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Nucleotide sequence of the Drosophila glucose-6-phosphate dehydrogenase gene and comparison with
the homologous human gene
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SUMMARY

Glucose-6-phosphate dehydrogenase (G6PD) has a major role in NADPH production and is found in almost
all cell types. The structural gene for G6PD is X-linked in Drosophila melanogaster, as it is in most eukaryotic
organisms, and due to its ubiquitous expression, it can be considered a typical ‘housekeeping’ gene. Here we
present the complete nucleotide (nt) sequence of G6PD cDNAs as well as the genomic copy of the G6PD gene.
The G6PD gene has three introns so that the protein-coding region is divided into four segments. The 5'-end
of mature G6PD mRNA is located 289 + 1 nt upstream from the start codon. The sequence upstream from
the transcription start point is G + T-rich and contains no commonly found transcription regulatory elements,
such as a TATA box or GGGCGG sequence. D. melanogaster G6PD is 65% homologous with the human
G6PD protein but has no homology with the human sequence for the first 42 amino acid residues. The G6PD
gene was shown to be active when transduced to autosomal positions. For each transformant, G6PD activity
in both male and female adults was not significantly different, indicating that the transduced gene, unlike the
resident G6PD, is not dosage-compensated in males.

INTRODUCTION EC 1.1.1.49) is the first and dominant regulatory

enzyme in the hexose monophosphate shunt. The

Glucose-6-phosphate  dehydrogenase (G6PD;
D-glucose-6-phosphate : NADP*+  oxidoreductase,

Correspondence to: Dr. J.E. Manning, Department of Molecular
Biology and Biochemistry, University of California, Irvine,
Irvine, CA 92717 (U.S.A.) Tel. (714)856-5578.

* Present address: Department of Zoology and Cell, Molecular
and Developmental Biology Program, University of Tennessee,
Knoxville, TN 37996 (U.S.A.) Tel. (615)856-5578

primary role of G6PD is to generate NADPH, a
reductant necessary for numerous physiological and

Abbreviations: aa, amino acid(s); bp, base pair(s); DHFR,
dihydrofolate reductase; G6PD, glucose-6-phosphate dehydro-
genase; G6PD, gene coding for G6PD; kb, kilobases or 1000 bp;
NADP, nicotinamide adenine dinuclectide phosphate; NADPH,
reduced NADP; nt, nucleotide(s); Zw, Zwischenferment, G6PD
gene in Drosophila.
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biosynthetic processes (Beutler, 1983). This enzyme
has been found in all organisms and cell types thus
far analyzed, thus placing the G6PD gene in the
category of general ‘housekeeping’ genes. G6PD
activity has been used extensively for molecular,
developmental, physiological and population studies
with a variety of organisms, including Drosophila and
man {Yoshida and Beutler, 1986). Recently, the gene
for human and Drosophila G6PD have been cloned
(Persico et al., 1986; Martini et al., 1986; Takizawa
et al., 1986; Ganguly et al., 1985; Hori et al., 1985).
The amino acid sequence of human G6PD has been
determined by direct amino acid sequence analysis
of the purified enzyme (Takizawa et al., 1986), and
it has been derived from the sequence of cDNA
clones which encode the enzyme (Persico et al.,
1986; M.G. Persico, personal communication).
Comparison of the two human amino acid sequences
shows them to be identical except for a region at the
N terminus of the protein, where no homology is
present. No obvious explanation for the differences
in sequence within this region of the protein is
available.

Since common metabolic enzymes often show
extensive amino acid sequence homology between
humans and Drosophila, we wished to compare the
amino acid sequence of Drasophila G6PD to that of
human G6PD with the premise that such a com-
parison might provide insight into the discrepancy
between the two human G6PD sequences. This
report, therefore, presents the complete cDNA and
genomic DNA sequences which encode G6PD in
Drosophila and presents the surprising observation
that the amino acid and DNA coding sequence of
Drosophila G6PD diverges from that of human
G6PD at the precise amino acid position that marks
the start of sequence divergence between the two
human G6PD sequences.

