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Abstract 

Linear Adaptive Noise-reduction Filters for Tomographic Image Reconstruction: 

Optimizing for Minimum Mean-square Error 

by 

Winston Y. Sun 

Doctor of Philosophy 

University of California at Berkeley 

Professor Thomas F. Budinger, Chair 
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This thesis solves the problem of finding the optimal linear noise-reduction filter 

for linear tomographic image reconstruction. The optimization is data dependent and 

results in minimizing the mean-square error of the reconstructed image. The error 

is defined as the difference between the result and the best possible reconstruction. 

Applications for the optimal filter include reconstructions of positron emission tomo­

graphic (PET), X-ray computed tomographic, single-photon emission tomographic, 

and nuclear magnetic resonance imaging. Using high resolution PET as an example, 

the optimal filter is derived and presented for the convolution backprojection, Moore­

Penrose pseudoinverse, and the natural-pixel basis set reconstruction methods. Sim­

ulations and experimental results are presented for the convolution backprojection 

method. 

Linear filters which optimize for minimum mean-square error (mmse) are called 

Wiener filters; such filters require the knowledge of the signal and noise statistics. Un­

fortunately, the noise and signal statistics are unknown other than the well-accepted 

model that the PET -detected events follow Poisson statistics. This work investigates 

a novel technique of spectral estimation using the concept of reprojection (measur­

ing the projections of a reconstructed image). The technique is adaptive wherein 

the filter shape changes to accommodate for the number of detected events and the 

shape projection of the object. Simulations show that the technique results in good 

agreement between the theoretical values and the experimental results. 
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The characteristic noise power of a reconstructed image for a particular to­

mograph geometry is found by averaging the power spectral density (PSD) of 500 

white-noise reprojections. White-noise reprojections are obtained by projecting re­

constructions (using only a ramp filter) of white-noise projections. Estimating the 

noise power in a particular projection of a specific data set is accomplished by nor­

malizing the noise PSD characterization to the total power of the reprojected data set 

in the high-frequency band where noise dominates over the signal. Normalization is 

done bya single parameter scale factor to achieve a least-squares fit over the upper m 

frequency indices. The PSD of the signal is therefore the remainder after subtracting 

the normalized noise power from the total PSD. Robustness of the estimation tech­

nique was measured in terms of sensitivity to the number (m) of frequency indices 

used to normalize the noise power characteristics. Simulations using a complex-brain 

phantom show that varying m over the highest 25% of the frequency band results 

in less than 0.1% change (relative to the local mean) in the standard deviations of 

selected uniform regions. 

A set of simulations comparing the results of the conventional Butterworth (BW) 

noise-reduction filter and the Wiener filter are presented. The standard deviations 

for selected regions of uniform activity were measured for simple geometric phantoms 

(uniform disk, uniform rectangle and ring with two rectangles) for varying number 

of detected events. Both the BW -filtered and the Wiener-filtered results show that a 

ten-fold increase in the number of counts from 2 X 105 to 2 X 106 reduces the standard 

deviation by a factor of 2.50 or more. The simulations show that the adaptive Wiener 

filter outperforms the BW filter for nQn-isotropic phantoms where the spectral con­

tent of the phantom varies from angle to angle. 

A new approach to measure reconstructed-image quality was derived to compare 

the Wiener filter method to other algorithms. Despite the fact that the standard devi­

ations for the Wiener-filtered reconstructions are generally smaller than BW-filtered 

counterpart, the improvement is only minor. However, the visual quality of the 

Wiener-filtered images have distinct characteristics and markedly different appear­

ances compared to the BW-filtered results - the BW-filtered images are character­

ized by coarse 2-D textural noise whereas the Wiener-filtered images are characterized 
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by a much finer textural noise. Since the rms error is not the optimal metric to mea­

sure image quality, a new method of quantifying image quality was developed in this 

thesis. By segmenting the pixels in a region of known uniform activity into 5 gray­

scale levels representing the degree of fluctuations of each pixel from the region mean, 

a spatial distribution of the variation from the local mean can be represented. The 

5 levels of binning were categorized by pixel values that are within ± 12.5% of the 

local mean, pixel values that are between ± 12.5% and ± 25%, between ± 25% and 

±50%, between ± 50% and ± 75%, and values that exceed ±75% of the local mean. 

Image quality can be quantified by measuring the number of pixels that fall within a 

threshold window. Simulations show that the Wiener-filtered reconstructions contain 

more than twice as many pixels within the ±50% threshold window than the BW­

filtered reconstructions. 

The results of the Wiener-filtered reconstruction of an experimental data set 

collected from the Donner 600-crystal high-resolution tomograph are compared to 

the BW-filtered reconstructions. As in the simulations, the visual appearance of the 

noise in the BW'-filtered images is characterized by coarse textures with oscillating 

gray-scale values whereas the Wiener-filtered images have much a finer texture with 

a more uniform gray-seale-valued background. 

Reconstruction results for a complex-brain phantom are compared for the BW­

filtered, Wiener-filtered reconstructions and for the reconstructions using the maxi­

mum likelihood estimation (MLE) method. Comparisons of the ROI statistics show 

that the Wiener-filtered image have lower standard deviations in a uniform region as 

compared to both the BW-filtered and the MLE reconstructions. 

4 .~,£) -
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Prof. T. F. Budinger, ChaIr 
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Chapter ·1 

Introduction 

1.1 Statement of thesis 

This thesis investigates the techniques of'solving for optimal linear filters which 

results in the minimum mean-square error (mmse). As will be shown, a prerequisite 

for the solution to these optimal filters is some a priori knowledge of the signal and 

noise characteristics. One of the main difficulties is to obtain estimates for these 

unknown parameters. The main focus of this work is to develop a new technique to . 

estimate the noise and signal statistics given only one low-count measurement. 

The problem of linear tomographic reconstruction has been investigated by many 

authors. Baker [1], Ramachandra [2], Marr [3], Buonocore [4], etc ... have all solved 

the inverse problem. The problem remains that for high resolution positron emis­

sion tomograph (PET) data, the signal-to-noise ratio (SNR) is limited and a noise­

reduction filter is necessary to reconstruct images of" good" quality. The" goodness" 

of an image can be defined many ways. For instance, one of the benefits of filtering 

out the noise is that the SNR will be improved and hence the visual fidelity of the 

reconstructed image enhanced. However, the visual fidelity criterion is not a well 

defined mathematical cost function and for quantitative studies an objective metric 

is necessary. Thus, the mean-square error will be considered as a metric to measure 

the" goodness" of an image. 
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Incorporating known priors such as the modulation transfer function (MTF) 

of the tomograph, reconstruction method, and statistical behavior of the noise this 

work develops a method of estimating the noise and signal power spectra to be used in 

Wiener filters which can then be used to achieve mmse estimate of the original object. 

Finally, as a practical clinical tool the implementation of the algorithm must be made 

such that fast reconstruction times are possible. Applications of the optimal filtering 

can then be used in other medical imaging modalities such as fast X-ray computed 

tomography (X-ray CT) and single photon emission computed tomography (SPECT) 

as well as PET. 

1.2 Motivation and background 

The goal of this work is to reconstruct images without time-consuming itera­

tions for the data acquired by the Donner 600-crystal high-resolution tomograph. 

Currently, the standard method of image reconstruction involves manually iterating 

and selecting the cut-off frequency and filter order of the Butterworth (BW) low-pass 

filter as depicted in figure 1.1. Several reconstructions using different BW filters are 

done and the "best" image is selected for clinical use. One cli:t;lical application for the 

tomograph 

Conventional reconstruction approach 

Butterworth 
filters reconstruction final 

image 

subjective 
filter selection 

Figure 1.1: Block diagram illustrating the conventional reconstruction using the Butterworth filter 
requiring manual iteration and subjective filter selection. 

tomographic reconstruction tools is for use with fast X-ray CT's. Traumatic head 
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injuries must be quickly diagnosed using the X-ray CT scanners and reconstruction 

times in ten seconds per slice is necessary. With current computing technologies the 

only method of reconstruction capable of attaining these speeds is with the convolu­

tion backprojection (CBP) method (also referred to as filtered backprojection). By 

developing an algorithm that automatically generates the ideal noise-reduction filter 

based on the data collected, the manual iteration and selection process can be elimi­

nated and an optimized reconstruction can be achieved as a pictured in figure 1.2. 

Desired reconstruction approach 

tomograph 

signal 
processing 

\ d .. measure projection 

reconstruction 

final 
image 

Figure 1.2: Block diagram illustrating the desired approach of reconstruction where the data is 
processed and analyzed to determine automatically the optimal noise reduction filter. 

Parallel projections form what are known as the Radon transform [5] of an image. 

A perfect reconstruction of the original image is possible by inverting this operation 

using the inverse Radon transform (for a square integralable b( x, y)). However, a true 

Radon transform requires measurements in infinitesimal increments in both angle and 

projection bins as indicated by integrals in the Radon and its inverse transform equa­

tions 1.1 and 1.2 below: (P denotes the projection or the Radon transform, B denotes 

the ba~kprojection operation, and n denotes the linear shift-invariant ramp filtering 

operation where the ramp filter in the frequency domain is merely: R(J) = ifi for 

f:-oo<f<oo). 

p(s,O) =Pb= 1:1: b(x,y)8(xcosO+ysin{}-s)dxdy, (1.1 ) 

with -00 < s < 00; 0 ::; {} < 7r 
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and for the inverse, 

b(x, y) = BRp = forr i: I~IP(~, 0) exp[j21l"~(x cos 0 + y sin B)]d~dO (1.2) 

where P(~, 0) is the 1-D Fourier transform of p(s, B) in the s (the radial coordinate) 

direction and ~ is the Fourier component of s. Note that the inner integral in the 

inverse Radon transform is merely ,the 1-D inverse Fourier transform of I~IP(~, 0) 

which is just p(s, 0)0 (ramp-filter kernel), where 0 denotes the convolution operator. 

In practical PET, parallel projection measurements can only be made in finite number 

of angles and bins. Hence, the common method of reconstructing PET images uses 

the approximation to the inverse Radon transform [2] [6] [7] [8] [9] which can be 

written in an equation as follows: 

6-1[(-1 

b(x,y)::::: ~ I: I: p(k,O)r(s - k) (1.3) 
n=O k=O 

where 

s = x cos(n~) + y sin(n~) (1.4) 

and 

o = n~. (1.5) 

Again, the second summation is a discrete circular convolution and r(s) is the 1-D 

inverse discrete Fourier transform of a truncated ramp function, i.e. 

R(f) = F2fo{r(s)} = III (1.6) 

for I: - 10 < I < 10 

where 10 is the Nyquist rate, F 2fo is the discrete 2Io-point 1-D Fourier transform 

operator and 1 is the frequency index. Another alternative to R(f), when using the 

discrete approximation to the inverse Radon transform, is: 

(1.7) 

for I :,-210 < I <210 



5 

where the :;=410 indicates a discrete 4fo-point Fourier transform. The discrete Fourier 

transforms are implemented using the fast Fourier transform (FFT) algorithm. The 

above R(J) aliases less in the spatial domain than the first approximation to the ramp 

filter as more frequency indices are used to approximate the ramp kernel. 

This method of reconstruction does an outstanding job of reconstructing the 

original image in the absence of noise as the original uniform circular disk versus 

reconstructed image is shown below in figures 1.3 and 1.4. However, practical tome-

Figure 1.3: The original uniform circular disk 
phantom 

Figure 1.4: The reconstructed image in ab­
sence of noise 

graph measurements include noise as well as the true signal (the projections). Figure 

·1.5 shows what the same reconstruction looks like when simulated noise is added to 

the projection data before reconstruction. The simulated noisy projection data is a 

realization of a Poisson process such that the noisy projection, p'(s, 0), is generated 

by the following: 

p'(s,O) = Poisson(>.. = p(s, 0)) (1.8) 

where p(s, 0) is the ideal analytic projection. 

Previous attempts at noise-reduction filtering techniques have been based pri­

marily on heuristics including non-adaptive filters such as the Hanning, Hamming, 

Shep-Logan .low-pass filters [7] [2] [10]. Adaptive filters based on heuristics include 



Figure 1.5: Reconstruction for a 500,000 event 
simulation without using any NR filters. 

Figure 1.6: Reconstruction of the same. data 
set using a Butterworth NR filter. 

6 

the Butterworth [11] [10] and Metz filters [12]. The Butterworth (BW) filters are 

perhaps the most universally used noise-reduction filters because of their flexibility. 

By manually iterating the parameters of cut-off frequency and filter order, a clinician 

is able to attain a reconstructed image with good visual fidelity or appearance. Figure 

1.6 illustrates one possible BW-filtered reconstruction of the same uniform circular 

disk phantom. The drawback to this technique is that bias is introduced by each 

clinician or viewer who picks his/her own BW parameters. Thus, a goal of this work 

is to develop a method to filter the projections in an objective way. 

Adaptive Wiener filters which minimize mean-square error have been suggested 

in various forms by Tsui [13] and Shim - Cho [14]. Tsui's filter is to be used in 

conjunction with the conventional CBP reconstruction whereas Shim-Cho's filter is 

based on the pseudoinverse (of the projection formation matrix) reconstruction. In 

either case, prior knowledge of the noise and signal statistics (power spectra, auto­

correlation matrix) is required. This thesis further develops the concepts of Wiener 

filtering developed by Tsui and improves upon the method o~ estimating the noise 

and the signal power for measurements with poor SNR's. 

