
UC San Diego
UC San Diego Previously Published Works

Title
Elastoplastic Dilatant Interface Model for Cyclic Bond-Slip Behavior of Reinforcing Bars

Permalink
https://escholarship.org/uc/item/9cn8052s

Journal
Journal of Engineering Mechanics, 142(2)

ISSN
0733-9399

Authors
Murcia-Delso, Juan
Shing, P Benson

Publication Date
2016-02-01

DOI
10.1061/(asce)em.1943-7889.0000994
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9cn8052s
https://escholarship.org
http://www.cdlib.org/


Elastoplastic Dilatant Interface Model for Cyclic Bond-Slip
Behavior of Reinforcing Bars
Juan Murcia-Delso1 and P. Benson Shing, M.ASCE2

Abstract: This paper presents a new interface model to simulate the cyclic bond-slip behavior of steel reinforcing bars embedded in
concrete. A multi-surface plasticity formulation is used to model two major inelastic deformation mechanisms occurring in bond slip.
One is the crushing and shearing of the concrete between the bar ribs, and the other is the sliding between the concrete and bar surfaces.
These two mechanisms are represented by different yield surfaces and nonassociated flow rules. The flow rules account for the shear
dilatation of the interface induced by the wedging action of the bar ribs and crushed concrete particles. The interface model has been imple-
mented in a finite element analysis program and has been validated with experimental data. The model is easy to calibrate and is able to
reproduce the bond-slip behavior of bars under a wide range of confinement situations, including bar pullout and concrete splitting failures.
DOI: 10.1061/(ASCE)EM.1943-7889.0000994. © 2015 American Society of Civil Engineers.

Introduction

The bond-slip behavior of reinforcing bars is an important mech-
anism to consider when modeling the nonlinear response of
reinforced concrete structures, particularly when studying crack
opening and spacing in concrete, bar development, and the inelastic
deformation capability. Because the chemical adhesion between the
concrete and steel can be lost at a relatively low bond stress de-
mand, bond resistance is essentially provided by the bearing forces
between the bar ribs and the surrounding concrete and the friction.
The American Concrete Institute (ACI 2003) and the International
Federation for Structural Concrete (FIB 2000) provide detailed de-
scriptions of these mechanisms and the damage process during bar
slip. As the bar slips, the wedging action of the ribs causes a radial
expansion of the concrete-steel interface, which activates tensile
hoop stresses and causes splitting cracks in the surrounding con-
crete. When these cracks propagate radially through the concrete
cover, the hoop stresses will be lost and the bond resistance drops
abruptly. This type of failure is referred to as splitting failure. Split-
ting failure can be prevented when sufficient concrete cover and/or
transverse reinforcement is provided. This will result in a higher
bond resistance. In this case, further slip is accommodated by the
crushing and shearing of the concrete between the ribs. The accu-
mulation of crushed particles in front of the ribs leads to the
expansion of the interface and increases the radial component of
the bearing forces, which may result in splitting failure if the con-
crete cover and the transverse reinforcement are not sufficient to
resist the increased demand in hoop stresses. However, when a
sufficient confinement is provided and the slip is such that all the
concrete between the ribs is completely damaged, only frictional
resistance will remain. This type of failure is referred to as pullout
failure.

Elastoplastic dilatant interface models can represent the previ-
ously mentioned bond-slip mechanisms with high fidelity and
reasonable computational cost. This type of model has been exten-
sively used to represent the fracture behavior of quasi-brittle ma-
terials (Lotfi and Shing 1994; Carol et al. 1997; Puntel et al. 2006;
Caballero et al. 2008; and Koutromanos and Shing 2012). In these
formulations, mixed-mode fracture is governed by a failure surface
defined in terms of the normal and shear stresses acting on the inter-
face, whereas shear sliding and shear dilatation produced by the
wedging action of joint asperities can be modeled with a plastic
flow rule. Shear dilatation can also be treated as a geometric
phenomenon that can be recovered on slip reversal. However, to
accurately represent the wedging mechanism of the bar ribs during
bond slip, dedicated dilatant interface formulations are needed be-
cause the interface geometry and the damage mechanisms involved
are different from those in the fracture process of quasi-brittle ma-
terials. Bar slip involves a number of mechanisms including the
sliding between the concrete and steel surfaces, the crushing and
shearing of the concrete between the ribs, and the opening of
transverse cracks at the top of the ribs. To date, only a few such
models have been proposed to model the bond-slip behavior. They
include the work of Herrmann and Cox (1994), Cox and Herrmann
(1998, 1999), Lundgren and Gylltoft (2000), and Serpieri and
Alfano (2011).

Herrmann and Cox (1994) and Cox and Herrmann (1998) have
proposed an elastoplastic model to represent the bond-slip behavior
of reinforcing bars under monotonically increasing loads. Their
model features a single yield function that accounts for the variation
of the bond stress with the normal stress, and a nonassociated flow
rule to simulate shear dilatation. The yield function and flow rule
have been calibrated by experimental data. The model has only a
few physical parameters to calibrate, and is able to capture the ex-
perimentally observed bond-slip behavior of reinforcing bars em-
bedded in concrete with different levels of confinement (Cox and
Herrmann 1999). Herrmann and Cox (1994) have also extended
their model for cyclic loading by adopting an ad hoc reloading rule
to represent the frictional resistance that develops on slip reversal.
A similar model has been presented by Lundgren and Gylltoft
(2000) for three-dimensional finite element analysis. In this model,
a Coulomb yield criterion with a nonassociated flow rule is used to
represent the frictional behavior at the interface, and a second yield
surface with associated plasticity is used to cap the bond stress

1Researcher, Tecnalia Research and Innovation, Parque Cientifico y
Tecnologico de Bizkaia, C/ Geldo, Edificio 700, 48160 Derio, Spain
(corresponding author). E-mail: juan.murcia@tecnalia.com

2Professor, Dept. of Structural Engineering, Univ. of California,
San Diego, 9500 Gilman Dr. MC0085, La Jolla, CA 92093-0085.

Note. This manuscript was submitted on August 4, 2014; approved on
July 16, 2015; published online on September 2, 2015. Discussion period
open until February 2, 2016; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Engineering Me-
chanics, © ASCE, ISSN 0733-9399/04015082(13)/$25.00.

© ASCE 04015082-1 J. Eng. Mech.