MATERIALS AND METHODS
(a) Isolation of cDNA clones

A cDNA library was constructed in phage A gt10
using adult Drosophila poly(A)* RNA by methods
described in Maniatis et al. (1982). The library was
co-screened with two genomic DNA fragments

containing the G6PD gene. One fragment contained
sequences present in exon I (i.e., the 927 bp from
Pvull to BamHI) and the other fragment included
sequences present in the other three exons (i.e., the
1022 bp from EcoR1Ito Pstl). Approximately 600000
independent recombinant phages were screened,
and two recombinant phages, ADmC20 and Ai-
DmC21, showed positive hybridization with both
probes. The inserts present in both phages were
¢xcised, subcloned into pUC9 and Bluescript, and a
restriction enzyme map of both was constructed.

(b) Nucleotide sequence analysis

The strategy for determining the nucleotide
sequence of the genomic and cDNA fragments
which encode G6PD is shown in Fig. 1. The
sequence was determined by the dideoxynucleotide
chain-termination method of Sanger et al. (1977)
and was verified by data generated from both
strands. Growth and manipulation of phages
M13mpl8 and M13mp19 were as described previ-
ously (Messing, 1983). Sequential deletions of DNA
fragments cloned in Bluescript with exonuclease HI
were performed using conditions suggested by the
supplier (Stratagene, Inc.).

(c) S1 nuclease protection

A 408-bp Sau3A fragment (see Fig.3), which
spans exon I, was cloned into the BamHI site of
M13mpl18. Recombinant phage DNA containing
antisense strand was used as a template to synthesize
32P.labeled sense-strand DNA. The Sau3A frag-
ment was excised by digestion with EcoRI + Sall
and isolated by electroelution from a non-denaturing
5.5% polyacrylamide gel. The purified fragment was
denatured and hybridized with 10 pg of adult
Drosophila poly(A)* RNA for 16 h at 46°Cin a 10-ul
reaction mixture. As described previously (Casey
and Davidson, 1977; Ganguly et al., 1985), these
conditions allow RNA/DNA hybridization in the
absence of DNA/DNA hybridization. Following
hybridization, the RNA/DNA hybrids were treated
with S1 nuclease and the size of the protected DNA
fragment was resolved on a sequencing gel.



(d) Construction of G6PD Carnegie-20 transforma-
tion vector :

A 6.7-kb Hpal-Sst]I DNA fragment (Ganguly
et al., 1985) putatively containing the entire G6PD
gene sequence was inserted into the single Sa/l site
of the transformation vector Carnegie-20 (Rubin and
Spradling, 1982) following conversion of the Hpal
and SstI sites into Xhol sites. First, the 4.9-kb
HindIll-BamHI fragment containing exons II-IV
was cloned into pBR322. After Sstl cleavage, the
Sstl site in the recombinant plasmid DNA was
converted to an Xhol site by ligation with synthetic
Xhol linkers. The resultant plasmid was designated
pBrt. Second, the 5.8-kb EcoRI fragment containing
exon I was cloned into pUCY, and the single Hpal
site was converted to an Xhol site using synthetic
Xhol linkers. The two modified G6PD-containing
DNA fragments were joined at the common EcoRI
site in intron 1. The 6.7-kb Xhol fragment (i.e., Hpal
to SstI) was excised and inserted into the Sall site
of Carnegie-20. Orientation of the G6PD gene rela-
tive to the ry* gene was determined by digestion of
the constructs with endonuclease HindIIL.

(¢) Transformation experiments

Germ-line transformations were performed fol-
lowing the procedures of Rubin and Spradling
(1982; 1983) and Karess and Rubin (1984). The
Carnegie-20 vector containing Zw* was micro-
injected (300 ug/ml} along with the helper plasmid
pn25.7we (80 ug/ml) into preblastoderm embryos
from a try°°® or an Adh™® cn ry®°¢ recipient strain.
Injected embryos were reared to adulthood and
mated to individuals from the same strain. Their
progenies were examined for the presence of trans-
formants detectable on the basis of their Ry™* eye
color phenotype. Separate lines were established by
backcrossing individual transformants to flies of the
appropriate sex from the recipient stock. To ensure
that each transformant line represented a separate
insertional event, only one transformant produced
by a given recipient was retained. By monitoring the
transmission of the Ry* phenotype in these lines,
sex chromosome versus autosomal linkage of the
transduced genes could be determined. A more
precise cytological localization of these inserts was
obtained by in situ hybridization. Plasmid pzn25. Twe
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was labeled with a biotinylated deoxynucleotide
(Bio-16 dUTP, Bethesda Research Laboratories,
Gaithersburg, MD) and allowed to hybridize to its
homologous sequences on larval salivary gland poly-
tene chromosomes; its presence was detected by the
binding of a streptavidin-biotin-horseradish per-
oxidase complex (ENZO Biochem. Inc., New York)
according to a method modified by E. Hafen (perso-
nal communication). To measure the activity of
transduced genes without the complication of an
endogenous background, crosses were performed to
replace the X chromosome of transformant lines
with an X containing a Zw ~ allele. We used Zw"!,
induced by ethylmethane sulfonate mutagenesis
(Hughes and Lucchesi, 1977) and ZwH72 recovered
from a hybrid dysgenesis cross (Nero, 1987).