Other reconstruction methods for PET have been developed III recent years 

which are based on Bayesian methods (MAP) [7] [15] [16] and the maximum likeli-
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hood estimation (MLE) method [17] [18] [19] [20]. The MAP method results in the 

identical solution as that of the mmse filtering method for noise which have zero mean 

[7]. Again, as in the case of the mmse solution, prior knowledge of the noise and sig­

nal statistics is necessary to use the MAP approach. The MLE uses the expectation­

maximization (EM) algorithm which is an iterative approach to solve a log-likelihood 

equation for a Poisson process for which there is no closed-form solution [21]. This 

method makes efficient use of the data as it utilizes the Poisson statistics without 

having to model it as an additive Gaussian. There are, however, some drawbacks 

to the MLE method. Computationally, the iterative EM algorithm takes an order 

of magnitude (or more) more time to reach to a convergent solution. Furthermore, 

the solution that the MLE method converges to is typically characterized by large 

oscillations in the pixel values within a region of constant value. In order to correct 

for these large oscillations various" stopping" rules and heuristic low-pass filtering is 

applied to achieve smoother and visually appealing images [20] [22] [23]. However, 

these "stopping" rules and heuristic low-pass filters add bias to the solution. 

A more complete summary of tomographic reconstruction algorithms are given 

by Rangayyan [24]. 
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.Chapter 2 

Theoretical Considerations 

Mathematical model of the data acquisition as well as the data itself is the topic of 

discussion in the first section of this chapter. Methods of reconstruction as well as 

the reconstruction optimization are considered. Using an additive independent noise 

model for the measured data, three methods of image reconstruction are presented 

as well as the optimizing reconstruction filter to ·be used with each method. 

2.1 Data Acquisition 

The ideal data acquisition process can be mathematically modeled by the vector­

matrix equation 2.1 below 

l!. = F~. (2.1) 

In this equation, l!. is the measured projection vector, ~ is the vectorized object, and 

F is the measurement matrix (or the projection formation matrix). For the case of 

an ideal Radon transform, the vectors would be infinite dimensional and F would be 

the continuous space projection formation operator. However, in order to simplify 

calculations, the object b is modeled as a gridded or pixelized 2-dimensional object 

with uniform density in each pixel [25] [26] [27]. This pixelization is illustrated in 

figure 2.1 below. 



., 

pixelize 

• 

-
- - .' 

I 
I I 

Figure 2.1: Example of how a continuous 2-D object is modeled as a collection of uniform pixels. 
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A simple example of a 4x4 pixelized object below (figure 2.2) illustrates the phys­

ical interpretation of equation 2.1. In this example, two projection angles orthogonal 

bI 

bS 

b9 

b13 

b2 b3 b4 

b6 b7 b8 project 

bIO bll bI2 

bI4 bIS bI6 

t project 

p2_1 = b4 + b8 + bI2 + bI6 

p2_2 = b3 + b7 + bll + bIS 

p2_3 = ~2 + b6 + biO + bI4 

p2_ 4 = bI + bS + b9 + b13 

.... 
pCI = bI + b2 + b3 + b4 

pC3 = b9 + bIO + bll + bI2 

pI_4 = bI3 + bI4 + bIS + bI6 

16 pixelized elements of 
a 2-D object b 

Figure 2.2: Example of a square object gridded into 16 uniform pixels and its projections in two 
angles. Pn-m is the m-th projection bin in the n-th projection angle. 

to one another measures four bins in each angle. The 2-D object, b is vectorized as a 

column-ordered vector as shown below: 

The F matrix is the measurement matrix that transforms the object vector Q and 

the results in the projection vector p.: The F matrix is determined by the geometry 
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of the tomograph and how measurements are physically made. Horizontal projec­

tion through the upper fourth of Q in the above image results in a projection PI-I 

(1st projection angle - 1st bin) = bi + b2 + ~ + b4 ; Thus, the first row of F is 

[1 1 1 1 0 00 0 0 0 0 00 0 0 0]. The other 7 row entries can be similarly determined 

by inspection of the equation below. 

T 

[PI-I PI-2 PI-3 PI-4 P2-I P2-2 P2-3 P2-4] 

-

bi + b2 + ~ + b4 

bs + b6 + b7 + bs 

bg + blO + bll + b12 

. bI3 + bI4 + blS + bI6 

b4 + bs + bI2 + bI6 

b3 + b7 + bll + blS 

b2 + b6 + blO + bI4 

bi + bs + bg + bI3 

l!. F [bi b2 b3 b4 bs b6 b7 bs bg blO bll bI2 bI3 bI4 blS b16 ] 

T 

In PET, the ideal projection formation equation must be interpreted in a statis­

tical manner because the physics of the measurement process do not correspond to 

analytical projection measurements. The measurement process for PET proceeds as 

follows. A metabolically active tracer labeled with a positron-emitting radionuclide 

is injected into a patient where after a short time, accumulation (of the radionuclide) 

in that part of the anatomy for which the tracer molecule has an affinity occurs. 

When the radioactive nuclei decay they emit positrons which immediately annihilate 

with nearby electrons to produce a pair of 511-keV photons traveling in opposite di­

rections. When the photon pairs are detected simultaneously, an annihilation event 

somewhere along the line connecting the two detectors is assumed to have occurred. 

After detecting 500,000+ events (for the Donner 600-crystal tomograph measuring a 

t 
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brain) "a reconstruction can be made. Each labeled tracer molecule is a positron emit­

ter which undergoes a radioactive decay and like all other radioactive decay processes 

it is modeled as a Poisson process. Since each tracer molecule decays independently 

from others, emissions can be modeled as independent Poisson processes. The tomo­

graph measurement is simply the collective sum of all detected emissions so that each 

projection bin can be modeled as the superposition of independent Poissons. The 

statistical interpretation of the measurements becomes 

Ep' = FQ (2.2) 

where the E is the expectation operator. Or, the expected value of the measurements 

is equal to the value of the analytic projections. Since the data is Poisson, the vari­

ance of the data is equal to the expected value. 

For a random variable, x, having Poisson statistics a Gaussian substitute de­

scribed by equations 2.3 and 2.4 [28] [29]: 

X rv Poisson(>.. = Ex) (2.3) 

x' = x" + N(f.l = 0,0" = ~) (2.4) 

where x" = Ex and N (f.l, 0"). is a Gaussian with mean = f.l and standard deviation = 0" 

models the first and second order statistics of a Poisson process. As can be seen from 

equation 2.4, the new random variable x' has the same expected value and variance 

"as x. If a measured signal has stationary Poisson statistics, there are advantages 

of modeling that signal using the Gaussian model where the signal component can 

be thought of as Ex and the noise being N(O, JEx). Modeling the projections as 

Poisson, the noise is no longer purely additive [30] and linear methods of solving for 

a mmse-producing filters are not possible. 
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2.2 Linear Reconstruction 

The reconstruction of tomographic images is that of an inverse problem. That 

is, all linear methods are based on inverting the data acquisition process. Whether 

it involves finding the exact inverse, approximating the inverse or finding the Moore­

Penrose pseudoinverse the basis of reconstruction is solving for Q in the equation 

p. = FQ. 

In the case of PET, the F matrix is the projection formation operator as de­

scribed in an earlier example shown in figure 2.2. The F matrix is a function of the 

tomograph geometry including the number of sampling angles and number the detec­

tors (or bins). The 8 x 16 F matrix below, corresponding to the projection formation 

matrix for the sampling geometry shown in figure 2.2 

F 

1· 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

o 000 1 1 1 1 000 000 0 0 

o 000 0 0 001 1 1 100 0 0 

o 000 0 0 0 0 0 000 1 1 1 1 

000 1 000 1 000 1 000 1 

o 0 1 000 100 0 1 000 1 0 

o 100 0 1 000 1 000 1 0 0 

1 000 1 000 1 000 1 000 

is not full rank as you can add the first four rows and subtract the fifth, sixth, and 

seventh row to yield the eighth row. ·In general the size of the F matrix is eK 

x dim(Q), where e is the number of projection angles, K is the number of bins in 

each angle, and dim(·) is the dimension of the argument. Another example shown 

below in figure 2.3 uses geometries more convenient for typical tomographs. Here, 

the tomograph samples at four evenly space angles with two projection bins in each 

angle. For this case, F is described by a 8x8 matrix as shown below. The object Q 

is dissected into eight equal parts and the first projection bin in the first angle, pIl' 
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pI bi + b2 + b7 + b8 
~ 

b3 + b4 + b5 + b6 

p2 

, b I ; b2 + b3 +b8 

b4 + b5 + b6 + b7 

Figure 2.3: Example of a circular object gridded into 8 pixels and its projections at 4 equally spaced 
angles. 

is simply the sum of the upper 4 pie pieces which is just b1 + ~ + b-; + bg • Thus, the 

first row of F is 

F1,n = [1 1 000 0 1 1]. 

The rest of the F matrix can be filled in by looking at the projection bin values 

and determining the correct linear combinations of bi's. The resulting F matrix is as 

follows: 
1 1 0 0 0 0 1 1 

0 0 1 1 1 1 0 0 

1 1 1 0 0 0 0 1 

F 
0 0 0 1 1 1 1 0 

1 1 1 1 0 0 0 0 

0 0 0 0 1 1 1 1 

0 1 1 1 1 0 0 0 

1 0 0 0 0 1 1 1 

Again, this 8 x 8 matrix is not full rank as the linear combination of the first 7 rows 

yield the eighth. For any projection formation matrix, F, the rank of F can be shown 
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to be e (K - 1) + 1 [1] [31] and thus always singular. This means that the equation 

is ill-posed and there is no unique solution when solving for Q. 

There are, however, ways to over come the singularity problem. The conven­

tional filtered backprojection is based on the approximation to the Radon/inverse 

Radon transforms. As stated in the previous chapter, for the case where projec­

tions measurements are made in infinitesimal increments both in angle and bin width 

perfect inversion/reconstruction (for a projection of the original square integral able 

function, b( x, y)) is possible as shown below: 

b(x, y) = 101'0 i: I~IP(~, 0) expfj27r~(x cos 0 + y sin O)]d~dO 

By replacing the integral sign with a summation sign on the inverse Radon equation 

and replacing the ramp filter with a truncated ramp filter an approximation of inverse 

radon transform is made and is the basis for the conventional filtered backprojection 

reconstruction. 

6-1 K-I 

Q=:L :Lp(k,O)r(n-k) 
11=0 k=O 

It is noteworthy to investigate the relationship between the projection operation 

and the backprojection operation. Let u and v be real Hilbert spaces where u is the 

range space and v is the domain space of the Radon transform, R. Namely, 

b(x,y) E v and p(s,O) E u. 

Starting from the projection equation (Radon transform) below, 

p(s,O) = Rb = I: I: b(x, y)<5(x coso + y sin 0 - s)dxdy, 

then with (".) denoting the inner product, 

(Pb,p)v= I: ds 101'0 dO [I: I: b(x,y)<5(xcosO+ysinO-s)dxdy] (2.5) 
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= fo7r dO i: dx i: dy[i: dsb(x, y)8(x cos ° + ysinO - s)p(s,O)] 

= fo7r dO i: dx i: dyb(x, y)p(x cos ° + ysinO,O) 

= i: dx i: dyb(x,y) fo7r dOp(xcosO+ysinO,O) 

= (b,Bp)u (2.6) 

Thus the backprojection operation is the adjoint of the projection operation. Which 

means 

(Pb,p)u = (b, Bp)v (2.7) 

This relationship will hold for the discrete space case so that the backprojection 

transformation in a real finite-dimensional Hilbert space is simply FT. Thus, the 

conventional convolution (or filtered) backprojection reconstruction can be denoted 

by the following vector-matrix equation: 

(2.8) 

where R is the truncated-ramp filtering operation in matrix form. The physical 

interpretation of the above equation is as follows: filter the projections with kernel R 

and then backproject using the backprojection operator FT. 

Another alternative solution or estimation for 12 is to use the Moore-Penrose 

(M-P) pseudoinverse denoted by the superscript ( +). Using the M-P inverse, 

(2.9) 

The M-P inverse yields the minimum L2 norm solution with the least-square error 

where the ,error=f. is defined as: 

(2.10) 
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The M-P inverse of a matrix A have the followIng relationships [32] [33] [34]: 

1) AA+A A 

2) A+AA+ A+ 

3) AA+ - [AA+]T 

4) A+A - [A+A]T 

The M-P inverse can be found by using the singular value decomposition (SVD) 

of a matrix F. Any matrix F can be decomposed as follows [35] [34] 

F=UAyT. (2.11)" 

where U and Yare unitary matrices with orthonormal columns Yj and 'Qj respectively 

and A is a diagonal matrix not necessarily square. The M-P inverse of F is simply 

F+ = YA+UT . (2.12) 

By using the definition of the M-P inverse and equation 2.12 the reconstruction 

equation can be made to look very similar to that of the conventional convolution 

backpro jection. 

= [F+F]TF+E 

=FT[F+T F+]E 

= FT[UA+TyTYA+UT]E 

= FT[UA+T A+UT]E 

=FTRE 

(2.13) 

(2.14) 

- T T where R = [VA + A +U ]. The above equation is identical to that of the conven-

tional convolution backprojection reconstruction with the exception to the filtering 
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kernel R. 

The reconstruction approach taken by Baker [1] is given as follows: the pixelized 

reconstructed image is an approximation to the continuous space domain object de­

scribed by the following equation: 

, " T b(x,y) ~ L....JB mn(X,y)Cmn (2.15) 
mn 

where BTmn(x,y) defines the generalized pixels, and Cmn's are the linear scaling or 

weighting factors for each pixel. . The above equation can be expressed as 

(2.16) 

The weighting factor Cmn's is solved, in vector form, using the least-squares criterion 

given below: 

(2.17) 

where F was a projection formation operator that maps from a continuous space 

domain to a discretized projection space whose SVD is given as follows: 

F=US. VT (2.18) 

where VT is an unitary operator that simply rotates it's operand in the continuous 

space domain, S selects components from the operand in the continuous space and 

maps them to a discrete vector space, U is a finite dimensional unitary matrix. Baker 

chose a pixelization operator, BT, such that the its basis set was orthonormal and 

governed by F. Baker's B is given as follows: 

(2.19) 

Solving the equation 2.17 for £ yields 

(2.20) 

Substituting, the reconstructed image il is 
(2.21 ) 
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2.3 Optimization 

Before delving into the specific case of PET image reconstruction a very impor­

tant result will be presented here for the linear least-squares solution for a system 

with additive random noise vector to a stochastic signal vector shown in figure 2.4 

below. The linear least-squares estimate (LLSE), i. (labeled in figure 2.4 as y) is 

also the mmse estimate of ~ [36]. The LLSE of ~ is arrived at by applying a linear 

stochastic signal 
vector A 

stochastic noise 
vector !! 

