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ORIGINAL ARTICLE

Sugar-Sweetened Beverage Consumption May 
Modify Associations Between Genetic Variants in 
the CHREBP (Carbohydrate Responsive Element 
Binding Protein) Locus and HDL-C (High-
Density Lipoprotein Cholesterol) and Triglyceride 
Concentrations
Danielle E. Haslam , PhD; Gina M. Peloso , PhD; Melanie Guirette , MS; Fumiaki Imamura , PhD; Traci M. Bartz, MS;  
Achilleas N. Pitsillides , PhD; Carol A. Wang , PhD; Ruifang Li-Gao , PhD; Jason M. Westra , MS; Niina Pitkänen, PhD;  
Kristin L. Young , PhD; Mariaelisa Graff , PhD; Alexis C. Wood, PhD; Kim V.E. Braun, PhD; Jian’an Luan , PhD;  
Mika Kähönen, PhD; Jessica C. Kiefte-de Jong , RD, PhD; Mohsen Ghanbari , PhD; Nathan Tintle , PhD;  
Rozenn N. Lemaitre , PhD; Dennis O. Mook-Kanamori, PhD; Kari North , PhD; Mika Helminen , PhD;  
Yasmin Mossavar-Rahmani , PhD; Linda Snetselaar , RD, PhD; Lisa W. Martin , MD; Jorma S. Viikari , MD, PhD;  
Wendy H. Oddy, PhD; Craig E. Pennell , PhD; Frits R. Rosendall , MD, PhD; M. Arfan Ikram , MD, PhD;  
Andre G Uitterlinden , PhD; Bruce M. Psaty , MD, PhD; Dariush Mozaffarian , MD, DrPH; Jerome I. Rotter , MD;  
Kent D. Taylor , PhD; Terho Lehtimäki, PhD; Olli T. Raitakari, MD, PhD; Kara A. Livingston, MPH; Trudy Voortman , PhD;  
Nita G. Forouhi , PhD; Nick J. Wareham , PhD; Renée de Mutsert, PhD; Steven S. Rich , PhD;  
JoAnn E. Manson , DrPH, MD; Samia Mora , MD; Paul M. Ridker , MD; Jordi Merino , PhD; James B. Meigs , MD;  
Hassan S. Dashti , PhD, RD; Daniel I. Chasman , PhD; Alice H. Lichtenstein , DSc; Caren E. Smith , MS, DVM;  
Josée Dupuis , PhD; Mark A. Herman , MD; Nicola M. McKeown , PhD

BACKGROUND: ChREBP (carbohydrate responsive element binding protein) is a transcription factor that responds to sugar 
consumption. Sugar-sweetened beverage (SSB) consumption and genetic variants in the CHREBP locus have separately 
been linked to HDL-C (high-density lipoprotein cholesterol) and triglyceride concentrations. We hypothesized that SSB 
consumption would modify the association between genetic variants in the CHREBP locus and dyslipidemia.

METHODS: Data from 11 cohorts from the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium 
(N=63 599) and the UK Biobank (N=59 220) were used to quantify associations of SSB consumption, genetic variants, and 
their interaction on HDL-C and triglyceride concentrations using linear regression models. A total of 1606 single nucleotide 
polymorphisms within or near CHREBP were considered. SSB consumption was estimated from validated questionnaires, 
and participants were grouped by their estimated intake.

RESULTS: In a meta-analysis, rs71556729 was significantly associated with higher HDL-C concentrations only among 
the highest SSB consumers (β, 2.12 [95% CI, 1.16–3.07] mg/dL per allele; P<0.0001), but not significantly among the 
lowest SSB consumers (P=0.81; PDiff <0.0001). Similar results were observed for 2 additional variants (rs35709627 and 
rs71556736). For triglyceride, rs55673514 was positively associated with triglyceride concentrations only among the 
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highest SSB consumers (β, 0.06 [95% CI, 0.02–0.09] ln-mg/dL per allele, P=0.001) but not the lowest SSB consumers 
(P=0.84; PDiff=0.0005).

