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ABSTRACT OF THE DISSERTATION 
 

Trip Chaining Complexity, Variability, and Pattern using Longitudinal GPS Data 

By 

Xiaoxia Shi 

Doctor of Philosophy in Transportation Science 

University of California, Irvine, 2017 

Professor Douglas Houston, Chair 

Trip chaining is a common phenomenon generally known as linking multiple activities and trips 

in one travel process. A good understanding about trip chaining complexity is important for travel 

demand model development and for transportation policy design. However, most of the existing 

studies on trip chaining limit the complexity classification scheme on number of trips chained and 

neglect other dimensions that also elevate the degree of complexity. The purpose of this study is 

to develop a new approach, Tour Complexity Index (TCI), that integrates the multi-dimensional 

nature of trip chaining into the complexity assessment. The study contains three analysis 

components. The first component introduces the TCI approach as a trip chaining complexity 

measure that not only considers number of trips chained but also includes the spatial relationship 

across destinations, the route arrangement, and the urban environment of the destinations. By 

comparing descriptive statistics and generalized linear model results from TCI approach with those 

from traditional approach, we find that the TCI approach offers more information regarding trip 

chaining and mode choice. The application of TCI is further demonstrated in the following 
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components. The second component investigates the intrapersonal daily and weekly travel 

variability with travel characterized by TCI and mode choice. The result reinforces an argument 

in current literature that the common single-day travel survey may produce biased estimation due 

to the day-to-day variance in travel behavior. Result also finds that proximity to a new transit 

service from place of residence is connected with a decline in variability. The third component 

explores a framework for travel pattern recognition where pattern is characterized by TCI as well. 

The discrepancy analysis which is a generalized analysis of variance (ANOVA) method is applied 

to associate individual characteristics with travel pattern. In addition, both components use 

Sequential Alignment Method (SAM) for travel pattern representation. The TCI approach and 

proposed analysis frameworks are validated using the longitudinal GPS trajectory data collected 

between 2011 and 2013 at west Los Angeles area for Expo Study. 
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Chapter 1 Introduction 

Background 

The major goal of Senate Bill 375 (SB375) is to reduce greenhouse gas (GHG) emission through 

adoption of a series of sustainable urban development strategies. One of its main strategies is 

encouraging people to use other travel modes as an alternative to gasoline-consuming vehicle. We 

know little about, as more residents transfer from auto-oriented travel to other modes, how will 

their activity arrangements be influenced? Investigation into such travel behavior adjustment is 

important for understanding the potential impact of policies for compact development such as 

SB375. 

The research seeks to understand how urban residents link trips and group activities, and how these 

patterns vary by (1) travel mode, (2) built environment, (3) day of the week, and (4) individuals 

with different social-demographical background. It helps assess ways in which these patterns are 

potentially impacted by the construction of a new light rail transit service. It sheds light on how 

predictable people are in terms of the interpersonal and intrapersonal variability in the way multiple 

activities are chained together. It will also provide implications on the development of activity-

based travel demand theories and empirical demand models. 

Policy Context 

Adopted in 2006, Assembly Bill 32 (AB 32), Global Warming Solutions Act of 2006, sets a 

statewide GHG emission reduction goal in California. SB375, the Sustainable Communities and 

Climate Protection Act of 2008, is a state legislation designed to support AB 32 on vehicle-related 

GHG reduction. It requires local and regional governments to adopt and incorporate a development 
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plan (Sustainable Communities Strategy, known as SCS) that provides greater integration of land 

use and transportation planning in order to reduce travel demand and to encourage non-auto travel. 

The Regional Transportation Plan (RTP) is a long term transportation plan developed by local 

Metropolitan Planning Organizations (MPOs), such as Southern California Association of 

Government (SCAG), every four or five years. It aims to provide a vision for future regional 

transportation investment over a period of 20 years. Under the requirement per SB375, each MPO, 

like SCAG, must incorporate a Sustainable Communities Strategy (SCS) into their RTP to reduce 

GHG emission. The SCS puts the local level development focus on the denser, mixed-use, transit-

oriented communities that could lead to less vehicle miles traveled (VMT) and GHG emission. A 

set of targets were developed by Air Resource Board (ARB) in 2011 to ensure a region's SCS 

meets the preset regional goal on vehicle-related GHG reduction if it is adopted. The measurement 

includes: VMT, daily trips per household and share of various travel modes. The latest regional 

target for the SCAG region is 9% per capita by 2020 and 16% by 2035 (SCAG, 2016). 

SCAG's currently-adopted 2012-2035 RTP/SCS covers six counties in Southern California. It is 

implemented to facilitate the reduction of VMT and GHG through a strategy that bundles land use, 

transportation, transportation demand management and regional transit project. Its target is "to 

improve our environment quality while providing mobility for our residents" (SCAG, 2016). The 

plan emphasizes the transit-oriented-development (TODs) within the existing and planned transit 

corridors. This 2012-2035 SCS introduces a definition for the concept of "High-Quality Transit 

Areas" (HQTA), which are areas within 1.5 miles of a well-serviced transit stop. Substantial future 

distribution of new job and housing in the region is targeted for these designated HQTAs. The 

expected target is 51% of new employment growth and 53% of new housing. The significance of 



	 3 

the integration of land use and public transportation facility lies in its potential to potentially 

increase alternative transportation options and improve regional accessibility and mobility (SCAG, 

2016). 

However, the question that how people would regroup their activity location and schedules in 

response to a new transportation option remains limited. A "tour" is a basic analysis unit in travel 

behavior context which refers to the grouping and sequence of trips (trip chaining); understanding 

how tour characteristics change over time and across modes could provide important insights for 

policy makers. Besides observing how the travel patterns and tour behavior changes over time, it 

is also important to have a better understanding how people with different needs differ in travel 

behavior. This could eventually help improve the overall urban mobility by assisting researchers 

to develop more accurate travel demand models and to design policies that reflect different 

population groups’ needs. 

The following content of this introductory chapter is organized in this way: the research framework 

is first illustrated graphically as an overview of the entire study. The research motivation, goal and 

purpose are briefly summarized as a complementary part to the framework diagram. Then, the 

research objectives, questions, background, expected outcomes, assumptions and limitations are 

presented at a component-specific level. The chapter ends with a discussion about the significance 

and contribution. 

Research Framework 

The research draws from a multi-day, multi-year GPS-based dataset from the longitudinal Expo 

Line Study of travel behavior near a new light rail service in Los Angeles (discussed in Chapter 
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2). It is a three-component research framework (Figure 1-1) that first investigates the tour 

complexity to obtain a better understanding on the mechanism of trip chaining behavior 

(Component I), then examines the within-individual difference in trip chaining behavior through 

out the week and across years. Last but not least, the research evaluates the between-individual 

deviance in scheduling and tendency of complex trip chaining behavior. 

 
Figure 1-1 Research Framework 

The complexity of trip chaining behavior is an emerging topic in travel behavior research field. A 

better understanding about trip chaining complexity is important for travel demand modeling and 

for transportation policy evaluation. Previous studies of trip-chaining have mostly paid attention 

to the magnitude of trip chaining (i.e. how many intermediate trips are inserted in a tour). This 

component aims to extend the conventional approach in trip chaining complexity study into a 

multi-dimension approach. Using the evidence from a GPS trajectory database, this study is able 

to examine how trip chaining complexity level can be further discriminated according to the spatial 
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relationship between activity locations, the route choice, and the urban environment of activity 

locations. This component also offers an exploration about how GPS trajectory data can contribute 

to trip chaining studies, considering the existing trip chaining literature is dominated by traditional 

travel surveys and heavily relies on the self-reported information such as trip purpose and other 

people presents. The tour complexity measurement discussed in this component more directly 

incorporates routing and location characteristics into the overall evaluation compared to the 

traditional approach. 

With the measurement of tour complexity is established, the next questions are whether the tour 

complexity is stable across time for the same individual and whether the tour complexity pattern 

is closely related with characteristics of individuals. The former question leads to the analysis 

Component II while the latter directs to Component III. Attention has been received about 

intrapersonal (within the same individual) day-to-day travel behavior variability since 1980s (Pas, 

1987). The clarification of this variability issue is very important in that it directly affects the travel 

survey design, data collection method, and modeling techniques. However, the amount of research 

in this area is still limited, partially due to the availability of suitable datasets. More specifically, 

the investigation into variability requires repeated measurement for the same individuals over a 

certain period of time. Expo tour dataset contains three waves of week-long travel data for all 

participants so it is ideal for intrapersonal variability study. On the other hand, trip chaining has 

been a key element to travel demand modeling development, from trip-based, tour-based, to 

activity-based model. But no research has extended the travel behavior variability involving tours 

to any dimension beyond tour frequency. In fact, none of the reviewed literature has specifically 

focused on the intrapersonal variability in trip chaining. Therefore, Component II would be the 
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first study that examines the within-individual variability of trip chaining behavior with trip 

chaining characterized by complexity.  

While Component II targets at intrapersonal variability of trip chaining, Component III focuses on 

extracting representative tour patterns, of which the logic is identical to analyze interpersonal 

(between individuals) deviance. The importance of representative travel-activity pattern lies in that 

it is the foundation to the development of transportation policy and travel demand modeling. The 

recognition of representative patterns enables the assessment of the connection between travel 

patterns and social-demographical characteristics. The relationship then provides operational 

guidance to further theoretical and empirical research in travel behavior. Most of the literature 

about travel-activity pattern focused on the activity pattern rather than travel pattern. Indeed, 

activity induces travel. But an investigation on travel pattern could offer information that is directly 

related with the transportation network. In Component III, the tendency on choosing different 

complexity level of trip chains is analyzed as an aspect of the overall travel-activity pattern. The  

process of a home-based tour is also a process to meet out-home activity needs. The activity needs 

determine the choice of destinations, schedules and routing of the tour. Trip chaining pattern 

provides a new perspective from which researchers can understand the overall travel-activity 

pattern. In addition, Component II and III are the first attempts about interpersonal and 

intrapersonal variability of trip chaining behavior that based on the urban context of southern 

California. 
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Component I: Tour Complexity and Mode Choice 

Objective 

To apply an expanded "tour complexity" measurement for assessing the connection between trip 

chaining complexity and travel-related factors through analysis of GPS-based tour data collected 

before and after the opening of a new transit facility. 

Research Goal and Question 

1. Propose a tour complexity measurement and compare it with the traditional binary 

classification scheme 

2. Examine the relationship between tour complexity and public transit usage 

3. Investigate how tour complexity is affected by travel-related factors 

4. Explore how activity location influences tour complexity and mode choice 

Background 

A trip chain or tour is defined as a series of grouped trips involving multiple stops and activities. 

Most chained trips originate and end at home or work place. The intermediate stops or legs may 

include a change in travel mode or trip purpose. Table 1-1 presents a summary of three popular 

definitions on "tour/chained trip/trip chain" from the previous studies. In 2003, FHWA adopted an 

operational definition of "trip chain" that the duration of intermediate stops within a trip chain 

should not exceed 30 minutes. A stop longer than 30 minutes signals the end of a tour. Some 

studies use a different definition of a "trip chain" and defined that a tour should start and end at 

home (Jing Ma, Mitchell, & Heppenstall, 2014). In these two cases, either temporal or location 

constraint is applied. Though there is no universal definition of what constitutes a trip chain, it is 
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widely agreed that trip chaining is very common. The Australia national household travel survey 

indicates that about half of work trips and over a third of non-work trips involve more than one 

stop outside the origins and the destinations (Currie & Delbosc, 2011). A Beijing study has found 

52.1% of the home-based work tours have more than one leg (Jing Ma et al., 2014). In U.S., the 

2001 National Household Travel Survey (NHTS) reports that 27% (18.8 million) of weekday 

commuters have chained trips; the report also claims that the share of trip chaining may be 

increasing over the years (McGuckin, Zmud, & Nakamoto, 2005). 

Table 1-1 Definition of "Tour" 
Definition Research 

a series of grouped trips with intermediate stops 
not exceeding 30-minute activity duration 

McGuckin et al., (2005); Santos, McGuckin, 
Nakamoto, D., & Liss (2011) 

a series of trips that starts and ends at home; any 
trips outside of home are considered as legs Lee & McNally (2006); Bowman (2000) 

a tour that starts and ends at either home or the 
location where the primary activity occurs, usually 
work place 

Jou & Mahmassani (1997); Currie & Delbosc 
(2011) 

Promoting trip chaining has been proposed as a trip reduction strategy (McGuckin et al., 2005). 

Consider the situation that a person has three activities planned outside of home for a day: work, 

grocery shopping and buying a cup of coffee. Without trip chaining, he/she needs to make three 

home-based tour to complete these activities: {Home - Work - Home}, {Home - Coffee - Home} 

and {Home - Shopping - Home}. With trip chaining, this person can minimize the total number of 

tours from three to one: {Home - Coffee - Work - Shopping - Home}. The total time cost and 

traveled distance are reduced as a result. However, does reducing the number of trips by chaining 

help reach the higher-priority goal of reducing VMT? By comparing commuters who chain and 

who do not, McGuckin et al. (2005) concludes that  people who chain have higher annual miles 

traveled than those who travel directly between home and work. The author hypothesizes that 
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people who chain trips tend to take advantage of the saved time from commuting tour and take  

more personal trips. It is still a hot topic for debate in travel behavior area. 

Tour complexity level is a parameter commonly used to characterize trip chaining behavior. After 

being labeled with the complexity level (e.g. “simple”, “complex”), the relationship between 

chaining behavior and other interested variables can be assessed. In most trip chain studies, if two 

or more trips are inserted into a tour, it is classified as a complex tour. For instance, a tour is a 

simple tour if it is composed of {Home - Work - Home} and a tour is classified as a complex tour 

if it is composed of {Home - Work - Shopping - Home}. Several studies find that trip chains are 

becoming increasingly complex due the dispersion of activity clusters and the increasing value of 

time (Hensher & Reyes, 2006; Maat & Timmermans, 2006; Xianyu, 2013). Researchers argue that 

commuters tend to insert personal activities on the way to/from home in order to reach a higher 

living efficiency and to save the time comparing with making separated trips (Xianyu, 2013). A 

few studies, however, reach a contradictory conclusion that no evidence shows modern life leads 

to a bigger demand for complex tours. Currie et al. (2011) using data collected in Melbourne shows 

that between 1994 to 1999 the complexity of chained trips were quite stable and even declined 

slightly, by 0.025 legs per tour per year. 

Three factors are most analyzed with tour complexity: 1) travel mode, 2) individual and household 

characteristics, and 3) trip purpose. Some studies have argued that public transportation is a less 

suitable mode for complex tour activity than vehicles (Hensher & Reyes, 2006). Private vehicle 

trips are more likely to be associated with more complex tours than public transit trips (Hensher 

& Reyes, 2006; Xianyu, 2013). McGuckin et al. (2005) has found that people who chain trips are 

significantly more likely to use private vehicle than those who do not chain. Another study has 
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demonstrated that non-work transit tours are more complex than non-work vehicle tours. If 

multiple public transit modes are examined separately, train and tram chains are generally more 

complex than vehicle chains while bus chains are less complex (Currie & Delbosc, 2011). A broad 

range of social-demographical characteristics are found to be influential to tour complexity as well, 

such as gender, income, marital status and household structure. For example, females are found to 

be more likely to make non-work stops in a tour than males (Hensher & Reyes, 2006). This can be 

explained by the assumption that females share greater household obligations.  According to 2001 

NHTS data, for home-to-work tour, the most common inserted trip purpose is picking-

up/dropping-off passengers (35%) while the most common purpose for work-to-home tour is 

shopping (36%) (McGuckin et al., 2005). The data also shows a trend that commuters tend to insert 

the shopping trip into the work-home tour. The inclusion of shopping and pick-up/drop-off trip 

thus makes a simple tour {Home - Work - Home} into a complex tour { Home - Work - Shopping 

- Home } or { Home - Pick-up/Drop-off - Work - Home }. 

Moreover, evidence suggests that the built environment impacts tour complexity. For example, 

transit-based tours have higher complexity in CBD areas than suburban areas (Currie & Delbosc, 

2011). The same study also points out that rail-based tours are more complex than bus-based tours 

because rail stations usually contain greater concentrations of activity locations. A 2003 Seattle 

study has found that a highly accessible retail center would lead to on average less complex tours 

for households living in the nearby neighborhood (Krizek, 2003). But the study also finds that 

households' destination choice, particularly for maintenance trips, has no significant linkage with 

the presence of nearby retail center. The households in this study tend to complete their 

maintenance trips far away from the neighborhood (Krizek, 2003). 
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The difference in tour complexity by travel mode is often considered to be associated with the 

degree of flexibility with each mode. Many researchers argue that constraints in schedule, route, 

station/stop and uncertainty associated with in public transit limit the level of complexity in a 

single tour (Hensher & Reyes, 2006; Ye, Pendyala & Gottardi, 2007). Several studies take this 

argument one step further by examining the causal relationship between tour complexity and travel 

mode. From a disaggregate level, Xianyu (2013) finds that though the relationship varies among 

individuals, a majority of commuters determine the tour plan prior to the choice on the mode. 

Another study analyzes this interdependency using a simultaneous bi-variate probit model on the 

2000 Swiss travel survey data (Ye, Pendyala & Gottardi, 2007). It finds a causal structure in which 

trip complexity preceded the mode choice fits the sample better than the one using a causal 

structure that assumes mode choice as the primary determinant. The conclusion could be applied 

to both work and non-work tour.  

Contribution 

A review of the existing literature has revealed a problem in trip chaining study. That is, over-

simplified method of tour characterization. Most trip chaining analyses use a single binary 

measurement to classify a simple or complex tour (i.e., the number of intermediate trips/legs) 

(Currie & Delbosc, 2011; Hensher & Reyes, 2006; Xianyu, 2013). If more than one intermediate 

trip presents in a tour, the tour is defined as "complex". Otherwise, the tour is defined as "simple". 

For example, {Home - Work - Home} is a simple tour while {Home - Coffee - Work - Home} is 

a complex tour. However, a {Home - Coffee - Work - Home} tour is defined as complex as a 

{Home - Coffee - Drop-off - Work - Shopping - Laundry - Pick-up - Home} tour. The simplified 

definition is most likely used in previous studies due to the limited trip information provided by 
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the travel surveys. Most previous researches did not use the detailed spatial information obtained 

from the travel survey, such as route and geographical relationship between chained destinations. 

The GPS travel data from the Expo study enables the researcher to explore the possibility of adding 

new measurements variable to trip chaining and tour analysis, such as route features, stop and 

destination location, leg length (trip distance), activity duration, and land use diversity, etc. 

In addition, Component I examines the relationship between tour complexity and travel mode, 

given previous studies have provided contradictive viewpoints and results. Some studies state that 

people are less likely to take public transit because vehicles could meet their demand on tour 

complexity better (Hensher & Reyes, 2006). In general, previous findings regarding work-based 

tours consistently indicate vehicle tours are more likely to be complex than transit tours. On the 

other side, several studies point out that for non-work tours, the average complexity of transit tours 

is higher than vehicle tour. They have found the number of average legs per chain in transit-based 

tours are higher than that in vehicle-based tours (Currie & Delbosc, 2011). Such discrepancies 

imply that the underlying assumption of a causal relationship between vehicle mode and tour 

complexity requires further validation. 

Policy implication 

The findings of the study can provide policymakers a better understanding on the relationship 

between mode choice and tour complexity. For instance, if the demand of a complex tour is found 

to be high during weekends and most complex tours are associated with vehicle tours, 

policymakers could promote the use of public transit by encouraging transit agency to provide 

more service on weekends on certain routes. In addition, the expanded measurement method of 
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"tour complexity" could help transportation planners and policymakers to better identify the 

mechanism of trip chaining behavior. 

Component II: A Longitudinal Analysis of Daily Travel Variability 

Objective 

To assess the within person day-to-day variability from the perspective of trip chaining complexity 

and mode choice using the longitudinal feature of Expo dataset. 

Research Goal and Question 

1. Demonstrate the application of the tour complexity measurement in longitudinal study 

2. Validate the existence of intrapersonal day-to-day travel behavior variation with travel 

being jointly characterized by tour complexity and mode choice 

3. Test a hypothesis that variability differs across population segments 

4. Investigate the impact of a new transit service on travel variability 

Background 

As discussed above, trip chaining complexity is closely related with trip purpose and activities. As 

a result, the complexity changes over time as well. A study taken place in Adelaide, Australia, 

indicated that the share of complex tours decreased from weekday to weekend. On weekdays, 31% 

of the tours were complex; on Saturdays, the proportion dropped to 23%; and it decreased to 16% 

on Sundays (Primerano et al., 2007). In addition, the difference of tour complexity over the week 

is found to be less significant as the number of vehicles in the households increased. Thus, 

examining tours across one day, a week or even a sequence of years could provide a more robust 



	 14 

way to track the schedule and travel behavior of individuals and households (Krizek, 2003). 

However, a formal longitudinal analysis of trip chaining behavior is rare in existing literature. It 

may be due to two obstacles: one, extra efforts in extracting trip chaining information from travel 

diary regardless report-based or GPS-based, and two, the limited availability of longitudinal 

dataset. There is one study that has focused on the repetition of tours occurs over a course of a 

week (Stopher & Zhang, 2011). The study shows a low level of repetition for both simple and 

complex tours, where the traditional simple/complex classification scheme is applied. 

Although not directly target on trip chaining, many studies have investigated the day-to-day 

variability in general travel behavior since 1980s and confirmed that the amount of deviation too 

high to be compensated by the random sampling mechanism (Hanson & Huff, 1982; Pas & Sundar, 

1995; Raux et al., 2016; Stopher & Zhang, 2011). Following it, debates been raised about the cycle 

of travel pattern. For instance, whether the behavior repeats daily, weekly, or monthly. It has 

significant meaning to clarify this issue because it affects travel survey design, model estimation 

and result interpretation. For example, research has found that the modeling residual is negatively 

related with the length of the repetition cycle selected for the model (Raux et al., 2016). 

After the confirmation of the existence of intrapersonal variability overtime, the question regarding 

the determinants of such a variability then follows up. Individual’s demographical and social-

economical characteristics is often hypothesized being strongly related with level of intrapersonal 

variability. However, little support can be found from the reviewed literature. Hanson & Huff 

(1982) have found that non-employed housewives and these women’s full-time employed 

husbands  do not differ significantly in travel variability. The study by Kitamura & Van Der Hoorn 

(1987) finds no evidence to support the hypothesis neither with travel variability characterized by 
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trip frequency and time allocation. However, a more recent study by Raux et al. (2016) has found 

that gender, age, occupation, and family size are significantly influential to intrapersonal travel 

variability. But similar with Hanson & Huff (1982), employment does not show significant impact 

on intrapersonal daily variability. 

Contribution 

In summary, very few trip chaining studies has used longitudinal data to examine weekly patterns 

of tour complexity. Meanwhile, contradictory results are found about the relationship between 

personal variability with social-demographical factors. A few studies have examined complexity 

patterns by time of day. But the scale of analysis is within a day. They have found that the complex 

tours are more likely to occur during morning/evening peak hours because commuters tend to 

insert personal stops on their way to work or back home (McGuckin et al., 2005; Xianyu, 2013). 

There is one available study of tour complexity pattern by day of week (Primerano et al., 2007). 

However, this study is based on the travel survey in another urban context, Australia, and use a 

relatively old data collected during the year of 1999. Component II of this dissertation examines 

the weekly patterns of tour complexity using recently collected data under the urban context of 

Southern California. Last but not least, these studies follows the traditional binary classification 

scheme to label tours. For home-based tour with only one stop, it is classified as “simple tour”; for 

other tour with more than one stops, it is classified as “complex tour”. The analysis of Component 

II is based on an extended tour complexity definition which provides a more comprehensive 

examination than the conventional approach. 

Krizek (2003) analyzed the relationship between neighborhood accessibility and tour complexity. 

The study found that people living in a higher accessible neighborhood tended to make more 
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simple tours because of convenience of travel. So I hypothesize that the average complexity level 

in experimental group is lower than control group. By comparing the longitudinal data, the 

complexity level in experimental group is expected to decrease after the opening of Expo line. 

Thus, this component also compares the level of tour complexity variability across the three years 

from 2011 to 2013. 

Policy implication 

The benefit of an explorative investigation of intrapersonal day-to-day variability in trip chaining 

behavior is that it offers feasible guidance in tour-based and activity-based urban transportation 

modeling. Current practice contains a shortcoming of neglecting the day-to-day variability in travel 

demand. Travel analysis based on multi-day survey data provides richer temporal information for 

travel and other behavioral responses to policy change. It also offers a better approach to evaluate 

the impact on travel behavior by the change of supply side, such as enhanced non-motorized travel 

facilities. 

Component III: Recognition of Representative Travel-Activity Patterns Based on Tour Complexity 

Objective 

To identify weekly travel patterns and their association with population segments by characterizing 

travel pattern based on tour complexity via Sequential Alignment Method (SAM) and discrepancy 

analysis. 

Research Goal and Question 

1. Extract representative weekly travel patterns based on trip chaining complexity 
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2. Investigate personal and family characteristics that are influential to the weekly pattern 

3. Experiment with the method of discrepancy analysis and regression tree 

Background 

The focus of Component III is expanded to pattern extraction. In line with Component II, the 

underlying assumption of Component III is that travel-related theories and practice that is 

developed based a single-day measurement could be biased due to a substantial amount of 

periodical variability within each individual. Therefore, it is important to study the travel-activity 

pattern using datasets that contain multi-day travel records, which is the major advantage of Expo 

tour dataset. 

The existing research in travel-activity pattern suggests a two-step analysis framework is most 

appropriate. The first step is representative pattern extraction. There are two general approaches: 

1) to study the variables and measurements that are extracted from the observed travel-activity and 

then to perform principle component analysis based on these variables (Hanson & Huff, 1986; Jun 

Ma & Goulias, 1997); 2) to study the observed behavior as a feasible analysis unit and directly 

analyze the similarity/dissimilarity between observations (Recker et al., 1985). Component III 

follows the latter. Questions addressed in the first step include how many typical patterns in the 

sample and what the pattern characteristics are. The second step is often performed with the 

purpose of relating interested exploratory variables with the extracted representative patterns. The 

methods include descriptive analysis, ANOVA and contingency table (Recker et al., 1985; 

Saneinejad & Roorda, 2009; Wilson, 2001). Questions answered in the second step include 

whether individual characteristics are strongly associated with the travel-activity pattern, and if so, 

what the patterns look like for certain population groups. The second step is not a necessity as the 
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primary goal of pattern recognition is completed in the first step. However, it is valuable in that 

the linkage between pattern and social-economical features provides important information for 

transportation planners and policy makers. 

Because travel-activity pattern is a subject so complicated that it is impossible to measure using a 

well-established method. The methodology to extract pattern becomes an area that most research 

effort is focused on. Early research has explored and presented some pattern representation 

schemes that rely on visualization, such as Hägerstrand trajectory (Hagerstrand, 1970) and 

space/time trajectory (Recker et al., 1985). However, such diagram-based methods could 

incorporate limited dimensions of travel information, i.e. time and geographical location. It would 

become inconvenient and computationally complicated when more travel aspects are added in. As 

a result, a few researchers start to seek alternatives and Sequential Alignment Method (SAM) is 

one of the promising methods. Originally developed in bioinformatics field for DNA and protein 

study, SAM is first introduced into travel behavior field by Wilson (1998). The researchers have 

found that the observed travel events and activities can be coded as a sequence (or “trajectory”). 

The advantage of SAM is it can be simple with a single attribute coded and can be complex with 

multiple attributes, depending on the research needs. But one of the limitations of SAM is that it 

requires categorization and results in loss of information. Another widely-mentioned limitation of 

SAM is the parameter setting in distance measurements, such as weighting, operational boundary, 

computational cost, and etc. (Joh et al., 2001). As a result, most of the reviewed studies choose the 

uni-dimensional approach with a default setting in distance computation, which is discussed in 

Chapter 5 (Kim, 2014; Wilson, 2008). Nevertheless, SAM has been demonstrated to be superior 

than other alternatives in pattern recognition (Joh et al., 2001). Hence, Component III continues to 

use SAM for dissimilarity measurement. 
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Contribution 

Component III is designed as an extension of Component II which shifts the focus from 

intrapersonal variability in complex trip chaining behavior to interpersonal dissimilarity. 

Meanwhile, it is not difficult to see that all the relevant studies have focused on activity patterns 

although they are designed to be beneficial for both activity and travel demand research. Activity 

and travel behavior are different concepts because activity could be home-based while travel is 

explicitly related with needs outside of home. Component III directly focuses on the travel 

behavior which offers a new perspective from which travel behavior and travel demand can be 

studied. Moreover, the reviewed literature often studies the relationship between pattern and 

social-demographical factors in a posterior way, which is lack of generality from the perspective 

of modeling. Component III incorporates social-demographical factors into the clustering process 

via a tree-structured regression method developed based on discrepancy analysis. Therefore, it 

results a more feasible implication for model developers. 

In addition, previous research efforts have been put on representative pattern recognition based on 

activity types/trip purpose on a daily basis (Joh et al, 2002; Kim, 2014; Saneinejad & Roorda, 2009; 

Wilson, 2001, 2008). Trip purpose, together with other traveling context including other people 

presented, is one of the limitations of GPS-based travel behavioral study. Because GPS data is 

passively recorded and is not context-aware. The data usually does not come with trip purpose. 