 J. Eng. Mech., 2016, 142(2): 04015082 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

 o
n 

10
/0

5/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000994
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000994
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000994
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000994


during pullout failure. When the slip does not exceed the previously
attained peak during a load reversal, the model has a frictional re-
sistance that is reduced as compared to that for monotonic loading.
Their model has been validated by monotonic bond-slip tests and
cyclic tests with slip reversals, as well as lap-splice tests and
anchorage tests on bars anchored at the ends of a beam (Lundgren
and Magnusson 2001). Serpieri and Alfano (2011) have modeled
the interaction between a bar and the concrete with three interfaces
of different inclinations. The interfaces represent the geometry of
the contact surface between the two materials within a represen-
tative length unit bounded by two consecutive bar ribs. The behav-
ior of each of these interfaces is modeled by a damage-friction law
governing the adhesion and friction. The dilatation and wedging
mechanism are governed by the prescribed surface geometry. The
model is able to reproduce the bond stress-versus-slip behavior
under monotonic and cyclic loading in an approximate manner.
However, the concrete crushing and shearing that dominate the
pullout failure of a bar are not directly simulated.

A new elastoplastic, dilatant, interface model is proposed in this
paper to simulate the cyclic bond-slip behavior of deformed bars
under a wide range of confinement situations. The model accounts
for two major deformation mechanisms in bond slip, namely, the
crushing and shearing of concrete by bar ribs, and the sliding be-
tween the concrete and the bar surfaces, as depicted in Fig. 1(a).
Plasticity theory is suitable to model these mechanisms because the

associated deformations are not recovered on unloading. A multi-
surface plasticity formulation is adopted with each of the aforemen-
tioned mechanisms represented by a separate yield surface and flow
rule. The model has been implemented in a finite element program
and has been validated by data from monotonic bond-slip tests and
cyclic tests with slip reversals under different confinement levels.
This paper presents the theoretical formulation, numerical imple-
mentation, and experimental validation of the model.

Elastoplastic Interface Formulation

In this formulation, the interaction between a reinforcing bar and
the surrounding concrete is simulated with an interface model, as
shown in Fig. 1. The relation between the relative displacements,
dn and dt, in the normal and tangential directions of the interface,
and the normal and shear (bond) stresses, σ and τ , at the interface
is established with an elastoplastic formulation. The vector of
relative displacements, d ¼ f dn dt gT , is decomposed into an
elastic part and a plastic part, i.e., d ¼ de þ dp. The stress vector,
σ ¼ fσ τ gT , is a linear function of the elastic displacements as
follows:

σ ¼ Dede ð1Þ
in which De is a diagonal matrix of elastic constants

Fig. 1. Bond-slip behavior: (a) bar-concrete interaction; (b) interface model

© ASCE 04015082-2 J. Eng. Mech.

 J. Eng. Mech., 2016, 142(2): 04015082 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

 o
n 

10
/0

5/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



De ¼
�
Dnn 0

0 Dtt

�
ð2Þ

The elastic domain is bounded by three yield surfaces that
represent the plastic deformation modes associated with bar slip
and are described with the following yield criteria:

FAðσ;qÞ ¼ 0 FBþðσ;qÞ ¼ 0 FB−ðσ;qÞ ¼ 0 ð3Þ

in which q ¼ fpþ p− r s gT is a vector of internal variables
controlling the evolution of the yield surfaces and the deterioration
of bond resistance. The four components of vector q are described
in subsequent sections. Yield function FAðσ;qÞ is to capture the
crushing and shearing of the concrete between bar ribs, which is
called Plastic Mode A, as shown in Fig. 1. The other two yield
functions, FBþðσ;qÞ and FB−ðσ;qÞ, are used to describe the slid-
ing at the concrete-steel contact surface, which is called Plastic
Mode B, also shown in Fig. 1. Mode B is governed by FBþðσ;qÞ

when sliding is in the positive direction (i.e., ḋt > 0) and FB−ðσ;qÞ
when sliding is in the negative direction. These yield surfaces are
shown in the σ − τ space in Fig. 2(a). Initially, when the slip is zero
or very small, the bond resistance is assumed to be provided by
friction alone (ignoring the adhesion), governed by failure surfaces
FBþðσ;qÞ and FB−ðσ;qÞ. As the bar slips, the wedging action of
the bar ribs engages the mechanical interlock between the concrete
and the ribs, introducing a radial compressive stress at the interface.
If the confinement is not sufficient, radial splitting cracks will de-
velop in the surrounding concrete, the radial compressive stress will
disappear, and the bond resistance will be lost. When sufficient
confinement is present to prevent the splitting failure of the con-
crete, the radial compressive stress will increase and the resulting
bond resistance will be governed by FA.

The rate of plastic displacements is defined by a nonassociated
flow rule, which can be expressed as follows:

ḋp ¼ λ̇mðσ;qÞ ð4Þ

Fig. 2. Yield surfaces and flow rules: (a) yield surfaces and elastic domain; (b) yield surface for Mode A; (c) calibration of yield surface for Mode A;
(d) plastic potential for Mode A; (e) yield surface for Mode B; (f) plastic potential for Mode B

© ASCE 04015082-3 J. Eng. Mech.
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where a superposed dot represents rate of change; λ̇ is a plastic
multiplier; and m is a vector function defining the direction of the
plastic flow. The internal variables are functions of the plastic dis-
placements. They are defined in the rate form as follows:

q̇ ¼ gðḋpÞ ð5Þ

The yield functions, hardening and softening laws, and flow
rules are described with more details in the subsequent sections.