CONCLUSIONS: Our results identified genetic variants in the CHREBP locus that may protect against SSB-associated reductions 
in HDL-C and other variants that may exacerbate SSB-associated increases in triglyceride concentrations.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00005133, NCT00005121, NCT00005487, and 
NCT00000479.

Key Words: carbohydrates ◼ dyslipidemia ◼ epidemiology ◼ genetics ◼ nutrition ◼ sugars ◼ triglyceride

Low circulating HDL-C (high-density lipoprotein choles-
terol) and elevated fasting triglyceride concentrations 
are positively associated with risk of type 2 diabetes and 

cardiovascular disease.1–5 Both genetic and environmental 
factors, including diet, are important determinants of HDL-C 
and triglyceride concentrations.5–7 Genetic determinants of 
HDL-C and triglyceride concentrations have been identified 
in genome-wide association studies (GWAS),8–12 but the 
extent to which genetic variants interact with environmen-
tal exposures is unknown. It is plausible that unrecognized 
genetic variants or genetic effects may be suppressed or 
exacerbated by environmental factors, such as diet.

ChREBP (carbohydrate responsive element binding 
protein) is a transcription factor that regulates glucose 
and lipid metabolism in response to sugar consump-
tion, including sugar from sugar-sweetened beverages 
(SSB).13,14 GWAS have consistently observed an associ-
ation between single nucleotide polymorphisms (SNPs) 
in the CHREBP locus (also known as MLXIPL), and 
HDL-C and triglyceride concentrations.8,9,15,16 In animal 
studies, hepatic ChREBP is robustly activated by dietary 
fructose, a major constituent of SSB, and potentiates 
hepatic lipogenesis and triglyceride secretion.14,17–20 
These findings are consistent with large population-
based studies in which high SSB consumption has been 
associated with elevated fasting plasma triglyceride and 
reduced HDL-C concentrations,21–24 and increased type 
2 diabetes25–27 and cardiovascular disease21 risk. Thus, 
SNPs within the CHREBP locus present promising can-
didates for gene-SSB interactions on circulating HDL-C 
and triglyceride concentrations.

These pieces of biological, epidemiological, and 
genetic evidence suggest that SSB consumption may 
modify how genetic variants within the CHREBP locus 
influence plasma lipid concentrations in some individu-
als. Although reduction of SSB consumption is increas-
ingly being encouraged globally,28 public health efforts 
to reduce SSB consumption have achieved limited suc-
cess and SSB consumption remains a modifiable dietary 
exposure that contributes substantially to the burden 
of type 2 diabetes and cardiovascular disease world-
wide.29,30 A better understanding of the mechanisms 
underlying the SSB-ChREBP-lipid relationship may 
reveal novel mechanisms that contribute to the patho-
genesis of type 2 diabetes and cardiovascular disease 
risk. Understanding these mechanisms may provide 
alternative strategies and approaches to reduce meta-
bolic disease that may complement or facilitate dietary 
interventions.

The present study aimed to examine whether SSB 
consumption may modify the association of genetic vari-
ants within the CHREBP locus on HDL-C and triglycer-
ide concentrations in aggregated data from cohorts who 
are part of the Cohorts for Heart and Aging Research in 
Genetic Epidemiology (CHARGE) consortium.31 Descrip-
tions of the CHARGE cohorts are included in the Table I 
in the Data Supplement. We further used data from the 
UK Biobank (UKB) to assess the reproducibility of these 
findings in an independent cohort.32

METHODS
Methods are available in the Data Supplement. The data that 
support the findings of this study are available from the cor-
responding author upon reasonable request. All study partici-
pants provided written informed consent, and approval for all 
study protocols was granted by local institutional review boards 
and oversight committees.

RESULTS
General characteristics and mean dietary intakes for the 
11 CHARGE cohorts are shown in Table 1. Replication 
of previous findings on associations of SSB consumption 
and SNPs with lipid traits in the CHARGE cohorts are 
presented in the Results in the Data Supplement.

