
Lawrence Berkeley National Laboratory
LBL Publications

Title
Improving Performance of M-to-N Processing and Data Redistribution in In Transit 
Analysis and Visualization

Permalink
https://escholarship.org/uc/item/9cn390hq

ISBN
978-3-03868-107-6

Authors
Loring, Burlen
Wolf, Matthew
Kress, James
et al.

Publication Date
2020-05-25

DOI
10.2312/pgv.20201073
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9cn390hq
https://escholarship.org/uc/item/9cn390hq#author
https://escholarship.org
http://www.cdlib.org/


Eurographics Symposium on Parallel Graphics and Visualization (2020)
S. Frey, J. Huang, F. Sadlo (Editors)

Improving Performance of M-to-N Processing and Data
Redistribution in In Transit Analysis and Visualization

B. Loring 1 , M. Wolf 2 , J. Kress 2 , S. Shudler 3 , J. Gu 1 , S. Rizzi 3 , J. Logan 2 , N. Ferrier 3 , and E. W. Bethel 1

1 Lawrence Berkeley National Laboratory – https://www.lbl.gov
2 Oak Ridge National Laboratory – https://www.ornl.gov

3 Argonne National Laboratory – https://www.anl.gov/

Abstract

In an in transit setting, a parallel data producer, such as a numerical simulation, runs on one set of ranks M, while a data
consumer, such as a parallel visualization application, runs on a different set of ranks N. One of the central challenges in this
in transit setting is to determine the mapping of data from the set of M producer ranks to the set of N consumer ranks. This
is a challenging problem for several reasons, such as the producer and consumer codes potentially having different scaling
characteristics and different data models. The resulting mapping from M to N ranks can have a significant impact on aggregate
application performance. In this work, we present an approach for performing this M-to-N mapping in a way that has broad
applicability across a diversity of data producer and consumer applications. We evaluate its design and performance with
a study that runs at high concurrency on a modern HPC platform. By leveraging design characteristics, which facilitate an
“intelligent” mapping from M-to-N, we observe significant performance gains are possible in terms of several different metrics,
including time-to-solution and amount of data moved.

CCS Concepts
• Software and its engineering → Software performance; • Human-centered computing → Visualization systems and tools;
• Computing methodologies → Parallel algorithms;

1. Introduction

In situ processing refers to the scenario where analysis and visual-
ization is performed on data as it is being generated, rather than first
being saved to persistent storage for post hoc use (c.f., [B∗16]). In
the regime of in situ processing, one of many particular configura-
tions entails a scenario where data is moved across a network as it
is produced to a separate application running on a separate set of
hardware resources for analysis and visualization. In this scenario
data is produced on M simulation ranks, then consumed on N con-
sumer ranks, where typically M >> N. This configuration is often
referred to as “in transit” processing, see Fig. 1.

In the in transit configuration, a central challenge is the prob-
lem of M-to-N data redistribution from producer ranks to consumer
ranks. One way the challenge arises is when producer and con-
sumer run at markedly different levels of concurrency. Another is
when the data distribution scheme used by each is also different.
Yet another way is when producer and consumer have vastly dif-
ferent scaling characteristics, which in turn lead to different levels
of concurrency M and N for a given producer-consumer pairing on
a given problem configuration. Finally, it is often the case that the
consumer ranks do not require the complete problem domain from

the producer, a situation that can occur during data reduction or
subsetting operations, such as slicing or isocontouring.

The focus of our work here is on an approach for solving the
M-to-N data redistribution problem in a way that is broadly appli-
cable to a diversity of data producer and consumer methods and that
scales to high concurrency on modern HPC platforms. We demon-
strate an implementation and evaluate its performance at scale on a
large HPC platform. As part of the study, we show generality and
broad applicability through the use of different data producers, dif-
ferent data consumers, varying levels of concurrency, and multiple
options for data transport. The study includes evaluation of perfor-
mance gains that result when the consumer is able to request only
the data it needs to complete its operation, and contrast the cost
savings with a configuration where the producer sends the entire
problem domain to the consumer.

The contributions of our work are as follows:

• A design pattern for solving the M-to-N data redistribution prob-
lem that arises in all in transit processing.
• A description of an implementation, and demonstration of its

generality and scalability where we run at scale on HPC plat-
forms using different data producers and data consumers.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

https://orcid.org/0000-0002-4678-8142
https://orcid.org/0000-0002-8393-4436
https://orcid.org/0000-0002-9706-6182
https://orcid.org/0000-0001-7238-7353
https://orcid.org/0000-0002-1521-8534
https://orcid.org/0000-0002-3804-2471
https://orcid.org/0000-0003-1529-3048
https://orcid.org/0000-0003-1444-0624
https://orcid.org/0000-0003-0790-7716
https://www.lbl.gov
https://www.ornl.gov
https://www.anl.gov/


B. Loring et al. / Improving Performance and Portability of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization

• An in-depth performance evaluation that examines multiple di-
mensions of performance, including runtime, amount of data
moved, and total cost of solution. This study helps to provide
insight into questions like “what are the right ratios of M and N
to use for in transit processing?”
• Demonstrable performance gains from being able to leverage the

design to tune the M-to-N data redistribution for a particular use
scenario, gains that can result in substantial cost savings in terms
of lowering the amount of data moved between producer and
consumer ranks.

Figure 1: M-to-N in transit. In the M-to-N in transit scenario, a
simulation job running on M ranks (red boxes) with B data blocks
(yellow boxes) cooperates with an analysis job running on N ranks
(blue boxes), necessitating data movement. Determining the map-
ping of blocks from the M simulation ranks to the N analysis ranks
is a critical challenge that can impact performance in a number of
ways.

