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INTRODUCTION

In the construction of mass concrete structures the hydrating
cement releases heat which results in an increase in temperature shortly
after placement of the concrete. Because of the low modulus of elas-
ticity and the high creep rate at the early age concrete the compressive
stresses associated with this initial temperature increase are small.
However, the subsequent decrease in temperature after the modulus of
elasticity has increased may cause large tensile stresses and produce
structural cracking.

| Various construction techniques can be used in order to limit
temperature variations and to minimize cracking. However, existing
methods of analysis for the evaluation of temperatures in mass concrete
structures are inadequate because they cannot accurately represent these
complex construction procedures.

The finite element method of analysis as applied to heat
transfer can accurately represent many factors which previously have been
neglected. Therefore, the purpose of this investigation was to modify
the finite element method as applied to heat-transfer problems and to
develop a technique for the evaluation of the temperature distribution
in mass concrete structures. Based on this approach a general digital
computer program was developed for mass concrete.structures of arbitrary
geometry constructed incrementally. Also, the effects of cooling pipes

and insulation forms are considered by the program.



The advantages of the method, as compared to other numerical
approaches, are numerous. The method is completely general with respect
to geometry and material properties; complex bodies composed of many
different materials are easily represented. Inherent in most numerical
procedures is the solution of a set of linear equations for unknown
mesh point temperatures. In the finite element method, the 1inear
equations produce a symmetric positive-deffinite matrix in band form which
is readily solved with a minimum of computer storage and time.

Previously, the complete thermal stress analysis of mass concrete
structures has involved two separate phases. First, based on certain
idealizations, the heat transfer problem is solved; then the resulting
temperature distribution is used in connection with certain structural
idealizations to determine the thermal stresses within the structure.

In general, both of these phases involve the use of digital computers,

and because different idealizations are used, a separate computer input
must be prepared for each problem. In the proposed finite element approach
the computer input can be made compatible with existing stress analysis
programs; therefore, the computer input and the overall time necessary for

the complete thermal stress analysis is reduced.



METHOD OF ANALYSIS

Previous application of the finite element method to heat
transfer analysis has been based on a variational approach.[]] However,
this formal mathematical method will not be utilized in this presentation,
but a completely physical interpretation of the heat-transfer equations
for a finite element system will be given. The basic equation which
is developed at each node of the discrete finite element representation

of the structure is of the following form:

Rate atwhich heat Rate at which heat Rate at which
is stored in elements + flows from elements = external heat
adjacent to node adjacent to node enters node

If a1l nodes are considered, the above heat equilibrium can be written

in matrix form as a set of first order differential equations.

CT(t) + KT(t) = Q(t)

where
C s defined as the heat capacity matrix
K is defined as the conductivity matrix
T(t) 1is a vector of the nodal point temperatures

T(t) is a vector of the time rate of change of the
nodal point temperatures

Q(t) is a vector of the external heat rates which
are supplied at the nodes (heat which is gen-
erated within the elements can be considered
in this vector)
The basic assumptions required to develop this heat equilibrium equation

will be given in the following sections.



Temperature Gradients

The basic element (sub-division) used in the idealization of
a two-dimensional body is a triangle of arbitrary shape (figure 1).
Since the thickness of the triangle may be different for each element,
axisymmetric bodies are a special case of this formulation. The first
step in the development of the heat transfer equations is to assume the

following temperature distribution within each element:
T(x,y) = By + By X + B3y (2a)
If equation (2a) is evaluated at the three vertices and the resulting

set of equations is solved, the following relationship for the constants

B], 82 and 63 is obtained:

- =
‘-5 | i A 0 0 ] T
1 .1 (Zb)
1
82 =3 bJ - bk bk -bJ Tj
L83 ak - aj -ak aJ | Tk

where \ = aj bk - a j

or symbolically

g=01 (20

where T is a vector of the temperatures at all the nodal points in the system.
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FIGURE | - TYPICAL TRIANGULAR ELEMENT
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Temperature Gradients (Continued)

The temperature gradients normal to the boundaries of the

element are by definition
_ o7
SN Y (3)

If equation (3) is evaluated at the three boundaries of the element,

the following normal gradients are found:

-7 ~

Si 0 -sin @jk cos Ojkj B]W
Sj =10 -sin g cos O B, (4)
L L B

The angles Gmn are defined in figure 2. Equation (4) may be written in

symbolic form as



Heat Flow

The rate of heat flow through a boundary is given by

qy = k* A SN :
where k* is the conductivity of the material and A is the surface
area of the boundary. Consequently, the heat flow, as shown in figure

3, through the three interior boundaries, which are one half the length

of the sides, is

-: 1 —: . :T
q; Rjk 0 0 S1
_K*t
Gl =7 10 Ky 05 (6)
Ay 0 0 Qij Sk

where t is the thickness of the element and %n is the length

of side mn. Equation (6) written symbolically is

g=1fs (7)

The size of the vector q is equal to the number of nodal points in the
system; it will contain only three non-zero rows, however, since a typical

element is connected to three nodal points.



FIGURE 3 - HEAT FLOW VECTORS



Element Conductivity Matrix

Heat flow for a typical element m is expressed in terms of

corner temperatures by combining equations (2), (5) and (7),

q =K1 (8)

where EW is defined as the "element conductivity matrix" and is given
by
K"=f90D (9)

In terms of basic element dimensions and properties, equation (8) becomes

- - - - r-
q e +d® b -ad . b.e+a.d T
i k kY P 4 i
!
a.0 = K&t b e-ad . bZ+a b.b, - a.a T (10)
j 2x k k k™% %% T 9% ¢ j
q .b.e+a.d .b.a - a.a . bg + ag . T, i
k J J Ik %% i % k
Lo L J L J
where d = ak - aj
e = bj - bk

- 10 -



Heat Flow Equilibrium Equations

For heat flow equilibrium, the rate at which heat is externally
supplied to a region must be equal to the sum of the rate at which
heat flows out of the region and the rate at which heat is stored with-
in the region. For a finite element idealization the typical region

in which heat equilibrium is required is shown in Figure 4.