H 
~,........~ filter 

observable signal 

~ 
estimate of A 

Figure 2.4: Generalized block diagram of filtering to produce mmse 

transformation to the noisy vector [~ + rr] such that 

'!!.. = H(~ + rr). (2.22) 

The linear transform H expressed below in equation 2.33 is the generalized Wiener 

filter for all linear systems with additive noise. The result can then be applied to 

the problem of PET image reconstruction from noisy projection data set. H is solved 

using calculus of variations on H. That is, let D.H be a perturbation to H. Conditions 

on D.H is placed to insure that the cost function, mse, 

(2.23) 

is minimized to solve for H [37]. The solution proceeds as follows: 

H = argmJn{EI1;£ - }LII~} (2.24) 

where }L = H(~ + rr). Consider H + D.H and let }L = (H + D.H)(~ + rr). 

(2.25) 



= Ell (I - H)~ - Hllll~ + EII.6H(~ + llm 

-2E{[±T(I - HT) -llTH:]HT(~ + ll)} 
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(2.27) 

The first term in the above equation is a constant with respect to .6H. The second 

term is a quadratic in .6H and the third term is linear in .6H. The entire quadratic 

equation achieves a minimum when the linear term reaches zero [38] [39]. 

(2.28) 

Now, let ~r = ~T(I - HT) -llTHT , ~2 = (~+ ll) and A = .6H. Then, the above 

equation can be expressed as 

(2.29) 

Now, a relationship between ~1 and~2 in equation 2.29 can be derived for for any A. 

Consider . {I i = m,n 
A : Aij = O· otherwise 

(2.30) 

(2.31) 

(2.32) 

For the additive Gaussian model of equation 2.4 Ell = 0 and ~ is independent from 

ll. So, 

(2.33) 

Section 2.2 discussed possible methods to estimate J2 from the equation 

l!. = FJ2. 

) 
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However, in practical PET data there is measurement noise. Thus, instead of solving 

the above equation a more realistic equation to use is the following: 

J!.' = FQ + !l. (2.34) 

where !l is the additive noise in vector form. 

The main source of the measurement noise is due to the Poisson nature of the ra­

dioactive tracer decay. Obviously, the dosage of the tracer a patient receives.must be 

made low and the amount of time a patient can remain still while being scanned both 

contribute to the limited amount of radionuclide decay that can be measured. Other 

sources of noise include Compton scattering of photons within a patient and also scat­

tering of photons in a detector crystal causing a neighboring crystal to scintillate and 

falsely detecting a photon. Another source of noise comes from crystal penetration 

where a high energy photon penetrates through a crystal without causing a scintilla­

tion to occur but the secondary crystal scintillates thus falsely determining that the 

photon had hit the secondary crystal first. The correction of this noise source was in­

vestigated by Huesman, et al [40]. Blurring due to the positron range'was investigated 

and corrected by Haber [41]. Other sources which contribute to low SNR are things 

like crystal deadtime where typically several hundred milliseconds must pass before 

a detector crystal can scintillate again and when neighboring crystals simultaneously 

detect a photon. Due to the limitation in the electronics a coincidence window of ten 

nanoseconds is used to determine whether a photon pair was emitted from a single 

source. If, however, two neighboring crystals simultaneously receive photons the elec­

tronics cannot determine which photon pairs struck which pair of detectors. Thus, 

all such coincident photons are thrown out. All of the above contribute to limited 

statistics of a particular PET data set and hence cause the SNR to degrade. 

Since measurements contain noise and the F matrix is singular, the equation 

J!.' = FQ + n is not deterministic nor is there a unique Q which satisfy the equation. 

Thus, only an estimate of the unknown, Q, can be made. As stated in the first chap­

ter, a mathematically tractable cost function of the mean-square error (mse) will be 

minimized in k, the estimate of the original object Q. 
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2.3.1 Filter for CBP reconstruction 

One approach to minimizing the mse is to solve for a filter or operator, HI, 

in the system depicted by the block diagram below where the reconstruction block 

is the CBP operator denoted by G, i.e. G = FTR. In the block diagram, the 

Block diagram of data acquistion, filtering and reconstruction 

noise=n Pmeasured 

F G 
projection ~~ 

HI 
proj 
space 
filter 

Image 
Reconstruction 

operator 

yl 
image 1 formation 

operator 

Projection signal = p 

Image yO 
'-----~ Reconstructionl-----_ best 

operator possible 
i=ge 

Figure 2.5: Block diagram of the data acquisition, pre-filtering the projections and reconstruction. 

ideal reconstruction, or the best possible reconstruction is indicated by Yo where 

reconstruction was done using noiseless projection data 'E!.: The measured data, how­

ever, is filtered with HI and then reconstructed. Thus, the LLSE of the best possible 

reconstruction is 

(2.35) 

where p..' is the measured projection, (p.. + 11). The mse cost function is the difference 

between the ideal reconstruction, 'M..o, and J!..l. The same method of solving for H in the 

previous section of considering H + .6.H can be utilized again to solve the following: 

(2.36) 

Again, consider HI + .6.H and let Yl = G(H1 + .6.H)(p" + 11). 



= EIIG(J - HI)e - GHl!lll~ + EIIG ~ H(e + !lllf 

-2E{[1{(J - HI) - !lTHI]GTG ~ H(e+!l)} 

As before, setting the linear term in ~H to zero, 
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(2.38) 

Now, let £i = ~T(J - HI) - !lTHIGTG, £2 = (e +!l) and A = ~H. Which 

leads to Ez1£r = 0 and 

With the same assumption as before (l!. independent of!l) we arrive at 

(2.41) 

Which is identical to the generalized Wiener filter. It should be noted that even 

though G = FTR for this above derivation, the filter HI is not a function of G so for 

any linear reconstructor G, the above HI will satisfy the optimization requirement 

in equation 2.36. 

An alternative approach for solving this problem is depicted in the block diagram 

below. The only difference between this second approach and the first is the placement 

Block diagram of data acquistion, reconstruction and filtering 

F 
projection 
formation 
operator 

noise--n Pmeasured 

G 
Image 

Reconstruction 
operator 

H2 
proj 
space 
filter 

y2 
image 1 

ilnage yO 
L..-----'Reconstructionl----___ best 

operator possible 
L..-__ ' -J image 

Figure 2.6: Block diagram of post filtering the reconstructed image. 

of the Wiener filter block. As can be seen, the second approach filters reconstructed 
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image rather than filtering the projections before reconstruction. The LLSE of the 

best possible reconstruction now becomes 

(2.42) 

where J!..' is the measured noisy projection. Using the same method as the two previous 

cases, H2 can be solved. 

H2 = argmin{EIIYn - Y2 11n 
H2 --v-

(2.43) 

where '!!..2 = H 2G(J!.. + nl Consider HI + 6Hand let Y2 = (H2 + 6H)G(J!.. + .rr.). 

= EII(I - H 2)GJ!.. - H2G!lII~ + EI16H2G (J!..+ !l)II~ 

-2E{(J!..TG(1 - HI) - .rr.TGTHI]6HG(J!.. +.rr.)} 

Setting the linear term in 6H to zero, 

For E independent of ll, 

=} (I - H2)GRpp - H2GRnn = 0 

=} H2G = GRpp[Rpp + Rnnrl 

In general, G is singular and only a LLSE estimate of H2 is possible which is 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

It is trivial to show that Y and Y (the reconstructions using HI and H 2, re-
-1 -2 

spectively) are equivalent if the reconstruction operator, G, is invertible. However, 
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the linear reconstruction operators are not invertible because F T , the backprojection 

transformation, is singular which follows because F is singular. Thus, the two results 

shown above are not necessarily equivalent. 

H2 is only the least-squares approximation to the filter that achieves the mmse. 

Whereas the result of the first method achieves the mmse. Meaning that achieving 

mmse in the projection space results in the mmse in the final image. The resulting 

error pre-filtering, using HI, is always less than or equal the error which results from 

post-filtering with H 2 . The reason filtering in the image space does not necessarily 

produce the "best" result is that the dimension of the domain space of the linear 

reconstruction transform G is larger than the dimension of its range space. Another 

words, there is a loss of information when a signal undergoes the G transformation 

as the singular values of G that are zero cause the null space of G to be mapped to 

zero. The vectors that lie in the null space may contain information which can reduce 

the error. For example, if there are correlations between the vectors in the null space 

and the vectors not in the null space they will appear in terms of Rpp which in turn 

can reduce the error. 

2.3.2 Filter for M-P Inverse 

For the case of the reconstruction based on the M -P inverse and the SVD of F, 

one can take advantage of the SVD structure to derive an elegant representation of 

the Wiener filter which boils down to the calculating weighting factors for the singular 

values of F. The smaller the singular values (A's), the more the corresponding noise 

can be amplified in the reconstruction. Thus, the weighting factors are used to control 

the amplification of the noise. This idea was first suggested by Shim and Cho [14] 

and later applied to magneto encephalography by Hughett [39]. Consider the block 

diagram pictured in figure 2.5. Instead of the reconstruction operator G being FTR, 
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let G = F+. Now, the LLSE of the best possible reconstruction becomes 

(2.51) 

where p.' is the measured noisy projection. Since F's domain space is spanned by V, 

12. can be decomposed in terms of !Lk'S, the right singular vectors of F. Thus, 

K-l 

12. = L. (3k!Lk = Vii (2.52) 
k=O 

Similarly, 11 can be decomposed in terms of 1!/s, the left singular vectors of F. Thus, 

J-l 

n = L.17 'u' = Ul7 - J-J _ (2.53) 
j=O 

Thus, 

p.' = P. + 11 = UAVTVIi + U2 (2.54) 

:::} i = U(AIi + 2) (2.55) 

So, 

y =F+p 
2..() -

(2.56) 

Y..o = V A +UTUA VTV Ii = VItli (2.57) 

where It is a truncated identity matrix formed by A + A. 

(2.58) 

From equations 2.33 and 2.36, Hl = Rw[Rpp + RnnJ-I. Written in terms of U and 

V, 

which can be expressed as 

(2.59) 

(2.60) 

(2.61) 

where D is a diagonal matrix if (3/s and 17k'S are independent. As stated in section 

2.1, PET data is a collection statistically independent Poisson processes thus, it is 
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reasonable to assume 'f/k'S and /3/s are independent as stated in section 2.1. Thus, D 

will be assumed diagonal with d i as the diagonal elements. Now, HI can solved by 

simply minimizing the mse, with the error being ~ = Yo - Yl. 

K-l 1 
=} ~ = I: Qk[/3k - dk(/3k + ~'f/k)] 

k=O k 

where K is the rank of F. Thus, 

But note that .'!Lk'S are orthogonal, thus 

Which leads to 

{
I k = j 

QI . Qj = 
o otherwise 

Now, solving for dk's proceeds as 

Which leads to 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

Thus, the Wiener filter, HI for the M-P inverse reconstruction is UDUT with the 

diagonal elements of D being the dk's above. 

2.3.3 Filter for Natural Pixel Reconstruction 

Using the orthonormal-natural pixels [1] for reconstruction, a similar filtering 

scheme is appropriate where a diagonal matrix, D, acts to weigh the singular values 
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to achieve a mmse estimate. Thus, the filtered weighting factors for the natural pixels 

become 

(2.67) 

and the filtered reconstruction is 

(2.68) 

where J!..' = J!.. + 11, the measured projection. 

As with the SVD reconstruction using square pixels in the previous discussion, 

J!..' can be written in terms of the left singular vectors of F, U. 

b = V· 13. (2.69) 

So, 

(2.70) 

Now, since D and [(S·ST)]~ are both diagon~l, they commute. So, the above equations 

can be written as 

(2.71) 

which leads to 

(2.72) 

and 

(2.73) 

The above equation can be written as 

b = V . ST A'D( S . 13 + !1) (2.74) 

where A' = (S· ST)+. This can be expressed as 

~ 1 
b = L Vk dk(f3k + -17k) 

k .. Ak 
(2.75) 

where )..lk is the diagonal element of A' and f3~ = (13k: b = 'L-k vkf3k). The above 

equation leads to the identical error equation (e =bo - b) as in equation 2.62 except 
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that Vk is now a function and not a vector. As in the previous case, D can be solved by 

minimizing Ellell~, by differentiating Ellell~ with respect to di, the diagonal elements 

of D. Using the same assumption that the noise and signal are independent, the 

diagonal elements are 
)3E{3~ 

Dii = di = ArE{J[ +2ETJ[ (2.76) 

which is identical to the previous result. As stated in section 2.3.1, the Wiener filter 

is independent of reconstruction method as long as it is linear. Furthermore, error 

resulting from pre-filtering the projections is always less than or equal to post-filtering 

the reconstructed image. 

