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Abstract

Modeling the Structure of the Human Semantic System

by

Catherine Chen

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Jack Gallant, Co-chair

Professor Daniel Klein, Co-chair

As humans, we use language throughout our everyday lives. When we use language our brains
perform complex processes, which involve perceiving sensory inputs, interpreting linguistic
structures, and accessing semantic memory. The human brain has evolved to perform these
tasks efficiently and across various contexts: we communicate through different sensory
modalities, languages, and levels of abstraction. How does the human brain support language
use? Answering this question will deepen our knowledge of human cognition, which in turn
can improve diagnoses of language disorders, enhance language education strategies, and
inform the development of more flexible artificial language systems.

Prior work suggests that language use engages a network of interacting brain regions. How-
ever, it remains unclear how these networks represent the multifaceted aspects of language
processing, and how they adapt to the diversity of contexts in which we use language.

This dissertation presents three neuroimaging studies of how the human brain represents
language across different contexts. The first experiment (Chapter 2) compares brain repre-
sentations between two different languages: English and Chinese. This experiment shows
that shared semantic representations are systematically modulated by each language to cre-
ate language-dependent representations. The second experiment (Chapter 3) compares brain
representations between different sensory modalities: reading and listening. The results show
that representations of language are shared between different sensory modalities, suggest-
ing that pathways for language integration may be shared between modalities. The third
experiment (Chapter 4) compares how concepts and relations are represented in the brain,
and suggests that the same neural processes may be used to represent both relations and
concepts. Together, these three studies show how the human brain encodes language across
diverse contexts, and highlight the intricacy, dynamism, and flexibility of the human seman-
tic system.
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Chapter 1

Introduction

As humans, we use natural language to understand and communicate about the world. To
use language, we perform complex, interacting processes: we transform low-level sensory
inputs into word-level representations, integrate information over long strings of words in
order to extract higher-level meaning, and connect this meaning to our stored knowledge of
the world. Importantly, our ability to use language is highly flexible. We can comprehend
language through different modalities, such as in text and speech; communicate in languages
with different orthographies and phonologies; and use language to convey different aspects
of a situation. How does the human brain support our complex yet flexible ability to use
language? In this dissertation, I investigate this question through a series of neuroimaging
studies.

Early neuroimaging work about how the human brain processes language often performed
controlled contrast studies (Binder et al., 2009). These studies presented participants with
sets of carefully controlled stimuli that differed in axes such as the types of concept categories
described (Friederici et al., 2000). They recorded brain responses to each condition within
the set, and then contrasted the magnitude of recorded responses between sets in order to
determine whether certain parts of the brain are more strongly activated by a particular
condition.

More recent work has highlighted the importance of using naturalistic experiments in
addition to the carefully controlled stimuli of early work. These naturalistic stimuli are
more complex and engaging, and elicit brain responses that better reflect how the brain pro-
cesses language in the real world (Hamilton & Huth, 2020; Nastase et al., 2020). However,
naturalistic stimuli pose methodological challenges. These stimuli elicit representations of
many different aspects of language processing, and the stimuli vary at a rate that is much
faster than the time resolution of many methods for recording brain responses. Thus, meth-
ods such as contrast studies are insufficient to disentangle the brain representations that
are evoked by naturalistic stimuli. A methodological innovation referred to as the encoding
model framework allows us to address these challenges. In the encoding model framework,
we construct numerical feature spaces that reflect aspects of a stimulus that are hypothe-
sized to be represented in the brain. Then we estimate encoding models that predict brain
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responses from those stimulus features, and use these models to test our hypotheses about
where and how each aspect of the stimulus is represented in the brain. This approach pro-
vides detailed, ecologically valid descriptions of how the brain represents different aspects of
language. Prior studies that used encoding models to analyze brain responses to naturalis-
tic language stimuli have shown that language processing engages a large network of brain
regions that span much of the temporal, parietal, and prefrontal cortices (Deniz et al., 2019;
Huth et al., 2016; Mitchell et al., 2008; Popham et al., 2021, e.g., ). These studies have
produced detailed maps of how semantic information in language is represented in the brain,
and how these representations are organized with respect to the representations evoked by
other modalities. In the following chapters I build upon this work to provide further insight
into the brain representations of language.

Chapter 2 investigates how the brain represents semantic information across different
languages. Participants who are fluent in both Chinese and English read the same narra-
tives in both languages while their brain responses were recorded with functional magnetic
resonance imaging (fMRI). I modeled brain representations of lexical semantics for each
language separately, and developed methods to characterize how these representations shift
between the two languages. The results show that lexical semantic representations are largely
shared between the two languages, but there are fine-grained shifts that systematically alter
semantic representations between the two languages. This study suggests that bilingual lan-
guage comprehension relies on shared semantic representations that are modulated by each
language.

Chapter 3 moves beyond representations of lexical semantic information, and investigates
representations of higher-level information that is conveyed across tens, hundreds, and even
thousands of words. This study investigates how the brain represents these different levels of
information (which we refer to as timescales) across different sensory modalities. Participants
listened to and read the same narratives while their brain responses were recorded with
fMRI. I modeled brain representations of different language timescales, and compared these
representations between the two modalities. I find that at the word-level and above, the
organization of timescale representations is strikingly consistent between the two modalities.
This study suggests that after low-level sensory processing, language is integrated along the
same pathways regardless of the sensory modality of the inputs.

Chapter 4 examines how the brain represents not only individual concepts, but also the
semantic relations between them. Participants performed an active relation-processing task
while brain responses were recorded with fMRI. I modeled brain representations of different
relations, and compared these relation representations to concept representations that are
evoked during passive language comprehension. I show that representations of relations are
organized much like those of concepts: each relation is represented in distinct areas of the
cortical surface, forming patterns that are consistent across individuals. This study suggests
that the same neural processes may be used for representing both relations and concepts.
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Chapter 2

Bilingual Language Processing Uses
Shared Semantic Representations that
are Modulated by Each Language

2.1 Abstract
Billions of people throughout the world are bilingual and can understand semantic concepts
in multiple languages. However, there is little agreement about how the brains of bilin-
guals represent semantic information from different languages. Some theories suggest that
bilingual speakers’brains contain separate representations for semantic information from
different languages, while others suggest that different languages evoke the same semantic
representations in the brain. To determine how the brains of bilinguals represent semantic
information from different languages, we used functional magnetic resonance imaging (fMRI)
to record brain responses while participants who are fluent in both English and Chinese read
several hours of natural narratives in each language. We then used this data to specifically
and comprehensively compare semantic representations between the two languages. We
show that while semantic representations are largely shared between languages, these repre-
sentations undergo fine-grained shifts between languages. These shifts systematically alter
how different concept categories are represented in each language. Our results suggest that
for bilinguals, semantic brain representations are shared across languages but modulated by
each language. These results reconcile competing theories of bilingual language processing.

2.2 Introduction
Over 4 billion people throughout the world are bilingual (Ansaldo et al., 2008; Bot, 2003)
and can comprehend semantic concepts in their primary and secondary languages. Brain
representations of semantic concepts have been extensively studied for single languages (usu-
ally English). However, relatively little is known about how the brains of bilinguals represent
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semantic concepts across different languages. Some theories suggest that the brains of bilin-
guals contain separate representations for different languages (de Groot, 1992; Dehaene et
al., 1997; Kim et al., 1997; Kroll & De Groot, 2005; MacNamara, 1967; Weinreich, 1986; Xu
et al., 2017). These theories are supported by evidence that semantic brain representations
are language-dependent: brain lesions can impair concept knowledge in one language but
spare others (Gomez-Tortosa et al., 1995; Ku et al., 1996; Paradis, 1985), and the perceived
emotional intensity or memorability of concepts can change between languages (Pavlenko,
2002; Schrauf & Rubin, 2004). A second group of theories suggests that different languages
evoke the same semantic brain representations (Abutalebi & Green, 2007; Caramazza &
Brones, 1980; de Groot, 1992; Grainger et al., 2010; Kroll & Stewart, 1994; Midgley et al.,
2008; Potter et al., 1984; Weinreich, 1986). These theories are supported by evidence of in-
terference between languages: second language acquisition can increase processing times for
false cognates (Dijkstra et al., 1999; Duyck, 2005; van Hell & Dijkstra, 2002), and restructure
concept categories in one’s primary language (Malik-Moraleda et al., 2023).

A third possibility is that semantic representations for different languages are neither
separate nor the same. Based on recent evidence that semantic representations can shift
to emphasize task-relevant concepts (Çukur et al., 2013; Deniz et al., 2023; Kiremitçi et
al., 2021; Nastase et al., 2017), we hypothesized that shared semantic representations are
modulated by each language (Figure 2.2a). For example, language-dependent perceptions
of emotional intensity (Pavlenko, 2002; Schrauf & Rubin, 2004) could arise from subtle
shifts in brain representations of emotion-related concepts. This hypothesis would reconcile
prior contradictory evidence for separate versus the same semantic representations between
languages.

To test these three possibilities, we designed a study to compare semantic representations
between languages. Six native Chinese speakers who are also fluent in English read natural
narratives for over two hours in each language, while functional magnetic resonance imaging
(fMRI) was used to record brain responses. Voxelwise modeling was used to estimate seman-
tic brain representations in each language. These brain representations were then compared
between the two languages. We found that semantic representations are largely shared be-
tween languages, but there are systematic differences between languages. Our results suggest
that shared semantic brain representations are modulated by each language.
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Figure 2.1: Hypothesis and experimental procedure. a. Schematic illustrating hypothesized
semantic representation shifts. The semantic tuning of a voxel describes its preference for each
semantic concept. Shifts in semantic representations were quantified as the change in semantic
tuning between languages. For each voxel, blue and red curves respectively denote semantic
tuning in English and Chinese. Arrows represent semantic tuning shifts from Chinese to En-
glish. The hypothetical voxel in the parietal cortex represents location-related concepts in both
languages, but emphasizes number-related aspects (“distance”) in English, and action-related
aspects (“navigation”) in Chinese. The hypothetical voxel in temporal cortex represents
family-related concepts in both languages, but emphasizes emotion-related aspects (“remem-
brance”) in English, and number-related aspects (“anniversary”) in Chinese. b. Experiment
and modeling procedure. Six fluent Chinese-English bilingual participants read over two hours
of narratives in each language while BOLD responses were measured using fMRI. Semantic
stimulus features were constructed by projecting each stimulus word into a 300-dimensional
embedding space (Bojanowski et al., 2017). Ridge regression was used to estimate encoding
models that describe voxelwise semantic tuning for each participant and language. Estimated
model weights were used to predict BOLD responses to held-out narratives not used for model
estimation. Model weights estimated in one language were used to predict BOLD responses to
the same language (red and blue arrows; within-language) and to the other language (purple
arrows; across-language). Prediction accuracy was quantified as the coefficient of determination
(CD; R2 between predicted and recorded BOLD responses.

2.3 Results
Narrative stories were presented to six Chinese-English bilinguals while fMRI was used to
record BOLD responses. Each narrative was presented in both English and Chinese as
written text. Words were presented one at a time at a natural reading rate. Each participant
read narratives for over two hours per language. Semantic stimulus features were extracted
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by projecting each word into an embedding space (fastText (Bojanowski et al., 2017; Joulin
et al., 2018)) in which words in different languages that express similar concepts project to
nearby vectors. (A separate embedding space (Devlin et al., 2019) produced similar results;
Figures 2.6-2.6). Regularized regression was used to estimate voxelwise encoding models
separately for each participant and language (Figure 2.2b). Nuisance features such as word
rate and spatiotemporal visual features were regressed out of BOLD responses prior to model
estimation. The estimated model weights describe semantic tuning at the highest spatial
resolution available in the data. Estimated model weights were compared between English
and Chinese to examine whether and how semantic representations differ between languages.
To evaluate model accuracy, estimated model weights were used to predict voxel responses
to held-out test data. To validate the results and ensure generalization to new participants,
data for participants P5 and P6 were not analyzed until the entire analysis pipeline was
finalized.

Figure 2.2: Cortical distribution of semantic representations for each language. To deter-
mine where semantic information is represented for each language, voxelwise models estimated
for each language were used to predict held-out data for the same language. Prediction ac-
curacy was computed as the CD (R2) between predicted and recorded BOLD responses. a.
Group-level prediction accuracy. Results are shown for each language on the flattened corti-
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cal surface of the template space. For both languages, prediction accuracy is highest in the
bilateral temporal, parietal, and prefrontal cortices. Prediction accuracy in these regions is sta-
tistically significant for each participant (Figure 2.6). The same brain regions are well-predicted
for both languages. (SFS=superior frontal sulcus; IFS=inferior frontal sulcus; STS=superior
temporal sulcus; ITS=inferior temporal sulcus, LH=left hemisphere; RH=right hemisphere) b.
Prediction accuracy by cortical region. For each brain region and participant, blue and red
markers show the mean prediction accuracy over voxels for English and Chinese respectively.
Bars show the mean across participants. Red asterisks denote the number of participants for
which prediction accuracy is significantly higher in Chinese than in English (one-sided p<.05
by a permutation test). While the same brain regions are well-predicted for both languages,
the semantic model explains more variability in brain responses for Chinese than for English.

Theories that different languages evoke the same or shared semantic brain representations
present two predictions. First, semantic information should be represented in the same
brain regions across languages. Second, semantic tuning within these regions should be
similar between languages. To determine which brain regions represent semantic information
for each language, we examined where model weights estimated for each language could
predict held-out test data for the same language. Prediction accuracy was computed as
the coefficient of determination (CD; R2) between predicted and recorded BOLD responses
for each voxel, participant, and language separately. Group-level results were computed by
projecting voxelwise accuracies for each participant to a template space (fsAverage (Fischl
et al., 1999)), and then averaging the projected values across participants for each vertex and
language separately. Figure 2.3a shows vertexwise group-level prediction accuracy for each
language separately. Results for each participant are similar to the group (Figures 2.6 and
2.6). For each language, prediction accuracy is highest within bilateral temporal, parietal,
and prefrontal cortices. These regions are sometimes referred to as the semantic system
(Binder et al., 2009; Huth et al., 2016). These results show that the same brain regions
represent semantic information for both languages.

While the same brain regions are well-predicted for both languages, visual inspection of
Figure 2.3a indicates that prediction accuracy is overall higher in Chinese than in English.
To quantify this difference for each brain region in the semantic system, we used FreeSurfer
(Desikan et al., 2006) regions of interest (ROIs) to identify voxels in each region, and then
computed average prediction accuracy separately for each language and region. Figure 2.3b
shows the average prediction accuracy for each language, region, and participant. Prediction
accuracy is significantly greater in Chinese than in English (one-sided p<.05 by a permutation
test for all brain regions and participants).

There are two potential explanations for lower English prediction accuracy. First, seman-
tic representations may constitute a lower proportion of overall brain responses to English.
For example, non-semantic aspects of language processing (e.g., high-level control) may more
strongly influence brain responses to English compared to Chinese. Alternatively, the to-
tal amount of explainable signal could be lower in English, such as if participants attended
less strongly to English than to Chinese stimuli (Bressler & Silver, 2010). To distinguish
between these possibilities, for each language we compute the total amount of explainable
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signal (noise-ceiling), as well as the proportion of total explainable signal that is predicted
by the semantic model (noise-ceiling corrected prediction accuracy) (Hsu et al., 2004; Sahani
& Linden, 2002; Schoppe et al., 2016). Across participants, the noise-ceiling was not lower
in English than in Chinese, but the noise-ceiling corrected prediction accuracy was signif-
icantly lower in English than in Chinese (Figures 2.6 and 2.6), suggesting that semantic
representations constitute a lower proportion of overall brain responses to English.

Figure 2.3: Shared semantic representations across languages. Hierarchical clustering on
estimated model weights was used to categorize voxels based on semantic tuning in each lan-
guage. a. Words closest to each cluster. The five clusters represent concepts related to family
(Cluster 1, green), communication (Cluster 2, yellow), cognition (Cluster 3, orange), locations
(Cluster 4, red), and numbers/names (Cluster 5, blue). b. Cortical distribution of semantic
clusters. Group-level results are shown for each language. Vertex color reflects the assigned
cluster. Poorly-predicted vertices are shown in grey. C. Confusion matrix of group-level cluster
assignments over well-predicted vertices. Cluster assignments match between languages for 81%
of vertices (one-sided p<.05, by a permutation test). This shows that semantic representations
are largely shared between languages.

Figure 2.3 shows that the same brain regions represent semantic information in both
languages. However, within these regions semantic representations could differ between
languages. For example, a voxel could activate in response to emotion-related concepts in
one language and to location-related concepts in the other. This voxel would represent
semantic information in both languages, but the semantic tuning of the voxel would differ
between languages. To determine whether semantic tuning is shared between languages, we
classify voxels into semantic clusters based on semantic tuning in each language, and then
evaluate whether cluster assignments match between languages.
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First, we used a cross-validated clustering approach (model connectivity (Meschke et al.,
2023)) to identify semantic clusters from the estimated model weights. Five clusters best
summarized the distribution of model weights across participants and languages (Figure 2.6).
To interpret each cluster, we identified the English stimulus words that are closest to each
cluster. Distance between a word and a cluster was computed as the Pearson correlation
between the word embedding and the cluster centroid. Figure 2.3a lists the closest words
to each cluster. The clusters categorize voxels into concepts related to family (Cluster 1),
communication (Cluster 2), cognition (Cluster 3), locations (Cluster 4), and numbers/names
(Cluster 5).

Then for each participant and language separately, each voxel was assigned to the seman-
tic cluster with the lowest Euclidean distance between the cluster centroid and the voxel’
s model weight. To summarize results across participants, we projected model weights for
each participant and language to the template space. Then for each vertex of the template
space and for each language separately, we computed the mean model weights across par-
ticipants, and used the mean model weights to assign each vertex to one of the five clusters.
Figure 2.3b shows cluster assignments at the group-level. Cluster assignments are shown for
vertices that were well-predicted in both languages (

√
R2 > 0.1) in at least one participant.

Visual inspection of Figure 2.3b suggests that cluster assignments are consistent between
languages. To quantify this consistency, we computed the confusion matrix between cluster
assignments in English and Chinese. Figure 2.3c shows the confusion matrix for group-level
cluster assignments. For 81% of well-predicted vertices cluster assignments match between
languages. For each participant, cluster assignments match between languages for over 70%
of well-predicted voxels (Figure 2.6). As a converging test for shared semantic representa-
tions between languages, we measured whether model weights estimated in one language
could predict voxel responses to the other language (across-language prediction accuracy).
Models estimated for English accurately predicted brain responses to Chinese and vice versa
throughout bilateral temporal, parietal, and prefrontal cortices (Figures 2.6 and 2.6). Over-
all, these results show that semantic representations are largely shared between languages.
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Figure 2.4: Cortical distribution of semantic tuning shifts between languages. Voxelwise se-
mantic tuning shift was defined as the change in model weights between English and Chinese:
semantic_tuning_shift = βen

||βen||2 −
βzh

||βzh||2 . For each voxel, the semantic tuning shift describes
which concepts elicit higher BOLD responses in one language relative to the other. The main
dimensions of voxelwise semantic tuning shifts were identified using PCA. The first tuning shift
PC, which we refer to as the primary semantic tuning shift dimension (PSSD), reliably explains
variance in semantic tuning shifts across voxels and participants (Figure 2.6). a. Interpretation
of the PSSD. Words for which embeddings are most negatively correlated with the PSSD are
shown in purple. Words for which embeddings are most positively correlated with the PSSD are
shown in green. The negative end of the PSSD emphasizes number/collection-related seman-
tics (purple), while the positive end emphasizes action/relationship-related semantics (green).
b. Cortical distribution of semantic tuning shifts. The direction of voxelwise semantic tuning
shifts was summarized with the primary tuning shift index (PTSI), which is the Pearson cor-
relation between a voxel’s semantic tuning shift and the PSSD. Group-level PTSI is shown
on the flattened cortical surface of the template space. Vertices shown in purple shift towards
the negative end of the PSSD. These vertices emphasize number/collection-related semantics
in English, and emphasize action/relationship-related semantics in Chinese. These vertices are
found in bilateral lateral parietal cortex (LPC), fusiform gyrus and near parahippocampal place
area (PPA), superior and inferior medial parietal cortex (MPC), and middle frontal cortex (FC).
Vertices shown in green shift toward the positive end of the PSSD. These vertices emphasize
action/relationship-related semantics in English, and number/collection-related semantics in
Chinese. These vertices are found in bilateral STS, LPC, middle MPC, superior frontal gyrus
(SFG), and inferior frontal gyrus (IFG). Poorly predicted vertices are shown in grey. c. Consis-
tency of PTSI between participants. For each participant, the other five participants were used
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to compute a partial-group estimate of vertexwise PTSI. Violinplots show the distribution of
vertexwise PTSI for each participant, separately for vertices in which PTSI is negative (purple
violinplots) and positive (green violinplots) in the partial-group. Vertices with positive PTSI
in the partial-group also have positive PTSI in the participant (p<.05 by a one-sided t-test
after Fisher z-transformation), and vertices with negative PTSI in the partial-group also have
negative PTSI in the participant (p<.05 by a one-sided t-test after Fisher z-transformation;
except P5). Thus, the cortical distribution of PTSI is consistent between participants. Overall,
there are systematic shifts in semantic tuning throughout the semantic system.

Figures 2.3 and 2.3 suggest that semantic representations are shared between languages.
However, given strong behavioral evidence for language-dependent semantic representations
(Pavlenko, 2002; Schrauf & Rubin, 2004), we hypothesized that shared semantic representa-
tions are modulated by each language (Figure 2.2a). For instance, a voxel might respond to
the same concept category (location-related concepts) in both languages, but the semantic
tuning of the voxel may subtly shift such that the voxel exhibits greater activation for con-
cepts associated with actions (“navigation”) in English, and for concepts associated with
numbers (“distance”) in Chinese.

To determine whether the shared semantic representations shown in Figure 2.3 are mod-
ulated by each language, we investigate the change in estimated model weights between lan-
guages. We refer to the change in estimated model weights: βen

||βen||2 −
βzh

||βzh||2
as the voxelwise

semantic tuning shift. The semantic tuning shift describes which concepts are emphasized
in each language relative to the other for each voxel. However, estimated model weights are
affected both by the semantic tuning of the voxel and random measurement noise. Thus, for
each individual voxel, differences in estimated model weights partially reflect measurement
noise. To isolate true shifts in semantic tuning, we focus on the dimensions of estimated
semantic tuning shifts that are reliable across voxels and participants.

To identify reliable dimensions of semantic tuning shifts, we used a leave-one-participant-
out procedure. For each of the six participants, we concatenated voxelwise semantic tuning
shifts from the other five participants and then use principal component analysis (PCA)
to obtain 300 orthogonal axes (principal components; PCs) that are sorted by the ratio of
variance explained. We evaluated how well each PC explains variance in semantic tuning
shifts for the left-out participant. The chance rate was defined as the variance explained by
the primary dimensions of semantic tuning within each language. The top semantic tuning
shift PC, which we refer to as the primary semantic tuning shift dimension (PSSD), reliably
explains more variance than chance (Figure 2.6). To obtain an estimate of the PSSD that
incorporates data from all six participants, we applied PCA to voxelwise semantic tuning
shifts concatenated over all six participants. The PSSD is the main dimension along which
semantic representations shift between languages.