Figure 4 Region for Heat Flow Equilibrium

One-third of the volume of each triangular element is assumed to be
associated with each node. Therefore, the approximate rate at which
heat is stored in the region of a node will be the product of the time
derivative of the temperature, the volume of the region and the specific
heat of the material. The rate at which heat flows out of the region
is the sum of the element heat flows which can be calculated from equa-
tion (10). The apb]ication of this procedure in the region of each
nodal point yields equation (1); or

CT+ KT =Q | ()

The heat capacity matrix C is diagonal and the diagonal terms are given by

-1 -



Heat Flow Equilibrium Equations (Continued)

o
Cis = 23 % Vn (11b)

where the summation is carried out over all elements attached to nodal
point i. The specific heat ¢ and volume Vm ére associated with a
typical element m.

The conductivity matrix K is given by the direct summation of

element conductivities ET or

K=z K" (11¢)

This direct summation of element conductivity matrices is similar to the
combination of element stiffness matrices in the “direct stiffness"

approach to stress analysis.

- 12 -



Quadrilateral Element

Four triangular elements can be combined to form a quadrilateral

element as shown below:

1 2

The heat capacity term associated with nodal point 5 is assumed to be
distributed to the four adjacent nodes. The 5 x 5 element conductivity
matrix is reduced to a 4 x 4 matrix by the assumption that there is no
external heat flow at node 5. Therefore, the typical term of the 4 x 4

quadrilateral conductivity matrix is given by

K. -K..
K*-o = K-- - —-415
ij 1] K55

This reduction procedure is similar to the "static condensation" method

in structural analysis.

-13 -



Insulated Boundary

The previously developed heat flow equilibrium equations can
be modified to reflect surface heat transfer. The rate of heat flow
across a boundary layer at the surface of the body is given by the

following equation:

q = h(Ty - T,)
where q = the rate of heat transferred to the surface element per
unit area
h = the heat transfer coefficient for the surface
TS = the temperature of the surface
Te = the temperature of the external environment

If we consider a surface element between nodes i and j the rate at

which heat is transferred to the nodes will be approximately

Qj = hat (T, - Tp) (12a)
Q. = hat (T, - T.) (12b)

i e

where t is the thickness of the element and 2 is the distance between
nodes i and j.

In order to satisfy total heat flow equilibrium at these boundary
nodes equations (12a) and (12b) are added to equations (11). This will
result in the following modifications to the conductivity and external

heat flow matrices:

- 14 -



Insulated Boundary (Continued)

k. st

K=Kt 2

. hat

K=Ktz
(13)

ht

This procedure can be applied repeatedly for all insulated boundary

elements.

- 15 -



Cooling Pipes--Normal to P]ane

If a cooling pipe is placed at a node point of a finite element
system equation (11) can be modified to reflect this type of element.
The exact solution for the temperature distribution near a cooling pipe
is shown in Fig. (5). The rate at which heat flows into the solid from
the cooling pipe is given by

aT

q = - 2mtkris (18)

where r is the distance from the center of the pipe, T is the temperature
field, h is the conductivity and t is the thickness of the element. If
this differential equation is integrated we find

q = %;;[%— (T, - Ty) (15?
where Ta is the temperature at a node point at distance a from the pipe,
Tw is the temperature of the cooling water and R is the radius of the
pipe.

The temperature distribution within the finite elements
adjacent to the pipe is assumed to be linear. Therefore the heat flow
away from the pipe at distance a/2 is given by

T-T
q=-2ntk(3) (B2 =tk (T, - T)) (16)
where T0 is the apparent temperature at the pipe in the finite element
solution.

If equations (15) and (16) are combined and Ta eliminated we

obtain

) (17)

L0
]

H(Tw - Ta

where
_ 2rnkt

- 16 -
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FIGURE 5 TEMPERATURE DISTRIBUTION NEAR COOLING
PIPE.
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Cooling Pipes--Normal to Plane (Continued)

It is of interest to note that for an element size "a" of 7.4 times
the radius of the pipe Log {%% = 2 and the value of H is infinite;
therefore, for this element size the apparent temperature of the node
T0 is equal to cooling water temperature Tw' For other element size
the correct value of H can be computed.

As in the case of insulated boundary the heat flow equilibrium
equations can be modified to include the effect of a cooling pipe. At
a typical nodal point i the following additions must be made to the

conductivity and external heat flow matrices:

K.. + H

*
Kii i1

(18)

0 = Q * T,

- 18 -



Temperature Boundary Conditions

At certain points in the system, the temperatures may be specified
as a function of time. To allow for these boundary conditions, equation

(11) is written in the following partitioned form:

ca 0 ||fal [Keaksb [[Ta| [ga
0 EEIP.+.@@ I_b_='QE (19)
where Qa, Tb, and ig_ are specified and Qb and Ta are the unknowns in
the system. Equation (11a) may be rewritten as
Ca Ta + kaa Ta + Q (20)
where
Q=0a-KabTh (21)

Equation (20) is now in a form which can be solved for the unknown nodal
point temperatures. The matrix Kaa is always symmetric and positive-
definite, and in most cases, it can be placed in band form. Therefore,

large systems can be stored in most computers.