But such data is becoming more and more popular in behavioral research and it costs much less to 

collect longitudinal travel information using GPS. Hence, it is important to explore analytical 

framework that could fully utilize GPS data and does not rely on contextual information such as 

trip purpose. 
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Policy implication 

By extracting typical patterns from observed weekly travel trajectories, Component III has 

important implication for further theoretical research and the development of tour-based or 

activity-based travel demand modeling. Meanwhile, association between the travel-activity 

patterns with population segments is a critical subject for model developers and urban 

transportation planners. Because the two-step analysis simplifies the complex human travel 

behavior based on quantifiable population segments and thus, provides an operational guidance 

for model development and policy assessment. 
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Chapter 2 Expo Tour Dataset 
Introduction 

The data used in this dissertation is a subset of the longitudinal Global Positioning Systems (GPS) 

data collected as part of the quasi-experimental before-and-after evaluation study of the travel 

behavior impacts of Los Angeles Metro’s Expo light rail line on nearby residents (Figure 2-1). 

Personal 7-day GPS travel records were collected for the same study subjects in 2011 before and 

in 2012 and 2013 after the Expo line began service in early 2012 (Figure 2-2). This dissertation 

analyzes GPS-based travel patterns for a subsample of 55 Expo study subjects for whom complete 

7-day movement tracts are available for each of the three study periods. 

The use of these longitudinal GPS-based data for analysis of trip making and tour complexity has 

two major advantages. First, spatial and temporal information is directly available from the GPS 

record, such as activity location, departure/arrival time, and route used. For this reason, the 

resolution of the analysis can be higher than that of traditional travel surveys. Moreover, the travel 

statistics retrieved from such passively recorded trace of each participant’s movement and can 

therefore provide relatively more objective and reliable data compared to data collected using 

conventional travel diaries for which travel information is manually reported by travelers 

themselves. It is widely agreed that the travel diaries often contain errors and they are hard to 

correct due to lack of “ground truth”. In addition, the type of misreporting varies across individuals 

making it is also difficult to apply systematic correction to the factor to the data (Houston, Luong, 

& Boarnet, 2014). To the contrary, any suspicious or unclear patterns in a dataset created from 

GPS data can be always reviewed and corrected based on the original trace.  
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The second major advantage of the dataset is its longitudinal aspect. The physical movement of 

each participant is tracked for seven consecutive days during each wave of Expo survey. Hence 

both weekday and weekend travel behaviors are sampled. A single individual can have a mixture 

of different activity patterns across day of week. Some patterns may occur on a daily basis, such 

as commuting between home and work place, while some patterns may occur on a weekly basis, 

such as maintenance trips undertaken during weekends. Therefore, the multi-day travel data is 

more likely to capture a larger pattern set for each individual in the sample. Furthermore, the 

dataset contains repeated measurement for each participant from 2011 to 2013 during a time in 

which a major event occurred (the opening of Exposition Line in April, 2012), which enables 

analysis of the impact of neighborhood environment on travel patterns. 

There are also drawbacks in this dataset. The first disadvantage is the small sample size. It not only 

limits the generalizability of the findings but also constrains the complexity level of potential 

modeling techniques. Considering a hypothetical mixed effects model at the home-based tour level 

applied to all three waves’ data, the model would need to control for the correlation between tours 

made by the same person and also control for the dependency between tours occurred during same 

wave. In addition, if the response variables and independent variables are a mixture of numerical, 

categorical and binary data types, which is usually the case in travel behavior research, extra care 

would need to be taken in the choice of modeling method. Under this setting, a complex model 

often fails to converge. Moreover, the validity of distribution assumptions is hard to assess for a 

small sample. However, the limited sample size reduces the burden of data processing to a great 

extent and in turn allows more careful examination through all aspects of the dataset. 
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The second drawback of this GIS-based dataset is that trip purpose information, a common focus 

for most of the travel behavior and activity pattern studies, is unavailable from the Expo Study and 

cannot be included in this dataset. Despite this limitation, this dissertation makes important 

contributionsin demonstrating the effectiveness of GPS data in the field of travel behavior research 

to examine for analysis of trip making and tour complexity. Lack of participant reported trip 

information, such as trip purpose and number of people involved in the trip, is a common challenge 

in studies using passively-recorded data. In addition to the reliability (discussed above), GPS data 

are generally easier to obtain and cheaper to process nowadays than traditional travel survey data 

(which usually collect trip purpose information).  

The following sections in this chapter provide an overview of the Expo Line before-and-after 

Study, followed by a detailed discussion regarding dataset design and construction. Some 

descriptive statistics for the study sample are presented in the last part of this chapter. 

Expo Study 

The data used in this dissertation is a subset of the longitudinal GPS data from Expo Line before-

and-after study. Collected by USC and UCI researchers, the Expo data set was designed as a 

longitudinal, before-and-after study of public transit and travel behavior in the Los Angeles urban 

area. Personal travel data were collected before and after the opening of the Expo Line. The 7-day 

travel records, including a paper-based trip and mileage logs (not used in the research) and GPS 

mobile tracking data (used in the research), were collected for one week in each of the consecutive 

three years at a similar time period (Figure 2-2). 
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Figure 2-1 Metro Rail System Map 

Source: http://www.metro.net/projects_studies/exposition/images/expo_ph1_fact_sheet.pdf 

 

 
Figure 2-2 Timeline of Expo Study Data Collection 

 

Phase 1 of the Expo light rail line is located to the west of Los Angeles downtown (Figure 2-1) 

and service began in April, 2012 (Figure 2-2). This Phase 1 segment has ten new stations plus two 

existing stations. The neighborhoods near the six stations of the eastern portion of this segment 

were excluded to avoid the bias from the existing service of Metro Blue light rail line and Metro 

Silver rapid bus line. The three stations closest to the University of Southern California campus 
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were also excluded. The reason is that the residents of this area are mainly comprised by university 

students whose travel behavior pattern could not be generalized to the non-student residential 

groups along the corridor (Boarnet et al., 2013). As a result, approximately half of the Expo study 

participants lived within ½ mile from the six Expo stations on the western portion of this segment. 

The other half of participants lived from ½ mile to 3 miles from these stations (Figure 2-3). The 

neighborhoods in the service area of Expo line are predominantly lower income and minority, with 

moderate income neighborhoods in the Culver City (Boarnet et al., 2013). 

 
Figure 2-3 Expo Study Core Sample Approximated Residential Location 

Source: Boarnet et al. (2013) 

For each wave, the participating households were separated into three subgroups corresponding 

with different survey instruments based on their willingness to participate based on initial 
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screening questions: web-based, paper-based and mobile tracking. This dissertation analyzed data 

from the mobile tracking group, and for households in this group one adult agreed to wear a GPS 

tracking device for seven days whenever they left their home, and their geographical locations 

were recorded every 15 seconds. The sample for this dissertation was selected from the mobile 

tracking group, and the analysis is based on their GPS tracking data (not the travel and mileage 

logs). 

Study Subject Selection 

One of research objectives of this dissertation is to examine whether and in what ways trip chaining 

patterns change from Wave I to Wave III. Therefore, the sample selection criteria for the study is 

that the individual should participate in the GPS tracking group in all three waves and should take 

at least one trip during each wave. There are 138, 100 and 80 usable individuals in the GPS mobile 

tracking groups of Wave I, II and III, respectively. These individuals have at least 8-hour daytime 

GPS records per day for 3 days in each wave. 58 people participated in all the three waves and 55 

of them provided valid weekly travel records. Among them, 27 participants live within 1/2 mile 

from the Expo Line stations (the "experimental" group), and 28 live further than 1/2 mile from the 

stations (the "control" group). These 55 participants are selected as the analysis sample for this 

dissertation. The reason to keep the consistency in samples through all the waves is to eliminate 

the possibility that the changes in trip chaining patterns are caused by different samples.  

The data collection period ranged from September to February for each wave (Table 2-1). Over 

half (56%) of the participants completed the survey during Wave I in November and December. 

For Wave II and Wave III, the majority of the participants (71% and 62%) completed the survey 
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in September and October. No participants were monitored during the holiday weeks including 

Thanksgiving, Christmas and New Years in any of the waves. 

Table 2-1 Distribution of Study Subject by Month of GPS Data Collection 

 Wave I (2011) Wave II (2012) Wave III (2013) 
Month of 
Collection Count % Count % Count % 

Sep. – Oct. 23 41.82% 39 70.91% 34 61.82% 
Nov. – Dec. 31 56.36% 14 25.45% 21 31.18% 
Jan. – Feb. 1 1.82% 2 3.64% 0 0 

Total 55 100% 55 100% 55 100% 
 

Database Design and Construction 

Relational Database Structure 

A relational database with multiple linked data files was developed to accommodate the complex 

nature of travel information. The database contains four components: (1) participants’ 

demographic and social-economic data, (2) trip and tour files with basic statistics aggregated from 

the original GPS trace data, (3) the original trace files in which each row represents one spatial-

temporal stamp of a trip, and (4) location files for the activity locations visited by the participants 

during the survey period, public transit stops/stations and city-wide point of interests. These tables 

are linked together using the unique traveler ID, trip ID and location ID.  

In the original Expo study, a randomly-generated four-digit household ID (HID) is assigned to 

each participant. Using HID, we can access the participant’s demographic characteristics, 

including gender, age, educational level, employment status, household income, and travel 

preference. Each trip is assigned a unique ten-digit trip id (TID) in the format of hhhhhwwttt, where 

hhhhh = participant id, ww = wave id, and ttt = trip id. For instance, HF5C3W2T04 represents trip 
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04 by participant F5C3 during wave II. Via TID, we can reach the trip’s trajectory data with 

geographical coordinates and time stamps recorded for every 15 seconds. Furthermore, each place 

visited by the participants during the three waves is assigned a unique location ID (LID). Using 

LID, we can access the information for each place, including the geographical longitude/latitude, 

location type (home, transit stop or regular place) and other features, such as land use and network 

accessibility. 

Raw GPS Data Processing 

The most tedious and the most important work in the construction of the Expo Tour database is to 

classify of GPS data into periods in which each participant stayed at locations or traveled (by travel 

mode). The raw data exported from GPS device included four variables: timestamp, longitude, 

latitude and speed. The GPS device recorded its wearer's location every 15 seconds and the 

tracking lasted 7 days 24 hours a day for each wave. Therefore, each participant's data file contains 

approximately 40,000 records. The devices, however, do not directly record the travel status and 

travel mode associated with each time point. Hence, a two-step data classification procedure is 

implemented. 

The first step is an automated procedure to identify a rough estimate of the travel status of each 

point. The algorithm includes two parts. First, all the points are sorted into two categories, staying 

and moving, based on the speed associated with the points. Then, clusters of points representing 

the locations where participants visited or occupied are identified if sequential GPS points 

exceeding a 2-minute duration are clustered within a circle of 20-meter diameter (Houston et al., 

2014). If a cluster of points is identified, all points within the specified threshold distance (20 

meters) to the cluster center with speed lower than 2 mph are labeled as a location ("LC") indicating 
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the participant was staying at this location. On the other hand, if a series of points show a linear 

pattern, then the points are labeled as a travel status code indicating the participant was moving. 

The travel status code is assigned based on modes. If the corresponding speed is 2 - 6 mph (a 

typical walking speed), the point would be labeled as "WLK" (Walking). If the speed is over 6 

mph, the point was labeled as "VDR" (Vehicle Driving). This first phase of classification could 

only distinguish between staying, walking or moving in a vehicle at a relatively low accuracy level.  

In the second part of the classification process, research assistants reviewed all GPS tracking files 

in ArcGIS and manually corrected and sub-categorized the status of each GPS point using series 

of decision rules. The travel modes, such as by bus, by train/light rail and by vehicle, are 

determined and labeled as “VBS” (Vehicle Bus), “VTR” (Vehicle Train) and “VDR” (Vehicle 

Drive), respectively. Though the moving speeds are often similar (~20-50mph), the three different 

motorized travel modes can be distinguished by examining the location patterns of previous and 

subsequent location points. For instance, if both trip head and tail involve a period of walking and 

a short staying at certain location near the road as opposed to in the center of a block, then 

researchers verify the locations. If the transition location is identified as a transit stop and the 

subsequent route matches a transit route, the trip is corrected as a bus (“VBS”) or light rail (“VTR”) 

trip. The walking mode is sub-categorized into two types based on the purpose of walking. If the 

walking starts/ends at a transit stop/station, these points are labeled as "W2T" (Walking to Transit). 

If both the origin and destination points of the walking trip appear to be the activity locations, the 

walking points are labeled as "WLK" (Walking). Figure 2-4 shows an example of a typical GPS 

trajectory map with the travel status classified. 
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Points misclassified during in the first the classification phase are corrected during this second 

phase of the classification process. For instance, vehicle stopping periods (such as waiting for the 

traffic signal at intersections, or a traffic jam on a freeway) could have been misclassified in the 

first phase as a cluster and a location or destination are corrected to be “VST” (Vehicle Stopping).  

However, one limitation of the classification procedure is that we cannot tell whether the GPS 

device wearer is traveling alone or not. This is a major drawback particularly for vehicle trip study 

considering it is useful to know whether the traveler is driver or passenger. Furthermore, we cannot 

make inferences on the interaction between household members. 

Admittedly, some potential classification errors may exist. One error source derives from the geo-

coding process. About 15 voluntary assistants were involved in the manual hand coding part over 

a three-year period. To minimize discrepancies, each assistant was individually instructed on the 

status classification process by a senior researcher before they start hand coding.  Despite training, 

the accuracy of the travel status identification might still suffer from inconsistent personal 

decisions. Therefore, after coded by voluntary assistants, all the trace files were reviewed carefully 

by the author of this dissertation to ensure consistency of coding assumptions and to correct 

obvious mistakes and discrepancies. Nevertheless, the status identification of a travel trajectory is 

still a subjective result; but the bias is considered as relatively more consistent across travel profiles. 

Another possible source of potential error is the positional accuracy of the GPS signal. In general, 

the signal quality is very good and the precision level is around 10 meters. For example, it is 

visually distinguishable in ArcGIS whether a participants was located on the northbound or 

southbound of the road. "Bouncing" points that are off the main travel path exist in some traces 

and these points usually were seemed to suggest a participant traveled at an unreasonably high 

speed (e.g. 150 mph). In addition, the transmission of the GPS signal could be disturbed by tall 
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buildings and tunnels. The tracking precision in the Los Angeles downtown area was somewhat 

limited. Sometimes the GPS tracking device would lose signal for several minutes, even hours. 

The decision for how to handle above two cases in the analysis sample is discussed in the section 

of Missing Data Handling. 

Although some minor discrepancies may exist in the analysis dataset during periods of transition 

from being a given location and initiating travel, the travel mode classification during periods of 

travel is considered as very reliable. The difference between walk, bicycle, vehicle, bus and train 

travel has been carefully reviewed and verified by the hand-coders and researchers. First, walking 

and bicycling have a much lower speed. The consecutive points are closer to each other when they 

are plotted on map. Second, train/light rail trip has a speed much higher than bus and more stable 

than private vehicle, and it starts/ends at rail stations. Bus trips usually follow and are followed by 

a walking trip and show periodic stopping-moving patterns in the middle of road segments. Private 

vehicle trips do not involve lots of walking at two trip ends and typically do not have frequent 

stops during the trip. 

As previously discussed, one major disadvantage of the analysis dataset is that the activity purpose 

associated with each trip is not recorded on the supplemental paper travel logs, which only 

tabulated today daily trips by mode and did not record trip or location specific information.  Given 

this limitation, the relationship of trip purpose to trip and tour complexity patterns is not examined 

in this dissertation. 
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Figure 2-4 Illustration of Status Classified Travel Trajectory 

Definitions and Issues in Trip Identification 

This section clarifies how the trip chaining terminologies have been covered in Chapter 1 were 

operationalized in the analysis. Firstly, the characteristics of the destination location of a trip is 

defined as the location’s corresponding census block level, which is the smallest geographical unit 

with demographic data. Two sequential locations or stops within the same census block are melted 

into one trip with one destination, even when there is observable moving trajectory from one part 

of the block to another part. This rule not only assures data availability for each destination but 

also simplifies some situations such as shopping activity at a large block. Secondly, tours as 
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defined for this analysis always start and end at home while individual trip segments always start 

at one destination and end at another.  

The procedure to determine whether a stop qualifies as a “destination” is as follows. If the idle 

time between two trips exceeds 3 minutes, the location where this idle period occurs is considered 

as a destination. If the idle time is shorter than 3 minutes, a case-by-case decision is applied to 

determine whether it should be classified as a destination. Generally, such a shorter idle period is 

classified as a “destination” if it affects the routing arrangement, which is determined by visual 

inspection. For instance, trips to pick-up/drop-off someone usually only include a 1-minute stop 

at the pick-up/drop-off location. Such stops serve a legitimate travel purpose and often require a 

distinct detour that is distinguishable using GIS visualization.  Most of the previous studies applied 

a strict 3-minute rule, which could result in an underestimation of the complexity of trip chaining 

behavior. In addition, the location of a mode change (such as W2T to VBE) is not considered as 

destination. 

Several ambiguous yet not uncommon situations are encountered during the process of 

determining whether a trip or a tour is valid for this study, and are summarized in Table 2-2. The 

last two scenarios described in Table 2-2 involve missing data (discussed in the next section). In 

addition, if a traveler has too many missing data or too many invalid tours during any wave of the 

Expo study, this traveler is removed from the analysis dataset. Due to this reason, 3 of the 58 

individuals who participated in all three waves are excluded from further analysis.  
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Table 2-2 Summary of Ambiguous Scenarios and Decisions in Data Processing 
Scenario Decision 

Visiting gas station Labeled as a trip 
Suspicious working trip where travel could be related with 
the work/business, usually associated with abnormally high 
trip frequency and repeated for more than one day 

Kept in the dataset 

Travel speed is too high for walking but too low for vehicle 
travel Labeled as biking trip 

Abnormally long stopping at a bus stop proximity in the 
middle of a bus trip Kept as part of the current bus trip 

Missing or drifting data points during a trip Kept if two trip ends can be clearly 
identified; otherwise removed 

Missing or invalid trips within a tour Tour, including other valid trips in the 
tour, is removed 

 

Missing data handling 

Missing GPS data points occurs often in the sample data and for many participants. Missing data 

can be caused by actions of participants such as turning off the device or movement in built 

environments (such as concrete and steel structures) that obstruct GPS device communication with 

an adequate number of satellites, by temporary lapses of GPS instruments, or by the research team 

who post-processed the data. Periods of missing data can be categorized into 5 cases based on 

causation and consequence (Table 2-3). 

Case A: Missing data periods during travel may result in trip destinations being missed by data 

processor. In this case, tour estimates would be retained but the number of legs for the tour would 

be underestimated. Given these instances can not be identified, it is hard to estimate about how 

many such cases exist in the data. A special case is the bus transition. A bus transfer could be 

missed if the transfer occurred at the same drop-off location as the previous segment and the time 

gap was short. This could lead to an underestimation of tour complexity for transit-based tours. 

Case B: Trips with bad GPS signals are removed if the number of points “drifting around” a 

probable path (due to GPS positional errors caused by factors such as an obstructed satellite 
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connection) is too high to compute reasonable trip statistics (such as average speed, etc.). The tour 

including this type of missing data was removed. This could result in an underestimation of a 

person’s trip and tour frequency.  The frequency of such case can be tracked. 

Case C: Incomplete trips are those for which there is not a clear departure/arrival time/location, 

and trips containing a missing trace segment such that the entire route could not be visually inferred. 

These cases usually include a clear time gap in the GPS data.   In these cases, both the trip and tour 

are removed from the analysis. 

Case D: Complete trips with either ends located out side of LA county are excluded. We know 

how many such trips are there. In these cases, both the trip and tour are removed from the analysis.  

Case E.1 If two consecutive and complete trips have unmatched origin and destination, we know 

there was a missing trip but cannot identify when and how many this situation occures. In these 

cases, both the trip and tour are removed from the analysis. 

Case E.2 If the trace points before and after missing GPS data are at the same non-home or home 

location, we do not know what happen in between, but if a trip or tour occurred during this time it 

will not be identified in the data.  

Table 2-3 Consequence of Missing Data 

Case ID Aware of 
trip missing Know count Trip 

removed 
Aware of 

tour missing 
Tour 

removed 
A No No - - - 
B Yes Yes Yes Yes Yes 
C Yes Yes Yes Yes Yes 
D Yes Yes Yes Yes Yes 

E.1 Yes No - Yes Yes 
E.2 No No - No - 
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 Figure 2-5 Study Subjects Approximated Residential Location 
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Descriptive Statistics 

This section provides an overview of travel patterns of the study sample in the order of three levels: 

traveler, travel pattern, and activity location, and provides a comparison with 2000 California 

Household Travel Survey (CHTS) data at the trip level. 

Traveler 

Sample Composition 

The selected participants' approximate residential locations are shown in  Figure 2-5. Their social-

demographic data is summarized in Table 2-4. 27 participants resided within ½ mile of an Expo 

Line station and are defined as the “experimental” group because they were the most likely to be 

affected by the introduction of the “treatment” (the new Expo Line Service).  28 Participants 

resided beyond ½ mile of and Expo station in areas with comparable built environment 

characteristics, and are defined as the “control” group.  See Boarnet et al. (2013) for additional 

detail on the quasi-experimental research design of the Expo Line study. 

The personal variables, such as gender, age, ethnicity and educational level, are based on the 

original data collected during Wave I, 2011. At an individual level, 38 (69%) of the sampled 

individuals are female; 30 (55%) are between 20 to 54 years old; 35 (64%) are African-American 

and 12 (22%) are white; 24 (44%) hold a Bachelor’s degree or a higher degree; 32 (58%) are 

employed full-time or part-time. Comparing to the county's social-demographic statistics (US 

Census Bureau, 2011), the study samples has a higher composition of women, African-Americans, 

people above middle-age and people with advanced degrees. It suggests the findings of this study 

might be biased by the composition of the samples and should not be generalized to other areas. 
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Table 2-4 Social-demographical Statistics of Study Subjects 

 Sample (Wave I, 2011) Los Angeles 
County (2011) 

 Count Percent Percent 
Grand Total 55 100%  
Gender    
Female 38 69% 51% 
Male 17 31% 49% 
    
Age    
20-34 8 15% 23% 
35-54 22 40% 28% 
55-64 13 24% 11% 
65+ 12 21% 11% 
    
Ethnicity    
Asian 5 9% 13% 
Black 35 4% 8% 
Hispanic 1 2% 48% 
White 12 22% 28% 
other/multi 2 4% 3% 
    
Education    
less than 12th grade 3 5% 24% a 
High school or equivalent 3 5% 21% a 
some college or associate 23 42% 26% a 
bachelor 15 28% 19% a 
post graduate 9 16% 10% a 
NA 2 4% - 
    
Employment/Study Status    
Full-time employed 16 29% 

52% b 
Part-time employed 16 29% 
Full-time student 1 2% 

48% b Part-time student 1 2% 
Not employed/student 21 38% 
a Percentage of population over 25-years-old. 
b Percentage of population over 20-years-old. 
Data source: U.S. Census Bureau, 2011 American Community Survey 1-Year Estimates 
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Table 2-5 Household Demographical Statistics of Study Subjects 
 Sample (Wave I, 2011) Los Angeles 

County (2011) 
 Count Percent Percent 
Grand Total 55 100%  
Household size    
1 23 42% 26% 
2 14 26% 27% 
3 8 15% 16% 
4+ 10 18% 31% 
    
Car ownership    
No Licensed Driver (LD) 5 9% 

10% At least 1 LD   
No car 5 9% 
< 1 car per LD 9 16% 

90% 
>= 1 car per LD 36 65% 
    
Family member under 18    
0 41 75% 64% 
1 9 16% 

37% 
2+ 5 9% 
Data source: U.S. Census Bureau, 2011 American Community Survey 1-Year Estimates 

 

At the household level (Table 2-5), the percentage of single-person family households (42%) is 

much higher than the county average (26%); 10 (18%) participants have a family of size of 4 or 

more, less than county average (31%). A larger household size means a stronger interdependency 

on travel arrangement among family members. For vehicle accessibility, 10 (18%) participants are 

not licensed to drive or do not have family-owned vehicle; 50 out of the 55 participants are a 

licensed driver (82%), 36 of whom live in a household with more than one car per driver. A vehicle 

ownership per licensed driver rate over 1 indicates the individual’s travel arrangement will likely 

not be constrained by vehicle availability. The car ownership rate in the sample is lower than 

county average (82% v.s. 90%). The presence of young family members under age 18 implies the 
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household has the travel demand for school and associated trips. 75% (41) of the participating 

households do not have children under age 18. The percentage is about 10% higher than the county 

average (64%). 5 participants have two or more young children in their families. In summary, the 

study sample contains more single-person households, fewer participants with families, and a 

lower car ownership than the county average. 

Participants and Expo Stations 

Expo Line Phase I includes 12 stations, 10 of which are newly constructed and 2 are of which were 

existing stations that have already served other Metro lines for over ten years (the Pico and 7th 

St./Metro Center stations). In addition, the neighborhoods that are near 4 of the 10 new stations 

(LATTC/Ortho Institute, Jefferson/USC, Expo Park/USC, and Expo/Vermont stations, are 

excluded from the Expo Study due to possible bias caused by college student’s non-representative 

travel patterns. Therefore, the 55 participants analyzed in this dissertation were sampled from areas 

in proximity to the 6 new stations on the western portion of the Phase 1 line segment (Figure 2-6). 

The Culver City Station represents the western edge of study area while the Expo/Western Station 

represents the eastern edge of study area. The Expo/Crenshaw Station is located along the north-

south Crenshaw Corridor, which includes many commercial and civic destinations and is expected 

to be a major attraction for daily activities. 
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Figure 2-6 Number of Study Subjects by Distance to Expo Stations 

As presented in Figure 2-6, the number of participants who live in the immediate proximity of 

each study area station varies. For a 0.5-mile buffer, Expo/Crenshaw Station can be reached by 12 

sample participants, much higher than for other stations. For a 0.75-buffer, Expo/Crenshaw Station 

still has the largest number of participants (16) but is closely followed by Expo/La Brea Stations 

which has 13. The same number of sample participants, 20, live within 1-mile buffer to either of 

these two stations. Farmdale Station ranks third in terms of number of participants who live nearby. 

Moreover, all the five participants closest to Culver City Station are within 0.5-mile of the station. 

Note that none of the stations have more than half of the total sample participants within 1 mile. 

From the perspective of participants, some of them are close to more than one station, which 

suggests greater flexibility in accessing transit system. Among the 27 participants who live within 

a 0.5-mile buffer of any Expo new stations, four of them reside in buffer areas overlapped by two 

stations. More participants can be connected to the stations and more are served by more than one 

station, if we expand the buffer size. For instance, for 0.75-mile buffer, 16 people reside near two 
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or three stations. However, there are 16 participants that are not close to any of the new Expo 

stations (at least 1 mile away) (Table 2-6 and Table 2-7).  

Table 2-6 Distribution of Study Subjects by Distance to Expo Stations from Home, N=55 

Distance to Expo Station Count Percent 
<= 0.5 mile 27 49.09% 
> 0.5 mile 28 50.91% 

Total 55 100% 
 

Table 2-7 Distribution of Study Subjects by Number of Nearby Station at Home, N=55 

Number of 
Nearby Station 

Frequency of participants 
0.5 mile buffer 0.75 mile buffer 1 mile buffer 

0 28 18 16 
1 23 21 12 
2 4 15 17 
3 0 1 10 

Travel Pattern 

Travel Frequency, Distance and Duration 

Table 2-8 provides a summary of travel statistics for the study sample aggregated for all three 

waves by sample subgroups. Overall, the sample of 55 takes 4,210 trips and made 1,122 tours 

during the weeks surveyed in Wave I, Wave II, and Wave III. Note that the actual number of trips 

and tours is higher because some are removed due to missing GPS trace data (described above). 

On average, each person takes 0.97 tours, 3.64 trips, spends 48.95 minutes on travel and travels 

12.71 miles per day. Female participants chain 0.3 more trips per tour and travel 2 miles more than 

male participants on a daily basis. However, the tour frequency and travel duration are similar by 

gender. Employment status apparently seems related to travel behavior. Employed participants or 

those who are students, regardless full-time or part-time, travel more frequently (1.03 vs. 0.88) and 

take longer trips than unemployed people (15 vs. 9 miles; 56 vs. 38 minutes). These participants 
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also chain trips at a slightly higher rate. Participants living with household members under age 18 

show higher travel demand and more complex chaining patterns than participants who live alone 

or only with adults. Although single participants chain a little more, they have the lowest daily 

tour frequency, travel distance and travel duration among three groups.  Driver license and 

accessibility to vehicle are positively related with travel frequency, travel magnitude and trip 

chaining. A licensed driver in the sample with a household vehicle on average travels 8 miles more 

than a non-driver (14 vs. 6 miles), but he/she does not have such a great difference from other 

participants for daily travel duration perhaps due to the lower speed efficiency of the chosen travel 

mode among non-drivers, such as walking or bus. In Wave II and Wave III, participants who live 

within ½ mile from any Expo stations have lower daily travel demand and magnitude, but they 

chain as much as people who live farther from an Expo station.  

