records, while modeled housing type 
and tenure are incomplete. The sample sizes associated with each variable in each 
analysis are described in figure captions. We estimate comparative statistics of adopter 
demographics using Wilcoxon tests (comparison of median incomes) or Pearson Chi-
squared tests (comparisons of categorial variables). We estimate all statistics based on 
comparisons within states to ensure sample independence. We focus our analyses on 11 
states where we have at least 100 records for both adopter types (Table 2). The 11 states 
include some of the largest community and rooftop solar markets in the United States. 
Still, we recognize that this limited geographic sample implies that our results can not 
necessarily be perfectly extrapolated to the U.S. community solar market as a whole. For 
that reason, we emphasize results that are consistent across the states within our 
sample.  
 
We explore differences in demographic characteristics using one-sided tests for the 
following hypotheses: 

1. Community solar adopters earn less, on average, than rooftop solar adopters; 
2. Community solar adopters are more likely to rent than rooftop solar adopters; 
3. Community solar adopters are more likely to live in multifamily buildings than 

rooftop solar adopters; 
4. Community solar adopters are more likely to identify as non-White or Hispanic 

than are rooftop solar adopters. 
 
Throughout this paper, solid points in figures indicate statistically significant results 
according to one-sided statistical tests, while empty points indicate insignificant results.  
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Table 1. Data Sources 

Source Description N 

Rooftop solar   

Solar demographics 2 Database of rooftop PV adopters with household-
level demographic variables 

102,974 

Community solar   

State program data Data were obtained directly from state community 
solar programs in Illinois, Maine, New York, and 
Oregon. The data represent customers that were 
actively subscribed as of 2023. 

41,323 

Sharing the Sun developer 
data 

Data obtained from community solar developers as 
part of the National Renewable Energy Laboratory’s 
(NREL) Sharing the Sun project. NREL publishes 
project-level data 28, but subscriber-level data are 
considered proprietary and are not publicly 
available. for customers actively subscribed as of 
2023. 

37,391 

 
 

Table 2. Solar Sample Sizes and Data Sources by State 

State Community Solar 
Sample Size 

Rooftop Solar 
Sample Size 

Community Solar Data Source(s) 

Colorado 398 21,472 NREL 

Illinois 21,180 10,774 State of Illinois (Adjustable Block 
program, Solar For All program), 
NREL 

Maine 19,907 1,322 Central Maine Power Company, 
Versant Power, NREL 

Maryland 7,779 5,582 NREL 

Massachusetts 1,814 10,611 NREL 

Minnesota 465 4,319 NREL 

New Jersey 519 16,077 NREL 

New York 23,375 15,565 New York State Energy Research and 
Development Authority, NREL 

Oregon 2,033 10,185 Oregon Energy Trust, NREL 

Rhode Island 876 4,881 NREL 
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Washington, 
DC 

368 2,186 NREL 

 
 
The data firmly support hypotheses 1-3 defined above (Figure 1). Community solar 
adopters earn significantly less income and are more likely to rent and live in 
multifamily buildings than rooftop solar adopters in most states. Weighting the 
differences by state sample sizes, the data suggest that community solar adopters are 
about 6.1 times more likely to live in multifamily buildings than rooftop solar adopters, 
4.4 times more likely to rent, and earn about 23% less. At the same time, the data 
suggest that community solar adopters are not demographically representative of the 
general population. In most states, community solar adopters earn more than average 
and are less likely to rent and live in multifamily buildings than the general population. 
That is, community solar expands access relative to rooftop solar but is still inequitable 
relative to the general population. Differences in race are more ambiguous. The data 
suggest that community solar adopters are generally less, rather than more, likely to 
identify as non-White or Hispanic, compared to rooftop adopters. Across all the states 
in the sample, rooftop solar adopters are about twice as likely than community solar 
adopters to identify as Asian or Black and about three times as likely to identify as 
Hispanic (Figure 2).  
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Figure 1. Comparisons of demographic characteristics of community and rooftop solar adopters. Solid 

diamonds indicate statistically significant (p<0.05) results. Statewide estimates for race are omitted for 
reasons explained in Methods. Sample sizes: income and race N=181,688; % renters N=147,881; % 

multifamily N=181,672. For numerical results see Supplementary Table 2. 
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Figure 2. Comparisons of races of rooftop and community solar adopters. Solid diamonds indicate 
statistically significant (p<0.05) results. N=181,688. For numerical results see Supplementary Table 3. 