Crushing and Shearing of Concrete between Ribs
(Plastic Mode A)

The interlocking action between the concrete and the bar ribs pro-
vides most of the bond resistance. However, as the bar slips, this
action can lead to the crushing and shearing of the concrete be-
tween the ribs, which will reduce the bond resistance and eventu-
ally result in the pullout failure of the bar. This slip mechanism is
referred to as Plastic Mode A. Based on experimental evidence,
such as the data of Malvar (1992), Cox and Herrmann (1998) have
concluded that in a pullout failure, the bond resistance increases
with the normal confining stress, but that relation is not linear.
Hence, to represent the interlocking resistance, the following yield
function is proposed

FA ¼
���� τf 0

c

����k1 −
�
c
f 0
c

�
k1 þ μA

σ
f 0
c

ð6Þ

where the stress quantities are normalized by the compressive
strength of the concrete, f 0

c, in absolute value; c is the shear resis-
tance at σ ¼ 0; and μA and k1 govern the rate of increase of the
shear resistance with respect to the normal stress. The resulting
yield surface is shown in Fig. 2(b). The deterioration of the bond
resistance resulting from the shearing and crushing of the concrete
between the ribs is controlled by the decrease of the values of c and
μA. The following softening laws are defined to control the evolu-
tion of c and μA, which causes the yield surface to shift and
shrink in the stress space, as shown in Fig. 2(b)

c ¼ c0

�
1 − pþ þ p−

sR

�
ð7aÞ

μA ¼ μA;0e−k2½ðp
þþp−Þ=sR� ð7bÞ

where h·i are Macaulay brackets; c0 is the initial value of c; μA;0
is the initial value of μA; sR is the clear rib spacing; k2 is a con-
stant controlling the rate of decrease of the value of μA; and pþ and
p− are internal variables representing the absolute values of the
cumulative plastic tangential displacements (slips) associated with
Mode A in the positive and negative directions, respectively. The
values of pþ and p− are computed from the increments of plastic
tangential displacement, ḋpt jA, associated with Mode A, as follows:

ṗþ ¼ hḋpt jAi ð8aÞ

ṗ− ¼ h−ḋpt jAi ð8bÞ

In Eq. (8), ḋpt jA ¼ ḋpt when Mode A is active, and ḋpt jA ¼ 0

otherwise. The rate of the normal plastic displacement ḋpn jA is de-
fined in the same way. As shown in Eq. (7a), c is assumed to decay
linearly to zero as the total bar slip, pþ þ p−, caused by Mode A
approaches the clear rib spacing, sR, at which all the concrete be-
tween the ribs is totally damaged by crushing and shearing. At this
stage, only the frictional resistance remains. As shown in Eq. (7b),

μA diminishes to zero exponentially as the total bar slip in Mode A
increases, representing the smoothening of the interface.

Parameters c0 and μA;0 in the yield function are calibrated by
assuming that under a low confinement stress, the crushing and
shearing failure of concrete is governed by the Mohr-Coulomb
law with a cohesion parameter, ĉ, and an internal friction angle, ϕ,
as shown in Fig. 2(c). These two parameters can be expressed in
terms of the concrete compressive strength, f 0

c, and tensile strength,
f 0
t , as follows:

ĉ ¼ 0.5
ffiffiffiffiffiffiffiffiffi
f 0
cf 0

t

p
ð9aÞ

ϕ ¼ sin−1
�
f 0
c − f 0

t

f 0
c þ f 0

t

�
ð9bÞ

With this assumption, the initial yield surface for Mode A is set
to be tangent to the Mohr-Coulomb failure surface at σ ¼ 0, as
shown in Fig. 2(c). As a result, c0 and μA;0 are determined as

c0 ¼ 0.5
ffiffiffiffiffiffiffiffiffi
f 0
cf 0

t

p
ð10aÞ

μA;0 ¼ 0.5k1k1ðf 0
c − f 0

t Þf 0−0.5k1
c f 0ð0.5k1−1Þ

t ð10bÞ

Malvar (1992) has observed in his tests that bar slip will initially
induce a radial expansion of the surrounding concrete, which is
then followed by a small contraction as the bar slips. This behavior
can be explained by the dislocation of crushed concrete particles at
the interface and the smoothening of the particles caused by the
grinding action. To account for this phenomenon, the following
plastic flow vector, defined as the gradient of a plastic potentialQA,
is proposed for Mode A:

mA ¼

mA;1

mA;2

�
¼

(
k3
�
1 − h−σi

f 0
c


e−k4

pþþp−
hR − k5

h−σi
f 0
c

hri
hR

1 · signðτÞ

)
ð11Þ

where k3, k4, and k5 are constants; hR is the height of the ribs; and
r is an internal variable that represents the net interface opening
caused by the shearing and crushing of concrete between the ribs.
Initially, r is zero, and its evolution depends on the increment of
the plastic normal displacement, ḋpn jA, associated with Mode A as
follows:

ṙ ¼ ḋpn jA ð12Þ
The first term in the expression for mA;1 in Eq. (11) represents

the dilatation, i.e., the normal displacement caused by the dislo-
cation of the crushed concrete particles. This dilatation effect di-
minishes linearly as the magnitude of the normal confining stress
(normalized by the compressive strength of concrete) increases and
decreases exponentially as the total bar slip (normalized by the rib
height) associated with this plastic mode increases. The second
term in the expression formA;1 accounts for the loss of crushed con-
crete particles (compaction) as the concrete is severely damaged.
Compaction is more significant when the magnitude of the nor-
malized confining stress and the net opening of the interface nor-
malized by the rib height increase. As Eq. (11) implies, the rate
of compaction will become zero when r is zero. Hence, net inter-
face compaction will not occur. These phenomena are consistent
with the experimental observations of Malvar (1992).

The plastic potential QA is shown in Fig. 2(d). The direction of
the plastic flow given by Eq. (11) is discontinuous and undefined at
τ ¼ 0. The flow rule would have to be modified to allow a correct
stress return to the tip of the yield surface at ðσtip; 0Þ. However, that

© ASCE 04015082-4 J. Eng. Mech.
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condition should never occur because the stress return to the tip of
the yield surface for Mode A will violate the yield condition for
Mode B when σtip > 0, as shown in Fig. 2(a). To avoid this situa-
tion, when σe=Dnn ≥ ðjτ ej=DttÞ · k3e−k4ðpþþp−Þ=hR , the model will
be switched from Mode A to Mode B. In that situation, the plastic
flow direction for Mode B will be given by Eq. (17c) for reasons to
be explained in the following section. The previously described
condition will ensure a smooth transition of the flow direction.