Table 2-8 Travel Statistics by Population Segmentation, Wave I – III, N=55 
 

total # 
of trips 

total # 
of tours 

avg. # of 
legs/tour 

Daily average per person 
tour 

frequency 
(#) 

travel 
distance 

(mile) 

travel 
time 

(minute) 
Overall 4,210 1,122 3.75 0.97 12.71 48.95 
Gender       
Female 2,974 776 3.83 0.97 13.38 49.05 
Male 1,236 346 3.57 0.97 11.21 48.72 
Employment/study status      
Employed/student 2,813 732 3.84 1.03 14.96 55.60 
Not employed/student 1,397 390 3.58 0.88 9.06 38.19 
Household size       
Single family 1,484 396 3.75 0.82 9.87 42.66 
All-adult family 1,416 391 3.62 1.03 12.79 49.77 
Family with under 18 1,310 335 3.91 1.14 17.25 58.24 
Vehicle accessibility       
No car/driver license 500 146 3.42 0.70 5.93 40.48 
Own license and car 3,710 976 3.80 1.03 14.21 50.83 
Group       
Experiment 1,952 520 3.75 0.92 11.63 48.73 
Control 2,258 602 3.75 1.02 13.75 49.16 
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Mode Usage 

Analysis of mode choice at a trip-level shows that mode choice deviates across population groups 

(Table 2-9). Overall, 82% trips taken are by vehicle, with 12% by non-motorized (mainly walking) 

and 6% by public transit (mainly bus). Each participant tends to take 3 vehicle trips, 0.4 non-

motorized trips and 0.2 public transit trips per day. Broken down into population groups, female 

participants show higher reliance on vehicle travel than male participants, as they take 1 more 

vehicle trip than males and are much less likely to use non-motorized mode. Employed or student 

participants have more dependency on motorized travel modes, such as vehicle, bus or rail, while 

unemployed participants take more non-motorized trips. Vehicle dependency is highest for people 

who live in a household with members under age 18. This group takes about 4 vehicle trips and 

0.4 non-vehicle trips per day. On the other hand, participants in single-person households make 

2.3 vehicle trips and 0.8 non-vehicle trips per day. This is probably due to the fact that a vehicle 

can provide greater flexibility and convenience for households with children. As expected, vehicle 

accessibility not only impacts the overall travel demand but also affects mode choice. Participants 

without a driver license or participants with no car take 1 non-motorized trip per day while 

participants with vehicle access only take 0.3 non-motorized trips per day. The daily vehicle and 

transit usage is similar for participants without access to car. Participants who live near an Expo 

Line station show slightly higher daily usage of public transit and lower vehicle usage. During 

later time periods, this group makes as many non-motorized trips as participants who live farther 

away from an Expo Line station. 
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Table 2-9 Trip Level Mode Usage by Population Segmentation, Wave I – III, N=55 
 Vehicle Public Transit Non-motorized 

Total # Daily 
avg. Total # Daily 

avg. Total # Daily 
avg. 

Overall 3463 3.00 236 0.20 511 0.44 
Gender       
Female 2650 3.32 115 0.14 209 0.26 
Male 813 2.28 121 0.34 302 0.85 
Employment/study status      
Employed/student 2470 3.46 159 0.22 184 0.26 
Not employed/student 993 2.25 77 0.17 327 0.74 
Household size       
Single family 1112 2.30 125 0.26 247 0.51 
All-adult family 1155 3.06 81 0.21 180 0.48 
Family with under 18 1196 4.07 30 0.10 84 0.29 
Vehicle accessibility       
No car/driver license 153 0.73 145 0.69 202 0.96 
Own license and car 3310 3.50 91 0.10 309 0.33 
Group       
Experiment 1531 2.70 180 0.32 241 0.43 
Control 1932 3.29 56 0.10 270 0.46 

Destinations 

Land Use 

The land use discussed here refers to the primary land use at census block level. Land use 

information is downloaded from SCAG (2009). The primary land use type is the one occupies the 

largest area in the census block. The broad range of the “commercial and services” is not sensitive 

enough to distinguish land use types whose popularity depend on days of the week. Hence, 

“commercial and services” is further disaggregated to a set of sub-types including “general office 

use”, “educational”, “retail and commercial”, and “other commercial and service”. Land use types 

such as “public facilities”, “special use facilities”, and “military installations” are categorized into 

“other commercial and service”. Excluding home-return trips, commercial or residential oriented 

areas (or census blocks) are the dominate land use types for destinations. Within the category of 



	 46 

commercial and service, blocks with general office use, educational, and retail and commercial 

account for only one third of the destinations, with the other two-thirds being in blocks with “other 

commercial and service” land use types. The destination land use patterns between weekday and 

weekend do not differ significantly. The major difference is that destinations in blocks with a 

primary use of educational and open space are visited slightly at a higher rate during weekdays. 

Meanwhile, blocks dominated by industrial or “other” land use are destinations more frequently 

on weekends. Surprisingly, blocks with predominately business use (general office use) only 

comprise about 1% of all trip destinations over three waves (Table 2-10). 

Table 2-10 Distribution of Trips Based on Primary Land Use at Destination 

Primary Land Use Type Weekday Weekend 
count percent count percent 

Residential 816 34.99% 290 38.36% 
Other commercial and service 639 27.40% 208 27.51% 
Other 197 8.45% 71 9.39% 
Retail and commercial 185 7.93% 59 7.80% 
Industrial 183 7.85% 76 10.05% 
Educational 177 7.59% 17 2.25% 
Open space and recreation 104 4.46% 28 3.70% 
General office use 31 1.33% 7 0.93% 
Total 2332 100.00% 756 100.00% 
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Chapter 3 Tour Complexity and Mode Choice 

Introduction 

Complex trip chaining is a common phenomenon in urban settings.  Trip chaining can be generally 

defined as a set of consecutive trip segments (Primerano et al., 2007). A better understanding of 

the trip chaining behavior is needed to improve travel demand models, transportation policy and 

planning, and travel behavior research about activity and tour making. Activity-based and tour-

based studies have shown trip chaining is a complex subject and that multiple dimensions must be 

considered. However, previous research has mostly treated tours as either simple or complex based 

on a rather simple classification of whether the tour has more than one destination chained. The 

conventional approach shows little consideration about other dimensions of a tour, such as the 

spatial relationship between trip ends, the routing arrangement of a tour, and the overall 

environment of the chained destinations. In addition, research on the association between tour 

complexity, mode choice and land use has obtained mixed findings. Some studies show public 

transit tours and car-based tours are different in nature (Primerano et al., 2007). Other studies argue 

that complex tours will increase people’s reliance on automobile (Hensher & Reyes, 2006). 

Evidence has shown that inconsistencies in the research may largely be due to the over-simplified 

classification method for tour complexity (Currie & Delbosc, 2011; Harding et al., 2015; Ho & 

Mulley, 2013). Giving the advantage of the GPS trajectory data, this chapter explores the 

relationship between tour complexity, mode choice and land use by extending the tour complexity 

classification scheme into multiple dimensions. The core research questions being investigated 

here are how tour complexity is affected by various factors and how tour complexity is associated 

with mode choice. 
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This chapter proposes a new method to characterize the complexity of a tour, which will be referred 

to as the Tour Complexity Index (TCI) in this and the following chapters. The proposed TCI not 

only considers the number of chained trips per tour, but also takes into account the spatial 

relationship of the destinations, the sequence of connected destinations, and the land use type of 

destinations. In this chapter, I examine the dependency of tour complexity on a group of variables 

using mixed effect generalized regression models. It compares and contrasts the results with 

previous studies that adopt the more simplistic traditional definition of tour complexity. The 

proposed TCI provides insights into the association between tour complexity with mode choice, 

land use features, tour attributes and individual characteristics. The results also shed light on why 

the existing tour complexity research has reached mixed and often contradictory findings. 

This chapter is organized as followed. It starts with a review of travel behavior research regarding 

the concept of tour complexity. Following a brief review of tour terminologies from previous 

studies, it then introduces the proposed TCI concept with hypothetical examples, the research 

questions, data and methodology. The results section presents the descriptive and modeling 

analysis. Finally, the findings are summarized with a discussion about limitation and future works. 

Literature Review 

A tour (chained trips) in most research is referred to as a travel process from and returning to home. 

It can be very simple with one destination close to home, or be extremely complex with several 

destinations chained and involving multiple travel modes. Analyzing travel behavior at a tour-level 

provides a better understanding of the complexity of daily travel patterns beyond the basic insights 

provided by analysis of aggregate daily trips or travel distance. For example, it helps to understand 

the high frequency of discretionary activities during peak hours given workers tend to link non-
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work activities with the commute trip. If we look at the commute trip in isolation, discretionary 

activities appear unreasonable since commuters face strict time constraints during peak hours. Tour 

complexity is a sub-topic in the trip chaining literature which seeks to understand the relationship 

between trip chaining behavior and transportation issues. For instance, as a trip chain with multiple 

stops can reduce the total distance traveled and time cost for the revealed travel demand, it is also 

can induce extra travel by relaxing cost constraints. In addition, it is important to clarify the 

relationship between complex tour and public transit usage. If complex travel demand was shown 

to make more hesitate to take public transit, policy makers should consider how to make the transit 

system more suitable for complex travel. 

A few papers have sought to identify trends in trip chaining and tour complexity. But such research 

has not revealed consistent insights in tour complexity over years. Levinson & Kumar (1995) find 

an increase in trip chaining in working trips between 1968 and 1988. The study in Washington 

D.C. showed that the percentage of chained trips increased by 10 times and 3 times for home-work 

and work-home trips, respectively (1.5% vs. 15%; 9% vs. 31%). On the other hand, Currie & 

Delbosc (2011) find a slight decrease in tour complexity in Melbourne area between 1994 to 1999. 

Furthermore, the argument about whether tour complexity is increasing is often related to the 

debate that whether complex tours increase reliance on automobiles because such a trend could 

cause long-term pressure on road network. 

Even though the relationship of tour complexity and external factors has not been extensively 

studied, available studies show consensus that a broad range of factors impacts tour complexity. 

Household and individual characteristics including age, gender, employment status, household 

income, accessibility to private vehicle and household structure are found to be associated with 
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tour complexity. Tour attributes such as travel mode, destination choice, time of travel, trip 

purpose also affect trip chaining behavior (Currie & Delbosc, 2011; de Abreu e Silva et al., 2014; 

Harding et al., 2015; Ho & Mulley, 2015; Primerano et al., 2007). 

The majority of tour complexity studies focus on the relationship among number of chained trips, 

mode choice and land use, but they have resulted in inconsistent findings. Many studies report that 

complex tours tend to be vehicle-based. A study using 1992 Sydney data by Hensher & Reyes 

(2006) find that transit usage has decreased as tours become more complex. This study argued that 

public transit was not suitable for complex tours because of inflexibility. On the other side, a 

Melbourne metropolitan study based on data from 1994 to 1999 finds that train and tram have the 

highest average number of trips per tour (3.37 and 3.24), followed by car-driver (3.07) and bus 

(2.81) (Currie & Delbosc, 2011). Earlier, Primerano et al. (2007) points out that the nature of trip 

chaining by vehicle and by transit is different. The author argued that we cannot rule out the role 

of public transit in complex travel due to flexibility. The author suggests that public transit can 

support complex tour if mixed and dense activity destinations are located around transit facilities. 

This argument is later supported by a Swiss-based study (Harding et al., 2015) and another Sydney-

based study (Ho & Mulley, 2013). Moreover, Ye et al. (2007) examined the causality between 

mode choice and tour complexity. By comparing three models with different casual assumptions, 

the researchers find that the model assuming tour complexity dominates mode choice fits the data 

best, followed by the model assuming tour complexity and mode choices are made simultaneously, 

while the model assuming the choice mode occurs prior to the choice for tour complexity has the 

lowest goodness-of-fit. 
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The relationship between tour complexity and land use has been investigated and results are also 

mixed. In a Seattle study, Krizek (2003) investigates individual trip chaining patterns before and 

after a home relocation and finds that greater neighborhood accessibility lead to more frequent but 

less-complex tours. Meanwhile, Maat & Timmermans (2006), using samples from central and 

urbanized regions of Netherlands, have found that higher density areas are associated with more 

tours overall and more-complex tours. A Portland-based study concludes that better accessibility 

to bus is associated with more trip chaining (Greenwald & Mcnally, 2008). 

Several factors may cause the inconsistency in the reviewed literatures. First, the study subjects 

and trip/tour types analyzed vary across studies. Some studies have focused on work tours and 

others on non-work tours. Second, studies use different categorizations of transportation modes. 

Some research compares motorized v.s. non-motorized mode, and studies which analyze public 

transit modes vary in classification. Some studies group all transit service as one type while some 

studies analyze tram, train and bus separately. Third, the method to quantify explanatory variables 

impacts the modeling results. Some use binary indicators; some use continuous measures such as 

population density; and some use participant-defined measures. The variation is often high, 

especially in studies analyzing the influence of land use characteristics. Studies also vary in terms 

of the geographic definition of land use factors. Most studies examine the influence of near-

residence land use patterns but not patterns near other destinations and activity locations. 

One of the most common areas of debate in available research is how to classify tour complexity. 

A binary classification scheme defines a tour as either simple or complex based on number of 

chained trips. If a tour has two trips, it is classified as a simple tour; if a tour has three or more 

trips and thus at least two destinations, it is classified as a complex tour. Several recent studies 



	 52 

suggest this binary method is limited because it assumes homogeneity among tours with two or 

more stops. Moreover, it ignores the relationship between trip ends and other tour attributes. A few 

studies have experimented with an extended measurement for tour complexity. Currie and Delbosc 

(2011) propose a new approach by treating tours as “more or less” complex depending on number 

of trips per tour. They have found tours involving public transportation, especially for non work 

based tours, were more complex than tours by car. Another Australian study based in Sydney 

further classifies tours not only based on number of chained trips, but also by the spatial 

relationship between trip ends (Ho & Mulley, 2013). In this study, there are three categories for 

tours: SPSD (single purpose single destination), MPSD (multiple purpose single destination), and 

MPMD (multiple purpose multiple destination). It identifies two consecutive activities performed 

at locations within a walking distance (800m) as a single destination, and consecutive activities 

undertaken at different locations greater than 800m apart as multiple destinations. The study has 

found that mode choice is not merely determined by the number of chained trips, but is also 

influenced by the spatial distribution of destinations. For instance, for a work tour, MPSD tours 

are more likely to be transit-based and MPMP tours are more likely to be car-based. This study 

also applies a model with only number of trips for comparison with the new method. It finds that 

for maintenance and discretionary tours, the results are reversed with number of trips as the only 

complexity assessment. Without consideration of the trip end’s spatial distribution, transit tours 

are found to be more complex. However, when spatial relationship is included in the tour definition 

(by grouping destinations within 800m as a single destination), transit tours are likely to be less 

complex than car tours. 

Harding et al. (2015) has followed the tour complexity definition by Ho & Mulley (2013) and 

extended it in two ways. First, the researchers disaggregate SPSD trips based on travel distance. If 
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the trip is shorter than 800m, it is referred to as SPSD-short; if a trip is longer than 800m, it is 

identified as SPSD-long. The study has found that the mode share for SPSD tours changes based 

on distance. Car is the primary mode for SPSD-long tours (61.3% of this category) followed by 

public transit, while walking is the primary mode for SPSD-short tours (80.5% of this category) 

followed by bike. Then, the researchers use clustering analysis to classify locations (both home 

and destination) into four urban types based on population, employment, land use mix and transit 

facility density. The locations are then classified as type 1 (low density, low mix and poor transit 

access) to type 4 (most urban, high land use mix, high density and transit accessibility). The 

location type at home or destination is then used to interact with the tour types. It concludes that 

residents of urban clusters tend to take MPSD tours and SPSD-short tours. This finding is 

consistent with Krizek (2003). A destination at a low density environment is most likely to be in a 

SPSD-long tour and MPMP tour. A destination at an urban environment has higher chance to be 

involved in SPSD-long tour and MPSD tour. 

These three studies which have utilized more detailed tour classification methods (Currie & 

Delbosc, 2011; Harding et al., 2015; Ho & Mulley, 2013) all supported the argument that the 

traditional binary classification method is insufficient to study the relationship between tour 

complexity and other factors. However, there are several aspects that still deserve research 

attention. First, given Ho & Mulley (2013) and Harding et al. (2015) have stressed the importance 

of examining the influence of activity clusters, it would be useful to investigate the relative 

influence of activity cluster centered around home versus around non-home destinations. Second, 

none of the tour complexity research considers the visiting sequence or frequency of chained 

destinations. This may due to the difficulty in extracting complete tour-based information from 

travel survey or dairy data. In addition, previous studies have not considered the influence of the 
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non-primary destinations along a tour. Most studies have focused on the urban environment either 

at home or at the major tour destination where the primary activity occurs. 

Definitions 

This section summarizes key trip chaining terminology used in this chapter. A “tour” is a series of 

consecutive trips that starts and ends at home. Some research refers “tour” as a “trip chain.” In this 

dissertation, “trip” is limited to a travel process with activities achieved and utility generated at its 

destination. Hence, a recreational walking trip that starts and ends at home is not considered as a 

“trip” because the travel process per se is the activity. A stop for travel mode exchange is not 

considered a destination neither. Meanwhile, the term “trip” is exchangeable with “chained trips”, 

“(tour) segment” and “leg” in this dissertation. The identification of “activity location” is rule-

based. The details are provided in Chapter 2. In short, it is the place where the traveler either has 

stopped for at least 3 minutes, or has stopped for less than 3 minutes for an identifiable purpose 

(such as dropping off or picking up someone) based on a manual review of trip routing and the 

GPS trace. “Activity location” is defined at census block level, which is the smallest geographical 

unit for which socio-economic data is available. It is also referred to as “(intermediate) stop”, 

“(chained) location”, or “place”. The set of consecutive activities which occur within the same 

census block are considered as a bundle, or the same destination. Thus, movement between 

sequential “stops” within the same census block is not counted as a trip. The above definitions are 

consistent with the majority of the tour complexity literature so that the results is comparable 

(Currie & Delbosc, 2011; Harding et al., 2015; Ho & Mulley, 2013). 
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Research Objectives 

The goals of this chapter is to: 

• Compare the proposed TCI with the traditional binary classification of tour complexity 

• Investigate how tour complexity is affected by travel-related factors 

• Examine the relationship between complex tour and public transit usage 

• Explore how activity locations influence tour complexity and mode choice 

Methodology 

Data 

The tour-level data analyzed in this chapter includes Wave I data from the Expo tour dataset 

described in Chapter 2. The population and employment data at census block level, and the road 

TIGER Lines/shapefile are retrieved from U.S. Census Bureau (2011). The 2011 American 

Community Survey 1-Year Estimates data is used. Transit information, such as stop location and 

service frequency, is computed from the LA Metro GTFS (General Transit Feed Specification) for 

the 2013 October service period. The 2008 existing land use data is downloaded from Southern 

California Association of Governments (2009).  

Tour Complexity Index 

The proposed Tour Complexity Index (TCI) is comprised of four indices, described below: 

• Segment Index: number of trip segments chained in a tour 

• Cluster Index: whether any trip segment is shorter than 1/2 miles 

• Efficiency Index: whether the route carried out is equivalent as the shortest path that 

connects all the destinations with each destination is visited exactly once 
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• Diversity Index: whether there more than one dominant land use types across destinations 

Segment Index 

The Segment Index provides the basic information about a tour: how many activity locations the 

traveler has combined into the tour. It is defined as the number of chained trips in a tour (3-1). It 

is designed as a counterpart to the traditional binary classification method of tour complexity. 

Instead of referring a tour as either simple or complex (based on number of trips), the proposed 

TCI directly quantifies the number of trips chained in the tour. For instance, for tours, {home – 

school – work – home} and {home – laundry – school – work – school – restaurant – home}, TCI 

describes them as “a tour with three trips” and “a tour with six trips”, rather than calling both 

“complex tour”. The minimum value of the Segment Index is 2 (a tour formed by one outbound 

and one inbound trip). 

	 !"#	|	&'()'*+	#*,'- = #	01	+2345 (3-1) 

Cluster Index 

The Cluster Index is a binary indicator reflecting the spatial relationship among chained stops (3-2). 

If the tour contains at least one pair of sequential destinations that are with ½ mile (~800m) 

distance, then its Cluster Index is 1. The threshold of ½ mile distance follows Harding et al. (2015) 

and Ho & Mulley (2013), which choose this distance because it is a typical walking distance (about 

10 minutes walking for an adult).  A participant’s home can be part of a cluster. Order matters such 

that a tour cannot be classified as having a cluster if two points being within 0.5 miles of each 

other but are not sequential. For example, the hypothetical examples of Tour B and D in Figure 

3-1 have the same chained locations. Tour B would have a Cluster Index of 1 and Tour D would 
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have a Cluster Index of 0 due to the different visiting sequence. When two locations close to each 

other are visited together in sequence, it suggests they maybe involve in the tour planning process 

as a bundle which makes the tour spatially less complex. 

	
!"#	|	"675+'2	#*,'- = 	 1, +ℎ'2'	35	;+	6';5+	0*'	<675+'20, 0+ℎ'2>35'																																				 (3-2) 

Efficiency Index  

Efficiency Index is a binary indicator which indicates how participant arranges the route to visit 

all the locations in a tour. The Efficiency Index is equal to 1 if the actual route is identical to the 

shortest path connecting all the locations; otherwise, the index is equal to 0 (3-3). In general, there 

are several types of tours resulting an Efficiency Index of 0. The first case is when the locations 

are visited repeatedly in a tour, which indicates the presence of an anchor point other than home 

(Figure 3-1, Tour B). The second case is a visiting order constrained by the interdependency 

between the locations. For example, a parent wants to take his/her child to the book store. He/she 

picks up child from school then visits the book store together, even though visiting the book store 

first would have resulted in a shorter total distance. Essentially, these two cases reflect the 

complexity determined by the activities. The third case of inefficient routing may due to an 

impromptu travel demand which could merely reflect a participant’s inefficient route arrangement 

(Figure 3-1, Tour D). 

	
!"#	|	?113<3'*<@	#*,'- = 	 1,			31	207+'	35	5ℎ02+'5+	4;+ℎ0,			0+ℎ'2>35'																													 (3-3) 

I have considered other methods to quantify the spatial relationship among multiple locations, 

including convex hull and standard deviational ellipse (SDE), which are more widely used 

(Perchoux et al., 2014). There are two reasons that they are not adopted. First, the emphasis of the 
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current research is about complexity, not about size or direction. If the chained locations are 

connected through a shortest path, we consider the tour is efficient in routing arrangement, 

regardless of the number of stops or travel distance (Figure 3-1, Tour A and C). Second, neither 

the convex hull nor the SDE methods are applicable for classifying situations such as a single-

destination tour with only have one outbound and one inbound trip (Figure 3-1, Tour A). The major 

advantages of the definition used in TCI is that it can be applied to a single-destination case and it 

accounts for the travel sequence. At the same time, it avoids overlapping with other indices in TCI, 

particularly the Segment Index (the number of trips per tour). 

Diversity Index 

Just as the Segment Index quantifies the complexity relating to the quantity of chained activity 

locations, the Diversity Index is more of a qualitative measurement that shows the complexity 

relates to the destinations visited in a tour. It is a binary index of whether there is deviance in the 

activity location, indirectly measured using dominant land use type of the destination’s census 

block (3-4). A Diversity Index of 0 means the series of chained locations have the same dominant 

block-level land use type (Figure 3-1, Tour A and C); an index of 1 indicates the series locations 

are located in blocks with different dominant land use types, which further suggesting a change in 

the activity context and type (Figure 3-1, Tour B and D). 

	 !"#	|	A3B'253+@	#*,'- = 1,			CDE ≠ CDG					3, H = 1,… , J; 	3 ≠ H																								
0,			CDL = ⋯ = CDN; 	J = *7O)'2	01	60<;+30*5 (3-4) 

Diversity Index is designed to be the counterpart of the set of trip purpose in a tour. Information 

regarding trip purpose, however, is not available in Expo GPS dataset, so that we cannot measure 

diversity using stated trip purpose. Land use type has been found to be closely related with travel 
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behavior (de Abreu e Silva et al., 2014) and therefore I use the dominant land use of a destination 

to approximate a trip’s purpose and the corresponding level of tour diversity. 

 

Figure 3-1 Illustration of Tour Complexity Index 

Analytical Approach 

This analysis first utilizes descriptive statistics to explore the relationship between the proposed 

TCI and other factors, such as travel mode, land use and participant characteristics. Methods 

include contingency tables and clustering. Then, two groups of mixed effects generalized 

regression models are specified to first study the impact of external factors on TCI and to second 

investigate the influence of TCI on transit usage. In both descriptive approach and modeling 

approach, the traditional binary classification method of defining trip complexity is also applied 

to compare and contrast the two classification schemes. 
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Models 

Mixed effect generalized linear models are constructed to understand how travel modes and other 

travel attributes affect tour complexity and how tour complexity influences mode choice. Binomial 

distributions are analyzed for binary response variables, e.g. whether a tour follows a shortest route; 

Poisson distributions are analyzed for count variables, e.g. how many trips are chained in a tour. 

AIC is used for model comparisons since the tested models are not nested.  Lower AIC indicates 

a better model. 

The first group of models addresses the first and second research question: how is the result differ 

under the traditional binary classification of tour complexity and under the proposed TCI; how is 

tour complexity is affected by travel, personal, and destination characteristics.  TCI estimates are 

treated as response variables. I model separately whether the tour will chain more than one trips 

(Segment Index), will have a cluster of chained stops within walking-distance (Cluster Index), will 

have a compact (Efficient Index) route connecting all the stops, or will involve multiple dominant 

land use types (Diversity Index). The independent variables include travel mode, tour and trip 

attributes, participant characteristics, and home and destination features. A model of factors 

associated with a tour complexity based on a simplistic binary definition is included as a 

comparison between the proposed TCI method and the traditional method. 

The second group of models is to investigate the first, third and fourth research questions: how do 

results vary between the proposed TCI compared to the traditional binary classification of 

complexity; and what is the relationship between public transit and tour complexity; how activity 

locations influence tour complexity. This group of models treats mode choice as the response 

variable to estimate the probability about whether a tour utilizes public transit, given TCI and other 
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related variables. The first two models use traditional tour complexity classification schemes. One 

includes a binary complex tour indicator; another uses a count variable as number of trips chained 

in the tour. The other three models are TCI models and are specified as follows: 

1. A TCI model including the four proposed indices: number of chained trips, indicator of 

cluster, indicator of efficient route, and indicator of diverse land use types 

2. A TCI model that splits the cluster indicator into two variables: cluster at home or cluster 

at non-home destinations 

3. A TCI model that is the same as the first TCI model in TCI variables, but using furthest 

destination attributes instead of main destination attributes (the one with longest activity 

duration) 

Independent Variables 

Participant characteristics include gender, age, employment/school enrollment status, household 

income, car ownership, vehicle per driver license, presence of children under 18. Tour and trip 

attributes include departure time, day of week, total travel distance and destination land use types. 

Origin and destination characteristics are designed following the Density-Design-Diversity (3-D) 

effects introduced by Cervero & Kockelman (1997).  

For density, population per acre and urbanization status are computed for activity locations at 

census block level. Census-block population is aggregated from the census track population data 

of 2007 – 2011 American Community Survey 5-Year Estimates, U.S. Census Bureau. The size of 

census block equals the land area plus water area obtained with the census block shapefile 

downloaded from the 2011 U.S. Census Bureau’s TIGER Line/Shapefiles. Urbanization status is 

the proportion of a census block containing land use information based on 2008 existing land use 
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data obtained from Southern California Association of Governments. The total area of a census 

block is calculated using ArcGIS “calculate geometry” function.  

First, it is necessary to clarify the concept of “diversity” used as the exploratory variable. The term 

“diversity” in the 3-D effects mainly refers to the degree of environmental mixture such as a 

mixture of land use types at a specific location. It is separated concept from the Diversity Index of 

TCI with the latter refers to a change of dominant land use across all chained locations. Land use 

mixture is estimated using an entropy index to quantify diversity at destination level. The employer 

and resident ratio at the census block level is computed but excluded from models due to a large 

number of blocks with an unreasonable number of employees. The data source of census block 

employment is the Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination 

Employment Statistics (LODES) dataset. The relevant variable, population mix, is constructed 

based on the total block employment for the year of 2011 (U.S. Census Bureau, 2011).  

As for design, accessibility is reflected in the following variables: distance to the nearest high-

frequency bus stops, and distance to the nearest freeway entrance. They are computed using 

“empty space distance”, one of the classical methods to quantify the interaction between spatial 

locations (Baddeley, 2008). It is defined as the Euclidean distance between a specific location, u, 

to the nearest point in a point cluster X (3-5). 

	 , 7 = 	)3*E 7 − -E , -E ∈ R (3-5) 

The criterion of high-frequency is a service window shorter than 6 minutes during morning peak. 

The bus service frequency per bus stop is extracted from Los Angeles Metro GTFS 2013 October 

service period. In addition to the accessibility, distance to downtown Los Angeles is computed to 

control for a general urban setting. As destinations are closer to downtown, the area may be denser, 
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have better road and transit accessibility and higher diversity in land use. On the other hand, the 

further away from downtown, the destination area is expected to be less dense, dispersive and to 

have limited transit accessibility.  