-19 -



The Step-by-Step Solution Technique

Equation (20) is a set of first order linear differential
equations which can be solved by a step-by-step method. At time "t"
this set of equations is of the form

LT v kT =0 (22)
If the solution is known at the previous step in time t - At and if the
temperature at each node is assumed to vary linearly within the

increment of time, the rate of change in temperature, f s is given by

+ _ 1

Te=at (Tg - Teay) (23)
The substitution of equation (23) into equation (22) yields:

SRR (24)

where

Equation (24) can now be solved directly for the temperature at the
end of the time increment. Since K* is not a function of time it can
be formed once for a given geometry and triangularized. This tri-
angularized matrix then can be used efficiently at each increment of
time with different thermal load vector Q{ . The complete solution
procedure is summarizedlin Table I.

- 20 -



TABLE I

SUMMARY OF STEP-BY-STEP SOLUTION METHOD

INITIAL CALCULATIONS

1. Form C and K Eq. (11)
2. Modify for insulated boundaries Eqs. (13) and
and cooling pipes (18)
3. Modify for temperature Eq. (21)
boundary conditions
4. Form K*
_ 1
K= K+ C
5. Triangularize K*
FOR EACH TIME INCREMENT
1. Calculate Q* Eq. (24)
1
= Q+—CT, _
At t-At
2. Evaluate I¢ by solving
E*It=g.*

3. Repeat for next time increment.

- 2] -




EXAMPLES

The validity of the finite element approach as applied to
heat conductions has been demonstrated previously; therefore, comparison
of the method with theoretical solutions will not be given. Only

Examples of the method will be given.

Temperature Distribution‘During;InCremental'Cbnstruction

This example was selected to compare results of the present
method with results of a finite difference method used by the Walla
Walla District. The finite element idealization of the region to be
studied is shown in figure 6. The temperatures at point A shown as a
function of time are plotted in figure 7. The reason for the difference
in the two techniques is because of the method used in the idealization
of the cooling pipes. In the finite difference program the temperature
of the node associated with the cooling pipe was set equal to the water
temperature. This approach appears to be without theoretical just-
ification since the diameter of the pipe is not taken into account. The
results associated with the finite element program are based on a

consistent idealization of the cooling pipe.

Calculation of Stresses From Temperatures

The temperature distribution obtained from the heat transfer
program can be supplied to a finite element program for the evaluation

of stresses as a function of time (2). This approach would be time-

- 22 -



LIFT NO. TIME PLACED AIR TEMP o—  CONCRETE PLACEhAENT TEMP 45°F

(DAYS) TEMPERATURE OF COOLING WATER S0°F
10 72 64° | & COOLING PERIOD |4 DAYS
9 64 4% o COOLING PIPE LOCATIONS
8 56 72° _-/
7 48 72° 4] t_z‘s'—-—
1
6 40 72° |—¢ .
5 32 75° ¢—
fe)
Te]
4 24 75° —9
3 16 75° o
AR °
2 8 75 —® FINITE ELEMENT IDEALIZA-
' TION OF TYPICAL LIFT
I o) 75° ¢—
FOUNDATION

FIGURE 6 - EXAMPLE OF INCREMENTAL CONSTRUCTION
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Calculation of Stresses From Temperatures (Continued)

consuming and unnecessary for most mass concrete problems. An approximate
method for the calculation of thermal stresses in confined mass concrete
structures has been developed (3) and will be summarized here.

The maximum tensile stresses developed in a concrete structure
constructed incrementally are generally near a 1ift surface and are in the
horizontal direction. The change in the horizontal stress Ag at a point
due to an instantaneous temperature change may be approximated by

Ao = EaAT
where o is the thermal coefficient of expansion and E is the instantaneous
modulus of elasticity. Of course, this is true only for this type of
structure and because the concrete locally is in approximately a confined
state. This incremental stress will relax with time, and its magnitude
can easily be predicted. Tables 2 and 3 show stress histories for a one-
degree (F) temperature drop applied at different ages for two different
concrete mixes. These tables were computer generated and include the
effects of the variation of modulus of elasticity with time.

With the aid of a table of this type, it is possible to predict
readily the horizontal stresses as a function of time when the concrete is
subjected to a known temperature history. In order to calculate the stress
at any time, the effect of all the daily temperature changes must be added.
Thus, if AT], AT2 --- and ATm are the daily temperature changes which occur
up to m days and C]m, C2m, --- and Cmm are the temperature stress influence
coefficients for a concrete age of m days, then the total stress at age

m is given by

- 25 -
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Calculation of Stresses From Temperatures

{Continued)

Oy = AT]C]m + AIZCZm + ee-- AImcmm

Therefore, it is possible to calculate an approximate stress history for

different placement and cooling schedules without the use of a complex

digital computer program. Ofcourse, this approximate technique may be

applied only because the mass concrete is highly confined in the vicinity

of the closely spaced cooling pipes.

The temperature history near the top of 1ift No. 2, Temperature

Study No. 2, has been selected to illustrate the use of the approximate

method (3).

The temperature history for this case is shown in Fig. 8.

The resulting approximate horizontal stresses versus time are shown in

Fig. 9. For this case a typical calculation for the stress at age nine

days is shown below:

TEMPERATURE
(°F)

DAY

CONOTOTPRWN—O

——HhOnoTNn— -0

TEMP.

DROP
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Calculation of Stresses From Temperatures (Continued)

The approximate nine-day stress of 176 psi agrees very well with the

168 psi obtained by the finite element analysis. As indicated by Fig. 9,
comparison of the two methods is reasonable for the entire temperature
history.