Sliding at the Concrete-Steel Surface (Plastic Mode B)

At a low normal confining stress, it is assumed that bar slip is
caused by the sliding of the bar with respect to the concrete, and
the sliding resistance is governed by the Coulomb law with a con-
stant coefficient of friction μB. The contact between the concrete
and steel can take place on the inclined surface of the ribs, or on
a plane parallel to the bar axis, either on the barrel of the bar
between the ribs or on top of the ribs. The Coulomb law for sliding
along a planar surface is

jτ 0j ¼ μBσ 0 ð13Þ

where σ 0 and τ 0 are the normal and shear stresses on the sliding
surface. When the sliding surface has an angle of inclination, α,
with respect to the axis of the bar, the Coulomb law can be
expressed in terms of the normal and shear stresses, σ and τ ,
perpendicular and parallel to the axis of the bar as follows:

jτ cosαþ σ sinαj þ μBðσ cosα − τ sinαÞ ¼ 0 ð14Þ

where angle α is positive for the surface on the left side of a rib and
negative for the surface on the right. A rearrangement of Eq. (14)
leads to two yield conditions. For the sliding of the concrete toward
right, which is defined as positive sliding, one has the following
yield condition:

FBþ ¼ τ þ μBþeffσ ¼ 0 ð15aÞ

where μBþeff is the effective friction coefficient for positive sliding,
which depends on the coefficient of friction μB of the contact sur-
face and angle α. For cosα > 0 and tanα < 1=μB, μBþeff is equal to

μBþeff ¼
μB cosαþ sinα
cosα − μB sinα

ð15bÞ

For negative sliding (i.e., concrete sliding toward the left), the
yield condition can be expressed as

F−
B ¼ −τ þ μB−effσ ¼ 0 ð16aÞ

where μB−eff is the effective friction coefficient for negative sliding.
For cosα > 0 and tanα > −1=μB, μB−eff is equal to

μB−eff ¼
μB cosα − sinα
cosαþ μB sinα

ð16bÞ

The yield surfaces for sliding are two straight lines as shown in
Fig. 2(e). These lines rotate about the origin of the σ − τ space as α
changes.

The plastic displacements in Mode B are associated with the
sliding on the contact plane whose slope is defined by angle α,
which can be zero, a positive value, or a negative value depending
on the position of contact between the concrete and the bar surface.
Accordingly, the direction of the plastic flow vector for Mode B is
given by the following expressions. For FBþ

mBþ ¼

mB;1

mB;2

�
¼



tanα

1

�
ð17aÞ

and for FB−

mB− ¼

mB;1

mB;2

�
¼ −



tanα

1

�
ð17bÞ

However, when the elastic trial stresses, σe, computed in the
stress update are such that ðτ e=DttÞ tanα < ðσe=DnnÞ, the plastic
flow vector is modified as follows to ensure a smooth transition
between the plastic flow directions defined in Eqs. (17a) and (17b):

mB ¼

mB;1

mB;2

�
¼

8>><
>>:

σe

Dnn

τ e

Dtt

9>>=
>>; ð17cÞ

With Eq. (17c), stresses are returned to the intersection point of
the yield surfaces FBþ and FB− at the origin of the stress space. The
plastic potential QB and the direction of the plastic flow, ∂QB=∂σ,
for Mode B defined by Eqs. (17a)–(17c) are shown in Fig. 2(f).
This plastic potential is analogous to that proposed by Puntel et al.
(2006) for joint and crack interfaces in quasi-brittle materials.

The value of α is a function of the level of sliding and this func-
tion is determined by the initial shape of the sliding surface as
shown in Fig. 3, which is governed by the geometry of the surface
deformation of the bar, and the damage inflicted on the concrete
between the ribs. The value of α is positive when the contact is on
the right inclined surface and negative on the left inclined surface
shown in Fig. 3. When sliding toward the positive direction on the
right surface, the normal displacement will increase. The normal
displacement will also increase when sliding toward the negative
direction on the left surface. These are represented by Eq. (17). The
angle α is assumed to be a function of the maximum inclination
angle, αo, and the horizontal distance, lI , of an inclined plane, as
illustrated in Fig. 3. Distances lT , as shown in the figure, represent
transition zones in which the inclination angle is assumed to vary
linearly with the horizontal distance. With the assumption that
lT ¼ 0.05lI , lI is related to hR and α0 by the expression lI ¼ hR=
ð0.9 tanα0 − 0.05 ln j cosα0j=α0Þ. When Plastic Mode A is acti-
vated, the shape of the sliding surface for Mode B is modified
to reflect damage induced on the concrete between the ribs. The
crushing and shearing of the concrete is modeled by the increase

Fig. 3. Sliding surface

© ASCE 04015082-5 J. Eng. Mech.
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of horizontal gaps between the concrete and the ribs, as shown in
Fig. 3. The total gap distance is equal to the maximum bar slip
caused by Mode A, i.e., pþ and p−. With the aforementioned
considerations and assumptions, the angle of inclination, α, is rep-
resented by the following equation:

αðsÞ ¼

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

0 sþ pþ ≤ −lI
α0

s−lIþpþ
lT

−lI < sþ pþ ≤ −lI þ lT

−α0 −lI þ lT < sþ pþ ≤ −lT
α0

sþpþ
lT

−lT < sþ pþ ≤ 0

0 −pþ < s ≤ p−

α0
s−p−
lT

0 < s − p− ≤ lT

α0 lT < s − p− ≤ lI − lT

α0
lI−sþp−

lT
lI − lT < s − p− ≤ lI

0 s − p− > lI

ð18Þ

where s is an internal variable that represents the bar slip caused
by Plastic Mode B. The value of s is initially zero, and its rate of
change is equal to that of the plastic tangential displacement, ḋpt jB,
associated with Mode B, as follows:

ṡ ¼ ḋpt jB ð19Þ
where ḋpt jB ¼ ḋpt when Mode B is active, and ḋpt jB ¼ 0 otherwise.