To address the fourth research question regarding the role of destinations in mode choice, two 

types of destinations are studied. The first is defined by the main tour destination (“M”), which is 

the location in which the participant spends the longest activity duration. The duration is 

aggregated if a location is visited more than once during a tour. The second type of destination is 

defined as the furthest destination from home with distance computed as spherical distance (“F”). 

The complete list of the variables and descriptive statistics are provided in Table 3-1. For binary 

variables, the mean is computed as the ratio of the true value to total number of observations. Its 

standard deviation is the square root of mean times one minus mean divided by the number of 

observations. The statistics for participants are computed using a total of 55.  
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Table 3-1 Descriptive Statistics of Independent Variable 
Variable Name Description Mean s.d. 

Traveler Characteristics    
Male Male (0/1) 0.309 0.062 
Age Age 52.163 14.19 
High income Household annual income >= $75,000 (0/1) 0.182 0.052 
Own car Own car (0/1) 0.818 0.052 
Share car Share car with family (0/1) 0.255 0.059 
Worker/Student Employed or student (0/1) 0.618 0.066 
Fulltime worker/student Fulltime (0/1) 0309 0.062 
Young children Presence of household children under 18 (0/1) 0.255 0.059 
Single-person family Single-person family (0/1) 0.418 0.067 
Large family Family size > 4 (0/1) 0.182 0.052 
Tour & Trip Attributes    
Weekend Weekend (0/1) 0.303 0.023 
Peak hour Peak hour (0/1) 0.511 0.025 
Travel distance Total travel distance in miles 11.208 10.492 
Location Features    
Density    
Pop. density (M) Number of residents per acre at main stop (M) 

or at furthest stop (F) 
10.584 15.585 

Pop. density (F) 11.088 15.794 
Urbanization (M) % of area with designated land use in total 

area at main stop (M) or at furthest stop (F) 
0.803 0.113 

Urbanization (F) 0.796 0.115 
Diversity    
LU mix (M) Land use mixture measured in entropy index at 

main stop (M) or at furthest stop (F) 
0.387 0.399 

LU mix (F) 0.379 0.402 
Design    
Dist. bus (H) Distance to nearest high-frequency bus stop in 

mile from home (H), main stop (M) or furthest 
stop (F) 

0.768 0.427 
Dist. bus (M) 0.858 0.904 
Dist. bus (F) 0.919 0.919 
Dist. freeway (H) Distance to nearest freeway entrance (mile) 

from home (H), main stop (M) or furthest stop 
(F) 

1.119 0.716 
Dist. freeway (M) 0.832 0.669 
Dist. freeway (F) 0.804 0.675 
Rail density (M) Rail kernel density at main stop (M) or at 

furthest stop (F)  
0.030 0.113 

Rail density (F) 0.029 0.112 
Dist. DT LA (M) Distance to downtown Los Angeles (miles) 

from main stop (M) or furthest stop (F) 
7.772 3.640 

Dist. DT LA (F) 7.970 3.686 
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Results 

Descriptive Analysis 

Distribution of tours by TCI 

The analysis in this chapter is based on the Wave 1 GPS traces of the 55 participants in the study 
sample and include a total of 409 valid tours. Among them, 36.2% of tours are simple tours with 
two trips (single destination); 28.6% of tours have three trips (two destinations); 13.5% of tours 

have four trips; 21.7% of tours have five or more trips (Table 3-2 and  

Table 3-3). There is a tour with 16 trip segments where the trips may be part of the participant’s 

job (such as bus driver or delivery person). However, it is not removed from the analysis due to 

lack of evidence. Applying the binary classification method of tour complexity, “complex” tours 

(>= 2 trips) account for 63.8% of all the tours; and about 66% of these “complex” tours have 

chained two or three destinations (Table 3-2). The average number of trips chained in a tour is 3.6 

much higher than the empirical results from previous studies. A Melbourne-based study found that, 

from 1994 to 1999, the average trip legs per tour was 2.9 and less than half of the tours were 

complex (Currie & Delbosc, 2011). The difference may due to the different living styles between 

two geographical regions and different time frames. It is also possibly due to the sampling method 

where the data in Currie & Delbosc (2011) has a a wider population coverage (randomly sample 

5,000 Melbourne households per year). Moreover, Currie & Delbosc (2011) uses travel diary while 

this study is based on GPS data. The trip rate obtained from travel diary has been found to be 

averagely lower than that from GPS data (Houston et al., 2014). On the other hand, the result of 

this study could be inflated because of the possible inclusion of trips that are part of the traveler’s 

job. 
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Table 3-2 TCI Statistics of Expo Wave I tours 
TCI  mean  [min., max.] 

Segment 3.614 [2, 16] 
 # of 0 # of 1 

Cluster 242 167 
Efficiency 82 327 
Diversity 192 217 

 
Table 3-3 Distribution of Expo Wave I Tours by TCI Segment Index 

Frequency 
TCI 

Segment Cluster Efficiency Diversity 
148 2 0.18 1 0 
117 3 0.42 1 0.71 
55 4 0.49 0.71 0.84 
31 5 0.52 0.48 0.97 
21 6 0.76 0.23 1 
13 7 0.69 0.23 1 
8 8 0.88 0 1 
6 9 1 0 1 
2 10 1 0 1 
3 11 1 0 1 
1 12 1 0 1 
2 13 1 0 1 
1 14 1 0 1 
1 16 1 0 1 

 
Table 3-4 Contingency Table for TCI Values 

  Diversity Index = 0 Diversity Index = 1  
  Efficiency Index Efficiency Index  
  0 1 subtotal 0 1 subtotal row sum 

Cluster 
Index 

0 1 135 136 27 79 106 242 
1 2 54 56 52 59 111 167 

 col. sum 3 189 192 79 138 217 Total: 409 

 
Table 3-3 shows the distribution of tours disaggregated by TCI and  

Table 3-4 is the contingency table with Segment Index aggregated. In Wave I, 167 out of 409 tours 

(40.8%) have clustered locations within the tour. Further examination shows only 26 of these 167 

tours with clusters are short-distance tour with one destination near home (<= 0.5 mile). It also 
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means the majority of the single-destination tours (148 - 26 = 122, 82.4%) are long distance. The 

percentage of long-distance single-destination tours is higher than that from a Swiss-based study 

where 76.1% single-destination tours are long distance (Harding et al., 2015). A total of 327 tours 

have followed shortest path, of which 189 have a Diversity Index of 0 and 138 have a Diversity 

Index of 1. However, if we exclude those tours with one or two destinations that have an Efficiency 

Index as 1 by default, only 18 (12.5%) of the multi-stop tours are “compact”. For the Diversity 

Index, about half of the tours have the same dominant land use setting across stops (192, 47.2%). 

The likelihood of Cluster Index as 1 and Diversity Index as 1 both increase as the Segment Index 

increases, meanwhile the Efficiency Index decreases. 

Table 3-5 Distribution of Expo Wave I Tours by Mode Usage with TCI Statistics 
 Frequency TCI (mean) 
 Count % Segment Cluster Efficiency Diversity 
Grand total 409 100% 3.62 0.41 0.80 0.53 
One mode 369 90.22%     
Vehicle 326 79.71% 3.57 0.31 0.80 0.54 
Transit 11 2.69% 2.18 0.00 1.00 0.09 
Non-motorized 32 7.82% 2.66 0.97 0.97 0.19 
Mixed mode 40 9.78%     
Vehicle + transit 4 0.98% 5.68 0.91 0.50 0.82 
Vehicle + non-motorized 22 5.38% 4.25 0.50 0.50 0.75 
Transit + non-motorized 13 3.18% 4.46 1.00 0.69 0.85 
Transit + vehicle + non-
motorized 1 0.24% 5.00 1.00 1.00 1.00 

TCI and travel mode 

Table 3-5 and Figure 3-2 shows how travel mode interact with TCI. 90% of the tours are dominated 

by a single mode and only 29 (7%) tours involve transit. For parsimony, the tour mode in the 

following analysis refers to the primary mode of the tour. The primary mode is determined based 

on the hierarchical order: transit, vehicle, and non-motorized. So for a tour used both vehicle and 

transit, it is referred to as a transit tour. 
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Figure 3-2 Shares by TCI Across Travel Modes 

Figure 3-2 shows how TCI and its subcomponents are distributed across travel modes. The 

distribution of tours by number of segments is similar in car-based tour and transit-based tours. 

This implies the number of tour segments is not a barrier of using transit. At the same time, tours 

with non-motorized modes seem to involve fewer chained trip segments. Car-based tours are less 

likely and non-motorized tours are most likely to involve location clustering. Transit-based tours 

have a slightly higher rate of involving location clustering than car tours. The three tour modes 

show similar trends in terms of route efficiency, but non-motorized tours are dominated by route-

efficient tours. Since the distance cost tends to be higher for non-motorized tours, participants 

likely seek to minimize the distance for a walking or biking trips. Meanwhile, transit and car tours 

show an almost identical patterns in terms of diversity. This suggests that complexity in routing is 

not a barrier to choosing transit. Lastly, transit and car-based tours both have higher likelihood to 

have chained destinations with mixed dominant land use, while non-motorized tours have larger 
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chance to be dominated by a single land use type. Although non-motorized tours can have multiple 

trip segments, their overall geographical range is smaller and so it is more likely that these chained 

locations have similar urban setting. 

Figure 3-3 depicts how tour mode share is related to the number of trips. Panel (a) is based on the 

traditional binary classification scheme of complexity where tours are labeled as either simple or 

complex based on whether more than one destination are chained; Panel (b) is based on TCI 

Segment Index which equals to the number of segments without further simplification. When there 

is no cluster in the tour, two classification schemes show identical patterns. That is, the share of 

vehicle tours increases and the share of non-vehicle tours decreases when the number of segments 

increases. However, if a tour contains clustered destinations, the classification scheme that reports 

the exact number of trips (Panel (b)) reveals more information than the binary classification 

scheme (Panel (a)). First, both shows that non-motorized mode dominates the short-distance (1/2 

miles) single-destination tours, followed by vehicle and then transit. Then, when number of trips 

increases, Panel (a) tells us that the share of both vehicle and transit mode increase monotonically 

while Panel (b) shows that the transit usage actually declines with number of chained trips exceeds 

5. This suggests that the choice to take public transit may be discouraged when a traveler plans to 

visit a larger number of destinations. This result partially supports the argument by Ho & Mulley 

(2013) that dense activity centers encourage transit use. However, based on Ho & Mulley’s study, 

the share of vehicle mode decreases as number of segment increases when clusters present which 

does not agree with the result found here. 
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Figure 3-3 Mode Share by Segment and Cluster Indices 

Clustering 

Instead of adopting a tour topology from other studies, I employ a clustering algorithm to explore 

the tour patterns. There are two popular clustering algorithms, K-means and K-medoids. The 

concept of K-means is to minimize the within-group variance by assigning groups to the data 

points after a set of group centers is found. K-medoids is a generalized version of K-means. The 

major difference is that K-medoids uses an observed data point as the group center and is more 
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robust to outliers. Meanwhile, K-medoids can apply any dissimilarity metric in addition to 

Euclidean distance. Considering the dataset contains a few extreme cases and a mixture of variable 

types (ordinal and binary), I adopted the K-medoids for the analysis.  

Table 3-6 Tour Clustering by K-medoids Algorithm by TCI 

Group 
(count) Description Group mean/mode 

Segment Cluster Efficiency Diversity 

A (135) Single-stop long distance tours 2.10 0 1 0 

B (56) Single-stop or two-stop tours with 
clustered and similar destinations 2.70 1 1 0 

C (79) Multi-stop tours with dispersed and 
diverse destinations 3.43 0 1 1 

D (59) Multi-stop tours with clustered and 
diverse destinations 3.92 1 1 1 

E (28) Multi-stop tours with dispersed and 
diverse destinations, and inefficient route 5.14 0 0 1 

F (52) Multi-stop tours with clustered and 
diverse destinations, and inefficient route 7.64 1 0 1 

For K-medoids clustering, Gower’s similarity is used to compute a dissimilarity matrix with 

Segment Index treated as an ordinal variable and the other three indices treated as binary. The 

criterion used for selecting the optimal number of clusters is average silhouette. As a result, the 

409 tours are divided into six clusters (Table 3-6, ordered by number of chained trips). This result 

suggests there are six common types of tours: 1) single-stop tours with the destination exceeding 

a typical walking-distance as ½ miles (Cluster A); 2) slightly more complex tours with at least one 

walkable trip and similar types of destinations (Cluster B); 3) multi-stop tours with dispersed and 

different types of destinations (Cluster C); 4) multi-stop tours with at least one destination cluster 

and different types of destinations (Cluster D); 5) multi-stop tours with dispersed destinations, 

diverse land use settings and an inefficient routing arrangement (Cluster E); and 6) a multi-stop 
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tour with at least one destination cluster, diverse land use settings and an inefficient routing 

arrangement (Cluster F). 

The most common tour type is Cluster A, a long distance tour with a single destination. It 

comprises 33% of the Wave I tours. Other tour types are almost evenly distributed, each 

comprising on average 13.4%. Based on the combination of Cluster, Efficiency and Diversity 

Index, we can see the six clusters form three pairs: Clusters A and B, Clusters C and D, and Clusters 

E and F. The first pair, Cluster A and B, account for 46.7% of Wave I tours. Most of the tours in 

these two types have one or two destinations. They are both have efficient shortest-path routes and 

the tour destinations have same dominant land use types. The difference between Cluster A and B 

is that Cluster A is dominated by single-stop and long distance tours, while Cluster B is a 

composition of single-stop tours whose destination is close to home and two-stop tours with at 

least one pair of destinations close to each other. Cluster C and D are mainly multi-stop tours with 

more than one type of destination and segments chained into the shortest-path route. The difference 

between C and D is whether the tour includes destination clusters. Together, they account for 33.7% 

of the tours in Wave I. Finally, Cluster E and F are tours with more chained locations that are 

sequenced in an inefficient, non-direct way. The chained locations are very likely to be in areas 

with different dominant land use types. As above, the major difference between Cluster E and F is 

the presence of a destination cluster. Note that for each pair of clusters, the ones with a cluster 

have higher average number of trips, which suggests dense activity places are associated with more 

complex tours in terms of trip segments (Clusters B, D and F). Meanwhile, tours with a higher 

number of trips have a greater chance of having multiple types of locations chained rather than a 

single type (Clusters C, D, E and F). Tours with a five or more trips are less likely to have an 

efficient route and are more likely to have an anchor point or zigzagging route (Clusters E and F). 
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Multivariable Analysis 

Influence of travel factors on tour complexity 

The impact on the four indices of TCI from the independent variables are different in terms of 

direction, magnitude and significance level (Table 3-7, Models 2-5). The comparison between the 

four TCI models (Table 3-7, Model 2-5) and the model with the more simplistic binary 

classification of a complex tour (Table 3-7, Model 1) suggests that treating tour complexity as a 

binary variable may overlook important factors explaining the association between tour 

complexity and external factors. 

Tours by vehicle have a strong association with the probability that the tour includes a different 

primary land use types across destinations (Model 5) and has a higher number of chained trips in 

a tour (Model 2). Tours by vehicle are also associated with a reduction in a tour’s probability of 

connecting stops using the most efficient shortest-path route by 90% (Model 4). Tours with a non-

motorized travel mode are found to have a statistically significant and positive association with 

the number of segments, clustering, and land use diversity at destinations (Models 2, 3 and 5), they 

are also significantly and negatively related with an efficient routing arrangement (Model 4). Tours 

with a public transit mode, however, are not significantly related with any of the TCI outcomes, 

which may partially be due to limited number of participant transit-based tours. If a tour is initiated 

during a peak hour, it is less likely to have cluster(s) (Model 3). Both travel distance and the 

existence of commercial and service type destinations have a positive relationship with number of 

chained trips, cluster and diverse land use at destinations for a tour, and reduces the chance a tour 

follows the most efficient or compact route. 
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Being male is positively associated with an increased likelihood of having tours with at least one 

cluster and having a higher household income is associated with a reduced likelihood of choosing 

destinations that are clustered. Car ownership is associated with a lower likelihood of a tour with 

destination diversity. This may because participants with a car tend to make less-chained and 

longer distance tours. Interestingly, participants who need to share a household vehicle with other 

family members are associated with a higher likelihood of having a tour with a more compact, 

efficient route. Employed or student participants, regardless of full-time or part-time, have a 

likelihood of making chained trips 1.2 times that of other participants and they are 75% less likely 

to have a compact route and almost 3 times as likely to have different land use types across stops. 

Full-time work or school was not significantly related to TCI components, but it reduces the chance 

of complex tour based on the simple binary definition of tour complexity (Model 1). A participant 

who lives in a family with four or more people is 73% less likely to organize the tour in a compact 

way but is 156% more likely to have a diverse land uses across tour destinations. Adults with 

children under 18 are associated with a significantly lower probability of having clustered 

destinations, likely because they tend to choose destinations based on children’s needs rather than 

based on distance. 

The characteristics of destinations in a tour seem to influence on tour patterns choice more than 

that the characteristics of residential locations. Similar conclusions can be found in studies in non-

U.S. urban settings (Maat & Timmermans, 2009). The variables for the main destination 

characteristics explain the TCI components better than the variables for the furthest destination 

characteristics. The degree of urbanization and land use mixture at main tour destinations 

encourages the overall tour-level diversity. If the main destination is far away from a high-

frequency bus stop, then the tour is less likely to have fewer trips chained, less likely to have 
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clustered and diverse destinations overall. One additional unit of railway kernel density at main 

destination cuts the likelihood of the number of chained stops in a tour by almost half. However, 

it greatly increases the likelihood of having a compact route. If the main destination is far away 

from downtown Los Angeles, the tour has a lower rate of chained trips and higher probability of 

the shortest efficient route. The above suggests that transit accessibility encourages more chained 

trips, more complex routing arrangements and more diversity among activity locations. In addition, 

neither of the two variables related to residential accessibility are significantly related with the TCI 

components. 

Relationship between transit mode choice and tour complexity 

Models 6-10 investigate the influence of the TCI components on the probability a traveler takes 

public transportation in at least one segment of a tour. Result is shown in Table 3-8. Overall, the 

model with four TCIs and which includes characteristics of the furthest destination (versus the 

home destination) fits the data best (Model 10). All three TCI models (Models 8-10) perform better 

than non-TCI models (Models 6-7). The model treating tour complexity using a binary 

classification method fits the data most poorly (Model 6). In addition, although Model 9 is slightly 

worse than Model 8, it shows that non-home clustered destinations play an important role in transit 

mode choice, rather than clustered destinations near home. 

The two models without TCIs have conflicting results regarding the relationship between public 

transit usage and tour complexity which solely depends on number of trips. The model treating 

tour complexity as binary suggests that a complex tour is 22% less likely to involve public transit 

(Model 6). To the contrary, the model treating tour complexity as a count variable suggests that 

the likelihood that transit usage will increase by 38.5% for each additional chained destination. 
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The conflict is consistent with the contradictory conclusions from existing tour complexity studies. 

When other TCI indices are controlled for (Models 8-10), the coefficients for number of segments 

are positive but none of them are statistically significant, which further suggests that the number 

of trips may not be an sufficient or efficient explanatory variable for mode choice. This pattern 

supports Primerano et al. (2007)’s argument that the nature of car tours and transit tours is different 

and cannot be explained simply using number of trips. 

The existence of cluster, especially the existence of cluster near a destination away from the home 

environment, is positively and significantly related with the usage of public transit. In Model 9, 

the binary cluster variable is split into two separate cluster indicators. The variable for near-home 

clusters means at least one destination is within walking-distance (0.5 mile) of the participant’s 

residential location; the variable for non-home destinations means at least one pair of destinations 

beyond walking distance of the participant’s home is within walking-distance. Note that: 1) if one 

destination is close to both home and another location, then both indicators are equal to 1; 2) if 

two destinations are close to each other but not visited consecutively, then they are not classified 

as a cluster because they are not perceived as a cluster for the traveler. Model 9 suggests the 

existence of cluster at a non-home destination is positively associated with the likelihood a 

participant will use public transit use, while the binary for a home-based cluster is not statistically 

significant and its magnitude is much smaller.  
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Table 3-7 Estimation Results of Tour Complexity Models 

Variable Name 

Traditional Proposed TCI 
Model 1 Model 2 Model 3 Model 4 Model 5 
Complex 

tour 
(0/1) 

Segment 
(count) 

Cluster 
(0/1) 

Efficiency 
(0/1) 

Diversity 
(0/1) 

ST(p-value)1 ST(p-value) ST(p-value) ST(p-value) ST(p-value) 
Tour & trip      
Car 48.014*** 1.616*** 5.730 0.107** 30.494*** 
Transit 2.302 1.017 0.873 0.928 1.465 
Non-motorized 20.678*** 1.599*** 177.186*** 0.157*** 9.030*** 
Peak hour 1.092 0.966 0.621* 1.151 1.244 
Weekend 1.841** 1.043 0.827 0.675 1.329 
Travel distance 1.084*** 1.030*** 1.037** 0.871*** 1.103*** 
Comm. at Dest. 7.988*** 1.343*** 1.943** 0.172*** 15.390*** 
Traveler      
Male 1.116 1.035 2.287** 1.217 1.390 
Age 1.004 1.002 0.984 0.987 0.993 
High income 0.860 0.923 0.401** 1.943 0.976 
Own car 0.160** 0.890 0.661 2.531 0.162** 
Share car 0.540 0.870 0.623 3.187** 0.635 
Worker/Student 3.273*** 1.209** 1.335 0.257** 2.726** 
Fulltime Work or School 0.406** 0.873 0.900 2.113 0.682 
Single family 1.650 1.050 0.990 0.777 0.986 
Large family 3.732** 1.166 0.822 0.265* 2.561* 
Young children 0.571 0.902 0.367** 2.013 0.547 
Home & destination      
Pop. density (M) 0.996 0.999 0.986 1.003 0.982* 
Urbanization (M) 3.412 0.720 1.916 4.719 13.078** 
LU mix (M) 1.677 1.100 1.878* 0.627 2.417** 
Dist. bus (M) 0.590*** 0.930** 0.632** 1.296 0.676** 
Rail density (M) 0.120 0.439*** 0.163 36.035** 0.185 
Dist. freeway (M) 0.671* 1.007 1.660** 0.570** 0.559** 
Dist. LADT (M) 1.052 0.979* 0.969 1.180** 1.028 
Dist. bus (H) 0.513 0.936 1.466 2.173 0.799 
Dist. freeway (H) 1.597* 0.998 1.288 1.233 1.461 
Constant 0.001*** 1.760* 0.048 195.604** 0.001*** 
AIC (d.f.) 426.853 (28) 244.005 (28) 439.628 (28) 329.607 (28) 416.265 (28) 

Notes: 1. The values reported are change of odds ratio for logistic model and change of rate for Poisson 
model as response to one unit increases in the corresponding variable, with other factors fixed; significance 
level: 0.01***; 0.05**; 0.1* 
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Table 3-8 Estimation Results of Tour-level Mode Choice Models 

Variable Name 
Without TCI With TCI 

Model 6 Model 7 Model 8 Model 9 Model 10 
ST(p-value)1 ST(p-value) ST(p-value) ST(p-value) ST(p-value) 

Tour complexity      
Complex tour (0/1) 0.787 - - - - 
# of chained trips - 1.385*** 1.260 1.251 1.198 
Cluster (0/1) - - 15.121*** - 15.362*** 
Cluster at home (0/1) - - - 1.129 - 
Cluster at dest. (0/1) - - - 12.605*** - 
Compact route (0/1) - - 0.874 0.818 0.816 
Mixed env. (0/1) - - 0.163** 0.170** 0.152** 
Tour & trip      
Peak hour 1.427 1.484 1.708 1.766 1.434 
Weekend 1.101 1.208 1.353 1.042 1.606 
Travel distance 0.969 0.909** 0.937 0.910** 0.957 
Comm. at Dest. 0.833 0.597 1.084 0.898 0.979 
Traveler      
Male 25.761*** 30.026*** 17.708*** 24.254*** 17.007*** 
Age 1.034 1.040 1.048 1.032 1.047 
High income 0.203 0.181 0.466 0.306 0.400 
Own car 0.001*** 0.001*** 0.001*** <0.001*** 0.000*** 
Share car 0.501 0.586 0.631 0.756 0.647 
Worker/Student 3.383 3.105 2.743 3.093 2.346 
Fulltime Work or School 0.879 1.196 0.859 1.028 0.760 
Single family 3.028 3.334 2.521 3.476 2.400 
Large family 2.660 2.426 3.182 2.209 2.874 
Young children 2.688 3.709 4.804 3.477 6.226 
Home & destination      
Pop. density (M) 1.007 1.010 1.016 1.015  
Pop. density (F)     1.022 
Urbanization (M) 0.190 0.323 1.386 1.457  
Urbanization (F)     0.545 
LU mix (M) 2.132 1.573 1.449 1.384  
LU mix (F)     3.187* 
Dist. bus (H) 0.417 0.427 0.276 0.372 0.248 
Dist. bus (M) 0.967 1.135 1.018 1.028  
Dist. bus (F)     0.818 
Dist. freeway (H) 0.670 0.674 0.521 0.593 0.427 
Dist. freeway (M) 2.009** 2.352** 1.899* 2.503**  
Dist. freeway (F)     1.937* 
Rail density (M) 19.815 111.199* 57.729 353.520*  
Rail density (F)     23.468 
Dist. LA dt (M) 1.063 1.132 1.171 1.199  
Dist. LA dt (F) - - - - 1.159 
Constant 1.071 -0.908 -2.531 -1.502 0.314 
AIC (d.f.) 260.171 (26) 253.347 (26) 235.600 (29) 240.658 (30) 231.321 (29) 
Model comparison M5 > M3 > M4 > M2 > M1 

Notes: 1. The values reported are change of odds ratio as response to one unit increases in the corresponding 
variable, with other factors fixed; significance level: 0.01***; 0.05**; 0.1* 
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Discussion and Conclusions 

The results in this chapter add to the understanding of the connection between tour complexity and 

other travel factors. It also suggests reasons why previous research has obtained conflicting results. 

First, both descriptive and modeling analysis suggests that the proposed TCI suits tour-level study 

better than the traditional binary classification method, regardless of whether the study is about 

tour complexity per se or is about other travel aspects with tour complexity as an exploratory 

variable. The tour complexity models provide a better understanding about the travel features 

which affect tour complexity by separately examining the influence of 4 separate TCI components. 

The mode choice models suggest that the spatial clustering of destinations and the land use 

diversity at destinations are both important explanatory variables, rather than the widely-used 

count of chained trips. Compared to the few tour complexity studies which considered the spatial 

pattern of destinations (Harding et al., 2015; Ho & Mulley, 2013), the inclusion of the diverse land 

use indicator provides more statistically and practically significant information. Second, we find 

that the total travel distance and whether there is commercial and service land use at destinations 

significantly influence tour complexity. Individual characteristics, such as gender, income, 

employment/enrollment status, family size and presence of children, are also associated with tour 

complexity. Third, we find that vehicle and non-motorized travel modes have stronger connection 

with tour complexity than public transit. This suggests the discussion about mode choice and tour 

pattern or complexity should focus more on these two modes. However, the existing literature 

tends to group non-motorized modes with transit modes, or tends to solely focus on public transit. 

Last but not least, we discover that destinations beyond the home environment have more impact 

on tour complexity and mode choice than near-residence destinations. More specifically, the 

characteristics of destination with the longest activity duration explains tour complexity better, 
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while the characteristics of destination that is farthest from the residential location explains mode 

choice better. 

Limitations and future work 

Firstly, the study has not validated the proposed TCI from a theoretical perspective. All the results 

are obtained via empirical analysis. Further effort could be made to look at the tour complexity 

theoretically. Secondly, the study does not analyze the interaction between the TCI components. 

A multivariate analysis that treats the four indices of TCI simultaneously as a set of response 

variables would provide a deeper understanding about how the external factors affect the TCI. The 

major reason for not applying multivariate analysis is the limited sample size. The size of 409 tours 

is small comparing to other tour-based studies. Meanwhile, the tours are undertaken by 55 travelers, 

meaning there is dependency among observations. So the complexity of possible statistical models 

is severely constrained after adding a correlation matrix to control for the dependency. One 

potential step further is to test the performance of TCI on a larger dataset, such as the state-wide 

household travel survey. Furthermore, although the exploratory on dataset without trip purpose 

information is worthwhile, a dataset including trip purpose could facilitate the analysis about tour 

complexity and the nature of the chained activities. Another direction that could be further 

investigated is the characteristics of clustered destinations since a cluster at non-home destinations 

is found to be greatly associated with public transit usage. More knowledge in this area could help 

policy makers and transportation planners to better promote transit and reduce car reliance.  
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Chapter 4 A Longitudinal Analysis of Daily Travel Variability 

Introduction 

Many urban travel behavior studies and travel demand models are developed based on of the 

single-day travel survey. Besides the fact that one-day surveys cost less than multiday surveys, the 

underlying assumption here is: 1) most urban residents have habitual travel patterns, and that 2) 

by randomly choosing individuals/households and randomly observing weekdays, the resulting 

sample is representative to the population overtime (Pas & Sundar, 1995). Based on these 

assumptions, it is sufficient to establish theories and to form models based on single-day travel 

survey data. There has been continuous questioning about this assumption since 1980s. Many 

studies have investigated the day-to-day travel variability and found that the amount of deviation 

is too high to be compensated for by the random sampling mechanism (Hanson & Huff, 1982; Pas 

& Sundar, 1995; Raux et al., 2016; Stopher & Zhang, 2011). Moreover, most single-day surveys 

are restricted to weekdays. Questions have also been raised regarding the length of the cycle of 

human travel patterns, i.e. whether travel behavior repeats on a daily, weekly, or monthly basis. It 

is important to clarify these issues because they have significant implications on travel survey 

design. For example, it has been suggested that three or four days represent the optimal length for 

data collection, and that the widely-used one-day travel survey should be extended, and that costs 

can be reduced by shortening week-long surveys (Pas & Sundar, 1995; Stopher et al., 2008). 