To interpret the PSSD, we identified the semantic concepts that correspond to each end
of the PSSD. Figure 2.3a shows the English stimulus words for which embeddings are the
most positively or negatively correlated with the PSSD. The most negatively correlated
words (colored in purple) are related to numbers and collections (e.g., “three”, “both”
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). The most positively correlated words (colored in green) are related to actions and human
relationships (e.g.,“leave”,“boyfriend”). (Interpretation of the PSSD based on Chinese
stimulus words is similar and is shown in Figure 2.6.) Thus, semantic tuning shifts towards
the negative end of the PSSD emphasize number/collection-related semantics, while shifts
towards the positive end emphasize action/relationship-related semantics.

To visualize the cortical distribution of semantic tuning shifts, we examine the direction of
semantic tuning shifts along the PSSD. We refer to the Pearson correlation between a voxel’
s semantic tuning shift vector and the PSSD as the primary tuning shift index (PTSI).
Group-level PTSI was computed by projecting voxelwise PTSI for each participant into the
template space and then computing the average over participants for each vertex. Figure
2.3b shows group-level vertexwise PTSI on the flattened surface of the template space. Ver-
tices with negative PTSI (shown in purple) emphasize number/collection-related semantics
in English, and action/relationship-related semantics in Chinese. These vertices are found
in bilateral lateral parietal cortex (LPC), fusiform gyrus and near parahippocampal place
area (PPA), superior and inferior medial parietal cortex (MPC), and middle frontal cortex
(FC). Vertices with positive PTSI (shown in green) emphasize action/relationship-related
semantics in English, and number/collection-related semantics in Chinese. These vertices
are found in bilateral STS, LPC, middle MPC, superior frontal gyrus (SFG), and inferior
frontal gyrus (IFG). To quantify the consistency of PTSI across participants, we compared
PTSI between participants in the template space. We held out each of the six participants
in turn, and used the other five participants to compute a partial-group estimate of PTSI for
each vertex. Then we compared vertexwise PTSI between each participant and the partial-
group. Figure 2.3c shows the distribution of vertexwise PTSI for each individual participant,
separately for vertices in which PTSI is negative and positive in the partial-group. (For each
participant we only include vertices that were well-predicted in both languages;

√
R2 > 0.1).

Vertices with positive PTSI in the partial-group also have positive PTSI for each individ-
ual participant (p<.05, by a one-sided t-test after Fisher z-transformation). Vertices with
negative PTSI in the partial-group also have negative PTSI for each individual participant
(p<.05, by a one-sided t-test after Fisher z-transformation; except P6). The distribution of
PTSI is consistent between participants.

To ensure that estimated semantic tuning shifts are not biased by idiosyncrasies of the
fastText embedding space, we replicated our analyses with a separate semantic embedding
space based on a multilingual language model (mBERT (Devlin et al., 2019)) that differs
from fastText in its training objectives, training data, and embedding dimensionality (Figures
2.6-2.6).

To ensure that estimated semantic tuning shifts do not merely reflect misalignments
in word embeddings between languages, we show that the directions of word embedding
misalignment do not explain the estimated semantic tuning shifts (Figure 2.6). Overall, the
results in Figure 2.3 show that there are systematic semantic tuning shifts between languages.
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Figure 2.5: Semantic tuning shifts for different semantic clusters. Voxels were categorized
into the semantic clusters shown in Figure 2.3. The distribution of semantic tuning shifts was
examined for each semantic cluster. a. Semantic tuning shifts for each cluster. Histograms show
the distribution of voxelwise PTSI for each cluster and participant separately. Voxels in the
family-, communication-, and cognition-related clusters (Clusters 1, 2, and 3) have positive PTSI
(p<.05 by a two-sided t-test after Fisher z-transformation). Thus, representations of family-,
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communication-, and cognition-related concepts shift to emphasize action/relationship-related
semantics in English as compared to Chinese. Voxels in the location- and number/name-related
clusters (Cluster 4 and 5) have negative PTSI (p<.05 by a two-sided t-test after Fisher z-
transformation). Thus, representations of location- and name-number-related concepts shift to
emphasize number/collection-related semantics in English as compared to Chinese. b. Semantic
tuning shift for two selected voxels. The voxel in frontal cortex (colored in orange) has positive
PTSI. This voxel represents concepts related to cognition (Cluster 3) in both languages, but
emphasizes action/relationship-related aspects in English (e.g.,“know”) compared to Chinese
(e.g., “really”). The voxel in parietal cortex (colored in red) voxel has negative PTSI. This
voxel represents concepts related to locations (Cluster 4) in both languages, but emphasizes
number/collection-related aspects in English (e.g.,“four”) compared to Chinese (e.g.,“moving”
). These two examples illustrate how semantic tuning is modulated between languages.

Figure 2.3 shows that the semantic tuning of individual voxels shifts between languages.
To determine whether semantic tuning shifts systematically modulate concept representa-
tions, we tested whether voxels that are tuned towards similar concepts shift in a consistent
direction. For each of the clusters shown in Figure 2.3, we examined the direction of semantic
tuning shifts for voxels in that semantic cluster. Figure 2.3a shows the PTSI for each cluster
and participant, when semantic clusters are identified using the English model weights. Re-
sults are consistent when semantic clusters are identified using Chinese model weights (Figure
2.6). For voxels in Clusters 1, 2, and 3 PTSI is positive in all participants (p<.05 for each
cluster by a two-sided t-test after Fisher z-transformation). Thus, representations of fam-
ily, communication, and cognition-related concepts emphasize action/relationship-related
aspects in English and number/collection-related aspects in Chinese. For voxels in Clusters
4 and 5 PTSI is negative in all participants (p<.05 for each cluster by a two-sided t-test
after Fisher z-transformation). Thus, representations of location- and number/name-related
concepts emphasize number/collection-related aspects in English and action/relationship-
related aspects in Chinese.

Figure 2.3b illustrates semantic tuning shifts for two selected voxels. One voxel was
selected from Cluster 3 and has positive PTSI. This voxel represents cognition-related con-
cepts in both languages, but emphasizes action/relationship-related aspects in English (e.g.,
“know”) compared to Chinese (e.g.,“really”). The other voxel was selected from Cluster 4
and has negative PTSI. This voxel represents location-related concepts in both languages, but
emphasizes numeric aspects in English (e.g.,“four”) compared to Chinese (e.g.,“moving”
). These two examples show how a voxel can represent the same semantic category between
languages, but also exhibit semantic tuning shifts between languages. Overall, the results in
Figure 2.3 show that each language systematically modulates semantic representations.

2.4 Discussion
This study compares semantic representations in the brain between English and Chinese in
fluent Chinese-English bilinguals and provides unique evidence for how the brain represents
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semantic information in different languages. First, temporal, parietal, and prefrontal cortices
represent semantic information in both languages (Figures 2.3, 2.6, 2.6, 2.6, 2.6). Second,
semantic representations are largely similar between languages (Figures 2.3, 2.6, 2.6, 2.6).
Third, there are systematic shifts in voxelwise semantic tuning between languages (Figures
2.3, 2.3, 2.6, 2.6, 2.6). Our results generalize across participants, including the two held-out
participants (P5 and P6). Taken together, these results suggest that in bilinguals shared
semantic brain representations are modulated by each language.

Prior neuroimaging work provided mixed evidence as to whether brain responses to dif-
ferent languages are different (Buchweitz, Mason, Hasegawa, & Just, 2009; Dehaene et al.,
1997; Honey et al., 2012; Kim et al., 1997) or the same (Buchweitz et al., 2012; Chee et
al., 1999; Illes et al., 1999; Klein et al., 1995; Luke et al., 2002; Malik-Moraleda et al.,
2022). However, prior studies suffered from three limitations. First, prior studies did not
explicitly model semantic representations. Thus, it is unclear whether previously reported
results reflect semantic representations or other aspects of language processing. Second,
many prior studies involved different participants for different languages (Dunagan et al.,
2022; Honey et al., 2012; J. Li et al., 2022; Xu et al., 2017). Thus, individual differences in
brain function and anatomy (Fedorenko & Kanwisher, 2009) may have exaggerated reported
differences. Third, many prior studies used controlled stimuli. Thus, it was unclear whether
reported results generalize to naturalistic settings (Hamilton & Huth, 2020). In this study,
we explicitly modeled semantic representations, performed within-participants comparisons,
used naturalistic stimuli, and evaluated the generalizability of our results to held-out par-
ticipants. These contributions enabled us to identify previously unknown shifts in semantic
representations between languages.

Our results provide a brain-based explanation that reconciles behavioral evidence of
shared and different semantic representations between languages. First, we show that se-
mantic representations in the brain are largely shared. Thus, knowledge of two languages
can easily affect each other. This explains how linguistic phenomena such as false cognates
(Dijkstra et al., 1999; Duyck, 2005; van Hell & Dijkstra, 2002) can generate interference ef-
fects in bilinguals. Second, we show that shifts in semantic tuning systematically modulate
brain representations. Thus, the perceived meaning of words can change between languages.
This explains behavioral evidence that perceptions of concepts such as numbers and emo-
tions change between languages (Dehaene et al., 1999; Pavlenko, 2002; Schrauf & Rubin,
2004; Spelke & Tsivkin, 2001).

The results and methodology presented here reconciles competing theories of bilingual
semantic processing, and will enable future studies of semantic tuning shifts across additional
languages as well as over the course of language acquisition.
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2.5 Methods
Stimuli
Narrative transcription, translation, and preprocessing

The stimuli consisted of eleven 10- to 15 min narratives from The Moth Radio Hour. In each
narrative, a speaker tells an autobiographical story in front of a live audience. The selected
narratives cover a wide range of topics and have been used in previous studies (de Heer et al.,
2017; Deniz et al., 2019; Huth et al., 2016; LeBel et al., 2023). The audio recording of each
narrative was manually transcribed, and the written transcription was aligned to the audio
recording. (Details of audio transcription and alignment are described in prior work (Deniz
et al., 2019)).

The original narratives were performed verbally in English. To construct matched Chi-
nese stimuli, each of the English narratives was translated into Chinese by a professional
translation service. To obtain word presentation times that correspond to natural speech,
each translated narrative was read aloud by a professional voice actor. Then the written
translations were aligned to these audio recordings. Chinese stimuli were presented with
simplified Chinese characters (简化字).

Stimulus train and test split

Ten train narratives were used for model estimation, and one held-out test narrative was
used for model evaluation. The same test narrative was used for both languages. To obtain
noise-ceiling estimates, the test narrative was played to each participant four times in each
language. (For P1, the test narrative was played only twice in Chinese due to a change in
stimulus design after the first collected sessions.)

Stimulus presentation format

The words of each narrative were presented one-by-one at the center of the screen using a
Rapid Serial Visual Presentation (RSVP) procedure (Forster, 1970). Each word was pre-
sented for a duration equal to the duration of that word in the spoken version of the narrative.

Each word was presented at the center of the screen in isolation, and a white fixation
cross was present at the center of the display throughout the experiment. Participants were
asked to fixate on a center cross while reading the narrative. Participants’eye movements
were monitored at 60 Hz throughout the scanning sessions using a custom-built camera
system equipped with an infrared source (Avotec) and the View-Point EyeTracker software
suite (Arrington Research). The eye tracker was calibrated at the end of each run of data
acquisition.

Functional MRI data were collected during four 3-hour scanning sessions that were per-
formed on different days. Each scanning session consisted of seven functional runs. Two
of these runs presented the test narrative in a single language. The remaining five runs
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presented five different training narratives. The language of the training narratives was
interleaved across runs.

All participants read all the narratives in both English and Chinese. Narrative presen-
tation order was balanced between languages and across participants.

To verify comprehension and attention, at the end of each session participants were asked
outside the scanner to recount the contents of each narrative. All participants were able to
accurately summarize the contents of each narrative.

fMRI data acquisition
Whole-brain MRI data were collected on a 3T siemens TIM trio scanner at the UC Berkeley
Brain Imaging Center. A 32-channel Siemens volume coil was used. Functional scans were
collected using a T2*-weighted gradient-echo EPI with repetition time (TR) 2.0045s, echo
time (TE) 35ms, flip angle 74°, voxel size 2.24x2.24x4.1 mm (slice thickness 3.5mm with 18%
slice gap), matrix size 100x100, and field of view 224x224 mm. Thirty axial slices were pre-
scribed to cover the entire cortex and were scanned in interleaved order. A custom-modified
bipolar water excitation radiofrequency (RF) pulse was used to prevent contamination from
fat signals. Anatomical data were collected using a T1-weighted multi-echo MP-RAGE se-
quence on the same 3T scanner.

To stabilize head motion during scanning sessions, participants wore a personalized head
case that precisely fit the shape of each participant’s head (Gao, 2015; Power et al., 2019).

fMRI data pre-processing
Each functional run was motion-corrected using the FMRIB Linear Image Registration Tool
(FLIRT) from FSL (Jenkinson et al., 2012). All volumes in the run were averaged across
time to obtain a high quality template volume. FLIRT was used to automatically align
the template volume for each run to the overall template, which was chosen to be the
temporal average of the first functional run for each participant. These automatic align-
ments were manually checked and adjusted as necessary to improve accuracy. The cross-run
transformation matrix was then concatenated to the motion-correction transformation ma-
trices obtained using MCFLIRT, and the concatenated transformation was used to resample
the original data directly into the overall template space. Noise from motion, respiratory,
and cardiac signals were removed with a component-based detrending method (CompCor
(Behzadi et al., 2007)). Responses were z-scored separately for each voxel and narrative.
During z-scoring, the mean response across time was subtracted and the remaining response
was scaled to have unit variance. Before data analysis, 10 TRs from the beginning and 10
TRs at the end of each narrative were discarded in order to account for the 10 seconds of
silence at the beginning and end of each scan and to account for non-stationarity in brain
responses at the beginning and end of each scan.
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Cortical surface reconstruction and visualization
Cortical surface meshes were generated from the T1-weighted anatomical scans using FreeSurfer
software (Fischl et al., 1999). Before surface reconstruction, anatomical surface segmenta-
tions were carefully hand-checked and corrected using Blender software and pycortex (Com-
munity, 2018; Gao et al., 2015). Relaxation cuts were made into the surface of each hemi-
sphere. Blender and pycortex were used to remove the surface crossing the corpus callosum.
The calcarine sulcus cut was made at the horizontal meridian in V1 using retinotopic map-
ping data as a guide.

Functional images were aligned to the cortical surface using pycortex. Functional data
were projected onto the surface for visualization and analysis using the line-nearest scheme in
pycortex. This projection scheme samples the functional data at 32 evenly spaced intervals
between the inner (white matter) and outer (pial) surfaces of the cortex and then averages
together the samples. Samples are taken using nearest-neighbor interpolation, wherein each
sample is given the value of its enclosing voxels.

Cortical parcellation
FreeSurfer ROIs were used to anatomically localize the temporal, parietal, and prefrontal
regions for each participant. ROIs were based on the Desikan-Killiany atlas (Desikan et al.,
2006). The ROIs used for the temporal region were ”bankssts”, ”inferiortemporal”, ”mid-
dletemporal”, ”superiortemporal”, ”temporalpole”, ”transversetemporal”, ”fusiform”, ”en-
torhinal”, ”parahippocampal”. The ROIs used for the parietal region were ”inferiorparietal”,
”superiorparietal”, ”supramarginal”, ”precuneus”, ”isthmuscingulate”, ”posteriorcingulate”.
The ROIs used for the prefrontal region were ”caudalmiddlefrontal”, ”parsopercularis”, ”par-
sorbitalis”, ”parstriangularis”, ”rostralmiddlefrontal”, ”superiorfrontal”, ”frontalpole”, ”cau-
dalanteriorcingulate”.

Localizers for known ROIs
Known ROIs were localized separately in each participant using a visual category localizer
and a retinotopic localizer (Hansen et al., 2007; Spiridon et al., 2006). Details of localizer
experiments are provided in prior work (Deniz et al., 2019; Huth et al., 2016).

Participants
Functional data were collected from six participants: P1 (29F), P2 (25M), P3 (25F), P4
(25M), P5 (24F), P6 (26M). Participant P1 was an author of this paper. Language proficiency
of each participant was evaluated by the Language Experience and Proficiency Questionnaire
(LEAP-Q) (Kaushanskaya et al., 2020) and the Language History Questionnaire (LHQ3)
(P. Li et al., 2020). All participants were fluent in both Mandarin Chinese (native) and
English (non-native). Participants began English language acquisition between the ages of
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2 and 11, and spent between 5 and 12 years in a country where English is spoken. At
the time of the experiment, participants primarily used Chinese in interactions with family,
English in interactions at school/work, and a mix of the two languages in interactions with
friends. Please see Supplementary Table 2.1 for additional details of participants’use of
each language. All participants were healthy and had normal or corrected-to-normal vision.
All subjects were right handed or ambidextrous according to the Edinburgh handedness
inventory (laterality quotient of -100: entirely left-handed, +100: entirely right-handed)
(Oldfield, 1971a). Laterality scores were +5, 0, +90, +100, +65, +65 for P1-6 respectively.

Statistical analysis
Voxelwise modeling (VM) was used to model BOLD responses (de Heer et al., 2017; Deniz
et al., 2019; Huth et al., 2016; Naselaris et al., 2011; M. C.-K. Wu et al., 2006). In the
VM framework, stimulus and task parameters are nonlinearly transformed into sets of fea-
tures (also called feature spaces) that are hypothesized to be represented in brain responses.
Linearized regression is used to estimate a separate encoding model for each voxel and fea-
ture space. Each encoding model describes how a feature space is represented in the BOLD
response of a voxel. A held-out dataset that was not used for model estimation is used to
evaluate model prediction accuracy and to determine the significance of the model prediction
accuracy.

A ll model fitting and analysis was performed using custom software written in Python,
making heavy use of NumPy (C. R. Harris et al., 2020)], SciPy (Virtanen et al., 2020),
Matplotlib (Hunter, 2007), Himalaya (Dupré la Tour et al., 2022), and Pycortex (Gao et al.,
2015).

Construction of semantic feature spaces

To capture the semantic content of the stimulus narratives, each word of the stimulus nar-
rative was projected to a 300-dimensional embedding space (Bojanowski et al., 2017). Em-
bedding spaces were constructed separately for English and for Chinese. The embedding
spaces were orthogonally transformed to align the English and Chinese embedding spaces,
such that there is a high correlation between embeddings of words in different languages
that reflect the same concept (Joulin et al., 2018).

Because of non-isometry between embedding spaces of different languages and limita-
tions to multilingual alignment procedures (Søgaard et al., 2018), embedding spaces are not
perfectly aligned between languages. For example two words that are direct translations of
each other (e.g.,“table”and“桌子”[table]) may not project to exactly the same vector. To
ensure that results are not specific to the idiosyncrasies of a particular embedding space or
a particular imperfection in cross-lingual embedding alignments, all analyses were replicated
with a different embedding space, multilingual BERT (mBERT, bert-base-multilingual-cased
(Devlin et al., 2019)). mBERT is a twelve-layer contextual language model that was jointly
trained on text from 104 languages. No explicit cross-lingual alignment object was included
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during the training of mBERT, but embeddings in some layers are implicitly aligned over
the course of training (Pires et al., 2019). To obtain word embeddings from mBERT, each
sentence of the stimulus narratives was provided as input to mBERT and then the 768-
dimensional activation of layer nine was used as an embedding of each word. Layer 9 was
chosen because it produces the best aligned embeddings (Figure 2.6), and because interme-
diate layers of contextual language models have been shown to produce the most accurate
predictions of brain responses (Caucheteux & King, 2022; Chen, Dupré la Tour, et al., 2024;
Lamarre et al., 2022; Schrimpf et al., 2021; Toneva & Wehbe, 2019).

Construction of low-level feature spaces

Seven low-level feature spaces were constructed to account for the effects of low-level stimulus
information on BOLD responses. For both languages, models were fit with feature spaces
that reflect visual spatial and motion features (motion energy) (Adelson & Bergen, 1985;
Nishimoto et al., 2011; Watson & Ahumada, 1985), word count, single phonemes, diphones,
triphones (Gong et al., 2023), and intermediate level features that capture orthographic
similarities by measuring the pixelwise overlap between words (Gong, 2024). For English, an
additional low-level feature space reflected letter count. For Chinese, an additional low-level
feature space reflected character count.

Stimulus feature space preprocessing

Before voxelwise modeling, each stimulus feature was truncated, downsampled, z-scored,
and delayed. Data for the first 10 TRs and the last 10 TRs of each scan were truncated to
account for the 10 seconds of silence at the beginning and end of each scan and to account
for non-stationarity in brain responses at the beginning and end of each scan. An anti-
aliasing, 3-lobe Lanczos filter with cut-off frequency set to the fMRI Nyquist rate (0.25
Hz) was used to resample the stimulus features to match the sampling rate of the fMRI
recordings. Then the stimulus features were each z-scored in order to account for z-scoring
performed on the MRI data (For details see Section 2.5). In the z-scoring procedure, the
value of each feature channel was separately normalized by subtracting the mean value of
the feature channel across time and then dividing by the standard deviation of the feature
channel across time. Lastly, finite impulse response (FIR) temporal filters were used to delay
the features in order to model the hemodynamic response function of each voxel. The FIR
filters were implemented by concatenating feature vectors that had been delayed by 2, 4,
6, and 8 seconds (following prior work (Deniz et al., 2019; Huth et al., 2016; P. Li et al.,
2020)). A separate FIR filter was fit for each feature, participant, and language.

Voxelwise encoding model fitting

Voxelwise encoding models were estimated in order to determine which features are repre-
sented in each voxel. Each model consists of a set of regression weights that describes BOLD
responses in a single voxel as a linear combination of the features in a particular feature
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space. Regression weights were estimated using banded ridge regression (Nunez-Elizalde et
al., 2019). Unlike standard ridge regression, which assigns the same regularization parame-
ter to all feature spaces, banded ridge regression assigns a separate regularization hyperpa-
rameter to each feature space. Banded ridge regression thereby avoids biases in estimated
model weights that could otherwise be caused by differences in feature space distributions.
Mathematically, for a train dataset with v voxels and n TRs, the m delayed feature spaces
Fi(X), i ∈ {1, ...,m} (each dimension pi) were concatenated to form a feature matrix F ’(X)
(dimension

∑m
i pi × n). Then banded ridge regression was used to estimate a mapping B

(dimension v ×
∑m

i pi) from F ’(X) to the matrix of voxel responses Y (dimension v × n).
B is estimated according to B̂ = arg minB ||Y −BF (X)||22 + λ||CB||22. The diagonal matrix
C of regularization hyperparameters for each feature space and each voxel is optimized over
10-fold cross-validation. See Section 2.5 for details.