Numerical Implementation

A stress update algorithm has been developed to solve the con-
stitutive relations numerically as explained subsequently. Given the
stress vector σm, internal variables qm, displacement dm, and dis-
placement increment Δd at step m, it is necessary to determine the
stresses σmþ1 and internal variables qmþ1 at step mþ 1. For this
purpose, an elastic predictor-plastic corrector algorithm is used.
The stress update is a two-step procedure as shown in Eqs. (20)
and (21). First, the elastic predictor stresses are calculated

σemþ1 ¼ σm þ DeΔd ð20Þ

If the elastic prediction in Eq. (20) satisfies Fiðσem;qmÞ ≤ 0, it is
an admissible solution and

σmþ1 ¼ σe
mþ1 ð21aÞ

Otherwise, a plastic correction needs to be applied as follows:

σmþ1 ¼ σemþ1 − DeΔdp ð21bÞ

The increment of the plastic displacements,Δdp, in Eq. (21b) is
obtained with the generalized trapezoidal rule (Ortiz and Popov
1985), which results in the following equation:

σmþ1 ¼ σe
mþ1 −ΔλDe½ð1 − θÞmm þ θmmþ1� ð22Þ

where 0 ≤ θ ≤ 1. The internal variables are also updated in the
same fashion.

qmþ1 ¼ qm þ gfΔλ½ð1 − θÞmm þ θmmþ1�g ð23Þ
The elastic predictor-plastic corrector method presents a set of

nonlinear equations, which has to be solved iteratively to find Δλ
that will satisfy the condition that Fiðσmþ1;qmþ1Þ ¼ 0, as well as
Eqs. (22) and (23). The exact forms of Eqs. (22) and (23) depend

on the yield surface and flow rule used for the plastic correction.
The plastic correction is to bring the stress state from the elastic
prediction back to the yield surface. Fig. 4 shows three possible
stress return scenarios for τ > 0: (1) return to the yield surface cor-
responding to Mode A (FA ¼ 0); (2) return to the yield surface
corresponding to Mode B (FBþ ¼ 0); and (3) return to the intersec-
tion of the previously noted two yield surfaces (FA ¼ FBþ ¼ 0).
Similar return possibilities exist for τ < 0.

Fig. 5 shows the flowchart of the stress update algorithm. The
algorithm adopts an objective stress return strategy so that the
solution will not depend on which yield condition is checked first.
In this strategy, when the elastic trial stresses lie outside both yield
surfaces, two possible stress return scenarios are individually con-
sidered as the first step: stress return to the surface for Mode A, and
stress return to the surface for Mode B. The stress return that
satisfies both conditions that FA ≤ 0 and FBþ ≤ 0 (or FB− ≤ 0) will
be the admissible solution. If neither of the two stress returns
satisfies both conditions, or if both stress returns satisfy the two
conditions, then the stresses are returned to the intersection of these
two yield surfaces. However, in Mode A, if the elastic trial stresses
are such that

σe
mþ1=Dnn ≥ ðjτ emþ1j=DttÞk3e−k4ðpþþp−Þ=hR ð24Þ

Mode B will be activated. When the elastic predictor stress state is
outside one of the yield surfaces only, stress correction is made for
that yield surface. If this stress return violates the other yield sur-
face, then it is invalid and the stresses are returned to the intersec-
tion point of the two yield surfaces. The solution procedures
corresponding to each of the three possible stress return scenarios
are presented in the subsequent sections.

Stress Return to Yield Surface corresponding
to Mode A

To have the stress state returned to the yield surface corresponding
to Mode A, the plastic correction based on the trapezoidal rule is

σmþ1 ¼ σe
mþ1 −ΔλDnn½ð1 − θÞmA;1ðσm; τm;qmÞ

þ θmA;1ðσmþ1; τmþ1;qmþ1Þ�
ð25aÞ

τmþ1 ¼ τ emþ1 −ΔλDttsignðτÞ ð25bÞ

The internal variables associated with Mode A are updated as
follows:

Fig. 4. Possible stress-return scenarios for plastic correction
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pþ
mþ1 ¼ pþ

m þΔλh1 · signðτÞi ð26aÞ

p−
mþ1 ¼ p−

m þΔλh−1 · signðτÞi ð26bÞ

rmþ1 ¼ rm þΔλ½ð1 − θÞmA;1ðσm; τm;qmÞ
þ θmA;1ðσmþ1; τmþ1;qmþ1Þ� ð26cÞ

The value ofΔλ is to be evaluated iteratively until the condition
that FAðσmþ1;qmþ1Þ ¼ 0 and Eqs. (25) and (26) are satisfied. For
this purpose, an iterative bracketing strategy has been followed.
The solution for Δλ is bracketed with a lower bound value and
an upper bound value that result in FA > 0 and FA < 0, respec-
tively. This bracket is updated with the bisection method until the
result converges to FAðσmþ1;qmþ1Þ ¼ 0.

In the iterative bracketing scheme, the values of σmþ1 and qmþ1

are updated with Eqs. (25) and (26). Because Eqs. (25a) and (26c)
are nonlinear and implicit with respect to σmþ1 and rmþ1, they need
to be solved iteratively to obtain values of σmþ1 and rmþ1 for a
given value of Δλ, with the initial values of σmþ1 and rmþ1 being
σm and rm, respectively.

Stress Return to Yield Surface corresponding
to Mode B

For Mode B, the plastic correction of the stress state is given by

σmþ1 ¼ σe
mþ1 −ΔλDnn½ð1 − θÞmB;1ðqmÞ þ θmB;1ðqmþ1Þ� ð27aÞ

τmþ1 ¼ τ emþ1 −ΔλDtt ðif the stresses are returned to FBþ ¼ 0Þ
ð27bÞ

τmþ1 ¼ τ emþ1 þΔλDtt ðif the stresses are returned to FB− ¼ 0Þ
ð27cÞ

and the internal variable that needs to be updated is the slip caused
by Mode B.

smþ1 ¼ sm þΔλ ðif the stresses are returned to FBþ ¼ 0Þ
ð28aÞ

smþ1 ¼ sm −Δλ ðif the stresses are returned to FB− ¼ 0Þ
ð28bÞ

The nonlinear solution for Δλ to satisfy FBðσmþ1;qmþ1Þ ¼ 0
and Eqs. (27) and (28) is obtained with the bisection bracketing

method as previously described. However, if
τemþ1

Dtt
tanαm <

σemþ1

Dnn
, the

stresses are directly returned to the origin of the stress space accord-
ing to the plastic flow vector defined in Eq. (17c), i.e.,

σmþ1 ¼ τmþ1 ¼ 0 ð29Þ

Accordingly, the increment of the plastic displacement has
to be Δdp ¼ fσe

mþ1=Dnn τ emþ1=Dtt gT , and the slip caused by
Mode B is

smþ1 ¼ sm þ τ emþ1

Dtt
ð30Þ

Stress Return to Intersection of Two Yield Surfaces

The stress return to the intersection of the yield surfaces corre-
sponding to Modes A and B requires a special treatment. For this
case, the plastic correction is considered as a linear combination
of the corrections obtained with the flow rules for Mode A and
Mode B, respectively. Hence, the plastic correction of the stress
state is given by