Nonstandard Abbreviations and Acronyms

CHARGE  Cohorts for Heart and Aging Research 
in Genetic Epidemiology

ChREBP  Carbohydrate Responsive Element 
Binding Protein

GWAS genome-wide association studies
HDL-C high-density lipoprotein cholesterol
SNP single nucleotide polymorphism
SSB sugar-sweetened beverages
UKB UK Biobank



Haslam et al SSB-CHREBP Interactions on Lipid Traits

Circ Genom Precis Med. 2021;14:e003288. DOI: 10.1161/CIRCGEN.120.003288 August 2021 508

Difference Test Interactions Between SSB 
Consumption and SNPs on HDL-C and 
Triglyceride in CHARGE Cohorts
We identified 55 SNPs that displayed a significant 
(PDiff <0.0001) or suggestive (PDiff <0.005) difference 
in estimated effect by category of SSB consumption 
on HDL-C concentrations in either of the 2 covariate 

models in the meta-analysis of the CHARGE cohorts. 
Among these 55 top SNPs, 4 distinct signals for HDL-C 
concentrations were observed when applying the differ-
ent test interaction. Two distinct SNPs in moderate LD 
(linkage disequilibrium) with one another (rs35709627 
and rs71556729; R2=0.55 [Figure II in the Data Sup-
plement]) and in low LD with the top SNP identified in 
the overall analysis for HDL-C concentrations (R2<0.3) 

Table 1. General Characteristics of Participating CHARGE Consortium Cohorts*

 
Raine 
Study ARIC FHS NEO Fenland YFS WGHS WHI MESA CHS RS

Characteristics

Country Australia United 
States

United 
States

the Nether-
lands

United 
Kingdom

Finland United 
States

United 
States

United 
States

United 
States

the Nether-
lands

n 617 10 924 6382 5694 10 022 1782 16 284 1 109 1 805 3196 5784

Age, y 20 (1) 55 (6) 49 (14) 56 (6) 49 (7) 38 (5) 55 (7) 65 (7) 70 (10) 72 (5) 66 (8)

Sex (% women) 52.4 52.7 54.3 52.0 53.3 55.9 100 100 51.2 61.0 57.8

Body mass index, 
kg/m2

24.5 (5.2) 27.0 (4.8) 27.4 (5.5) 30.0 (4.8) 26.9 (4.8) 25.9 (4.6) 25.9 (4.9) 28.6 (5.7) 28.0 (5.3) 26.3 (4.4) 26.5 (3.7)

Current smoker, % 13.5 24.2 13.4 16.0 12.0 27.6 11.7 10.1 7.0 11.4 23.4

Completed high 
school, %

81.5 84.9 98.0 93.0 81.8 75.4 100 94.7 96.5 75.1 60.8

Fasting HDL-C, 
mg/dL

51 (13) 51 (17) 54 (17) 55 (16) 59 (16) 52 (13) 54 (15) 58 (15) 57 (18) 55 (16) 53 (14)

Fasting TG, mg/dL 85 (2) 137 (90) 117 (87) 130 (85) 106 (81) 122 (82) 119 (89) 156 (92) 107 (59) 140 (76) 137 (71.0)

Dietary intakes

SSB intake, 
servings/d

0.7 (1.0) 0.5 (0.9) 0.4 (0.8) 0.4 (0.8) 0.3 (0.6) 0.3 (0.5) 0.3 (0.6) 0.2 (0.6) 0.1 (0.5) 0.1 (0.3) 0.1 (0.2)

 <1 serving/
mo, %

13.6 35.7 33.9 49.4 35.8 23.6 44.8 58.0 70.0 63.4 71.9

 1–4 serving/
mo, %

14.4 16.3 24.3 13.8 24.6 31.9 22.0 19.3 12.4 16.9 13.5

 1–2 serving/
wk, %

23.8 12.1 9.76 14.1 14.0 17.1 13.1 3.5 2.2 0.06 6.4

 3–7 serving/
wk, %

29.2 25.7 21.3 11.7 15.2 21.0 15.1 15.3 8.6 18.7 7.5

 >1 serving/d, % 19.0 10.3 10.8 11.0 10.4 6.3 5.0 3.9 2.3 0.9 0.8

Energy intake, 
kcal/d

1857 (850) 1644 (599) 1956 (645) 2291 (763) 1935 (578) 2381 (762) 1732 (524) 1698 (670) 1708 (734) 2024 (654) 2046 (1409)