Stepwise regression procedure

To remove confounds from stimulus correlations between semantics and low-level sensory
stimulus features, a stepwise regression procedure was used. First banded ridge regression
was used to jointly estimate encoding models that predict BOLD responses from the seven
low-level stimulus features. Only data from the train narratives was used to estimate models.
Then, the low-level models were used to predict BOLD responses to the train and test
narratives. The predicted BOLD responses Ŷlowlevel,train and Ŷlowlevel,test were subtracted from
the true BOLD responses Ytrain, Ytest. The residual BOLD responses Ytrain − Ŷlowlevel,train,
Ytest−Ylowlevel,test were zscored. During z-scoring, for each voxel separately the mean response
across time was subtracted and the remaining response was scaled to have unit variance. The
z-scored residual BOLD responses were used to estimate encoding models that predict BOLD
responses from semantic stimulus features.

Regularization hyperparameter selection

Five-fold cross-validation was used to find the optimal regularization hyperparameters for
each feature space and voxel. Hyperparameter candidates were chosen with a random search
procedure (Bergstra & Bengio, 2012): 1000 normalized hyperparameter candidates were
randomly sampled from a dirichlet distribution and were then scaled by 21 log-spaced
values ranging from 10−10 to 1010. The regularization hyperparameters for each feature
space and voxel were selected as the hyperparameters that produced the minimum squared
error (L2) loss between the predicted voxel responses and the recorded voxel responses
(arg minhyperparameters ||ŷ− y||22). Regularization hyperparameters were chosen separately for
each participant and language. Hyperparameter search was performed using the Himalaya
Python package (Dupré la Tour et al., 2022).
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Model estimation and evaluation

The selected regularization hyperparameters were used to estimate model weights that map
from the semantic feature space to voxel BOLD responses. Model weights were estimated
separately for each voxel, language, and participant. The model weights for each voxel and
language reflect the semantic tuning of the voxel in that language.

The test dataset was not used to select hyperparameters or to estimate regression weights.
The prediction accuracy R2 of the feature spaces was computed per voxel as the coefficient of
determination (CD) between the predicted voxel responses and the recorded voxel responses
on the test dataset. To determine which voxels represent semantic information in each
language, prediction accuracy was computed for within-language predictions (train and test
on the same language). To determine how well model weights estimated for one language
generalize to the other language, prediction accuracy was also computed for across-language
predictions (train on one language, and test on a different language).

A permutation test with 1000 iterations was used to compute the statistical significance of
prediction accuracy. In each permutation, the test responses were shuffled in blocks of 10 TRs
(Chen, Dupré la Tour, et al., 2024; Deniz et al., 2019; Jain et al., 2020; Lamarre et al., 2022;
LeBel et al., 2023; Oota et al., 2023; Reddy & Wehbe, 2021; Tang et al., 2024). Shuffling
was performed in blocks of 10 TRs in order to preserve autocorrelations in voxel responses.
Then the prediction accuracy (R2) was computed between the predicted responses and the
permuted test responses. The distribution of test accuracies over permutation iterations was
used as a null distribution to compute the p-value of prediction accuracy for each voxel.
A Benjamini-Hochberg correction for multiple comparisons was applied to the voxelwise p-
values (Benjamini & Hochberg, 1995). Permutation tests were performed separately for each
voxel, language, and participant.

Noise-ceiling correction was performed by normalizing the prediction accuracy of each
voxel R2 by the maximum possible prediction accuracy (noise-ceiling) (Hsu et al., 2004; Sa-
hani & Linden, 2002; Schoppe et al., 2016). To compute the noise-ceiling, first the maximum
explainable variance (EV, also referred to as signal power) is computed for each voxel. EV
measures the consistency of measured BOLD responses over repeated stimulus presentations,
and reflects the amount of response variance in the test data that could be explained by a
perfect model. Formally, for a test dataset with N repeats of a T TR test narrative, and
recorded BOLD responses y1…yN ∈ RT for a single voxel, EV is defined as follows (each yi
is first zscored across time):

Ȳ =
1

N

N∑
i=1

yi

EV =
1

N − 1
(NV arȲ − 1

N

N∑
i=1

V ar(Yi))

The noise-ceiling R2
max is obtained by dividing the EV of each voxel by V ar(Ȳ ). The

noise-ceiling corrected prediction accuracy R2
norm is then obtained for each voxel by dividing
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the prediction accuracy R2 by the noise-ceiling R2
max. For very noisy voxels, the estimated

noise-ceiling may be lower than the measured R2 and therefore lead to divergent estimates of
R2

norm. We used a heuristic to correct for this divergence. We identified the set of voxels where
R2 is greater than R2

max, selected the maximum R2
max over these voxels, and then clipped

R2
max to be above this maximum value. Note that this heuristic results in a conservative

estimate of the noise-ceiling corrected prediction accuracy.

Group-level prediction accuracy

Group-level prediction accuracy was computed by computing prediction accuracy for each
participant in the participant’s native brain space, and then projecting individual participant
results into a template space (fsAverage (Fischl et al., 1999)). Average prediction accuracy
across six participants was computed for each fsAverage vertex.

Generalization to new participants

To ensure generalization to new participants, two steps were performed. First, the entire
analysis was performed at the individual participant level –group-averaged results are shown
only as summary statistics. Second, before the final analyses were performed, two out of
the six participants were set aside as held-out participants. The data for these participants
were not analyzed until the data analysis and interpretation pipeline was finalized (Popham
et al., 2021).

Voxel Selection for Tuning Analyses
To ensure that semantic tuning shift analyses were performed only on voxels that represent
semantic information in both English and Chinese, all of the following model weight inter-
pretation analyses were performed only on voxels that were well-predicted (

√
R2 > 0.1) in

both English and Chinese.

Semantic Tuning Shifts
The semantic tuning shift of each voxel was used to describe how voxelwise semantic tuning
changes between languages. First, the model weights were normalized for each language and
voxel by dividing each 300-dimensional vector of model weights by the L2-norm of the vector.
Then, the semantic tuning shift of each voxel was computed by subtracting the normalized
Chinese model weights from the normalized English model weights. Formally, the semantic
tuning shift for a voxel with weights βen and βzh was defined as semantic_tuning_shift =

βen

||βen||2 −
βzh

||βzh||2
.

The semantic tuning shift vector for each voxel describes how semantic tuning changes
from Chinese to English. For example, for a voxel that becomes more tuned towards number-
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related semantics when the stimulus language changes from Chinese to English, the semantic
tuning shift vector would point in the direction of number semantics in the embedding space.

Note that defining the semantic tuning shift as the change in tuning from Chinese to
English ( βzh

||βzh||2
− βen

||βen||2 ) would change the sign of the semantic tuning shift vector but also
swap the languages on each end of the vector. Thus, the choice to define semantic tuning
shift as the shift from Chinese to English rather than from English to Chinese does not affect
the reported results.

Dimensions of semantic tuning shift

Principal component analysis (PCA) was used to determine the main directions of semantic
tuning shifts. Because model weights accurately describe semantic tuning only for well-
predicted voxels, we only investigated semantic tuning shifts for voxels that were well-
predicted in both languages (see Section 2.5 for details; selecting voxels based on significance
instead of prediction accuracy produces similar results as shown in Figure 2.6). To increase
the influence of better-predicted voxels on the estimated principal components (PCs), the
semantic tuning shift of each voxel was scaled by the voxel’s mean prediction accuracy
across languages. The semantic tuning shift vectors were concatenated across participants
and languages. PCA was applied to the concatenated semantic tuning shift vectors to find a
set of orthogonal axes that best explain variance in voxelwise semantic tuning shift vectors.
The PCs that explain the highest variance in voxelwise semantic tuning shift describe the
primary semantic dimensions of semantic tuning shifts. We refer to the PC that explains
the most variance in voxelwise semantic tuning shifts as the primary semantic tuning shift
dimension (PSSD). To examine whether the semantic tuning shift for each voxel is towards
the negative or positive end of the PSSD, the Pearson correlation was computed between
the semantic tuning shift vector of each voxel and the PSSD. For each voxel we refer to this
correlation as the primary tuning shift index (PTSI).

Weight Clustering
A clustering approach was used to separate voxels into groups that represent similar concepts
(Meschke et al., 2023). Model weights for each participant and language were projected to
a standard template space (fsAverage (Fischl et al., 1999)). Each projected model weight
βvertex,participant,language ∈ R300 was normalized to have unit L2-norm: βnormalized =

β
||β||2 . The

normalized model weights were averaged across participants and languages, and then hierar-
chical clustering was performed on the normalized group-averaged model weights. Clustering
was only performed on vertices that were well-predicted in both languages (group-averaged√

R2
en > 0.05 and

√
R2

zh > 0.05). In total, there are 12 sets of model weights across the
six participants and two languages. The number of clusters was chosen based on a leave-
one-out cross-validation procedure. One of the twelve sets of model weights was held out in
each cross-validation fold. The remaining eleven sets of model weights were averaged across
participants and languages for each vertex of the template space, and hierarchical cluster-
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ing was used to obtain N group-level clusters, separately for N ranging from 2 through 25.
For each number N of clusters, the group-level model weight clusters were used to predict
BOLD responses for the held out participant and language in the template space. The cross-
validation accuracy was computed for each vertex as the CD (R2) between the predicted
and recorded BOLD responses. Only vertices that were well-predicted in both languages
(group-averaged

√
R2

en > 0.05 and
√

R2
zh > 0.05) were included in this analysis. The cross-

validation score plateaus around five clusters (Figure 2.6). Thus, we chose to use five clusters
for the analyses shown in Figure 2.3 and Figure 2.3. This clustering procedure resulted in
five 300-dimensional cluster centroids. These centroids define clusters of voxels that are
each tuned towards related semantic concepts. Voxels were assigned to clusters based on
the Pearson correlation between voxelwise model weights and each of the 300-dimensional
cluster centroids. Cluster assignments were performed separately for each participant and
language.



CHAPTER 2. BILINGUAL LANGUAGE PROCESSING USES SHARED SEMANTIC
REPRESENTATIONS THAT ARE MODULATED BY EACH LANGUAGE 26

2.6 Supplementary Figures
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Figure 2.6: Cortical distribution of semantic representations for each language when mBERT
is used as the semantic feature space. To validate the results shown in Figure 2.3 multilingual
BERT (mBERT) was used instead of fastText as a semantic feature space. VM was used to
estimate model weights that map from mBERT features to BOLD responses in each voxel and
for each language separately. Estimated model weights for each language were used to predict
voxelwise BOLD responses to a held-out dataset in the same language. Prediction accuracy
was computed as the CD (R2) between predicted and recorded BOLD responses. Prediction
accuracy for each participant and language is shown on the flattened cortical surface of the par-
ticipant’s native brain space. For both languages and in each participant the highest prediction
accuracy (brightest voxels) is found within the bilateral temporal, parietal, and prefrontal cor-
tices. This suggests that the same brain regions are well-predicted for both languages and that
these results are not dependent on the specific semantic feature space that is used.
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Figure 2.7: Shared semantic representations between languages as shown by across-language
prediction accuracy when mBERT is used as the semantic feature space. Across-language pre-
diction accuracy is shown for each participant on the flattened cortical surface of the participant’
s native brain space. Estimated voxelwise model weights in one language were used to predict
the held-out dataset in the other language. Prediction accuracy was computed as the CD (R2)
between predicted and recorded BOLD responses. Prediction accuracy is given by the color
scale. Well-predicted voxels appear brighter. In each participant, the semantic model estimated
for one language accurately predicts voxel responses to the other language throughout the se-
mantic system. Thus, semantic representations within the semantic system are largely shared
between languages.
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Figure 2.8: Cortical distribution of semantic tuning shifts between languages when mBERT
is used as the semantic feature space. To validate the results in Figure 2.3 multilin-
gual BERT (mBERT) was used as the semantic feature space. The semantic tuning shift
of each voxel was defined as the change in model weights between English and Chinese
(semantic_tuning_shift = βen

||βen||2 − βzh

||βzh||2 ). For each voxel the semantic tuning shift de-
scribes which concepts elicit higher BOLD responses in one language relative to the other.
Principal component analysis (PCA) was used to determine the main dimensions of voxelwise
semantic tuning shifts. We refer to the first tuning shift PC as the primary semantic tuning
shift dimension (PSSD). a. Interpretation of the PSSD. To identify words that were closest to
each end of the PSSD, we took the contextual embedding of each word in the English stimulus
and then identified the embeddings that had the most positive and most negative correlation
with the PSSD. Naively comparing the contextual embedding of each stimulus word is heavily
biased towards very frequent words, because the same word can have multiple contextual em-
beddings. Thus the top 1% of most frequent words were removed from this analysis. Words
for which embeddings are negatively correlated with the PSSD are shown in purple. Words for
which embeddings are positively correlated with the dimension are shown in green. Semantic
tuning shifts that are negatively correlated with the PSSD emphasize number/direction-related



CHAPTER 2. BILINGUAL LANGUAGE PROCESSING USES SHARED SEMANTIC
REPRESENTATIONS THAT ARE MODULATED BY EACH LANGUAGE 31

semantics (purple), while semantic tuning shifts that are positively correlated with the PSSD
emphasize action-related semantics (green). The interpretation of the PSSD is broadly con-
sistent with the results shown in Figure 2.3a for the fastText semantic feature space. b. The
Pearson correlation between the semantic tuning shift vector and the PSSD was computed.
We refer to this correlation as the primary tuning shift index (PTSI). PTSI is shown on the
flattened cortical surface of the template space. Vertices shown in purple shift towards the
negative end of the PSSD. Vertices shown in green shift toward the positive end of the PSSD.
Vertices that were not well-predicted in both languages (

√
R2 > 0.1) in at least one participant

are shown in grey. The cortical distribution of PTSI is consistent with the results shown in
Figure 2.3b for the fastText model. c. Consistency in the cortical distribution of PTSI between
each participant and the rest of the group. For each participant, the other five participants were
used to compute a partial-group estimate of PTSI for each vertex. For each participant, green
violin plot depicts the distribution of PTSI over vertices in which partial-group PTSI is positive,
and the purple violin plot depicts the distributions PTSI over vertices in which partial-group
PTSI is negative. For each participant vertices with positive PTSI tend to also have positive
PTSI in the partial-group (p<.05 by a one-sided t-test after Fisher z-transformation, except P3
and P5) and vertices with negative PTSI tend to also have negative PTSI in the partial-group
(p<.05 by a one-sided t-test after Fisher z-transformation). Thus, the cortical distribution of
PTSI is consistent between participants. Overall, there are systematic semantic tuning shifts
between languages that are consistent across participants. These results suggest that semantic
representations are modulated by each language.
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Figure 2.9: Semantic tuning shifts per semantic cluster when mBERT is used as the semantic
feature space. To validate the results in Figure 2.3 multilingual BERT (mBERT) was used
as the semantic feature space in VM. For each participant and language separately, model
weights were used to assign each voxel to one of five semantic clusters. a. The meaning of
each cluster was determined by finding the stimulus words closest to the cluster centroid. The
clusters represent semantics related to communication (Cluster 1, green), cognition (Cluster
3, orange), locations (Cluster 4, red), and numbers/names (Cluster 5, blue). One cluster
(Cluster 2, yellow) represents miscellaneous adjectives. Clusters are semantically noisier than
for fastText (Figure 2.3a), likely because contextual mBERT embeddings capture more syntactic
information than lexical embeddings such as fastText. b. Voxels were assigned to clusters based
on English or Chinese mBERT model weights. The direction of semantic tuning shift of each
voxel in each cluster was computed using the PTSI metric which is the Pearson correlation
between the semantic tuning shift of the voxel and the PSSD (as in Figure 2.3). Histograms
indicate the distribution of PTSI values for voxels in each cluster and participant separately.
Semantic tuning shifts for voxels in the communication-, and cognition-related clusters (Clusters
1 and 3) have positive PTSI. Thus, representations of communication-, and cognition-related
concepts shift to emphasize action/relationship-related semantics in English as compared to
Chinese. In contrast, semantic tuning shifts for voxels in the location- and number/name-related
clusters (Cluster 4 and 5) have negative PTSI. Semantic tuning shifts for voxels in Cluster 2
(miscellaneous adjectives) are mixed. Overall, representations of location- and number/name-
related concepts shift to emphasize number/collection-related semantics in English as compared
to Chinese. These results suggest that voxels that represent similar semantic concepts shift in
similar directions between languages.
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Figure 2.10: Cortical distribution of semantic representations for each language and in each
individual participant. To determine where semantic information is represented for each lan-
guage, voxelwise models estimated for each language were used to predict held-out data for the
same language (within-language prediction accuracy). FastText was used as the semantic fea-



CHAPTER 2. BILINGUAL LANGUAGE PROCESSING USES SHARED SEMANTIC
REPRESENTATIONS THAT ARE MODULATED BY EACH LANGUAGE 35

ture space. Prediction accuracy was computed as the CD (R2) between predicted and recorded
BOLD responses. Prediction accuracy is shown for each language and participant separately.
Results are shown on the flattened cortical surface of each participant’s native brain space.
The color of each vertex indicates prediction accuracy according to the colorbar at the bot-
tom. The magnitude of prediction accuracy differs between participants, partially reflecting
individual differences in signal quality (Figure 2.6). For both languages the highest predic-
tion accuracy (brightest voxels) is found within the bilateral temporal, parietal, and prefrontal
cortices. Prediction accuracy is significantly positively correlated between languages in each
participant (r=0.49, 0.36, 0.28, 0.32, 0.19, 0.46 for S1-S6; one-sided p<.05 for each participant
by a permutation test). This suggests that the same brain regions within the semantic system
are well-predicted for both languages.
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Figure 2.11: Statistical significance of prediction accuracy for each participant and language.
Estimated model weights for the fastText semantic feature space were used to predict voxel
responses on a held-out dataset. Within-language and across-language prediction accuracy
were computed for each voxel as the CD (R2) between predicted and true BOLD responses
on the held-out dataset. The statistical significance of prediction accuracy for each voxel was
determined by comparing the prediction accuracy of the estimated models to the prediction
accuracy in predicting permuted data. The set of voxels that were significantly well-predicted
are shown on the flattened cortical surface of each participant, separately for each language, and
separately for within- and across-language testing. Voxels shown in black were significantly well-
predicted (one-sided p<.05, FDR corrected with a Benjamini-Hochberg correction for multiple
comparisons). The number of significantly well-predicted voxels differs across participants,
reflecting individual differences in prediction accuracy shown in Supplementary Figures S5 and
S11. Across participants, significantly well-predicted voxels are found within the semantic
system, both within- and across-languages.
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Figure 2.12: Noise-ceiling for each participant and language. Explainable Variance (EV) was
computed as a measure of the noise-ceiling for each participant, voxel and language separately.
a. The explainable variance (EV) of each voxel is shown on the flattened cortical surface of
each participant’s native brain space. EV is shown for English and Chinese separately. The
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color of each voxel indicates explainable variance according to the colorbar at the bottom. The
magnitude of EV varies across participants, suggesting individual differences in the quality of
the recorded BOLD signal. b. For each brain region in the semantic system, the average EV
across voxels is shown for each participant and language separately. Blue markers indicate EV
in English, and red markers indicate EV in Chinese. Bars indicate the mean across participants.
EV is not consistently higher in one language than the other.
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Figure 2.13: Noise-ceiling corrected prediction accuracy for English vs Chinese. To deter-
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mine whether differences in the noise-ceiling could explain the difference in prediction accuracy
between languages, we computed the noise-ceiling corrected prediction accuracy (R2

norm) for
each language and participant separately. FastText was used as the semantic feature space.
Noise-ceiling corrected prediction accuracy is shown on the flattened cortical surface of each
participant’s native brain space. The color of each voxel indicates prediction accuracy ac-
cording to the colorbar at the bottom. For each participant, noise-ceiling corrected prediction
accuracy is significantly higher in Chinese than in English (one-sided p<.05 by a permutation
test). This suggests that the semantic model explains a higher proportion of total explainable
signal in brain responses in Chinese than in English.
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Figure 2.14: Choice of number of clusters to use for semantic clustering. Model weights
were estimated for the semantic feature space, separately for each language and participant. A
leave-one-out cross-validation approach was used to determine the optimal number of clusters
into which to cluster model weights. In total, there are 12 sets of model weights across the
six participants and two languages. Each set of model weights was projected to the template
space. For each cross-validation fold, one of the twelve sets of model weights was held out. For
each vertex the remaining eleven sets of model weights were averaged across participants and
languages, and hierarchical clustering was used to obtain N group-level clusters, separately for N
ranging from 2 through 25. For each number N of clusters, the group-level model weight clusters
were used to predict BOLD responses for the held out participant and language in vertex space.
The cross-validation accuracy was computed for each vertex as the CD R2 between the predicted
and recorded BOLD responses. Only vertices that were well-predicted in both languages (group-
averaged

√
R2

en > 0.05 and
√
R2

zh > 0.05 ) were included in this analysis. The mean
√
R2 over

vertices is shown for each number N of clusters. Each thin line indicates the cross-validation
scores for one fold. The bolded line indicates the mean across folds. The cross-validation score
plateaus around five clusters. Thus, we used five semantic clusters for the analyses in Figure
2.3 and Figure 2.3.
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Figure 2.15: Semantic cluster assignments based on semantic model weights in each language
and participant. For each participant and language separately, semantic model weights esti-
mated for the fastText semantic feature space were used to assign each voxel to one of the
semantic clusters shown in Figure 2.3a. Cluster assignments are shown for each language on
the flattened cortical surface of the participant’s native brain space. Each voxel is colored
according to the cluster assignment. Voxels that are not well-predicted (