2. Design

One key difference between in situ and in transit scenarios is the
data decomposition used by producer and consumer. In an in situ
setting, a simulation code running at N-way parallel invokes in situ
methods that are also run, by definition, at N-way concurrency. Fur-
thermore, the simulation’s data decomposition dictates what data is
processed by each of the in situ ranks: this decomposition is dic-
tated by the simulation. In contrast, in an in transit scenario, while
an M-way parallel simulation code uses one data decomposition,
the N-way parallel analysis code has the opportunity to use a dif-
ferent data decomposition.

In this section, we discuss several design considerations that are
centered around the ability to solve this very problem: defining a
mapping of data from M-to-N ranks, and to do so in a way that
can accommodate a variety of different producer/consumer code
pairs, run at varying concurrency, and using a number of different
potential mechanisms for moving data.

To simplify and accelerate implementation, we chose to extend
the SENSEI generic in situ interface [A∗16] with new capabili-
ties and then we evaluate their performance characteristics (in §3).
SENSEI is designed around a common data model that enables the
exchange of data in between the data producers, such as a numerical
simulation, and the data consumers, such as a parallel visualization

or analysis application. Therefore, our presentation of M-to-N de-
sign principles is grounded in SENSEI’s existing design, and the
terminology we use is drawn from the terms that describe SEN-
SEI’s design elements.

To begin, we present some background material, namely the no-
tion of SENSEI’s endpoint (§2.1) and adaptor design (§2.2), which
are foundational to the ability to swap in and out different in situ
methods without having to recompile the simulation, or data pro-
ducer, code. Then, we proceed to describe the metadata needed to
describe the producer’s data model to the in transit consumer ranks
(§2.3). The metadata is input to the partitioner (§2.4), which is re-
sponsible for computing a mapping from M producer to N con-
sumer ranks.

Figure 2: In situ architecture schematic. A simulation accesses the
system via the configurable analysis adaptor(green box). When in
situ processing is invoked a simulation specific data adaptor(blue
box) provides the means for the configured in situ library specific
analysis adaptor to fetch and transform the data needed and feed it
to the in situ library for processing.

2.1. End point

In in transit configurations our system makes use of an MPI par-
allel application, compiled and installed with our libraries, we call
the endpoint. Fig. 3 shows a fictitious example. During in transit
processing data is move from a simulation with 5 blocks of data dis-
tributed on 5 MPI ranks to the endpoint which is running on 2 MPI
ranks. The endpoint is universal in the sense that it may be config-
ured at run time to receive and process data from any instrumented
simulation without modifications to either the endpoint or the sim-
ulation. This is achieved via XML files provided on the command
line, and any supported I/O or in situ data processing library may be
used. Simulations wishing to run in an in transit configuration only
need supply these two XML configurations. The details of how our
design accomplishes this are provided below.

2.2. Adaptor pattern

Adaptors define APIs that enable the invocation of a specific ac-
tion without the need by the invoking code to know who is making
it happen or how it is being done. The adaptor pattern allows for
the interchange of the performers of an action without modifying
the invoking code. In our system there are only two actions. The
first action is the invoke action. In situ processing including analy-
sis, visualization, and I/O is periodically invoked by a simulation.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.



B. Loring et al. / Improving Performance and Portability of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization

Figure 3: M to N in transit example. 5 blocks of data (B0 - B4)
residing on 5 MPI ranks in the simulation (R0 - R4) are moved to
and processed on the endpoint running on 2 MPI ranks (R0 - R1).

Figure 4: M to N in transit architecture schematic. A simulation
accesses the system via the configurable analysis adaptor(green
box). When in situ processing is invoked a simulation specific data
adaptor(blue box) provides the means for the configured I/O library
specific analysis adaptor to fetch and transform the data needed for
staging by the I/O library. The endpoint interfaces to the I/O library
through a configurable in transit data adaptor(red box) and the
in situ data processing library via the configurable analysis adap-
tor(green box). When the simulation invokes in situ processing, the
endpoint is signaled, whence it in turn invokes processing, and the
I/O specific in transit data adaptor is provided to fetch the needed
data.

The second action is the fetch action. In response to the invoke ac-
tion data processing code fetches data to process. Our system is
comprised of two fundamental adaptor types, the analysis adaptor
which is used to invoke processing, and the data adaptor which is
used to fetch the needed data.

The data adaptor is used to fetch data. Any consumer of data be
it for I/O, visualization, or analysis makes use of the data adaptor to
fetch data. The data adaptor API is used to fetch data, in both in situ
and in transit configurations. Every simulation provides a simula-
tion specific data adaptor that is passed as a part of the invocation
of in situ processing. Similarly the fetch operations of every I/O li-
brary is exposed to the system via an I/O library specific data adap-
tor that is passed as part of the invocation of processing. Through
the use of data adaptors, data processing codes that consume data
need not be modified when run either in an in situ or an in transit
configuration. In Figs. 2 and 4, the simulation specific data adaptor
is shown by the blue box.

Compared to the in situ configuration, the in transit configura-
tion has additional complexities of connecting to the simulation
running in another job, listening for invocation of processing from
the simulation, and load balancing data as it is moved to the end-
point running at a different level of concurrency. In our design all
data processing can be run in either an in situ or an in in transit
configuration without code modification.

To deal with the additional complexities of the in transit con-
figuration, I/O library specific data adaptors are derived from the
in transit data adaptor that is itself derived from the data adaptor
type. The in transit data adaptor adds to the adaptor API, APIs for
use by the endpoint for management and control of connection and
data movement from the simulation, as well as APIs for interfac-
ing with our partitioning mechanisms discussed below. In this way
the I/O library specific data adaptor can be used in place of any
simulation specific data adaptor with out modification to the call-
ing code. Note also that RTTI enables the discovery of an in transit
data adaptor hence when desirable data processing codes may take
control of the partitioning step. This is the basis for the metadata
enabled optimizations presented later in Results, §3.