2.4 Frequency Space Filtering 

Spatial frequency filtering of 2-D signals such as a tomographic image is easily 

accomplished by applying the projection-slice theorem. The projection slice theorem 

states that the Fourier transform of the projection of the 2-D signal at angle (J is 

equal to the slice of the 2-D Fourier transform of the original image at angle (J [7] 

[42] [43]. An equivalent form of 2-D filtering is to apply the appropriate 1-D filters to 

the projections of the 2-D object followed by i;verse Radon transforming the filtered 

projections. PET data lends itself to spatial-frequency filtering as the collected data 

are modeled to be projection measurements of the original object. Thus, applying 

1-D noise-reduction filters to the PET projection data accomplishes spatial-frequency 

filtering of the reconstructed image. 

In terms of the reconstruction equation, 

(2.77) 

the R is a linear shift-invariant (LSI) transform. LSI transforms have a special form 

when written in matrix form. Since LSI operation is equivalent to a convolution with 
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a filter kernel as expressed below 

y(n) = L x(i)h(n - i), (2.78) 

it can easily be shown that a circulant matrix H operating on a vector ;£ (1l. = H;£) 

is equivalent to the convolution operation described in equation 2.78. As can be seen 

from above, the structure of LSI operators are written' as circulant matrices. Fur­

thermore, because the signals being filtered are very sensitive to phase information 

(images signals are phase sensitive [44] [45]), the LSI filters must be zero phase opera­

tors. This means that the filter kernels are symmetric and real resulting their Fourier 

transforms being symmetric and real. This requirement makes the LSI operators to 

be not only circulant but also symmetric. A symmetric matrix, A, hasSVD which is 

in the form: 

(2.79) 

That is, the left and right singular vectors are equivalent as AT A = AA T for A = AT. 

For LSI operators, the singular vectors Uj are simply sinusoids as e(jwt) are eigenfunc­

tions for continuous LSI time-domain systems. As evidenced by the SVD of LSI 

operators the property of commutability exits amongst LSI transforms. Two LSI 

transforms Al and A2 have SVD's shown below: 

A2 = UA2UT. 

A1A2 = UA1UTUA2UT 

(2.80) 

(2.81) 

(2.82) 
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(2.83) 

Applying the spatial-frequency noise-reduction filter to the projection can now 

be expressed as the following: 

~= FTRHe' 

= FTHRe' 

(2.84) 

(2.85) 

where H is the spatial-frequency noise-reduction filter. The linear transform operator 

which results in the mmse estimate still applies to the above equation but H in the 

above equation must be LSI. This can only happen if H = Rxx[Rxx + 2Rxn + Rnn]-l 

is circulant and symmetric. The above is true if each correlation term (R's) is circulant 

and symmetric. This places statistical constraints that the correlation of the signal 

and the noise amongst each other and between the two are functions of only the 

distance between the signal in question. In other words, the signal and the noise 

must be wide-sense stationary (WSS).,The WSS requirement for the signal and noise 

was the original constraint used by Wiener [46] for his mmse producing filter. 

Using the Gaussian model of equation 2.1 where the total signal is represented 

by x': 

x' = x" + N(O, .../Ex) (2.86) 

with x being a WSS stochastic process a WSS model with additive independent noise 

can be used for the LSI Wiener filter. With the above model, the noise is independent 

from the signal and thus uncorrelated. It follows that the filter in Fourier spatial­

frequency domain can be found by simply taking the 1-D Fourier transform of the 

first row of the H matrix. Since the kernel is 

(2.87) 

where T xx (n) and T nn (n) are autocorrelation functions of the signal and noise, respec­

tively. The Fourier transform of h( n) results in the following: 

(2.88) 
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where Pxx(w) and Pnn(w) are the power spectral densities of the signal and noise, 

respectively. 

Though the WSS constraint may be valid for short-time samples of voice signals, 

it is usually not a good assumption for projection measurements. This is made clear 

by considering the projection of a uniform circular disk which is just an elongated half 

circle. The mean value (in the projection space) of a uniform circular disk phantom 

with Poisson emission process would be exactly this elongated half circle and it is clear 

that this violates the WSS condition that the mean be constant and the correlation 

value be only a function of distance and not position. However, all conventional CBP 

reconstruction with noise-reduction filtering uses a LSI transform as it is the fastest 

method of reconstruction. 
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Chapter 3 

Wiener filter implementation 

The previous chapter outlined the derivation for the Wiener filter for three types of 

reconstructions. However, in each formulation the filter is a function of signal and 

noise statistics. This chapter discusses the method of estimating the power spectra 

of the noise and signal used for Wiener filter in the CBP reconstruction algorithm. 

The outline of the Wiener filter implementation is presented and the robustness of 

the estimation technique is discussed. 

3.1 Power Spectral Density Estimation 

The preceding chapter outlined the methods for mmse filtering but key ingre­

dients in each of the three filters are still missing. All three versions of the Wiener 

filters are functions of the noise and signal statistics, namely the autocorrelation ma­

trix (and the cross correlation matrix if the signal and noise are correlated). The 

two reconstructions based on SVD have Wiener filter representation which depend on 

autocorrelation of the both the signal and noise parameters. As for the convolution 

backprojection reconstruction, the filtering is done in the Fourier or frequency domain 

and the filter is a function of the power spectra of the noise and signal, which is merely 
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the Fourier transform of a row of the auto-correlation matrix. Up to this point, only 

the equations have been derived for these optimizing filters without considering how 

the noise and signal characteristics can be estimated. 

The ironic problem with Wiener filtering is that one needs to know the signal 

and noise statistics in order for the filter output to be the mmse estimate of the signal. 

One ends up estimating the signal so that filter can be found to be used in making 

the LLSE of that same signal. 

Since the CBP method is the most computationally practical reconstruction 

algorithm and also the most common algorithm, this chapter investigates how the 

power spectral densities (PSD's) of the noise and signal may be estimated. Tsui [13] 

applied the Wiener filter to X-ray CT data where the SNR is generally an order of 

magnitude better than that of PET. Using a simplistic approach to the estimation 

problem, Tsui followed the model of the projection as being similar to the model 

given in equation 2.4. That is, the projections were modeled as being signal plus an 

additive white noise which is independent from the signal. Furthermore, ergodicity 

of the mean and variance was assumed in the measured projections. Thus, all that 

was needed was to calculate the mean and the variance of each projection angle and 

the noise PSD was simply a white spectrum with the projection variance as its mag­

nitude. Based on the additive independent Gaussian model, this method makes an 

unbiased estimate the noise power [47]. However, for PET data with a much poorer 

S~R this method can lead to the signal power estimates with a large variance. The 

variance of the noise estimate is distributed as X~I<+2 [48]. But for those frequencies 

where the signal power is small relative to the noise power, the error in the signal 

power estimates can become excessively large. As Penney, et al [49] has shown the 

performance of the Wiener filter is a strong function of how well the signal PSD can 

be estimated. 
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3.1.1 PSD Estimation Using Reprojections 

The raw collected data, as described in section 2.1, is described with Poisson 

statistics. Equation 2.4, rewritten below models the first and second order statistics 

of a Poisson stochastic process. 

p""" Poisson(>" = Ep) 

p' = p" + N(p = 0,0" = VEp) 

where p" = Ep and N(p, 0") is a Gaussian with mean = It and standard deviation = 
p. That is, if p" is considered to be the signal and N(O,.JEP) is considered to be the 

noise, then the signal power to the noise power ratio is p" itself. Using this additive 

noise model is useful in heuristically describing the noise-reduction that occurs when 

an image is reconstructed with noisy projections. 

Example: Point source 

Consider this example: a point source positron emitter is placed at the center 

of the tomograph as shown in the figure 3.l. 

The projection at angle (), as shown in the figure will be 

p~ = Po + no (3.1) 

for the center bin for all projection angles where no is the noise component at angle 

(). For a tomograph which samples projections at e angles, the reconstruction of this 

point source would be the following: 

b~ "" 1 "" I "" e L-O Po 
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Figure 3.1: Example of a point source placed in the center of a tomograph and the projection 
measurements taken by the tomograph ring. 

- 1 . 
b ~ Po + e Lne. (3.2) 

e 
The result of the reconstruction is an averaging effect of the e observations' and hence 

the SNR is improved. The SNR in the image has improved by a factor of e as com­

pared to the SNR in the raw projection space by simply reconstructing the image 

without applying any NR filters. 

, 3.1.2 Noise in the Projections vs Image vs Reprojections 

Based on the additive noise model, a rigorous calculation of the transformation 

of the noise between the raw measured projection space to the reconstructed image 

space without NR filtering is presented below. Again, consider the block diagram of 

the data acquisition process and a generic reconstruction process (designated by G) 

in figure 2.5. 

The observable projection measurement is E' = FQ + 11, where 11 is the noise 

component. The covariance of the projection vector is simply the covariance of 11, 

based on the additive noise model where Q is deterministic. The reconstructed im­

age, therefore, is represented in vector form as GFQ + G11. The covariance of the 



36 

reconstructed image is therefore 

(3.3) 

(3.4) 

where :En is the covariance of 11.. For a special case where the noise is zero-mean 

and independent, ~n is diagonal. Furthermore, if the noise is also identically dis­

tributed, ~n = 0-21. That is, the covariance of the noise is a constant scalar equal 

to its variance multiplied by the identity matrix. Under the independent, identically 

distributed (lID) conditions, ~y = 0-2GGT . Thus, if the induced L2 norm of GGT 

(or the largest singular value of GGT is less than unity, the induced L2 norm of the 

covariance in the image space is less than the induced L2 norm of the covariance in 

the projection space. Meaning, the noise is reduced in the image space. 

Similar analysis can be carried out in the continuous domain for a LSI reconstruc­

tion operator with impulse response G(J). However, instead of looking at the covari­

ance matrices as in the discrete case above the PSD of the image can be written as 

a function the PSD of the projections. For a LSI operator having impulse-response 

function HLS1(J) and a WSS stochastic process input, the WSS output process' PSD 

is described as follows: 

(3.5) 

where iP(J) denotes the PSD of a WSS process. It follows that 

(3.6) 

Now only the noise component in the projections so that the PSD in the projection 

is due to noise alone, i.e. 

(3.7) 

Hanson [50] has shown that the IHLS1 (J)1 2 for a CBP reconstruction along a radial 

line of the image is 

(3.8) 
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where e is the number of projections and pT(f) is the impulse response of the 

backprojector which takes into account the interpolations that may exit in a back­

projection algorithm. 

The above equation indicates that if IG(f)12 is less than unity, the component 

of the reconstructed image due to noise will be attenuated as compared to the orig­

inal noise component in the projection space. Hence, the SNR in the image will be 

improved over that of the projection space SNR. 

Given IG(f)12 is less than unity for all j, one can extract a better estimate of 

the signal by studying the reconstructed image. The extraction of the better esti­

mate of the signal in the image can be done by projecting the reconstructed image. 

The projections of the reconstructed image will be referred to as reprojections. The 

exact same analysis of the noise transformation from the original measured projec­

tion to the reprojection can be made by substituting the reconstruction-reprojection 

operator for G. For the case of the convolution backprojection, the reconstruction is 

denoted by FTR and the (re)projection by F. Thus, substituting FFTR for the G 

in equation 3.4, the covariance in the reprojection, £, is 

(3.9) 

which reduces to 

(3.1O) 

for the lID noise case. Again, if the largest singular value of FFTRRTFFT is less 

than unity, the noise in the reprojection is reduced compared to the original measured 

projections. 

Similar substitution for the continuous-space version can be made where G(f) 

is substituted by G' (f) which is the impulse response function of the reconstruction­

reprojection operator. For a reprojection operator which is a true Radon transform, 

the reprojections represents the information in the reconstructed image. Thus, given 

that IG'(f)12 is less than unity, we have a tool to reduce the noise and to improve 

the SNR and a better estimate of the signal is possible by analyzing the reprojec­

tions. As an example, a uniform circular disk phantom will be used to illustrate 

the SNR improvement between the original noisy projections and it's reprojection. 
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A narrow-band (mid frequencies) noise was added to a set of ideal projections of a 

UCD phantom. A comparison between the norm square of the Fourier transform of 

the ideal projections, narrow-band noise added projections and the reprojections are 

shown in the graph pictured in figure 3.2. Comparing the graph of the reprojection 

and the original projection in the frequency band where noise was added the power 

of reprojection projection is attenuated by 60% compared to the original projection's 

power. 

Similar experiment is carried out with Poisson data. Simulated projections for 

the UCD with Poisson statistics and its reprojections are pictured in figure 3.3. Again, 

the power in the reprojection is attenuated compared to the original projection. 
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Figure 3.2: Comparison of the power between the ideal projections, narrow-band noise added pro­
jections, and the reprojections for a UCD phantom. 
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Figure 3.3: Comparison of the power between the ideal projection, simulated noisy projection (Pois­
son statistics), and its reprojection for a UCD phantom. 
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3.1.3 Using MTF priors to estimate PSD's 

By looking at a block diagram representation of· the data acquisition scheme 

which incorporates the non-ideal characteristics of the tomograph, shown below in 

figure 3.4, a very important information can be used to estimate the noise PSD. The 

modulation transfer function of the tomograph (MTF) is the impulse-response or 

point-spread function of the instrument. Though strictly speaking, the tomograph 

Block diagram of data acquistion including MTF of the 
tomograph and reconstruction 

tomograph noise=n measured 

G 

F MTF Image ~~ yl 
Reconstruction reconstructed 

operator image 

Projection signal = p 

Figure 3.4: Block diagram of the data acquisition including the MTF of the tomograph. 

is not shift invariant. The tomograph response is isotropic (rotationally invariant) 

[40] but radially varying. Furthermore, the response function for a detector pair is 

not shift invariant. The response of a detector pair to a positron-emitting source 

placed mid-way between the detectors is a Kronecker delta function whose height is a 

function of the point source location as indicated below [41] in figure 3.5. The response 

of the tomograph is governed by the physical limitation of the scintillator crystal 

(typically bismuth germanate [BGO]) [11] [51] [52]; both the physical dimension and 

the crystal's ability to scintillate before the high energy photon can either penetrate 

or scatter through to another crystal dictate the tomograph response characteristics. 