(f) Enzyme assays

Crude extracts were prepared by homogenizing
adult males in 0.1 M Tris, 5 mM mercaptoethanol,
0.2 mM EDTA, 0.1 mM NADP buffer (pH 8.0) at
a concentration of 10 mg of wet weight/ml. G6PD
activity was measured as the increase in absorbance
at 340 nm resulting from the reduction of NADP
(Lucchesi and Rawls, 1973).

RESULTS
(a) Isolation of ¢cDNA clones

Approximately 600000 A recombinant phages
from a cDNA library constructed from adult
poly(A) " RNA were screened with DNA fragments
containing exon I and exons II-IV of the genomic
G6PD gene (Fig. 1). Two phages, designated A-
DmC20 and ADmC21, were identified and proved
positive upon re-screening. The sizes of the cDNA
inserts in ADmMC20 and ADmC21 were assessed, by
electrophoresis in a 1%, agarose gel, to be 2000 bp
and 1950 bp, respectively. Restriction enzyme analy-
sis of these two cDNA inserts showed an almost
totally overlapping pattern. The similarity of these
two cDNAs was further confirmed by hybridization
to a restriction enzyme digest of genomic G6PD
sequences. Both cDNAs showed hybridization to
DNA restriction fragments in exon I and exons
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Fig. 1. Restriction map and sequencing strategy of the G6PD genomic and cDNA clones. Origins of arrows indicate the restriction sites
used for sequencing. Arrows denoted by an asterisk were sequenced in both directions by sequential deletion with exonuclease III as
described in MATERIALS AND METHODS, section b. The boxed regions denote the position of exons I-IV of the G6PD gene as
determined by sequencing of G6PD ¢cDNAs and S1 nuclease mapping of the transcriptional start point (see Fig, 3).

II-1V, but no hybridization was observed to any
region of intron I.

(b) Sequence analysis

To more precisely define the number and position
of exon/intron domains within the genomic G6PD
gene, the complete nucleotide sequence of the
c¢DNAs and the genomic DNA fragments containing
exon I (i.e., Pvull to BamHI) and exons II-IV (i.e.,
EcoRI to Pvul) were determined by the dideoxy
chain-termination method (Fig. 2). The sequence of
both complementary strands of all DNA fragments
was determined and the position of 6-bp restriction
enzyme sites predicted by either the sequence or
restriction mapping was confirmed. The sequencing
strategy is given in Fig. 1. The genomic and cDNA
sequences are shown in Fig. 2 and underscored by
the predicted amino acid sequence of the protein.

Direct comparison of the genomic and cDNA
sequences confirms the position of intron I but also
indicates the presence of two additional small introns
in the previously designated exon II (Ganguly et al.,
1985). Therefore, exon II must now be redefined as
containing three exons and two introns. The three
intron sequences which separate the four exons have
several notable features. First, the junctions which
define the intron/exon boundaries agree with the
GT—-AG rule of 5'-donor 3’-acceptor splice sites
(Mount, 1982). Also present in the three introns are
regions corresponding both in position and sequence
to the consensus sequence (C/T)T(A/G)A(T/C)
proposed as a 3’ splice signal in Drosophila (Keller
and Noon, 1985). These authors also suggest that a
second criterion for proper splicing is the absence of
an AG between —3 and —19 from the 3’ splice point;
a feature also shared by the three G6PD introns.