The analysis adaptor is used to invoke processing, both in in situ
and in transit configurations. Simulators need access to a diverse
set of in situ and I/O libraries, ranging from high performance vi-
sualization to machine learning to high performance I/O and data
movement. The analysis ecosystem is rapidly evolving and no one
library does it all. New analysis and I/O capabilities are exposed
to simulators through the introduction of library specific analysis
adaptors. The role of library specific analysis adaptors is to initial-
ize and configure an in situ or I/O library for some run time user
specified processing or movement, and in response to invocation
by the simulation, fetch and and transform data and feed it into the
library for processing or movement to the endpoint.

In both in situ and in transit configurations the simulation initi-
ates the invocation, but in the in transit configuration this invocation
initiates a data movement phase, where data is transferred to the
endpoint for processing. In the endpoint an I/O library specific in
transit data adaptor listens for the invocation, and forwards it into a
library specific analysis adaptor running there. This I/O library spe-
cific data adaptor is passed with the invocation and is subsequently
used to fetch the necessary data across the network or from disk as
it the case be.

The system implements run time configurability through a del-
egation pattern. Configurable adaptor implementations create and
initialize a library specific adaptor instance from a run time user

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.



B. Loring et al. / Improving Performance and Portability of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization

provided XML configuration. Calls made to a configurable adaptor
are forwarded directly to the library specific instance. Hence a sim-
ulation instrumented to use the configurable analysis adaptor gains
access to all available I/O and in situ libraries. In the endpoint both
configurable analysis adaptor and configurable in transit data adap-
tor are used to gain access to all available I/O and in situ libraries
through a single interface. In Figs. 2 and 4, the configurable analy-
sis adaptor is shown by the green box. In Fig. 4, the configurable in
transit data adaptor is shown by the red box.

2.3. Metadata

Metadata play a key role in our design with respect to in transit
processing. We introduced a metadata object with 34 fields that de-
scribes spatial domain decomposition and its mapping to MPI ranks
of mesh and array based data in a detailed yet compact way. The
metadata object encodes the information necessary for load bal-
ancing such as array and mesh geometry sizes. The complete list
appears in Table 2 in Appendix A.

The simulation fetches the metadata object through the data
adaptor API and used by data processing codes to discover what
data is available. Partitioning makes use of metadata for load bal-
ancing purposes, the output of the partitioning step is a second
metadata object encoding the recipe for how data is to be moved.
The I/O codes that move data make use of the recipe as the analysis
codes make requests to fetch specific data. Analysis codes fetching
metadata are given the recipe as well, because this describes how
the data will be once it is moved to the endpoint.

2.4. Partitioner

Running in an M-to-N in transit configuration necessitates a par-
titioning step where data distributed on the M simulation ranks
is mapped onto the endpoint’s N ranks. A number of partitioning
algorithms exist with each having advantages in particular situa-
tions. Certain data processing algorithm have specific partitioning
requirements. For instance some global parallel FFT implementa-
tions require pencil or slab domain decomposition [MDK19]. For
these reasons a flexible partitioning mechanism is a requirement. In
our approach data processing and analysis codes can be used either
in situ or in transit without modification. Therefore analysis code
should not need to be involved in the partitioning step unless it is
beneficial. Additionally our approach supports the run time selec-
tion of one of a number of I/O libraries for data movement and as
a result partitioning needs to be implemented externally to the I/O
library. For those reasons we introduce a partitioner object with
an API that takes a description of simulation data and its mapping
onto simulation ranks, and produces a new description of the data
mapped onto endpoint ranks which is used as a recipe for moving
data as it is fetched by the analysis code.

2.5. Slice extract

In situ extracts are a commonly used technique that can be used to
reduce I/O costs while capturing relevant features of the simulated
data. To explore the impacts of partitioning on in transit processing
we developed a new analysis adaptor, called the slice extract, which

Extract Partitioner M N Dataset Size

isosurface

optimized 8192

128

40963 (576 GB)

256
512
1024
2048
4096
8192

default 8192

128

40963 (576 GB)

256
512
1024
2048
4096
8192

slice

optimized 8192

128

40963 (576 GB)

256
512
1024
2048
4096
8192

default 8192

128

40963 (576 GB)

256
512
1024
2048
4096
8192

Table 1: Matrix of runs used to analyze the default vs. optimized
partitioners at varying concurrency. The setup is described in
§3.1.1 and the results presented in §3.1.2.

computes geometric extracts consisting of either simulation data
sampled onto a run time specified slice plane or a run time specified
set of iso-surfaces. The extracted geometry is written to disk in
VTK format for potential post processing and/or visualization.

Fig. 5 shows the data blocks that are required to compute the ex-
tracts defined in the experiments presented in section 3.1. The left
column shows a visualization of the extracted geometry. These vi-
sualizations were made after the experiments using data written to
disk during the experiments. The middle column shows the set of
blocks that were used in the calculation. The right columns shows
all the blocks. As noted, a default partitioner would need to dis-
tribute the data using a standard scheme like striping or block de-
composition. However, the light grey blocks are not useful for the
intended end product, and their movement represents a pure per-
formance overhead. Therefore, a partitioner that moved only the
required blocks from the simulation to the end-point would be more
efficient in space utilization and in timeliness.

We exploit this observation to present two different alternatives
in the tests that follow. First, we have a default partitioner that sim-
ply invokes a default block-based equipartitioning algorithm over
the entire simulation domain. We also developed optimized parti-
tioners for each of the scenarios that would be able to use the meta-
data provided by the simulation to determine the relevant blocks
to transfer. In the case of the slice extract, per-block bounding box

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.