However, useful analysis can be done making an engineering approximation of 



t 

I 
pt source location ---.. I 

~ 

41 

I 
d/2 ~ 

Figure 3.5: The height of the Kronecker delta response function of a detector pair in a tomograph as 
a function of point source location. where d is the width of a detector crystal (3mm for the Donner, 
600-crystal tomograph). ' 

shift invariance and hence the response of the tomograph will be referred to as its 

MTF. When the MTF is measured by imaging a very small positron-emitting source 

the resulting reconstruction can be modeled as a narrow or "peaky" 2-D Gaussian. 

Taking the Fourier transform of the point spread function allows one to see the band 

width of the instrument. Figure 3.6 is the frequency domain representation (I-D) of 

the MTF. 
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Figure 3.6: MTF of the Donner 600-crystal tomograph - the frequency axis is measured in frequency 
indices where index of 256 corresponds to the Nyquist limit ·equal to 6.67 cycles/em. 

As can be seen, the frequencies near the Nyquist rate the get attenuated by 60dB 

or more and thus the measured power in' those high frequencies can be attributed to 
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noise alone. This suggests that one can estimate the average noise power in the high 

frequencies by merely looking at the total power in those frequencies. 

U sing the method of reprojecting the reconstructed image (without NR filtering), 

we can now proceed to implement the Wiener filter in conjunction with the CBP 

reconstruction~ The reprojection vector, ~, is: 

(3.11) 

Now, let p.. represent the estimate of l!.. and fr denote the estimate of 11. Now, the 

. estimate of the autocorrelation matrices, Rpp and Rnn, will be 

(3.12) 

and 

(3.13) 

where 

(3.14) 

It follows that the Wiener filter using these estimates is 

A TT+ )T H = KRppK K (Rpp + Rnn K . (3.15) 

The averaging effect of the reconstruction improves the SNR and hence the variance 

in the estimate of the autocorrelation matrices. The price to be paid is that the 

resultant estimates become biased. However, the finer the sampling done by F the 

better FTR approximates it's true inverse and smaller the resultant bias introduced 

by K = FFTR. As will be demonstrated, for the Donner 600-crystal tomograph the 

bias introduced is minimal and very good estimates of the Wiener filter can be im­

plemented. 

To take advantage of the speed of the CBP reconstruction algorithm, we need to 

implement the Wiener filter in the frequency domain. Furthermore, we want to use 

the prior knowledge of the MTF of the tomograph to estimate the PSD of the noise. 

As before, using the WSS model of the signals the Wiener filter becomes a function 

of the PSD's. The PSD estimates are now done using the PSD of the reprojections. 
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The impulse response of K = FFTR, the reconstruction-reprojection operation 

one can be generated by Monte Carlo simulations; starting with white noise pro­

jections of known PSD reconstruct without a NR filter followed by projecting the 

reconstructed image. Repeating this operation five-hundred times and averaging over 

the five-hundred experiments, IK(f)12, the square of the impulse response can be 

found by the relationship 

(3.16) 

The colorization of the noise term, N(J1 = 0,0" = yfEp), due to IKLS1 (f)12 is shown 

below on figure 3.7. The shape of the colorization curve reflects the impulse re­

sponse of the projection and reconstruction algorithm; interpolations in the pixeliza­

tion causes the curve to deviate from the ideal linear curve (as when IFT(f)12 is 

unity in equation 3.8). It should be noted that this Monte Carlo simulation need 

only be done once. Once the colorization curve is determined for a particular set of 

reconstruction parameters (such as PWIDTH, number of angles, number of projec­

tion bins, reconstruction size, projector/backprojector operator), it can be stored as 

a look-up table and used for all reconstructions with the same parameters. 

As stated earlier, the highest frequency components can be attributed to noise 

alone. Thus, the estimates of the noise PSD (corresponding to the Kn. term) can be 

made by scaling the colorization curve shown on figure 3.7 such that a least-squares 

fit is achieved between the PSD of the reprojections and the scaled colorization curve. 

The graph on figure 3.8 depicts how the noise PSD term is estimated by normalizing 

the noise PSD curve to the PSD of the reprojection (signal + noise) over the upper 

frequency indices denoted by the hash marks. Once the noise power is determined, 

the signal power can be determined by subtracting the noise power from the PSD of 

the reprojection. Hence, the Wiener filter can be implemented by using these PSD 

estimates. 

Determining how many of the highest frequency indices used for normalization 

depends on where the noise power begins to dominate over the signal power. The 

following two section discusses the choice the noise-power dominance parameter, the 

number of frequency indices used to perform the normalization. 
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Figure 3.7: 'Transfer function between a white input noise source in the projection versus the colorized 
output of the reprojection. Frequency index of 256 is the Nyquist limit equal to 6.67 cycles/em. 

3.2 Outline of the Wiener filter implementation 

A step by step' outline of the Wiener filter is presented below: First, a coloriza­

tion curve needs to be generated and kept as a look-up table for the Wiener filter 

routine. As indicated in the previous section, a Monte Carlo simulation (500 exper­

iments were carried out as an example) of the reconstruction-reprojection operation 

is used to characterize how a white noise process is going to be transformed and thus 

correlated. 

For a given tomograph data set and reconstruction routine an identically struc­

tured white noise projections need to be generated. For the example presented, the 

projections from the Donner 600-crystal tomograph has 300 angles with 201 projec­

tion bins per (angle for the clam-shut mode). The data is zero-padded to 512 to 

reduce aliasing when filtering and thus the white noise projections used to generate 
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Figure 3.8: Illustration of how the noise PSD is estimated from reprojections and the noise col­
orization curve. After normalization, the noise power spectrum agree over the last m frequency 
indices. 

the colorization curve for each Monte Carlo experiment has 300 vectors each with 512 

white-noise elements. Picking the projector-backprojector pair used for the recon­

structions (i.e. pll-bll, pin-bin, pll-bin, etc ... ), reconstruct the white-noise projections 

using a ramp filter and reproject the resultant white-noise induced image. The re­

projections must be done at the same angles and the same number of projection bins. 

Determine the PSD in the reconstructiori by calculating the mod-square of the Fourier 

transform of the reconstructions. Store the PSD of the reprojections. Repeat the ex­

periment (500 times) and average the PSD over all experiments (500 experiments 

with 300 reprojections per experiment). The resultant average is the characteristic 

colorization curve which needs to be stored as a look-up table. 

The implementation of the Wiener filter as a part of the CBP reconstruction 

is as follows. Start with the raw measured projections and reconstruct using only 

the ramp filter. Reproject the resultant image and determine the total PSD in the 

reprojections (mod-square of the Fourier transform of the reprojections). For each 

reprojection angle, determine the single normalization scale factor which when mul­

tiplied to the noise colorization curve results in the least-square error between the 

highest m frequency components of the reprojection and the noise power curve. The 

normalized noise power curve represents the estimate of the noise in each reprojection, 

and the difference between the total PSD of the reprojection and the noise power is 

the estimate of the signal power. The least-squares normalization calculation is car-
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ried out as follows: let Prepr be the reprojection and N be the characteristic colorized 

noise power. The error vector for the last m frequency indices (the noise-power dom­

inance parameter) is simply fm = P repr-m - aN. Solve for a which minimizes the 

norm of the error as follows: 

A T A 

II£mll~ = (Prepr- m - aNm) (Prepr- m - aNm) 

dllfmll~ AT T A AT A 
do. = -(N mP repr-m + P repr-mN m) + 2aN mlim = 0 

AT 
!1..mErepr-m 

a = AT A 
NmNm 

L~M-m+l N(i)Prepr(i) 
0.= A 

L~M-m+l N2(i) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

where i = M corresponds to the Nyquist frequency index. Thus, the estimate of the 

noise PSD becomes 

arid the estimate of signal PSD becomes 

S = Prepr - aN. 

Substituting the above for the Wiener filter, 

S(f) 
Hw(f) = S(f) + N(f) 

where f is the frequency index. 

(3.21) 

(3.22) 

(3.23) 
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Example: Ideal vs. Predicted 

Using the Wiener filter generation outlined above, a Wiener filter was generated 

for a uniform circular disk with radius 16 pixels and a contrast ratio of 1:0 (back­

ground emits no counts). The graph depicted in the figure 3.9 compares the ideal 

Wiener filter generated from the known phantom geometry and the filter generated 

using the algorithm outline above. 
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Figure 3.9: Comparison of' an ideal Wiener filter and the Wiener filter generated by the outlined 
method. The filter is for an uniform circular disk phantom with a radius of 16. pixels. 
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3.3 Robustness of PSD Estimation Technique 

In the previous section outlining the Wiener filter implementation the last m 

points of the reprojection PSD was used to calculate the normalization scale factor. 

As indicated in the graph of the tomograph MTF in figure 3.6, the tomograph at­

tenuates the signal significantly at 50% of the Nyquist rate. In this section, a study 

of how the choice of m, the noise-power dominance parameter, effects the Wiener fil­

ter performance is done. For this purpose, simulation studies using a complex brain 

phantom generated by Llacer [20] which mimic the data set collected by the UCLA 

PET machine is used. 

The description of the data set is as follows: each complete data set consists of 

160 projection angles with 128 projection bins and the reconstructed image size is 

128 x 128. Reconstructing the raw data results in"a very small brain image and there­

fore a small PWIDTH value of 0.588 is chosen for the final reconstruction, consistent 

with the choice used by Llacer. There are 24 independent sets of projection data (24 

X 160 projection angles with 128 bins) so that results of 24 independent experiments 

(reconstructions) could be averaged to produce better estimates. The image of the 

phantom is shown in the figures below. 

The effect of the choice of m will be measured by 2 metrics: 1) a subjective 

measure of visual fidelity and 2) a quantitative measure of error determined by the 

standard deviation in a ROI in the reconstructed image. The values of m chosen for 

this study are 4, 8, 16, and 32. The 32nd highest frequency index corresponds to 

1 = 0.7510, or 75% of the Nyquist rate. The 4 images pictured below are typical 

reconstructions (1 of 24 data sets) with" the varying value of m. The Wiener filter 

averaged over 160 angles for m = 4,8,16, and 32 is pictured in figure 3.14. ROI studies 

in two regions are done for this brain phantom - one in the high intensity region 

and another in a low intensity region. The quantitative results for the ROI studies 

are summarized in table 3.3. 

As the table indicates, the quantitative error varies little with the choice of m. 

However, the image quality does show that there is more attenuation in the high 
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frequencies (marked by finer noise textures) with the higher m values, as predicted 

by the Wiener filter graphs. 



Figure 3.10: Wiener filter with the nOlse­
power dominance parameter, m , equal to 4 
to do the least squares fit . 

Figure 3.12: Wiener filter with the nOlse­
power dominance parameter , m , equal to 16 
to do the least squares fit. 

Figure 3.11: Wiener filter with the noise­
power dominance parameter, m , equal to 8 
to do the least squares fit . 

Figure 3.13: Wiener filter with the noise­
power dominance parameter, m, equal to 32 
to do the least squares fit . 
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Figure 3.14: Comparison of the Wiener filter for 4 different noise-power dominance parameters: 
m = 4, 8, 16, and 32. The frequency index of 256 corresponds to the Nyquist rate equal to 6.67 
cycles/em. 

Llacer bram phantom ROl studies 
reconstruction filter Wiener ROIl ROI2 J-L1/.J-L2 

method m a- {% of J-L) a- (% of J-L) ideal=4 
CBP Wiener 4 1.8% 7.4% 4.1 
CBP Wiener 8 1.8% 7.1% 4.2 
CBP Wiener 16 1.9% 7.4% 4.1 
CBP Wiener 32 1.9% 7.5% 4.1 

Table 3.1 : Summary of RO! statistics of the Llacer brain phantom. Wiener m corresponds to 
the highest m frequency indices used to perform the least squares fit to the noise curve. RO! 1 
corresponds to the high intensity region and RO! 2 corresponds to the low intensity region. 
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Chapter 4 

Results 

In this chapter, results from simulations as well as experimental data will be pre­

sented. The first section describes results from simple geometric phantoms (uniform 

circular disk, uniform rectangle, and a ring surrounding a pair uniform rectangles of 

differing intensities) that are generated by software. The second section investigates 

the visual quality of the image as a function of the statistical error in the reconstruc­

tion. The third section studies a more complex brain phantom. Statistical error 

in reconstruction is presented and compared to reconstructions using the maximum 

likelihood estimate (MLE) and also CBP method with a Butterworth NR filter. Ap­

plying the same technique to experimental data taken from the Donner 600-crystal 

tomograph of a Hoffman brain phantom, the reconstruction results are presented in 

the fourth section. 

4.1 Simulation Studies of Simple Phantoms 

Using the algorithm outlined in the previous chapter for spectral estimation to 

be used in the Wiener filter, simulations will be studied to evaluate the performance 

of the Wiener NR filter. Phantom studies are carried out to simulate the Donner 
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600-crystal tomograph's data set. For each study, the projection data set consists 

of 300 projection angles with 201 projection bins (which simulates the clam shut 

mode) and the data possess Poisson statistics. The reconstructions are done using 

the RECLBL library and results in a 256 x 256 image. The PWIDTH parameter, 

the ratio between the pixel width and the projection bin width, is 1.0; the projector 

and backprojector are "pll" and it's adjoint "bll", respectively. The error will be 

quantitatively measured by determining the standard deviations in the regions of 

constant activity in each phantom. As before, 24 independent projection sets were 

generated for each phantom study so the quantitative results presented are averaged 

over 24 independent experiments. 

