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far-ranging generalist top 
predators enhance the stability of 
meta-foodwebs
Andreas Brechtel1, thilo Gross  2 & Barbara Drossel1

identifying stabilizing factors in foodwebs is a long standing challenge with wide implications for 
community ecology and conservation. Here, we investigate the stability of spatially resolved meta-
foodwebs with far-ranging super-predators for whom the whole meta-foodwebs appears to be a single 
habitat. By using a combination of generalized modeling with a master stability function approach, 
we are able to efficiently explore the asymptotic stability of large classes of realistic many-patch meta-
foodwebs. We show that meta-foodwebs with far-ranging top predators are more stable than those 
with localized top predators. Moreover, adding far-ranging generalist top predators to a system can 
have a net stabilizing effect. These results highlight the importance of top predator conservation.

A persistent theme in community ecology is the quest to understand the factors that stabilize foodwebs. Between 
early notions of “Complexity begets stability”, May’s mathematical argument that more complex foodwebs should 
be less stable1, and a number of recent explorations using simulations and stability analysis, a plethora of different 
hypotheses on foodweb stability have been explored. Among the most prominent of these is the stabilizing effect 
of weak links2,3, although other evidence suggests a potentially destabilizing effect of these links4,5. Further stabi-
lizing effects are ascribed to allometric scaling6,7, nontrophic interactions8, and certain foodweb motifs5,9–11. The 
topic of foodweb stability has gained renewed urgency by recent papers raising concerns that past perturbations 
have not only led to the direct loss of species but have also left the respective systems more fragile. This increases 
the impact of future perturbations, leading to further and possibly bigger losses12,13. Habitat loss, overexploitation, 
and numerous other stress factors have caused global declines in top predators14. For example in the British isle all 
of the large top predators such as the wolf, bear, and lynx have gone extinct.

Among the species in a foodweb, top predators appear to have a disproportionate impact on stability. Although 
they constitute typically only a tiny fraction of the biomass15, top predators have been found to have a strong 
impact on stability5,16,17. Top predators are often generalists which connect and balance biomass from different 
types of specialist predators on lower trophic levels18. Thereby they also act at the apex point of weakly-linked long 
loops in foodwebs which are thought to be a stabilizing motif 9.

A less studied but perhaps equally important factor contributing to the role of top predators is the spatial nature 
of ecological systems. The importance of spatial structure for ecosystem dynamics is generally acknowledged19. 
Mathematical modelling has been focussing for many years on classical metapopulation models20,21, island bio-
geography22, and movement ecology23. However, spatially explicit studies of the dynamics of large foodwebs 
(meta-foodwebs) have only begun to appear recently24–32. Based on earlier studies33–36 and the recent work of Pillai 
et al.25,37 we can expect that complex spatial environments aid the persistence of diverse communities by increasing 
the opportunities for generalists and enabling quick recovery from localized perturbations via the rescue effect.

In addition to beneficial consequences, spatial environments can also create intrinsic instabilities leading to 
complex and potentially dangerous spatiotemporal dynamics32,38,39. In a recent publication32 we introduced an 
efficient method for identifying such instabilities in large spatially explicit models of foodwebs dynamics, by 
combining a generalized modelling approach40,41 with a Master-Stability function method42,43.

A feature that is not captured in previous models is that top predators perceive the habitat differently than 
other species. Top predators tend to be large-bodied highly mobile species that need to roam large areas to cover 
their energy needs. While a landscape may appear as a complex network of many habitat patches from the per-
spective of a mouse it only consists of a single patch from the perspective of an eagle circling overhead.
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The top-predator’s different perspective on the landscape is interesting because it means that the top predator 
cannot only link different biomass streams and close long loops in foodwebs by feeding on different species, it can 
also do so by simultaneously preying on populations in different habitat patches.

In the present paper we investigate the stability of meta-foodwebs that appear as a complex network of habitat 
patches to all but the top predator population, while the top predator regards the whole system as a single global 
patch. We refer to such ultra-mobile predators as global predators from now on. To study this system we use a 
generalized modelling approach, which is essentially a linear stability analysis that is based on generic expressions 
for the biomass turnover rates and elasticities at steady states40. In order to accommodate global top predators, 
we extend the master-stability function approach to meta-foodwebs32. This approach allows us to disentangle the 
spatial habitat network from the local foodweb when calculating the eigenvalues of the Jacobian42.

We find that systems with a global top predator tend to be more stable than systems with the same number of 
species where all species are local. This effect is particularly pronounced when the global predator feeds on several 
species, and thus acts as a generalist. In this case the stability of the system with a global top predator exceeds the 
stability of the smaller system where the global predator is absent. Our results highlight the importance of global 
generalist top predators in safeguarding the systems stability against disturbances.