√
R2 > 0.1) are shown

in grey. Visual comparison of the flatmaps between languages shows that the cortical distri-
bution of each semantic cluster is similar between English and Chinese. For each participant
more than 70% of voxels have the same cluster assignments for both languages (P1: 81%, P3:
71%, P3: 85%, P4: 75%, P5: 87%, P6: 84%). The consistency in semantic cluster assignments
between languages reflects that semantic representations are mostly shared between languages.
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Figure 2.16: Shared semantic representations between languages as shown by across-language
prediction accuracy. Across-language prediction accuracy is shown for each participant on the
flattened cortical surface of the participant’s native brain space. FastText was used as the se-
mantic feature space. Estimated voxelwise model weights in one language were used to predict
the held-out dataset in the other language. FastText was used as the semantic feature space.
Prediction accuracy was computed as the CD (R2) between predicted and recorded BOLD re-
sponses. Prediction accuracy is given by the color scale. Well-predicted voxels appear brighter.
In each participant, the semantic model predicted in one language accurately predicts voxel re-
sponses to the other language throughout the semantic system. Thus, semantic representations
within the semantic system are largely shared between languages.
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Figure 2.17: Amount of variance explained by semantic tuning shift principal components
(PCs). Principal component analysis (PCA) was used to obtain the major dimensions of vari-
ation in semantic tuning shifts. To determine how many dimensions reliably capture variation
in semantic tuning shifts a leave-one-participant-out procedure was used. At each step, one
of the participants was left out and the voxelwise semantic tuning shifts from the other five
participants were used to compute the principal components (PCs) of semantic tuning shifts
(partial-group semantic tuning shift PCs). The partial-group semantic tuning shift PCs were
used to compute the ratio of variance explained in the semantic tuning shifts of the left-out par-
ticipant (green lines). Semantic tuning shift PCs were compared to three other PCs. First, the
English semantic tuning PCs were computed by concatenating across voxels the 300-dimensional
vectors of estimated model weights in English and then applying PCA across voxels to the re-
sulting matrix. The English semantic tuning PCs were used to compute the ratio of variance
explained in the semantic tuning shifts of each participant (orange lines). Second, the Chinese
semantic tuning PCs were computed similarly to the English semantic tuning PCs but using the
estimated semantic models weights in Chinese. The English semantic tuning PCs were used to
compute the ratio of variance explained in the semantic tuning shifts of each participant (yellow
lines). Third, the embedding misalignment PCs were computed by subtracting the embedding
of each English word from its Chinese counterpart and then concatenating the 300-dimensional
difference vectors across word pairs. Then PCA was applied across voxels to the embedding
misalignment matrix. The embedding misalignment PCs were used to compute the ratio of
variance explained in the semantic tuning shifts of each participant (pink lines). Transparent
lines show variance explained in semantic tuning shifts for each individual participant, and
opaque lines show the mean explained variance ratio across all participants. A bootstrapping
approach was used to obtain confidence intervals for the variance explained by each PC. The
voxel population was resampled 1000 times with replacement, and the tuning shift PCs were
recomputed for each bootstrap iteration. 95% confidence intervals are shown by the error bars.
The embedding misalignment PCs and the semantic tuning PCs for each language all explain
significantly less variance than the PSSD. This suggests that the PSSD reliably captures varia-
tion in semantic tuning shifts, and that this dimension of tuning shifts is not merely an artifact
of misalignments between embeddings for different languages, or of the primary dimensions of
semantic tuning within each language.
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Figure 2.18: Interpretation of the PSSD based on Chinese stimulus words. Chinese stimulus
words that best match each end of the PSSD are shown. Words closest to the negative end of
the PC are shown in purple. Words closest to the positive end of the PC are shown in green.
English translations are listed next to each word. The Chinese words closest to the negative end
of the dimension are generally related to numbers. The Chinese words closest to the positive
end of the PC are generally related to actions, people, and places. Interpretation of the PSSD
is broadly consistent whether interpretations are based on Chinese stimulus words (shown here)
or English stimulus words (shown in Figure 2.3a).
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Figure 2.19: Semantic tuning shifts for different clusters when Chinese model weights are
used. The semantic tuning shifts for different clusters depicted in Figure 2.3a were computed
using English model weights. To test whether these results are independent of the language
of model weights used for clustering, Chinese model weights are used to assign each voxel to a
semantic cluster. Histograms indicate the distribution of PTSI values for voxels in each cluster,
for each participant separately. Semantic tuning shifts for voxels in Clusters 1, 2, and 3 (green,
yellow, and orange histograms; except P3 cluster 1 where p=.52) are positively correlated with
the PSSD (p<.05 for each cluster by a two-sided t-test after Fisher z-transformation). Semantic
tuning shifts for voxels in Clusters 4 and 5 (red and blue histograms) are negatively correlated
with the PSSD (p<.05 for each cluster by a two-sided t-test after Fisher z-transformation).
These results show that the results shown in Figure 2.3a are consistent whether English or
Chinese model weights are used to assign each voxel to a semantic cluster.
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Figure 2.20: Best-aligned layers of multilingual BERT (mBERT). To determine which layer
of mBERT produces the best multilingual semantic embedding space, the alignment of each
layer of mBERT was measured between English and Chinese. To evaluate alignment between
mBERT embeddings of English and Chinese we used the TsinghuaAligner test dataset (Liu
& Sun, 2015). This dataset consists of 450 sentences that are provided in both English and
Chinese, as well as manually annotated pairs that indicate pairs of English and Chinese words
that mean the same thing. For each pair of words, each layer of mBERT was used to obtain
two 768-dimensional embeddings: one for the English word, and one for the aligned Chinese
word. For each layer separately, the similarity between the respective English and Chinese
embeddings was measured as the cosine similarity between the two embeddings. As a baseline
comparison, we measured the cosine similarity between the embeddings of randomly selected
English-Chinese word pairs that did not mean the same thing. For each layer of mBERT we
show the distribution of cosine similarities between aligned English-Chinese word pairs (blue)
and the distribution of cosine similarities between randomly selected English-Chinese word pairs
(grey). Embeddings for matched pairs of words become more similar in later layers. However,
the latest layers produce outliers of poorly aligned word pairs that may bias semantic tuning
shift estimates. Layer 9 produces the best aligned embeddings: embeddings of paired words
have high cosine similarity relative to embeddings of random word pairs, without substantial
outliers. Thus, we use layer 9 embeddings to validate the results from the fastText semantic
embedding space (Supplementary Figures S1-S4).
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Figure 2.21: PSSD based on significantly well-predicted voxels. In Figure 2.3 the PSSD
is estimated using voxels that are well-predicted in both languages (

√
R2 > 0.1 in both lan-

guages). To verify that the estimated PSSD is robust to the voxel selection method, we instead
estimated the PSSD using voxels that were significantly well-predicted in both languages (one-
sided p<.05, after Benjamini-Hochberg correction for multiple comparisons). The words that
best match the significance-based estimate of the PSSD are shown. This dimension separates
number/collection-related semantics (purple) from action/relationship-related semantics. The
Pearson correlation between the significance-based estimate and the prediction accuracy-based
estimate of the PSSD is 0.97. Thus, the estimate of the PSSD is robust to the voxel selection
method.
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Table 2.1: Participant responses to language use questionnaire

P1 P2 P3 P4 P5 P6

Age when you began ACQUIR-
ING language 1

1
month

2 since
born

Since
born

0 Native

Age when you began ACQUIR-
ING language 2

11 7 4 6 2 6

Age when you became FLUENT
in language 1

7 7 6 5 5 Native

Age when you became FLUENT
in language 2

24 18 20 18 16 19

How many years and months
have you spent in a COUN-
TRY where language 1 is spo-
ken? (E.g. 2 years 3 months)

18
years

18
years

18
years

20
years

18
years

18
years

How many years and months
you spent in a COUNTRY where
language 2 is spoken? (E.g. 2
years 3 months)

12
years

6
years 1
months

6 years
and 9
months

5 years 6 years 6
years 6
months

How many years and months
have you spent in a FAMILY
where language 1 is spoken?
(E.g. 2 years 3 months)

30
years

18
years

18
years

25
years

18
years

18
years

How many years and months you
spent in a FAMILY where lan-
guage 2 is spoken? (E.g. 2 years
3 months)

8 years 0 0 1
month

0 0

How many years and months
have you spent in a SCHOOL
and/or WORKING environment
where language 1 is spoken?
(E.g. 2 years 3 months)

18
years

11
years

12
years

20
years

12
years

18
years

How many years and months
you spent in a SCHOOL and/or
WORKING environment where
language 2 is spoken? (E.g. 2
years 3 months)

12
years

6
years 1
months

6 years
and 9
months

5 years 6 years 6
years 6
months

Please circle to what extent you
are CURRENTLY EXPOSED
to language 1 in INTERACT-
ING WITH FRIENDS:

5 4 7 7 5 7

Please circle to what extent you
are CURRENTLY EXPOSED
to language 2 in INTERACT-
ING WITH FRIENDS:

10 4 5 7 7 5

Please circle to what extent you
are CURRENTLY EXPOSED
to language 1 in INTERACT-
ING WITH FAMILY:

8 10 3 10 3 10
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Please circle to what extent you
are CURRENTLY EXPOSED
to language 2 in INTERACT-
ING WITH FAMILY:

6 0 0 0 0 0

Please circle to what extent you
are CURRENTLY EXPOSED
to language 1 at SCHOOL

0 2 0 0 0 0

Please circle to what extent you
are CURRENTLY EXPOSED
to language 2 at SCHOOL

10 8 10 10 10 9

Please circle to what extent you
are CURRENTLY EXPOSED
to language 1 at WORK

1 0 0 0 0 2

Please circle to what extent you
are CURRENTLY EXPOSED
to language 2 at WORK

10 8 10 10 10 9
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Chapter 3

The Cortical Representation of
Language Timescales is Shared
between Reading and Listening

3.1 Abstract
Language comprehension involves integrating low-level sensory inputs into a hierarchy of
increasingly high-level features. Prior work studied brain representations of different lev-
els of the language hierarchy, but has not determined whether these brain representations
are shared between written and spoken language. To address this issue, we analyze fMRI
BOLD data that were recorded while participants read and listened to the same narratives
in each modality. Levels of the language hierarchy are operationalized as timescales, where
each timescale refers to a set of spectral components of a language stimulus. Voxelwise
encoding models are used to determine where different timescales are represented across
the cerebral cortex, for each modality separately. These models reveal that between the
two modalities timescale representations are organized similarly across the cortical surface.
Our results suggest that, after low-level sensory processing, language integration proceeds
similarly regardless of stimulus modality.

3.2 Introduction
Humans leverage the structure of natural language to convey complex ideas that unfold over
multiple timescales. The structure of natural language contains a hierarchy of components,
which range from low-level components such as letterforms or articulatory features, to higher-
level components such as sentence-level syntax, paragraph-level semantics, and narrative
arc. During human language comprehension, brain representations of low-level components
are thought to be incrementally integrated into representations of higher-level components
(Christiansen & Chater, 2016). These representations have been shown to form a topographic
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organization across the surface of the cerebral cortex during spoken language comprehension
(Baldassano et al., 2017; Blank & Fedorenko, 2020; Jain & Huth, 2018; Jain et al., 2020;
Lerner et al., 2011).

Both written and spoken language consist of a hierarchy of components, but to date it
has been unclear to what extent brain representations of these hierarchies are shared be-
tween the two modalities of language comprehension. At low levels of the hierarchy, brain
representations are known to differ between the two stimulus modalities. For example, visual
letterforms in written language are represented in the early visual cortex, whereas articula-
tory features in spoken language are represented in the early auditory cortex (de Heer et al.,
2017; Heilbron et al., 2020). In contrast, many parts of temporal, parietal, and prefrontal
cortices process both written and spoken language (e.g., Booth et al., 2002; Buchweitz,
Mason, Tomitch, & Just, 2009; Deniz et al., 2019; Liuzzi et al., 2017; Nakai et al., 2021;
Regev et al., 2013). It could be the case that in these areas representations of higher-level
language components are organized in the same way for both written and spoken language
comprehension. On the other hand, these areas could contain overlapping but independent
representations for the two modalities. One way to differentiate between these two possibil-
ities would be to directly compare the cortical organization of brain representations across
high-level language components between reading and listening. However, prior work has not
performed this comparison. Most prior studies of reading and listening have compared brain
responses generally, without explicitly describing what stimulus features are represented in
each brain area (e.g., Booth et al., 2002; Buchweitz, Mason, Tomitch, & Just, 2009; Li-
uzzi et al., 2017; Regev et al., 2013). Other studies focused on relatively few components
(e.g., low-level sensory features, word-level semantics, and phonemic features), and therefore
did not provide a detailed differentiation between different levels of the language hierarchy
(Deniz et al., 2019; Nakai et al., 2021). Studies that did differentiate between different levels
focused on one modality of language (e.g., Jain & Huth, 2018; Jain et al., 2020; Lerner et al.,
2011; Toneva & Wehbe, 2019). Prior studies are therefore insufficient to determine whether
brain representations of the language hierarchy are organized similarly between reading and
listening.

To address this problem we compared where different levels of the language hierarchy
are represented in the brain during reading and listening. Intuitively, levels of processing
hierarchy can be considered in terms of numbers of words. For example, low-level sensory
components such as visual letterforms in written language and articulatory features in spoken
language vary within the course of single words; sentence-level syntax varies over the course
of tens of words; paragraph-level semantics varies over the course of hundreds of words.
Therefore we operationalize levels of the language hierarchy as language timescales, where a
language timescale is defined as the set of spectral components of a language stimulus that
vary over a certain number of words. For brevity we refer to “language timescales” simply
as timescales.

We analyzed functional magnetic resonance imaging (fMRI) recordings from participants
who read and listened to the same set of narratives (Deniz et al., 2019; Huth et al., 2016).
The stimulus words were then transformed into features that each reflect a certain timescale
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of stimulus information: first a language model (BERT) was used to extract contextual em-
beddings of the narrative stimuli, and then linear filters were used to separate the contextual
embeddings into timescale-specific stimulus features. Voxelwise encoding models were used
to estimate the average timescale to which each voxel is selective, which we refer to as the
“average timescale selectivity”. These estimates reveal where different language timescales
are represented across the cerebral cortex for reading and listening separately. Finally, the
cortical organization of timescale selectivity was compared between reading and listening.

3.3 Results
We compared the organization of timescale representations between written and spoken lan-
guage comprehension for each participant. First, the set of language-selective voxels for
each modality was identified as those for which any of the timescale-specific language fea-
ture spaces significantly predicted blood oxygenation level dependent (BOLD) responses
(one-sided permutation test, p < .05, false discovery rate (FDR) corrected). Then, voxel
timescale selectivity was compared between reading and listening across the set of voxels that
are language-selective for both modalities. For each participant, voxel timescale selectivity is
significantly positively correlated between the two modalities (S1: r = 0.41, S2: r = 0.58, S3:
r = 0.44, S4: 0.34, S5: 0.47, S6: 0.35, S7: 0.40, S8: 0.49, S9: 0.52, p < .001 for each partici-
pant; Figure 3.3a). Visual inspection of voxel timescale selectivity across the cortical surface
confirms that the cortical organization of timescale selectivity is similar between reading and
listening (Figure 3.3b, Figure 3.3c). For both modalities, timescale selectivity varies along
spatial gradients from intermediate timescale selectivity in superior temporal cortex to long
timescale selectivity in inferior temporal cortex, and from intermediate timescale selectivity
in posterior prefrontal cortex to long timescale selectivity in anterior prefrontal cortex. Me-
dial parietal cortex voxels are selective for long timescales for both modalities. Estimates of
timescale selectivity are robust to small differences in feature extraction – results are quan-
titatively similar when using a fixed rolling context instead of a sentence input context, and
when using units from only a single layer of BERT instead of from all layers (Figures S1, S2,
S3, S4, and S5). These results suggest that for each individual participant representations of
language timescales are organized similarly across the cerebral cortex between reading and
listening.
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Figure 3.1: Timescale selectivity across the cortical surface.
Voxelwise modeling was used to determine the timescale selectivity of each voxel, for reading
and listening separately (See Section 3.5 for details). a. Timescale selectivity during listening
(x-axis) vs reading (y-axis) for one representative participant (S1). Each point represents one
voxel that was significantly predicted in both modalities. Points are colored according to the
mean of the timescale selectivity during reading and listening. Blue denotes selectivity for short
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timescales, green denotes selectivity for intermediate timescales, and red denotes selectivity for
long timescales. Timescale selectivity is significantly positively correlated between the two
modalities (r = 0.41, p < .001). b. Timescale selectivity during reading and listening on the
flattened cortical surface of S1. Timescale selectivity is shown according to the color scale at
the bottom (same color scale as in Panel A). Voxels that were not significantly predicted are
shown in grey (one-sided permutation test, p < .05, FDR corrected; LH, left hemisphere; RH,
right hemisphere; NS, not significant; PFC=prefrontal cortex, MPC=medial parietal cortex,
EVC=early visual cortex, AC=auditory cortex). For both modalities, temporal cortex contains
a spatial gradient from intermediate to long timescale selectivity along the superior to inferior
axis, prefrontal cortex (PFC) contains a spatial gradient from intermediate to long timescale
selectivity along the posterior to anterior axis, and precuneus is predominantly selective for
long timescales. c. Timescale selectivity in eight other participants. The format is the same
as in Panel b. d. Prediction performance for linguistic features (i.e., timescale-specific feature
spaces) vs. low-level sensory features (i.e., spectrotemporal and motion energy feature spaces)
for S1. Orange voxels were well-predicted by low-level sensory features. Blue voxels were well-
predicted by linguistic features. White voxels were well-predicted by both sets of features.
Low-level sensory features predict well in early visual cortex (EVC) during reading, and in
early auditory cortex (AC) during listening. Linguistic features predict well in similar areas
for reading and listening. After early sensory processing, cortical timescale representations are
consistent between reading and listening across temporal, parietal, and prefrontal cortices.

In contrast to representations of language timescales, low-level sensory features are rep-
resented in modality-specific cortical areas. Figure 3.3d shows the prediction performance
of linguistic features (i.e., timescale-specific feature spaces), and the prediction performance
of low-level sensory features (i.e., spectrotemporal representations of auditory stimuli, and
motion energy representations of visual stimuli). Voxels are colored according to the pre-
diction performance of each set of feature spaces: voxels shown in blue are well predicted
by the linguistic feature spaces, voxels shown in orange are well predicted by the low-level
sensory feature spaces, and voxels shown in white are well predicted by both sets of feature
spaces. For both reading and listening, timescale-specific feature spaces predict well broadly
across temporal, parietal, and prefrontal cortices. In contrast, low-level stimulus features
predict well in early visual cortex (EVC) during reading only, and in auditory cortex (AC)
during listening only. These results indicate that during language comprehension, linguis-
tic processing occurs in similar cortical areas between modalities, whereas low-level sensory
processing occurs in modality-specific cortical areas.

Within each participant, estimates of timescale selectivity depend not only on the presen-
tation modality, but also on the presentation order. This is because each participant either
read all the stories before listening to the stories, or vice versa, and attentional shifts between
novel and known stimuli may cause small differences in estimated timescale selectivity. In-
deed, activation across higher-level brain regions is often more widespread and consistent for
the first presentation modality than for the second presentation modality, indicating that
participants attend more strongly to novel stimuli (Figures S6 and S7). In six of the nine
participants, timescale selectivity was slightly longer for the first presented modality than
for the second presented modality (Figure S8). This change in timescale selectivity between
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novel and repeated stimuli suggests that the predictability of high-level narrative components
in known stimuli may reduce brain responses to longer language timescales. Nevertheless,
the overall cortical organization of timescale selectivity was consistent between reading and
listening across all nine participants, regardless of whether they first read or listened to the
narratives. This consistency indicates that the effects of stimulus repetition on timescale
selectivity are small relative to the similarities between timescale selectivity during reading
and listening.

Figure 3.2: Group-level estimates of timescale selectivity in standard brain space.
Group-level estimates of timescale selectivity are shown in a standard fsAverage vertex space.
The group-level estimate for each vertex was computed by taking the mean over all partici-
pants in whom the vertex was language-selective. a. Group-level timescale selectivity during
listening (x-axis) vs reading (y-axis). Each point represents one vertex that was significantly
predicted in both modalities for at least one-third of the participants. Each point is colored
according to the mean of the group-level timescale selectivity during reading and listening. Blue
denotes selectivity for short timescales, green denotes selectivity for intermediate timescales,
and red denotes selectivity for long timescales. Timescale selectivity is positively correlated
between the two modalities (r = 0.48). b. For reading and listening separately group-level
timescale selectivity is shown according to the color scale at the bottom (same color scale as in
Panel A). Colored vertices were significantly predicted for both modalities in at least one-third
of the participants. Vertices that were not significantly predicted are shown in grey (one-
sided permutation test, p < .05, FDR corrected; NS, not significant; PFC=prefrontal cortex,
MPC=medial parietal cortex, EVC=early visual cortex, AC=auditory cortex). Group-averaged
measurements of timescale selectivity are consistent with measurements observed in individual
participants (Figure 3.3). For both modalities, there are spatial gradients from intermediate to
long timescale selectivity along the superior to inferior axis of temporal cortex, and along the
posterior to anterior axis of prefrontal cortex (PFC). Precuneus is predominantly selective for
long timescales for both modalities. Across participants, the cortical representation of different
language timescales is consistent between reading and listening across temporal, parietal, and
prefrontal cortices.
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In order to consolidate results across all participants, we computed group-level estimates
of timescale selectivity. To compute group-level estimates, first the estimates for each indi-
vidual participant were projected to the standard FreeSurfer fsAverage vertex space (Fischl
et al., 1999). Then for each vertex the group-level estimate of timescale selectivity was com-
puted as the mean of the fsAverage-projected values. This mean was computed across the
set of participants in whom the vertex was language-selective. Group-level estimates were
computed separately for reading and listening. Group-level timescale selectivity was then
compared between reading and listening across the set of vertices that were significantly
predicted in at least one-third of the participants for both modalities (Figure S9 shows
the number of participants for which each vertex was significantly predicted, separately for
each modality). This comparison showed that timescale selectivity is highly correlated be-
tween reading and listening at the group level (r = 0.48; Figure 3.3a). Cortical maps of
group-level timescale selectivity (Figure 3.3b) visually highlight that the spatial gradients
of timescale selectivity across temporal and prefrontal cortices are highly similar between
the two modalities. Gradients of timescale selectivity are also evident within previously pro-
posed anatomical brain networks (Figure S10). Overall, these group-level results show that
across participants, the organization of representations of language timescales is consistent
between reading and listening.

The results shown in Figure 3.3 and Figure 3.3 indicate that average timescale selectivity
is similar between reading and listening. However, average timescale selectivity alone is
insufficient for determining whether representations of different timescales are shared between
reading and listening – average timescale selectivity could equate voxels with a very peaked
selectivity for a single frequency band, and voxels with uniform selectivity for many frequency
bands (Figure S11 shows how the uniformity of timescale selectivity varies across voxels). To
investigate this possibility we used the timescale selectivity profile, which reflects selectivity
for each timescale separately. Although the timescale selectivity profile is a less robust metric
than average timescale selectivity (see Section 3.5 for details), the timescale selectivity profile
can distinguish between peaked and uniform selectivity profiles.
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Figure 3.3: Voxelwise similarity of timescale selectivity.
The Pearson correlation coefficient of the timescale selectivity profile between reading and lis-
tening is shown on the cortical surfaces of each participant. The correlation coefficient is shown
according to the color scale at the bottom. Red voxels have positively correlated timescale se-
lectivity profiles between reading and listening. Blue voxels have negatively correlated timescale
selectivity profiles between reading and listening. Voxels that were not significantly predicted
in both modalities are shown in grey (one-sided permutation test, p < .05, FDR corrected). In
areas that are language-selective in both modalities, the timescale selectivity profile is highly
correlated across voxels.
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Figure 3.3 shows the Pearson correlation coefficient between the timescale selectivity
profile in reading and in listening on the flattened cortical surface of each participant. The
timescale selectivity profile is highly correlated between reading and listening, across voxels
that are language-selective in both modalities.