Fig. 5. Flowchart of the stress return algorithm
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σmþ1 ¼ σe
mþ1 −Δλ1Dnn½ð1 − θÞmA;1ðσm; τm;qmÞ

þ θmA;1ðσmþ1; τmþ1;qmþ1Þ�
−Δλ2Dnn½ð1 − θÞmB;1ðqmÞ þ θmB;1ðqmþ1Þ� ð31aÞ

τmþ1 ¼ τ emþ1 −Δλ1Dtt −Δλ2Dtt

ðif the stresses are returned to FBþ ¼ 0Þ ð31bÞ

τmþ1 ¼ τ emþ1 −Δλ1Dtt þΔλ2Dtt

ðif the stresses are returned to FB− ¼ 0Þ ð31cÞ

The internal variables are calculated as

pþ
mþ1 ¼ pþ

m þ hΔλ1signðτÞi ð32aÞ

p−
mþ1 ¼ p−

m þ h−Δλ1signðτÞi ð32bÞ

rmþ1 ¼ rm þΔλ1½ð1 − θÞmA;1ðσm; τm;qmÞ
þ θmA;1ðσmþ1; τmþ1;qmþ1Þ� ð32cÞ

smþ1 ¼ sm þΔλ2 ðif the stresses are returned to FBþ ¼ 0Þ
ð32dÞ

smþ1 ¼ sm −Δλ2 ðif the stresses are returned to FB− ¼ 0Þ
ð32eÞ

Eqs. (31a) and (32c) are nonlinear and implicit with respect to
σmþ1 and rmþ1. Hence, for a given value of Δλ1, they need to be
solved iteratively like Eqs. (25a) and (26c).

An algorithm has been developed to solve the nonlinear prob-
lem to satisfy both yield conditions, FAðσmþ1;qmþ1Þ ¼ 0 and
FBþ=B−ðσmþ1;qmþ1Þ ¼ 0, and Eqs. (31) and (32). The algorithm
consists of two nested loops that employ the bisection bracketing
method to solve a system of two equations for two unknowns,Δλ1

and Δλ2. In the internal loop, Δλ1 is kept constant, and the value
of Δλ2 that satisfies FBþ=B−ðσmþ1;qmþ1Þ ¼ 0 is determined with
the bracketing method. In the external loop, with the value of Δλ2
determined in the internal loop, the bracketing method is applied to
Δλ1 to satisfy FAðσmþ1;qmþ1Þ ¼ 0. The process is repeated until
convergence is reached.

Model Calibration

The model proposed in this paper includes parameters that depend
on the diameter and the geometry of the surface deformation of
the bar (db, hR, and sR) and the mechanical properties of the con-
crete (f 0

c and f 0
t ). The rest are dimensionless parameters that have

been calibrated with experimental results of Malvar (1992). These
experiments provide data to quantify the relations between the
stresses and relative displacements at the concrete-steel interface.
They consist of bond-slip tests on 19-mm-diameter bars embedded
in presplit concrete cylinders subjected to a constant radial stress.
During the tests, the average bond stress, the slip, and the radial
displacement were measured. Two series of five tests each were
conducted for two types of bars with slightly different rib patterns.
For each test series, five different levels of confinement were used,
ranging from 3.45 MPa to 31.03 MPa. In all the cases, the bond
failed by the pullout of the bars, and crushed concrete was observed
between the ribs.

The experimental results have been replicated with the interface
model presented in this paper. The values of the model parameters
related to the bar geometry and concrete strength have been deter-
mined from the information reported in Malvar (1992) and are
presented in Table 1. The dimensionless parameters have been so
calibrated to match the experimental results. Their values are pre-
sented in Table 2. The values of ki in Table 2 are independent of
the bar and concrete properties as they are coefficients associated
with the normalized bar and concrete properties. The value of μB
obtained from this calibration (0.2) is smaller than values typically
assumed for the friction coefficient between steel and concrete,
which range between 0.4 and 0.5.

The values of μB and α0 in Table 2 satisfy the conditions for
which Eqs. (15b) and (16b) are valid. Their values may depend on
the surface conditions of the bar, but the range of their possible
variations is expected to be small and the subsequent validation
study shows that they can be assumed to be constants. The values
in Table 2 are based on data obtained from reinforcing bars with
normal rib geometry. Bars with a high relative rib area may have
different values for these parameters. The elastic constants for the
interface model also need to be calibrated. The elastic tangential
stiffness is taken as Dtt ¼ 0.04Ec=db, in which Ec is the Young’s
modulus of the concrete and db is the bar diameter, as suggested
by Cox and Herrmann (1998) to match the initial slope of the
bond stress-versus-slip curves from different experiments. The
elastic normal stiffness is a penalty parameter assumed to beDnn ¼
2Ec=db. This value is large enough to ensure that the elastic normal
deformation is negligible as compared to the plastic normal defor-
mation. The Young’s modulus of concrete can be calculated as
Ec ¼ 4,730

ffiffiffiffiffi
f 0
c

p
in MPa (ACI 2011). Regarding the tolerances

used to solve the plasticity equations, the iterations are stopped and
the solution is accepted when FA, FBþ , and FB− are smaller than
1 · 10−4. Finally, θ in the generalized trapezoidal rule is taken to be
0.5, which has been shown by Ortiz and Popov (1985) to provide
good accuracy.

Table 1. Bar and Concrete Properties

Test specimen
db

(mm)
hR

(mm)
sR

(mm)
f 0
c

(MPa)
f 0
t

(MPa)

Malvar (1992), Tests 1, 3, 5 19 0.78 9.2 40.2 4.9
Malvar (1992), Tests 6, 8, 10 19 0.84 10.2 38.4 4.7
Lundgren (2000) 16 0.8a 8.0b 36 3.6c

Murcia-Delso et al. (2013) 43 2.3 24.9 34.5/55.0 2.9/3.8
Metelli and Plizzari (2014),
16-mm bar

16 0.7 9.0 42.7 3.4

Metelli and Plizzari (2014),
20-mm bar

20 0.9 11.4 42.7 3.4

aInformation not available, estimated as 5% of the bar diameter.
bInformation not available, estimated as 50% of the bar diameter.
cInformation not available, estimated as 10% of the compressive strength of
concrete.