To illustrate the approximate method further, two hypothetical
temperature histories were studied and are illustrated in Fig. 10.
Temperature History A represents typical behavior of surface concrete which
is placed and exposed to 75°F atmospheric condition. Temperature History
B represents a concrete which is surface-insulated for the first 7 days;
therefore, the temperature change is essentially adiabatic. Fig. 11
illustrates the resulting horizontal stresses. In this case, the super-
iority of Temperature History B is clearly illustrated. Approximately
one hour of hand calculation was required for this comparison. If,
however, these tables were incorporated into the heat transfer program,
these simple stress calculation could be conducted within a single

computer program.
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FINAL REMARKS

A computer program which is based on the method of analysis
presented in this report has been developed; A description on the use
of this program and a Fortran IV 1isting is given in the Appendices
of this report. The program is developed with particular reference
to mass concrete structure of arbitrary geometry and construction
sequence; however, it may be applied to many different types of problems

involving time-dependent boundary conditions.
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DESCRIPTION OF INPUT DATA FOR COMPUTER PROGRAM

The purpose of this computer program is to determine the
temperature distribution as a function of time within a concrete structure
as it is being constructed. Each Tift of the structure may be placed
at an arbitrary time and temperature. Insulation forms may be placed
or removed from the concrete surfaces at any point in time. The external
air temperature and temperature of the cooling water may also vary with

time.

GENERAL INPUT DATA

The first step in the analysis is to select a finite element
representation for the complete structure. A1l elements and nodal points
are then numbered in two numerical sequences each starting with one. The
following group of punched cards numerically defines the complete structure
to be analysed:

A. Identification Card - (72H)

Columns 1 to 72 of this card contain information to be
printed with results.

B. Control Card (5I5)

Columns 1

]

5 Total number of nodal points
6 - 10 Total number of elements
11 - 15 Number of different materials

16 - 20  Number of adiabatic temperature cards
for each material

21 - 25 Number of cards which describe the
external temperature environment
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GENERAL INPUT DATA (Continued)

C. Nodal Point Cards - (1§, 5X, 3F10.0)

One card for each nodal point with the following information:
Columns 1 - 5 Nodal point number
11 - 20 X-ordinate
21 - 30 Y-ordinate
31 - 40 Temperature (for foundation points only)
Nodal point cards must be in numerical sequence. If cards
are omitted, the omitted nodal points are generated at equal
intervals along a straight line between the specified nodal
points.

D. Element Cards - (6I5, F10.0)

One card for each element

Columns 1 - 5 Element number

6 10 Nodal point I
11 - 15 Nodal point J
16 - 20 Nodal point K
21 - 25 Nodal point L
26 - 30 Material identification number
31 - 40 Time of placement
Nodal point numbers (I,J, K and L) must be in counter-
clockwise order around each element. Maximum difference between
nodal point numbers must be less than 27.
Element cards must be in element number sequence. If element

cards are omitted, the program automatically generates the omitted

information by incrementing the precéding I,J,K and L. The
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GENERAL INPUT DATA (Continued)

information in column 26 to 40 for the generated cards is set
equal to the values given on the preceding card. The last
element card must always be supplied.

Triangular elements are also possible and are identified
by repeating the last nodal point number (i.e., I, J, K, K).

E. Material Property Information

The following group of cards must be supplied for each
different material.

First Card (115, 5X, 4F10.0)

Columns 1 - 5 Material identification number
11 - 20 Conductivity of material
21 - 30 Specific heat of material
31 - 40 Density of material

41 - 50 Time after placement when heat
generation ceases

Adiabatic Temperature Cards (2F10.0)

Columns 1T - 10 Time
11 - 20 Temperature
The total number of these cards is specified in columns
16 to 20 of the control card.

F. External Temperature Environment Information (2F10.0)

The external temperature is specified at discrete points
in time by a sequence of cards of the following form:
Columns 1 - 10 Time
11 - 20 External Temperature
The number of these cards is specified in columns 21 to 25 of

the control card.
rol ¢ A3 -



LIFT DATA

It is assumed that the structure does not exist at time zero.
When a change takes place in the geometry of the structure, or the number
of insulating e1ements; or the number and temperature of the cooling
pipes, new lift data must be supp1ied;

A. Lift Data Control Card (615, 3F10.0)

Columns 1 - 5 Number of nodal points to be considered
6 - 10 Number of elements to be considered
11 - 15 Number of insulating elements to be added

16 - 20 Number of cooling pipes to be added

21 - 25 Number of time increments in time span
26 - 30 Output interval for print of temperatures
31 - 40 Time increment to be used in time span

41 - 50 Time at the beginning of time span

51 - 60 Placement temperature for all elements
which are placed at the beginning of
time span.

B. Insulating Element Cards (215, 2F10.0)

One card must be supplied for each surface element which is
added to the system. The behavior of the surface element is governed
by the following heat transfer equation:
q = h(Te - TS)

the rate of heat transferred to the surface
element per unit of area

where q

the heat transfer coefficient for the surface

s the temperature of the surface

h
T
Te= the temperature of the external environment
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LIFT DATA (Continued)

Each card contains the following information:
Columns 1 - 5 Nodal point number I
6 - 10 Nodal point number J

11 - 20 Surface heat transfer constant h
21 - 30 Time when insulative element is to be
removed

If the surface constant h is zero the previously defined
inculating element associated with points I and J will be removed.