Further, the variability in travel is sensitive to model estimation and result interpretation. Research 

has found that the modeling residual is associated with the length of the repetition cycle used in 

the model (Raux et al., 2016). 
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Given the fact that many variability-related studies have confirmed the existence of day-to-day 

variability in various aspects of travel behavior such as trip generation, time allocation, destination 

choice, mode usage and daily pattern, it would be helpful to examine the variability in complex 

trip chaining behavior. Using a longitudinal GPS-derived tour dataset, this chapter provides an 

empirical assessment of the daily and weekly variability from the perspective of tour complexity 

and mode choice. Meanwhile, given the experimental nature of the dataset, a before-and-after 

analysis is performed to examine whether proximity to transit facility would affect the variability 

in complex trip chaining behavior. 

The chapter is organized as follows. First, it provides an overview of research on travel pattern 

variability, and variability in trip chaining in particular. Second, it presents a discussion of the 

analytical methods and dataset. The measurement of variability in trip complexity and the TCI 

components is introduced using an illustrative example developed from the dataset. Third, the 

results show the components of the variation in tour complexity, the influence of a new transit 

service on individual’s trip chaining variability, and the association between social-demographical 

factors and variability in tour complexity. Finally, conclusion and discussion is provided. 

Literature Review 

Travel demand forecasting based on one-day travel diary data may be biased due to unobserved 

day-to-day variability. As urban travel behavior is a complicate topic, it is impossible to provide 

complete analytical consideration of all the aspects in a single investigation of the variability. 

Previous studies have focused on a various aspects of variability, including travel frequency, time 

allocation, destination choice, mode usage and trip chaining. Most studies examine multiple 

subjects either separately or simultaneously (Hanson & Huff, 1982; Kitamura & Van Der Hoorn, 
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1987; Pas & Sundar, 1995; Raux et al., 2016). A few studies focus on one subject when the subject 

per se is multi-dimensional, such as in the case of trip chaining (Stopher & Zhang, 2011). Based 

on a 35-day travel survey (collected in Uppsala, Sweden, in 1971), Hanson & Huff (1982) 

concluded that a considerable amount of day-to-day variability exists across population groups by 

examining multiple travel aspect jointly. Kitamura & Van Der Hoorn (1987) specifically analyzed 

the travel scheduling regularity on a weekly basis using a 1984 nationwide Dutch panel dataset 

with repeated measurements on the same group of participants. This study confirms a systematic 

variability exists across weeks in terms of scheduling and trip rates. On the other hand, this study 

did not find significant differences between the two waves of repeated measurements taken five 

months apart, which indicates that variability is stable over time. Consistently, many other 

researches have also found that the day-to-day variance in travel patterns should not be neglected 

and that a multi-day travel survey at least one-week long is strongly recommended for 

development of models and for a more accurate understanding of travel behavior (Ettema & Lippe, 

2009; Hanson & Huff, 1986, 1988; Schlich & Axhausen, 2003). 

Few researchers have studied the variability from the stand point of trip chaining behavior. The 

limited number of research in trip chaining pattern variability may because two joint reasons: 1) 

the difficulty in identifying and extracting trip chaining behavior from travel diary, and 2) the 

scarcity of longitudinal travel datasets. Stopher & Zhang (2011) found that little repetition of tours 

occurs over a course of a week. The study is based on a multi-day and multi-year GPS dataset 

collected in Adelaide, Australia, in 2005, 2006 and 2007. The researcher first classifies home-

based tours according to the number of stops in the tour (one as simple, and more than one stop as 

complex) and each stop’s trip purpose (work, education, shopping, or other). Then, the 

repetitiveness of tour types is examined from a frequency perspective with repetition defined as 
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jointly identical tour types and one of the tour attributes (i.e. total travel distance, total travel time, 

total activity duration, and total tour duration). The result shows a low level of repetition for both 

simple and complex tours. However, the repetition might be underestimated given the fact that the 

trip purpose used in the analysis is inferred using a program rather than reported by travelers. 

Many studies further investigate the decomposition of daily travel variability. A widely-used 

framework, first introduced by Pas (1987), suggests that variation should be disaggregated into 

two parts: 1) interpersonal, which refers to differences between different individuals; and 2) 

intrapersonal, which means the deviation observed for the same person. Both components are 

further divided into a systematic subcomponent which can be explained and a random 

subcomponent which cannot be explained. For interpersonal variability, the systematic 

subcomponent is associated with individual characteristics; for intrapersonal variability, the 

subcomponent is related with temporal factors such as time of day and day of the week and 

personal social-demographical status. Further, the statistical method, analysis of variance 

(ANOVA), is often used for such analysis. Pas (1987) reports that intrapersonal variability explains 

50% of the total variability in trip rate (based on data collected in Reading, England, in 1973). In 

a later study based on data from Seattle area, collected in 1989, the author finds a percentage of 

38% of the total variability in trip rates is due to intrapersonal variability. The deviation between 

individuals is significant even for people from the same household. The Seattle study not only 

examines variability at the person-level but also analyzes the interaction between individuals 

within two-person households. The study is based on a survey where each family member above 

16-year-old reports three consecutive days’ travel activity and one day’s activity for members 

below age 16. They found that 73% of the within-household variability can be explained by the 
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between-individual subcomponent while the within-household subcomponent constitutes 62% of 

the total variation (Pas & Sundar, 1995). 

A more recent study by Raux et al. (2016) is conducted using the same framework based on a 2008 

travel survey from the area of Ghent, Belgium. The study examines the daily trip purpose sequence 

which is an important factor in the trip chaining field. The researcher creates strings of activities 

classified by purpose and uses the Sequential Alignment Method (SAM) to quantify pair-wise 

dissimilarity. Analysis of variation components is then applied and the study finds that: first, the 

total variation is lowest during weekends; second, over 70% of the variability is interpersonal 

variability and the rest of the variation is intrapersonal variability, day-to-day periodical deviation, 

and unexplained. The study also analyzes the variability in travel frequency and time allocation, 

and it finds intrapersonal variability contributes as much as or more than interpersonal variability. 

Findings suggest trip purpose patterns are relatively more habitual at an individual level than other 

travel attributes. 

Previous research has also examined the determinants of intrapersonal variability. The level of 

intrapersonal variability is often hypothesized as differing across population groups due to 

different personal and household characteristics. However, little support for this hypothesis exists. 

Hanson & Huff (1982) found that two population segments, 1) non-employed married females 

who have pre-school age children and full-time employed husbands, and 2) these women’s full-

time employed husbands, do not differ significantly in level of variability or routine repetition. 

The study expected to see more repetition and higher spatial concentration in the travel of husbands 

due to their employment status, and more irregularity and spatial dispersion in non-employed 

wives because their travel needs were hypothesized to be dominated by household errands and 
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childcare. However, their result suggests a similar degree of variability between the husbands and 

wife pairs. More specifically, the researchers did not find more concentrated destinations for the 

husband group. It suggests the limited power of socio-demographic characteristics in explaining 

travel variability. Kitamura & Van Der Hoorn (1987) also find no evidence that travel variability 

in trip frequency and time allocation is related with personal characteristics. However, the 

hypothesis of intrapersonal variability is validated in an England-based study from the perspective 

of trip frequency. The author concludes that the variability in trip rates is likely to be higher for 

people who have lower social status, have family related constrains, or have family constrains and 

low out-of-home activity demands (Pas & Koppelman, 1986). Nevertheless, note that all of these 

studies were conducted based on datasets collected many years ago on other continents than the 

Expo Study. Raux et al. (2016), using a more recent dataset, found that gender, age, occupation, 

and family size are significantly influential on intrapersonal variability in terms of daily trip 

frequency, activity scheduling and sequencing of travel purpose. Males, young students, single 

persons, or persons in a family without children are more likely to have a lower level of 

intrapersonal variability. Similar with Hanson & Huff (1982), Raux et al. (2016) found that 

employment does not show a significant effect on intrapersonal daily variability. 

Earlier research on day-to-day travel variability explored approaches in variability measurement. 

To measure variability is equivalent to measuring similarity and thus, the general goal is to create 

a measurement sensitive enough to permit meaningful comparison between any pair of analysis 

units (e.g., a home-based tour, a sequence of one day’s activity, etc.). Several different approaches 

have been attempted and it is necessary to discuss them to provide context for selecting the 

approach used in this chapter. The following discussion assumes the analysis unit is daily travel-

activity pattern. The most basic method is to generate a vector consisting of aggregated 
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characteristics for each day, such as number of trips, number of home-based tours, total length of 

travel duration, and activity duration. Then a simple identification of match or mismatch is made 

for any two days. This approach is good for descriptive comparisons but does provide a numerical 

measurement of similarity. This method is applied in Stopher & Zhang (2011). The second 

approach, originally developed by Gower (1971) in the field of biology and introduced into travel 

analysis research by Pas (1980), assigns a scoring system to travel attributes at a stop or destination 

level and sums up scores based on match/mismatch between two sequences of stops. The 

advantage of this method is that it can integrate levels of priorities according to the research goals 

and reflect the hierarchical level in the scores. The third method is developed from a two-

dimensional representation of travel patterns as a time-space path. Clustering of patterns can be 

achieved using this method. The limitation of this method is it focuses on spatial-temporal 

information but not other attributes, such as travel mode. The fourth approach, proposed by Hanson 

& Huff (1982) can be considered as an operational extension of the second approach. The approach 

is a stop-based sequential measurement where a pattern is represented by a series of ordered stops 

(trip links) with each stop being assigned a class based on its link characteristics. Then, two 

patterns are compared based on attributes such as number of stops, order, and classes. Many recent 

research on travel variability use variations based on this fourth approach (Raux et al., 2016; C. 

Wilson, 2008). It is important to reemphasize that although discrepancy exists in the variability 

definition, measurement and research focus, a common conclusion is that a considerable amount 

of intrapersonal daily variability in travel patterns exists. 
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Research Goal and Question 

The reviewed research that has focused on variability in trip chaining behavior classifies tours 

based on the number of legs or trips in each tour and based on the trip purpose associated with 

each stop within a tour (Raux et al., 2016). The previous chapter indicates tour patterns for the 

study sample vary at many spatial and temporal aspects. Analysis that just focuses on the number 

of trips per tour or uses the binary classification of tour complexity (either single or complex, 

depends on whether more than two trips chained in the tour), may be misleading. Moreover, GPS 

trajectory data is becoming more readily available nowadays, but passively recorded data, like 

GPS data, usually does not contain trip purpose information. This chapter contributes to the trip 

chaining literature by developing and testing an analysis procedure to examine trip chaining 

variability without reliance on trip purpose information. The Tour Complexity Index (TCI), 

comprised of Segment Index, Cluster Index, Efficiency Index, and Diversity Index, is applied here 

to characterize trip chaining behavior. See Chapter 3 for a detailed introduction of the construction 

of TCI. More specifically, the goals and questions that guide this chapter are as follows: 

• To demonstrate the application of TCI in longitudinal analysis of travel behavior  

• To examine changes in tour complexity on a daily and weekly basis 

• To test the general hypothesis that variability differs across population segments 

• To investigate the impact of a new transit rail line service on travel variability 

Dataset and Methodology 

Data and Descriptive Statistics 

This chapter uses data from each of the three waves of longitudinal GPS data collected for a sample 

of 55 adult participants of the Expo Line Study. See Chapter 2 for a description of the data 
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collection methods, data features and general statistics. The uniqueness of this dataset for the study 

in travel variability lies in that it allows for pattern comparison not only over a short period but 

also over three years. As pointed out who Stopher et al. (2008), who reviewed the household travel 

survey results around the world since 1970s, the collection of longitudinal travel survey data with 

multi-day and multi-year travel information for the same individuals or households is rare (13 

studies out of hundreds). Although their review is not exhaustive and more datasets should become 

available after the review, longitudinal datasets continue to only comprise a small percentage of 

all travel datasets. Although the sample is small, analysis of the Expo tour dataset will contribute 

to improving the understanding in travel variability. This section provides a summary of the Expo 

Study GPS data from three perspectives that are related with the research goals of this chapter: 

descriptive travel statistics, tour complexity statistics and mode choice across waves. 

Table 4-1 Travel Statistics of Expo Tour Dataset, Wave I - III 
 Wave I Wave II Wave III Overall 
total # of trips 1,478 1,321 1,411 4,210 
total # of rail trips 4 6 11 21 
total # of bus trips 25 27 26 78 
total # of tours 409 359 354 1,122 
mean # of trips per tour 3.61 3.68 3.99 3.75 
mean # of tours per day 1.06 0.93 0.92 0.97 
total distance traveled per day (mile) 11.91 13.04 13.18 12.71 
total VMT per day (mile) 10.68 12.13 11.96 11.59 
total time on travel per day (minute) 50.73 45.61 50.51 48.95 
total time on vehicle trip (minute) 38.73 35.30 36.38 36.80 

There are a total of 4,210 trips and 1,122 tours in the Expo tour dataset through all three waves 

(Table 4-1). Only a limited number of trips are undertaken by public transit (bus or rail transit) and 

there is only a modest rise in rail usage after the opening of Expo Line (after Wave I). On average 

across the three waves, participants make 0.97 tour per day and travel 12.71 miles for 48.95 

minutes, within which 11.59 miles and 36.8 minutes are by vehicle. The number of tours declined 



	 90 

after Wave I, but more trips are taken and more mileages are traveled during Wave III than Wave 

II, suggesting an increase in trip chaining. 

Types of Tour Complexity and Frequency 

Table 4-2 provides summary statistics of the TCI components for each wave of data collection.  

The overall number of segment per tour is 3.75; 44% of tours have clustered destinations; 78% of 

tours are chained and configured using efficient or compact routing; and 53% of tours involve a 

diverse land use environment across destinations. Each of the three binary component indices 

includes a reasonable share of all the tours. These averages do not show drastic changes across 

waves, but we can see an increase in the number of segments per tour and the percentage of tours 

which include clustered destinations, although the total number of tours per wave declines by 

13.4%. Details about TCI are provided in Chapter 3. 

Table 4-2 Mean Value of TCI Components for Expo Tour Dataset, Wave I - III 
 Wave I Wave II Wave III Overall 
Segment (average) 3.61 3.68 3.99 3.75 
Cluster (% of 1) 0.41 0.46 0.47 0.44 
Efficiency (% of 1) 0.80 0.77 0.78 0.78 
Diversity (% of 1) 0.53 0.52 0.55 0.53 
Number of Tours 409 359 354 1,122 

Next, tours are classified into types based on the TCI components. For parsimony, the Segment 

Index of TCI is defined by converting the segment count variable into a categorical form defined 

by the following three levels: 1) “single destination” for tours with only one destination; 2) “simple 

chain” for tours with two or three destinations; 3) “complex chain” for tours with four or more 

destinations. By definition, all single destination tours are efficient in routing and do not have 

diversity at destination (Segment = “single”, Efficiency = 1, Diversity = 0). Hence, there are 18 

possible combinations of TCI values in total, 2 for single destination, 8 for simple chain and 8 for 
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complex chain (Table 4-3). In the following analysis, each combination of the TCI components is 

referred to as a tour complexity type. The sample-wide occurrences of each tour complexity type 

per wave are summarized in Table 4-3. 

Table 4-3 Frequency of Tours by Tour Complexity 
Tour Complexity Index Wave I Wave II Wave III All 

Segment Cluster Div. Eff. Count Count Count Count % 
Single 

destinatio
n 

0 0 1 121 93 97 311 27.7% 
1 0 1 27 45 33 105 9.4% 
     Subtotal 416 37.1% 

Simple 
chained 

(2-3 
dest.) 

0 0 0 1 2 1 4 0.4% 
0 0 1 14 13 11 38 3.4% 
0 1 0 10 9 2 21 1.9% 
0 1 1 71 48 51 170 15.2% 
1 0 0 2 2 1 5 0.4% 
1 0 1 26 14 14 54 4.8% 
1 1 0 3 4 10 17 1.5% 
1 1 1 45 44 38 127 11.3% 
     Subtotal 436 38.9% 

Complex 
chained 

(4+ dest.) 

0 0 0 0 1 1 2 0.2% 
0 0 1 0 0 0 0 0.0% 
0 1 0 17 22 21 60 5.3% 
0 1 1 8 5 5 18 1.6% 
1 0 0 0 1 1 2 0.2% 
1 0 1 1 1 0 2 0.2% 
1 1 0 49 43 42 134 11.9% 
1 1 1 14 12 26 52 4.6% 
     Subtotal 270 24.1% 

Total 409 359 354 1,122 100% 

First of all, the Segment Index results in a good split of the tours, as each of the three levels includes 

a reasonable share of tours. Single destination tours and simple chained tours each comprise a 

share of about 38% and complex chained tours comprise 24%. The percentage of single destination 

tours is similar with that reported by Raux et al. (2016) who found single destination tours 

comprised 41% of their observed tours. Both of these estimates of the percentage of single 

destination tours, however, are lower than that reported by an Australia-based trip chaining study 
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which found that single destination tours comprised 53% of work tours and 64% of non-work tours 

(Currie & Delbosc, 2011). 

Breaking down the analysis to the 18 tour complexity types, there are six types that each comprises 

a share over 5% of all tours in all waves of data collection, two from each of the three levels of the 

Segment Index.  Within each level, one of these dominant tour complexity types has clustered 

destinations (Cluster = 1) and the other one does not contain clustered destinations (Cluster = 0). 

This suggests that the status of tours (defined by the Cluster Index) is the second most effective 

criteria for characterize tours after the Segment Index. The two dominant types of simple chained 

tours both have a Diversity Index of 1 and an Efficiency Index of 1. This indicates simple chained 

tours are more likely to have efficient routing, and to include destinations in areas with different 

dominant land use types. On the other hand, the two dominant types for complex chained tours 

both have a Diversity Index of 1 and an Efficiency Index of 0. This means complex chained tours 

tend to have repeated visits or a zigzagging route arrangement. This seems reasonable since as 

more destinations are chained, it becomes a greater challenge to ensure an efficient route 

arrangement but more likely a tour will involve multiple types of destinations. Overall, there seems 

to a good mixture of tours in the study sample in terms of tour complexity type. 

In addition, not all tour complexity types appear in the Expo tour dataset or in each wave. The type 

of {complex chain, no cluster, efficient routing, and single land use at destinations} is missing in 

all three waves, and the types with {complex chain, single land use at destinations} have a very 

low occurrence rate. However, it is necessary to clarify that although it appears that the Segment 

Index and Cluster Index appear sufficient to classify tours in the Expo tour dataset, the importance 

of Diversity Index and Efficiency Index cannot be dismissed. The Expo tour dataset includes a 
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limited sample size and representativeness, and an application of TCI on a larger scale dataset or 

another population may reveal that all four components play an important role. 

Mode Usage 

Table 4-4 groups the 55 participants based on whether they used a travel mode at least once during 

the surveyed weeks. With three mode types, there are seven possible combinations of mode usage, 

including three single usage types (only one mode has been used during the week) and four mixed 

types (two or three modes have been used during the week). The arrow next to the count indicates 

the trend compared to the previous wave. The mode is flagged for a traveler as long as it has been 

used at least once during the observation week in each wave, regardless of the total frequency or 

whether it is a primary mode of a trip. Transit mode refers to both bus or rail. Non-motorized mode 

refers to walking or biking. Though walking and biking are coded separately during data 

processing, very few biking trips occur so they are merged with walking into one mode, “non-

motorized”, for the convenience of analysis. Likewise, bus and rail are merged as “transit”. The 

walking period to access a transit station or vehicle is not considered as a separate trip. 

Vehicle usage is dominant in the study sample (Table 4-4). A large portion of people only used 

vehicle and did not undertake even a single trip during the week using transit, walking or biking. 

However, such vehicle reliance steadily declined from 51% to 45% and to 38% of participants for 

waves I, II, and III, respectively. During this same time, the percentage of participants who mixed 

vehicle with transit or walking/biking has increased slightly. No participant choose transit as the 

only travel mode, but 11 participants (20%) mixed transit with other modes during the survey week 

for Wave I and Wave II and this number increased to 15 participants (27.3%) in Wave III. 
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Table 4-4 Percentage of Study Subjects based on Mode Usage 

Mode Choice Wave I Wave II Wave III All 
Count % Count % Count % Count % 

Single         
Vehicle 28 50.9% 25 ↓ 45.5% 21 ↓ 38.2% 10 18.2% 
Transit 0 0.0% 0 0.0% 0 0.0% 0 0.0% 
Non-motorized (NMT) 0 0.0% 1 ↑ 1.8% 1 1.8% 0 0.0% 
Mixed         
Vehicle + Transit 1 1.8% 2 ↑ 3.6% 3 ↑ 5.5% 1 1.8% 
Vehicle + NMT 16 29.1% 18 ↑ 32.7% 18 32.7% 25 45.5% 
Transit + NMT 5 9.1% 5 9.1% 5 9.1% 3 5.5% 
Transit + Vehicle + NMT 5 9.1% 4 ↓ 7.3% 7 ↑ 12.7% 16 29.1% 
Total 55 100% 55 100% 55 100% 55 100% 

Interestingly, the statistics with all three waves merged are quite different from those disaggregated 

by wave (Table 4-4, “All” column). For instance, the number of participants who used a vehicle 

as the only mode for travel through the three weeks reduces to 10 participants (18%), while the 

number of vehicle users who have taken at least one transit trip or walking/biking trip increases to 

42 participants (76%)! The number of participants using transit at least once across the entire three 

waves of data collection doubled from 11 participants to 20 participants. The number of non-

vehicle users are almost identical during each wave (5 for Wave I, and 6 for Wave II and III), but 

it reduces to 3 if we look at the number aggregately for all waves. These deviations suggest the 

mode choice varies across waves at individual level. and that we might expect to see high 

intrapersonal variation in mode choice. 

Scoring of Daily and Weekly Variability in Tour Activity 

The goal of this chapter is to analyze the variability in trip chaining behavior over a day and a 

week, with tours classified by TCI and travel mode. The procedure to quantify variability follows 

the fourth general approach for analyzing day-to-day travel variability discussed in the Literature 

Review section above which has been utilized by Hanson & Huff (1982), Raux et al. (2016),  
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Wilson (2008). It uses the Sequential Alignment Method (SAM) to quantify the difference between 

any of two strings, each formed by tour complexity types undertaken during one day. Below, I 

discuss an example based on a three-week travel record to demonstrate how the daily and weekly 

travel variability is measured and how to interpret the numbers. Table 4-7 shows a hypothetical 

one-week-long travel record at a tour level, with the tours characterized based on the Tour 

Complex Index (TCI) components and travel mode. The coding representation is listed in Table 

4-5 and Table 4-6. The record is same as the Week 3 record in Table 4-8. Table 4-8 presents a 

hypothetical three-week-long travel record, listing each day’s sequence of home-based touring 

activity and each day’s variability score. 

In the first step (Table 4-7), each tour is characterized using TCI and then assigned a code to jointly 

represent the tour type and tour travel mode. For instance, a simple chained tour with clustered 

destination, multiple land use environments and chained via a shortest path, is a type J tour. Such 

a tour is then labeled as “J1” if by rail, “J2” if by bus, “J3” if by vehicle and “J4” if by NMT. See 

Table 4-5 and Table 4-6 for code dictionary. This procedure could be applied to tour type and 

mode choice separately if interested in analyzing the variability for a single factor. It can also be 

extended by replacing or adding other travel attributes such as distance, duration, and departure 

time. The analysis here focuses on the joint choice of tour complexity type and travel mode. Note 

that one should be cautious about not only how the variability is defined and measured, but also 

the definitions of other important aspects of travel pattern matter such as departure and arrival 

times. The level of variability and length of repetition cycles resulting from the analysis depend 

on these classifications (Hanson & Huff, 1982). The major reason that travel mode is integrated 

into the classification scheme is because the Expo Study sought to assess the impact of a change 

in the study area’s transit service supply system. As we are primarily interested in the variability 
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or repetition in complex trip chaining behavior, the proposed measurement is chosen to be able to 

capture switches in travel mode as well to analyze the association between tour complexity and 

mode choice. 

In the second step (Table 4-8), the tour-level records are flattened into daily sequences by creating 

a string of tours made during each day. For example, if there is no travel on a given day day, a 

code of “S0” is assigned to that day for the purpose of similarity comparisons. Then, the pairwise 

dissimilarity between daily sequences are computed. The variability of a certain day is determined 

based on its aggregated dissimilarity with other days. The dissimilarity is measured using one-

dimensional SAM, a dynamic programming technique originally designed to compare protein or 

DNA sequences. It has been shown to be effective in comparing travel patterns (Joh et al., 2001; 

Wilson, 1998). The goal is to find the optimal (least) number of three basic operations, i.e., 

insertion, deletion and substitution, to equalize two sequences. The more operations needed to 

equalize two sequences, the higher dissimilarity between them. For instance, consider two tour 

sequence, “F3, A4, F3” and “J3, F3, A1”. To equalize these two, the operations are: 1) delete first 

“F3” in the former sequence (that is, “F3, A4, F3”); 2) substitute “A4” with “J3” (that is, “A4 (J3), 

F3”); and 3) insert “A1” in the end (that is “J3, F3, (A1)”). Thus, the least number of operations is 

3 to equalize the sequences. Note that the operations, insertion and deletion always come as a pair 

and is often referred to as indel (a term from molecular biology for the insertion or the deletion of 

bases in the DNA of an organism). 

The transformation from number of operations to a numerical dissimilarity measure is a more 

complicated step. The distance between two sequences usually is generalized to a function of a 

number of operations (4-1). The operations could be weighted differently, for example, as the cost 
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of indel defined to be more than substitution. In this study, the default scoring system is used: cost 

of indel and substitution all equal to 1. Hence, the distance between two daily sequences directly 

equals the total number of operations (4-2). The variability of a day compared to the rest of the 

week is defined as the summation of its distance to other days within the same week for the same 

person (4-3). Moreover, multi-dimension SAM could be used to add in more travel dimensions 

(i.e., to create separate sequences for tour complexity, tour mode, activity duration, etc. per day), 

and to match two groups of sequences simultaneously. Although the multi-dimension approach is 

more comprehensive, the technical solution is very complex and hard to justify (Joh et al., 2002). 

Therefore, a one dimension SAM is applied here. In addition, the weight of tour complexity type 

and mode choice are the same. The distance between “J2” and “A2” (different tour types, same 

mode) is the same as the distance between “J2” and “J3” (same tour type, different modes). The 

tour type and mode choice are treated as nominal factors, which means any two tour types or any 

two modes has the same degree of dissimilarity. 

	 ,EG = 1(*EVWXYZ, *[X\XZX, *W]^WZEZ]X)  (4-1) 

	 ,EG = *EVWXYZ + *[X\XZX + *W]^WZEZ]X (4-2) 

	
aEN = ,EGN

b

GcL;GdE
 (4-3) 

where 

,EG = distance between daily tour sequence i and j 

aEN = variability of day i in week (wave) k 

The three-week example in Table 4-8 is designed to represent three levels of weekly variability. 

For Week 1, the travel pattern is quite simple. The person is characterized as a full-time worker 

who goes to work, has lunch at a place close to the work location, has minimum (zero) out-of-
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home, non-work activity once he/she returns home, makes personal trips on Saturday and stays at 

home on Sunday. In terms of tour complexity type classifications, he/she performs the same type 

of tour in same travel mode once per day from Monday to Friday (type “J3”, simple chain, cluster, 

diverse destination environment, efficient route, by vehicle). He/she makes two tours on Saturday, 

one type J and one type A (single destination, long distance), both in vehicle (“J3, A3”). For 

Sunday, he/she stays at home (“S0”). As a result, the overall variability is low (3.43). The daily 

variability is low as well, with most individual days having a variability level of 2 and higher 

during weekends (7). For Week 2, same person makes the same trips as Week 1 but uses different 

travel modes. The person in week 2 uses rail on Monday, bus on Tuesday and car for the rest of 

the days. As a result, the weekly average variability increases by 2.57 and variability for individual 

days increases as well, especially for Monday and Tuesday. For Week 3, there is no clear travel 

pattern across days as every day with out-of-home activity has different sequences. In this case, 

the overall variability (12.57) and daily variability are both much higher than the those for Week 

1 and Week2. 

Three general rules can be observed from this hypothetical example: 

1. When there are more tours in one day, there is a higher level of variability relative to other 

days in the week, since it requires more operations to equalize the day with other days 

2. The variability of one day is dependent on other days in the week, because the dissimilarity 

measure if mutually applied on both sequences; that is, if one one day there are several 

tours undertaken but the other days all have an identical sequence with each other, the 

scores for these matching days will be inflated by the one day with more tours 
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3. When there are more different types of tours spread in a week, then that week has a higher 

overall variability because every daily sequence requires a certain number of operations to 

match with other sequences in that week 

Table 4-5 Tour Type Code 
Tour Complexity Index Tour 

Code segment cluster diversity efficiency 
Single 

destination 
0 0 1 A 
1 0 1 B 

Simple 
Chain 

(2-3 dest.) 