The sequence of the cDNA differed from the
genomic DNA in three places. However, the change
in nucleotides at these three sites did not alter the
predicted amino acid sequence. This degree of dif-
ference is consistent with the extent of genetic poly-
morphism that might be anticipated, since the
genomic DNA is from the Canton S strain while the
c¢DNA originated from an Oregon R library.

The 3’ end of the gene was identified by the
presence of the A residues at the 3’ terminus of the
cDNAs for which no genomic counterpart was
identified. Consistent with this assignment is the
observation that both cDNAs showed terminal
sequences which differed only in the number of the
A residues between the EcoRI linker sequence and
the putative polyadenylation site at nt position 2461.
Also, the sequence ATTAAA at position 2426
resembles the consensus sequence AATAAA that
precedes the polyadenylation site of most eukaryotic
mRNAs by 12 to 30 nt residues. Since deviations
from the consensus sequence have been described
for several eukaryotic genes, in particular the chick
actin gene (ATTAAA; Fornwald et al., 1986) and
the human G6PD gene (ATTAAA; Persico et al.,
1986), it is likely that the above sequence represents
the polyadenylation signal for the Drosophila G6PD
gene.

(c) 5'-End determination and transformation of Zw

To determine the 5’ end of G6PD mRNA, an S1
nuclease protection experiment was performed with
the 32P-labeled probe indicated in Fig. 3. The pro-
tected DNA fragment migrated as a single band of
length 306 + 1 nt on a nucleotide sequencing gel.
This would position the 5’ end of the mRNA at nt
-289 + 1. In making this assignment we have
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assumed that the terminal 92 nt of the probe that are results of these experiments, presented in Table II

present in intron I are not protected by mRNA. Also, show the absence of compensation.

since both strands of the probe are present during the

hybridization reaction, it is important to note that (d) Identification of the protein coding region

under these hybridization conditions no protection

of the probe (Fig. 3, lane 1) was observed in the The first ATG in the G6PD transcript is 289 bp

absence of RNA. downstream from the 5’ end at position 1 in Fig. 2.
Transformation experiments were conducted to Translation starting at this site would end at nt

determine the extent of the 5' domain necessary to position 2277 (TGA) and would yield a 523-aa pro-
achieve gene activity. The P20H2 Carnegie-20 tein of M, 60100. A second ATG in the G6PD

vector contains the Zw * -coding region flanked by transcript is found at nt position 592 and is in the
0.55 kb of upstream and 1.15 kb of downstream same reading frame as the first ATG. Initiation at the
sequences. Crosses were performed to replace the X second ATG would result in a protein of 501 aa and
chromosome of transformant lines with an X an M, of 57676. Both of these predicted M,s are in
containing a Zw ~ allele so that the transduced gene close agreement with the apparent M, (i.e., 55000) of
could be measured without the complication of an the monomeric unit of G6PD (Lee etal., 1978;
endogenous background. All transduced genes were Williamson and Bentley, 1983). Examination of the
found to produce active G6PD enzyme although the 5’ sequences flanking the two potential translation
level of enzyme activity differed substantially among start sites shows that neither strongly match the
transformant lines (ranging from 329, to 60% ) due generalized Drosophila initiation consensus sequence
to position effects. To determine if cis-acting se- proposed by Cavener (1987) (Table I). However, a
quences responsible for dosage compensation were comparison of these 5’ sequences with those se-
included in the Zw™ sequences transduced to quences 5’ of the translational start sites of 83 other
autosomal sites, males and females carrying a single Drosophila genes reveals that the sequence 5’ of the
dose of transduced genes were compared. Under first ATG is very similar to those of the glue protein
these conditions, equal levels of activity in the two Sgs-4 while those 5" of the second ATG are similar
sexes signal the absence of compensation while to Hsp-22 (Table 1). Collectively, these observations
higher levels of activity in males (ideally, twice as provide no clear indication as to which ATG might
high as in females) indicate its occurrence. The serve as the predominant site for translational
TABLE 1

Comparison of sequences 5’ of potential translation initiation sites for G6PD with consensus initiation sequences of Drosophila protein
coding genes and the initiation sequence for the Sgs-4 and Hsp-22 genes