C. Cooling Pipe Cards (115, 5X, 3F10.0)

One card must be supplied for each cooling pipe which is
added to the system. The rate at which heat, Q , is removed

by the cooling pipe is given by the following equation:

Q=H (Tp - Tw)
where
H = an empirical constant
Tp =  the temperature in the concrete near the pipe
Tw = the emperature of the cooling water

Each card contains the following information:

Columns 1 - 5 Nodal point number which defines the
location of the pipe

11 - 20 Constant H
21 - 30 Temperature of cooling water
31 - 40 Time when cooling is to be stopped.
If the constant H is zero the previously defined cooling pipe

at the specified nodal point is removed.
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APPENDIX B

FORTRAN IV LISTING OF COMPUTER PROGRAM



PROGRAM MAIN(INPUT, OUTPUT, TAPES = INPUT, TAPEg = OUTPUT)

COMMON NUMEL yNCBHyNCPHyNUMMAT 4NDT, INTER DT, TIME 4 NUMNP { NUUME
1 NUMQC o NUMET 4PLTIME 4R (50N) s X(500) sY(5NAN) 4 T(SNN)4sNIBONY s TT(5N0)
2 1X(40095)sPLTM(400) 4 VOL(400) sHEN(12) sLM(B)sF (393) oKX (4)9S(5+5)
3 XCONN(20) s SPHT(20) s NENS(20)9QX(2052920) sHSTOP(20) 4FT (20529,
4 1€(20)9JC(20)9HA(20)sTMA(20)+9CL(20)9IP(20)sHP(20)4TP(20),TMP(20)
COMMON /SYMARG/ NUMN,MBAND ,A(500,27),Q(500)

c*******i*i************}**************i**l*il**}*l*l&****l**************

C READ AND PRINT OF CONTROL INFOMATION
T e TR e A a e s s et TR R TR A e e
50 RFAD (551000) HFDsNIJMNP s NUMEL ¢ NUUMMAT s NUMQC 4 NUIMET
WRITF (6+2011)
58 WRITE (692000) HEDsNUMNP s NUMEL s NUMMAT s NUMQC  NUMET
it e 2222 e I e e 2 R e R T e s S e

C READ OR GENERATE NODAL POINT INFORMATION
aa st 22 a B 2 22l 2 e R e T e s T 2

WRITF (6+2001)

L=1
60 RFAND  (591001) NeXIN)YsYIN)sTT(N)
DIFF=N+1-L

IF (N-L) 654+80,70
65 WRITE (6+2020) N
GO TO 60
70 DX=(X(N)=X(L=1))/DIFF
PY=(Y(N)=Y(L=1))/DNIFF
NP2 (TT(N)=TT(L-1))/DIFF
75 X(L)=X{L=1)+DX
Y(L)=2Y(L=1)+DY
TT(L)=TT(L=1)4DP
80 WRITE (692002) LsX(L)sY(L)sTT(L)
L=L+1
IF (N=L) 90,80,75
90 IF (NUMNP+1-L) 1NNn,100,6N
100 CONTINUE
C**i**I*l****************************************{****il****************

c READ AND PRINT OF FLEMENT PROPERTIES
c**********i*********************i***i***l**********************i*******
WRITE (692003)
N=0
103 READ (551002) My (IX(MgI)eI=1,5),PLTM(M)
1n4 N=N+1
IF (M=N) 1Nn7,107+105
105 IX{Ns1)=IX(N=1s1)4]
IXI{Ng2)=IX(N=1+s2)41
IX(Ng3)=IX(N=193)+1
IX(Ng4)=IX(N-194)+1
IX(NsS)=IX(N=145)
PLTM(N)=PLTM(N-1) '
107 WRITF (692004) Ny (IXINsT)sT=145),PLTM(N)
IF (M=N) 108,10N08,1N4
108 1F (NUMFL=N) 109,109,103
109 CONTINUE
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118

DO 115 N=1,20
TMC(N)=nen
TMP(N)=nen

C***********************}******************}********************l*******

q

RrFan ANn PRINT MaTeRrTAL PROPFRTIFS ANNn ENVIRONMENT TEMP

C***********************************************************************

120

NO 120 M=1sNUMMAT

RFAD (551001) MTsXCONN(MT ) g SPHT(MT) 4,DENS(MT) 4HCTOP (MT)
WRITF(642018) MT

WRITF(6920N06) MTsXCONN(MT) g SPHT(MT ) ,DFNS(MT)4HSTOP (MT)
WRITF(642NN7)

READ (541N008)  ((QX(1sJsMTy9J=142),1=1sNUMQC)
WRITF(692008) ((QX(T9JsMT)sJd=192)41=1sNIMQC)

CONTINUF

IF(NUMFT ,FQqeN) <O TO 125

READ (5910N8) ((FT(TsJ)sJd=152)s1=1sNIUMFT)
WRITF(692012) ((FT(I4J)sJ=1452)s1=1,4NIMFT)

C*********************************************************l******{******

C

FOR FACH INTERyAL OF TIME=--SEVERAL TIME <TEPc

C**}**********************k*************lk***************k*******¥******

AN NN

1258

13N

150

1R/E

14N

TIMF=04N

MCRH=N

NCPH=n

DO 130 N=1,4NIJMNP
T(N):ﬂ.n

READ AND PRINT OF LAYER PROPERTIES

READ (5511n04) NUMNGNIME 4 NUMCR GNIIMCP JNRT 3 INTFR AT ,PLTIME ,PLACFT
IF(NUMN,EQ.Nn) STOP
WRITF(642005) NUMN’N”MEQNUMCBQNUMCPQNDT’INTERQDT’PLTIMFOPLACET

ELIMINATE ALL INSULATING ELEMENTS AND COOLING PIPEc wlTH REMOVAL
TIME LESS THAN PLACFMENT TIME AND RFAD ADDITIONAL ONEc

KK=n

N0 155 N=14NCRH

TE(TMC(N) JLF,PLTIMEY A0 TO 158

KK:KK+1

IC(KK)Y=TC(N)

JCIKKY=JC(N)

HC (KK )Y=HC(N)

TMA (KK )Y=TMC (N)