To further demonstrate the shared organization of cortical timescale selectivity, we com-
pared the cortical distribution of selectivity for each of the eight timescales. For each of
the eight timescales, we computed the correlation between selectivity for that timescale
during reading and listening across the set of voxels that are language-selective in both
modalities. The correlations for each timescale and participant are shown in Figure 3.3a.
A full table of correlations and statistical significance is shown in Table S1. Selectivity for
each timescale was positively correlated between reading and listening for each timescale
and in each individual participant. Most of these correlations were statistically significant
(one-sided permutation test, p < .05, FDR-corrected). Note that comparing the timescale
selectivity metric is more robust to noise in the data than comparing selectivity for each
timescale separately (see Section 3.5 for details). Therefore correlations between selectivity
for each individual timescale are less consistent across participants than correlation between
timescale selectivity.
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Figure 3.4: Similarity of selectivity for each timescale between reading and listening.
Selectivity for each individual timescale was compared between reading and listening across the
cerebral cortex. For each voxel, selectivity for each individual timescale describes the extent to
which the corresponding timescale-specific feature space explains variation in BOLD responses,
relative to the other timescale-specific feature spaces (see Section 3.5 for details). a. For
each timescale the Pearson correlation coefficient was computed between selectivity for that
timescale during reading and listening, across all voxels that were significantly predicted for
both modalities. For each timescale, the mean true correlation across participants is indicated
by dark purple diamonds. The mean chance correlation across participants is indicated by
black dots (for clarity, these black dots are connected by a black line). Vertical lines through
purple diamonds and through black dots are error bars that indicate the standard error of
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the mean (SEM) across participants for the respective value. True and chance correlations
for each individual participant are respectively indicated by light purple diamonds and grey
dots. The true correlation is significantly higher than chance in most individual participants
and timescales; see Table S1 for details. b. The group-level selectivity of each vertex to
each timescale is shown in fsAverage space for reading and listening separately. Vertices that
were not language-selective in both modalities are shown in grey. Outside of primary sensory
areas, selectivity for each timescale is distributed similarly across the cortical surface between
both modalities. Among voxels that are language-selective in both modalities, each language
timescale is represented in similar areas between reading and listening. These results further
indicate that there is a shared organization of representations of language timescales between
reading and listening.

The cortical distribution of selectivity for each timescale is shown for reading and listen-
ing separately in Figure 3.3b. For concision these results are shown at the group-level. Visual
inspection of 3.3b shows that for both reading and listening, short timescales (2-4 words,
4-8 words, 8-16 words) are represented in posterior prefrontal cortex and superior temporal
cortex; intermediate timescales (16-32 words, 32-64 words) are represented broadly across
temporal, prefrontal, and medial parietal cortices; and long timescales (64-128 words, 128-256
words, 256+ words) are represented in prefrontal cortex, precuneus, temporal parietal junc-
tion, and inferior temporal cortex. The correlations between selectivity for each timescale
and qualitative comparisons of the cortical distribution of selectivity for each timescale be-
tween reading and listening indicate that representations of language timescales are organized
similarly between reading and listening.

3.4 Discussion
This study tested whether representations of language timescales are organized similarly
between reading and listening. We used voxelwise encoding models to determine the selec-
tivity of each voxel to different language timescales and then compared the organization of
these representations between the two modalities (Figure 3.5). These comparisons show that
timescale selectivity is highly correlated between reading and listening across voxels that are
language-selective in both modalities. This correlation is evident in individual participants
(Figure 3.3) and at the group-level (Figure 3.3). For both modalities, prefrontal and tem-
poral cortices contain spatial gradients from intermediate to long timescale selectivity, and
precuneus is selective for long timescales. Comparisons of selectivity for each individual
voxel (Figure 3.3), and to each timescale separately (Figure 3.3), show that the cortical rep-
resentation of each timescale is similar between reading and listening. These results suggest
that the topographic organization of language processing timescales is shared across stimulus
modalities.

Prior work has studied brain representations of contextualized and non-contextualized
language, separately for written (Toneva & Wehbe, 2019) and spoken language comprehen-
sion (Jain & Huth, 2018). Those studies showed that areas within medial parietal cortex,
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prefrontal cortex, and inferior temporal cortex preferentially represent contextualized in-
formation; whereas other areas within superior temporal cortex and the temporoparietal
junction do not show a preference for contextualized information. Our results build upon
these previous findings by directly comparing representations between reading and listening
within individual participants, and by examining representations across a finer granularity
of timescales. The fine-grained variation in timescale selectivity that we observed within pre-
viously proposed cortical networks supports the hypothesis that language processing occurs
along a continuous gradient, rather than in distinct, functionally specialized brain networks
(Blank & Fedorenko, 2020).

Our study provides new evidence on the similarities in language processing between
reading and listening. To compare brain responses between reading and listening, prior work
correlated timecourses of brain responses between participants who read and listened to the
same stimuli (Regev et al., 2013). That work found similarities in areas such as superior
temporal gyrus, inferior frontal gyrus, and precuneus; and differences in early sensory areas
as well as in parts of parietal and frontal cortices. However, that work did not specifically
model linguistic features. Therefore the differences they observed between modalities in
parietal and frontal cortices may indicate differences in non-linguistic processes such as high-
level control processes, rather than differences in language representations. By specifically
modeling representations of linguistic features, our results suggest that some of the differences
observed in (Regev et al., 2013) could indeed be due to non-linguistic processes such as high-
level control. A separate study suggesting that brain representations of language differ
between modalities compared brain responses to different types of stimuli for reading and
listening: the stimuli used for reading experiments consisted of isolated sentences, whereas
the stimuli used for listening experiments consisted of full narratives (Oota et al., 2022).
This discrepancy perhaps explains why in (Oota et al., 2022), language models trained on
higher-level tasks (e.g., summarization, paraphrase detection) were better able to predict
listening than reading data. Our study used matched stimuli for reading and listening
experiments, and the similarities we observed highlight the importance of using narrative-
length, naturalistic stimuli to elicit brain representations of high-level linguistic features
(Deniz et al., 2023).

The method for estimating timescale selectivity that we introduced in this work addresses
limitations in methods previously used to study language timescales in the brain (Baldassano
et al., 2017; Blank & Fedorenko, 2020; Jain & Huth, 2018; Jain et al., 2020; Lerner et al.,
2011). Early methods required the use of stimuli that are scrambled at different temporal
granularities (Blank & Fedorenko, 2020; Lerner et al., 2011). However, artificially scrambled
stimuli may cause attentional shifts, evoking brain responses that are not representative of
brain responses to natural stimuli (Deniz et al., 2023; Hamilton & Huth, 2020; Hasson et al.,
2010). Other approaches measured the rate of change in patterns of brain responses in order
to determine the temporal granularity of representations in each brain region (Baldassano
et al., 2017). However, that approach does not provide an explicit stimulus-response model
which is needed to determine whether the temporal granularity in each brain region reflects
linguistic or non-linguistic brain representations. Our approach uses voxelwise modeling,



CHAPTER 3. THE CORTICAL REPRESENTATION OF LANGUAGE TIMESCALES
IS SHARED BETWEEN READING AND LISTENING 64

which allows us to estimate brain representations with ecologically valid stimuli, and obtain
an explicit stimulus-response model. Our method uses spectral analysis to extract stimulus
features that reflect different language timescales, decoupling the feature extraction process
from specific neural network architectures. This decoupling enables the construction of
encoding models that are more accurate and that are also interpretable in terms of timescale
selectivity. In the future, our method could be used with pretrained audio or visual models
(e.g., wav2vec 2.0 (Baevski et al., 2020) or TrOCR (M. Li et al., 2023)) to estimate selectivity
for different timescales of low-level auditory and visual features. In sum, the method for
estimating timescale selectivity that we developed in this study allowed us to produce more
interpretable, accurate, and ecologically valid models of language timescales in the brain
than previous methods.

To further inform theories of language integration in the brain, our approach of analyzing
language timescales could be combined with approaches that analyze brain representations of
specific classical language constructs. Approaches based on classical language constructs such
as part-of-speech tags (Wehbe et al., 2014) and hierarchical syntactic constructs (Brennan
et al., 2016; Hale et al., 2015) provide intuitive interpretations of cortical representations.
However, these language constructs do not encompass all the information that is conveyed
in a natural language stimulus. For example, discourse structure and narrative processes
are difficult to separate and define. This difficulty is particularly acute for freely produced
stimuli, which do not have explicitly marked boundaries between sentences and paragraphs.
Instead of classifically defined language constructs, our approach uses spectral analysis to
separate language timescales. The resulting models of brain responses can therefore take
into account stimulus language information beyond language constructs that can be clearly
separated and defined. In the future, evidence from these two approaches could be combined
in order to improve our understanding of language processing in the brain. For example,
previous studies suggested that hierarchical syntactic structure may be represented in the
left temporal lobe, areas in which our analyses identified a spatial gradient from intermediate
to long timescale selectivity (Brennan et al., 2016). Evidence derived from both approaches
should be further compared in order to inform neurolinguistic theories with a spatially and
temporally fine-grained model of voxel representation that can be interpreted in terms of
classical language constructs.

One limitation of our study comes from the temporal resolution of BOLD data. Because
the data used in this study have a repetition time (TR) of 2 seconds, our analysis may
be unable to detect very fine-grained distinctions in timescale selectivity. Furthermore,
controlling for low-frequency voxel response drift required low-pass filtering the BOLD data
during preprocessing. This preprocessing filter may have removed information about brain
representations of very long timescales (i.e., timescales above 360 words), thus removing
information about these timescales. Future work could apply our method to brain recordings
that have more fine-grained temporal resolution (e.g., from electrocorticography (ECoG) or
electroencephalography (EEG) recordings) or that do not require low-pass filtering in order
to determine whether there are subtle differences in timescale selectivity between modalities.
A second limitation arises from the current state of language model embeddings. Although
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embeddings from language models explain a large proportion of variance in brain responses,
these embeddings do not capture all stimulus features (e.g., features that change within
single words). In the future, our method can be used with other language models to obtain
more accurate estimates of timescale selectivity.

In sum, we developed a sensitive, data-driven method to determine whether language
timescales are represented in the same way during reading and listening across cortical areas
that represent both written and spoken language. Analyses of timescale selectivity in indi-
vidual participants and at the group level reveal that the cortical representation of different
language timescales is highly similar between reading and listening across temporal, parietal,
and prefrontal cortices at the level of individual voxels. The shared organization of cortical
language timescale selectivity suggests that a change in stimulus modality alone does not
substantially alter the organization of representations of language timescales. A remaining
open question is whether a change in the temporal constraints of language processing would
alter the organization of representations of language timescales. One interesting direction
for future work would be to compare whether a change in the stimulus presentation method
(e.g., static text presentation compared to transient rapid serial visual presentation (RSVP))
would alter the organization of language timescale representations.

3.5 Methods
Functional MRI was used to record BOLD responses while human participants read and
listened to a set of English narrative stories (Deniz et al., 2019; Huth et al., 2016). The
stimulus narratives were transformed into feature spaces that each reflect a particular set of
language timescales. Each timescale was defined as the spectral components of the stimulus
narrative that vary over a certain number of words. These timescale-specific feature spaces
were then used to estimate voxelwise encoding models that describe how different timescales
of language are represented in the brain for each modality and participant separately. The
voxelwise encoding models were used to determine the language timescale selectivity of each
voxel, for each participant and modality separately. The language timescale selectivity of
individual voxels was compared between reading and listening. The experimental procedure
is summarized in Figure 3.5 and is detailed in the following subsections.
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Figure 3.5: Experimental procedure and voxelwise modeling. The following procedure was
used to compare the representation of different language timescales across the cerebral cortex.
a. Functional MRI signals were recorded while participants listened to or read narrative stories
(Deniz et al., 2019; Huth et al., 2016). Timescale-specific feature spaces were constructed, each
of which reflects the components of the stimulus that occur at a specific timescale (See (b) for
details). These feature spaces and BOLD responses were used to estimate voxelwise encoding
models that indicate how different language timescales modulate the BOLD signal evoked in
each voxel, separately for each participant and modality (“Model estimation”). Estimated
model weights were used to predict BOLD responses to a separate held-out dataset which was
not used for model estimation (“Model evaluation”). Predictions for individual participants
were computed separately for listening and reading sessions. Prediction performance was quan-
tified as the correlation between the predicted and recorded BOLD responses to the held-out
test dataset. This prediction performance was used to determine the selectivity of each voxel
to language structure at each timescale. These estimates were then compared between reading
and listening (“Timescale comparison”). b. Timescale-specific feature spaces were constructed
from the presented stimuli. A contextual language model (BERT (Devlin et al., 2019)) was
used to construct a vector embedding of the stimulus. The resulting stimulus embedding was
decomposed into components at specific timescales. To perform this decomposition, the stimu-
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lus embedding was convolved across time with each of eight linear filters. Each linear filter was
designed to extract components of the stimulus embedding that vary with a specific period.
This convolution procedure resulted in eight sets of stimulus embeddings, each of which reflects
the components of the stimulus narrative that vary at a specific timescale. These eight sets of
stimulus embeddings were used as timescale-specific feature spaces in (a).

MRI data collection
MRI data were collected on a 3T Siemens TIM Trio scanner located at the UC Berkeley
Brain Imaging Center. A 32-channel Siemens volume coil was used for data acquisition.
Functional scans were collected using gradient echo EPI water excitation pulse sequence
with the following parameters: repetition time (TR) 2.0045 s; echo time (TE) 35 ms; flip
angle 74 degrees; voxel size 2.24 x 2.24 x 4.1 mm (slice thickness 3.5 mm with 18% slice
gap); matrix size 100 x 100; and field of view 224 x 224 mm. To cover the entire cortex,
30 axial slices were prescribed and these were scanned in interleaved order. A custom-
modified bipolar water excitation radiofrequency (RF) pulse was used to avoid signal from
fat. Anatomical data were collected using a T1-weighted multi-echo MP-RAGE sequence on
the same 3T scanner.

To minimize head motion during scanning and to optimize alignment across sessions,
each participant wore a customized, 3D-printed or milled head case that matched precisely
the shape of each participant’s head (Gao, 2015; Power et al., 2019). In order to account
for inter-run variability, within each run MRI data were z-scored across time for each voxel
separately. The data presented here have been presented previously as part of other studies
that examined questions unrelated to timescales in language processing (de Heer et al., 2017;
Deniz et al., 2019; Huth et al., 2016). Motion correction and automatic alignment were
performed on the fMRI data using the FMRIB Linear Image Registration Tool (FLIRT)
from FSL 5.0 (Jenkinson et al., 2012). Low-frequency voxel response drift was removed from
the data using a third-order Savitzky-Golay filter with a 120s window (for data preprocessing
details see (Deniz et al., 2019)).

Participants
Functional data were collected on nine participants (six males and three females) between
the ages of 24 and 36. All procedures were approved by the Committee for Protection of
Human Subjects at the University of California, Berkeley. All participants gave informed
consent. All ethical regulations relevant to human research participants were followed. All
participants were healthy, had normal hearing, and had normal or corrected-to-normal vision.
The Edinburgh handedness inventory (Oldfield, 1971b) indicated that one participant was
left handed. The remaining eight participants were right handed or ambidextrous.

Because the current study used a voxelwise encoding model framework, each participant’s
data were analyzed individually, and both statistical significance and out-of-set prediction
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accuracy (i.e., generalization) are reported for each participant separately. Because each
participant provides a complete replication of all hypothesis tests, sample size calculations
were neither required nor performed.

Stimuli
Human participants read and listened to a set of English narrative stories while in the fMRI
scanner. The same stories were used as stimuli for reading and listening sessions and the
same stimuli were presented to all participants. These stories were originally presented at
The Moth Radio Hour. In each story, a speaker tells an autobiographical story in front of
a live audience. The selected stories cover a wide range of topics and are highly engaging.
The stories were separated into a model training dataset and a model test dataset. The
model training dataset consisted of ten 10-15 min stories. The model test dataset consisted
of one 10 min story. This test story was presented twice in each modality (once during each
scanning session). The responses to the test story were averaged within each modality (for
details see (Huth et al., 2016) and (Deniz et al., 2019)). Each story was played during a
separate fMRI scan. The length of each scan was tailored to the story and included 10s
of silence both before and after the story. Listening and reading presentation order was
counterbalanced across participants.

During listening sessions the stories were played over Sensimetrics S14 in-ear piezoelectric
headphones. During reading sessions the words of each story were presented one-by-one at
the center of the screen using a rapid serial visual presentation (RSVP) procedure (Buchweitz,
Mason, Tomitch, & Just, 2009; Forster, 1970). Each word was presented for a duration
precisely equal to the duration of that word in the spoken story. The stories were shown on
a projection screen at 13 x 14 degrees of visual angle. Participants were asked to fixate while
reading the text. (For details about the experimental stimuli see (Deniz et al., 2019)).

Voxelwise encoding models
Voxelwise modeling (VM) was used to model BOLD responses (de Heer et al., 2017; Deniz
et al., 2019; Huth et al., 2016; Naselaris et al., 2011; M. C.-K. Wu et al., 2006). In the VM
framework, stimulus and task parameters are nonlinearly transformed into sets of features
(also called “feature spaces”) that are hypothesized to be represented in brain responses.
Linearized regression is used to estimate a separate model for each voxel. Each model predicts
brain responses from each feature space (a model that predicts brain responses from stimulus
features is referred to as an “encoding model”). The encoding model describes how each
feature space is represented in the responses of each voxel. A held-out dataset that was not
used for model estimation is then used to evaluate model prediction performance on new
stimuli and to determine the significance of the model prediction performance.
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Construction of timescale-specific feature spaces
To operationalize the notion of language timescales, the language stimulus was treated as
a time series and different language timescales were defined as the different frequency com-
ponents of this time series. Although this operational definition is not explicitly formu-
lated in terms of classic language abstractions such as sentences or narrative chains, the
resulting components nonetheless selectively capture information corresponding to the broad
timescales of words, sentences, and discourses (Tamkin et al., 2020). To construct timescale-
specific feature spaces, first an artificial neural language model (“BERT”(Devlin et al., 2019))
was used to project the stimulus words onto a contextual word embedding space. This pro-
jection formed a stimulus embedding that reflects the language content in the stimuli. Then,
linear filters were convolved with the stimulus embedding to extract components that each
vary at specific timescales. These two steps are detailed in the following two paragraphs.

Embedding extraction An artificial neural network (BERT-base-uncased (Devlin et
al., 2019)) was used to construct the initial stimulus embedding. BERT-base is a contextual
language model that contains a 768-unit embedding layer and 12 transformer layers, each
with a 768-unit hidden state (for additional details about the BERT-base model see (Devlin
et al., 2019)). The w words of each stimulus narrative X were tokenized and then provided
one sentence at a time as input to the pretrained BERT-base model (sentence-split inputs
were chosen as input context because sentence-level splits mimic the inputs provided to BERT
during pretraining). For each stimulus word, the activation of each of the p = 13×768 = 9984
units of BERT was used as a p-dimensional embedding of that word. Prior work suggested
that language structures with different timescales are preferentially represented in different
layers of BERT(Jawahar et al., 2019; Rogers et al., 2021; Tenney et al., 2019) ( though some
have argued that language timescales are not cleanly separated across different layers of
BERT(Niu et al., 2022)). Earlier layers represent lower-level, shorter-timescale information
(e.g., word identity and linear word order), whereas later layers represent higher-level, longer-
timescale information (e.g., coreference, long-distance dependencies). To include stimulus
information at all levels of the language processing hierarchy, activations from all layers of
BERT were included in the stimulus embedding. The embeddings of the w stimulus words
form a p×w stimulus embedding M(X). M(X) numerically represents the language content
of the stimulus narratives.

Timescale separation The stimulus embedding derived directly from BERT can explain
a large proportion of the variance in brain responses to language stimuli (Caucheteux &
King, 2022; Lamarre et al., 2022; Schrimpf et al., 2021; Toneva & Wehbe, 2019). However,
this stimulus embedding does not distinguish between different language timescales.

In order to distinguish between different language timescales, linear filters were used to
decompose the stimulus embedding M(X) into different language timescales. Intuitively, the
stimulus embedding consists of components that vary with different periods. Components
that vary with different periods can be interpreted in terms of different classical language
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structures (Tamkin et al., 2020). For example, components that vary with a short period
(∼2-4 words) reflect clause-level structures such as syntactic complements, components that
vary with an intermediate period (∼16-32 words) reflect sentence-level structures such as
constituency parses, and components that vary with a long period (∼128-256 words) reflect
paragraph-level structures such as semantic focus. To reflect this intuition, different language
timescales were operationalized as the components of M(X) with periods that fall within
different ranges. The period ranges were chosen to be small enough to model timescale
selectivity at a fine-grained temporal granularity, and large enough to avoid substantial
spectral leakage which would contaminate the output of each filter with components outside
the specified timescale. The predefined ranges were chosen as: 2-4 words, 4-8 words, 8-
16 words, 16-32 words, 32-64 words, 64-128 words, 128-256 words, and 256+ words. To
decompose the stimulus embedding into components that fall within these period ranges,
eight linear filters bi (i ∈ 1, 2, .., 8) were constructed. Each filter bi was designed to extract
components that vary with a period in the predefined range. The window method for
filter design was used to construct each filter (F. J. Harris, 1978). Each linear filter was
constructed by multiplying a cosine wave with a blackman window (Blackman & Tukey,
1958). The stimulus embedding M(X) was convolved with each of the eight filters separately
to produce eight filtered embeddings Mi(X), i ∈ 1, 2, ..., 8, each with dimension p × w. To
avoid filter distortions at the beginning and end of the stimulus, a mirrored version of M(X)
was concatenated to the beginning and end of M(X) before the filters were applied to M(X).
Each filtered embedding Mi(X) contains the components of the stimulus embedding that
vary at the timescale extracted by the i-th filter.

Construction of sensory-level feature spaces
Two sensory-level feature spaces were constructed in order to account for the effect of low-
level sensory information on BOLD responses. One feature space represents low-level visual
information. This feature space was constructed using a spatiotemporal Gabor pyramid that
reflects the spatial and motion frequencies of the visual stimulus (for details see (Deniz et al.,
2019), (Nishimoto et al., 2011), and (Nakai et al., 2021)). The second feature space represents
low-level auditory information. This feature space was constructed using a cochleogram
model that reflects the spectral frequencies of the auditory stimulus (for details see (de Heer
et al., 2017), (Deniz et al., 2019), and (Nakai et al., 2021)).

Stimulus downsampling
Feature spaces were downsampled in order to match the sampling rate of the fMRI recordings.
The eight filtered timescale-specific embeddings Mi(X) contain one sample for each word.
Because word presentation rate of the stimuli is not uniform, directly downsampling the
timescale-specific embeddings Mi(X) would conflate long-timescale embeddings with the
presentation word rate of the stimulus narratives (Jain et al., 2020). To avoid this problem,
a Gaussian radial basis function (RBF) kernel was used to interpolate Mi(X) in order to
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form intermediate signals M ′
i(X), following (Jain et al., 2020). Each M ′

i(X) has a constant
sampling rate of 25 samples per repetition time (TR). After this interpolation step, an anti-
aliasing, 3-lobe Lanczos filter with cut-off frequency set to the fMRI Nyquist rate (0.25
Hz) was used to resample the intermediate signals M ′

i(X) to the middle timepoints of each
of the n fMRI volumes. This procedure produced eight timescale-specific feature spaces
Fi(X), each of dimension p×n. Each of these feature spaces contains the components of the
stimulus embedding that vary at a specific timescale. These feature spaces are sampled at
the sampling rate of the fMRI recordings. The sensory-level feature spaces were not sampled
at the word presentation rate. Therefore Gaussian RBF interpolation was not applied to
sensory-level feature spaces.