Model
We consider a system of S local species on N patches that disperse between these patches according to a network 
of dispersal routes, and S′ global species that can feed on all patches simultaneously. Below we particularly con-
sider S 1′ =  in examples, while in the mathematical work we leave S′ undefined for generality. We denote the 
biomass density of local species i in patch k by Xi

k and the biomass density of the global species i by Yi. The 
dynamical equations of the model have the following form:
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where G is the rate of growth by primary production, M the rate of the loss by respiration and mortality, F the rate of 
growth due to feeding on other species, D the rate of biomass loss due to being eaten by other species, and Ei

kl the rate 
of dispersal from patch l to k. Furthermore, ε denotes the conversion efficiency of prey biomass into predator biomass. 
The subscripts indicate the affected populations. If two populations are affected, the order of the subscripts is such that 
biomass flows from the second to the first population. For instance, the function DY Xj i

k describes the biomass loss of the 
local population of species i on patch k due to predation by the global species j. For this generalized equation system, 
and without restricting the functions in the equation to a specific functional form, one can then derive a Jacobian 
matrix that describes the response of the system to perturbations. Because of the uncertainties that exist, this Jacobian 
matrix still contains a number of unknown (but directly interpretrable) parameters that describe the topology of the 
network, the scale of biomass turnover (scale parameters), and the strength of nonlinearities (exponent parameters).

We use the niche model44 to generate foodwebs with realistic topologies. In this model each species is assigned a 
random niche value and a feeding interval the center of which lies below the niche value. A species feeds on all species 
with niche values inside its feeding interval. An example of a five-species niche web is shown in Fig. 1. We identify 
the niche value with the logarithm of the body mass, which allows us to implement allometric scaling of the biomass 
turnover rates. We then generate the scale and exponent parameters, taking the food web structure into account. The 
parameters are drawn at random from suitably defined intervals in accordance with ecological reasoning (see Methods, 
Table 1 and Fig. 1). The chosen intervals for the generalized parameters follow closely previous publications39–41,45.

We use random geometric graphs (RGG)46 as a model for the spatial topology of the network of habitat 
patches (see Methods). Unless mentioned otherwise, we consider homogeneous systems, where all patches are 
characterized by the same parameters and have the same biomass densities. This assumption enables the con-
struction of master stability functions (explained below) that allow us to efficiently study systems with arbitrary 
number of geographical habitat patches.

To construct the master stability function we first note that the Jacobian has the form

=










J
J J
J J

,
(3)

X XY

YX Y

where the indices X and Y refer again to local and global species. Furthermore, the block JX has the internal structure

= ⊗ − ⊗J I P L C (4)X X X

familiar from systems without global predator32, provided that the feeding rates of the global predator depend 
linearly on prey biomass. Here, ⊗ is a Kronecker product, I is an identity matrix of suitable size, PX is the Jacobian 
of an isolated patch, L is the Laplacian matrix describing diffusion on the patch network, and CX is the lineariza-
tion of the dispersal terms32. More details, and the generalization to global predators with nonlinear feeding rates, 
are given in the Methods section. By exploiting the structure of the Jacobian its eigenvalues can be calculated by 
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first finding the eigenvalues of the Laplacian matrix of the spatial network, and then computing the eigenvalues of 
a greatly reduced matrix in which the eigenvalues of the Laplacian appear as a parameter.

While we confine the details of the eigenvalue construction to the methods section, we remark that the pro-
cedure follows the same idea as the master stability function approach used in the study of synchronization42,43 

Figure 1. Illustration of the assignment of the scale parameters for a local foodweb with 5 species. In the circles, 
the species index and the niche value are given. On the links, the relative link strength s is given as well as the 
scale parameters χ and γ. According to the relations (15) the parameters β add up to 1 for a given prey (e.g., 
species number 2 being eaten by 3 and 4), and the parameters χ add up 1 for a given predator (e.g., species 4 
feeding on 1 and 2).

φX/φY ψX/ψY μX/μY γX/γY λX/λYX ωX ωXˆ κX κ̂X

Holling T2 1 1 [1, 2] [0, 1] [1, 2] [0, 1] [0, 1] 0 0

Standard [0, 1] [0, 1] [1, 2] [0, 2] [1, 2] [−2, 2] [−2, 2] [−2, 2] [−2, 2]

Adaptive [0, 1] [0, 1] [1, 2] [0, 2] [1, 2] [0, 1] [0, 1] [0, 1] [0, 1]

Table 1. Constant values and distribution intervals of the exponent parameters. In the case of the ‘Adaptive’ 
model the parameters κX and κ̂X depend on the feeding links of the local foodweb. If species i is the prey of 
species j then κX Xi j

 is randomly assigned a value inside the interval [0, 1] and is otherwise set to 0. This means 
the dispersal of prey is stimulated if predators are present. Additionally the parameter κX Xj i

ˆ  is randomly assigned 
a value inside the interval [0, 1] if species j does feed on species i and is set to 0 otherwise. This corresponds to 
predators that prefer to disperse into patches with higher prey abundance.

https://doi.org/10.1038/s41598-019-48731-y
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but is applied to steady states as in one of our previous publications32 and is further modified in this paper to 
accomodate the global predators.