CL(KKY=CL(N)

“ONTINUF

NCRL=KK+1

NCRH=KK+N!MCR

IF(NUMCR,FQ,N) GO TO 160

RFAD (551008) (TCIN)Y4JCIN)4HC(N) ¢TMA(N) sN=NCRLyNCRH)
WRITF(692013) (TCINYsJOIN)Y sHAIN) s TME(NY) sN=NCRL 4NCRH)
KK=f

NO 185 N=1,4NCPH

TE(TMP(N) LF PLTIMFy A0 TO 16%=

KK=KK+1

IP(KK)Y=1P(N)
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HP (KK)=HP (N)
TP(KK)=TP(N)
TMP(KK)=TMP (N)
165 CONTINUE
NCPL=KK+1
NCPH=KK+NUMCP
IF(NUMCP,FEQ,0) GO TO 170
READ (541006) (IP(N)4HP(N)4TP(N),TMP(N) 4N=NCPL,NCPH)
WRITE(692014) (IP(N)4HP(N)4TP(N)4TMP(N) 4N=NCPL,NCPH)

CHECK INCONSISTENCY OF LIFT INFORMATION AND REMOVAL OF [NSILATING
FLEMENTS AND/OR COOLING PIPES

N NN

170 KK=0
YY=DT*NDT
IF(NCBH.EQ40) GO TO 2n1
DO 200 N=1,NCBH
XX=TMC(N)-PLTIME
IF(XXeLTeYY) KK=1

2nn CONTINUE

201 1F(NCPH,FQ,0) GO TO 2n8
PO 205 N=1,NCPH
XX=TMP (N)-PLTIME
IF(XXelLTeYY) KK=1

2ns CONTINUE

208 IF(KKeNFeN) WRITE(652N19)

SFT ALL NFw NOpFs 1O PLACFMFENT TFMPFRATURF ANP CONTACT SURFACE AT
AVFRAGF TFMPFRATURFS

AN AN

DO 210 I=14NUMN
R(1)=0eN
210 Q(I)=Nn.0
DO 220 N=1,NUME
IF(PLTM(N) «GT.PLTIME) GO TO 22n
NO 215 T1=1,4
TI=IX(Ns1)
TF(PLTM(N) ,FQ,PLTIMF) R(TT)=R(TT)+PLACET
TF(PLTM(N) (LT PLTIMF) R(TIY=R(TII)+T(T1)
215 Q(I1Y)Y=Q(T11)+1,.,0
220 CONTINUE
DO 230 N=1,NUMN
IF(Q(T1)eFQeNeOY GO TO 230N
T(NY=B(N)/Q(N)
230 CONTINUF

CALL LAYER
GO TO 150
C********************i**}*******&***************il*i*****}**************
c
c FORMAT STATEMENTS
C
1000 FORMAT (1246/515)
1001 FORMAT (1555X+4F10,0)
1002 FORMAT (6155F1040)
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1072 FORMAT (I104+4F10eM)

10n4 FORMAT(61I593F1NeN)

10ns FORMATI(21542F1N,0)

10Nn6 FORMAT(T15e5Xe3F1N, D)

1NNR EORMAT(2F104N)

2000 FORMAT (1HN 12A677 25HNNIIMRFR OF NOpAL 20INTS-- 14/
1 »s5H NUMBER OF ELFMINTSE=———=- 14 /284 NIIMBER OF MATERIAlLG==—=- lg/
> ps5H NUMBER OF GQ CARDR-====- 14 s/>8H NU OF ExT TEMP CARDg---- Ig)

2001 FORMAT (10HO N P, ND, 14Xs1HXs14Xs1HY s 11X 44HTFMP)

2nN> FORMAT (111Nny3F15,4¢)

>N0Na FORMAT (S1HO N 1 J K L MATFRIAL PLACEMFNT TIMF)

2nn4 FORMAT (515511NsF156,4)

2006 FORMAT (1H1 7/ 254NNuMarR OfF NONAL POINTS-- 14/

1 28H NUUMRFR OF FLFMFNTS—=—--- 14 7 2aH NUMBER OF CONVECTION BC-lg4/
2 26H NUMBER OF COOLING PIPF=- 14 / »25H NUMBER OF INCREMENTC=-===14/
12 28H OUTPUT INTERVAL-—-—==—-—- I s 2nH TIME INTERVAL-=—=-= E1ne2y
4 »8H BEGINNING TIMEF----=—-—=—=- FReo2/728H PLACEMENT TEMPERATURE=---
5 F8e?)

2006 FORMAT (6HN Moel1XoltHPONN 311X ¢4HSPHT 911X 44HNFNS 44X ¢26HTIMFE HFAT
1GENFRATTION STOPS/ (16436158 ,64F20,5))

2007 FORMAT(43HOANTARATTI~ TFMPERATIIRFE Ryer UF THF MATERTAL/ GHN TIMF

1 4X,11HTFMPFERATIIRE)
2NN8 FORMAT(F9,2+sF15,6)
2009 FORMAT (44N M lax 1WK 14X l1Hr- 14X 1HN 14X 1HQ/ (14,4F15,6))
2011 FORMAT (27H1TWO DIMENSIONAL PLANF RODY )

2012 FORMAT(31HNTEMPFERATIRE OF THF FNVIRONMENT/ QHO TIMF 4%,
1 1IHTFMPFRATURFE/(FO,243F15,6))

2013 FORMAT(2NHNTINSIILATTMNA FLEMENTC/ /51 T+5H JelaY s1HH,15H TIMF
1 REMOVEN/(P1542F15,6))

2014 FORMAT(25H0NFTATLS O cOCLINr PYIPES//50 T914%Xs1HHel5u TFMPFER

1ATURF s 15H TIME REMOVFR/(1543F15,61)

2018 FORMAT(1HN +4X s 15HMATERTAL TYPE =413

2N1a FORMAT(asHn¥***% cRROR MFSSAGF WARNING ONLY/7Xs76HNEW LIFT DATA
115 NOT SI'PPLIED EVFN THOIIGH A CHANGE HAS OCCHRED IN INCitLATING/
2 T7X¢32HFLEMENTC ANMNN/OR COOLINA PIPr-~, CALCULATION PROCFFD<®)

2070 FORMAT (17"HNCARD NO¢ Tas 12H OIT OF ORNFR )

2021 FORMAT (13HNNAN ~ARN NO, T14)

.