Before voxelwise modeling, each stimulus feature was truncated, z-scored, and delayed.
Data for the first 10 TRs and the last 10 TRs of each scan were truncated to account for
the 10 seconds of silence at the beginning and end of each scan and to account for non-
stationarity in brain responses at the beginning and end of each scan. Then the stimulus
features were each z-scored in order to account for z-scoring performed on the MRI data (for
details see “MRI data collection”). In the z-scoring procedure, the value of each feature
channel was separately normalized by subtracting the mean value of the feature channel
across time and then dividing by the standard deviation of the feature channel across time.
Note that the resulting feature spaces had low correlation with each other – for each pair of
feature spaces, the mean pairwise correlation coefficient between dimensions of the feature
spaces was less than 0.1. Lastly, finite impulse response (FIR) temporal filters were used to
delay the features in order to model the hemodynamic response function of each voxel. The
FIR filters were implemented by concatenating feature vectors that had been delayed by 2,
4, 6, and 8 seconds(Deniz et al., 2019; Huth et al., 2016; Nakai et al., 2021).

Voxelwise encoding model fitting
Voxelwise encoding models were estimated in order to determine which features are rep-
resented in each voxel. Each model consists of a set of regression weights that describes
BOLD responses in a single voxel as a linear combination of the features in a particular fea-
ture space. In order to account for potential complementarity between feature spaces, the
models were jointly estimated for all ten feature spaces: the eight timescale-specific feature
spaces, and the two sensory-level feature spaces (the two sensory-level feature spaces reflect
spectrotemporal features of the auditory stimulus and motion energy features of the visual
stimulus) (Dupré la Tour et al., 2022; Nunez-Elizalde et al., 2019).

Regression weights were estimated using banded ridge regression (Nunez-Elizalde et al.,
2019). Unlike standard ridge regression, which assigns the same regularization parameter
to all feature spaces, banded ridge regression assigns a separate regularization hyperpa-
rameter to each feature space. Banded ridge regression thereby avoids biases in estimated
model weights that could otherwise be caused by differences in feature space distributions.
Mathematically, the m delayed feature spaces Fi(X), i ∈ 1, 2, ...,m (each of dimension
p) were concatenated to form a feature matrix F ′(X) (dimension (m × p) × n). Then



CHAPTER 3. THE CORTICAL REPRESENTATION OF LANGUAGE TIMESCALES
IS SHARED BETWEEN READING AND LISTENING 72

banded ridge regression was used to estimate a mapping B (dimension v × (
∑f

i=1 p)) from
F ′(X) to the matrix of voxel responses Y (dimension v × n). B is estimated according to
B̂ = arg minB ||Y − BF ′(X)||22 + λ||CB||22. A separate regularization parameter was fit for
each voxel, feature space, and FIR delay. The diagonal matrix C of regularization hyper-
parameters for each feature space and each voxel is optimized over 10-fold cross-validation.
See Section 3.5 for details.

Regularization hyperparameter selection
Data for the ten narratives in the training dataset were used to select regularization hy-
perparameters for banded ridge regression. 10-fold cross-validation was used to find the
optimal regularization hyperparameters for each feature space and each voxel. Regulariza-
tion hyperparameters were chosen separately for each participant and modality. In each
fold, data for nine of the ten narratives were used to estimate an encoding model and the
tenth narrative was used to validate the model. The regularization hyperparameters for
each feature space and voxel were selected as the hyperparameters that produced the mini-
mum squared error (L2) loss between the predicted voxel responses and the recorded voxel
responses (arg minhyperparameters ||ŷ− y||22). Because evaluating k regularization hyperparam-
eters for m feature spaces requires km iterations (1010 = 10, 000, 000, 000 model fits in our
case), it would be impractical to conduct a grid search over all possible combinations of hy-
perparameters. Instead, a computationally efficient two-stage procedure was used to search
for hyperparameters (Dupré la Tour et al., 2022). The first stage consisted of 1000 iterations
of a random hyperparameter search procedure (Bergstra & Bengio, 2012). 1000 normalized
hyperparameter candidates were sampled from a dirichlet distribution and were then scaled
by 10 log-spaced values ranging from 10−5 to 105. Then the voxels with the lowest 20%
of the cross-validated L2 loss were selected for refinement in the second stage. The sec-
ond stage consisted of 1000 iterations of hyperparameter gradient descent (Bengio, 2000).
This stage was used to refine the hyperparameters selected during the random search stage.
This hyperparameter search was performed using the Himalaya Python package (Dupré la
Tour et al., 2022). Note that hyperparameter selection in banded ridge regression acts as
a feature-selection mechanism that helps account for stimulus feature correlations (Dupré
la Tour et al., 2022).

Model estimation and evaluation
The selected regularization hyperparameters were used to estimate regression weights that
map from the timescale-specific feature spaces to voxel BOLD responses. Regression weights
were estimated separately for each voxel in each modality and participant. The test dataset
was not used to select hyperparameters or to estimate regression weights. The joint pre-
diction performance r of the combined feature spaces was computed per voxel as the Pear-
son correlation coefficient between the predicted voxel responses and the recorded voxel
responses. The split-prediction performance r̃ was used to determine how much each feature
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space contributed to the joint prediction performance r. The split-prediction performance
decomposes the joint prediction performance r of all the feature spaces into the contribu-
tion r̃i, i ∈ 1, 2, ...m of each feature space. The split-prediction performance is computed as
r̃i =

∑
t Ŷi[t]Y [t]√

(
∑

t Ŷ [t]2)(
∑

t Y [t]2)
, where t denotes each timepoint (further discussion of this metric can

be found in (St-Yves & Naselaris, 2018) and (Dupré la Tour et al., 2022)).

Language-selective voxel identification
The set of “language-selective voxels”was operationally defined as the set of voxels that are
accurately predicted by any of the eight timescale-specific feature spaces. To identify this
set of voxels, the split-prediction performance was used. The total contribution r̃all_timescales

of the eight timescale-specific feature spaces to predicting the BOLD responses in each voxel
was computed as the sum of the split-prediction performance for each of the eight timescales
r̃all_timescales =

∑8
i=1 r̃timescalei . The significance of r̃all_timescales was computed by a permuta-

tion test with 1000 iterations. At each permutation iteration, the timecourse of the held-out
test dataset was permuted by blockwise shuffling (shuffling was performed in blocks of 10
TRs in order to account for autocorrelations in voxel responses (Deniz et al., 2019; Jain et al.,
2020)). The permuted timecourse of voxel responses was used to produce a null estimate
of r̃all_timescales. These permutation iterations produced an empirical distribution of 1000
null estimates of r̃all_timescales for each voxel. This distribution of null values was used to
obtain the p-value of r̃all_timescales for each voxel separately. A false discovery rate (FDR)
procedure was used to correct the resulting p-values for multiple comparisons within each
participant and modality (Benjamini & Hochberg, 1995). A low p-value indicates that the
timescale-specific feature spaces significantly contributed to accurate predictions of BOLD
responses in the joint model. Voxels with a one-sided FDR-corrected p-value of less than
p < .05 were identified as language-selective voxels. The set of language-selective voxels was
identified separately for each participant and modality.

Voxel timescale selectivity estimation
The encoding model estimated for each voxel was used to determine voxel timescale selec-
tivity, which reflects the average language timescale for which a voxel is selective. In order
to compute timescale selectivity, first the timescale selectivity profile (r̃′) was computed.
The timescale selectivity profile reflects the selectivity of each voxel to each of the eight
timescale-specific feature spaces. This metric is computed by normalizing the vector of split-
prediction performances of the eight timescale-specific feature spaces to form a proper set of
proportions: r̃′timescalei

=
max(0,r̃timescalei

)∑8
j=1 max(0,r̃timescalej

)
.

Comparing each index of the timescale selectivity profile separately cannot distinguish
between cases in which a voxel represents similar timescales between reading and listening
(e.g., 2-4 words for reading and 4-8 words for listening) and cases in which a voxel represents
very different timescales between the two modalities (e.g., 2-4 words for reading and 128-256
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words for listening). Therefore, we computed the timescale selectivity T̄ for each voxel, which
reflects the average timescale of language to which a voxel is selective (we use the weighted
average instead of simply taking the maximum selectivity across timescales, in order to
prevent small changes in prediction accuracy from producing large changes in estimated
timescale selectivity). To compute voxel timescale selectivity, first the timescale ti of each
feature space Fi(X) was defined as the center of the period range of the respective filter bi:
ti =

pi,low+pi,high
2

, where (pi,low, pi,high) indicates the upper and lower end of the period range
for filter i. Then, timescale selectivity was defined as a weighted sum of each feature space
log-timescale: T̄ = 2̂ (

∑8
i=1(r̃

′
i log2(ti))). Timescale selectivity was computed separately for

each voxel, participant, and modality.

Voxel timescale comparison
To compare timescale selectivity between modalities, the Pearson correlation coefficient was
computed between timescale selectivity during reading and listening across the set of voxels
that are language-selective in both modalities. The significance of this correlation was deter-
mined by a permutation test with 1000 iterations. At each iteration and for each modality
separately, the timecourse of recorded voxel responses was shuffled. The timecourses were
shuffled in blocks of 10 TRs in order to account for autocorrelations in voxel responses. The
shuffled timecourses of recorded voxel responses were used to compute a null value for the
timescale selectivity of each voxel for each modality separately. The null values of timescale
selectivity were correlated between reading and listening to form an empirical null distribu-
tion. This null distribution was used to determine the p-value of the observed correlation
between timescale selectivity during reading and listening. Significance was computed for
each participant separately.

In addition, for each of the eight timescales separately the Pearson correlation coefficient
was computed between selectivity for that timescale during reading and listening. This cor-
relation was performed across the set of voxels that are language-selective in both modalities.
The significance of the observed correlations were computed by a permutation test. At each
of 1000 iterations the timecourse of recorded voxel responses was shuffled and then the shuf-
fled voxel responses were used to compute null values of the timescale selectivity profile. For
each timescale-specific feature space separately, the null values of the timescale selectivity
profile were used to compute an empirical null distribution for the correlation between se-
lectivity for that feature space during reading and listening. These null distributions were
used to determine the p-value of the observed correlations. Significance was computed for
each participant and for each timescale-specific feature space separately.



CHAPTER 3. THE CORTICAL REPRESENTATION OF LANGUAGE TIMESCALES
IS SHARED BETWEEN READING AND LISTENING 75

3.6 Supplementary Figures

Figure 3.6: Comparison of embedding extraction methods, sentence input context vs fixed
rolling input context. a. Encoding model prediction performance (r) obtained from a sentence-
split input context (x-axis), and from a rolling input context of 10 words (y-axis). Each point
represents one voxel. Axis labels indicate the percentage of voxels for which the respective
embedding extraction method produces better performance (some voxels are predicted similarly
well with both embedding extraction methods; therefore percentages may not sum to 100).
A sentence-split input context produces more accurate predictions of brain responses than a
rolling input context of 10 words. b. Timescale selectivity is shown for two representative
participants (S1 and S2) and for reading and listening separately. Timescale selectivity is
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shown according to the color scale at the bottom. Voxels that were not significantly predicted
are shown in grey (one-sided permutation test, p < .05, FDR corrected). For both embedding
extraction methods, temporal cortex contains a spatial gradient from intermediate to long
timescale selectivity along the superior to inferior axis, prefrontal cortex (PFC) contains a
spatial gradient from intermediate to long timescale selectivity along the posterior to anterior
axis, and precuneus is predominantly selective for long timescales. While Panel A shows that a
sentence-split input context length produces more accurate models of brain responses, estimates
of timescale selectivity are robust to the input context method.
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Figure 3.7: Comparison of embedding extraction methods, input context length 10 words
vs input context length 100 words. a. Encoding model prediction performance (r) using a
rolling input context of 10 words (x-axis) vs a rolling input context of 100 words (y-axis). Each
point represents one voxel. Axis labels indicate the number of voxels for which the respective
embedding extraction method produces better performance (some voxels are predicted similarly
well with both embedding extraction methods; therefore, percentages may not sum to 100.) An
input context of 10 words produces more accurate predictions of brain responses than an input
context of 100 words. b. Timescale selectivity is shown for two representative participants (S1
and S2), for reading and listening separately. For each significantly predicted voxel, timescale
selectivity is shown according to the color scale at the bottom. Voxels that were not significantly
predicted are shown in grey (one-sided permutation test, p < .05, FDR corrected). For both
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embedding extraction methods, temporal cortex contains a spatial gradient from intermediate
to long timescale selectivity along the superior to inferior axis, prefrontal cortex (PFC) contains
a spatial gradient from intermediate to long timescale selectivity along the posterior to anterior
axis, and precuneus is predominantly selective for long timescales. These results suggest using
a shorter input context produces more accurate models of brain responses, and that estimates
of timescale selectivity are similar between different input context lengths.
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Figure 3.8: Comparison of estimated timescale selectivity between different input context
lengths. Timescale selectivity was estimated separately with a sentence-length stimulus input
context, a rolling 10-word input context, and a rolling 100-word input context. For each pair
of input contexts, group-averaged voxelwise spatial correlation between estimated timescale
selectivity is shown, for reading (a) and listening (b) separately. The sentence-length context
and rolling 10-word context produce correlated estimates of timescale selectivity. The rolling
100-word context produces estimates of timescale selectivity that are less similar, but still
positively correlated with estimates from the other two embedding methods. Furthermore,
the similarity between sentence-length and rolling input contexts suggests that the inclusion
of future context in sentence-length input contexts does not qualitatively change estimates of
timescale selectivity.
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Figure 3.9: Comparison of embedding extraction methods, all layers of BERT vs only a
single layer. Timescale selectivity was estimated with embeddings from each layer of BERT.
Results are shown for two representative participants (S1 and S2). a. Bars denote number of
significantly predicted voxels for each layer. Errorbars denote standard error. The dashed line
denotes the number of significantly predicted voxels obtained from using all layers of BERT
together. Including all layers of BERT generally produces better predictions of brain responses
than only using a single layer. b. Timescale selectivity estimated with embeddings from each
layer separately. For each significantly predicted voxel, timescale selectivity is shown according
to the color scale at the bottom. Voxels that were not significantly predicted are shown in
grey (one-sided permutation test, p < .05, FDR corrected). Estimates of timescale selectivity
are similar between the different embedding methods –spatial gradients from intermediate to
long timescale selectivity are found along the superior to inferior axis of temporal cortex and
along the posterior to anterior axis of prefrontal cortex (PFC), and precuneus is predominantly
selective for long timescales. Embeddings from only a single layer of BERT often result in
slightly worse prediction performance, but the choice of layer does not substantially affect
estimates of timescale selectivity.
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Figure 3.10: Comparison of estimated timescale selectivity between different embedding lay-
ers. Timescale selectivity was estimated separately with embeddings from each layer of BERT.
Group-averaged voxelwise spatial correlation between timescale selectivity is shown for each
pair of layers, for reading (a) and listening (b) separately. Estimates of timescale selectivity are
highly correlated across layers. Estimates are more similar for layers that are closer together,
suggesting a small effect of stimulus layer on estimates of timescale selectivity. Overall, esti-
mates of timescale selectivity are consistent across different layers.
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Figure 3.11: Language-selective voxels in each modality. The set of language-selective voxels is
shown for reading and listening separately on the flattened cortical surface of each participant.
Language-selective voxels are shown in yellow. For both modalities, voxels across temporal,
parietal, and prefrontal cortices are language-selective.
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Figure 3.12: Explainable variance in reading vs listening. The explainable variance (EV) for
reading and listening is shown on the flattened cortical surface of each participant. The first
presented modality for each participant is indicated by the figure subtitles. Orange voxels had
high EV for reading. Blue voxels had high EV for listening. White voxels had high EV for
both modalities. The stimulus modality with stronger EV varies across participants, possibly
due to individual participant preferences for certain modalities or because of small differences
in noise across sessions. The EV of a voxel is computed using the measured BOLD response in
a voxel over N repetitions of a stimulus with T timepoints y1, ...yN ∈ RT as follows (Y must
be zscored across time):
ȳ = 1

N

∑N
i=1 yi

ri = yi − ȳ
EV = 1

N

∑N
i=1 V ar(yi)− N

N−1

∑N
i=1 V ar(ri)
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Figure 3.13: Difference between timescale selectivity in first and second presented modalities.
The difference between timescale selectivity in the first and second presented modalities is
shown on the flattened cortical surface of each participant. The first presented modality for
each individual participant is indicated by the figure subtitles. Red voxels have longer timescale
selectivity for the first presented modality. Blue voxels have longer timescale selectivity for
the second presented modality. Voxels shown in grey were not significantly predicted in both
modalities. Timescale selectivity is overall longer in the first presented modality than in the
second presented modality in six participants (S1, S2, S4, S5, S6, S8; p < .05 by a two-sided t-
test for paired samples). Voxel timescale selectivity is on average longer in the second presented
modality than in the first presented modality in the other three participants (S3, S7, S9).
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Figure 3.14: Number of participants significantly predicted in each vertex. The set of signifi-
cantly predicted voxels in each participant was mapped to a standard fsAverage vertex space for
reading and listening separately. The number of participants that was significantly predicted
for each vertex is shown for reading (a) and listening (b) separately. The number of partici-
pants is indicated by the colorbar at the bottom. Brighter vertices are significantly predicted in
more participants. Vertices across temporal, parietal, and prefrontal cortices are significantly
predicted in most participants for both modalities.
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Figure 3.15: Group-level timescale selectivity across previously proposed cortical networks.
The Yeo2011 cortical parcellation was used to determine 17 cortical parcels in fsAverage space
(Yeo et al., 2011). From this parcellation pre-defined network labels were used to identify three
proposed networks (temporo-parietal network (TempPar), cognitive control network (Control),
and default mode network (DMN)). a. Group-level timescale selectivity is shown on the flat-
tened cortical surface of the fsAverage template brain, for the three networks separately, and
for reading and listening separately. Timescale selectivity is shown according to the color scale
at the bottom. Voxels that were not significantly predicted for both modalities in at least three
participants are shown in grey (one-sided permutation test, p < .05, FDR corrected). The
temporo-parietal network (TempPar) contains a gradient from short to long timescale selectiv-
ity in superior to inferior temporal cortex. Prefrontal areas of the control network (Control)
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contain a mix of timescale selectivity. The default mode network (DMN) contains a gradient
from short to long timescale selectivity from posterior to anterior prefrontal cortex. b. The dis-
tribution of group-level timescale selectivity for each network is shown for reading and listening
separately. Histograms include vertices that were significantly predicted for both modalities
in at least three participants. Each network is selective for a range of different timescales.
The DMN contains longer timescale selectivity than the other networks. This difference was
statistically significant for both reading and listening, at the group level and for eight of the
nine individual participants (p = 0.13 for DMN vs TempPar S5 reading; p < .01 at the group
level and for all other participants, modalities, and network pairs). The preference towards
longer timescale selectivity within the default mode network is consistent with reports that
long-timescale narrative-length information may be processed in this network (Simony et al.,
2016).
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Figure 3.16: Uniformity of timescale selectivity. For each voxel, the uniformity of timescale
selectivity was computed as the entropy of the timescale selectivity profile of the voxel. Voxels
with more uniform timescale selectivity have a flatter timescale selectivity profile; thus, higher
entropy corresponds to more uniform timescale selectivity, whereas lower entropy corresponds
to more peaked timescale selectivity. The entropy of the timescale selectivity profile of each
voxel is shown according to the color scale at the bottom on the flattened cortical surface of
each participant, for reading and listening separately. Brighter voxels have timescale selectivity
profiles with higher-entropy. Darker voxels have timescale selectivity profiles with lower-entropy.
Voxels that were not significantly predicted are shown in grey (one-sided permutation test,
p < .05, FDR corrected). Voxel timescale selectivity profiles have higher entropy (i.e., are more
uniform) in superior temporal gyrus (STG) and posterior areas of prefrontal cortex (PFC), and
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have lower entropy (i.e., are more peaked) in lateral and medial parietal cortex. These results
are consistent with (Lerner et al., 2011), which found that areas near STS and posterior PFC
displayed a wider range of temporal receptive windows than other brain areas, whereas areas
such as precuneus displayed a smaller range of temporal receptive windows.
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2-4
words

4-8
words

8-16
words

16-32
words

32-64
words

64-128
words

128-256
words

256+
words

S1 0.003* <0.001* 0.004* <0.001* 0.062 1 0.012* 0.001*
S2 <0.001* <0.001* <0.001* <0.001* 0.048* 0.006* 0.038* 0.008*
S3 <0.001* <0.001* 0.071 0.004* 0.039* <0.001* <0.001* 0.002*
S4 <0.001* 0.001* 0.008* <0.001* 0.062 0.246 0.021* 0.005*
S5 <0.001* <0.001* 0.563 0.001* 0.48 0.21 <0.001* 0.425
S6 <0.001* <0.001* 0.001* 0.01* 0.658 0.043* 0.003* 0.043*
S7 <0.001* <0.001* <0.001* 0.092 0.088 0.001* 0.08 0.007*
S8 <0.001* <0.001* 0.062 0.091 0.018* 0.157 0.003* 0.07
S9 <0.001* <0.001* 0.001* <0.001* 0.036* <0.001* <0.001* <0.001*

Table 3.1: Significance of correlation between selectivity for each timescale during
reading and listening. For each timescale and participant, the Pearson correlation coefficient
was computed across voxels between selectivity for that timescale during reading and listening
(Figure 4). The p-value of each correlation is shown here. Asterisks indicate p-values that are
significant (one-sided permutation test, p < .05, FDR corrected with a Benjamini-Hochberg
correction for multiple comparisons).
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Chapter 4

A Unified Semantic System for
Representing Concepts and Relations
in the Human Brain

4.1 Introduction
Humans draw upon stored semantic knowledge to communicate and reason about objects
in the world. This knowledge consists of concepts (e.g., bicycle, wheel, transportation) and
the relations between them (e.g., is-a, has-part, used-for). Prior studies of how the human
brain represents semantic knowledge has primarily focused on concepts. These studies have
shown that during language comprehension, concepts are represented throughout a network
of brain areas in the temporal, parietal, and prefrontal cortices (Binder et al., 2009; Huth
et al., 2016). Each area represents specific concepts, forming patterns that are consistent
across individuals, modalities, and languages (Chen, Gong, et al., 2024; Deniz et al., 2019;
Huth et al., 2016). While prior work has focused on concepts, the ability to represent
relations is a fundamental part of human cognition: this ability enables humans to form
generalizations, make inferences, and engage in analogical reasoning (Bejar et al., 1991;
Chaffin, 1988; Hofstadter & Sander, 2013; Holyoak & Lu, 2021; Unger & Fisher, 2021).
Thus, understanding how the brain represents relations, not just individual concepts, is
crucial for understanding the neural basis of cognition.