 
We use a conditional probability model to compare how the different demographic 
factors explain household adoption decisions (see Methods). The models are not 
designed to be causal. Rather, the models describe the relative power of each 
demographic factor in predicting whether a household is a community or rooftop solar 
adopter, conditioned on the other factors. The model suggests that the strongest 
predictors of adoption choices are race and housing tenure, while housing type and 
income have roughly equal predictive power (Figure 3). The conditional model helps 
isolate statistical associations between demographic factors and adoption decisions 
from associations driven by confounding correlations among demographic factors. In 
the data set, multifamily building occupants are about 8.8 times more likely to rent than 
are single-family occupants (t=116.3, two-sided), and households earning less than state 
median income are about 3.6 times more likely to rent (t=76.1, two-sided). The relatively 
large conditional coefficient for housing tenure suggests that some of the observed 
differences in housing type and income (see Figure 1) stem from these underlying 
correlations. That is, multifamily building occupants and low-income households are 
more likely to adopt community solar partly because those households are more likely 
to rent. Further, we use Akaike Information Criterion (AIC) scores to assess the 
prediction accuracy of model variations including different combinations of the 
demographic factors (Figure 4). The AIC scores likewise suggest that race and housing 
tenure are the most predictive variables. 
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Figure 3. Conditional associations between demographic factors and solar adoption choices. Results 

based on coefficients from model defined in Equation (1) in Methods. LMI for the purposes of this figure 
refers to households earning less than the state’s median income. For simplicity, we convert the 

coefficients to percentage point terms using the approximation of multiplying the coefficients (ß) by 100 
then dividing by four. N=147,874. Bars represent 95% confidence intervals. 

 

 
Figure 4. Prediction accuracy from different model variations. Plot depicts different combinations of 

variables included in the conditional probability model. Combinations to the left have the highest 
prediction accuracy based on Akaike Information Criterion scores (see Methods). N=147,874. 

Overall, the results suggest that community solar primarily expands solar access in 
terms of housing tenure and type and secondarily in terms of income. This 
interpretation stems from the relatively larger differences in housing tenure and type as 
opposed to income as illustrated in Figure 1, and the relatively strong predictive power 
of housing tenure in the conditional models. This result has a reasonable explanation. 



 9 

As discussed in the Introduction, the emergence of rooftop solar leasing has partly 
addressed adoption cost barriers, but rooftop solar remains nearly inaccessible to 
renters and multifamily building occupants. As a result, rooftop solar leasing and 
community solar may address income-related (cost) barriers in similar ways, but 
community solar is unique in removing barriers for renters and multifamily building 
occupants. To further explore this hypothesis, we separately identified rooftop solar 
system owners and lessees in the five states where leasing is allowed, and the data 
allowed us to identify lessees. In three of the five states, rooftop solar lessee incomes 
more closely resemble the typical incomes of community solar adopters than rooftop 
solar system owners (Figure 5). However, in those same three states rooftop solar 
lessees are not substantially more likely to rent or live in multifamily housing. As 
expected, the data suggest that rooftop solar leasing addresses income barriers to 
adoption but does not effectively address housing barriers. The renter and multifamily 
housing market is thus the clearest market niche for community solar to address. 
 
 

 
Figure 5. Comparisons of demographic characteristics across three solar products. Solid diamonds 

indicate statistically significant (p<0.05) differences between community solar adopters and rooftop solar 
lessees. Sample sizes: income and race N=88,563; % renters N=71,007; % multifamily N=88,549. For 

numerical results see Supplementary Table 4. 

 
Inherent and policy impacts 
 
The preceding analyses demonstrate that community solar adopters differ 
demographically from rooftop solar adopters. These differences could reflect some 
combination of differences between the two solar products—what we refer to as 
“inherent impacts”—and differences between rooftop and community solar policies—
what we refer to as “policy impacts.” Those policies typically target low-income 
households and take the form of either additional financial incentives or, in the case of 
community solar, carve-outs that require some minimum percentage of low-income 
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subscribers21. Isolating inherent from policy impacts would be useful for understanding 
how effectively community solar promotes access without additional policy support 
and how impactful policies have been in further promoting solar access through 
community solar.  
 
We analyze inherent and policy impacts by testing for demographic differences among 
adopters that participated in LMI community solar programs (program participants) 
and those who did not (non-participants). We can only precisely distinguish 
participants from non-participants in three states: Illinois, Massachusetts, and Oregon 
(see Methods). Demographic differences between non-participant community solar and 
rooftop solar adopters provide evidence of inherent impacts, given that LMI policies 
did not directly affect non-participants. Demographic differences between participant 
and non-participant community solar adopters provide evidence of policy impacts. The 
accuracy of that evidence depends on reasonable assumptions around the share of 
participants who would have otherwise adopted community solar, also known as free 
riding (see Methods). 
 