The master stability function approach provides several advantages. First and foremost, it separates the con-
tributions of the spatial structure to the dynamics from those of the local food web dynamics. This allows clearer 
ecological insight into the source of observed instabilities.

Building on the separation of local and geographic structure one formulate precise conditions that the spatial 
structure must meet for a given food web to be stable. The function that represents these conditions is the actual 
master stability function after which this approach is named.

A byproduct that we use here, is a drastic reduction in the numerical effort for finding the eigenvalues of the 
Jacobian. In the present paper this reduction enables us to obtain solid statistics in the numerical investigations of 
large many-patch many-species meta-foodwebs.

To verify that the results described below also hold for systems with patches that violate the homogeneity 
assumption, we ran additional numerical analyses of systems with heterogeneous patches. In this case the spec-
trum of the Jacobian was determined by direct numerical diagonalisation of the full meta-foodweb Jacobian 
matrix. However, due to the large size of these matrices, we used smaller systems than for the homogeneous case.

Results
In the following we compare the mean stability of systems with a global top predator to that of systems with a local 
top predator or none at all. Then we evaluate how this stability depends on the sensitivity of the top predator to 
prey biomass, and on the number of prey populations.

proportion of stable webs. We quantify stability as the proportion of stable webs in an ensemble of sys-
tems that correspond to the same model. A web is stable if all eigenvalues of the Jacobian have a negative real part. 
An ensemble is characterized by the number of local species S, of global species S′ (which is 1 or 0), of spatial 
patches N, and a set of intervals for the generalized parameters, see Table 1. Each system of the ensemble is gener-
ated by randomly creating a spatial network (RGG), a niche foodweb with S + S′ species, and a set of generalized 
parameters from the given intervals. For the foodwebs with a global predator the species with the highest niche 
value is selected as the global predator.

Figure 2 shows a comparison of the proportion of stable webs of systems with the top predator added as a 
global species vs as a local species. The proportion of stable webs is in all examined cases larger for the systems 
with the global top predator than in the systems with the local one, with the increase ranging between 20% and 
200%. For the unstable systems, we evaluated whether the leading unstable mode is homogeneous or inhomoge-
neous. Homogeneous instabilities make a minor contribution to the number unstable webs. This is because there 
are many more inhomogeneous than homogeneous eigenmodes. Figure 3 shows that the proportion of stable 
webs remains almost unchanged when the global top predator is removed from the system.

Among the unstable systems, the proportion of homogeneous and inhomogeneous leading modes is also 
nearly the same. This is because the underlying eigenvalue problem for the stability of homogeneous systems can 
be separated into two types of solutions. One type represents the inhomogeneous eigenmodes where the global 
predator has the value 0 in the corresponding eigenvector. The other part represents the coupling of the global 
species to the spatial part of the system, which corresponds to the spatially homogeneous eigenvectors. When the 
global predator is removed, the spatially inhomogenoues part of the eigenvalue problem, which gives most of the 
eigenmodes, is essentially unchanged. Therefore the removal of the global predator has no strong impact on the 
proportion of stable webs. For more details on the eigenvalue problem see the Methods section.

To explore in more detail the influence of the global predator on stability we evaluate the change of stability 
with a key parameter related to predation by the top species, for systems with and without a global predator. This 

Figure 2. Proportion of stable webs for 10-patch systems with a global top predator (red) and systems with a 
local top predator (blue), for the three models specified by the parameter intervals listed in Table 1, and for 
different species numbers = + ′S S Stot . The horizontal line separates the small proportion of unstable webs 
with the leading eigenvalue corresponding to a homogeneous mode from the larger proportion corresponding 
to an inhomogeneous (pattern-forming) mode. The figure shows that making a global predator local decreases 
stability and that the majority of instabilities is due to pattern-forming instabilities.

https://doi.org/10.1038/s41598-019-48731-y
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parameter, γ, describes the sensitivity of the top predator’s food intake to the total available prey biomass. It is 
known that it has a positive correlation with stability40. The reason is that the predator is close to saturation for 
small γ and therefore can hardly control the population of its prey species.

At first, we use two types of three-species foodwebs, one with a generalist top species and one with a specialist top 
species (see Fig. 4b,d). We compare the situation that the top species is global with the situations where it is local or 
completely absent. In the latter case, we have a two-species system. The proportion of stable webs in dependence of 
the exponent parameter γ of the top species for the two types of three-species systems is shown in Fig. 4.

As before, the stability of the systems with the global top predator is higher than that with the local top pred-
ator. Furthermore, the stability of the systems with the generalist global top predator is also higher than that of 
the two-species system when γ is larger than 0.25. With the specialist top predator stability is smaller than for the 
two-species system but approaches it for larger γ.