Theoretical models suggest different possibilities about how relations could be represented
in the brain. One group of models suggests that representations of relations are embedded
within the concepts they connect. For example, in models of semantic memory, relations
are represented as labeled links between pairs of concepts, or as features stored within the
representation of each concept (Collins & Quillian, 1969; Smith et al., 1974). A second group
of models argues that in order to enable flexible reasoning, relations must have their own
representations that are abstracted away from the specific concepts involved in each instance
of the relation. For example, in models of analogical reasoning, relations are represented as
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independent units or vectors that are dynamically bound to specific concepts (Doumas &
Hummel, 2012; Gentner & Forbus, 2011; Holyoak et al., 2022; Kanerva, 2010).

Based on prior behavioral evidence that humans often treat relations similarly to con-
cepts (Bejar et al., 1991; Chaffin & Herrmann, 1984; Kemp et al., 2018; Popov & Pavlova,
2020), we hypothesized that in the human brain relations have their own representations
and, moreover, that relations are represented in the same way as concepts. Under this hy-
pothesis, relations would be organized within the same semantic space as concepts, enabling
efficient combination of relations and concepts. This hypothesis suggests three empirical
predictions. First, relations should have their own representations: the representation of
each relation should be consistent across instances that involve different concepts. Second,
the organization of relation representations should match that of concept representations:
each area should represent specific relations, forming patterns that are consistent across indi-
viduals. Third, there should be a systematic relationship between the cortical organizations
of relation and concept representations: two areas that represent the same relation should
also represent similar concepts to each other.

Existing evidence provides partial support for this hypothesis. A few neuroimaging stud-
ies have reported that representations of relations in the human brain are consistent across
different instances of the same relation, suggesting that relation representations are ab-
stracted away from specific concepts (Chiang et al., 2021; Wang et al., 2021). However,
these neuroimaging results may have been confounded by the use of different sets of objects
for examples of different relations. Furthermore, those studies examined representational
similarities and decoding accuracies, rather than explicitly modeling the representation of
each relation. Thus, it is unclear where each relation is represented, or how relation represen-
tations are organized across the cortical surface: each area could represent specific relations,
or broadly represent many different relations. Finally, no prior study has directly compared
the organization of relation and concept representations. Thus, it is unclear whether there
is a systematic relationship between the concepts and relations that are represented in each
area.

We designed a study to test the hypothesis that relations are represented in the same way
as other concepts. Six participants each performed a relation-verification experiment. In this
experiment, each participant answered over 1000 questions about six semantic relations while
functional magnetic resonance imaging (fMRI) was used to record brain responses (Figure
4.1). Voxelwise modeling was used to estimate functional maps that describe selectivity for
each of the six relations. Then, a separate narrative comprehension experiment was used to
estimate functional maps that describe selectivity for individual concepts (Deniz et al., 2019;
Huth et al., 2016). The two sets of maps were used to test our three predictions within each
participant. Our results support the hypothesis that relations are represented in the same
way as other concepts.
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Figure 4.1: Experiment paradigm and voxelwise modeling. a. Examples of the six relations
in our experiment. Examples are shown for the object “bicycle”. b. Experiment paradigm.
Participants each performed over 1000 trials of an event-related experiment while fMRI was
used to record BOLD responses. Two example trials are shown. In each trial three words were
displayed: a relation (e.g., “part”), an object (e.g., “bicycle”), and a potential completion
word (e.g., “wheel”). Participants were instructed to press a button to indicate whether
the presented instance forms a valid relation. c. Modeling framework. For each relation a
binary feature space was constructed to describe the times at which participants performed
trials for that relation. VM was used to estimate a separate FIR ridge regression model for
each feature space, voxel, and participant. Estimated model weights describe how each relation
modulates BOLD responses separately in each voxel and for each participant. Estimated model
weights were used to predict BOLD responses to a held-out dataset that was not used for model
estimation. The held-out dataset used different instances of each relation from the train dataset.
Prediction accuracy was quantified as the coefficient of determination (R2) between predicted
and recorded BOLD responses to the held-out dataset.
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4.2 Results
A relation-verification experiment was used to model how the brain represents semantic rela-
tions. In each trial of this experiment, participants answered questions about one of eight re-
lations. The eight relations include six semantic relations: is-a (e.g., bicycle-vehicle), found-
at (e.g., bicycle-garage), has-part (e.g., bicycle-wheel), made-of (e.g., bicycle-aluminum),
symbol-of (e.g., bicycle-freedom), and used-for (e.g., bicycle-transportation). These six re-
lations were chosen because they commonly occur in existing studies of semantic relations
(Bejar et al., 1991; Jurgens et al., 2012). Furthermore, these relations apply to a wide range
of common objects and therefore allowed us to use the same set of objects for each relation
in the experiment. The trials also included trials about two non-semantic wordform rela-
tions: alphabetically-before (e.g., bicycle-stone), and wordform-match (e.g., bicycle-bicycle).
For brevity, we hereafter refer to semantic relations simply as relations, and non-semantic
wordform relations as wordform relations.

To examine how each relation is represented in the brain, we estimated voxelwise models
(VMs) that describe how each relation modulates blood oxygen level-dependent (BOLD)
responses in the brain. A six-dimensional relation feature space was constructed to describe
the relation type of each trial. Each dimension of this feature space corresponds to one of the
six relations. Then, banded ridge regression was used to estimate model weights that use the
relation feature space to predict BOLD responses in each voxel in each individual participant.
Additional feature spaces were included in the regression to account for representations of the
two wordform relations, the lexical semantic content of the presented words, visual stimuli,
motor reactions, participant reaction times, and participant accuracy. The estimated model
weights for each voxel were used to predict BOLD responses to a held-out test set which
contains instances of each relation that were not used for model estimation. The product
measure was used to compute the contribution R̃2

featurespace of each feature space to the
total prediction accuracy (Hoffman, 1960; Pratt, 1987). The estimated model weights and
prediction accuracies reveal which relations are represented in voxel.

First, we tested whether relations have their own representations that are independent of
specific pairs of concepts. If this is the case, then the representation of each relation will be
consistent across instances that involve different concepts, and therefore the relation feature
space will accurately predict brain responses to held-out instances of each relation.
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Figure 4.2: Prediction accuracy of the relation feature space. To determine whether relations
have their own representations, we tested whether model weights estimated for the relation
feature space could accurately predict BOLD responses to held-out instances of each relation.
a. Group-level prediction accuracy. Results are shown on the flattened cortical surface of
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the template space. Vertices that were significantly well-predicted in fewer than one third of
participants are shown in black. Prediction accuracy is high throughout bilateral temporal,
parietal, and prefrontal cortices. (STS=superior temporal sulcus, ITS=inferior temporal sul-
cus, IPS=inferior parietal sulcus, SFS=superior frontal sulcus, IFS=inferior frontal sulcus).
b. Prediction accuracy by cortical region. For each cortical region, yellow and green markers
show the mean prediction accuracy over voxels for the left and right hemispheres respectively.
Black markers show null prediction accuracy (95th percentile). Bars show the mean across
participants. Yellow and green asterisks show the number of participants for which prediction
accuracy is significantly higher in the left or right hemisphere. While the temporal, parietal,
and prefrontal cortices are significantly well-predicted bilaterally, accuracies are higher in the
left than the right hemisphere. These results indicate that relations are represented in a left-
lateralized network of cortical regions.

Figure 4.2a shows the test prediction accuracy of the relation feature space (R̃2
relations).

Prediction accuracy was computed separately for each participant. Group-level accuracies
were computed by projecting voxelwise accuracies for each participant to a standard tem-
plate space (fsAverage (Fischl et al., 1999)), and then averaging the projected accuracies
for each vertex in the template space. Group-level results are shown for each vertex of the
template space. Results for each participant are similar to the group (Supplementary Figure
4.5). Vertices are significantly well-predicted throughout the bilateral temporal, parietal,
and prefrontal cortices (one-sided p<.05 by a permutation test, after a Benjamini-Hochberg
correction for multiple comparisons (Benjamini & Hochberg, 1995)). These cortical regions
are sometimes referred to as the semantic system (Binder et al., 2009; Huth et al., 2016).
The results in Figure 4.2a suggest that throughout the semantic system representations of
relations are independent of specific pairs of concepts.

Visual inspection of Figure 4.2a suggests that prediction accuracy is higher in the left
compared to the right hemisphere. To quantify this difference for each cortical region of the
semantic system, we used FreeSurfer regions of interest (ROIs) to identify the set of voxels
in the left and right temporal, parietal, and prefrontal cortices. (ROIs were based on the
Desikan-Killiany atlas (Desikan et al., 2006).) Then for each cortical region, the average pre-
diction accuracy was computed over voxels in each cortical region. Results were computed
for each participant and hemisphere separately. Figure 4.2b shows the average prediction
accuracy for each participant, cortical region, and hemisphere. Prediction accuracy is sig-
nificantly greater in the left than the right hemisphere (one-sided p<.05 by a permutation
test for all participants and cortical regions, except P3 lateral parietal cortex (LPC), P3 me-
dial parietal cortex (MPC), and P4 MPC). Note that this observed left-lateralization is not
merely due to the experiment presentation format: wordform relation trials were presented
in the same way as relation trials, but wordform relation representations are right-lateralized
(Supplementary Figure 4.5). Overall, Figure 4.2 suggests that relations have their own rep-
resentations and are represented throughout a left-lateralized network of cortical regions.

Figure 4.2 shows that relations are represented throughout the semantic system. Next,
we tested whether these relation representations are organized similarly to concept repre-
sentations. Prior studies have shown that cortical representations of concepts are organized
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such that each area represents specific concepts, forming patterns that are consistent across
individuals. Thus, if the organization of relation representations matches that of concept
representations, then each area should represent specific relations, and the organization of
relation representations should be consistent across participants. Alternatively, it could be
the case that each area broadly represents many relations, or that the organization of relation
representations is highly variable across participants.

To determine where each relation is represented, we computed voxelwise selectivity for
each of the six relations. If a voxel is selective for a particular relation, then it will exhibit
higher activation during trials of that relation. This means that the relation feature space will
accurately predict BOLD responses in that voxel, and the model weights for that relation
will be high. Thus, the selectivity SRi

for each relation was operationally defined as the
product of of the prediction accuracy of the relation feature space (

√
R̃2

relations) and the
model weight for that relation (βRi

): SRi
=

√
R̃2

relations × βRi
. Selectivity was computed

separately for each relation, participant, and voxel. For each relation, group-level selectivity
was computed by projecting voxelwise selectivity for each participant to the template space
and then averaging the projected selectivities for each vertex in the template space.

Figure 4.2a shows group-level selectivity for each relation. Results are shown for each
vertex of the template space. Each relation appears to selectively activate concentrated
patches of voxels. For example, the found-at relation is represented in patches in retrosplenial
cortex (RSC), anterior to occipital place area (OPA), anterior to parahippocampal place
area (PPA), in anterior superior temporal sulcus (STS), and along superior frontal sulcus
(SFS); whereas the has-part relation is represented in patches superior to OPA, along inferior
temporal sulcus (ITS), and along inferior frontal sulcus (IFS). Visual inspection of results
for each participant suggests that the areas that represent each relation are consistent across
participants (Supplementary Figure 4.5). To quantify this consistency, voxelwise selectivity
for each relation and participant was projected to the template space. Then for each relation,
the Pearson correlation was used to measure the consistency of vertexwise selectivity between
each pair of participants. Figure 4.2b shows these correlations for each relation separately.
For each relation and for each pair of participants, the cortical distribution of selectivity is
significantly positively correlated between participants (p<.05 by a permutation test). These
results suggest that each relation is represented in consistent areas across individuals.
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Figure 4.3: Cortical distribution of relation representations. To determine how relation
representations are organized, we examined voxelwise selectivity for each of the six relations. a.
Group-level selectivity for each relation. Results are shown on the flattened cortical surface of
the template space. Vertex color reflects selectivity for the relation. Each relation appears to
be represented in distinct patches throughout the semantic system. b. Consistency of relation
representations across participants. For each participant and relation, voxelwise selectivity
was projected to the template space. Then for each relation, the Pearson correlation was
used to measure the consistency in vertexwise selectivity between each pair of participants.
Blue markers show true correlations for each pair of participants. Grey markers show null
correlations (95th percentile). Blue and grey bars show the mean across participant pairs. For
each relation, the cortical distribution of relation selectivity is significantly positively correlated
between participants. c. Specificity of relation selectivity. To determine whether each voxel is
selective for a specific relation, for each voxel the relation with the highest selectivity (R0) was
identified and then a jackknife procedure was used to estimate confidence intervals around the
difference between selectivity for R0 and for the other five relations. A voxel was considered to
prefer a single relation if all five confidence intervals were strictly positive. Results are shown
for one representative participant (P1) on the flattened surface of the native brain space. Voxels
shown in blue prefer a single relation. Voxels shown in white do not prefer a single relation.
Voxels shown in grey do not represent relations. Most voxels throughout the semantic system
prefer a single relation. d. Percentage of voxels that significantly prefer a single relation.
Markers show percentages for each participant. The bar shows the mean across participants.
In each participant, over 85% of voxels prefer a single relation. e. Proportional selectivity for
each relation. For each voxel, the six relations were sorted from highest (R0) to lowest (R5)
selectivity. Boxplots show the distribution over voxels of proportional selectivity for R0 through
R5. Results are shown separately for each participant. Across voxels and participants, around
60% of selectivity is concentrated on a single relation. These results suggest that most voxels
represent specific relations, and that the organization of relation representations is consistent
across participants.

To determine whether each voxel represents a specific relation, for each voxel we tested
whether selectivity peaks at a specific relation or is evenly spread over multiple relations.
This analysis was limited to voxels that represent relations, which were defined according to
the prediction accuracy of the relation feature space (

√
R̃2

relations > 0.1). For each voxel,
the relation with the highest selectivity (R0) was identified, and then a leave-one-run-out
jackknife procedure was used to estimate 95% confidence intervals around the difference
between selectivity for R0 and for each of the other five relations (see Methods for details).
A voxel was considered to prefer a single relation if all five confidence intervals were strictly
positive. Figure 4.2c shows the set of voxels with a single preferred relation. Results are
shown for one representative participant (P1). (Results for the other five participants are
consistent with P1, as shown in Supplementary Figure 4.5). For each participant, more
than 85% of voxels have a single preferred relation (P1: 93%, P2: 95%, P3: 94%, P4: 86%,
P5: 93%, P6: 94%; Figure 4.2d). To examine how much of voxelwise relation selectivity is
concentrated on a single relation, we computed the proportional selectivity for each of the six
relations SRi∑5

j=0 SRj

. Across participants and voxels, around 60% of selectivity is concentrated
on one relation (Figure 4.2e). Thus, most voxels represent a specific relation.
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Figure 4.4: Cortical organization of preferred relations. To jointly visualize the arrangement
of representations for all six relations, a winner-take-all map was used. Results are shown at the
group-level and for each individual participant. All results are shown on the flattened cortical
surface of the template space. The color of each vertex reflects the relation with the highest
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selectivity (R0). The opacity of each vertex reflects the prediction accuracy of the relation
feature space. The cortical organization of preferred relations appears to be consistent across
participants. In LPC found-at (red), has-part (purple), is-a (orange), and symbol-of (blue)
form a ring of patches around the temporal parietal junction. In MPC found-at, is-a, and
symbol-of are respectively shown in, superior to, and anterior to retrosplenial cortex (RSC).
In TC found-at, made-of, and symbol-of are respectively shown anterior to parahippocampal
place area (PPA), superior to PPA, and along STS. In PFC symbol-of is shown superior to
SFS and inferior to IFS, and found-at is shown along SFS. These results suggest that relation
representations form patterns that are consistent across participants. (LPC: lateral parietal
cortex, MPC: medial parietal cortex, TC: temporal cortex, PFC: prefrontal cortex). (LPC:
lateral parietal cortex, MPC: medial parietal cortex, TC: temporal cortex, PFC: prefrontal
cortex).

To visualize how representations of the six relations are arranged across the cortical
surface, we used a winner-take-map to jointly show selectivity for all six relations. Figure 4.2
shows results at the group-level and for each individual participant. To facilitate comparisons
across participants, all results are shown in the template space. (Results in native participant
space are consistent with results in the template space, and are shown in Supplementary
Figure 4.5). The arrangement of relation representations is consistent across participants.
In lateral parietal cortex (LPC) found-at (red), has-part (purple), is-a (orange), and symbol-
of (blue) are arranged in a ring of patches around the temporal parietal junction. In medial
parietal cortex (MPC) found-at, is-a, and symbol-of are respectively shown in patches in,
superior to, and anterior to retrosplenial cortex (RSC). In temporal cortex (TC) found-at,
made-of, and symbol-of are respectively shown anterior to PPA, superior to PPA, and along
the superior temporal sulcus (STS). In prefrontal cortex (PFC) symbol-of is shown superior
to superior frontal sulcus (SFS) and inferior to inferior frontal gyrus (IFG), and found-at is
shown along SFS. These results suggest that relation representations are organized in cortical
patterns that are consistent across individuals.

Figures 4.2 and 4.2 suggest that the organization of relation representations matches
that of concept representations. It could be the case that relations and concepts are part of
the same organization, such that voxels that represent the same relation represent similar
concepts to each other. Alternatively, representations of relations and of concepts could form
two overlapping but functionally independent networks, such that voxels that represent the
same relation do not necessarily represent the same concepts. To distinguish between these
two possibilities, we compared voxelwise selectivity for relations and for concepts.

To estimate voxelwise selectivity for concepts, we used a passive language comprehension
experiment that has been used in prior work (see Methods for details; (de Heer et al., 2017;
Deniz et al., 2019; Huth et al., 2016)). In this passive language comprehension experiment,
participants read or listened to narrative stories while their brain responses were recorded
with fMRI. Then each word of the narratives was projected to a 300-dimensional word
embedding space (word2vec, Mikolov et al., 2013), and VM was used to estimate model
weights that reflect voxelwise selectivity for different concepts.
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Figure 4.5: Comparison of selectivity for relations and for concepts. To determine whether
there is a systematic relationship between the organizations of relation and concept representa-
tions, we tested whether voxels that represent the same relation also represent similar concepts
to each other. a. For each participant, the relation-verification experiment was used to esti-
mate voxelwise selectivity for relations (as shown in Figure 4.1), and a separate passive narrative
comprehension experiment was used to estimate voxelwise selectivity for concepts (as in Deniz
et al., 2019; Huth et al., 2016). For each relation, we identified the voxels that represent the
relation (SRi > 0.1) and then tested whether those voxels are selective for similar concepts
to each other. b. Concept selectivity, shown separately for voxels that are selective for each
relation. Voxelwise concept selectivity was projected into a 2D UMAP space. Scatterplots show
voxelwise concept selectivity in the reduced 2D space, separately each relation and separately
for voxels in the temporal (TC), parietal (PC), and prefrontal cortices (PFC). Results are shown
for one representative participant (P1). For each relation and region separately, word clouds
show the words that are closest to the mean concept selectivity. Voxels that represent the
same relation appear to represent similar concepts. c. Similarity in concept selectivity. The
Pearson correlation was used to quantify the similarity between the full 300-dimensional vectors
of concept selectivity. Similarities were computed for pairs of voxels that both represent the
same relation (within-relation), as well as for pairs of voxels that represent different relations
(across-relation). For each relation and participant, colored markers show the mean over vox-
els of within-relation similarity. Grey markers show the mean over voxels of across-relation
similarity. Bars and errorbars show the mean and standard error of the mean across partici-
pants. Stars indicate the number of participants in which similarities are significantly higher
within- than across-relations (by a 95% bootstrap confidence interval). Across relations and
participants, within-relation similarity in concept selectivity is significantly higher than across-
relation concept selectivity. Overall, these results suggest that there is a systematic relationship
between the cortical organizations of relation and concept representations.

Voxelwise selectivity for relations and for concepts was used to test whether voxels that
represent the same relation tend to represent concepts in a similar part of the semantic
space. For each relation, we took the set of voxels that represent the relation (SRi

> 0.1)
and examined the concept selectivity of those voxels. Because concept selectivity is a high-
dimensional vector and each of the dimensions is not inherently interpretable, it is impractical
to directly visualize the selectivity of each voxel for each concept. Therefore we inspected
a 2D projection of concept selectivity. The 2D projection was obtained by the UMAP
algorithm, which is optimized to preserve the similarity structure of the full 300-dimensional
space (McInnes et al., 2018). Figure 4.2b shows voxelwise concept selectivity in this reduced
2D space for one representative participant (P1). To ensure that comparisons are not biased
by the spatial autocorrelation of voxel representations, results are shown separately for voxels
in the temporal (TC), parietal (PC), and prefrontal (PFC) cortices. In voxels that represent
the same relation, concept selectivity appears to be in a consistent part of the semantic space.
To interpret the concepts that are represented in each group of voxels, for each relation and
cortical region separately we computed the mean concept selectivity over voxels, and then
identified the 15 words that are closest to that mean concept selectivity. Similarity between
a word and the mean concept similarity was measured as the Pearson correlation coefficient
between the 300-dimensional embedding of that word and the 300-dimensional vector of mean
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concept selectivity. The word clouds in Figure Figure 4.2b show the set of 15 words closest to
the mean concept selectivity of each group of voxels. Voxels that represent the same relation
tend to be selective for a consistent set of concepts. For example, voxels that represent the
found-at relation are selective for concepts associated with places and numbers, and voxels
that represent the made-of relation are selective for concepts associated with fashion and
accessories.

To quantify the similarity in concept selectivity between pairs of voxels that represent
the same relations, we measured the Pearson correlation between the full 300-dimensional
vectors of concept selectivity between pairs of voxels that represent the same relation. For
comparison, similarity of concept selectivity was also measured between pairs of voxels in
which only one of the voxels represents that relation. As in Figure 4.2b, we only considered
pairs of voxels in which each voxel was from a different cortical region. Figure 4.2c shows
mean similarity of concept selectivity across pairs of voxels that represent the same relation
(within-relation) and that represent different relations (across-relation). Results are shown
for each relation and participant separately. Voxel pairs were resampled with replacement to
obtain 95% bootstrap confidence intervals around the mean similarity of concept selectivity.
These confidence intervals were estimated separately for each participant and relation, and
separately for within-relation and across-relation pairs. The confidence intervals for within-
relation similarity lie outside that of across-relation similarity for each participant and each
relation. These results suggest that voxels that represent the same relation tend to be
selective for similar concepts. The results in Figure 4.2 suggest that there is a systematic
relationship between the cortical organizations of relation and concept representations.

4.3 Discussion
We investigated how the brain represents relations between concepts, and how these repre-
sentations compare to those of individual concepts. We show that relations have their own
representations throughout the temporal, parietal, and prefrontal cortices (Figure 4.2). The
organization of these representations matches that of concept representations: each area rep-
resents specific relations, forming patterns that are consistent across participants (Figures
4.2 and 4.2). Finally, there is a systematic relationship between the cortical organizations of
concept and relation representations (Figure 4.2). Our results generalize across participants,
including the two held-out participants (P5 and P6). Our results support theories that in the
human brain relations have their own abstract representations that are not tied to specific
pairs of concepts (Doumas & Hummel, 2012; Gentner & Forbus, 2011). Moreover, these
results suggest that relations are represented in the same way as concepts.