Saturated fat 
intake, % total 
energy

16.1 (3.1) 12.2 (3.1) 11.1 (2.9) 12.4 (2.9) 12.5 (3.0) 11.8 (2.4) 10.2 (2.5) 11.6 (3.3) 11.3 (3.3) 10.4 (2.2) 14.4 (3.1)

Fruit intake, 
servings/d

1.9 (1.3) 1.5 (1.3) 1.1 (1.0) 1.1 (0.9) 2.7 (2.2) 3.4 (3.1) 1.9 (1.2) 1.8 (1.2) 2.1 (1.7) 2.7 (1.5) 1.2 (1.0)

Vegetable intake, 
servings/d

1.7 (0.9) 1.7 (1.2) 2.0 (1.1) 2.8 (1.5) 5.0 (2.5) 1.4 (1.8) 3.9 (2.3) 2.2 (1.3) 2.4 (1.5) 2.8 (1.5) 2.8 (2.1)

Whole grain in-
take, servings/d

0.8 (1.0) 1.1 (1.1) 1.2 (1.2) NA 1.8 (1.4) 3.2 (1.9) 1.5 (1.2) 1.2 (0.8) 1.0 (0.8) 1.0 (0.7) 3.4 (2.9)

Fish intake, 
servings/d

0.4 (0.6) 0.3 (0.3) 0.4 (0.4) 0.2 (0.2) 0.4 (0.3) 1.3 (0.9) 0.3 (0.2) 0.2 (0.2) 0.3 (0.3) 0.3 (0.3) 0.1 (0.2)

Nuts/seeds intake, 
servings/d

0.1 (0.2) 0.4 (0.6) 0.6 (0.9) 0.8 (1.0) 0.2 (0.3) 0.1 (0.1) 0.3 (0.4) 0.2 (0.3) 0.5 (0.6)  0.2 (0.3) 0.2 (2.1)

Alcohol intake, g/d 7.8 (8.9) 6.7 (13.5) 10.5 (14.8) 15.5 (17.4) 9.5 (12.7) 8.6 (13.4) 4.3 (8.5) 5.0 (10.2) 8.8 (15.5) 5.5 (12.9) 11.1 (15.5)

ARIC indicates Atherosclerosis Risk in Communities Study; CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; CHS, Cardiovascular Health 
Study; FHS, Framingham Heart Study; HDL-C, high-density lipoprotein cholesterol; MESA, Multi-Ethnic Study of Atherosclerosis; n, total sample size; NEO, Netherlands 
Epidemiology in Obesity Study; RS, the Rotterdam Study; SSB, sugar-sweetened beverages; TG, triglyceride; WGHS, Women’s Genome Health Study; WHI, Women’s 
Health Initiative; and YFS, Young Finns Study.

*Means (SD) or percentage for maximum observations available for analysis. Sample sizes may vary depending on availability of genotype and covariate information. 
Cohorts are ordered by estimate of sugar-sweetened beverage intake.
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displayed a statistically significant difference in effect by 
category of SSB intake on HDL-C concentrations in fully 
adjusted models (model 2; PDiff <0.0001; Table 2 and 
Figures III and IV in the Data Supplement). In model 2, 
each additional minor allele at rs35709627 (β [SE], 2.72 

[0.72], P=0.0002) and rs71556729 (β [SE], 3.89 [1.04], 
P=0.0002) was associated with higher mean concentra-
tions of HDL-C concentrations among the highest SSB 
consumers (>1 serving/d), but was not associated with 
mean HDL-C concentrations among the lowest SSB 