0 0 0 C 
0 0 1 D 
0 1 0 E 
0 1 1 F 
1 0 0 G 
1 0 1 H 
1 1 0 I 
1 1 1 J 

Complex 
Chain 

(4+ dest.) 

0 0 0 K 
0 0 1 L 
0 1 0 M 
0 1 1 N 
1 0 0 O 
1 0 1 P 
1 1 0 Q 
1 1 1 R 

Staying at home S 
 

Table 4-6 Mode Code 
Mode Mode Code 
Rail 1 
Bus 2 

Vehicle 3 
Non-motorized (NMT) 4 

Staying at home 0 
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Table 4-7 Example of Weekly Tour-level Travel Record 
 Tour 

Seq. 
Number 

Tour Complexity Index 
Mode Class 

Code Segment Cluster Diversity Efficiency 

Monday - - - - - - S0 
Tuesday - - - - - - S0 

Wednesday 1 complex 1 1 0 vehicle Q3 
2 simple 1 1 0 vehicle I3 

Thursday 
1 simple 0 1 1 vehicle F3 
2 single 1 0 1 NMT B4 
3 simple 0 1 1 vehicle F3 

Friday - - - - - - S0 
Saturday 1 simple 0 1 1 vehicle F3 

Sunday 
1 single 1 0 1 vehicle B3 
2 simple 0 0 1 vehicle D3 
3 complex 1 1 1 vehicle R3 

 

Table 4-8 Example of Weekly Day-level Travel Record 
Week Day of Week Sequence of Tour Variability Description 

Week 1 Monday J3 2 • Low variability 
• Same routine on weekdays 
• Single travel mode 
• Mean: 3.43 

Tuesday J3 2 
Wednesday J3 2 
Thursday J3 2 
Friday J3 2 
Saturday A3, J3 7 
Sunday S0 7 

     
Week 2 Monday J1 7 • Medium variability 

• Same routine on weekdays 
• Three modes 
• Mean: 6.00 

Tuesday J2 7 
Wednesday J3 4 
Thursday J3 4 
Friday J3 4 
Saturday A3, J3 9 
Sunday S0 7 

     
Week 3* Monday S0 9 • High variability 

• No clear pattern 
• Various tour types 
• Two modes 
• Mean: 12.57 

Tuesday S0 9 
Wednesday Q3, I3 14 
Thursday F3, A4, F3 18 
Friday S0 9 
Saturday F3 11 
Sunday B3, D3, J3 18 

*Week 3 depicts the same time period presented in Table 4-7.  
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Decomposition of Variance in Variability 

There are two methods that can be applied here to quantify the relationship between external 

factors and the travel pattern variability. One is generalized linear regression and the other is 

analysis of variance (ANOVA). The underlying least square algorithm is exactly the same for the 

two methods. When the independent variables are all categorical, the linear regression model 

provides coefficients for each level of the variables while ANOVA treats factor as a whole by 

providing an overall measure of the variation explained by the factor. For this reason, the linear 

model is more suitable if the intention is to examine the effects brought by each level within the 

factor, and ANOVA is more suitable if the intention is to examine the effects of each factor. The 

research focus of this analysis component is whether factors affect the variability in complex trip 

chaining. For instance, to assess how much variation among the observed daily variability is 

introduced by intrapersonal variation, rather than to obtain a specific number about the difference 

between 2 different participants. For this reason, ANOVA serves to answer the research question 

better. 

 
Figure 4-1 Diagram of Travel Behavior Variance Decomposition 

Source: Pas (1987) 

This study follows the decomposition approach introduced by Pas (1987) which is developed based 

on ANOVA principle. The concept is illustrated in Figure 4-1 above. The author states that the 

observed variance of certain travel attributes (e.g., daily trip rates, total travel time, etc.) from a 
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population can be traced to interpersonal variance (difference between individuals) and 

intrapersonal variance (deviation for one individual). The interpersonal variance is influenced by 

the social-economical status of the individual as different population groups are expected to have 

different travel needs. The portion of variance that can be accounted for by person’s socio-

economic status is called “explained” portion of the variance, and the rest of the variance is referred 

to as “unexplained”. The intrapersonal variance reflects day-to-day differences that are influenced 

by an individual’s activity and travel needs. The simplest example is that the travel needs on 

weekdays and weekends are different for workers, students, and people whose travel needs are 

closely influenced by workers and students. Given a longitudinal dataset, this individual day-to-

day variance can be quantified while the remainder is termed as “residual” (Pas & Koppelman, 

1986; Pas & Sundar, 1995). One issue should be clarified here that in the original study by Pas, 

the term “variability” is used instead of the term “variance”. However, we want to avoid any 

confusion about the weekly trip chaining variability that will be studied and the “variability” in 

Pas’ work. Hence, the statistical term “variance” is adopted here to refer to Pas’ “variability”. 

Essentially, the “variability” discussed in Pas’ work is based on the concept of “variance”. 

Numerically, this concept diagram (Figure 4-1) can be expressed using the following equations. 

Notice that the unexplained portion of interpersonal variability is passed to intrapersonal variance 

and is folded into the intrapersonal residual from the modeling perspective. 
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	 &&! = 	&&ef + &&gf (4-4) 
	

&&gf = &&eA + &&gA (4-5) 
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&&eA = 5EG − 5E
hb

GcL

i

EcL

j

NcL
 (4-8) 
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j
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 (4-9) 

where SST means total sum of squares, SSBP means between person sum of squares, SSWP means 

within person sum of squares, SSBD means between day sum of squares, and SSWD means within 

day sum of squares; k is the index for week if the data contains records for more one week, i is the 

individual index, and j is the day-of-week index. 

Figure 4-2 provides an example of the variance decomposition framework using daily trip rates. 

The result is obtained based on Expo Study GPS study sample of 55 individuals’ three-week-long 

travel records. For each individual week and day of week, there are three repeated measurements. 

The result shows 21% of the variance in daily trip rates is interpersonal (between individuals), 24% 

is the systematic day-to-day variance within individual while 55% of the total variance is 

considered as residual that cannot be explained by either social-demographical factors or day-of-

week factors. 
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Figure 4-2 Illustration of the Concept of Variance Decomposition 

Data source: Expo tour dataset, Wave I - III (n=55) 

The method by Pas (1987) has been validated by the author in two studies on different datasets, 

one with data collected from Reading, England, in 1973 and the other one with data collected from 

North King County, Washington, in 1989 (Pas, 1987; Pas & Sundar, 1995). However, only a 

limited number of research has adopted this method, probably due to the difficulty in obtaining 

longitudinal datasets since the decomposition framework requires repeated measurements of 

individual patterns over time. In addition, none of the studies targets patterns in the Los Angeles 

area. Hence, it is important to test whether the method is applicable to a more recent dataset and 

in a new urban context. 

Results 

Daily and Weekly Travel Variability 

On a daily basis, the daily variability scores range from minimum of 1 and maximum of 40 while 

the weekly variability ranges from 1.71 to 21.14. The overall average variability is 7.78. As shown 

in Table 4-9, the percentiles and means of the daily and weekly averages are very similar. As 

discussed in the Methodology section, the daily variability is dependent on the patterns of other 
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days in the week. It would be more meaningful to compare the variability within the same week. 

The day of the week with the lowest variability score means the tour-mode classes undertaken 

during that day have the highest degree of repetition with those for other days during that week. 

The day of the week with the highest variability score indicates the tour-mode classes for that day 

are quite different from the classes of other days during that week. Minimum and maximum scores 

can appear on more than one day during the week. In this case, the pattern for the days with the 

same lowest score can be considered as the typical pattern for a person. Table 4-10 and Figure 4-4 

present the probability that a given day of the week will have the lowest variability (min.) and the 

probability that a given day of the week will have the highest variability in that week (max.). The 

probabilities are different cross days. It appears that the middle of the week, Thursday, is least 

likely to deviate from the rest of the week. On the other hand, the probability of being the most 

different day of the week is highest on Monday followed by Saturday. These patterns could be 

because participants conduct most of the errands and non-regular travel demands either during 

weekend or the beginning of the week. 

 
Figure 4-3 Histogram of Variability 
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Table 4-9 Summary Statistics of Variability 
  Min. Q1 Median Mean Q3 Max. 
daily 1.00 5.00 7.00 7.78 10.00 40.00 
weekly avg. 1.71 4.86 7.43 7.78 9.71 21.14 

 

Table 4-10 Probability of Being Min./max. by Day of Week 
  Monday Tuesday Wednesday Thursday Friday Saturday Sunday 
Prob(min.) 0.42 0.48 0.48 0.52 0.48 0.43 0.42 
Prob(max.) 0.30 0.25 0.27 0.22 0.24 0.28 0.24 

 

 
Figure 4-4 Probability of Being Min./max. by Day of Week 

Source of Variation  

The purpose of the three-way ANOVA analysis (Table 4-11) is to test the interaction and main 

effect from individual, day of week, and year on the daily pattern variability. The traveler variable 

is included as a fixed block factor to control for natural variability among people. Wave, a factor 

with 3 levels, is designed to reduce the bias brought by different survey periods. Day of week is a 

factor with 7 levels. It is included to control for the periodical change in travel behavior throughout 

the week. The main effect of intrapersonal deviance (traveler) and its interaction with wave on 

daily travel variability are both statistically significant at 99% confidence level. They explain 70% 
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of the total variation in the data. The main effect of wave has significant impact on daily variability 

as well but only explains 1% of the variation. Day of week does not have strong effect on daily 

variability based on this dataset, which means the variability is not statistically significantly 

different by day of week after other factors are controlled for. The lack of association between day 

of week and daily variability is contradictory to the findings of Kitamura & Van Der Hoorn (1987) 

and Raux et al. (2016). These studies have found statistically significant difference between 

weekday and weekend. This disagreement may be due to different time points and geographical 

regions of data collection. 

Table 4-11 Three-way Anova Table for Daily Trip Chaining Pattern Variability 
Source d.f. SS MS F-value p-value SS/SST 

Traveler 54 9440.46 174.82 23.895 < 0.001*** 38.56% 
Wave 2 255.52 127.76 17.462 < 0.001*** 1.04% 
Day of week 1 4.00 4.00 0.547 0.460 0.02% 
Traveler : Wave 108 7427.53 68.77 9.400 < 0.001*** 30.34% 
Traveler : Day of week 54 521.14 9.65 1.319 0.065* 2.13% 
Wave : Day of Week 2 5.58 2.79 0.381 0.6832 0.02% 
Residuals 933 6826.14 7.32 - - 27.88% 
Total SS (SST) 1154 24480.37 - - - 100% 

Significance level: 0.01 ***; 0.05 **; 0.1 * 

Travel Variability Before-and-after Expo 

 
Figure 4-5 Trends in Weekly Mean Variability by Distance to Expo Stations 
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As Figure 4-5 shown, participants who live in different areas defined by distance to Expo stations 

exhibit different levels and trends of daily travel variability. During Wave I, people who live within 

½ mile from any Expo station in the study area (experiment group) and people who live further 

away (control group) have almost identical mean daily variability. However, the mean variability 

for the experiment group steadily declines (black solid line) from Wave I to Wave III, while the 

mean variability for people in the control group changes through waves but does not show a linear 

trend (gray dash line). By the time of Wave III, control group has an average variability of 8.97, 

3.14 higher than that of experiment group (average 5.83). In this part of the analysis, we use 

analysis of variance (ANOVA) methods to examine: 1) whether the difference between two groups 

are significant; 2) whether the change through waves are significant; and 3) whether the variability 

among individuals within the same distance group is large. 

First, a two-way and nested ANOVA is performed to assess the overall main effects and 

interactions between the spatial-temporal factors and the daily travel variability. The spatial factor 

is distance to an Expo station from the participant’s residential location, with two levels: 

experiment and control group. The temporal factor is the wave in which the observation occurred, 

with three levels: Wave I, Wave II, and Wave III. As the previous analysis on source of variance 

shows, the intrapersonal variability is significant and cannot be ignored. Hence, it is necessary to 

add traveler to the model as blocks to reduce the variance brought by individual difference. Since 

each traveler can only be in one distance group, the traveler variable is nested under the distance 

factor and cannot have an interaction with distance. 
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The two-way ANOVA model is formulated as follows: 

	

,kEGN = l∙∙ + nk + oE + (no)kE + (np)k(E)G + qkEGN (4-10) 

where 

,kEGN = alignment distance of day k by traveler j in area i during wave a 

l∙∙∙ = overall mean (per wave) 

nk = how wave a differs from the overall mean, lk∙∙ − l∙∙∙ 

oE = how group i differs from the overall mean, l∙E∙ − l∙∙∙ 

no kE = how group i during wave a differs from the overall group mean and wave mean, lkE∙ −

lk∙∙ − l∙E∙ + l∙∙∙ 

np k E G = how traveler j at wave a differs from the overall traveler mean and wave mean, lkEG −

lk∙∙ − l∙(E)G + l∙∙∙ 

and rnk = roE = r no kE = r np k E G = 0 

Table 4-12 Two-way Anova Table for Daily Trip Chaining Variability 
Source d.f. SS MS F value p-value SS/SST 

Wave 2 255.52 127.76 17.19 < 0.001*** 1.04% 
Distance to Expo 1 394.25 394.25 53.05 < 0.001*** 1.61% 
Wave: Dist. 2 590.49 295.25 39.73 < 0.001*** 2.41% 
Wave: Traveler 159 15883.25 99.89 13.44 < 0.001*** 64.88% 
Residuals 990 7356.86 7.43 - - 30.05% 
Total SS (SST) 1154 24480.37  - -  -  100.00% 

Significance level: 0.01 ***; 0.05 **; 0.1 * 

The results from the overall model shows the impact from spatial-temporal factors and the traveler 

variable on the daily travel variability is significant, given all p-values smaller than 0.001 (Table 

4-12). However, the percentage of variance explained is quite different across effect components. 

The interaction between wave and traveler explains 65% of the total variance, followed by the 
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distance factor which explains 5%. It provides strong evidence that although residential location 

may be associated with the daily travel variability, the difference among people is much more 

important in explaining the population variation in daily travel patterns. On the other hand, with 

significant interactions, it is meaningless to discuss the main effect based on this model. So nested 

a ANOVA model is performed separately for each wave to examine the main effect of distance to 

Expo station on the daily variability. 

The nested anova model is formulated as follows: 

	

,EGN = l∙∙ + oE + p(E)G + qEGN (4-11) 

where 

,EGN = alignment distance of day k by traveler j in area i 

l∙∙ = overall mean (per wave) 

oE = how group i differs from the overall mean, lE∙ − l∙∙ 

p E G = how traveler j differs from the group mean, lEG − lE∙ 

and roE = rp E G = 0 

The result from the nested ANOVA models (Table 4-13) is consistent with the previous models 

and the pattern displayed in Figure 4-5. First of all, the intrapersonal difference is still the most 

powerful component in explaining the variance of daily travel variability among the entire sample. 

Secondly, the main effect of the distance factor becomes more significant from Wave I to Wave 

III. The distance factor only covers 0.05% of the total variance and is statistically insignificant 

during Wave I. The percentage of variation explained increases to 0.4% in Wave II and further 

increases to 12% in Wave III. During Wave II, the main effect of distance is significant at 95% 
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confidence level. It becomes statistically significant at 99% confidence level during Wave III. This 

indicates a systematic impact from the residential environment measured as proximity to an Expo 

Station on daily travel variability. 

Table 4-13 Nested Anova Table for Daily Trip Chaining Variability by Wave 
Source d.f. SS MS F-value p-value SS/SST 

Wave I       
Distance to Expo 1 4.39 4.39 0.50 0.473 0.05% 
Traveler 53 5202.26 98.16 11.22 < 0.001*** 61.03% 
Residuals 330 2888.29 8.75 - - 33.88% 
Total SS 384 8523.99 - - -   
Wave II       
Distance to Expo 1 32.47 32.47 4.70 0.031** 0.39% 
Traveler 53 5862.02 110.60 16.02 < 0.001*** 70.36% 
Residuals 330 2279.14 6.91 - - 27.36% 
Total SS 384 8331.36 - - -   
Wave III       
Distance to Expo 1 947.89 947.89 142.87 < 0.001*** 11.80% 
Traveler 53 4818.97 90.92 13.70 < 0.001*** 60.00% 
Residuals 330 2189.43 6.63 - - 27.26% 
Total SS 384 8031.78 - - -   

Significance level: 0.01 ***; 0.05 **; 0.1 * 

The above models confirm significant relationships between the travel behavioral variability and 

individual deviance. The next question is how the daily travel variability of the two groups differs 

per wave and how daily travel variability of the same group changes through waves. Tukey’s 

method is applied to compute the 95% confidence interval of each contrasts. The numerical result 

is presented in Table 4-14 and visualized in Figure 4-6. Within the experiment group, all intervals 

do not contain zero. During Wave II and Wave III, there is statistically significant decrease in daily 

travel variability. As a result, the net decrease between Wave I and III is also significant. Within 

the control group, Wave II shows a slight decrease in daily travel variability but is followed by a 

small increase during Wave III. Although the increase in Wave III is statistically significant at 99% 

level, the overall change is insignificant. Between groups, during Wave I and Wave II, the 
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differences in daily variability from participants in the two distance groups are not significant, but 

zero is moving towards the boundary. During Wave III, the mean daily travel variability for the 

group within proximity to Expo stations is much lower than the other group (significant at 99% 

level). In sum, people in the experiment group were associated with a drop in daily travel 

variability from Wave I to Wave III after the opening of Expo line. Compared to the control group, 

the experiment group has a more stable and predictable travel pattern at daily level at the time of 

Wave III. 

Table 4-14 Pair-wise Confidence Interval for Variability Difference by Distance Group 

Contrasts Difference 
(Variability) 

95% C.I. p-value Lower Upper 
Within Experiment Group 
Wave II – Wave I -1.386 -2.187 -0.586 < 0.001*** 
Wave III – Wave I -2.720 -3.520 -1.919 < 0.001*** 
Wave III – Wave II -1.333 -2.134 -0.533 < 0.001*** 
Within Control Group 
Wave II – Wave I -0.592 -1.378 0.194 0.199 
Wave III – Wave I 0.633 -0.154 1.419 0.347 
Wave III – Wave II 1.224 0.438 2.011 < 0.001*** 
Between Groups: Experiment - Control 
Wave I 0.214 -0.580 1.007 0.970 
Wave II -0.581 -1.374 0.213 0.284 
Wave III -3.139 -3.932 -2.345 < 0.001*** 
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Figure 4-6 Simultaneous Confidence Interval for Variability by Distance to Expo Stations 

Travel Variability and Socio-demographic Factors 

This section investigates whether there are confounding factors that are associated with the 

significant decrease in travel variability of the experiment group, socio-demographic factors in 

particular. Unbalanced two-factor ANOVA is applied and uses Type II Sum of Squares (SS). Type 

II SS computes the SS explained by the factor given other factors co-exist in the model. The other 

two types are: 1) Type I SS computes a sequential SS, which means the SS for a factor is 

conditioned on other factors that enter the model before it but it is independent of the factors after 

it; 2) Type III SS computes a SS as if the factor is the only variable in the model. Both Type II and 

Type III SS is order insensitive while order matters in Type I SS. Here, we are interested in the 

explanatory power of the socio-demographic factors and the distance to Expo factor conditioned 

on each other, i.e., after the variance from the distance factor is accounted for, whether the socio-
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demographic factors still contribute a large degree of explanatory power. For this reason, the Type 

II SS method is more suitable. 

The socio-demographic factors examined are: gender, age, car ownership, work/study schedule, 

household income, household size, and family life cycle. Seven two-way ANOVA models are 

constructed for each wave of data. In each model, the main effects of socio-demographic factors 

and the distance factor (“control” and “experiment group”) and their interaction are tested against 

the average weekly travel pattern variability at person level (Table 4-16). 

During Wave I, none of the main effects and interactions show statistically significant reductions 

of the total variation in the mean weekly variability across participants. This overall insignificance 

is within expectations since the major change analyzed, the opening of Expo Line, had not yet 

occurred. During Wave II after Expo Line service began, both the main effect of family life cycle 

and its interaction with the distance factor show some significance in explaining the weekly 

variability. However, during Wave III, the distance grouping factor shows significant impact on 

weekly travel pattern variability at the 99% confidence level across all the models. In addition, the 

household income factor appears to have strong impact on weekly variability. As Figure 4-7 (left 

panel) shows, experiment group participants who live in a low or medium annual income 

household (below $75,000) exhibit declined weekly variability from Wave I to Wave III, while 

their counterparts in the control group show an increase of a similar magnitude. The interaction 

between the income and distance factors is also strong, which means the effect from household 

income on weekly variability is different across experiment control groups. The 95% confidence 

interval using Tukey’s method shows that the difference mainly occurs among the medium income 

participants (Table 4-15). Results suggest 95% confidence that, during Wave III, the medium 
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income experiment group participants have a weekly average variability lower than that of control 

group by 2.46 and 13.78, with a mean estimate at 8.12. On the other hand, the income effect on 

weekly variability is not obviously different across control and experiment groups for low income 

or high income participants. 

 
Figure 4-7 Variability Change by Household Factors 

In addition to the influence of the household income, the main effect of household size on weekly 

variability is statistically significant at a 99% level, which indicates that during Wave III, the 

variance explained by household size cannot be ignored even after the variance associated with 

the distance factor is controlled for (Table 4-16). However, the interaction between household size 

and distance factor is not significant. This suggests that the impact of household size on weekly 

variability is not very different across experiment and control groups. Figure 4-7 (right panel) 

shows that from Wave I to Wave III, experiment group participants who live alone or in a family 

larger than 3 persons experience a drop in their travel variability at week level. On the other hand, 

experiment group participants who live in a two-person household do not show significant change 

from Wave I to Wave III; control participants with 2 household members make a significant 

increase in weekly travel variability. By applying Tukey’s method, we can see that a household 

size of 2 contributes to the significance of the main effect, as the three pairs involving size of 2 are 

statistically significant while other pairs all cover zero. 
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Table 4-15 Pair-wise Confidence Interval for Variability Difference by Household Factors 

Contrasts Difference 
(Variability) 

95% C.I. p-value 
Lower Upper 

Household Income : Distance (interaction) 
low:exp - low:ctrl -2.604 -6.121 0.912 0.258 
med:exp - med:ctrl -8.121 -13.780 -2.462 0.001*** 
high:exp - high:ctrl 0.738 -5.670 7.146 0.999 
Household Size (main effect) 
1 – 4+ -0.924 -4.223 2.374 0.878 
3 – 4+ 0.129 -4.002 4.259 1.000 
2 – 4+ 3.914 0.309 7.520 0.029** 
3 - 1 1.053 -2.521 4.627 0.861 
2 - 1 4.838 1.887 7.790 < 0.001*** 
2 - 3 3.786 -0.074 7.645 0.056* 

	

	

Figure 4-8 Change of Weekly Variability by Change of Demographical Status 

Since it is a relatively small dataset, it is highly possible that the change in variability across waves 

could be driven by changes for a few participants. Therefore, we examined patterns for those 

participants who live in a medium-income family with a location within ½ mile to Expo stations 

since this group appears to be the major contributor to the variability reduction of experiment 

group. There are 8 participants in this particular group. From Wave I to Wave II, none of the 8 

participants have changed social-demographical status. From Wave II to Wave III, two of them 

switched from part-time employed to unemployed and one of them changed from unemployed to 

part-time employed. Meanwhile, other individual level characteristics have not been changed 
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except for age.  As shown in Figure 4-x, the reduction in variability mainly occurs for the three 

participants whose employment status changed. We would expect to see an opposite pattern for 

the two opposite directions of change (i.e. from unemployed to part-time employed vs. from part-

time employed to unemployed), but they are all connected with a reduction in variability. This 

suggests that employment status and living environment may interact together and influence the 

travel variability. It is important to point out that these averages are based on a total of 8 

participants. Hence, further validation via a larger dataset would be necessary  to establish the 

connection between employment status and travel variability level.
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Table 4-16 Two-way Anova Table 

 Wave I Wave II Wave III 
Source SS d.f. F val. p-value SS d.f. F val. p-value SS d.f. F val. p-value 

gender 5.08 1 0.353 0.555 2.14 1 0.134 0.716 5.53 1 0.418 0.521 
expo 0.53 1 0.037 0.848 4.81 1 0.301 0.586 133.84 1 10.112 0.003*** 
gender:expo 5.12 1 0.356 0.553 20.06 1 1.255 0.268 7.85 1 0.593 0.445 
Residuals 732.95 51 - - 815.25 51 - - 675.04 51 - - 
             
age group 35.61 3 0.818 0.490 27.1 3 0.595 0.622 71.96 3 1.851 0.151 
expo 0.87 1 0.060 0.808 2.44 1 0.161 0.690 129.98 1 10.030 0.003*** 
age group:expo 25.92 3 0.596 0.621 96.69 3 2.123 0.110 7.41 3 0.191 0.902 
Residuals 681.62 47 - - 713.66 47 - - 609.06 47 - - 
             
vehicle 82.4 2 3.151 0.052* 8.96 2 0.290 0.749 24.68 2 0.914 0.408 
expo 6.58 1 0.503 0.482 2.35 1 0.152 0.698 113.31 1 8.391 0.006*** 
vehicle:expo 20.03 2 0.766 0.470 71.51 2 2.314 0.110 2.06 2 0.076 0.927 
Residuals 640.71 49 - - 756.98 49 - - 661.69 49 - - 
             
schedule 11.69 2 0.399 0.673 55.79 2 1.778 0.180 14.74 2 0.539 0.587 
expo 0.39 1 0.027 0.871 5.85 1 0.373 0.544 131.98 1 9.647 0.003*** 
schedule:expo 13.26 2 0.452 0.639 13.06 2 0.416 0.662 3.31 2 0.121 0.886 
Residuals 718.19 49 - - 768.61 49 - - 670.38 49 - - 
             
household income 43.14 2 1.542 0.224 40.88 2 1.268 0.291 24.86 2 1.109 0.338 
expo 0.02 1 0.001 0.971 9.41 1 0.584 0.449 143.79 1 12.832 0.001*** 
income:expo 14.41 2 0.515 0.601 6.45 2 0.200 0.819 114.51 2 5.110 0.010*** 
Residuals 685.59 49 - - 790.12 49 - - 549.06 49 - - 
             
household size 38.11 3 0.859 0.469 86.43 3 1.893 0.144 180.85 3 5.639 0.002*** 
expo 5.49 1 0.371 0.545 0.16 1 0.011 0.918 103.72 1 9.703 0.003*** 
size:expo 10.04 3 0.226 0.878 35.81 3 0.785 0.509 5.15 3 0.161 0.922 
Residuals 694.99 47 - - 715.21 47 - - 502.44 47 - - 

Significance level: 0.01 ***; 0.05 **; 0.1 *
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Conclusion and Discussion 

This chapter examines the significance of intrapersonal variability in trip chaining behavior from 

the perspective of tour complexity type and mode choice. The study uses a tour-level dataset 

developed from multiday individual GPS trajectories. First, the analysis confirms with the previous 

research that intrapersonal variability accounts for a major portion of the total observed variation 

in trip chaining behavior. More specifically, the result shows the existence of the day-to-day 

within-person variability in tour type sequence, by jointly considering tour complexity and travel 

mode. In short, the findings of this chapter have confirmed and extended the previous research. 

One of the purposes of this analysis component is to demonstrate the application of TCI in complex 

trip chaining analysis. In the method utilized here, a home-based tour is classified based on tour 

complexity type and primary mode. Then, a string is formed by the tours occurred during the same 

day by the same person. Travel patterns on any two days are compared using the string for each 

and quantified via SAM. The result validates this analysis framework and the effectiveness of TCI 

in characterizing trip chaining behavior. Further, the comparison in variability before and after the 

opening of a rail line across treatment groups shows the variability keeps declining in the group 

closer to the new transit facility. No statistically significant association has been found between 

the declining and socio-demographic characteristics so the factor of distance to Expo stations 

seems to be the best explanation of the observed change. 

Limitations and Future Work 

Although the sample of this study is small, the detailed longitudinal travel and activity data provide 

a platform for developing and demonstrating the TCI framework for assessing tour complexity.   
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Despite this contribution, some limitations exist.  This study examines the variability of trip 

chaining behavior joint with mode choice, but other dimensions of variability in urban travel 

behavior exist that could be examined using the TCI approach in the future, including variation in 

day-to-day departure and return time, daily travel duration and route choice. Meanwhile, mode 

choice and intrapersonal variability in trip chaining may be correlated. For instance, it is possible 

that people with regular travel demand (e.g. commute) would be more likely to choose public 

transit; people who have more impromptu travel needs would be more likely to rely on private 

vehicles. An exploration on this issue would be helpful for a better understanding in individual 

daily travel variability. 
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Chapter 5 Recognition of Representative Travel-Activity Patterns Based on Tour 
Complexity 

Introduction 

Chapter 3 utilized the Tour Complexity Index (TCI) to examine tour complexity at tour level and 

Chapter 4 utilized TCI to examine intrapersonal day-to-day variability in tour complexity within a 

week. This chapter provides new perspectives on tour complexity by utilizing longitudinal Expo 

Study GPS data to recognize groupings of similar time-activity patterns for out-of-home activity 

based on TCI classifications and social-demographical factors. Given the condition that no pre-

determined labels are assigned to travelers, the task being addressed in this chapter is essentially 

an unsupervised clustering problem. The analysis utilizes a generalized analysis of variance 

(ANOVA) method known as discrepancy analysis to embed social-demographical factors into a 

clustering process. Results provide insights into how social-demographical factors influence 

weekly travel patterns and how factors interact with each other, and provides a new analytical tool 

for identifying representative time-activity patterns. 