Prior neuroimaging studies of semantic representations in the brain have primarily inves-
tigated representations of concepts during passive language comprehension. Those studies
showed how representations of individual concepts are organized throughout the semantic
system (Chen, Gong, et al., 2024; Deniz et al., 2019; Huth et al., 2016), and found that this
organization implicitly encodes information about relations between concepts (Zhang et al.,
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2020). However, those studies used passive language comprehension tasks that did not ex-
plicitly elicit relation representations. Thus, while they could investigate how relations affect
the structure of concept representations in the brain, they could not directly study repre-
sentations of relations. A few studies have used relation processing experiments to study
how the brain represents relations (Chiang et al., 2021; M.-H. Wu et al., 2022). These stud-
ies reported that areas throughout the temporal, parietal, and prefrontal cortices encoded
information about the type of relation. However, these studies only tested for similarities
and differences between brain representations, and did not examine how each relation is
represented in the brain. Thus, it was unclear how relation representations are organized in
the brain, and whether relation representations are consistently organized across individuals.
Moreover, because prior studies did not directly compare representations of relations to those
of concepts, it was unclear whether there is a systematic relationship between where rela-
tions and concepts are represented in the brain. In this study, we used a relation processing
experiment, modeled how each relation is represented in the brain, and directly compared
representations of relations and of concepts in order to understand how the brain represents
relations between concepts.

One potential criticism of this study is that the estimated representations of relations
merely reflect the semantics of the words involved in trials of each relation. For example,
because trials of the found-at relation involve words related to locations whereas trials of the
symbol-of relation involve words related to abstract ideas, the estimated representations of
relations could reflect the types of words that are uniquely involved in the instances of each
relation. However, there are two reasons why we do not think this is the case. First, lexical
semantics of each stimulus word was included as a nuisance feature space during model
estimation, and banded ridge regression is optimized to select the best-predicting feature
space for each voxel (Dupré la Tour et al., 2022). Thus, if representations merely reflected
the lexical semantics of the words in the experiment, then we would not have observed the
high prediction accuracies attributed to the relation feature space. Second, the areas in which
each relation is represented are not merely the areas that represent the words involved in
trials of that relation. For instance, Figure 4.2 shows that the found-at relation overlaps not
only with representations of places, but also of numbers; and the symbol-of relation overlaps
not with representations of abstract ideas, but of people and relationships. These results
suggest that estimated representations of relations do not merely reflect lexical semantic
representations of the words involved in trials of each relation.

Our results provide evidence to support the hypothesis that relations are represented
in the same way as concepts. These results support theories that relations have their own
abstract relations, and are not merely embedded within concept representations (Doumas &
Hummel, 2012). Because our study focuses on well-learned relations and common objects,
we cannot make conclusions about how these relations originate. However, we speculate that
this shared space exists because relations and concepts are jointly learned over the course of
semantic acquisition, and co-occur in shared contexts. Indeed, studies of artificial language
models have shown that knowledge of structured relations between concepts can be acquired
via simple word-level learning objectives (Bouraoui et al., 2019; Chen, Lin, & Klein, 2021;
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Hernandez et al., 2024). In the future, the results and methodology presented here can be
used to study how the brain represents novel relations, and how representations of relations
change over the course of learning.

4.4 Methods
Experimental Stimuli
The experimental stimuli consisted of 1496 trials of a relation-verification experiment. Each
trial consisted of three words: a relation (e.g.,“hypernym”), an object (e.g.,“bicycle”),
and a potentially related concept (e.g., “vehicle”). The trials were evenly divided across
the eight relations (six semantic relations and two non-semantic wordform relations). Trials
for each relation involved the same set of 60 common objects. Half of the trials contained
true examples (e.g., “hypernym-bicycle-vehicle”) and half contained false examples (e.g.,
“hypernym-bicycle-clothing”).

At the start of each trial a dotted line was presented for 0.4 seconds. Then a rapid serial
visual presentation (RSVP) procedure (Forster, 1970) was used to present the three words
one-by-one at the center of the screen. The duration of each word was computed based on
the length of the word. Each word was presented for a base length of 0.3 seconds, and 0.01
seconds were added for each letter of the word. Each triple of words was followed by an
answer period that lasted between 1 and 3 seconds. Answer period durations were jittered
to ensure that trial stop times were not time-locked to the onset of each TR. During the
answer period participants were asked to press a button to indicate whether the triple of
words formed a valid instance of a relation. During the answer period no words were present
on the screen.

Trials were presented across 11 unique runs. Each run contained 136 trials. The order
of trials was randomized and the relation types, objects, and correct answers (true or false)
were balanced across runs. One of the 11 runs was used as a test run. This run contained
triples of words that were not used in any of the other ten runs. The test run was performed
twice by each participant (once in each session). The two repeats of the test run were used
to get an estimate of the noise ceiling (Hsu et al., 2004; Sahani & Linden, 2002; Schoppe
et al., 2016).

Participant reaction time was measured as the amount of time between the answer cue
and the participants’answer input. Participant accuracy was measured as the percentage
of trials in which the participant gave the same answer as the mean of the rest of the group.
Note that some trials may have subject answers, and thus this is a conservative estimate of
participant accuracy.

fMRI data were collected during two 2-hour scanning sessions that were performed on
different days. Each scanning session consisted of six ten-minute long runs (five were train
runs and one was the test run).
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Participants
Functional data were collected from six participants between the ages of 25-29 (5 female,
1 male). The stimuli were piloted on the first author of this study. Those pilot data are
excluded from the study because the author overlearned the stimuli. All participants were
right handed according to the edinburgh handedness inventory (Oldfield, 1971a) (laterality
quotient of -100: entirely left-handed, +100: entirely right-handed). Laterality scores were
90, 85, 75, 90, 100, 55 for P1-P6 respectively.

To ensure generalization across participants the entire analysis was performed in each in-
dividual participant and consistency was measured between each participant and the group.
Furthermore, before performing any analyses two of the six participants (P5, P6) were des-
ignated as held-out participants (Popham et al., 2021). Data for these two participants were
not analyzed until the entire experiment and analysis pipeline was finalized.

fMRI Data Acquisition
Whole-brain MRI data were collected on a 3T siemens TIM trio scanner at the UC Berkeley
Brain Imaging Center. A 32-channel Siemens volume coil was used. For participants P1, P2,
P3, P5, and P6 functional scans were collected using a T2*-weighted gradient-echo EPI with
repetition time (TR) 2.0045s, echo time (TE) 35ms, flip angle 74◦, voxel size 2.24x2.24x4.1
mm (slice thickness 3.5mm), matrix size 100x100, and field of view 224x224 mm. Thirty
axial slices were prescribed to cover the entire cortex and were scanned in interleaved order.
A custom-modified bipolar water excitation radiofrequency (RF) pulse was used to prevent
contamination from fat signals. The functional scans for participant P4 were collected using
a sequence with multiband acceleration factor 3, repetition time (TR) 1.156s, echo time
(TE) 34ms, flip angle 62◦, voxel size 2.5x2.5x2.5 mm (slice thickness 2.5mm), matrix size
84x84, and field of view 210x210 mm. Anatomical data were collected using a T1-weighted
multi-echo MP-RAGE sequence on the same 3T scanner.

To stabilize head motion during scanning sessions, participants wore a personalized head
case that precisely fit the shape of each participant’s head (Gao, 2015; Power et al., 2019).

fMRI data pre-processing
Each functional run was motion-corrected using the FMRIB Linear Image Registration Tool
(FLIRT) from FSL (Jenkinson et al., 2012). All volumes in the run were averaged across
time to obtain a high quality template volume. FLIRT was used to automatically align the
template volume for each run to the overall template, which was chosen to be the tempo-
ral average of the first functional run for each participant. The cross-run transformation
matrix was then concatenated to the motion-correction transformation matrices obtained
using MCFLIRT, and the concatenated transformation was used to resample the original
data directly into the overall template space. Noise from motion, respiratory, and cardiac
signals were removed with a component-based detrending method (CompCor; (Behzadi et
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al., 2007)). Responses of each run were z-scored separately. During z-scoring, for each voxel
separately the mean response across time was subtracted and the remaining response was
scaled to have unit variance. Before data analysis, 10 TRs from the beginning and 10 TRs
at the end of each run were discarded in order to account for the 10 seconds of silence at
the beginning and end of each scan and to account for non-stationarity in brain responses
at the beginning and end of each scan

Cortical surface reconstruction and visualization
Cortical surface meshes were generated from the T1-weighted anatomical scans using Freesurfer
software (Fischl et al., 1999). Before surface reconstruction, anatomical surface segmenta-
tions were carefully hand-checked and corrected using Blender software and pycortex (Com-
munity, 2018; Gao et al., 2015). Relaxation cuts were made into the surface of each hemi-
sphere. Blender and pycortex were used to remove the surface crossing the corpus callosum.
The calcarine sulcus cut was made at the horizontal meridian in V1 using retinotopic map-
ping data as a guide.

Functional images were aligned to the cortical surface using pycortex. Functional data
were projected onto the surface for visualization and analysis using the line-nearest scheme in
pycortex. This projection scheme samples the functional data at 32 evenly spaced intervals
between the inner (white matter) and outer (pial) surfaces of the cortex and then averages
together the samples. Samples are taken using nearest-neighbor interpolation, wherein each
sample is given the value of its enclosing voxel.

Statistical Analyses
Voxelwise modeling (VM) was used to model the recorded BOLD responses (Naselaris et al.,
2011; M. C.-K. Wu et al., 2006). In the VM framework, stimulus and task parameters are
nonlineraly transformed into feature spaces. Each feature space describes an aspect of the
experiment that is hypothesized to be represented in brain responses. Linearized regression
is used to estimate a separate encoding model for each voxel and feature space. The model
weights describe how each feature space modulates the BOLD response of each voxel. A
held-out dataset that was not used to estimate model weights is used to evaluate prediction
accuracy and to determine the statistical significance of prediction accuracies.

A ll model fitting and analysis was performed using custom software written in Python,
making heavy use of NumPy (C. R. Harris et al., 2020), SciPy (Virtanen et al., 2020),
Matplotlib (Hunter, 2007), Himalaya (Dupré la Tour et al., 2022), and Pycortex (Gao et al.,
2015).

Stimulus Feature Spaces
A six-dimensional binary feature space was constructed to reflect the timing of the relation
trials. Each dimension of this feature space corresponds to one of the six relations in the
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experiment, and reflects the onset time and duration of trials involving that relation. An
analogous two-dimensional binary feature space was constructed to reflect the timing of the
wordform relation trials. Fifteen nuisance feature spaces were constructed to reflect visual
spatial and motion features (motion energy) (Adelson & Bergen, 1985; Nishimoto et al.,
2011; Watson & Ahumada, 1985), the letters in each word, length of each word, standard
deviation of word length within each TR, the mean word length per word, the change in
mean word length across TRs, word rate, the elapsed time starting from the beginning of
each trial, the elapsed time starting from the beginning of each question, the elapsed time
starting from the beginning of each answer, the correct answer to the trial, the participant’
s typed answer, the accuracy of the participant’s answer, and the lexical semantics of each
word.

Stimulus Feature Preprocessing
Before voxelwise modeling, each stimulus feature was truncated, downsampled, z-scored,
and delayed. Data for the first 10 TRs and the last 10 TRs of each scan were truncated to
account for the 10 seconds of silence at the beginning and end of each scan and to account
for non-stationarity in brain responses at the beginning and end of each scan. An anti-
aliasing, 3-lobe Lanczos filter with cut-off frequency set to the fMRI Nyquist rate (0.25
Hz) was used to resample the stimulus features to match the sampling rate of the fMRI
recordings. Then the stimulus features were each z-scored in order to account for z-scoring
performed on the MRI data (For details see Section 4.4). In the z-scoring procedure, the
value of each feature channel was separately normalized by subtracting the mean value of
the feature channel across time and then dividing by the standard deviation of the feature
channel across time. Lastly, finite impulse response (FIR) temporal filters were used to delay
the features in order to model the hemodynamic response function of each voxel. The FIR
filters were implemented by concatenating feature vectors that had been delayed by 2, 4, 6,
and 8 seconds (following e.g., Chen, Dupré la Tour, et al., 2024; Deniz et al., 2019; Huth
et al., 2016). A separate FIR filter was fit for each feature, participant, and voxel.

For one participant (P1) the stimuli presented to the participant contained some repeated
trials between train and test. To remove this overlap we cleaned the train stimulus features
by setting the relation stimulus feature spaces to 0 for any trial that was also included in
the test stimuli for participant P1. This train stimulus feature cleaning ensures that the
estimated model weights do not rely on trials that are repeated between train and test.

Regularization hyperparameter selection
Five-fold cross-validation was used to find the optimal regularization hyperparameters for
each feature space and each voxel. Hyperparameter candidates were chosen with a ran-
dom search procedure (Bergstra & Bengio, 2012): 1000 normalized hyperparameter can-
didates were randomly sampled from a dirichlet distribution and were then scaled by 20
log-spaced values ranging from 10−10 to 1010. The regularization hyperparameters for each
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feature space and voxel were selected as the hyperparameters that produced the minimum
squared error (L2) loss between the predicted voxel responses and the recorded voxel re-
sponses (arg minhyperparameters ||ŷ − y||22). Regularization hyperparameters were chosen sepa-
rately for each participant and voxel. This hyperparameter search was performed using the
Himalaya Python package (Dupré la Tour et al., 2022).

Model estimation and evaluation
The selected regularization hyperparameters were used to estimate model weights that map
from the relation feature space to voxel BOLD response. Model weights were estimated
separately for each voxel and participant. For each relation, the model weights for the
corresponding dimension of the relation feature space reflect voxelwise selectivity for that
relation.

The test dataset was not used to select hyperparameters or to estimate regression weights.
The prediction accuracy R2 of the feature spaces was computed per voxel as the coefficient
of determination between the predicted voxel responses and the recorded voxel responses.

Group-level prediction accuracy
Group-level prediction accuracy was computed by first computing prediction accuracy for
each participant in the participant’s native brain space, and then projecting individual
participant results into a standard fsAverage space. Average prediction accuracy across six
participants was computed for each fsAverage vertex.

Voxelwise Relation Selectivity
A voxel was considered to be selective for a particular relation if the voxel is more highly
activated during trials that involve the relation. If a voxel is highly activated during trials for
a particular relation, then the relation feature space will accurately predict BOLD responses
in that voxel and the model weights for that relation will be high. Thus, voxelwise selectivity
SRi

for each relation was operationally defined as the product of of the prediction accuracy
of the relation feature space (

√
R̃2

relations) and the model weight for that relation (βRi
):

SRi
=

√
R̃2

relations × βRi
. Selectivity was clipped to have a minimum of zero.

Voxelwise Concept Selectivity
To estimate voxelwise selectivity for each concept category we first used an established exper-
iment paradigm to determine the lexical semantic tuning of each voxel. In this experiment
participants either read or listen to natural narrative stories while fMRI is used to record
BOLD responses in each voxel (See (Deniz et al., 2019; Huth et al., 2016) for more details of
the experiment paradigm). Then a feature space was constructed to describe the lexical se-
mantic content of the narrative. To construct this feature space, each word of the narratives
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was projected to a 300-dimensional word embedding space (word2vec (Mikolov et al., 2013)).
Nuisance feature spaces were constructed to reflect the stimulus letters, phonemes, number
of phonemes per TR, number of letters per TR, number of words per TR, standard devia-
tion of word length within each TR, spatial and motion frequencies of the visual stimulus
(Adelson & Bergen, 1985; Nishimoto et al., 2011; Watson & Ahumada, 1985), and spectral
frequencies of the auditory stimulus. To account for the hemodynamic response function
of each voxel, FIR filters were used to delay each feature space by 2, 4, 6, and 8 seconds.
Banded ridge regression was used to estimate model weights for each of the feature spaces.
Model weights were estimated separately for each participant. The model weights for the
lexical semantic feature space describe the concept selectivity of each voxel; i.e., how differ-
ent concepts modulate brain responses in each voxel. To evaluate the prediction accuracy
of the estimated model weights, the estimated model weights for each voxel were used to
predict BOLD responses to a held-out test set. Total prediction accuracy of all the feature
spaces was measured as the coefficient of determination (R2) between the predicted and
observed BOLD responses on this held-out test set. Then the contribution R̃2

featurespace of
each feature space to the total prediction accuracy was computed with the product measure
(Hoffman, 1960; Pratt, 1987).

Similarity of Relation Representations between Participants
To test whether the representation of each relation is consistent between participants, selec-
tivity for each relation was compared between participants in the standard template space.
For each relation and for each pair of participants, the Pearson correlation was used to
measure the similarity between the two participants of vertexwise selectivity for the relation.

A permutation test with 1000 iterations was used to compute the statistical significance
of these correlations. This permutation test was performed separately for each relation and
for each pair of participants. In each iteration, relation selectivity was shuffled across vertices
within each participant. Then the shuffled values were used to compute the correlation be-
tween participants of vertexwise selectivity for the relation. Finally, the shuffled correlations
were used as a null distribution to compute the p-value of the similarity between participants
of vertexwise selectivity for the relation.

Statistical Significance
A permutation test with 1000 iterations was used to compute the significance of prediction
accuracy. In each permutation the train semantic features were shuffled in blocks of 10 TRs.
Shuffling was performed in blocks of 10 TRs in order to preserve autocorrelations in voxel
responses. Then the analysis pipeline was repeated with the shuffled features (included
fitting model weights, predicting test responses, and evaluating test prediction accuracy).
A fixed regularization parameter was used in each permutation. The distribution of test
accuracies over permutation iterations was used as a null distribution to compute the p-
value of prediction accuracy for each voxel.
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A jackknife procedure (Abdi & Williams, 2022) was used to determine the statistical
significance of voxel preference for a specific relation. For each voxel the six relations were
sorted from highest to lowest selectivity. The ordered relations were referred to as R0 (high-
est selectivity relation) through R5 (lowest selectivity relation). Then a leave-one-run-out
jackknife procedure was used to estimate confidence intervals around the difference between
selectivity for R0 and for each of [R1, ..., R5]. In this jackknife procedure, each of the 10
train runs was left out in turn, and the remaining 9 runs were used to construct a partial
estimate of voxelwise selectivity for each of the relations. These partial estimates were used
to estimate confidence intervals around (SR0 − SRi

) for i ∈ [1, 5]. A voxel was considered to
significantly prefer a specific relation if the 95% bootstrap confidence interval was strictly
positive for each of [R1, ..., R5].
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4.5 Supplementary Figures

Figure 4.6: Prediction accuracy of the relation feature space, for each participant. Voxel-
wise prediction accuracy of the relation feature space is shown for each individual participant.
Results are shown on the flattened cortical surface of each participant’s native brain space.
Voxels that were not significantly well-predicted are shown in black. Prediction accuracy is
high throughout bilateral temporal, parietal, and prefrontal cortices. (STS=superior temporal
sulcus, ITS=inferior temporal sulcus, IPS=inferior parietal sulcus, SFS=superior frontal sulcus,
IFS=inferior frontal sulcus).
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Figure 4.7: Prediction accuracy of the wordform relation feature space. For each cortical re-
gion, yellow and green markers show the mean prediction accuracy over voxels for the left and
right hemispheres respectively. Black markers show null prediction accuracy (95th percentile).
Bars show the mean across participants. Yellow and green asterisks show the number of par-
ticipants for which prediction accuracy is significantly higher in the left or right hemisphere.
Accuracies are higher in the right than the left hemisphere. These results show that representa-
tions of wordform relations are right-lateralize, suggesting that the left-lateralization of relation
representations shown in Figure 4.2b is not merely due to the experiment presentation format.
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Figure 4.8: Selectivity for each relation for each individual participant. Results are shown on
the inflated cortical surface of each participant’s native brain. Voxel color reflects selectivity
for the relation. Representations of each relation appear to be consistent across participants.



CHAPTER 4. A UNIFIED SEMANTIC SYSTEM FOR REPRESENTING CONCEPTS
AND RELATIONS IN THE HUMAN BRAIN 117

Figure 4.9: Specificity of relation selectivity, for each participant. To determine whether each
voxel is selective for a specific relation, for each voxel the relation with the highest selectivity
(R0) was identified and then a jackknife procedure was used to estimate confidence intervals
around the difference between selectivity for R0 and for the other five relations. A voxel was
considered to prefer a single relation if all five confidence intervals were strictly positive. Results
are shown for each participant on the flattened surface of the participant’s native brain space.
Voxels shown in blue prefer a single relation. Voxels shown in white do not prefer a single
relation. Voxels shown in grey do not represent relations. Most voxels throughout the semantic
system prefer a single relation.
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Figure 4.10: Winner-take-all map of relation representations, for each participant in the
participant’s native brain space. The color of each voxel reflects the relation with the highest
selectivity (R0). The opacity of each voxel reflects the prediction accuracy of the relation
feature space. The cortical organization of preferred relations appears to be consistent across
participants.
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Chapter 5

Conclusion

The studies presented in this dissertation examine the brain representations that underlie
human language processing. Chapter 2 shows that in the brains of bilinguals, semantic
representations are shared between languages but are subtly modulated to create language-
dependent representations. Chapter 3 shows that representations across different language
timescales are shared between sensory modalities. Chapter 4 shows that representations of
semantic relations are organized similarly to representations of concepts, suggesting that
relations and concepts could be represented in a unified semantic system. The phenomena
investigated in these studies represent only a small subset of the processes that underlie
language processing, yet they highlight the intricacy, flexibility, and diversity of brain rep-
resentations in the human semantic system.

These three studies also illustrate the potential for studying language processing in both
humans and in artificial models. First, developments in artificial language models (LMs)
have provided new tools for understanding how the human brain represents language, and
recent work has shown that LMs can be used to produce highly accurate models of brain
responses (Caucheteux & King, 2022; Lamarre et al., 2022; Schrimpf et al., 2021; Toneva &
Wehbe, 2019). In Chapters 1 and 2, I presented methods that enable us to better interpret
these models of brain responses and thereby leverage LMs to better understand how specific
aspects of language are represented in the human brain. Second, the human brain presents
an opportunity for discovering ways to design better artificial language systems. Despite
differences between the low-level mechanisms of the human brain and of artificial systems,
the human brain has historically served as inspiration for the design of better artificial
systems (e.g., Graves et al., 2016; LeCun et al., 1989). And despite vast advances in LMs,
there are still key ways in which they continue to struggle. In work described elsewhere, I
found that some artificial models struggle to represent spatial and semantic relations in a
way that generalizes to new situations, and that does not require extensive and expensive
training and inference (Chen, Lin, & Klein, 2021; Chen, Lu, et al., 2021; Chen et al., 2023).
Chapter 3, which investigates brain representations of semantic relations, is in part inspired
by that work. I believe that understanding how relations are represented in the human brain
can help us devise LMs that can understand relations more flexibly, robustly, and efficiently.
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In the future, I am excited to continue exploring language processing in the brain, and
to see how these findings can be applied to discover better methods for human language
education and rehabilitation, and to more robust and efficient systems for artificial language
processing.
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