Uniform circular disk (UCD) phantom, uniform rectangle phantom (URP), and 

a ring surrounding a pair of rectangle (RSR) phantoms of different intensities will 

be used as examples to compare the results of the Wiener filter with that of no NR 

(just ramp) filter and the Butterworth (BW) filter which were picked after manually 

iterating over the cut-off frequency and filter order to produce the "best" looking 

images. The BW filter in the RECLBL library is not restricted to having an integer 

filter order. The BW filter in the frequency domain is defined below 

1 
HBW(J) = . /1 + [l..pN 

V Ie 

(4.1) 

where I is the frequency index, Ie is the cut-off frequency, and N is the filter order­

not necessarily an integer. Aside from the flexibility of having adjustable parameters 

to shape the BW filter, another advantage of the BW filter is that it is zero phase. As 

stated in chapter 1 images are sensitive to phase information, thus, image restoration 

filters are generally zero phase filters. The general "rule of thumb" for picking the 

BW parameters go as follows: smaller the number of detected events the smaller the 

the cut-off frequency but higher the filter order. This makes intuitive sense as smaller 

the number of events the noisier the data set will be and the higher frequencies should 

be attenuated more and the attenuation should begin at a lower frequency. It should 

be noted that there is good correlation between the visually pleasing images and the 

quantitative measure of the standard deviation in the regions of interest (ROJ's) . It 

should also be noted that other NR filters are available in the RECLBL library (such 
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as the Hanning, Hamming, and Parzen filter) but the flexibility of the Butterworth 

filter by adjusting its two parameters allows it to resemble most other NR filters 

in shape and performance. Thus, the BW filter has been the NR filter of choice 

amongst the clinicians. Both quantitative results presented as the standard deviation 

in ROI's and the reconstructed images will be presented. For each phantom, three 

simulations will be presented - one with low statistics (250,000 detected events) , 

one with medium statistics (500,000 events) and one with high statistics (2,000,000 

events) . The medium statistics cases simulate realistic counts for the Donner 600-

crystal tomograph. For each phantom, the simulations are carried out for varying 

counts (number of detected events) to study the effects of differing effective intensi­

ties. For example, the uniform circular disk has a contrast ratio of 4:1 (foreground to 

background) and for the 250,000 (250k) event case the effective intensity in the UCD 

is about 10 events per pixel (before being scaled between 0 and 255, the 8-bit image 

display scale); for the 500,000 (500k) event case the effective intensity is about 20; 

and for the 2,000,000 (2M) event case it is about 80. 

To simulate the data obtained from the Donner 600-crystal tomograph, 300 

projection angles with 201 projection bins per angle are necessary. Simulated noisy 

projections for the uniform circular disk (UCD) were generated as follows . First , ideal 

projections were calculated analytically using the line-length algorithm [10]. The an­

alytically determined projections are then passed bin by bin to a random number 

. generator which outputs a realization of a Poisson process whose mean is the ideal 

projection. 

4.1.1 Uniform circular disk example 

The first simulation study is with the UCD whose contrast between the disk 

and the background is 4:1. The 250,000 , 500,000, and 2,000,000 event simulations are 

given below. The UCD is centered in a 256 x 256 image with a radius of 64 pixels. 
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The resultant intensity (before being normalized to the 0 - 255 image display scale) 

in the UCD is about 10, 20 and 80 for the 250k, 500k, and the 2M event case, respec­

tively. The ideal projections are identical for every angle since the UCD is isotropic 

(rotationally symmetric). The ideal projection is an elongated half circle shown be­

low in figure 4.4 with simulated projection for a 500k event study overlaying the ideal 

projection. (The amount of elongation is linearly proportional to the intensity or 

height of the U CD. ) 

Figure 4.1 shows the original phantom. In figure 4.2 reconstruction results of 

the UCD in the absence of noise, or the best possible image given the reconstruction 

algorithm (which in this case is the CBP method with no NR filter) . For the simu­

lation done with 250,000 events, the reconstruction using the BW filter is shown in 

figure 4.5 and the Wiener filtered reconstruction is shown in figure 4.6. For this sim­

ulation, the Butterworth filter cut-off frequency is chosen to be 40% of the Nyquist 

rate, and the filter order was chosen to be 3.250. The comparison of the Butterworth 

filter and the Wiener filter (averaged over all 300 angles) is shown in figure 4.7. 

The two ROI's are depicted in figure 4.14. Since the phantom is uniform, the 

two ROI's should have the same mean value and the standard deviation or be com­

parable. Results of the ROI studies are given in table 4.l. 

The visual quality of the two (BW and Wiener-filtered) reconstructions are poor 

for this simulation. The foreground (the UCD phantom itself) is barely distinguish­

able from the background. Since the resultant intensity level is low and the contrast 

level is low the poor image quality is expected. However, the two images have distinct 

visual qualities; the BW-filtered version has large noise grains whereas the Wiener 

filtered version have very fine grains. This can be explained from the contrasting the 

two filters. The BW filter passes a lot more mid-frequencies and less of the highest fre­

quencies as compared to the Wiener filter which has a relatively constant attenuation 

factor from frequency index of 40. The larger noise grains of the BW-filtered image 

occupy the mid-frequency spectrum and the fine grains of the Wiener-filtered image 

appear "white". The quantitative results for the two reconstruction show that the 

BW version performed slightly better than the Wiener reconstruction. The standard 

deviation in the ROI for the BW was roughly 135% of the mean while the Wiener 
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version had a standard deviation of about 158%. They both had relatively stable 

mean (or DC) values in the two ROI's. 

The simulation studies for the UCD phantom with 500,000 deteCted events are 

presented below. The BW filtered reconstruction is shown in figure 4.8 and the Wiener 

filtered reconstruction is shown in figure 4.9. The Butterworth filter parameters for 

the 500,000 case was the following: cut-off frequency = 45% of the Nyquist rate and 

the filter order was 3.00. The comparison of the two filters is shown in figure 4.10. 

The quantitative results for the ROI studies are summarized in table 4.1. 

The visual quality for the 500,000 event simulation was better due to the 3dB 

improvement in signal strength. However, the two reconstructed images still retain 

very distinct visual qualities much like that of the previous low statistic case. Since 

the overall filter shapes did not change too much from the previous case the images 

basically retained those same similar characteristics. However, the quantitative re­

sults show that the Wiener filter performs better as compared to the 250,000 event 

case. With the improved signal strength, the Wiener filter behavior becomes much 

more clearly dominated by the first-order Bessel function spectrum of the UCD pro­

jections. The humps in the low frequencies is analogous to the humps displayed in an 

earlier example figure 3.9 where the UCD had a much smaller diameter (and hence a 

much wider humps in the spatial frequency domain). The standard deviation for the 

BW version is about 106% whereas the Wiener version produces a standard deviation 

of about 111 %. Again, the mean value in the ROI 's were stable for both reconstruc­

tions. 

The simulation studies for the UCD phantom with 2,000,000 detected events 

is presented below. The BW filtered reconstruction is shown in figure 4.11 and the 

,Wiener filtered reconstruction is shown in figure 4.12. The Butterworth filter param­

eters for the 2,000,000 event case was the following: cut-off frequency = 55% of the 

Nyquist rate and the filter order was 3.00. Comparison of the two fil ters are given 

in figure 4.13. As stated earlier, with larger number of detected events , the SNR is 

improved and more spectral content can be passed through the low-pass NR filter 

and hence the cut-off frequency is made higher and the filter order made lower. The 

statistics from the ROI studies are summarized in table 4.1. 
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Again, the two reconstructed images display visual qualities similar to the lower 

statistics cases. That is, the noise in the Wiener reconstruction appear more white 

and thus more uniform whereas the BW reconstruction have much larger grains. With 

large number of events, the SNR is much improved and the the existence of humps in 

the lower frequencies is much more evident . Due to the improved SNR, the BW filter 

passes a lot more information as expected. The quantitative results show that the 

Wiener filter performs as well as the BW counter part for this high count simulation. 

The standard deviation in the ROI's for the Wiener is down to 52.5% of the mean 

and the BW version has standard deviation of about 55% of the mean. Again, the 

mean values are stable for both reconstructions. 

It should be noted that the noise in the Butterworth reconstruction can vary 

significantly depending on the filter parameters. When the filter order is chosen too 

large, the resultant image contain miniature donut-shaped noise artifacts . If the cut­

off frequency is chosen too high, the standard deviation in the ROI's become severely 

degraded. There are trade-offs in choosing the BW filter parameters. One of the short 

comings is that the BW filter roll-off rate is governed only by the filter order and is 

uniform when measured on a log-log scale (as it is an all-pole filter) . Thus, the amount 

of attenuation increases with frequency and cannot be made to reach a constant level. 

With only the two degrees of freedom (filter order and cut-off frequency) the shape 

of the BW filter cannot be made to match the shape attained by the Wiener filter. 

This first set of simulations using the UCD favors the BW filtering approach since 

the ideal projections are identical from angle to angle. Thus, the same filter should 

be adequate to filter all projections. The next two simulations using nonisotropic 

phantoms show that the Wiener filter can outperform the BW filter . 

The quantitative studies of the ROI's show that the error, measured in standard 

deviations as a percent of the ROI average, is reduced in the Wiener reconstructions. 

Furthermore, the lower the number of events , the better the BW filter performs. For 

the case with 250,000 events , the standard deviation in the ROI is about 160% of the 

mean for the Wiener and 130% for the Butterworth. For the case with 500,000 events , 

the standard deviation for the Wiener drops to about 110% and for the Butterworth, 

it drops to about 105%. For the case with high statistics of 2,000 ,000 events, the 
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standard deviation in t.he ROI's for the Wiener drops to 52% of the mean and for the 

Butterworth it drops to 55% of the mean. SNR improves with larger statistics and 

hence a better estimate of the signal is possible. With better estimates of the signal 

and noise PSD's, better estimates of the Wiener filter result which lead to better 

reconstructions. 



Figure 4.1: The UCD phantom centered on a 
256 X 256 array with radius = 64 pixels. 

Figure 4.3: Reconstruction for a 500,000 event 
simulation without using any NR filters. 

Figure 4.2 : The best possible reconstruction, 
i.e. no noise case, for the CBP algorithm. 
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Figure 4.4: Ideal and simulated (500k events) 
projection for a UCD phantom. 
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Figure 4.5: BW (fc = OAOjo,N=3.25) fil­
tered reconstruction of a 250k event UCD. 

Figure 4.6: Wiener filtered reconstruction of 
the 250,000 event UCD phantom. 
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Figure 4.7: Comparison of the BW filter and the Wiener filter (averaged over all projection angles) 
used for the 250k event UCD reconstructions. 



Figure 4.8 : BW (fc = 0.45jo ,N=3.0) filtered 
reconstruction of a 500k event U CD 

Figure 4.9: Wiener filtered reconstruction of 
the 500,000 event UCD phantom 
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(1) 
en 
g 8.0 10-1 

c. 
en 
(1) 
~ 6.0 10-1 

~ 
(1) -:;: 4.010-1 

2.0 10-1 

o 64 

--BW_filter 
- - - - - - Wiener_filter 

128 192 256 
freq 

61 

Figure 4.10: Comparison of the BW filter and the Wiener filter (averaged over all projection angles) 
used for the 500k event UCD reconstructions. 



Figure 4.11 : BW (Ie = O.55jo,N=3.0) fil­
tered result of a 2M event UCD 

Figure 4.12: Wiener filtered reconstruction of 
a 2M event UCD phantom 
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Figure 4.13: Comparison of the BW filter and the Wiener filter (averaged over all projection angles) 
used for the 2M event UCD reconstructions. 
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Phantom 1: Uniform circular disk 

4:1 "'~U''''''''L 1: 121 pixels 

2: 121 pixels 

Figure 4.14: The UCD phantom is centered (128.5 ,128.5) on a 256 X 256 gridded array with a 
radius of 64 pixels. ROIl has its lower left corner at (128,123) and its upper right corner is at 
(138,133). ROI 2 has its lower left corner at (128,115) and its upper right corner is at (138,125) . 

Umtorm cIrcular dISk phantom KUl studIes 
number of filter BW param's ROIl ROI2 j.tI ( j.t2 

events type j~ (% of f o) order (J (% of j.t) (J (% of j.t) (ideal = 1) 
250k ramp 310% 320% 1.10 
250k BW 50% 3.25 130% 139% 1.05 
250k Wiener 160'1'0 156'1'0 0.99 
500k ramp 260% 268% 1.02 
500k BW 55% 3.05 105% 106% 1.00 
500k Wiener 112% 111% 1.01 
2M ramp 122% 125% 1.04 
2M BW 60% 3.00 54% 56% 1.02 
2M Wiener 52% 53% 1.02 

Table 4.1: Summary of ROI statistics UCD phantom study. fe and f o are the cut-off frequency 
and the Nyquist rate, respectively. (J and j.t are the standard deviation and mean of the ROI, 
respectively. 
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4.1.2 Uniform rectangle example 

The Uniform rectangular phantom (URP) simulations is useful in demonstrating 

the adaptive nature of the Wiener filter. Since the rectangle is not isotropic (rota­

tionally symmetric), the filter shape should change more dramatically than for the 

isotropic UCD. Figures 4.18 and 4.19 show the difference in the projections when 

the projections are measured at 00 and 900
, where the 00 is the projection measured 

north-to-south in the image and the angles are measured clock-wise. The rectangle 

is centered on a 256 X 256 image having a height of 86 pixels and width of 13 pix­

els. The contrast for this phantom is 6:1 as compared to 4:1 used in the UCD. The 

contrast ratio and the size of the phantom is such that the effective intensity (before 

normalization to the 0-255 image display scale) in the URP is about 20, 40, and 

160 for the 250k, 500k, and 2M event cases respectively. The image of the original 

phantom is displayed on figure 4.15; the best possible reconstruction (no noise case) 

is on figure 4.16; an example of a reconstruction without using a NR filter (500k 

event simulation) is on figure 4.1.2; the ideal and simulated projections at 00 is on 

figure 4.18 and the 900 projections are on figure 4.19. The reconstructions and quan­

titative results are presented below. 