Consensus sequence® aaaAa t/c C/A A A/C A/C ATG
First ATG® TCGGG T C A A G ATG
Sgs-4°¢ CAAAG T C A A G ATG
Second ATGY GTCGC C T A C A ATG
Hsp-22°¢ ATCAA C T A C A ATG

2 The rules used for assignment of consensus are as follows (Cavener, 1987). If, in a compilation of Drosophila sequences flanking the
translational start site, the frequency of a single nucleotide at a specific position is greater than 50%, and greater than twice the number
of the second most frequent nucleotide it is considered as the consensus nucleotide (upper-case letter). If the sum of the frequencies
of two nucleotides is greater than 759, (but neither meets the criteria for a single nucleotide assignement) they are considered as
co-consensus nucleotides. If no single nucleotide or pair of nucleotides meets the criteria of consensus nucleotide(s) the most frequent
nucleotide is considered as the preferred nucleotide and is denoted as such by a lower-case letter.

® Nucleotides -10 to 3 in Fig. 2. Nucleotides —10 to —1 are 5’ to the first ATG in the G6PD transcript.

¢ The ATG initiation codon and the 10 nt immediately 5’ to this initiation site in the Drosophila glue protein gene, Sgs-4 (Muskavitch
and Hogness, 1982).

d Nt 582 to 594 in Fig. 2. Nt 582 to 591 are 5’ to the second ATG in the G6PD transcript.

¢ The ATG initiation codon and the 10 nt immediately 5’ to this initiation site in the Drosophila heat-shock protein gene, Hsp-22 (Ingolia
and Craig, 1981).
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Fig. 3. S1 nuclease analysis of the 5 end of G6PD mRNA. A schematic diagram showing the approach used for mapping the 5 end
of the G6PD mRNA is shown in the left column of the figure. Step 1 is the insertion of a 408-bp Sau3A fragment, which spans exon
1, into the BamHI site of M13mp18. Single-stranded recombinant phage DNA containing antisense strand (- ) was isolated (step 2)
and used as a template to synthesize *?P-labeled sense-strand DNA (step 3). The Sau3A fragment containing the *2P label in the sense



TABLE 11

Comparison of G6PD transformed and control males and
females carrying a single dose of an active Zw* gene

Strain Chromosomal Ratio of G6PD activity
site (males/females)®

Mean S.D. n
Control 12 18D 2.03 0.26 4)
Control 2° 18D 1.89 0.23 4)
H2-248M ¢ 69A 1.04 0.26 3)
H2-263M ¢ 84EF 0.85 0.25 3)
H2-218F°¢ 47C 0.99 — (2)

3 4 /Y ry508/rp3% and +fy sc v v ZwHTa; ry 506,506

b 4 /Y; ry®0% + and +/y sc cv v ZwH72; rp306) ¢

v oscev v ZwHY; ry3% 3%y + Zw*] and y sc cv v
ZwHTaly se cv v ZwHTa; 1p506)pS06 [+ Zy * ).

9 The chromosomal sites of the indigenous or transduced Zw *
genes are given using the notations of the larval salivary gland
chromosome map of LeFevre (1976).

¢ G6PD levels were expressed in units of activity, where one unit
is the activity necessary to reduce 1.0 umol of NADP/mg of live
weight/min. The ratio of the activity in an extract from males to
that in an extract from females was calculated. n is the number
of independent determinations of this ratio for a given control or
experimental line. Presented in the table are the means of the
ratios and their standard deviation (S.D.).

initiation. Therefore, we have tentatively assigned
the first ATG triplet as the start codon, because the
most upstream ATG in a reading frame is used most
frequently for initiation (Kozak, 1984).

(e} Nucleotide homology between Drosophila and
human G6PD-coding sequences

A homology matrix analysis of nucleotide iden-
tities between the Drosophila and human cDNA
sequences (Persico etal., 1986; M.G. Persico,
personal communication) is shown in Fig. 4. Se-
quences in the 5' end upstream of Drosophila nt 649
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and in the 3’ untranslated region of the two genes are
not shown because no substantial regions of
homology are present. Position homology between
the two sequences is scored by placement of a symbol
if 22 out of 31 nt showed identities in a sequential
scan of the gene sequence. Most of the scored
homologies lie on a single continuous linear axis with
only a few regions being identified elsewhere within
the sequence. The high degree of homology observed
in this alignment (i.e., about 609, ) indicates that the
coding region of the two genes has been conserved
in length with few, if any, insertions, deletions or gene
rearrangements.