Participants earn significantly less and are more likely to rent and live in multifamily 
housing than non-participants. Participants are also significantly more likely to identify 
as non-White or Hispanic than non-participants. Limiting the data (N=7,492) to 
adopters earning less than 80% of their states’ median income (a common threshold for 
identifying LMI households), participants are about 1.8 times more likely to identify as 
non-White or Hispanic than non-participants (t=14.0, two-sided). These differences 
suggest that LMI programs are reaching a distinct population of LMI households than 
those adopting without program benefits. 
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Figure 6. Demographic characteristics in community solar and rooftop solar subsamples.  Solid points 
indicate statistically significant (p<0.05) differences. Sample sizes: income and race N=58,300; % renters 

N=44,950; % multifamily N=58,286. For numerical results see Supplementary Table 5. 

 
The analysis likewise provides evidence of the inherent impacts of community solar on 
adopter demographics in most cases. Non-participant community solar adopters earn 
significantly less than rooftop solar adopters in Illinois and New York, indicative of 
inherent impacts. However, non-participant community solar adopters earn slightly 
more in Oregon, suggesting that income differences in Oregon are fully explained by 
policy. Differences in housing type and tenure remain significant for non-participants in 
Illinois and Oregon (consistent with inherent impacts) but are rendered insignificant in 
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New York. However, New York has exceptionally high rates of rooftop solar renters 
and multifamily building occupants relative to other states, and the multifamily 
difference is insignificant in New York for the full sample (see Figure 1).  
 
To generate rough estimates of the contributions of inherent and policy impacts, we 
calculate the effects of removing participants on overall demographic differences. For 
instance, in Illinois, the median income difference between all community and rooftop 
solar adopters is $13k, while the median income difference between non-participants 
and rooftop adopters is $8k, such that policy accounts for about $5k or 38% of the 
difference (assuming minimal free riding). Under that approach, if free riding is trivial, 
the results suggest that policy explains around 67% of income differences between 
community and rooftop solar adopters, 43% of the differences in housing tenure, and 
23% of the differences in housing type, on average across the three states. The fact that 
policy appears to contribute more to income differences is not surprising given that the 
policies evaluated here target income levels. Thus, broadly speaking, the data suggest 
that policy impacts are the primary driver of income differences, while inherent impacts 
are the primary driver of differences in housing type, and both impacts contribute 
roughly evenly to differences in housing tenure. 
 
It is worth reiterating that our rough estimation of policy impacts is based on a 
retrospective analysis of a relatively small sample of LMI programs. While our results 
suggest that LMI community solar policies have been impactful, the results cannot 
necessarily be extrapolated to future LMI community solar policies which are 
increasingly ambitious in scope and scale29.  
 
Outside of the states explored in the preceding analysis we cannot precisely distinguish 
participants from non-participants. However, as a robustness check, we obtain similar 
results based on an analysis of inferred LMI program participation (see Methods and 
Supplementary Figure 1).  
 
Conclusions 
 
Our results suggest that existing community solar projects are expanding solar access in 
the United States to a more demographically diverse population. Specifically, we find 
that community solar adopters in 11 states are about 6.1 times more likely to live in 
multifamily buildings, 4.4 times more likely to rent, and earn 23% less than rooftop 
solar adopters, on average. Community solar has, thus far, been particularly effective at 
expanding access in terms of housing type and tenure, while a substantial portion of 
observed income differences can be attributable to the uptake of community solar 
among multifamily building occupants and renters. Though community solar expands 
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access relative to rooftop solar, community solar adopters tend to earn more than the 
broader population and are less likely to rent and live in multifamily housing. This 
outcome is not surprising given the economic incentives that community solar 
providers face (see Introduction). It is likely that community solar will become more 
equitable over time, both because of the broad tendency of emerging technologies to 
diffuse to underserved markets over time6 and because of increasingly ambitious 
community solar policies to expand access29. We do not find evidence that community 
solar has, thus far, expanded access to solar in terms of race. Indeed, the data suggest 
that community solar has been less effective at reaching non-White and Hispanic 
households than rooftop solar. The reason for these racial differences is unclear. Future 
research could explore how differences in marketing, customer perceptions, or other 
factors could explain racial differences across the two solar products. 
 