As discussed in Chapter 4, travel behavior analysis based only on a single-day travel survey per 

individual/household could be biased due to daily, weekly, to monthly variability (Raux et al., 

2016) because many activities, particularly maintenance activities, do not occur on a daily basis. 

Hence, travel survey data collection for longer periods, such as a week, likely provide more 

representative data. This chapter continues to take the advantage of the longitudinal feature of 

Expo Study GPS tour dataset and examines week-long patterns for both weekdays and weekends. 

Most of the literature on representative pattern recognition focuses on features of daily activities 

and few have added features including location and other travel attributes (Joh et al, 2002; Kim, 

2014; Saneinejad & Roorda, 2009; Wilson, 2001, 2008). Admittedly, large-scale passively 
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recorded trajectory data (GPS data, mobile phone data, vehicle data and etc.) tend to have the 

limitation that they lack of activity information such as trip purpose and household trip 

interdependency information (who is traveling together, how many per trip, etc.). These data, 

however, are much easier and cheaper to obtain compared to traditional travel survey data. In 

addition, such data information often contain more than one-day of travel information which can 

be beneficial to improve transportation research. Hence, development of methods that can analyze 

GPS travel information without information regarding activity context and trip details will support 

the development and improvement of activity-based modeling in an era of big data. 

Literature Review 

This section includes a brief discussion of travel-activity pattern recognition and a review of 

previous relevant studies. Classification of travel-activity patterns has been a major branch of 

transportation research. It sets up the foundation for other theoretical and empirical research. It 

also provides applicable guidelines for model development, especially regarding how to integrate 

social-demographical factors into modeling process. However, it is a challenging task to 

simultaneously capture the full complexity of travel-activity patterns from all dimensions. A 

review of the related literature reveals that two common approaches have been applied in travel 

pattern studies. The first approach is to analyze the linkage between traveler characteristics and 

travel behavior via a series of econometric and discrete choice models. Travel-activity behavior is 

decomposed into a set of cross-sectional factors, including activity type and frequency, trip rate, 

trip chaining characteristics, travel mode, destination, and travel and activity durations. (Hanson 

& Huff, 1986; Jun Ma & Goulias, 1997). Most of the current operational activity-based travel 

demand modeling system are designed in this way. The second general approach is to study activity 
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patterns as a single entity. Early activity-based travel behavior research included some exploratory 

studies from this perspective (Recker et al., 1985). The research often starts by discussing a multi-

dimensional representation of a series of travel-activity events such as Hägerstrand’s trajectory 

approach (Hagerstrand, 1970). Dimension reduction and clustering methods are used to group 

observed patterns into typical patterns. In a few studies, subsequent analysis has been applied to 

test the association between exploratory variables (mostly social demographical variables) and 

identified clusters. This post-clustering analysis methods include descriptive analysis, ANOVA, 

and contingency tables (Recker et al., 1985; Saneinejad & Roorda, 2009; Wilson, 2001). 

One of the fundamental differences between these two approaches is whether to associate the 

covariates with decomposed travel behavior dimensions separately, or to associate the external 

factors with the pattern being treated as a whole. The current analysis adopts the second approach 

in that it regards the travel-activity pattern as a feasible unit for analysis. The current approach is 

unique, however in that (1) it avoids the dimension reduction step by applying discrepancy analysis 

and (2) it is the first study, to the author’s knowledge, to analyze travel patterns by combining trip 

chaining and Sequential Alignment Methods (SAM). In addition, the trip chaining data used here 

do not include traveler input on activity types and trip details so that it reduces overall data 

collection burden and increases overall data reliability. 

Sequential Alignment Method in Travel-Activity Analysis 

Sequential Alignment Methods (SAM) is an emerging technique in pattern study based on the 

second approach described above. A summary table is provided below for selected studies using 

SAM to identify travel-activity patterns (Table 5-1). First introduced into the travel behavior field 

by Wilson (1998), SAM was originally applied in the field of biology to study DNA and protein 
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patterns. The researchers in the travel behavior field have found that events recorded in the travel 

surveys or general activity diaries can be represented as a sequence (or “trajectory”), which is 

coded as a list of numeric or alphabetic strings. The code can be defined with a large degree of 

flexibility to represent travel-activity events or status within a specific time window. For instance, 

it could be used to identify patterns in activity contexts (i.e. eating, working, school and etc.), travel 

modes, locations, or even person present during an activity. Theoretically, the number of possible 

sets of information that can be coded into a sequence is unlimited. 

The degree of flexibility brings complexity (Figure 5-1). Dimensionality is one of the major 

concerns of the SAM approach. The sequence can be maintained as uni-dimensional by coding the 

events and status jointly; or, it can be expanded to be multi-dimensional by creating a series of 

sequences with aligned time windows. Many controversial issues are raised when characterizing 

and analyzing travel behavior via multi-dimensional sequences, including weighting, operational 

boundaries, and computational cost (Joh et al., 2001). This may explain the fact that most of the 

reviewed studies have chosen to use the uni-dimensional SAM approach (Kim, 2014; Wilson, 

2008). Nevertheless, the uni-dimensional approach fails to fully capture the interdependency 

between multiple attributes. Another important concern about analyzing sequential human activity 

patterns is whether to include activity duration. That is, whether the unit piece of a string should 

be equivalent as one event, or should it be equivalent as a time window. The former results in 

mismatching in length between observations when two observations have a different number of 

events; the latter method results in a uniform length among observations which is determined by 

the size of time window (e.g., 5 minutes, half hour, one hour) and total duration analyzed (e.g., 

one day, one week, one month). Both approaches have been applied in the reviewed studies (Table 

5-1). 
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Figure 5-1 Illustration of Travel-activity Sequence 

As discussed above the representation of travel-activity is the first step of SAM. The most critical 

step in SAM is the second step which includes the measurement of similarity and 

distance/dissimilarity between observations. The measurement is important because it directly 

affects the clustering results. The most common measurement approach is developed based on a 

dynamic programming solution known as Levenshtein distance (Kruskal, 1983; Needleman & 

Wunsch, 1970). The concept is to seek an optimum number of operations that can equalize two 

strings with the optimality determined by a function of operations and their corresponding costs. 

There are three types of operations: insert, delete and substitute. Since insert and delete always 

come as a pair, they are referred to as indel in most studies. So essentially, there are only two 

operations: indel and substitute. The debate lies in the cost of the operations.  If different costs are 

applied to the two operations additional questions include: (1) how to define and justify the 

difference in costs and (2) whether to apply the same cost scheme to all the events and positions. 

Most of the reviewed studies have used the default mismatch cost approach, which treats any 

operation in any position between any two levels with the same cost. Only one relevant study has 
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explored different costs (Wilson, 2001). In this study, the substitution between employment and 

domestic work costs less than that between employment and eating. The first indel position costs 

less than subsequence indel. However, the author admitted that this cost assumption is purely based 

on  the author’s personal impression about how close two types of activities are related. 

Table 5-1 Travel-activity Analysis using Sequential Alignment Method 

Study 
Sequence Construction Sample 

size Subsequent Analysis 
Attribute(s) Length 

(interval) Equal length 

Wilson 
(1998) activity 1 day (5 min.) Both 18 - 

Wilson  
(2001) 

activity, 
location, 
person 
presented 

1 day (30 min.) No 248 

tree-structured 
clustering; 
descriptive analysis; 
ANOVA 

Wilson 
(2008) 

activity, 
location 1 day (30 min.) No 368 - 

Shoval & 
Isaacson 
(2007) 

location less than 1 day 
(1 min.) No 40 contingency table 

Saneinejad 
& Roorda 
(2009) 

activity, 
location 

5 weekdays  
(15 min.) Yes 282 descriptive analysis 

Kim (2014) activity 1 day (5 min.) Yes 1000 
discrepancy analysis; 
tree-structured 
clustering 

Wilson performed a series of analysis using SAM on activity pattern clustering. The first study in 

1998 is an exploratory study that uses an extremely simple dataset to demonstrate the application 

of SAM on human behavior. The dataset is collected from residents in Reading, U.K. in 1974. This 

study applies a single-person multiday scenario and a four-person multiday scenario. For each 

scenario, an equal length approach and a non-equal length approach are attempted. The study 

successfully extracted representative patterns from the sample and thus concluded that SAM has 

great potentiality in behavioral research (Wilson, 1998). The author, in 2001, applied a revised 

methodology on an activity diary set collected from 248 Canadian women in 1992. This study 
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extends the activity sequencing approach by adding two new factors: location and other people 

present during the activity. The computation of dissimilarity is modified as well (previously 

described). Moreover, subsequent analysis is performed to validate the effectiveness of clustering 

in discriminant population groups (Wilson, 2001). Later, Wilson experiments with the idea of 

amending the activity sequence by adding geographical attributes so that the resulting 

representative patterns can be visualized as a Hägerstrand trajectory. The proposed methodology 

is applied to a dataset containing 368 activity diaries collected from 53 survey respondents. The 

sequence is constructed using a two-digit code and a 30-minute interval. The first digit is for 

activity type while the second digit is a zone id representing the geographical location of the 

activity. Each individual sequence starts at the first activity after waking and ends at sleeping at 

night so that the sequences are different in length at a daily level. SAM is also used to compute the 

pair-wise distance assuming the mismatch cost is defined as the sum of activity mismatch cost and 

location mismatch cost. The dissimilarity matrix is put into a program called ClustalTXY 

clustering. As the result, the 368 individual sequences are assigned into three primary clusters 

based on a rule to minimize the within-cluster distance. Three individual sequences with the least 

squared distance to other within-cluster sequences are then identified as the representative patterns. 

As for subsequent analysis, the author chooses not to associate socio-demographic factors with the 

clusters because this extra step requires more statistical inference and testing which were beyond 

the scope of the study (Wilson, 2008). 

Saneinejad & Roorda (2009) investigate weekly routine activity schedules using SAM. A total of 

282 individuals provide descriptions about their weekly routine in terms of activities and locations. 

Unlike Wilson’s approach in which location is coded based on geographical coordinates, the 

location in this study is categorized as either home or non-home, an approach that can be further 
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extended to relative distance to home. Again, the activity sequence is uni-dimensional with each 

piece containing a two-digit code for the status at a 15-minute time interval. Only indel applied for 

alignment and substitution is excluded, which results in a dissimilarity score that is inflated. A 

total of 9 clusters with respect to schedules are identified. Descriptive analysis is applied in the 

end to relate socio-economic characteristics to the schedule clusters. The study finds that, age, 

gender, family life cycle, employment status, and income level are influential to schedule choice. 

Note that the study is developed based on perceived routine activities and only for weekdays, 

which implies its results could suffer from a potential loss of accounting for unplanned activities 

(Saneinejad & Roorda, 2009). 

Kim examines the daily activity patterns of 1,000 individuals living in the Portland metropolitan 

area (Kim, 2014). The traveler-reported activities are aggregated into 12 types by location type 

visited (i.e. home, workplace, school, and other). For each person, a sequence is coded based on a 

single attribute, activity type, at a 5-minute interval starting from 3:00 am to 2:59 pm of the next 

day. The author then uses default SAM (same cost for indel and substitution) and uniform penalty 

for activity difference to construct a distance matrix. Multivariate discrepancy analysis and 

regression tree methods are applied to estimate the association between the interpersonal 

dissimilarity and personal characteristics. Both methods explain approximately 19% of total 

discrepancy. The study found that that employment status, age, presence of K-12 children at home, 

and household size play a significant role in daily activity sequence. 

In addition to regular travel-activity analysis, SAM has also been applied to activity clustering for 

tourists. In Shoval and Isaacson’s 2008 study, the spatial-temporal trajectories of 40 tourists in a 

historical city in Israel are analyzed. Their activity locations are categorized at site-level in the 
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historical city and the resolution of the time interval is 1-minute. The researchers run the analysis 

in the program called ClustalG developed by Wilson. A total of 9 tourist groups are identified 

based on the similarity of their moving trajectory. Contingency table methods are utilized in 

subsequent analysis to assess the association between trajectory choice and a set of tourist-related 

variables (Shoval & Isaacson, 2007). 

Further, SAM has been demonstrated to be more effective in travel-activity pattern recognition 

than alternative dissimilarity measurements developed based on Euclidean distance and signal 

processing methods (Joh et al., 2001). SAM has three main advantages. First, it maintains the 

sequential nature of the events and the distance measured is order sensitive. Second, it keeps the 

interdependency across event and travel attributes. Third, it directly compares strings while 

alternative methods require feature extractions and lead to indirect comparisons and loss of 

information. 

The studies reviewed have focused on activity patterns and provide insights which could benefit 

activity-based travel demand analysis. The difference between analyzing activity patterns 

compared to travel patterns is that a major portion of activities are home-based while travel more 

explicitly relates to out-of-home activities. This chapter examines weekly travel-activity patterns 

from a standpoint of out-of-home trip chaining behavior. It has important implications for future 

travel demand research and the development of activity-based modeling, in that it directly focuses 

on out-of-home travel-activities. It provides a new perspective that, to author’s knowledge, has not 

been previously explored. It takes important steps to associate travel-activity patterns with 

population segments in order to provide operational guidance for model development. The 

reviewed literature examines the relationship between activity patterns and socio-demographic 
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factors in a posterior way, which lacks generality from the perspective of modeling. The current 

study embeds the socio-demographic factors into the clustering process via a tree-structured 

regression method based on discrepancy analysis (a generalized method following the principle of 

ANOVA). Hence, it demonstrates a more feasible implication for model developers. 

Research Goals and Questions 

In brief, the research goals being addressed in this chapter are: 

• Identify representative categories of travel-activity patterns based on weekly travel patterns 

and TCI measures of trip chaining complexity 

• Investigate the personal and family characteristics that influence patterns 

• Experiment with the discrepancy analysis and regression tree methods 

Data and Methodology 

The Wave I portion of the Expo tour dataset is used in this chapter. The details regarding Expo 

tour dataset, including Expo Line Study design, traveler’s socio-demographic characteristics, and 

general travel statistics are provided in Chapter 2. The Wave I data analyzed in this chapter were 

collected in 2011 and includes the one-week GPS travel trajectories for 55 individuals who live 

near the newly constructed Expo light rail line in Los Angeles, California. A total of 55 individual 

weeks (385 days) are sampled, containing 1,478 valid trips and 409 home-based tours. The socio-

demographic variables used to associated with travel pattern are summarized in Table 5-2 below. 
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Table 5-2 List of Independent Variables 
Variable Description Levels 
gender Gender male, female 
age Age group below 35, 35 to 55, 55 to 65, 65 and above 
caracc Vehicle accessibility not licensed/no car, own and share car, own 

car and does not need to share 
time Schedule flexibility free, part-time, fulltime 
income Household income level low (<=35k), medium, high (>=75k) 
hhsize Household size single, two, three, four and above 
lifecycle1 Family life stage A, B, C, D, E 
dist2expo Distance from home to Expo stations within ½ mile; ½ - 1 mile; greater than 1 mile 
1. Level of lifecycle: A. young adult (below 35) family with no child, B. family with children under 12, C. family 
with children above 12, D. older adult (above 35) family with no child, and E. retired person 

Representation of Weekly Trip Chaining Pattern 

First, the trip chaining behavior continues to be characterized using the Tour Complexity Index 

(TCI). The first dimension of TCI, Segment Index, is not bounded with an upper limit theoretically. 

As a result, it leads to numerous combinations of possible TCI values. Therefore, for simplicity, 

the TCI values are simplified to 18 types aggregated by the Segment Index. The rule for 

aggregation is provided in Chapter 4 including the code dictionary used (Table 4-5). In short, each 

home-based tour is assigned a one-digit code based on TCI type. TCI codes are determined based 

on four tour-level attributes: 1) number of trip legs, 2) whether there is spatial cluster between 

consecutive stops, 3) whether the route used to chain the stops follows the most direct or shortest 

path, and 4) whether the stops have different land use settings. For example, a short one-stop tour 

is coded as “B” and a 5-stop tour of which the destinations are not clustered, chained in an efficient 

route, have destinations with two types of land use, is coded as “N”. 

SAM is used here to compute pairwise dissimilarity/distance between any two trip chaining 

sequences. The details are covered in Chapter 4. The major difference in this chapter is that before 

applying SAM, data interpolation is performed for each individual day to accommodate the 
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extended analysis goal as weekly pattern recognition. Interpolation is a common data cleaning 

technique for time-series data to equalize the length of each observation. Assuming all the 

sequences have a universal length (L = 24 in our case, representing one level for each hour in a 

24-hour day), each tour is mapped to its corresponding time point based on the hour in which it 

occurs and time points in which no tour occurred are filled using a “gap” code (“S”). For example, 

if a traveler only performs a type “B” tour during 11:00 to 14:00 of the day, then the sequence of 

that day is coded as: “S, S, S, S, S, S, S, S, S, S, S, B, B, B, B, S, S, S, S, S, S, S, S, S”. In this way, 

all daily trip chaining sequences are represented by strings with an equal length of 24. The purpose 

of this transformation is to avoid time distortion in the sequential alignment computation. An 

important goal of the weekly pattern clustering among different individuals is to capture 

differences in timing and duration of the trip chaining behavior and so it is critical to equalize the 

string length to enable such comparison. 

After interpolation, each day and week can be viewed as a time-series sequence with a length of 

24 coded based on TCI types undertaken at each time interval. Three plot types are developed to 

visualize the trip chaining sequence as shown in Figure 5-2, Figure 5-3 and Figure 5-4. Figure 5-2 

is the “matrix plot” designed to visualize a single week’s trip chaining behavior for one participant. 

The X-axis represents hour of the day from 0:00 to 23:00 while the Y-axis represents day of the 

week with Monday at bottom and Sunday at top. The color code follows TCI code with the darker 

color representing more complex tour types and lighter representing simpler tour types. The 

advantage of matrix plot is that the timing, duration, and type of out-of-home travel behavior of a 

single traveler can be compared across days within the week. It is good for intrapersonal and 

interpersonal daily comparison. However, to compare multiple individuals’ weekly patterns, the 
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matrix plots need to be either vertically or horizontally stacked. As a result, either the days or hours 

are not aligned. It then brings inconvenience for visual comparison. 

Hence, two additional plots are developed. Both Figure 5-3, “time-series plot”, and Figure 5-4, 

“distribution plot”, use one row to represent each individual week by reshaping the matrix plot to 

a wide-format. That is, to flatten the matrix from seven rows into a single row. The difference 

between the “time-series” and “distribution plot” is the order of the color-coded cells. As the name 

suggests, the cells are ordered by time in the “time-series plot” with Monday 0:00 to the left and 

Sunday 23:00 to the right. As there is rarely out-of-home activity during late night or early morning 

hours, each row looks like a “dashed line”. In addition, all the individual sequences are aligned 

vertically at time points. The advantage of the “time-series” plot is the convenience in comparing 

timing across individuals during periods of travel. For the “distribution plot”, the cells are ordered 

by the complexity of TCI type in a descending order from left to right. Although it breaks the 

alignment in time points, the “distribution plot” is good for visualizing the total out-home activity 

duration and overall complexity of the trip chaining behavior. For instance, some individuals have 

a long colored sequence filled with light color, indicating the person tends to spend a long time 

out home but has simple trip chaining behavior.  Other individuals may have fewer colored cells 

which are filled with dark color, indicating they spend less time out home but chained trips in a 

more complex way. In the following analysis of pattern clustering, we mainly use the “time-series 

plot” and “distribution plot” since the emphasize is on interpersonal comparison. 
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Figure 5-2 Weekly TCI Pattern Plots: Matrix Plot 

	

 
Figure 5-3 Weekly TCI Pattern Plots: Time-series Plot, n=10 

	

 
Figure 5-4 Weekly TCI Pattern Plots: Distribution Plot, n=10 
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Measurement of Dissimilarity 

With the representation of weekly trip chaining behavior defined, the next step is to determine how 

the deviation between each pair of week-long sequences should be measured. A “sequence” is a 

special case of a “vector” where the order has a temporal meaning. There are many methods to 

quantify the distance/dissimilarity between two vectors. In the case of SAM, Levenshtein distance, 

defined as the cost to align two sequences, is particularly suitable for our purpose. 

The dissimilarity is first measured at a daily basis as it is not meaningful to align the sequence 

across days of the week. Levenshtein distance is embedded into SAM to measure the distance 

between a pair of days (i.e., person A’s Monday vs. person B’s Monday, person A’s Tuesday vs. 

person B’s Tuesday, and so on). As discussed in Chapter 4, a lot of details in SAM remain open 

for debate when being applied to measure deviation in human behavior. For instance, how to define 

costs for different equalization operations, how to weight the difference between two tour types 

and between traveling vs. staying at home, and whether the transitional gap during two tours should 

be treated differently as terminal gaps with no travel following. The more complicated the methods 

are, it usually requires a larger and richer dataset to validate the chosen methodology. The dataset 

analyzed here is relatively small and homogeneous when comparing to typical datasets used for 

for travel demand model development. Hence, this study follows the most basic settings and 

focuses more on method demonstration. 
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The distance is defined as the number of basic operations required to equalize the two sequences: 

!",$% = #	)*	+,-./0+),, !.1.0+),, 2,!	-34-0+030+), 

where k refers to the kth day of the week with 5 ∈ {8),!29, :3.-!29,… , <3,!29}; i, j is the 

participant index. 

The dissimilarity between ith person and jth person’s weekly sequences then equals to the sum of 

daily dissimilarities through the week: 

!$% = !",$%
>

"?@
 

With the computation being applied to all pairs of participants, a 55 by 55 distance matrix is 

generated and used as the input for subsequent analysis. 

Discrepancy Analysis based on Dissimilarity Matrix 

This chapter demonstrates an analysis framework to study the association between interpersonal 

trip chaining behavior and categorical personal characteristics. Introduced by Studer et al. (2010), 

discrepancy analysis is developed based on an ANOVA method where the word “discrepancy” is 

a generalization for “variance” in the ANOVA setting. The method is designed to evaluate the 

relationship between the deviation across analysis units and their individual attributes. The 

deviation is expressed as a dissimilarity matrix while the personal attributes are categorical. 

Originally, this method has been experimented with in a few cases to assess other social science 

research topics, such as ecosystems and individual life trajectories (Studer et al., 2010). More 
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recently, it has been introduced to travel behavior literature through studies such as the activity 

diary study by Kim (2014). 

As described in Chapter 4, ANOVA is a statistical method to analyze the partition of the total 

observed variance by splitting it into different sources and assessing the percentage of sources that 

explained the total variance. The variance is usually noted as “sum of squares”, which is defined 

as: 

	

<< = 	 9$ − 9 B
C

$?@
 (5-1) 

It can be proved that SS also can be expressed via pairwise Euclidean distance: 
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where !$% denotes the Euclidean distance (Anderson, 2001). 

Anderson (2001) and Studer et al. (2010) indicate the concept of the sum of squares can be applied 

or generalized to other dissimilarity measures by replacing the squared Euclidean distance !$%B  with 

any non-Euclidean measurement at any degree of positive exponent. 
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The above generalization of SS computing has two implications: 1) the variance can be obtained 

additively from element-wise distance, without computing the centroid, and 2) the distance 

between objects is not necessarily measured as Euclidean. The importance lies in that it shows 

variance-based analysis methods can be applied to more complex objects in which the class center 

and distance cannot be well defined. These are also the two keys of the discrepancy analysis. 

Further, considering the one-way ANOVA, its purpose is to test whether a population grouping 

factor, as a source of the variance, is able to explain a significant amount of variance in the sample. 

One-way ANOVA is built on the equation that the total sum of squares (SST) equals to the within 

group sum of squares (SSW) plus the residual sum of squares (SSB), where SST and SSW can bed 

computed using the following equation: 

	 <<: = <<H + <<J (5-4) 

where 
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<<H = <<: − <<J (5-7) 

and N = total number of observations; nk = number of sample in kth level; K = number of levels 

under grouping factor; 9 = overall sample mean; 9"= group mean. 
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It has been found that the equation holds with non-Euclidean distance (Studer et al., 2010). 

Combining the two generalization principles discussed above, SST* and SSB* can be computed 

as: 
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where !$% is a non-Euclidean distance between object i and j. 

Therefore, the univariate discrepancy analysis is able to analyze the association between a 

grouping factor and the dissimilarity between objects which is measured in non-Euclidean distance. 

By knowing SSW* and SSB*, we can assess the proportion of discrepancy that can be explained 

by the population segmentation factor. Under the setting of ANOVA, R2 and F tests are applied to 

assess the statistical significance of the part of the discrepancy explained by the segmentation. For 

discrepancy analysis, we adopt the concept of pseudo-R2 and pseudo-F tests presented in Studer 

et al. (2010) and shown in (5-10) and (5-11). Permutation test is used to compute p-values with 

1,000 iterations to reach the significance level of 5% (Anderson, 2001; Moore et al., 2003; Studer 

et al., 2010). 
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Tree-Structured Analysis 

The univariate discrepancy analysis can answer questions such as which factors are strongly 

associated with the interpersonal dissimilarity. However, it is hard to tell how each level of the 

factors affects the weekly trip chaining patterns. More specifically, it remains unclear how the 

clustering patterns are associated with personal characteristics. The regression tree method based 

on discrepancy analysis is introduced to address this question. Decision trees work in a top-down 

order described as follows. First, all sequence objects are assigned to one node (root). Then, the 

algorithm recursively splits objects in each node into sub-groups based on their attributes. The split 

is determined in a way that the resulting child nodes are as far from other nodes as possible. The 

procedure is repeated at every new child node until certain preset stopping criteria are met. 

The regression-tree is computed using R package “TraMineR” (Studer et al., 2011; Studer et al., 

2010). In the tree-structured analysis algorithm designed by Studer et al. (2010), the node-splitting 

criterion is based on the pseudo-R2 derived from the univariate discrepancy analysis. At each 

iteration, all possible grouping factors and the combination of levels within the factors are searched 

through for the node population. For example, if a factor has three levels (A, B, and C), the 

combinations of {A} and {B, C}, {A, B} and {C}, and {A, C} and {B}, are computed. The split 

that achieves the highest pseudo-R2 value is selected. The stopping criteria applied to this study is 

5 as the minimum number of objects and 0.05 as the pseudo-F significance level. The threshold of 

at least 5 objects at any child node is chosen to reach a balance such that the tree can grow as deep 

as possible while all the final clusters have a sufficient number of samples (n>= 5) to perform 

meaningful statistical analysis. In addition, the significance level of the F value based on the 

univariate discrepancy analysis is used as a stopping criteria. Any node stops growing once all the 

split scenarios result in an insignificant p value for the F score or result in child nodes in which the 
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number of objects falls below a threshold. For large datasets, a more common stopping criteria is 

the maximum tree depths (the number of parent nodes between a leaf to the root) set to avoid 

overfitting. 

Results 

Descriptive Statistics 

It is helpful to first examine the overall weekly travel-activity patterns and trip chaining complexity 

patterns before looking for representative patterns. Three items will be described here: 1) the 

timing and frequency of daily travel-activity, 2) the allocation of out-of-home time on different 

tour complexity types, and 3) the overall and within-population-group dissimilarity in weekly trip 

chaining sequencing. 

Timing and frequency of daily travel-activity 

As presented in Figure 5-5, we can observe a core active hour for the study sample between 10:00 

to 16:00, a period when most of the out-of-home activities are expected to be conducted through 

the week. It begins with the departure time of first tour of the day and ends with the return hour of 

the last tour of the day. Note that the in-home time period between two tours is included so that 

the total duration of the active hour is longer than the actual time spent on travel and activities. 

The active hours on weekdays are not very different from that on weekends. It is probably due to 

the large percentage of unemployed or part-time employed people in the sample. Nevertheless, the 

average active hour is longer on weekdays (6.22 hours) than weekends (4.75 hours). On average, 

each participant made 1.5 home-based tours per day on days with travel (Table 5-3). Both trip and 

tour rates reach their peak on Saturday while they are lowest on Sunday. However, in terms of 
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trip/tour ratio, or legs per tour, Saturday has the lowest average number of trips chained per tour 

(3.22) while Sunday has the highest average number of trips chained per tour (3.66). This implies 

the travelers in the sample are most likely to make less chains on Saturday even though they have 

a highest travel demand on Saturday. Some possible explanations include: first, participants may 

face less time-constraints on weekends so are less motivated to arrange chained tours; second, the 

activities on weekends may be more likely to be dispersed spatially and thus difficult to chain; and 

third, it may require more coordination between involved parties for weekend activities so that it 

makes trip chaining difficult on weekends. 