For the 250k event simulation, the image quality is slightly better compared 

to that of the 250k UCD for both the Butterworth and the Wiener due to the 3dB 

improvement in the signal strength. The two reconstructions are placed side-by-side 

for comparison in figures 4.20 and 4.21. The noise in the reconstructed images has 

characteristics very similar to those of the 250k UCD simulations; the noise in the 

Butterworth filtered images is characterized by large grain sizes as compared to the 

Wiener. The Butterworth filter parameters for this case are: cut-off frequency = 55% 

of the Nyquist rate and the filter order is 3.50. The cut-off frequency is higher as 

compared to the UCD example for the same number of detected events due to the 

fact that the sinc function spectrum of the projections measured vertically has zero 

crossings that are wider than the of zero crossings of the Bessel function spectrum 
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of the UCD projections. The Wiener filter is displayed for two different projection 

angles: one at 0° and another at 90° . As can .be seen, the filter shape is governed by 

spectrum of each projection angle. Since the 90° projection is a wide square pulse 

compared to the 0° projection, the sinc function spectrum of the 90° projection has 

zero crossings that occur more rapidly than the 0° projection. This can be seen in 

the close-up of the low-frequency portion of the Wiener filter shown on figure 4.29. 

For the 500k event simulation, the Butterworth filter parameters are the follow­

mg: cut-off frequency = 60% of the Nyquist and filter order is 3.1. Again, the BW 

filtered images had noise grains which were much larger causing larger false hot spots 

to appear. Figure 4.23 and 4.24 are the reconstructed images and figure 4.25 show 

the Wiener filter at two different angles. 

For the 2M event simulation, the Butterworth filter parameters are the following: 

cut-off frequency = 64% of the Nyquist and filter order is 3.00. With the expected 

value of the intensity (before scaling to 0 - 255) being around 160 the SNR approx­

imately being -/160 = 22dB the two reconstructed images look much less noisy and 

the image quality is good for both reconstructions. 

As with the simulations using UCD phantom, the BW filter parameters var­

ied according to the number of detected events. With improving SNR, the cut-off 

frequency is made higher and filter order made smaller. As explained in the UCD 

section, the shape of the BW cannot be made to look similar to outline of the Wiener 

filter. If the parameters are chosen the mimic the outline of the Wiener in the low 

frequencies, the BW filter would end up over attenuating the mid to high frequencies 

causing the result image to have blurred edges as well as having an a image quality 

similar to that of looking at an image through ground or etched glass. 

The two ROJ's for the URP simulation is illustrated in figure 4.30 and the sum­

mary of the ROI statistics is presented in the table 4.2. Quantitatively, the Wiener 

filter performed better for this non-isotropic phantom as compared to the isotropic 

UCD . The BW filtered images and the Wiener filtered images resulted in having 

nearly identical standard deviations in the ROI for the all three cases despite the 

remarkably different image appearances. For the low statistics case: a ~ 70%. For 

the medium statistics case: (J' ~ 50%. For the high statistics case: (J' ~ 25%. 



Figure 4.15: The URP has height=86 pixels 
and width=13 pixels. 

Figure 4.16: The best possible reconstruction, 
i.e. no noise case, for the CBP algorithm. 

Figure 4.17: Reconstruction for a 500,000 
event simulation without using a NR filter . 
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Ideal vs noisy projection for URP 
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Figure 4.18: Ideal and simulated (SOak events) projection for a URP at 00. 
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Figure 4.19: Ideal and simulated (SOak events) projection for a URP at 900
. 
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Figure 4.20: BW (fc = 0.55fo,N=3.5) fil­
tered reconstruction of a 250k event URP 

Figure 4.21: Wiener-filtered reconstruction of 
the 250k event URP 

Filter comparison for 250k URP 
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Figure 4.22: Comparison of the BW filter and the Wiener filter (at 0° and 90°) used for the 250k 
event URP reconstructions. 



Figure 4.23: BW (fc = 0.60jo ,N=3.1) fil­
tered reconstruction of a 500k event URP 

Figure 4.24: Wiener filtered reconstruction of 
the 500k event URP 
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Figure 4.25: Comparison of the BW filter and the Wiener filter (at 0° and 90°) for the 500k event 
URP reconstructions. 



Figure 4.26: BW (fc = 0.64fo ,N=3 .0) fil­
tered reconstruction of a 2M event URP 

Filter comparison for 2M URP 
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Figure 4.28: Comparison of the BW filter and 
the Wiener filter (at 0° and 90°) for the 2M 
event URP. 

Figure 4.27: Wiener filtered reconstruction of 
the 2M event URP 
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Wiener filter comparison at low freq's 
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Figure 4.29: Blow up of the low frequencies to 
illustrate the adaptive nature of the Wiener fil­
ter . 
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Phantom 2: Uniform rectangle 

1: 60 pixels 

2: 60 pixels 

Figure 4.30: The URP is centered on a 256 X 256 array with a height of 86 pixels and width of 13 
pixels. ROIl has its lower left corner at (123,165) and its upper right corner is at (132,170). ROI 
2 has its lower left corner at (123,125) and its upper right corner is at (132,130). 

Umform rectangular phantom KUl studIes 
number of filter BW param's ROIl ROI2 J1-1/ J1-2 

events type fe ('10 of f 0 ) order <7 (% of J1-) <7 (% of J1-) (ideal = 1) 
250k ramp 158% 168% 1.10 
250k BW 55% 3.50 64% 67% 0.98 
250k Wiener 70'10 68% 1.02 
500k ramp 113'70 122'70 0.98 
500k BW 60% 3.10 52% 55% 1.00 
500k Wiener 49% 47% 1.01 
2M ramp 53% 62% 0.99 
2M BW 64% 3.00 27% 31% 1.01 
2M Wiener 26'10 29'70 1.01 

Table 4.2: Summary of ROI statistics for the uniform rectangular phantom study. fe and fo are 
the cut-off frequency and the Nyquist rate, respectively. <7 and J1- are the standard deviation and 
mean of the ROI. 
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4.1.3 Phantom of ring surrounding a pair of rectangles 

Simulations studies carried out on the ring surrounding a pair of uniform rect­

angles phantom shown on figure 4.31 is presented below. As shown on the image, 

the ring and the upper rectangle have equal but lower intensity levels than the lower 

rectangle. The contrast levels are 4:1 and 8:1, respectively. The ring is centered in 

the image and has an outer diameter equal to 128 pixels and an inner diameter of 

120 pixels. The two rectangles have height equal to 11 pixels and length equal to 65 

pixels. The two rectangles are separated by 11 pixels. Using the lower left corner of 

the image array as the origin (row=O,column=O) , the lower left corner of the bottom 

rectangle is located at (row=96, column=l11) . The intensities in the 4:1 contrast 

regions are approximately 12.5, 25, and 100 for the 250k, 500k, and the 2M event 

simulations respectively. (The intensities in the 8: 1 region is double the above.) As 

in the URP studies , results of the Wiener filter will be presented for the 0° and the 

90° cases. The best possible reconstruction is displayed on figure 4.32; an example of 

a reconstruction without the use of a NR filter is shown on figure 4.1.3 (500k events); 

the ideal and simulated projections are on figures 4.34 and 4.35. As before, simula­

tions are done with 250k, 500k and 2,000,000 events. 

For the 250k simulation, the reconstructed images are shown on figures 4.36 

and 4.37. The ring is barely visible in both reconstructions though the rectangles , 

due to a larger width is much more visible. The lower rectangle, with a 3dB improve 

SNR, is even more visible than the lower rectangle as expected. Again, the image 

quality and the visual quality of the noise is similar with the previous phantom stud­

ies. The BW filter parameters chosen for this reconstruction are: fe = 0.46 fa and 

N=3.40. The comparison of the BW filter and the Wiener filter (at 0° and 90°) are 

presented in figure 4.38 . 

For the SOOk simulation, the Butterworth filter parameters are the following: 

cut-off frequency = 64% of the Nyquist and filter order is 3.1. Again, the BW filtered 

images had noise grains which were much larger causing non-uniform textures to ap­

pear in regions which are supposed to be uniform. 
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For the 2M event simulation, the Butterworth filter parameters are the following: 

cut-off frequency = 66% of the Nyquist and filter order is 3.00. With the expected 

value of the intensity (before scaling to 0 - 255) being around 100 (and 200 for the 

high intensity region) the SNR approximately being JlOO = 20dB (and 23dB) the 

images look much less noisy and the image quality is similar. 

The two ROJ's for this phantom is shown in figure 4.46. ROIl is in a region 

where the contrast ratio is 4:1 and ROI 2 is in a region where the contrast is 8:l. 

The results are presented in the table 4.3. For the 250k event case, the BW filtered 

reconstructions have standard deviations that are slightly smaller than the Wiener 

filtered reconstructions. The BW (j for the 4:1 contrast region is 78% of the mean 

compared to the Wiener (j of 89%. In the 8:1 contrast region, the BW (j is 40% 

compared to the Wiener (j of 58%. For the 500k event case, the ROI studies resulted 

in comparable results: ROIl has (j'S around 65% and ROI 2 has (j'S around 35%. 

For the high statistics case, again, the results were comparable: ROIl has (j'S around 

38% ROI 2 has (j'S around 20%. 

As with the previous two phantom simulations, the BW filter parameters varied 

according to the number of detected events. With improving SNR, the cut-off fre­

quency is made higher and filter order made smaller. As explained in the previous 

two sections, the shape of the BW cannot be made to look similar to outline of the 

Wiener filter. If the parameters are chosen the mimic the outline of the Wiener in 

the low frequencies, the BW filter would end up over attenuating the mid to high 

frequencies causing the result image to have blurred edges as well as having an a 

image quality similar to that of looking at an image through ground or etched glass. 



Figure 4.31: The RSR phantom: contrast 
level of the lower rectangle is 2X of the up­
per rectangle. 

Figure 4.32: The best possible reconstruction 
for the CBP reconstruction algorithm (i.e .. no 
noise case) . 

Figure 4.33: Reconstruction for a 500,000 
event simulation without using a NR filter . 
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Figure 4.34: Ideal and simulated (500k events) projection for a URP at 0° . 
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Figure 4.35: Ideal and simulated (500k events) projection for a URP at 90°. 
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Figure 4.36: BW (fc = 0.55fo ,N=3.5) fil­
tered reconstruction of a 250k event URP 

Figure 4.37: Wiener filtered reconstruction of 
the 250k event URP. 
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Figure 4.38: Comparison of the BW filter and the Wiener filter (at 00 and 900
) used for the 250k 

event RSR reconstructions. 



Figure 4.39: BW (fc = 0.60Jo ,N=3 .1) fil­
tered reconstruction of a 500k event RSR 

Figure 4.40: Wiener filtered reconstruction of 
the 500k event RSR 
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Figure 4.41: Comparison of the BW filter and the Wiener filter (at 00 and 900) for the 500k event 
RSR reconstructions. 



Figure 4.42: BW (fc = 0.64fo ,N=3 .0) fil­
tered reconstruction of a 2M event RSR 
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Figure 4.44: Comparison of the BW filter and 
the Wiener filter (at 0° and 90°) for the 2M 
event URP. 
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Figure 4.43: Wiener filtered reconstruction of 
the 2M event RSR 

Wiener filter comparison at low freq's 
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Figure 4.45: Blow up of the low frequencies to 
illustrate the adaptive nature of the Wiener fil­
ter . 
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Phantom 3: Ring surrounding 2 rectangles 

1: 168 pixels 

2: 168 pixels 

1 contrast 

Figure 4.46: The RSR is centered on a 256X256 array with a the outer diameter of the ring of 128 
pixels and inner diameter of 120 pixels. The upper rectangle has its lower-left corner at (96,133) 
and upper-right corner at (160, 14;5) . The lower rectangle has its lower-left corner at (96,111) and 
upper-right corner at (160,123). ROI 1 is located in the upper rectangle and has its lower left corner 
at (115,135) and its upper right corner is at (135,142). ROI 2 s located in the lower rectangle and 
has its lower left corner at (100,113) and its upper right corner is at (120,120) . 

lUng surroundmg rectangles - KU 1 studIes 
number of filter BW param's ROIl ROI2 J.Ll! J.L2 

events type Ie (% of 10) order <7 (% of J.L) <7 (% of J.L) (ideal = 2) 
250k ramp 250% 137% 2.02 
250k BW 46% 3.30 76% 40% 1.99 
250k Wiener 95% 55% 1.99 
500k ramp 180% 94'70 2.01 
500k BW 50% 3.10 61% 33'70 1.99 
500k Wiener 72% 37% 1.01 
2M ramp 92_~ 48% 1.99 
2M BW 64% 3.10 42% 21% 1.98 
2M Wiener 39% 20% 1.99 

Table 4.3: Summary of ROI statistics for the RSR phantom study. Ie and 10 are the cut-off 
frequency and the Nyquist rate, respectively. <7 and J.L are the standard deviation and mean of the 
ROI. 
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4.2 Visual quality 

This section investigates a new metric for measuring the image quality. The stan­

dard deviation of a selected region of uniform intensity is not the optimal measure 

the image quality of a reconstructed image. Using the URP with 500,000 detected 

events as an example, this section presents how the visual quality is effected by the 

fluctuations of the statistical error within a region of known uniform activity. 

The profiles of the reconstructed images using the BW filter and the Wiener fil­

ter are shown in 4.47 through 4.50. Comparing the profiles through the center of the 

image, both horizontally and vertically, shows that the deviations from the mean is 

larger for the BW filtered image as predicted by the statistical summary in table 4.2. 