B. Loring et al. / Improving Performance and Portability of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization

Figure 5: Optimized partitioners determine which blocks
are needed by the consumer and assign them to endpoint
ranks while excluding all other blocks from the dataset. Top
row, isosurface extract. Bottom row, planar slice extract. Left
column, extracted geometry. Center column, blocks needed
to compute the extract. Right all blocks. Line plot: the frac-
tion of simulation cells moved as a function of simulation
time.

metadata is tested for intersection with the plane. Only blocks in-
tersecting the plane are needed to compute the extract. In the case
of the iso-surface extract, per block array range metadata are tested
for intersection with the set of iso-values. Only blocks where the
array range brackets an iso-surface value are needed to compute
the extract. Blocks not needed in the calculation are not assigned
to any rank and as a result are not moved to nor processed by the
slice extract. Once the needed set of blocks are identified the block-
based equipartitioning algorithm assigns them to available endpoint
ranks.

3. Results

The key focus of this section is to evaluate the efficacy of our de-
sign. To that end, the primary research questions we focus on in-
clude:

1. What are the performance characteristics of M-to-N in tran-
sit configurations for a variety of producers, consumers, and at
varying levels of concurrency?

2. What are the performance gains that result in an M-to-N in tran-
sit setting when making use of data model metadata to move
subsets of a problem domain, as compared to moving the entire
problem domain from producer to consumer?

3. Are these results consistent across multiple data producers and
consumers?

We begin with a study that uses a miniapplication (§3.1). That
study reveals some of these key performance insights where we
see the advantages that result from our design in terms of reduced
runtime, reduced amount of data moved, and other measures. We
extend this testing paradigm to a full-scale numerical simulation,
IAMR [ABC∗98], and see that these same performance gains from
the miniapplication study also persist when using a full scale nu-
merical code (§3.2).

3.1. Default vs. Optimized Partitioner at Varying
Concurrency with a Miniapplication

3.1.1. Methodology

We focus on measuring the performance gains that result when we
are able to leverage the data model metadata to reduce the amount
of data being moved from the M producer ranks to the N end-
point ranks. Further, we seek to gain some insight into the selec-
tion of a reasonable value for the ratio of simulation ranks, M, to
data processing ranks, N, for the operations at hand. To study these
questions, we use one of the SENSEI miniapplications, oscil-
lators, on NERSC’s Cori Cray XC40 supercomputer. For two
common extract operations, slice and isosurface, we explore four
different performance measures under varying levels of endpoint
concurrency when using default and optimized partitioners. In this
battery of tests, we wish to better understand a broad set of perfor-
mance metrics and at varying levels of concurrency.

Here, we configure the oscillators to run for 10 time steps
with with a 40963 mesh decomposed into 8192 blocks onto 8192
MPI ranks. The plane used to compute the slice extract is defined
by the point, ~x = .5, .5, .5, and the normal, ~n = .8,−.5, .3. Three
iso-values,−.25,1.25,3.25, were used when computing iso-surface
extracts. These configurations were selected to produce non-trivial
extracts and are shown at one time step in the left most panel of
figure 5. Both oscillators and endpoint were configured to use
the ADIOS 1.13.1 I/O library with the FLEXPATH staging method
for data movement.

In a series of runs we vary endpoint concurrency from 128 to
8192 ranks in power-of-2 steps. The total concurrency account-
ing for both miniapp and endpoint therefor varies from 8320 up
to 16384 MPI ranks. A group of runs were made for each geomet-
ric extract mode, slice and iso-surface. Within each group of runs,
there are two sub-groups of runs, the first makes use of optimized
partitioners, the second does not. The set of runs we made are sum-
marized in table 1.

To assess the impact that the partitioning method and the ratio of

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.



B. Loring et al. / Improving Performance and Portability of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization

Figure 6: Scaling study results for M=8192 simulation ranks, with 8192 blocks, while N end-point ranks vary from 128 up to 8192 in power of 2 steps. Top
row: iso-surface extract. Bottom row: slice-extract. Column 1: cumulative data moved to the end-point on the rank w/ largest data movement. Column 2: RSS
high mark on rank w/ largest memory use. Column 3: time to solution. Column 4: total cost of run.All: red line represents runs w/ optimized partitioner, blue
represents runs w/ default partitioner, and orange shows the average number of active blocks.

simulation ranks, M, to data processing ranks, N, has on the given
extract operation, for each run we measure data moved per-rank,
memory used per-rank, and total runtime.

3.1.2. Results

The results shown in Fig. 5 illustrate the visual output as well as
a measure of the amount of data moved in each of the default and
optimized partitioner configuration. The left column shows the ex-
tracted geometry, the middle column shows the set of blocks that
were used in the calculation, the right columns shows all the blocks.
When the optimized partitioner is in use, the white colored blocks
were not moved from the simulation to the endpoint nor processed
by the endpoint when the optimized partitioner was in use. The line
plot shows, at varying simulation time steps, the fraction of the full
dataset moved from producer to endpoint for both isosurface and
slice computation. For the three isosurfaces computed, only about
25% of the data contributes to a solution, and needs to be moved.
An exception is at the first timestep, where the simulation has not
evolved the computation to the point where the output has any cells
that contain the isovalue. In the case of the slice, only about 10% of
the mesh cells intersect the slice plane, and contribute to the final
solution.

Measurements from our experiments are presented in Fig. 6. The
top row shows isosurface extract run results, while the bottom row
shows slice extract run results. We present 4 metrics, from left to
right: cumulative data moved to the end-point on the rank with the

largest value, RSS (resident set size) memory utilization high water
mark on the endpoint rank with the largest value, time to solution
in seconds, and total cost of solution in terms of CPU hours.