END
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SURROUTINE LAYER
COMMON NUMEL NCBH 4y NCPH 4y NIMMAT yNDT, INTER 4DT o TIME 4 NI /MNP o NIJME
1 NUMQEsNUMET 3PLTIME,n(5N00)sX(50N)3Y(5N0) s TI50N)sN(ENAY)4TT (50N
2 IX(40N95) sPLTM(400) 4VOL (400) sHEN(12)sLM(B) 3 (392) 4KX(4)9S(5+5) s
3 XCOND(20)sSPHT(20)4NENS(20)43QX(20,2920)sHSTOP(20)4FT (2042 ),
4  1C(20)5JC(20)sHAL20)sTMA(20) 5L (209 1P(20)sHP(20)sTP(2N),TMP(20)
COMMON /SYMARG/ NUMN,MBANDSA(ENDs27)5sQ(500)

C
€% 3 F 33 33 32T I I I I I I I I 0 I I NH
c FORM CONDUCTIVITY MATRIX FOR COMPLETE BODY

€336 3% 3 I I 33 3 F 3 I I I3 I3 3K I I I I I I3 I I I I I NI I I I I I T I I K

NO 1230 1=1sNI/MN

D{1)=0eN

B(I)=0eN

Q(I)=ﬂ.0

DO 13N J=1,427

120 A(1,J)=0eN
MRAND=0
I1STOP=0

PO 200 N=1sNUME
IF(PLTM(N)4GT,PLTIME) GO TO 200
MTYPE=IX(N,5)

COND=XCOND(MTYPE)

2« FORM ELEMENT CONDUCTIVITY MATRIX

aNaNe]

NO 18N I=145

LM(TI)=IX(N,1)

DO 150 J=145
180 S(1+J)=0eN

I1=LM(1)
J=LM(?)
K=LM(3)
L=LM(4)
LM(5)y=1

XX=(X(I)Y4+X(J)+X(KY+X(L)) /4,
YY=(Y(I)+Y (J)+Y(KY+Y (L)) /4,

PO 152 K=144

I=LM(K)

J=LM(K+1)

IF (1=J) 13541524135
135 AJd=X(J)=-X(1)

AK=XX=-X(T1)

BJd=Y(J)=-Y(])

BK=YY=-Y(1)

C=BJ-BK

DX=AK~-AJ

XLAM=AJ*BK-AK*BJ
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IF(XLAM{GT ¢Ne0) GO TO 136
1STOP=1
WRITF(6+2703) N

136 VOL(N)=VOL(N)+XLAM*0,5
COMM= o, 5%COND/XLAM

E(1s1)=CREQEDXHRD
E(1s2)=BK¥C-AK*DYX
F(193)=—BIXC+AI*DYX
F(291)=F(1,42)
F(292)=BK¥¥34aAK%%>
F(293)=—BJ¥BK—-AJ*AK
F(3s1)=F(1+3)
F(3e2)=F(243)
E(393)=BJIR¥S4LA SRS

KX(1)=K

KX(2)=K+1

IF (K=4) 14551404145
140 KX(2)=1
145 KX(3)=5

C
DO 151 I=1,3
IT=Kx(I)
PO 151 J=1,43
JJ=KX (J)
151 S(I1sJJ)=S(11eJJ)4+F(1,J)* OMM
C
152 CONTINUF
C

DO 185 I=1,44
DO 155 J=144
1588 S(TeJ)=S(T4J)=S(1,5)%S(JyS)/S(5,45)

3, ADN FLEMENT FONNIICTTIVITY TO rOMPLFTFE F~ONNUICTIVITY MATRIX

NN

VOL (N)=VOL (N) *SPHT (MTYPF)*NENS(MTYPF)¥n,25
PO 175 L=1,4
I=LM(L)
DITIY=D(T1)+VOL(N)
PO 175 M=1,4
J=LM(M)=T+1
TF (27=J) 157+158,158
1587 WRTITF (692002) N
GO 1O 2nN
158 1F(MRANND-J) 160,165,165
160 MBAND=J
165 IF(J) 17591755170
170 A(14J)=A(14J)+S(L,M)
1758 CONTINUE

200 CONTINUF

IF(ISTOPL,EQ,1) STOP -
C***********************************************************************

C BOUNDARY CONDITIONS
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(C 33 3336 T 36 36 3 3 3 3 3 I 3 3 I T I F e I I I I I I I I I I I I I I I I I I 26 3 I I I I I I3 I 96 9 3 3 W 3 % 3

IF(NCRHeEQ.N) GO TO 22n
PO 215 N=1,NCBH
I=1C(N)
J=JC(N)
XL2SART((X(J)=X(T) ) *¥%o4(Y(J)=Y (1)) *#>)
H=HC(N)%#XL%¥0425
A(ls1)=A(l41)+H
AlJs1)=A(Js1)+H
K=J=-1+1
IF (K) 2124212,21n