Table 2. Model Parameters with Fixed Values

Parameter Value

k1 2.5
k2 2.2
k3 1.0
k4 2.5
k5 0.05
μB 0.2
α0 62°

© ASCE 04015082-8 J. Eng. Mech.
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The interface model successfully reproduces the bond resistance
and dilatation obtained byMalvar (1992) for different levels of con-
finement. The bond stress-versus-slip curves and the bond stress-
versus-radial displacement curves obtained in the tests and with the
bond-slip model for confining stresses of 3.45 MPa, 17.24 MPa,
and 31.03 MPa are compared in Fig. 6. In all cases, plastic displace-
ments are first activated in Mode B (sliding), but as the Mode-B
yield surfaces rotate in the σ − τ plane, and the normal confining
stress increases, the yield surface corresponding to Mode A (crush-
ing and shearing) is activated and the plastic displacement mode
changes. As the plastic slip displacement in Mode A increases,
the yield surface shrinks and the bond resistance is reduced, result-
ing in pullout failure. An additional case with a low confining pres-
sure of σ ¼ 1.5 MPa has been analyzed to illustrate the capability
of the model to simulate bond failure caused by sliding and tensile
splitting. In this case, Mode A is never activated and the plastic
displacement is solely attributable to sliding on the concrete-steel
surface. As shown in Fig. 6, the bond strength is lower and the
behavior is more brittle, which is typical of a failure caused by con-
crete splitting. The bond resistance practically disappears when the

slip exceeds the horizontal length of the inclined plane of the rib, lI ,
i.e., when the contact occurs on the horizontal plane on top of the
ribs and the wedging action is lost. Also, the dilatation is higher as
compared to the cases with failures governed by Mode A.

Validation Analyses

The new model has been implemented in the finite element (FE)
program ABAQUS as a material (UMAT) subroutine to be used
with three-dimensional cohesive interface elements. In the imple-
mentation, the relative tangential displacement perpendicular to the
axis of the bar is restrained with a penalty stiffness. The penalty
coefficient used in the validation analyses is equal to 10Ktt. The
initial stiffness of the interface model is used for the iterative sol-
ution scheme for the nonlinear analysis.

To validate the ability of the interface model to predict the bond
strength and bond-slip behavior of bars under quasi-static load-
ing with different loading scenarios and confinement conditions,
six tests reported in three different studies (Lundgren 2000;
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Fig. 6. Comparison of model predictions and experimental results for Malvar’s tests: (a) bond stress versus slip in Tests 1, 3, and 5; (b) bond stress
versus radial displacement in Tests 1, 3, and 5; (c) bond stress versus slip in Tests 6, 8, and 10; (d) bond stress versus radial displacement in Tests 6, 8,
and 10

Table 3. Bond Strengths from Tests and Analyses

Test specimen Experiment (MPa) Analysis (MPa) Prediction error (%)

Lundgren (2000), monotonic test 20.7 18.8 −9
Lundgren (2000), cyclic test 19.3 18.4 −5
Murcia-Delso et al. (2013), monotonic test with f 0

c ¼ 34.5 MPa 16.3 16.0 −2
Murcia-Delso et al. (2013), monotonic test with f 0

c ¼ 55 MPa 24.3 25.9 þ7

Murcia-Delso et al. (2013), cyclic test with f 0
c ¼ 34.5 MPa 15.0 15.5 þ3

Metelli and Plizzari (2014), monotonic test with 16-mm bar 22.9 21.7 −6
Metelli and Plizzari (2014), monotonic test with 20-mm bar 20.9 21.6 þ3
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Murcia-Delso et al. 2013; Metelli and Plizzari 2014) have been
replicated with static FE analyses. The test specimens analyzed
had the bars bonded over a length between 3db and 7db to provide
a fairly uniform slip and bond-stress distribution so that the basic
bond stress-versus-slip relations could be obtained. The bar and
concrete properties in these experiments are shown in Table 1.
The bond strengths predicted by the analyses are compared to
the experimental results in Table 3. As shown, the model provides
good predictions of the bond strengths with a maximum error
of 9%.

Fig. 7. FE model of Lundgren’s test specimens
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Fig. 8. Comparison of FE analysis and experimental results for
Lundgren’s monotonic bond-slip test: (a) bond stress versus slip;
(b) bond stress versus hoop strain in steel casing
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Fig. 9. Comparison of FE analysis and experimental results for
Lundgren’s cyclic bond-slip test: (a) bond stress versus slip; (b) bond
stress versus slip for the first two cycles; (c) bond stress versus hoop
strain in steel casing
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In the validation analyses, reinforcing bars are modeled with
three-dimensional eight-node brick elements (C3D8) and an elastic
material with a modulus of elasticity of 200,000 MPa. However,
some of the bars yielded in tension in Murcia-Delso et al.’s
(2013) tests. For the analysis of these tests, an elastic-plastic
material law with nonlinear kinematic hardening available in ABA-
QUS is used. The steel in these analyses has a yield strength of
493 MPa. The cross section of a bar is idealized as an octagon with
an area equal to that of the circular section for the specimen tested
by Lundgren (2000), as illustrated in Fig. 7. Concrete is modeled
with C3D8 elements and a plastic-damage law available in ABA-
QUS. This constitutive law is based on the formulations proposed
by Lubliner et al. (1989) and Lee and Fenves (1998). The plastic-
damage law has been calibrated to the compressive and tensile
strengths of concrete as presented in Table 1. The calibration of
the other parameters of this law that are independent of the concrete
strength is discussed in Murcia-Delso (2013). As shown in Fig. 7,
eight-node cohesive crack interface elements (COH3D8) are used
to connect the solid elements representing the concrete and the bar,
respectively. The parameters for the bond-slip model assume the
values presented in Tables 1 and 2. Because of the octagonal
cross-sectional shape of the bar model, the surface area of the co-
hesive elements surrounding the bar is slightly larger than the actual
contact surface. To compute the correct magnitude of the bond
forces, the stresses at the interface are scaled down by a factor
of 0.97 to account for the difference between the perimeter of a
circle and that of an octagon of equal area. The same approach
has been followed to model the other tests considered in this paper.

The concrete cylinders in the specimens tested by Lundgren (2000)
were confined by a steel casing with a wall thickness equal to
1 mm. The casing has been modeled with shell elements and an
elastic material with a modulus of elasticity of 200,000 MPa.