Time to solution, ts, is defined as the period from the start of
the simulation to the end of either the simulation or end-point
which ever ends last. The cost of solution, cs, metric is defined as
cs = ts · (N +M)/3600 where M is the number of simulation ranks
and N is the number of end-point ranks. In all plots a red solid line
corresponds to runs made with optimized partitioners, while a blue
dashed line to those made with the default partitioner. A vertical
orange line shows the average number of active blocks as identi-
fied by the optimized partitioners. For the optimized partitioners
this line falls at or approximately at the number of end-point ranks
where each rank has 1 block of data to process. The middle column
in the left of Fig. 5 shows a visualization of the active blocks at one
time step.

For both extract geometries, runs made with the default par-
titioner show the expected doubling trend in the rank wise data
movement and RSS memory use metrics as endpoint ranks are
halved in each step. In the case of the optimized partitioners, which
exclude blocks not needed in the calculations, rank wise data move-
ment and RSS are flat at end-point concurrencies above the number
of active blocks. Below that level of concurrency the expected dou-
bling trend is present. Note that RSS metrics follow the general
trend but have some jitter, which we think could be explained by

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.



B. Loring et al. / Improving Performance and Portability of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization

the combination of data dependencies such as varying block sizes
and dynamic memory allocation algorithms.

With the default partitioner, the time to solution curves show a
distinct knee at 512 ranks. Decreasing endpoint resources below
this level results in drastic increases in runtime as each rank is
given more blocks to process. On the other hand, with the opti-
mized partitioner for the isosurface extract runtime only slightly
increases when decreasing endpoint ranks all the way down to 128
ranks. With the optimized partitioner for the slice extract, runtime
is lowest at 128 ranks, the smallest endpoint concurrency in our test
matrix.

With the default partitioner for both extract types there is a dis-
tinct minimum cost of solution. The parabolic shape of this curve
makes sense given that at endpoint concurrencies above the active
number of blocks not all of the blocks moved and processed con-
tribute to the solution, while at concurrencies below this level mul-
tiple blocks are moved to and processed by each endpoint rank. In
the case of the former, adding more ranks results in no speed up.
In the case of the latter increasing the number of blocks moved to
and processed by each rank slows things down. This result shows
that when trying to minimize the cost of solution it is important to
select the appropriate M to N ratio.

With the optimized partitioner for the isosurface extract cost is
lowest at 512 ranks, but not drastically higher below this, while
for the slice extract cost is lowest at the smallest run we made,
128 ranks. The optimized partitioners provide a clear benefit when
running with fewer endpoint resources resulting in drastically lower
time to and cost of solution.

3.2. Results with an AMR-based Numerical Simulation

3.2.1. Methodology

Here we explore the performance differences that result when using
a default and optimized partitioner for an in transit use scenario that
includes a complex, AMR-based numerical simulation. We wish to
better understand the potential gains realizable in actual simulation
code as compared to a miniapplication.

We instrumented the AMReX framework [ea19] for use with
SENSEI. This gives us access to a wide variety of block structured
adaptive mesh refinement(AMR) simulations for testing. In these
experiments we made use of the AMReX based IAMR compress-
ible Navier-Stokes code [ABC∗98] configured for the simulation
of a Rayleigh-Taylor instability modeling the mixing of two fluids
of different densities under the influence of gravity. The Rayleigh-
Taylor instability produces a set complex iso-surfaces that evolve
in time.

The experiments presented in Sec. §3.1 hint that lower time to
and cost of solution may be obtained when M >> N. In light of
this, we selected M = 8192 simulation ranks and N = 128 data
processing ranks for the following experiments. In preparation for
a detailed performance analysis we ran IAMR for 440 time steps
to evolve the simulation to a point where the fluid interface is com-
plex. During this initial phase, cursory measurements were made.
Later, once the simulation had evolved, detailed performance ex-
periments were made over ten time steps while an isosurface ex-
tract was produced at each step. As in Sec. §3.1 these experiments

Figure 7: Top: Isosurface. Middle: The blocks that were used to
compute the isosurface colored by block id. Bottom: Level 1 blocks
that were not needed to compute the isosurface. Level 0 blocks were
not rendered in the bottom most panel since they occlude the level
1 blocks. When the optimized partitioner is used only the blocks
shown in the middle panel are moved and processed.

center around running with and without the optimized partitioner
and the same metrics are analyzed.

In these runs IAMR was configured for a base level of 10242 x
2048 cells, 1 level of refinement, and was run with M=8192 ranks,
with 4 OpenMP cores per rank, on 1025 KNL nodes of NERSC’s
Cori system. The total number of cores used by IAMR was 32768.
The endpoint was run on 9 nodes with N=128 MPI ranks. The slice
extract was configured to calculate an iso-surface in fluid density at
the value 9536669.198.

One challenge in processing AMR data is that data blocks from
refined levels duplicate and cover, either partially or fully, data
blocks from coarse levels. Care must be taken when computing

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.



B. Loring et al. / Improving Performance and Portability of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization

Figure 8: Data moved during initial runs of the IAMR Rayleigh-
Taylor problem. The data moved when the optimized partitioner
is used (red line) is substantially less than the data that would be
moved if a default partitioning algorithm is used (blue line).

Figure 9: Time spent during simulation and iso-surface extraction
during the 10 time steps 430 to 440. Height of the shaded areas
gives the time for that operation. The areas are stacked showing
the total time for both operations.