Direct comparison of the two coding sequences
shows sequence homology on both sides of Droso-
phila intron II and intron III. Drosophila intron III is
in the same position as human intron V and
Drosophila intron II starts two bases 3’ of the posi-
tion of human intron IV. No sequence homology is
observed between the Drosophila intron sequences
and the corresponding partial sequences in the
human gene. Human intron II and introns VI-XII
have no counterpart in the Drosophila gene. How-
ever, the positions of these intron sequences in the
human gene all occur within regions of almost precise
homology with the Drosophila sequence. Human
intron I is in the 5'-nontranslated leader sequence
and has no counterpart in the Drosophila gene.

(f) Amino acid homology between the Drosophila
and human G6PD protein

A comparison of the predicted amino acid se-
quence of the Drosophila G6PD protein and the
human protein is shown in Fig. 5. Residues 1-53 in
the human protein and aa 1-41 in the Drosophila
protein (Takizawa etal., 1986) are not shown
because no homology is observed in the amino acid
sequences 5’ upstream from the Gly residue at aa

strand was excised by digestion with EcoRI + Sau3A and isolated by electroelution from a non-denaturing 5.5%, polyacrylamide gel
(step 4). The isolated fragment was denatured and hybridized with 10 ug of adult Drosophila poly(A)* RNA for 16 h at 46°C in a 10-ul
reaction mixture (step 5). In a control experiment hybridization was performed in the absence of RNA. The hybrids were treated with

S1 nuclease and their size(s) were determined by electrophoresis on a 6%, sequencing gel (right side of figure). The gel was autoradio-
graphed for either ten days (lanes 1 and 2) or two days (sequencing reaction in four lanes to the left). No signal was observed in the
reaction without RNA (lane 1) while a single band of a length of 306 + 1 nt was observed in the reaction containing poly(A)™ RNA
(lane 2). Assuming the terminal 92 nt on the 3’ end of the Sau3A fragment (i.e., intron I) are not protected by RNA, this result places
the 5’ end of the RNA 10 bp downstream from the 5’ end of the Sau3A fragment at nt —289 + 1 of the G6PD sequence (Fig. 2).
Single-stranded DNA is represented as a single solid line. Double-stranded DNA is represented by a double solid line, and 32P-labeled

DNA is represented by a serrated line.
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DROSOPHILA
650 780 90 1040 U700 1300 1430 1560 1630 1826 195 2080 2210
13 ¥ ¥ L ¥ 14 * ¥ L} + ] * ¥

HUMAN

Fig. 4. Dot matrix comparison of Drosophila and human G6PD nucleotide sequences. Edited cDNA sequences encoding Drosophila and
human G6PD are compared. Windows of 31 nt are sequentially compared and a letter scored for any 21 identical nt (Pustell and Kafatos,
1982; 1984; DNA/Protein Sequence Analysis System, International Biotechnologies, Inc., New Haven, CT). The letters represent varying
degrees of homology among the 31 nt being scored. The letter A represents a match value of 100%,, the letter B a value of 99-987%;,
with a progressive decrease in %, homology to the letter S which represents 64—65°, homology, or 21 of 31 nt having an identical match.
The Drosophila sequence starts at the Gly residue at nt 649 and ends at the TGA stop codon (nt 2017). The human sequence starts
at the ATG start codon and ends at the stop codon TGA (Persico et al., 1986).
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Fig. 5. Comparison of the Drosophila (d :) and the human (h:) G6PD amino acid sequences. In the comparison of the Drosophila and
human G6PD sequence the first 41 aa at the N terminus of the Drosophila protein and the first 53 aa of the human protein (Takizawa
et al., 1986) show no homology; therefore, for the clarity of presentation they were not listed. Adjustment of the sequences for alignment

showing maximal homology required a one-codon shift of the human sequence at the aa residue 326 and an excision of a Glu residue

in the human sequence between aa residues 465 and 466. Identical amino acid residues between the two sequences are denoted by open

boxes. Conserved substitution of residues are denoted by shaded boxes, where I = L

Y. Downward arrows

V,D=E,S=TandF =

mark the position of introns in the Drosophila sequence, and upward arrows mark the position of introns in the human sequence.