Figure 3. Same as Fig. 2, but in the system without the global predator no local predator is added. The 
proportions of stable webs and both types of instabilities are very similar in the systems with and without the 
global predator. Comparison with the previous figure shows that adding a global predator does not decrease 
stability while adding a local predator does decrease stability.

Figure 4. Proportion of stable webs for 10-patch Holling type 2 systems as function of the sensitivity to the total 
amount of prey γ available to the top species (which is species number 3) of a 3-species omnivore module (top) 
and a 3-species food chain (bottom), with the top species being either global (red) or local (blue). Additionally, 
the mean proportion of stable webs of the 2 species system without the species 3 is shown as the horizontal 
dashed line. The data show that systems with global top species are more stable than those with local top species, 
and that the generalist module is more stable than the three-species food chain. With a generalist top species it 
is even more stable than the two-species system.

https://doi.org/10.1038/s41598-019-48731-y
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In the case of the three-species systems the generalist global species has an stabilizing effect, in contrast to the 
specialist one. However, from studying this small system it is not clear whether the stabilizing effect is due to the 
larger number of prey species or to the fact that the global species is an omnivore that feeds on different trophic 
levels. In order to investigate this issue, we also studied systems with more species, and we explored how stability 
depends on the number and trophic range of the top predator’s prey species in these larger foodwebs. Figure 5a 
shows the proportion of stable webs for system with =S 10 local species and a global predator in dependence of 
the number of prey species of the global predator. A larger number of prey species is correlated with a higher 
proportion of stable webs. When the global predator has four prey species the stability reaches that of the system 
without global predator and exceeds it for larger numbers of prey species.

In Fig. 5b the proportion of stable webs is shown in dependence of the niche interval size and the number of 
prey species of the global predator. The niche interval size is defined as the difference between the highest and 
the smallest niche values of the global predator’s prey. Larger niche interval size implies that the global predator 
feeds on more trophic levels on average. The figure shows that the global predator has the strongest stabilizing 
effect when it feeds on a large number of species with relatively similar niche values. This means that feeding on 
different trophic levels is not a stabilizing factor in our system.

Heterogeneous systems. The results presented so far were obtained using a spatially homogeneous model. 
Making the systems heterogeneous makes them more realistic as natural systems always have heterogeneities. 
Since we cannot use the Master Stability Function approach any more, the numerical effort becomes much larger, 
as we have to perform a direct numerical evaluation of the eigenvalues. Heterogeneity is introduced by assigning 
the exponent parameters independently for every patch from the same uniform distributions as before (Table 1). 
We use the same foodweb structure in every patch. Hence we get the same scale parameters in every patch. Note 
that our way of constructing heterogeneous systems ignores correlations between the exponent parameters in 
different patches and is therefore a stronger type of heterogeneity than we would expect from nature.

Figure 6 shows the proportion of stable webs. It is analogous to Fig. 2, but for smaller, heterogeneous five-patch 
systems. For comparison the figure also includes the data for homogeneous webs of the same size as the hetero-
geneous ones. One obvious difference between the heterogeneous and homogeneous systems is the overall lower 
proportion of stable webs, but this need not always be the case. Previous work has shown that heterogeneity can 
increase as well as decrease linear stability in generalized models47.

Figure 7 shows the dependence of stability on the number of prey of the global predator. These results are 
analogous to those of Fig. 5, but for a heterogeneous system with S 7=  local species. The plot shows the same 
trend as for the homogeneous system. A larger number of prey species of the global predator leads to a higher 
proportion of stable webs. Furthermore, the proportion of stable webs is always above that obtained without 
global predator. In our example system, the stabilizing effect of the global predator is thus stronger in the hetero-
geneous system than in the homogeneous system.

In general, our results for spatially heterogeneous systems agree qualitatively with those for homogeneous sys-
tems, suggesting that the insights gained from the study of homogeneous systems have a broad range of validity.

Discussion
Our study has shown that global top predators can have a considerable stabilizing effect on meta-foodwebs. 
This result was obtained for three different classes of models and a broad range of parameter values. This broad 
scope of the investigation was made possible by using a generalized modelling approach that does not depend 
on the specific functional form of the interaction terms. The average stability of meta-foodwebs with a global 

Figure 5. (a) Proportion of stable webs for a 10-patch Holling type 2 system with =S 10 local species and a global 
predator for the different numbers of prey species of the global predator. The dashed line represents the proportion of 
stable webs of the system when the global species is removed. The system’s stability increases when the global species 
has more prey species. For more than 4 prey species the system with the global predator exceeds the stability of the 
system without it. (b) Proportion of stable webs for the same system as in (a), showing additionally he dependence on 
the niche interval size. The niche interval size is the difference between the largest and the smallest niche values of 
global predator’s prey species. White color corresponds to the proportion of stable webs of local system when the 
global species is removed, red color corresponds to higher and blue color to lower stability.

https://doi.org/10.1038/s41598-019-48731-y
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top predator was larger than that of systems where the top predator was made local, as shown in Figs 2 and 6. 
The difference is often of the order of a factor of two. This means that when a global predator is made local in a 
stable ecosystem, the chance is around 50 percent that the system becomes unstable. From Fig. 2, we concluded 
furthermore that the stabilizing effect consists to a large part in the suppression of pattern-forming instabilities.