Figure 10: A comparison between default and optimized parti-
tioner performance over the 10 time steps 430 - 440. From left
to right, time averaged per-step total data moved from simulation
to endpoint, Max RSS of all endpoint ranks across all time steps,
Time to solution in seconds, Cost of solution, time averaged per-
step processing time. In all plots the blue bar indicates the default
partitioner while the red bar indicates the optimized partitioner. In
the right most plot gray bars indicate the solver time.

metadata and applying partitioning algorithms. For instance in the
calculation of per-block array min and max we use to determine if
an iso-surface intersects a block, one should not make use of data
from the cells of that block which are covered by cells from a block
in a more refined level, since covered cells are duplicated in the re-
fined level and hence the iso-surface will be as well. Our AMReX
specific data adaptor handles this aspect of the metadata calculation
and as a result the optimized iso-surface partitioner can run without
modification. The ability to handle complex dataset types such as
AMR meshes, illustrates the flexibility of our approach.

3.2.2. Results

During the initial runs, where the simulation was advanced to an
interesting state, the isosurface extraction with the optimized parti-
tioner was periodically invoked and data movement and block par-
titioning metrics were captured. The isosurface extracted at time
step 420 is shown in Fig 7 in the top panel, along with the 4771
level 1 blocks that intersect this isosurface in the middle panel, and
the 5691 level 1 blocks that do not intersect it in the bottom panel.
In time step 420 there were a total of 18654 blocks, only 4795 of
which intersect the isosurface. The middle and bottom plots in Fig 7
leave out all 8192 level 0 blocks, of which only 24 intersected the
isosurface, since if rendered they would occlude the more interest-
ing level 1 blocks. Fig 8 shows the amount of the data moved at
each time step for isosurface extraction with the optimized parti-
tioner (red line) compared to the total data size (blue line). In the
worst case, the optimized partitioner moved less than 40% of the
data.

The results of detailed experiments conducted over time steps
430 to 440 are presented in Figs. 9 and 10. Fig. 9 shows the time
spent, per time step, updating the simulation and computing iso-
surface extractions. Results for the run made with the default par-
titioner are on the left and the optimized partitioner on the right.
In these plots the height of the shaded regions give the time of the
operation, here either simulation or isosurface extraction. Shaded
regions are stacked such that the total height gives the total time for
both operations. In the plots, time spent updating the simulation is
on the bottom in cyan with time spent isosurfacing stacked above.
The panel on the left shows the results obtained with the default
partitioner and the panel on the right those obtained with the opti-
mized partitioner. With the optimized paritioner, for all but the first
step, the time spent in the isosurface extraction (red) is less than
2 seconds per step, a significant speed up compared to when the
default partitioner is used.

Fig. 10 shows a comparison between the default (red) and opti-
mized (blue) partitioner, using the metrics: GB of data moved per
step; GB memory used (max RSS high water mark) on the endpoint
rank with the largest value; time to solution; cost of solution; and
processing time per-step. Improved performance across all metrics
is observed when the optimized partitioner is used. These results
illustrate that the technique can be beneficial when applied to a
highly complex realistic simulation.

The software and hardware configurations used in this exper-
iment differ from those presented in §3. Due to a limitation in
the ADIOS 1.13.1 FLEXPATH implementation in order to handle
AMR data we had to upgrade to ADIOS 2.5.0. This also enabled us

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.



B. Loring et al. / Improving Performance and Portability of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization

to make use of a new RDMA engine for data movement that lever-
ages Cray GNI infrastructure deployed with 2.5.0. RDMA over
GNI should be a substantial improvement over the socket based
implementation available in 1.13.1. Lastly, due to long queue wait
times on Cori we made use of KNL partition for these experiments.
Cori’s KNL nodes have one socket with 68 cores and 96 GB of
RAM per node. Generally speaking, in our benchmarks KNL ar-
chitecture proved slower compared to the Haswell.

4. Related Work

The idea of processing data as it is generated has been around for
decades, with some of the earliest work consisting of a direct-to-
film recording process from the 1960s. That work, along with a
thorough survey of work in the in situ and in transit space is in a
2006 Eurographics STAR report [B∗16].

Early work on in transit infrastructure in the HPC space includes
the CUMULVS project, which is middleware for coupling codes
running at different levels of concurrency and for moving data be-
tween them in a M-to-N fashion [GKP97]. A more recent CU-
MULVS report from 2006 [KWB06] includes a survey of related
projects focusing on M-to-N data partitioning and distribution on
HPC platforms, some of which go back to the mid 1990s.

More recently, ADIOS [L∗14], a parallel I/O library with a
POSIX like API, provides in transit processing through it mem-
ory based staging methods, including FLEXPATH [D∗14], Datas-
paces [DPK12], and DIMES [Z∗17]. HDF5 is also an I/O library,
which has been shown to be useful for in transit processing where
data between producer and consumer is staged on high speed
NVRAM [G∗19]. libIS [U∗18] is a lightweight library for in transit
data transport, which uses a client-server model where clients (con-
sumers) can request data from servers (producers) on an as-needed
basis.

Over the years, several efforts have studied whether an in situ
or in transit configuration will produce lowest cost, typically time-
to-solution, for a given problem configuration. Oldfield et al.,
2014 [O∗14] evaluate post hoc, in situ, and in transit in the con-
text of analysis and tracking of features in simulation output. They
identify situations in which in transit or in situ approaches are more
or less advantageous, such as in transit being advantageous when
analysis computations are more complex and time consuming. Mo-
rozov and Lukic, 2016 [ML16] examine in situ and in transit con-
figurations of a cosmological simulation coupled with a two-stage
analysis pipeline, and find that when the analysis and simulation
codes have different scaling properties, that it is advantageous to
use in transit configurations. Kress et al., 2019 [K∗19] study scal-
able rendering and aim to find the best balance of M to N producer
and consumer ranks across different levels of concurrency by con-
sidering cost models for both in situ and in transit configurations.