Numbering of the amino acid residues is identical to that shown in Fig. 2 and starts at aa position 42 in the Drosophila G6PD protein.
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positions 42 and 54 of the Drosophila and human
proteins, respectively. Also, for this N terminus
region of the human protein the amino acid sequence
predicted by the cDNA (Persico et al., 1986; M.G.
Persico, personal communication) and the amino
acid sequence obtained by direct protein sequencing
(Takizawa et al,, 1986) are dissimilar. Maximal
alignment of the two protein sequences was obtained
by displacement of one codon in the human protein
at aa position 326 and excision of one codon in the
human sequence at aa position 465. Approximately
63% of the amino acids are conserved using this
alignment; if substitutions of amino acids with
similar chemical properties are considered, the
homology increases to 68;.

Considerable homology exists throughout the
sequence, however, three regions of particularly
strong homology (i.e., greater than 799%) are
apparent. The first is near the N-terminal region
(Drosophila aa residues 42—81); the second and third
are near the central portion of the protein (Drosophila
aaresidues 193-318 and 351-460, respectively). The
homology sharply decreases near the C terminus
where the Drosophila sequence contains an addi-
tional 4 aa.

DISCUSSION
(a) Comparison of data

Hori et al. (1985) have reported the cloning of the
Drosophila Zw ™~ gene utilizing oligodeoxynucleotide
probes derived from the amino acid sequence of a
hexapeptide of Drosophila melanogaster G6PD.
Surprisingly, when the sequence of the hexapeptide
is compared with the complete amino acid sequence
shown in Fig. 2, its position cannot be found.
Neither can we identify, in the total nucleotide
sequence of the G6PD gene, the sequence of the
synthetic nucleotide probes used to isolate the G6PD
gene. We find this particularly puzzling since the
restriction map reported by Hori et al. (1985) is
identical to that previously published by Ganguly
et al. (1985). Although we have no explanation for
this discrepancy, it seems likely that the data
presented in Fig. 2 represent the complete nucleotide
sequence of Drosophila G6PD. We base this assertion

on the following arguments. The sequence shown in
Fig. 2 is derived both from genomic DNA fragments
which have previously been shown to encode G6PD
(Ganguly et al., 1985) and from cDNA sequences
which are homologous to the genomic DNAs. Fur-
thermore, both the nucleotide sequence and the
amino acid sequence inferred from the nucleotide
sequence show extensive homology with human
Go6PD (Figs. 4and 5; Persico et al., 1986; Takazawa
et al., 1986). Finally, the genomic DNA fragments
selected for nucleotide sequence analysis clearly
contain the entire G6PD gene as evidenced by the
results of the transformation experiments.

{(b) Comparison of the human and Drosophila G6PD
genes

One of the most interesting results from the com-
parison of the two G6PD sequences is the change in
homology starting at the Gly residue at Drosophila nt
649. 3’ downstream from the Gly residue the two
genes and their respective amino acid sequences
show extensive homology. The similarities between
the two genes within this region also extend to introns
being found in common positions as shown in Fig. 2.
These observations are, therefore, consistent with
the thought that these two genes share a common
ancestor. What is intriguing, then, is the concurrent
loss of amino acid and nucleotide sequence
homology between the Drosophila and the human
G6PDs at the Gly residue and between the two
human G6PDs at a Met residue which is immediately
5" of the Gly residue. Within this 5’ region no
homology is seen between the Drosophila and human
G6PD sequence (Persico etal., 1986), and no
similarities are observed between the amino acid
sequence of Drosophila G6PD and that reported for
human G6PD (Takazawa et al., 1986). Furthermore,
the amino acid sequence of human G6PD 5’ of the
Met residue as inferred by the ¢cDNA sequence
(M.G. Persico, personal communication) is non-
homologous to the human G6PD sequence obtained
by direct protein sequence analysis (Takazawa et al.,
1986).