Our data suggest that inherent differences across the two solar products largely explain 
historical differences in housing type and tenure between community and rooftop solar 
adopters. Evidence of inherent impacts on housing type and tenure is generally 
encouraging from a policy perspective. Inherent impacts suggest that policymakers 
could expand solar access by creating a basic infrastructure for community solar, such 
as virtual net metering, even without specific measures to promote equity. We find 
evidence that the inclusion of specific measures to promote equity can increase LMI 
adoption and possibly expand access in terms of race. Overall, the results suggest that 
targeted LMI community solar policy can augment the access benefits of community 
solar.  
 
We conclude with suggestions for further research. Here, we have identified the 
impacts of community solar on adopter demographics stemming from policies and 
broad differences between the products. Future research could explore which specific 
aspects of different solar products most effectively promote solar access. For instance, 
do community solar features such as cancelation terms and transferability (whether 
customers can keep community solar subscriptions when changing addresses) affect 
adopter demographics? Similarly, future research could analyze how different 
community solar LMI policies affect adopter demographics. For instance, how do LMI 
carveouts compare to incentives in expanding access? Finally, our results raise many 
questions about access to solar across race. Future research could explore why rooftop 
and community solar appear to be reaching distinct racial communities and why policy 
appears to be particularly critical for expanding solar access to racial minorities. 
 
Methods 
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Data. Our data sources are defined in Table 1. We used home addresses to match 
adopter records at the address level to modeled household-level variables for income, 
housing type, and housing tenure purchased from Experian. We predicted household-
level racial characteristics using the wru package in R30. The wru package estimates 
continuous probabilities for household race in five categories (Asian, Black, Hispanic, 
White, other) based on the surname of the household’s Census tract and the surname of 
the head of household. In cases where the surname was unavailable (12% of records), 
wru predicts race based only on the Census tract. Removing these tract-only predictions 
from the data does not substantially affect the results (see Supplementary Figure 2). We 
converted the continuous probabilities to a binary non-White or Hispanic variable score 
based on whether some race other than White was assigned the greatest probability. We 
compare solar adopter demographics to the general population using state-level 
demographic statistics from the U.S. Census American Community Survey. However, 
we omit the statewide comparison for race because the continuous race probabilities 
estimated by wru cannot be meaningfully compared to the self-identified races reported 
in Census data.  
 
Unconditional demographic differences. We test observed (unconditional) differences 
for the hypotheses described in the main text. We use Wilcoxon rank-sum tests to test 
hypotheses for household incomes and Pearson 𝜒𝜒2 tests for the categorical variables 
(housing tenure, housing type, race). We compare medians because household 
demographic characteristics are not normally distributed. We make two adjustments to 
ensure independence between the comparison groups. First, we estimate comparative 
statistics within states to ensure that the community and rooftop solar data are pulled 
from the same geographic subsamples. Second, we restrict the rooftop solar adopter 
data to systems installed in 2022 to account for the fact that our community solar data 
reflect samples of customers enrolled in community solar in 2022 or 2023. That temporal 
misalignment matters because rooftop solar adoption has become more 
demographically equitable over time2. Both restrictions are reflected in the sample sizes 
reported in Table 1.  
 
Conditional probability model. To isolate the relative effects of household 
demographics on adoption choices we use the following logit model: 
 
 𝑝𝑝(𝐶𝐶𝐶𝐶) = 𝛼𝛼 + 𝐷𝐷𝐷𝐷 + 𝐶𝐶 + 𝜀𝜀 (1) 

 
Where 𝑝𝑝(𝐶𝐶𝐶𝐶) is the probability that a household is a community solar adopter (as 
opposed to a rooftop adopter), 𝐷𝐷 is a vector of dummy variables for the four 
demographic dimensions, and 𝐶𝐶 is a state random effect. We convert the income 
variable into a dummy value by bifurcating the records into households that earn more 
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or less than the state median income. The coefficient of interest is 𝐷𝐷, which represents 
the statistical association between household demographics and the household’s 
adoption choice. Note that the model is not designed for causal inference. Household 
adoption choices are likely driven by numerous idiosyncratic factors that could 
correlate with the demographic factors. The purpose of this model is to compare the 
relative weights of the 𝐷𝐷 coefficients to understand which demographic dimensions are 
most strongly associated with household adoption choices. We use state random effects 
to account for the possibility that community solar has distinct impacts on adopter 
demographics in different states with distinct policy contexts. In addition to comparing 
the coefficients, we also implement variations of the model in Equation (1) with 
different combinations of the demographic factors. We then compare Akaike 
Information Criterion (AIC) values across those models (see Figure 4). The AIC is a 
metric that simultaneously measures prediction accuracy while penalizing models with 
more variables. The AIC comparisons provide another way of comparing the relative 
contributions of demographic differences to household adoption choices.   
 