 
Figure 5-5 Average Start/end Hour by Day of Week, N=55 

 

Table 5-3 Travel Statistics by Day of Week 
 Mon. Tue. Wed. Thur. Fri. Sat. Sun. Overall 
Dep. timea 10:30 10:00 9:30 10:15 10:30 11:30 10:00 10:15 
Ret. Timea 16:00 17:00 16:00 16:00 16:15 16:00 15:15 16:00 
Duration 
(hour) 5.40 7.26 6.36 6.43 5.63 4.31 5.19 5.80 

Tour rateb 1.51 1.54 1.45 1.48 1.47 1.78 1.32 1.51 
Trip rate 5.44 5.67 5.30 5.48 5.66 5.72 4.84 5.44 
Trips per tour 3.60 3.68 3.64 3.71 3.84 3.22 3.66 3.60 

a. average departure time for the first tour of the day and returning time for the last tour of the day 
b. days with no travel are excluded for mean calculation 
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Time allocation by Tour Complexity Types 

Table 5-4 and Figure 5-6 present the time allocation of daily travel-activity duration by tour 

complexity type. That is, how much time a traveler spends on each type of tour with tours 

characterized by TCI. The time includes both travel time and activity duration. Table 5-4 lists the 

top eight TCI types undertaken by participants by duration, with the left five columns showing the 

TCI code and the corresponding TCI values for reference. The eight tour types with the longest 

duration are a mixture of single-destination, simple chained and complex chained tours. On 

average, each traveler in the sample spends 3.8 hours outside of home for activities per day, 3 of 

which are spent at the destination and 0.8 of which are spent traveling from one place to another. 

In addition, the activity/travel ratio shows the duration of activity for each unit time spent on 

traveling. The overall activity/travel ratio is 3.53. This means for every 35 minutes at a destination, 

the traveler is expected to spend 10 minutes traveling. 

Table 5-4 Distribution of Tour Complexity Type 

TCI 
Code 

Description Minute per capita per day 
Act./travel 

ratio Seg.a Clst.a Div.a Eff.a Total Travel 
time 

Activity 
duration 

Q complex 1 1 0 49.38 10.82 38.56 3.56 
A single 0 0 1 48.51 11.51 37.00 3.21 
F simple 0 1 1 45.11 8.74 36.38 4.16 
J simple 1 1 1 20.82 4.54 16.28 3.59 

M complex 0 1 0 16.50 2.92 13.58 4.65 
R complex 1 1 1 11.60 3.79 7.81 2.06 
D simple 0 0 1 8.80 1.64 7.16 4.37 
N complex 0 1 1 8.66 1.30 7.35 5.65 

Other - - - - 20.52 5.47 15.05 2.75 
Total (minute) 229.80 51.00 180.00 211.8 

a. Seg. = Segment Index; Clst. = Cluster Index; Div. = Diversity Index; Eff. = Efficiency Index 
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Figure 5-6 Distribution of TCI Type by Travel-activity Duration 

In Figure 5-6, each vertical bar represents the total time spent on a type of tour with the TCI code 

below the bar. Travel time is displayed at the bottom of each column in a darker gray while activity 

duration is stacked on the upper portion of each column with a lighter fill. Three types of tours, Q, 

A, and F, dominant out-of-home time. Type Q is a tour type with 4 or more destinations in areas 

with different primary land use types, with trip segments linked by an inefficient route, and with 

at least one short trip (<= ½ mile). Type A is a single destination tour with the destination being 

within ½ mile from home. The distance suggests Type A tour is most likely to be taken via non-

motorized travel modes. Type F is a tour type that contains 2 or 3 destinations, with an efficient 

route following the shortest path between destinations but no trips shorter than ½ mile, and 

involving destinations with different dominant land use type. Individuals in the sample on average 

spend about 45-50 minutes on each of these three tour types per day. Stated in another way, Type 

Q, A, and F tours comprise about 62% of the total out-of-home time. 
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Dissimilarity in weekly trip chaining sequence 

We used a sequential alignment method (SAM) to examine interpersonal deviation in trip chain 

sequencing. As discussed in the methodology section, a 55 by 55 distance matrix is computed 

based on SAM, with each cell (dij) representing the degree of dissimilarity between ith and jth 

individual in their week-long travel-activity sequence characterized by TCI. The total length of the 

week-long sequence is 168 (24-hour times 7-day), so the lower and upper boundary of the 

operation cost is 0, perfectly identical for each hour slot, and 168 represents the global mismatch. 

The alignment cost is jointly associated with the mismatch in travel timing, in travel frequency 

and in choice of tour type. The overall cell mean of the distance matrix is 43.98, meaning on 

average 44 indel/substitution operations are required to equalize a pair of travel-activity sequence. 

This means that, compared to the extreme case of 168, we can expect above 25% of cells to be 

different between any two sequences. 

We further disaggregated the distance matrix based on the socio-demographic variables (listed in 

Table 5-2). Figure 5-7 shows the within-group means across the population groups. A higher 

within-group dissimilarity mean implies larger discrepancy within this group. It also suggests the 

travel behavior and trip chaining pattern for those in this group are less predictable. It has important 

implications for travel demand modeling because, for subgroups that have higher degree of within-

group discrepancy, more controlling factors and even longer travel survey period are needed in 

order to obtain an accurate behavioral approximation. In brief, females, young people under the 

age of 35, licensed drivers who own or share vehicle, low to medium income people, people with 

a large household, people who do not have children at home, and people living within the ½ mile 

proximity to Expo stations have a higher level of within-group deviations during Wave I of Expo 

Study. 
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Figure 5-7 Group Mean of Weekly Interpersonal Dissimilarity 
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Univariate Associations 

Table 5-5 summarizes the results of the discrepancy analysis of interpersonal deviation in trip 

chaining behavior characterized by TCI. Eight categorical socio-demographic variables are 

selected to perform a univariate analysis against a distance matrix with each cell representing a 

pairwise dissimilarity between two individuals’ week-long sequences. The population grouping 

factor for family life cycle explains approximately 8.5% of the total discrepancy given the pseudo 

R2 is 0.085. However, the variable is not statistically significant, giving a pseudo F score as 1.166 

and the permutation test p-value much higher than 0.05. The most significant variable is time 

(schedule flexibility: unemployed, part-time employed/studying, or full-time employed/studying) 

which explains 6.3% of the total discrepancy. It attains a pseudo F score of 1.735 and has not been 

surpassed by any value in the 1,000 permutations. Another significant variable is dist2expo 

(distance from home to nearest Expo stations), which explains 5.6% of the total variance and is 

statistically significant at a 0.05 level. Admittedly, although these two factors are statistically 

significant, the percentage of variance they explain is fairly insubstantial. This suggests further 

investigation based on other personal attributes may be helpful and that interpersonal deviation 

appears to be naturally high even within population groups. 

Table 5-5 Univariate Discrepancy Analysis 
Variable SSW SSB Pseudo F Pseudo R2 p-valuea 

gender 1157.163 30.292 1.387 0.026 0.108 
agegroup 1121.836 65.618 0.994 0.055 0.485 
caracc 1141.061 46.393 1.057 0.039 0.393 
time 1113.162 74.292 1.735 0.063 0.001*** 
incomelevel 1160.366 27.089 0.607 0.023 0.946 
hhsize 1139.047 48.408 0.722 0.041 0.900 
lifecycle 1086.152 101.303 1.166 0.085 0.176 
dist2expo 1120.461 66.994 1.555 0.056 0.016** 

a. p-value is obtained via permutation test with 1000 iterations 
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With the important socio-demographic variables identified, it maybe of interest to test whether the 

discrepancy within groups differs significantly. Originally choosing the Bartlett T for within group 

discrepancy homogeneity test (Studer et al., 2010), Studer et al. (2011) indicated that Bartlett T is 

very sensitive to the case distribution across groups so is unsuitable for the randomized 

permutation test. Instead, the author proposed an alternative approach generalized based on a 

Levene test which is more powerful with randomization tests. Table 5-6 presents the results from 

both tests applied to our dissimilarity matrix. Again, the p-value is obtained from permutation test 

with 1,000 iterations. The significance level suggested by the Bartlett and Levene tests are largely 

consistent. The three subgroups of participants categorized by the time variable (unemployed, part-

time employed/studying, and full-time employed/studying) exhibit statistically significant 

differences in weekly trip chaining behavior discrepancy. The difference also exists subgroups of 

participants categorized by different vehicle accessibility levels (no license/vehicle, own and share 

vehicle, own vehicle and does not share). However, the factor categorizing participants in terms 

of their home’s distance from an Expo station (dist2expo), which is found to be to be statistically 

significant in explaining discrepancies in the univariate analysis in the previous section, was not 

associated with statistically significant differences across levels. 

Table 5-6 Homogeneity Test of the Within-group Discrepancy 

Variable (# of level) 
Bartlett Levene 

T p-valuea L p-valuea 
gender (2) 0.042 0.544 0.398 0.542 
agegroup (4) 0.211 0.595 0.800 0.485 
caracc (3) 0.666 0.071* 3.104 0.051* 
time (3) 1.370 0.003*** 7.681 0.001*** 
incomelevel (3) 0.274 0.326 1.282 0.296 
hhsize (4) 0.496 0.231 1.895 0.143 
lifecycle (5) 0.765 0.228 2.000 0.117 
dist2expo (3) 0.533 0.105 2.534 0.095* 

a. p-value is obtained via permutation test with 1,000 iterations 
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Tree Structure Analysis of Representative Pattern 

Using of the same set of population group factors, a regression tree is built to cluster the 55 

individuals based on the pairwise dissimilarity matrix measuring trip chaining behavior (Figure 

5-8). The root of the tree is on the top of the figure and the tree grows from top to bottom. The 

splitting factor and its pseudo-R2 from univariate discrepancy analysis are presented in the gray 

box below its corresponding parent node. Node size and within node discrepancy are displayed for 

each node along with the splitting criterion. Note that the term of “discrepancy” is a generalized 

concept for “variance”. So a “univariate discrepancy analysis” is similar to a “one-way ANOVA” 

and “within node discrepancy” is similar to “within group variance”. In addition, the label of 

cluster index is included at the upper-left corner of each leaf node (node with no child). 

The result shows that 6 population clusters (identified as leaf/cluster A-F in Figure 5-8) are 

identified to explain the total discrepancy in the sample’s trip chaining behavior. The global 

pseudo-R2 is 0.16, which means that this clustering structure explains 16% of the total discrepancy. 

No previous studies have utilized the same method to examine trip chaining behavior sequencing. 

Therefore, there are no comparable statistics to assess the quality of this regression tree. However, 

we find that the global pseudo-R2 is at a similar level with that of other studies using the same 

method in other fields. The most relevant study, an analysis of daily activity pattern which 

regressed activity purpose sequencing against personal characteristics and obtained a global 

pseudo-R2 of 0.189 (Kim, 2014). Another study about life trajectories had a global pseudo-R2 of 

0.187 (Studer et al., 2011). The factors that are found to be significant in the univariate discrepancy 

analysis in a previous section (dist2expo and time) both have been selected to grow the tree. 

Meanwhile, two other variables (lifecycle and hhsize) are also used to develop the tree. 
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Figure 5-8 Regression Tree of Weekly Trip Chaining Sequence 

Some interaction between population grouping factors can be observed from the tree structure. For 

participants who live close to an Expo station (less than ½ mile away), schedule flexibility is found 

to be more influential on trip chaining behavior than any other factors. More specifically, people 

who work or study full-time appear to be different from people who are less time-constrained. For 

the latter, household size is a factor used to further distinguish the trip chaining patterns. 

Individuals who live alone and those who live with more than three people are found to have 

similar patterns, and together these groups are different than individuals who live with one or two 

other people. On the other hand, for people who live farther away from an Expo station (> ½ mile), 

family life cycle plays a more important role on trip chaining pattern than other factors.  Within 

this subgroup, individuals in an earlier life stage (young single/adult family without children, and 

adult family with children under 12-year-old) are found to be different than individuals in a more 
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senior life stage (family with children older than 12-year-old, older working family without 

children, and retired persons). According to Jones et al. (1983), these family life cycle factors are 

expected to be associated with quite distinguishable travel patterns due to different family 

structures, income levels and needs for social activity and out-of-home activities. For people in 

more senior life stage, schedule flexibility again shows significant impact on trip chaining patterns.  

In this regard, more senior participants who are free (neither employed nor student) are 

differentiated from the other two groups who are partially or full-time constrained due to 

employment or school obligations. 

The time-series and distribution plot are used to visually inspect the trip chaining patterns across 

the population clusters identified as leaf. Note that Clusters A, B, and C are for people who live 

within ½ mile from an Expo station and Clusters D, E, and F are for those who live further away. 

Overall, Clusters A, B, and C exhibit higher daily travel demand and more complex trip chaining 

behavior (longer tails and darker cells), while Clusters D, E, and F show lower level of out-of-

home travel demand and simpler chaining behavior (shorter tails and lighter cells). The difference 

described above can be observed from both time-series and distribution plots (Figure 5-9). 

People in Cluster A are those who live close to an Expo station and are full-time workers or 

students. Their time-series plot indicates they tend to have a regular daily pattern compared to 

other population clusters. Moreover, their travel timing is similar given their colored cells are well 

aligned, especially from Monday to Thursday. This seems reasonable since Cluster A is composed 

of participants who face strong time-constraints. From the distribution plot, we can see most of 

them choose a mixture of simple and complex trip chaining. 
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Although Clusters B and C are both comprised of those who live close to an Expo station and are 

part-time worker/students or non-employed people, Cluster B includes those who live alone or 

with more than three other people and Cluster C includes those living in a household with two or 

three members.  Compared to Cluster A, the travel demand of those in Cluster B is more evenly 

spread over the week and those in Cluster B have a mixture of simple and complex trip chaining 

according to the distribution plot. Participants in Cluster C seem to have much less intensive trip 

chaining behavior than Clusters A and B, given their colored cells are sparse in the time series plot 

and their colors are light in the distribution plot. 

Clusters D and E are both comprised of those who live farther from an Expo station (> ½ mile) 

and are in a more senior life stage (family with children older than 12-year-old, older working 

family without children, and retired persons).  Cluster D includes those with no employment and 

not enrolled in educational program and Cluster E includes those who employed or attending 

school, either full-time or part-time. Most of the colored cells in Cluster D are not aligned vertically 

in time (time-series plot) possibly reflecting this group faces lower time constraints. They also 

show limited travel demand and tend to undertake simpler trip chains based on the distribution 

plot. Cluster E shows more out-of-home activities and more complex trip chains than Cluster D, 

but the interpersonal alignment by time and weekly regularity is very limited. 

Cluster F is both comprised of those who live further from an Expo station (> ½ mile) and are in 

an earlier life stage (young single/adult family without children, or adult family with children under 

12-year-old). Based on the time-series plot, Cluster F is associate with slightly more regular travel 

patterns on weekdays than weekends. Participants in Cluster F seem to have higher out-of-home 

activity demand than Clusters D and E according to the distribution plot given the tails are on 
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average longer compared to those for Clusters D and E. Participants in Cluster F, though, tend to 

make non-complex trip chains given a majority of the colored cells are light. 

 

 
Figure 5-9 Time-series Plot by Population Cluster 



	

	 154 

 

 

 
Figure 5-10 Distribution Plot by Cluster by Population Cluster 
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Travel and Trip Chaining Pattern by Cluster 

Given the population clusters have been identified and the difference among clusters have been 

visually inspected, the next step is to investigate the travel-activity characteristics of each cluster. 

Three aspects that are directly involved in our SAM are analyzed reviewed by cluster: 1) timing 

and frequency of daily travel, and 2) choice in TCI tour type. 

Table 5-7 Daily Activity/travel Hour Duration by Cluster 
Cluster Mon. Tue. Wed. Thur. Fri. Sat. Sun. Overall 

A 7.17 10.17 9.57 10.40 6.83 8.50 6.00 8.38 
B 6.89 5.14 6.10 6.00 4.57 5.25 6.00 5.71 
C 3.71 6.29 5.57 4.00 5.00 5.75 3.75 4.87 
D 4.00 5.25 3.29 2.75 3.86 1.60 5.75 3.78 
E 1.00 5.17 4.20 7.33 6.00 3.43 6.75 4.84 
F 7.20 10.00 8.63 9.86 7.83 1.17 4.20 6.98 

 
 

 
Figure 5-11 Timing of Daily Travel by Cluster 

Table 5-7 lists the average activity/travel hour duration for each cluster by day of week. Figure 

5-11 visualizes the start and end time of the average period of activity/travel. For each cluster, the 

7 bars represent the 7 days of a week from Monday to Sunday. Cluster A (<= ½ mile to Expo 

stations, full-time worker/student) and Cluster F (> ½ mile to Expo, early stage in life cycle) have 
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longer activity/travel durations than the other clusters, but Cluster F shows a decreased travel 

demand on weekends. It also has more of an aligned home-return hour during weekdays while 

Cluster A show much less regularity in departure or return hour. Clusters B (<= ½ mile to Expo 

stations, free or part-time worker/student, single or large family), C (<= ½ mile to Expo stations, 

free or part-time worker/student, two or three-person family), D (> ½ mile to Expo stations, senior 

life stage, not employed/enrolled in education program) and E (> ½ mile to Expo stations, senior 

life stage, part-time/full-time worker/student) have shorter activity/travel hours than Clusters A 

and F. People in these clusters on average start their daily travel after 10:00, much later than those 

in Clusters A and F who start their activity/travel between 7:00 to 9:00. People in Clusters B and 

E tend to end the day between 16:00 and 18:00, while people in Clusters C and D tend to end the 

day between 14:00 and 16:00. Overall, Cluster D has the shortest out-of-home duration. Moreover, 

the daily variation between days of the week is very high in Cluster E. Cluster E includes people 

above 35-year-old with/without older school-age children and people above 65 who are still 

working. The high daily variability of this group supports the claim that families with older school-

age children have more intensive travel demands as children start to have greater social needs but 

are still dependent on parents to drive them (Jones et al., 1983). These patterns are also consistent 

with the findings by Kim (2014) that suggest older workers spend less time on work and have less 

clear peak hour points on weekdays compared to younger workers. 
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Figure 5-12 Daily Trip Rate and Trips per Tour by Cluster 

Figure 5-12 presents the daily trip rate and average number of trips chained per tour. Similar to 

Figure 5-11, each population cluster contains 7 bars representing Monday through Sunday. Note 

that only days that contain out-of-home activities are included and days with no travel-activity are 

excluded from this analysis. Hence, the trip rates reported could be inflated. The trip rate is 

increasing from Monday to Sunday for Clusters A and E, while it tends to be decreasing more or 

less for other clusters. As for number of trips per tour, participants in Clusters A, B and E tend to 

chain more overall than people in Clusters C, D and F. Although Cluster F shows a high trip rate, 

participants in this cluster chain less. This could be due to the reason that Cluster F, who’s defining 

characteristic is an early life cycle, has more out-of-home activity demand and is less obligated to 

family which leads to less time and monetary constraints. Cluster C and D have similar patterns in 

trip rate and chaining intensity, which are both lower than other clusters. The common 

characteristics between people in Cluster C and D is that they are not full-time employed or 

enrolled in school. So it seems very likely that the low trip rate of these clusters are associated with 

the lack of commuting trips. However, the activity/travel duration for participants in Cluster C is 
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twice long as that of participants in Cluster D. Recall that the overall average number of trips 

chained per tour is highest on Friday and lowest on Saturday. Based on Figure 5-12, we can see 

the complexity of chaining on Friday is contributed mainly by people in Clusters D and E, while 

the simplicity of chaining on Saturday could be contributed mainly by people in Clusters A and F. 

Table 5-8 Out-of-home Time Allocation by TCI Type 

TCI 
Code 

Description Travel-Activity Time Allocation (minute)b 
Seg.a Clst.a Div.a Effi.a A B C D E F 

A single 0 0 1 62 25 93 24 47 54 
B 1 0 1       
C 

simple 

0 0 0       
D 0 0 1     23 10 
E 0 1 0  15     
F 0 1 1 78  23 16 32 116 
G 1 0 0       
H 1 0 1     14  
I 1 1 0       
J 1 1 1  35 25 10 10 33 
K 

complex 

0 0 0       
L 0 0 1       
M 0 1 0 26 19 12  34  
N 0 1 1     13 21 
O 1 0 0       
P 1 0 1       
Q 1 1 0 122 71 10 13 69 20 
R 1 1 1 16 31     

Daily Total (minute) 343 241 190 101 253 269 
a. Seg. = Segment Index; Clst. = Cluster Index; Div. = Diversity Index; Eff. = Efficiency Index 
b. statistics is only shown for TCI types with more than 10 minutes per capita per day 

Finally, the distribution of time on different tour types are examined for each population cluster 

(Table 5-8). For simplicity, the allocated time is only shown for tour types that lasted for more 

than 10 minutes per traveler per day. The top 3 tour types are highlighted for each cluster as well. 

Consistent with what can be observed from the distribution plot, people in Clusters A, B and E 

spend more time on complex and simple chained tours, while Clusters C, D and F have a higher 

percentage on simpler tours, especially for Clusters C and D. 
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Conclusion and Discussion 

This study explores a new approach for studying longitudinal travel-activity patterns that 

characterizes out-of-home activity using TCI tour types. The combination of SAM and discrepancy 

analysis provides an analytical tool that can embed socio-demographic factors into the clustering 

process, rather than analyzing their influence in a posterior way. Based on the distance matrix 

computed from all the individual pairs, six population groups or clusters are identified. The tree-

structured clustering method sheds light on how socio-demographic factors influence weekly 

travel patterns and how factors interact with each other. 

Results demonstrate a new methodological approach for the travel behavior literature and 

demonstrates that trip chaining information extracted from GPS data provide valuable information 

for identifying population groups with different travel habits. The study also shows that population 

groups have different tendencies for choosing tour complexity types including the spatial 

relationship between destinations, routing arrangement and land use combination, not merely how 

many trips to make per tour. The proposed TCI classification method provides a better approach 

for understanding trip chaining behavior compared to the traditional binary classification scheme 

(simple vs. complex) used in most previous studies. 

Results also demonstrate that the characteristics of individuals, including residential location, 

employment status, family life cycle and household size, have an important influential on the 

weekly travel patterns and trip chaining complexity. Employed people or students are found to 

have more complex trip chaining compared to people whose out-of-home activities depend less on 

other household members. The tree-structured analysis indicates that interactions between socio-

demographic factors across levels of clustering. For people who are unemployed or part-time 
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employed, household size is an important discriminant of travel patterns. For older people older 

than 35 years old, employment status has an important influence on travel patterns. 

Limitations and Future Work 

Several aspects of this study could be improved. First, the alignment cost parameters could be fine 

tuned. Different cost settings can be applied based on the type of alignment operations (i.e., indel 

and substitution) and based on the position of alignment. Second, the current approach is uni-

dimension with a single attribute due to limited sample size. A simultaneous consideration of 

multiple travel-activity attributes could provide more comprehensive clustering results. In 

particular, those attributes that are found to be associated with trip chaining behaviors, including 

travel mode, destinations and activity duration should be explored further. Third, there is more 

room for developing a scheme to incorporate geographical information into the sequence. Further, 

it could be worthwhile for future studies to explore alignment methods that allow for the presence 

of both numerical features and categorical attributes; currently SAM requires categorical variables. 

Finally, it is important to apply the analytical framework on a larger dataset in order to justify the 

methodological approach and empirical results. 
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Chapter 6 Conclusion 

Trip chaining is a complicated, multi-dimensional phenomenon not only often involving multiple 

grouped trips but also involving destination choice, activity sequencing, route arrangement, and 

scheduling. Trip chaining complexity has been traditionally analyzed using a simplified binary 

classification scheme. That is, most previous studies classify a tour (or trip chain) either as “simple” 

or as “complex” depending on whether it includes more than one stop in the tour. This simplified 

classification scheme has resulted in ambiguous research findings. In an attempt to address the 

limited insights in the literature regarding trip chaining, this dissertation proposes a new 

framework to integrate multi-dimensional trip chaining characteristics into travel behavior 

research. Further, this dissertation demonstrates the applicability of the proposed tour complexity 

measurement in intrapersonal and interpersonal travel-activity pattern research. 

This dissertation introduced and demonstrates applications of the Tour Complexity Index (TCI), a 

new approach to qualitatively assess trip chaining complexity. It characterizes the complexity of 

home-based tours (trip chains) from four dimensions or components: number of chained trips, the 

geographical relationship or spatial clustering among destinations, visiting sequence and routing, 

and land use diversity across destinations. These TCI components are referred to as the Segment 

Index, Cluster Index, Efficiency Index, and Diversity Index, respectively. Based on explorative 

analysis, this study first confirms that chaining behavior is common: 64% of home-based tours 

have at least two locations chained. Second, when tours with at least two stops chained are 

analyzed using the three other TCI indices, results show that tours with multiple and non-clustered 

stops, optimal routing, and mixed use destinations are undertaken most frequently. 
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This dissertation contributes to the literature in several ways. By comparing TCI classification 

methods with the traditional binary classification method, Component I first verifies the findings 

from existing trip chaining complexity studies. For number of chained trips, results agree with 

previous research by Currie & Delbosc (2011) who used number of trips chained instead of the 

binary classification method to characterize tours. Both studies have found that as the destinations 

are further away from a highly urbanized area (such as the central business district or downtown), 

tours tend to be simpler because less stops are typically chained to access such distant destinations. 

Component I results also show that the presence of clustered destinations (within 0.5 miles) is 

more associated with the use of public transit than the number of trips chained. This partially 

supports Ho and Mulley’s research which examines the spatial relationship between activity 

locations and found that clustered destinations encourage the use of public transit (Ho & Mulley, 

2013). The difference lies in that this previous study claims the positive association is monotonic 

while this dissertation study shows the association disappears when the number of chained 

locations reaches a certain level. This means that although trip chaining is not a barrier to transit 

ridership, extremely complex travel plans are still more likely to be carried out by private vehicles.  

More importantly, model results of Component I demonstrate that the TCI multi-dimensional 

measurement offers more information than the traditional binary classification scheme regarding 

the behavior of chaining trips and activities. By introducing the concept of efficient routing and 

diverse land use across destinations, this study finds that non-motorized modes like walking has a 

close relationship with complex trip chains as it is the only mode that is found to be significantly 

associated with all four TCI indices. Besides number of chained stops and presence of a destination 

cluster, tours including a walking trip are highly likely to have a non-optimal route and multiple 

dominant land uses across destinations. The result suggests that non-motorized travel mode might 
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be underestimated in the existing literature. The main stream of research in trip chaining focuses 

on debate regarding trip chaining behaviors relating to private vehicle and public transit modes. 

However, the non-motorized walking mode appears to have a strong association with complex 

chaining behavior. 

Component II contributes to the literature by assessing intrapersonal daily variability characterized 

by jointly considering the influence of trip chaining and mode choice. The analysis first categorizes 

home-based tours according to the four TCI indices; then it uses a sequential alignment approach 

to quantify the daily deviation for tours made by the same person. Although the current study has 

some methodological differences with previous studies, it confirms the findings of previous 

variability-related studies that the amount of within-individual day-to-day variability in generic 

travel behavior is significant (Hanson & Huff, 1988; Pas, 1987; Pas & Sundar, 1995; Raux et al., 

2016). From the perspective of trip chaining, the study reinforces the argument that the common 

single-day travel survey may produce biased results because the collected data cannot fully capture 

the variation in travel behavior that can be observed using week-long travel data.  

Existing research has examined the association of traveler characteristics and variability because 

if the daily variability level can be associated numerically with certain social-demographical 

factors, it would be easier to incorporate the daily variability factors into travel demand model 

development and transportation policy design. Mainly constrained by the nature of datasets, 

previous research has attempted to identify such determinants using cross-sectional analysis. 

However, little evidence has been found to support the hypothesis that level of within individual 

variability is connected with social-demographical factors (Hanson & Huff, 1982; Kitamura & 

Van Der Hoorn, 1987). Component II of this dissertation takes a different approach to this problem 
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by taking advantage of the longitudinal nature of the Expo tour dataset. A before-and-after analysis 

is performed to examine whether the Expo Line would affect the variability. First, the study finds 

a statistically significant decline in intrapersonal variability of chaining complexity for people who 

live within ½ mile of an Expo station. In other words, the combination of trip chaining patterns 

and mode choice for people who live close to an Expo stations became more predictable. Second, 

it cannot be concluded that any socio-demographic factors are related with this before-and-after 

change. This finding is consistent with previous research but from another direction. 

Component III extends the research of Component II by analyzing the deviation between 

individuals. That is, how different people chain trips and activities. Component III also aims to 

explore the applicability of TCI on established travel-activity pattern recognition methods (Wilson, 

1998). The major contribution of this component is that it directly classifies out-home travel 

behavior and embeds socio-demographic information in the process of pattern recognition. First, 

this study addresses the limitations of existing studies that heavily rely on activity information 

which is an upper-scale concept according the theory that travel is a demand induced by activity 

(Recker, 2001). However, accurate activity information is difficult and expensive to collect as 

pointed out by previous research (Kim, 2014; Saneinejad & Roorda, 2009). This dissertation study 

also focuses the pattern analysis on out-home travel information derived from GPS data, a data 

source that is more accessible than traditional travel survey data. Second, this study contributes by 

applying discrepancy analysis and regression tree methods which allows socio-demographic 

information to be integrated into the pattern recognition process at an early stage rather than as a 

posterior analysis as done in previous studies. Component III demonstrates that the proposed TCI 

method can be used in multi-day travel pattern analysis. It also investigates the individual 

characteristics that influence travel patterns and the tendency to choose complex trip chains. A set 
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of individual characteristics, including residential location, schedule flexibility, household size, 

and family life cycle, is found to be significantly influential to weekly travel patterns. Further, this 

factors also influence day-to-day variability of out-home activity hour, tour/trip rates, and choice 

of tour type defined by tour complexity. 
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