In a more detailed investigation, we found that the stability of meta-foodwebs increases when the global pred-
ator has more prey species, and in many cases exceeds that of a system that has no such top predator, see Figs 4 
and 7. This latter effect appears to be considerably stronger when the system is heterogeneous, i.e., when different 
habitats have different equilibrium biomass densities, as can be seen from a comparison of Fig. 7 with Fig. 4.

Ripple et al.17 mention a variety of functions that large predators fulfill in ecosystems around the world. 
According to these authors, top predators are important at controlling the abundance in the lower trophic levels, 
this includes mesopredators48 as well as herbivores. A decline in big top predators often results directly in a release 
of mesopredators. Indirect effects can cascade through the whole foodweb. Due to the stronger mesopredator 
populations the abundance of prey species on lower trophic levels may decrease. Despite the release of inter-
mediate predators, a lower number of top predators can lead to a limited control of herbivores and therefore to 
a decrease in plant abundance. Large top predators are also thought to play an important role for the resilience 
of ecosystems against invading species. Therefore a loss of the big top predators can have severe consequences.

The extent to which habitats are fragmented has important effects on the functioning and stability of ecosystems49, 
and especially on top predators48. Far-ranging predators are negatively affected by landscape fragmentation because 
they are exposed most strongly to edge effects, for instance due to conflicts with humans50. Our results show that 
the stabilizing effect of large top predators depends on their capability to range freely, i.e., on their being global pred-
ators and not local predators. But landscape fragmentation makes far-ranging predators more local. In the light of 
our results this means that even if a top predator was able to survive the fragmentation of its habitat it could lose its 

Figure 6. Proportion of stable webs for heterogeneous five-patch systems with a global top predator (red) and 
systems with a local top predator (blue), for the three models specified by the parameter intervals listed in 
Table 1, and for different species numbers S S Stot = + ′. The figure shows that making a global predator local 
decreases stability also for the more general, inhomogeneous meta-foodwebs. The lighter shaded bars indicate 
the proportion of stable webs of the corresponding homogeneous systems. In the model shown here, the 
heterogenoeus meta-foodwebs have a lower average stability than their homogeneous counterparts.

Figure 7. Proportion of stable webs for heterogeneous five-patch systems with a global top predator and =S 7 
local species for the Holling 2 specified by the parameter intervals listed in Table 1. The figure shows that a 
higher number of prey species leads to more stable systems. This is in agreement with the homogeneous case 
(see Fig. 5a). The stability of the system without the global top predator is indicated by the dashed line, showing 
that it is less stable than the system with global top predator.

https://doi.org/10.1038/s41598-019-48731-y


8Scientific RepoRtS |         (2019) 9:12268  | https://doi.org/10.1038/s41598-019-48731-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

stabilizing capabilities. Previous results also show how habitat fragmentation can completely change the trophic role of 
top predators51.

Taken together, the results highlight the importance of far-ranging top predators for ecosystem stability. The 
decline of those predators in natural systems is a serious concern. The extinction of predatory mammals like the 
Eurasian brown bear, lynx and wolf on the British isle are only one of many examples. While some of these extinc-
tions are caused by climatic and environmental changes, anthropogenic impacts are the biggest factor. The ecolog-
ical effects of such island extinctions cascade across ecological networks and take centuries to be fully realized52. 
The protection or reintroduction of large top predators is therefore of great importance. However, our study 
suggests that their large home ranges must also be restored if they shall have a considerable stabilizing effect.

Methods
Generalized modeling. We start with the general model equations (1) and (2), assuming that they have a steady 
state. We normalize all biomass densities and functions to this steady state. For example, if the population density of a 
local species at the steady state is denoted as Xi

k⁎ then the normalized population density is = ⁎xi
k X
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with i S1, ,= … ′. The total amount of biomass that is available for predation by a given predator is defined as:
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where the functions r are the normalized response of a predator to the abundance of a certain prey population. 
The factors in front of the normalized functions are expressed in terms of scale parameters, the interpretation of 
which are listed in Table 2. Apart from the α, which are the biomass flow rates, the other scale parameters are 
dimesionless and lie in the interval [0, 1]. In our model, the scale parameters are related to the structure of the 
spatial topology and of the local foodweb, as detailed in the next section.