How the larger deviations translates to the visual quality is displayed in figures 4.52 

and 4.53. In these images, a 8 x 8 region of uniform activity is magnified and seg­

mented such that the dark pixels represent pixels whose value is within ± 50% of 

the local mean and the light pixels are those that exceed the ± 50% bounds. In this 

example, the BW-filtered image contain 35 pixels (out of 64) that exceed the thresh­

old whereas the Wiener-filtered image only contain 11 pixels. The clustering of the 

light-colored pixels in figure 4.53 can lead to a false-positive reading in a BW-filtered 

Image. 

Finer quantization of the pixel values in the same ROI's is depicted in figures 4.54 

and 4.55. The pixel values are segmented into the following bins: ±12.5% of the ROI 

mean, between ±12.5% and ±25%, between ±25% and ±50%, between ±50% and 

±75% of the mean, CLnd beyond ±75% of the local mean. These finer quantizations 

further demonstrate that the dispersion of pixel values in an uniform ROI is much 

larger in the BW-filtered reconstructions than in Wiener-filtered reconstructions. Due 

to the fact that the BW-filters used in the reconstructions pass more mid-band fre­

quencies, the fluctuations from the mean in the BW-filtered images tend to vary 

slower as compared to the Wiener-filtered results. This causes the pixels that have 

larger deviations from the mean to cluster together for the BW-filtered reconstruc-
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tions as displayed in figures 4.53 and 4.55. These large clusters of pixels with larger 

deviations from the mean explain the coarse 2-D texture of the noise present in the 

BW-reconstructed image. , 
Although the standard deviations of the Wiener-filtered and the BW-filtered 

reconstructions are comparable (49% for the Wiener and 52% for the BW), due to 

the relatively small sample size (64 pixels) the distribution of the noise in the image 

is not measured well by the standard deviation. The histogram of the pixel values 

in a 8 x 8 uniform region measured by sampling 24 independent reconstructions is 

shown in figure 4.56 and 4.57. These histograms as well as the spatial distribution 

of the fluctuations (figures 4.54 and 4.55) clearly indicate that the Wiener-filtered 

reconstructions preserve uniformity better in regions of constant activity. There is, 

however, a relationship between this new image quality metric and the standard de­

viation. The smaller the standard deviation, the more likely that the concentration 

of pixels with small deviation is higher. 
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Figure 4.47: Profile of the Wiener-filtered reconstruction of the 500,000 detected event URP - the 
profile is through the middle of the image (column=128) . 
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Figure 4.48: Profile of the BW-filtered reconstruction of the 500,000 detected event URP - the 
profile is through the middle of the image (column=128) . 
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Figure 4.49: Profile of the Wiener-filtered reconstruction of the 500,000 detected event URP - the 
profile is through the middle of the image (row=128). 
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Figure 4.50: Profile of the BW-filtered reconstruction of the 500,000 detected event URP - the 
profile is through the middle of the image (column=128) . 
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URP reconstruction 

~u.nif()rm rectangular 
phantom 

8x8 ROI magnified 
and displayed below 

Figure 4.51 : Illustration of the ROI in the 500,000 detected event URP reconstruction (for both the 
Wiener and BW-filtered results) 

Figure 4.52: An example of a magnified 8x8 ROI 
shown above for the Wiener-filtered reconstruc­
tion. Threshold was set such that the dark pix­
els are within ±50% of the mean of the ROI 
while the light-colored pixels fall outside the 
threshold window. 

Figure 4.53: An example of a magnified 8x8 ROI 
shown above for the BW-filtered reconstruction. 
Threshold was set such that the dark pixels are 
within ±50% of the mean of the ROI while 
the light-colored pixels fall outside the thresh­
old window. 
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Figure 4.54: 8x8 pixels from the Wiener-filtered reconstruction (same as figure 4.52) quantized 5 
levels of gray scale. The darkest pixels are within ±12.5%. the next darkest shade is between 
±25% and ±12.5%, t ~5%, the second lightest 
shade is for pixels that h he mean, and the lightest 
shade is for pixels beyor 

Figure 4.55: 8x8 pixels from the BW-filtered reconstruction (same as figure 4.53) quantized to 5 
levels of gray scale. The darkest pixels are within ±12.5%, the next darkest shade is between 
±25% and ±12.5%, the next darkest shade is between ±50% and ±25%, the second lightest 
shade is for pixels that have values that lie between ±50% and ±75% of the mean, and the lightest 
shade is for pixels beyond ±75% of the local mean. 
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Histogram of pixel values (Wiener) 
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Figure 4.56: Histogram of the pixel values in a 8 X 8 region of uniform activity measured by sampling 
24 independent Wiener-filtered reconstructions of the 500,000 detected events URP. 
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Figure 4.57: Histogram ofthe pixel values in a 8 X 8 region of uniform activity measured by sampling 
24 independent BW-filtered reconstructions of the 500,000 detected events URP. 
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4.3 Simulation studies of a brain phantom 

Using the Llacer brain phantom (with 1.5M detected events) pictured below 

in figures 4.58 and 4.59, simulations comparing the results of the CBP reconstruc­

tion with the Butterworth NR filter , and the CBP reconstruction with the Wiener 

NR filter, and a reconstruction using the maximum likelihood estimation (MLE) 

method will be presented. The MLE reconstruction was carried out using the MLE­

CV reconstruction software package described in [20] . Statistical error are measured 

and compared for the 3 reconstruction techniques in two ROI's - one in a high in­

tensity region and another in a low intensity region. Results are summarized in table 

4.4. The same data set used in section 3.3 (study of m vs. Wiener performance) is 

used for this study. 

As the summarized results in table 4.4 indicate the Wiener filter performs favor­

ably compared to both the BW-filtered result and the MLE reconstruction. 

Llacer bram phantom KVl studIes 
reconstruction . filter ROIl ROI2 f-Ll/P2 

method (J (% of f-L) (J (% of f-L) ideal=4 
CBP , Wiener 1.9% 7.5% 4.1 
CBP BW 2.4'10 11.3% 3.9 
MLE 2.8% 8.2% 4.2 

Table 4.4: Summary of ROI statistics of the Llacer brain phantom. ROIl corresponds to the high 
intensity region and ROI 2 corresponds to the low intensity region . The Wiener filter was generated 
using 32 highest frequency indices to perform the power normalization. The BW parameters are 
Ie = 0.510 and N=3.50. 



Figure 4.58: Wiener-filtered reconstruction of 
the Llacer brain phantom 

Figure 4.59: BW-filtered reconstruction ofthe 
Llacer brain phantom (fc = .5jo> N=3.5) 

Figure 4.60: MLE reconstruction of the Llacer 
brain phantom 
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Experimental results of the Hoffman brain 

phantom 

The Hoffman phantom is a plexiglass which has been milled to resemble the 

cross section of a human brain. Sealing the plexiglass after filling it with a positron­

emitting tracer and placing it in the tomograph, projection data is measured. Unlike 

human subjects, the dosage can be made large to increase the SNR so that very good 

reconstructions are possible as will be shown. Two reconstructions are presented: one 

with 500,000 detected events and one with 34,000,000 events. Comparisons are made 

in the resulting Wiener filters and the reconstructed images with the Butterworth 

filtered images below. 

As in the simulations, the comparison between the Wiener filters and the But­

terworth filters show that the Butterworth filters pass more mid-frequency informa­

tion and attenuate the high frequencies more than the Wiener filters . Similarly, the 

comparison of the reconstructed images shows similar image quality with those of the 

simulated data. That is, the Wiener-filtered images contain noise which appears more 

white with fine texture while the BW-filtered images have a much coarser texture. 

In the 500k case, the noise in the BW filtered reconstructions have mottled noise 

artifacts. For the 34M event case, the two reconstructions both have good visual 

appearance but the BW filtered image still contain more mottled noise texture. 



Figure 4.61: Reconstruction of the Hoffman 
brain phantom with 500,000 counts using the 
Wiener filter. 

Figure 4.62: Reconstruction of the Hoffman 
brain phantom with 500,000 counts using the 
BW filter . 
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Figure 4.63: Comparison of the BW filter and the Wiener filter (averaged over all 300 angles) for the 
500,000 event Hoffman phantom. The BW parameters are: Ie = 0.42 and N=3.0. The frequency 
index of 256 corresponds to the Nyquist limit equal to 6.67 cycles/em. 



Figure 4.64: Reconstruction of the Hoffman 
brain phantom with 34,000,000 counts using 
the Wiener filter . 

Figure 4.65: Reconstruction of the Hoffman 
brain phantom with 34,000,000 counts using 
the BW filter . 

Filter comparison for 34M Hoffman 

1.0100 

(1) 
en 

--Wiener_fltr c: 8.010-1 
0 .. .. ...... . BW_filter 
C. 
en 
(1) 

6.010-1 ~ 

~ 

(1) -:;::: 4 .010-1 

2.010-1 

0.0100 

0 64 128 192 256 
freq 

91 

Figure 4.66: Comparison of the BW filter and the Wiener filter (averaged over all 300 angles) for 
the 34,000,000 event Hoffman phantom. The BW parameters are: Ie = 0.5910 and N=4.0. The 
frequency index of 256 corresponds to the Nyquist limit equal to 6.67 cycles/em 
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Chapter 5 

Conclusion 

5.1 Summary 

The goal of this thesis is to derive a computationally efficient algorithm for 

an optimal linear noise-reduction filter for linear tomographic image reconstruction. 

Implementing such a filter was done using a frequency-space adaptive-Wiener filter 

for the convolution backprojection reconstruction method. Theoretical results of the 

Wiener filter performance was verified through experimental results . Both simulated 

and experimental data was used to compare the Wiener-filtered reconstructions with 

the BW-filtered results. Simulation results showed that the adaptive Wiener filter 

outperformed both the conventional Butterworth NR-filter and the reconstruction 

using the MLE method in terms of the statistical error measured in standard devi­

ations. However, the standard deviation does not measure image quality and a new 

image quality metric was developed. By measuring the number of pixels in a region 

of uniform activity that fall within a chosen threshold, a quantitative measure of the 

image quality can be described. Using the uniform rectangular phantom with 500,000 

detected events as an example, it was shown that the Wiener-filtered reconstructions 

contained more than twice as many pixels within the ±50% threshold as compared to 

the BW-filtered result. This new metric is related the standard deviation as the the 

number of pixels that fall within a percentage of the local mean is inversely related 
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to the local standard deviation. 

The visual quality of the Wiener-filtered reconstructions were shown to be char­

acterized by fine 2-D noise textures with a uniform'gray scale whereas the BW-filtered 

reconstructions were showiI to have a coarse texture with oscillating gray-scale values. 

The coarse texture caused by clustering of pixels with large deviations from the local 

mean degraded the image quality of BW-filtered reconstructions. 

Integral to the adaptive Wiener filtering technique is estimating the signal and 

noise statistics. Estimation of signal PSD is made difficult in PET data due to the 

poor SNR of the measured data. This thesis demonstrated a novel technique of 

estimating the signal and noise PSD's by using the concept of reprojections. By 

measuring the projections of a reconstructed image, a better estimate of the signal is 

possible because the SNR is improved in the reprojections. Furthermore, the char­

acteristic noise power can be removed from the repro jections as the noise behavior 

in the reprojections was calculated using Monte Carlo simulations. Hence, better 

estimates of the signal and noise PSD was derived and implemented for the adaptive 

Wiener filter. 

5.2 Future work 

One direction for further research on the adaptive-Wiener filter for the CBP is 

to reduce the systematic bias introduced into the filter. The algorithm of the Wiener 

filter implementation presented in chapter 3 prevents negative filter values to appear 

by forcing Hw(f) = 0 when the noise power estimate exceeds the total power. The 

algorithm assumes that all of high frequencies are noise which should result in the 

average value of the filter at those frequencies to be zero. However, as a result of 

forcing the filter value to go to zero when the calculated value is negative, the average 

filter value at those highest frequencies become greater than zero. Heuristic schemes 

to force the average filter values to zero have been suggested such as if neighboring 
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frequency indices have filter value of zero, then the filter value for that frequency 

should also be forced to zero. However, such schemes have not been implemented. 

Future research in developing an adaptive-Wiener filter for linear reconstruction 

methods based on the SVD of the projection formation matrix is outlined below. 

Incorporating priors such as the MTF of the tomograph and the impulse response of 

the reconstruction algorithm can improve the estimates of the second order statistics 

required to implement the Wiener filters for the SVD-based reconstructions. The 

autocorrelation matrix for the noise and signal represented in the basis set of the left 

and right singular vectors (functions) of F needs to be estimated. For both the M-P 

inverse and the Baker reconstruction method a diagonal matrix, D, acts as a filter by 

properly weighing each component of the basis set. The diagonal elements of D was 

shown to be 

d )'~Ef3~ 
k = ).%E f3l + ET]l 

where f3k's are the elements of I!. = {I!. : b = V f3} and similarly, T]k'S are the elements of 

!l = {!l : 11 = U!l}' The U and V are the unitary matrices (operators) which consists 

of the left and right singular vectors (or functions) of the projection formation matrix, 

F. 

As with the frequency-space adaptive-Wiener filter, an estimate of the second 

order statistic of the noise can be derived by using Monte Carlos simulations. Utilizing 

the same normalization scheme of least-squares fitting the characteristic noise power 

to a specific data set, the characteristic ET]~ shape can be normalized to a specific 

data set in the highest m indices of k. The scaled signal parameter, )'~Ef3't can then 

be estimated by subtracting the normalized ET]~ curve from Ep~, the second order 

statistic of the measured noisy projection. Thus, an adaptive-Wiener filter can be 

implemented for the two reconstruction methods based on the SVD of F. 
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