Analysis of LMI program participants and non-participants. State programs in Illinois, 
New York, and Oregon provided identifiers for LMI program participants. Participants 
may have received financial incentives to participate or were otherwise prioritized for 
adoption to comply with state LMI carveouts. We analyze evidence of inherent and 
policy impacts by distinguishing participants from non-participants in each state: 
Illinois (N=918 participants; 11,143 non-participants), New York (1,363 participants; 
6,733 non-participants), and Oregon (718 participants; 1,315 non-participants). For each 
state, we likewise create subsets of rooftop solar adopters who did not receive any LMI 
incentives for rooftop solar adoption. The accuracy of that analysis depends on how 
many participants would have adopted community solar without LMI program 
benefits, a concept known as free riding. At one extreme, inherent and policy impacts 
can be precisely identified if free riding is non-existent. However, if free riding is 
common, then the analysis would tend to understate inherent impacts and overstate 
policy impacts. There are at least three reasons to assume that free riding is not common 
in LMI community solar programs. First, evidence that LMI program participants are 
relatively difficult and costly to acquire24,25 suggests that participants would not 
otherwise have adopted. Second, LMI community solar programs use similar eligibility 
criteria as LMI rooftop solar incentives, and available evidence suggests that free riding 
in LMI rooftop solar programs is infrequent31. Third, as noted in the main text, the data 
suggest that participants vary significantly from non-participants in terms of race, 
indicating that LMI program benefits are reaching a distinct population of adopters. 
Still, some degree of free riding likely exists, meaning that policy impacts are 
imprecisely identified.   
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Imputed carveouts. Two states in our data (Colorado and Maryland) have specified 
percentage point minimum “carveouts” for LMI subscribers. We impute an effective 
LMI carveout for Massachusetts using data compiled in the LIFT Solar Toolkit. The 
LIFT Solar Toolkit identifies project capacity reserved for LMI subscribers. We divide 
the reserved LMI capacity by the total, cumulative community solar capacity deployed 
in the state based on data from Connelly25. As a point of reference, the same method 
yielded an imputed carveout of 5.9% in Colorado, close to the state’s mandated 
carveout of 5%. For all three states we isolate the bottom end of the community solar 
adopter income distribution in proportion to the carveout. For instance, Colorado 
requires that LMI households account for at least 5% of community solar customers, 
such that in that state we isolate the 5% of community solar adopters with the lowest 
incomes as “below” the carveout. In effect, this represents the most optimistic 
assumption for the efficacy of the LMI carveout and would thus tend to minimize any 
residual inherent impact. The results of this analysis are provided in Supplementary 
Figure 1, where points “below carveout” represent adopters below the implied carveout 
on the income distribution, and “above carveout” points represent adopters above those 
implied carveouts. 
 
Limitations. Two limitations noted in the main text are worth expanding upon. First, 
we analyze a geographically restricted sample of 11 states. While these 11 states 
represent relatively active community and rooftop solar markets, our analysis excludes 
important rooftop solar markets, notably California and Hawaii, and some emerging 
community solar markets, notably Florida and Georgia. We also recognize that our 
analysis of policy impacts is based on a further restricted sample of 3 states. For this 
reason, we emphasize results that are consistent across states rather than individual 
results within states, which may be less safely extrapolated. Second, all our community 
solar data are cross-sections of households that were actively subscribed at the time the 
data were generated. With those cross-sectional data, we lack insights into trends in 
community solar adoption over time. This limitation shaped our analysis of inherent 
and policy impacts. We have used the practical method of comparing cross-sections of 
community solar adopter demographics between policy program participants and non-
participants. As noted, our method only precisely identifies policy impacts under the 
strict assumption of no free riding in community solar LMI programs. While available 
evidence suggests that free riding is infrequent, free riding is likely non-zero and thus 
our policy impacts are imprecisely identified. An ideal approach—a suggestion for 
future research— would be to more precisely identify policy impacts through 
econometric analysis of changes in community solar adoption trends before and after 
policy implementation.  
 
Data availability 
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This work was performed using proprietary, household-level data that cannot be 
shared. However, elements of the rooftop solar data are publicly available from the 
Lawrence Berkeley National Laboratory: https://emp.lbl.gov/projects/solar-
demographics-trends-and-analysis. Other aggregated data will be made available upon 
reasonable request from the authors.  
 
Code availability 
Code will be provided on a publicly accessible web page upon acceptance. 
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