It is possible that the divergence of the three
G6PD sequences at precisely the same amino acid is
merely fortuitous and reflects some technical dif-
ficulty in either the nucleotide or amino acid sequence
data. This seems unlikely, however, since the two



human sequences are identical in their central and 3’
regions and extensive homology with the Drosophila
sequence is also found in these regions. A more
plausible explanation is that the sequence differences
in the human G6PD involve alternate splicing events
at the 5’ termini of the messenger RNA. Recent
studies on the messenger RNAs which encode
human tyrosine hydroxylase reveal that, in man,
tyrosine hydroxylase is encoded by three distinct
messenger RNAs. Like the human G6PD sequences,
these mRNAs and the proteins they encode are
identical in their central and 3’ regions but diverge
at their 5’ ends (Grima et al., 1987). Apparently, the
heterogeneity at the 5’ end results from alternative
splicing events within the primary transcript. If, in
fact, multiple 5’ termini of human G6PD are the
result of alternate splicing events, the extensive
homology between the human and Drosophila genes
in their central and 3’ regions suggests that the 5’
Drosophila sequences may yet be found within the
human G6PD gene.

(b) Analysis of the promoter region

The S1 mapping experiment places the transcrip-
tion start point 289 + 1 nt upstream from the first
possible translation start site. The region upstream
from the transcription start point is very G + T-rich
and shows some sequence moieties similar to Polll
promoter regions. The sequence C-C-A-T-T,
which differs by 1 nt from the canonical promoter
sequence C-C-A-A-T, is found 75 bp upstream
from the transcription start point. The G6PD gene
lacks, however, the ‘TATA’ box which seems to
position the RNA polymerase for accurate initiation
and is normally found 20 to 30 nt upstream from the
transcription start point. Although most genes
containing Polll promoters possess a “TATA’ box,
there are Polll promoters that lack the TATA box
(Nevins, 1983). In particular, many housekeeping
genes, i.e., genes which are fairly uniformly expressed
in most tissue types throughout the life cycle of the
organism, do not possess a TATA box: the hydroxy-
methyl glutaryl CoA reductase gene (Reynolds et al.,
1984), the hypoxanthine phosphoribosyltransferase
gene (Patel et al., 1986; Melton et al.,, 1984), the
adenosine deaminase gene (Valerio, 1985), the
DHFR gene (Masters and Attardi, 1985; Mitchell
et al., 1986), one of the two glyceraldehyde-3-phos-
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phate dehydrogenase genes in Drosophila (Tso et al.,
1985), as well as the PrP 27-30 gene (Basler et al.,
1986) and the U1 RNA gene (Roebuck and Stump,
1985). These genes do, however, contain one or more
copies of the sequence GGGCGG or its inverse
complement CCGCCC upstream from their tran-
scription start point. This sequence is found four
times in the mouse DHFR promoter (Dynan et al.,
1986) and has been shown to be an important com-
ponent of the SV40 virus early promoter (Barrera-
Sladana et al., 1985), as well as the thymidine kinase
promoter of Herpes simplex virus (McKnight et al.,
1984). Examination of the sequence in Fig. 2 reveals
that the above sequence does not appear in the first
148 nt upstream from the transcription start point of
the G6PD gene. However, the sequence GCGGCG
and its inverse complement CGCCGC are found 39
and 30 nt, respectively, upstream from the tran-
scription start point. Although no function can be
described to these sequences, their location and
similarity to the G + C-rich promoter sequence
described above invites the possibility that these
sequences may be important in potentiation of
transcription of the G6PD gene.

(c) Dosage compensation

The absence of dosage compensation of the Zw *
gene relocated to an autosomal site is of some
interest. Dosage compensation, i.e., the equalization
of X-linked gene products in males and females, is
achieved in Drosophila by an enhancement of tran-
scription of X-linked genes in males. The cis-acting
sequences responsible for this effect can be very
closely linked to the coding portion of the gene, as in
the case of w* (Levis et al.,, 1985; Pirrotta et al.,
1985). They may even occur within the gene: a
sequence located in the first intron of the per * gene
allows it to remain compensated when it is relocated
to an autosomal site (J. Hall, personal communica-
tion). In contrast to these cases, the cis-acting
sequences responsible for the compensation of Zw *
must be located further away from the coding portion
of the gene than 0.55 kb of upstream and 1.15 kb of
downstream sequences.
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