The first step in a linear stability analysis consists in calculating the Jacobian. In addition to the scale parameters, 
this Jacobian depends also on exponent parameters, which are the derivatives of the normalized functions with respect 
to the normalized biomass densities40. The exponent parameters (or elasticities) for the dynamics within a patch are
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The exponent parameters related to dispersal between patches are
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where i j≠ . The interpretation of the exponent parameters can be found as well in Table 2. Note that different 
steady states are characterized by different values of the scale and exponent parameters and thus can have differ-
ent stability properties.

Although the functions and the steady states are unknown, the exponent parameters have an clear meaning in 
the context of the system, and their typical range of values can therefore be obtained from general considerations 
(see Gross et al.5,40). This range of values is given in Table 1 for three types of models. The first model is shaped 
after systems with a Holling type 2 functional response and conventional, diffusive dispersal. The Standard model 
uses the largest meaningful range of exponent parameters, as specified in previous publications5,39,45,47. The last 
model implements an adaptive type of dispersal, where the prey avoids its predators and the predators follow 
their prey.

Generation of meta-foodwebs. The spatial topologies used in this paper were random geometric graphs 
(RGGs)46. These graphs were generated by randomly placing N patches on a unit square and connecting all pairs 
of patches that had a distance smaller than

=
′r r
N

,
(11)

with the parameter r′ radomly chosen between 1.4 and 2 for each RGG. This was done to cover an ensemble with 
a wider range of mean degrees. For the N 10=  patch RGGs used in most of the simulations mean degrees range 
from approximately 1.8 to 9. The RGGs were generated with periodic boundary conditions to avoid edge effects. 
Only connected graphs were retained.

In most of the simulations we used spatial webs with =N 10 patches. Test runs with larger numbers of patches 
showed no qualitative change in the results. A larger number of patches leads to a denser spectrum of the 
Laplacian eigenvalues, while the range of the eigenvalues is comparable.

If not specified otherwise we used the niche model44 to create the feeding relations between the different spe-
cies. This model assigns to each species a random niche value ni between 0 and 1 using the uniform distribution. 
We used a connectance of 0.25 and retained only connected niche webs. For systems with a global species, the 

Parameter Interpretation

Exponent

φ Sensitivity of primary production to own population density

γ Sensitivity of predation to total available prey density

λ Exponent of prey switching

ψ Sensitivity of predation to predator density

μ Exponent of closure

ω Sensitivity of dispersal to own the species population density in the output patch

ω


Sensitivity of dispersal to own species population density in the target patch

κ Sensitivity of dispersal to population density of some other species in the output patch

κ̂ Sensitivity of dispersal the population density of some other species in the target patch

Scale

α Biomass flow

σ Fraction of biomass loss due to predation

σ


Fraction of biomass loss due to respiration

ξ Fraction of loss by predation due to global species

ξ Fraction of loss by predation due to local species

β Relative contribution to biomass loss due to predation by a certain predator

δ Fraction of local growth by predation
δ Fraction of local growth by primary production

χ Relative contribution of population as prey to a certain predator

ν Fraction of total biomass gain due to dispersal


ν Fraction of total biomass gain due to predation and primary production

ρ Fraction of total biomass loss due to dispersal


ρ Fraction of total biomass loss due to predation and respiration

Table 2. Generalized parameters used to describe the meta-foodweb. 
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species with the largest niche value was identified as the global predator. Niche values are correlated with body-
mass, and we therefore implemented allometric scaling of the biomass turnover rate

α ∼ .−10 (12)i
n2 i

The structures of the spatial habitat network and the local foodweb imposes relations between several scale 
parameters: The total biomass turnover rate consists of the turnover due to dispersal between the spatial patches 
and the turnover due to local in patch dynamics including the interaction with the global predator. To obtain 
homogeneous steady states we assume linkwise dispersal. This means all the links between patches have the same 
biomass turnover rate. Therefore the biomass turnover due to dispersal in a patch is proportional to the number 
of links. As the number of incoming and outgoing links is identical for undirected spatial graphs, the biomass gain 
and loss by dispersal cancel each other out (ν ρ= ). We fulfil all these conditions by using for each species a ran-
dom factor ∈a [0, 1]i  to fix the local biomass turnover

a 10 (13)i i i i i
n2 iρ α να= = ⋅ −



and the biomass turnover through one spatial link

ρ α ν α= = − ⋅ .−a(1 ) 10 (14)i
kl

i i
kl

i i
n2 i

The remaining scale parameters are obtained via the following considerations: In our model, the basal species 
gain biomass exclusively due to primary production ( 0δ = ). The only biomass input of the top and intermediate 
species is provided by feeding on their respective prey species ( 1δ = ). In order to fix the values of the scale 
parameters β and χ in a consistent manner, we assign first a random link strength sij to each feeding link between 
predator i and prey j using the standard normal distribution. This also includes the feeding links of the global 
predator. We interpret this link strength as the biomass flowing through link ij per unit time. The scale parameters 
β and χ give the relative contribution of the different feeding links to the biomass loss resp. gain to a node of the 
foodweb, and they are therefore obtained from the link strengths sij via the relations