210 A(T1sK)=A(TsK)+H
GO 70 215

212 K=1-J+1
A(JyK)=A(JsK)+H

218 CL(N)=XxL

22n CONTINUE

COOLING PIPES

a el

IF(NCPH.FQ,0) GO TO 275
NO 224 N=1,NCPH
I=IP(N)
A(Ts1)=A(I41)+HP(N)
224 R(1)=B(T)+HP(N)*TP(N)
2725 CONTINUF

2« TEMPERATURF BOUNDARY CONDITIONS

DYDY

DO 300 N=1,NUMN

(@)

IF(TTIN)eEQeN0) GO TO 300
NO 250 M=2 ¢MBAND
K=N-=-M+1
IF(K) 23542354230
230 R({K)=B(K)=A(KM)¥TT(N)
A(KsM)=0,4N
235 L=N+M-1
IF(NUMN=L) 245,240,240
240 B(L)=B(L)=A{NJM)*TT(N)
245 A(NyM)=n,n
260 CONTINUE
A(Ns1)=140
T(N)=TT(N)
3Nn0 CONTINUFE
g***********************************************************************

C SOLVE FOR NODAL POINT TEMPERATURES
C***************************************************************&*******
o FORM EFFECTIVF CONPUCTIVITY MATRIX FOR TIMF INCREMENT
c

NT2=1.0/NT

DO 320 N=1¢NUMN

IF(A(NS1)eFQa0,0) A(N,1)=1,0

IF(TT(N)eNEeNen) GO TO 1320
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NN

NN

D OND

REANA)

320

385
186

290
2985

4n0
401

4ns
410

450

ND(N)=DT2*D(N)
A(Ns1)=A(Ns1)+D(N)
CONTINUFE

CALL SYMSOL (1)

CALCULATE TEMPERATURF AT THE END OF FACH TIME INCREMENT

LL=0
DO 60N KK=14NDT
NETFRMINATION OF HEAT GFNFRATTON

DO 395 N=1,NUMF
IF(PLTM(N)«GTTIMF) GO TO 1395
MTYPE=IX(N,y5)

TX=TIME=-PLTM(N)

IF(TXeGF 4HSTOP(MTYPF)) GO TO 398§
DO 1385 L=1,NIJMQC
X72=QX(Lys1sMTYPF)-TX

IF(XZeTeNe0) GO TO 386

CONTINUF

DIFF=QX(Ls1 sMTYPE)=QX(L=191sMTYPE)
GRAD=(QX (L2 sMTYPF)=QX(L-1,2sMTYPE))/DIFF
QQ=GRAD*VOL(N)

NO 390 I=144

TT=IX(N,T)

Q(11)Y=Q(11)+QQ

CONTINUF

CONVECTION BOUNDARY CONDITION

IF(NCRHQ:QOD’ GO 1O 410
NO 4NN N=14NUMET
XZ=2FT(Ns1)-TIME
IF(XZeGTeNaN) GO TO 4N1
CONTINUF
NIFF=FT(Ns1)=FT(N=-1,1)
TEMP=ET(Ns2)=((FT(Ns2)=FT(N=1,2))%*XZ)/DIFF
DO 4n5 M=1,NCBH

I=1C(M)

J=JC(M)
XZ=HC(M)*CL(M)*TEMP¥*n,5
Q(1)=Q(T)+X2Z
Q(JY=Q(J)y+X2

CONTINUF

le CALCULATF FFFFCTIVF LOAD MATRIX
NO 450 1=1,NIIMN
QET)=Q(TYI+R{TYFN(IV*T(T)

TEITTII) eNELON)Y QITY=TTI(T)
CONTINUF

2. SOLVE FOR TEMPERATURES
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CALL SYMSOL(2)

NO 500 I=1sNUMN
T(I)=Q(T1)
500 Q(1)=Ne0
C .
TIME =TIME+DT
LL=LL+]
IF(LL=INTFR) gNN,88N4550
560 WRITF (692001) TIMFs(NsT(N)sN=14NIIMN)
LL=n
C
600 CONTINUF
RETURN
C****************** ****************i*i}**&*l****i******l*}*******i****l*
C
2001 FORMAT (7HOTIMEe = Fl4 ,6/(169F14,6416,714,64,16,r14,6,16,F14,6,
1 169F14,65169F14,6))
2902 FORMAT (23H RAND TOO LARGF=-FL,NO, 14)
2003 FORMAT(34HNZFRO OR NFAATIVFE ARFA  FLFMENT NO,15)
C
END
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S1YRROUTINE SYMSOL (KKK)

c
COMMON /SYMARG/ NNyMM4A(B0Ns2T)sR(500)
c
GO TO (10NN42000) 4XKK
c
C REDUCE MATRIX
¢

10nn DO 280 N=1,NN
NO 26N L=> MM
C=A(NsL)/A(Ns1)
1 = N+L-1
IF(NN=1) 26092409240
240 J=0
DO 250 K=L MM
J=J+1
28N A(T9sJ)=A(T,J)=CH*A(N,K)
260 A(N,L)=C
280 CONTINUE
GO TO s8N0

REDUCE VECTOR

NN

2nnn DO 29n N=1,4NN

NO 285 L=2,MM

I1=N+L-1

IF(NN-1) 290+2855285
285 R(1)=R(1)—A(NsLY*¥R(N)
290 RB(N)=B(N)/A(Ns1)

BACK SUBSTITUTION

aNala!

N=NN
3nn N = N-1
IF(N)Y 38Ns50Ns380N
360 DO 400 K=? MM
L = N+K-1
IF(NN-L) 4nNe370,370
370 R(N) = B(N) = A(N,X) * B(L)
4nn CONTINUF
GO TO 13nN

5§00 RETURN

END
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