The focus of our work here is on the design, implementation,
and performance evaluation with focus on the performance gains
that can result from leveraging metadata for partitioning and mov-
ing data from producer to consumer ranks in an in transit configura-
tion. A similar idea appears in Childs et al., 2005 [C∗05], which de-
scribes the “contract” system in the VisIt application that results in
optimizations of data movement through the visualization pipeline:

downstream processing stages inform upstream stages of the data
subsets needed to perform a specific computation. Our performance
study uses some of the same use scenarios from that work, namely
planar slicing and iso-contouring, to illustrate the gains that result
from optimizing data partitioning and movement. Whereas that ear-
lier work measured and reported runtime improvement in the set-
ting of an interactive GUI based post processing visualization ap-
plication where the stages of their pipelines ran in the same pro-
cess address space and data was provided by disk based I/O, our
work here investigates similar approach applied in a setting where
the data produced by a simulation is immediately moved to and
processed in a separate application running at a different level of
concurrency. In our work fast interconnects are used to move data
and as such it never hits the disk, and we look beyond runtime
into deeper levels of performance analysis. For each of the default
and optimized configurations, we measure and report, in addition
to runtime, the amount of data moved between producer and con-
sumer ranks, and the memory footprint of producer and consumer
ranks. These additional measurements beyond runtime provide sig-
nificantly deeper insight into the benefit of the optimizations for in
transit data partitioning and placement.

5. Discussion and Future Work

The two examples, slicing and isosurfacing, both represent rela-
tively common visual analytics tasks for scientific applications as
well as good ways to illustrate the power of a uniform metadata
model in enabling more intelligent access and query support at run-
time. Our metadata supports multiple partitioning choices that we
demonstrated: a quick-to-adopt default scenario with striping, and
an efficient way through careful pre-selection of data in the “opti-
mized” partitioner. The role of the partitioning strategy had a signif-
icant runtime performance impact as the ratio of simulation ranks
(M) to end-point ranks (N) increased, and the simple infrastructure
allowed us to rapidly explore how best to tune the relative scaling
of the application and the visualization analytics.

As future work, one key aspect to continue to explore is how
visualization applications can move from the desktop to extreme
scale computing platforms. Because analysis and simulation scale
in different ways, overall performance improvement for compu-
tation experiments may lie in composing workflows to utilize in
transit and additional resources rather than doing analysis in situ at
scale. How to best utilize that capability leverages thinking about
the metadata extensions that we’ve presented to create partitioners
that minimize the trade-offs of network communication across a
variety of workflows.

Aligned with that future work direction is a need to better catego-
rize and understand the performance classes of different analytics
components as they scale. We anticipate rich future work involv-
ing classification of such analysis and quantifying how best to co-
design cooperative components so that they leverage M to N to L to
P to .. compositions. There is also a substantial need to address how
performance and provenance information is captured so that results
generated in transit or in situ can be made reusable and verifiable.
Additionally, the data flow necessary to enable better partitioners is
a form of computational steering, based on a bidirectional control
flow. Extending the metadata model to understand a general frame-

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.



B. Loring et al. / Improving Performance and Portability of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization

work for advanced controls of execution management is another
exciting opportunity.

Challenges do exist for this approach. For example, composi-
tion of reduction with visualization/analysis changes the nature of
scaling and the types of metadata required. Some applications, like
ray-tracing, do not have easy, index-based techniques for making
partitioning choices, since rays can end up anywhere. This repre-
sents an interesting opportunity to explore other sorts of runtime
compositions, but its use of partitioners would likely focus more on
duplication of data, rather than priority selection. Lessons learned
from these applications might lead towards a more general query
interface between data and analysis adaptors, which would require
careful performance tuning.

6. Conclusion

In in transit processing, one of the central challenges is moving data
from the M producer ranks to the N consumer ranks. We present a
design pattern for a flexible, general purpose solution to this chal-
lenging problem. Our implementation adds new in transit capabil-
ities to the SENSEI generic in situ interface, and we demonstrate
its scalablility by running at up to 16K-way concurrency on a large
HPC platform. We demonstrate its generality through two different
examples, one of which is a sophisticated adaptive mesh refine-
ment (AMR) code. Our performance evaluation measures runtime,
amount of data moved, and time to solution to help reveal the nature
of performance gains possible when using an optimized partitioner
that moves only those portions of the data needed by the consumer.
Future work will include broadening scalability studies to include
additional transport options, and to explore more broadly across
a spectrum of heterogeneous resources that are emerging on large
HPC platforms.

Acknowledgement

This work was supported by the Director, Office of Science, Of-
fice of Advanced Scientific Computing Research, of the U.S. De-
partment of Energy under Contract Nos. DE-AC02-05CH11231
and DE-AC01-06CH11357, through the grant “Scalable Analysis
Methods and In Situ Infrastructure for Extreme Scale Knowledge
Discovery”, program manager Dr. Laura Biven. This research used
resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. Argonne National Laboratory’s work
was supported by and used the resources of the Argonne Leader-
ship Computing Facility, which is a U.S. Department of Energy,
Office of Science User Facility supported under contract DE-AC02-
06CH11357.