s
s

s
s

, ,
(15)

ij
ij

n nj
ij

ij

n in
β χ=

∑
=

∑

where for local species the sums are calculated over only the local species. A sample foodweb with 5 species is 
shown in Fig. 1. In order to distinguish between local and global losses the scale parameter ξ is introduced. The 
fraction of loss by predation due to the global predator (index g) is calculated by

s
s

,
(16)i

gi

n ni
ξ =

∑

with the sum over all species including the global predator. The fraction of biomass loss due to predation σ is 
randomly chosen between 0 and 1 for all prey species separately, for top species 0σ = .

Finally, the non-constant exponent parameters are drawn randomly from uniform distributions in the inter-
vals given in Table 1, using the mentioned three models.

Structure of the Jacobian. The Jacobian of the model represented by the equations (1) and (2) or, equiva-
lently, by the equations (5) and (6), has the structure (3), which is illustrated in terms of smaller blocks of sizes 

×S S, S S× ′, and ′ × ′S S  in Fig. 8. The first block JX contains the information about the dynamics of the S local 
species and the matrix Jγ captures the dynamics of the S′ global species, while the matrices JXY and JYX capture the 
interaction between the spatial web and the global species due to global predation.

The first block JX itself can be constructed out of N N×  block matrices of size ×S S. We denote their constit-
uents as PX

k , which capture the local dynamics within patch k, CX
kl and ĈX

kl
, which capture the contributions to the 

Jacobian due to dispersal from patch l to k, and OX
kk and OX

kl, which are nonzero when there is an indirect coupling 
of species within patch k or between patches k and l due to nonlinear predation by global predators. With this 
notation, the first block of the Jacobian takes the form
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The structure of the spatial network web enters via the positions of the coupling matrices CX
kl and CX

klˆ . In the 
case of a spatially homogeneous steady state all generalized parameters are are equal between the different 
patches. Therefore the different matrices occuring in the Jacobian do in fact not depend on the patch indices, and 
the matrices CX and ĈX become equal. Using the identity matrix I, the Laplacian matrix of the spatial patch net-
work L, and the matrix N, that is 0 on the diagonal and 1 everywhere else, the first block of the Jacobian can be 
written more compactly as

J I P L C N O , (18)X X X X′= ⊗ − ⊗ + ⊗

where P P OX X X
kk′ = + . The remaining entries of the matrix in Fig. 8 are JY, which captures the dynamics of the 

global species, and the matrices CXY
k  and CYX

k , which capture the coupling of the spatial patches to the global spe-
cies due to predation of local species by global species.

calculation of the eigenvalues. The eigenvalues are calculated in a similar way as in Brechtel et al.32. The 
system has two types of eigenvectors, the homogeneous and the inhomogeneous ones. The homogeneous eigen-
vectors have the same components for every spatial patch and a non-zero vector component corresponding to the 
global predator. The components of the inhomogeneous eigenvectors differ between the spatial patches while the 
vector component corresponding to the global predator vanishes. In the following, we calculate these two types 
of eigenvectors separately.

We start with the inhomogeneous eigenvectors by calculating the eigenvalues of the first block of the Jacobian 
JX. In the next step we show that certain eigenvalues of JX are also eigenvalues of the full Jacobian J.

The eigenvalues of JX have to be calculated from equation (18). The main difference to the system without 
global predators is given by the coupling matrices OX

kl and OX
kk and is caused by the indirect coupling between 

local species due to global predation. The Laplacian L and the matrix N can be written as

δ δ= − = −L g A N, 1 , (19)kj k kj kj ik ik

with gi being the degree of the vertex with index i, Akj being the adjacency matrix, and δij being the Kronecker 
delta. Both matrices commute, so there is a common basis of eigenvectors,

κ μ= = .L p N p, (20)

This allows us to replace L and N in (18) by their eigenvalues, giving the following reduced eigenvalue equation

κ μ λ′ − + ⋅ = .κμP C O q q( ) (21)X X X

The full eigenvector can than be written as

= ⊗v p q, (22)

and the complete eigenvalue equation of the first block of the Jacobian is then

Figure 8. Structure of the Jacobian given in equation (3). The block JX consists of the blue and green parts, the 
block JXY consists of the yellow parts, the block JYX consists of the orange blocks and the block JY is shown in red.
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Next we show that certain eigenvalues of JX are also eigenvalues of J. With a given eigenvector v corresponding 
to the eigenvalue λκμ of JX we find

( )J J
J J

v J v
J v

v
J v0 (24)
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⋅
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.κμ

The constructed vector v( , 0)T is an eigenvector if

J v 0 (25)YX ⋅ = .