The FE analysis and experimental results for a test with mono-
tonically increasing slip conducted by Lundgren (2000) are com-
pared in Fig. 8. The FE model predicts the bond strength and the
bond stress-slip relations reasonably well, including the slip at
which the peak strength is reached and the rate of the decay of the
bond resistance. The hoop strains in the steel casing are fairly well

Fig. 10. FE model of test specimens for Murcia-Delso et al.
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Fig. 11. Comparison of FE analysis and experimental results for
Murcia-Delso et al.’s monotonic bond-slip test with 34.5-MPa concrete
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Fig. 12. Comparison of FE analysis and experimental results for
Murcia-Delso et al.’s monotonic bond-slip tests with 55-MPa concrete
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Fig. 13. Comparison of FE analysis and experimental results for
Murcia-Delso et al.’s cyclic bond-slip test with 34.5-MPa concrete
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captured by the model, but their peak value has been slightly
overestimated, as shown in Fig. 8. The FE model is also capable
of replicating the cyclic bond stress-versus-slip relations in an-
other test, including the decay in the bond resistance (governed
by Mode A), and the stresses developed when the slip direction
is reversed (governed by Mode B), as shown in Fig. 9. However,
when the yield surface for Mode A is re-engaged, the reloading
stiffness becomes much higher than that shown in the test because
the elastoplastic bond-slip model does not provide a gradual hard-
ening-softening behavior for Mode A. Fig. 9 also indicates that the
hoop strain in the steel casing at the end of the cyclic test has been
significantly overestimated and the variation of hoop strain during
the unloading and reloading is not well predicted. This can be
partly attributed to the underprediction of the reversal of shear di-
latation by the bond-slip model, and partly to the inability of the
concrete model to close the radial splitting cracks that have formed
in the concrete cylinder. The latter is related to a limitation of the
constitutive law of concrete as discussed in Murcia-Delso (2013).

Three bond-slip tests conducted by Murcia-Delso et al. (2013)
on 43-mm bars embedded in well-confined concrete cylinders
have been analyzed. The FE model of a monotonic test specimen
with f 0

c ¼ 34.5 MPa is shown in Fig. 10. The maximum principal
strains shown in Fig. 10 along a diametric cut of this specimen
indicate that bar slip has split the concrete surrounding the bar,
but the splitting cracks do not propagate radially. As reported in
Murcia-Delso et al. (2013), no splitting cracks were observed in the
surface of any of the test specimens. As shown in Fig. 11, the FE
analysis and experimental results for the monotonic test specimen
with f 0

c ¼ 34.5 are very similar. The model is also capable of pre-
dicting the increase of the bond strength when a concrete with a
compressive strength of 55 MPa is used, as shown in Table 3.
In the test with the 55-MPa concrete, the bar yielded in tension, and
the bond stress-slip relations could not be calculated because plastic
strains penetrated inside the bonded length, resulting in a nonuni-
form slip and bond stress distribution. For this reason, the FE analy-
sis and experimental bond-slip results are compared in Fig. 12 in
terms of the pull force-versus-displacement curves for the loaded
end of the bar. As shown, the peak bond strength is reached after the
bar has yielded in tension. The FE model is also able to capture the
bond stress-versus-slip hysteresis curves obtained from a cyclic test
with a reasonable accuracy, except for the slope of the reloading
branches, as shown in Fig. 13.

To illustrate the capability of the interface model to simulate
concrete splitting failures, bond-slip tests carried out by Metelli

and Plizzari (2014) have been analyzed. They tested bars of differ-
ent sizes and rib patterns embedded in concrete cubes with a clear
cover equal to 4.5db and no transverse reinforcement. Two series of
tests with 16-mm diameter bars and 20-mm diameter bars, respec-
tively, have been modeled. In each test series, eight identical spec-
imens were tested under monotonically increasing load. The FE
model of a test specimen with a 16-mm bar is shown in Fig. 14.
All the specimens in these series incurred brittle failures attribut-
able to the splitting of the concrete. The bond strength and splitting

Fig. 14. FE model of Metelli and Plizzari’s tests on a 16-mm bar

0 0.5 1 1.5 2
0

5

10

15

20

25

30

Slip  (mm)

B
on

d 
st

re
ss

 (
M

Pa
)

Tests

Analysis

16−mm bar

0 0.5 1 1.5 2
0

5

10

15

20

25

30

Slip  (mm)

B
on

d 
st

re
ss

 (
M

Pa
)

Tests

Analysis

20−mm bar

(a)

(b)

Fig. 15. Comparison of FE analysis and experimental results for
Metelli and Plizzari’s tests: (a) 16-mm bar; (b) 20-mm bar
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failures observed in the tests are well predicted by the FE model.
Fig. 14 shows the maximum principal strains obtained in the analy-
sis for a specimen with a 16-mm bar indicating the formation of
a splitting crack spreading over the entire concrete cover. The bond
stress-versus-slip relations obtained in the analyses are in good
agreement with the experimental results, as shown in Fig. 15. How-
ever, the analyses are not able to attain very large slip levels because
of numerical convergence problems caused by the opening of the
splitting cracks.

Conclusions

A new interface model has been developed to simulate the cyclic
bond-slip behavior of reinforcing bars in concrete. The model
adopts a multi-surface plasticity formulation with nonassociated
flow rules. It accounts for two major bond resistance mechanisms.
They are the interlocking mechanism that may result in the crush-
ing and shearing of the concrete between the bar ribs, and the
frictional resistance mechanism with sliding between the concrete
and bar surfaces. Each mechanism is governed by a separate yield
surface and flow rule. Nonassociated flow rules are used to simulate
the dilatation of the interface induced by the crushed concrete and
the wedging action of the bar ribs. A stress update algorithm tail-
ored to handle the multiple yield surfaces of the model has been
proposed to solve the nonlinear constitutive equations.

The model has only a few parameters to calibrate. They are de-
termined with the properties of the concrete and the geometry of the
reinforcing bar. The capability of the model to accurately predict
the bond strengths and the cyclic bond-slip behavior of bars under a
wide range of confinement situations has been demonstrated with
validation examples. The model can capture bond failures charac-
terized by bar pullout and the splitting of concrete. It can be used in
numerical studies to examine the effects of the concrete strength,
concrete cover, bar spacing, and transverse reinforcement on the
bond behavior of reinforcing bars.
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