References
[A∗16] AYACHIT U., ET AL.: The SENSEI Generic In Situ Interface. In

Proceedings of In Situ Infrastructures for Enabling Extreme-scale Analy-
sis and Visualization (ISAV 2016) (Salt Lake City, UT, USA, Nov. 2016).
2

[ABC∗98] ALMGREN A. S., BELL J. B., COLELLA P., HOW-
ELL L. H., WELCOME M. L.: A conservative adaptive

projection method for the variable density incompressible
navier–stokes equations. Journal of Computational Physics 142,
1 (1998), 1 – 46. URL: http://www.sciencedirect.
com/science/article/pii/S0021999198958909,
doi:https://doi.org/10.1006/jcph.1998.5890. 5,
7

[B∗16] BAUER A. C., ET AL.: In Situ Methods, Infrastructures, and Ap-
plications on High Performance Computing Platforms, a State-of-the-
art (STAR) Report. Computer Graphics Forum, Proceedings of Eurovis
2016 35, 3 (June 2016). 1, 9

[C∗05] CHILDS H., ET AL.: A Contract-Based System for Large Data Vi-
sualization. In Proceedings of IEEE Visualization (Vis05) (Minneapolis,
MN, Oct. 2005), pp. 190–198. 9

[D∗14] DAYAL J., ET AL.: Flexpath: Type-based publish/subscribe sys-
tem for large-scale science analytics. In 2014 14th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (2014), IEEE,
pp. 246–255. 9

[DPK12] DOCAN C., PARASHAR M., KLASKY S.: Dataspaces: an in-
teraction and coordination framework for coupled simulation workflows.
Cluster Computing 15, 2 (Jun 2012), 163–181. 9

[ea19] ET AL. Z.: AMReX: A Framework for Block-Structured Adaptive
Mesh Refinement. Journal of Open Source Software 4, 37 (2019), 1370.
doi:10.21105/joss.01370. 7

[G∗19] GU J., ET AL.: HDF5 as a vehicle for in transit data movement.
In Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (2019), ACM. 9

[GKP97] GEIST G. A., KOHL J. A., PAPADOPOULOS P. M.: CU-
MULVS: Providing Fault-Tolerance, Visualization and Steering of Paral-
lel Applications. International Journal of High Performance Computing
Applications 11, 3 (Aug. 1997), 224–236. 9

[K∗19] KRESS J., ET AL.: Comparing the efficiency of in situ visual-
ization paradigms at scale. In International Conference on High Perfor-
mance Computing (2019), Springer, pp. 99–117. 9

[KWB06] KOHL J. A., WILDE T., BERNHOLDT D. E.: Cumulvs: In-
teracting with high-performance scientific simulations, for visualization,
steering and fault tolerance. The International Journal of High Perfor-
mance Computing Applications 20, 2 (2006), 255–285. 9

[L∗14] LIU Q., ET AL.: Hello ADIOS: the challenges and lessons of
developing leadership class I/O frameworks. Concurrency and Compu-
tation: Practice and Experience 26, 7 (2014), 1453–1473. 9

[MDK19] MORTENSEN M., DALCIN L., KEYES D.: mpi4py-fft: Paral-
lel fast fourier transforms with mpi for python. Journal of Open Source
Software 4 (04 2019), 1340. 4

[ML16] MOROZOV D., LUKIĆ Z.: Master of puppets: Cooperative mul-
titasking for in situ processing. In Proceedings of the Symposium on
High-Performance Parallel and Distributed Computing (HPDC) (2016),
pp. 285–288. 9

[O∗14] OLDFIELD R. A., ET AL.: Evaluation of methods to integrate
analysis into a large-scale shock shock physics code. In Proceedings of
the 28th ACM International Conference on Supercomputing (2014), ICS
’14, pp. 83–92. 9

[U∗18] USHER W., ET AL.: libis: a lightweight library for flexible in
transit visualization. In Proceedings of the Workshop on In Situ Infras-
tructures for Enabling Extreme-Scale Analysis and Visualization (2018),
ACM, pp. 33–38. 9

[Z∗17] ZHANG F., ET AL.: In-memory staging and data-centric task
placement for coupled scientific simulation workflows. Concurrency and
Computation: Practice and Experience 29, 12 (2017), e4147. 9

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.

http://www.sciencedirect.com/science/article/pii/S0021999198958909
http://www.sciencedirect.com/science/article/pii/S0021999198958909
https://doi.org/https://doi.org/10.1006/jcph.1998.5890
https://doi.org/10.21105/joss.01370


B. Loring et al. / Improving Performance and Portability of M-to-N Processing and Data Redistribution in In Transit Analysis and Visualization

Appendix A: Metadata Table

Name Purpose

dataset
GlobalView tells if the information describes data on this rank or all ranks
MeshName name of mesh
MeshType container mesh type
BlockType block mesh type
NumBlocks global number of blocks
NumBlocksLocal number of blocks on each rank
Extent global index space extent†,§,∗

Bounds global bounding box∗

CoordinateType type enum of point data‡

NumPoints total number of points in all blocks∗

NumCells total number of cells in all blocks∗

CellArraySize total cell array size in all blocks∗

NumArrays number of arrays
NumGhostCells number of ghost cell layers
NumGhostNodes number of ghost node layers
NumLevels number of AMR levels (AMR)
PeriodicBoundary indicates presence of a periodic boundary
StaticMesh non zero if the mesh does not change in time

array
ArrayName name of each data array
ArrayCentering centering of each data array
ArrayComponents number of components of each array
ArrayType type enum of each data array
ArrayRange global min,max of each array∗

block
BlockOwner rank where each block resides∗

BlockIds global id of each block∗

BlockNumPoints number of points for each block∗

BlockNumCells number of cells for each block∗

BlockCellArraySize cell array size for each block‡,∗

BlockExtents index space extent of each block†,§,∗

BlockBounds bounds of each block∗

BlockLevel AMR level of each block§

BlockArrayRange min max of each array on each block∗

AMR level
RefRatio refinement ratio in i,j, and k direction§

BlocksPerLevel number of blocks in each level§

∗ - present only if requested, † - with Cartesian meshes, ‡ - with unstructured meshes, § - with AMR meshes

Table 2: Metadata fields available in the enhanced data model describe data and its mapping onto a set of hardware resources.

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.