The Jacobians block in question JYX has the structure

J C(1, , 1) (26)YX YX= … ⊗ .

Therefore it follows

⋅ = … ⊗ ⋅ ⊗
= … ⋅ ⊗ ⋅ .

J v C p q
p C q

[(1, , 1) ] ( )
[(1, , 1) ] (27)

YX YX

YX

Accordingly we only need to show that

… ⋅ = .p(1, , 1) 0 (28)

We multiply the eigenvector equation from the left side with a row vector filled with 1,

κ… ⋅ = … ⋅ .L p(1, , 1) (1, , 1) (29)

Because … ⋅ =L(1, , 1) 0, either 0κ =  or p(1, , 1) 0… ⋅ = . Consequently the condition holds for the eigen-
vectors with κ ≠ 0.

The multiplicity of the eigenvalue 0κ =  of the Laplacian is the number of connected components of the con-
sidered spatial graph. In this paper we focus only on connected graphs, therefore the multiplicity of 0κ =  is 1. 
The matrix N has the eigenvalue μ = −N 1 exactly once, and the only other eigenvalue is 1μ = − . With this 
eigenvalue, we have

⋅ = − .N p p (30)

We multiply this equation again from the left side with a row vector filled with 1 and rearrange the equation,

… ⋅ ⋅ = − … ⋅
− … − ⋅ = − … ⋅

− … ⋅ = − … ⋅
… ⋅ =
… ⋅ = .

N N
N

N

N p p
p p
p p
p
p

(1, , 1) (1, , 1)
( 1, , 1) (1, , 1)

( 1)(1, , 1) (1, , 1)
(1, , 1) 0
(1, , 1) 0 (31)

Therefore the condition given by equation (28) holds also for eigenvectors with μ = −1.
The eigenvalues of JX with 0κ ≠  and the eigenvalues with μ = −1, which we have calculated using equation 

(21) are also eigenvalues of J. These eigenvalues and eigenvectors correspond to the inhomogeneous eigenmodes 
of the spatial system.

Next we look at the spatially homogeneous eigenvectors. The Laplacian L and the matrix N share the common 
eigenvector p (1, , 1)T= …  with the eigenvalue κ = 0 and N 1μ = −  respectively. This eigenvector corresponds 
to a homogeneous behavior of the spatial system which is influenced by the global species. Therefore we are una-
ble to calculate the eigenvalue of the Jacobian corresponding to the homogeneous eigenmode by taking only JX 
into account. We calculate the corresponding eigenvalues by simplifying the eigenvalue equation of the Jacobian 
to the homogeneous case by using eigenvectors constructed as

=




⊗ 

v 1 v

v ,
(32)

X

Y

where
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and N1dim( ) = . In order to show that v is indeed an eigenvector, we multiply it with the complete Jacobian:
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In summary, we reduced the eigenvector equation of the spatially homogeneous eigenmodes to
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The dimension of this eigenvalue equation does not depend on the size of the spatial web. The spatial web 
enters only via the number of patches N. In addition the equation does not depend on the spatial coupling CX 
between local species due to dispersal.

This eigenvalue equation gives us the spatially homogeneous eigenmodes, where all the patches behave the 
same way. The local populations do not exchange biomass between patches. The global predators only react to 
the total available biomass in the complete system and are therefore insensitive to the topology of the spatial web. 
Hence the coupling between global and local species is described by the local eigenmode of the system.

ensemble Sizes
For the systems in Figs 2, 3 and 4 we used ensembles of 106 webs per class.

In Fig. 5 we used an ensemble of more than 107 webs. The stability baseline of the system without the global 
predator in Fig. 5a was calculated with an ensemble of 106 webs. In Fig. 5b only bins with sufficient statistics are 
shown. Statistics gets worse for more extreme combinations of prey numbers and niche interval sizes.

For the systems in Fig. 6 we used ensembles of various sizes ranging from . ⋅3 1 106 for the more stable systems 
to over . ⋅1 3 107 for the least stable systems. Note that for the three least stable classes not even one single stable 
web was found.

In Fig. 7 an ensemble of more than 3 5 107. ⋅  webs was used. The stability baseline of the system without the 
global predator was calculated with an ensemble of ⋅5 106 webs.

The proportion of stable webs (PSW) is calculated by

=
N

N
PSW , (36)

stable

where N is the total number of tested webs and Nstable is the number of stable webs found in the given sample set. 
The standard deviation of the PSW is estimated by

N
N

PSW (37)
stable∆ = .

Error bars are only shown when the standard derivation is visible on the scale of the plot. In Fig. 4 the error 
bars would be smaller than the line width used in the plot.

Data Availability
This study did not involve any underlying data. All the information needed to generate the data analyzed during 
this study is included in this published article.
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