Table 2. Top SNPs in Meta-Analysis of Difference Test (PDiff <0.005) and Cross-Product (Pinteract <0.005) Interactions Between 
SSB Consumption and SNPs on HDL-C and TG Concentrations in CHARGE Consortium Cohorts*

SNP
Location 
(Hg19)

Alleles 
(E/A)† MAF Model‡

SSB intake 
category n

Effect size 
(SE)§ P value Direction∥ I2 P value¶

HDL-C, mg/dL

 Difference test PDiff

  rs35709627# 72999171 A/G
 
 
 

0.05
 
 
 

Model 1 <1 serving/mo 24 389 −0.01 (0.04) 0.86 +-++--+++?? 23% 1.98×10−5**
 

>1 serving/d 4033 3.23 (0.77) 2 +?+?+?+?+?? 0%

Model 2 <1 serving/mo 23 801 0.006 (0.04) 0.86 +-++--+++?? 30% 0.0001
 

>1 serving/d 3955 2.72 (0.72) 0.0002 +?+?+?+?+?? 0%

  rs71556729#
 
 
 

72989516
 
 

T/C
 
 
 

0.05
 
 
 

Model 1 <1 serving/mo 23 974 0.02 (0.06) 0.77 +?++-+++-?? 0% 4.78×10−5**
 

>1 serving/d 3359 4.47 (1.10) 5 ??+?+?+?+?? 0%

Model 2 <1 serving/mo 22 835 0.01 (0.05) 0.83 +?++-+-?-?? 0% 0.0001
 

>1 serving/d 3299 3.89 (1.04) 0.0002 ??+?+?+?+?? 0%

  rs71556736
 
 
 

73034929
 
 

T/C
 
 
 

0.13
 
 
 

Model 1 <1 serving/mo 24 389 −0.0005 (0.02) 0.98 +-+++--++?- 60% 0.0003
 

>1 serving/d 4033 1.65 (0.47) 0.0004 +?+?+?+?+?? 0%

Model 2 <1 serving/mo 23 801 0.007 (0.02) 0.69 +-++++-++?? 67% 0.002
 

>1 serving/d 3955 1.34 (0.43) 0.002 +?+?+?+?+?? 0%

  rs73137017
 
 
 

72974413
 
 

G/A
 
 
 

0.04
 
 
 

Model 1 <1 serving/mo 24 020 −0.05 (0.06) 0.46 -+--+-++-?? 0% 0.002
 

>1 serving/d 3933 −3.13 (0.99) 0.002 -?-?-?-?-?? 0%

Model 2 <1 serving/mo 23 437 −0.008 (0.05) 0.88 ++--+-++-?? 0% 0.003

>1 serving/d 3855 −2.64 (0.91) 0.004 -?-?-?-?-?? 0%

 Cross-product interaction test Pinteract

  rs71556729
 

72989516 T/C
 

0.03
 

Model 1 … 55 418 0.66 (0.21) … +++++?+-+-- 0% 0.001

Model 2 … 53 394 0.68 (0.20) … ++-++?+++?- 26% 0.0007

  rs79578725
 

73002455
 

A/G
 

0.05
 

Model 1 … 53 662 −0.51 (0.18) … +?-+-?----- 0% 0.005

Model 2 … 52 328 −0.18 (0.17) … +?++-?----- 0% 0.28

TG, ln-mg/dL

 Difference test PDiff

  rs799157
 
 
 

73020301
 
 
 

T/C
 
 
 

0.05
 
 
 

Model 1 <1 serving/mo 23 974 0.02 (0.01) 0.11 +?++++-++?? 59% 0.005
 

>1 serving/d 4033 0.11 (0.03) 0.002 +?+?+?+?+?? 0%

Model 2
 

<1 serving/mo 23 403 0.02 (0.01) 0.17 +?++--?+? 68% 0.008
 

>1 serving/d 3955 0.09 (0.03) 0.004 +?+?++?+? 0%

 Cross-product interaction test Pinteract

  rs55673514
 

73021456
 

G/A
 

0.04
 

Model 1 … 57 977 0.02 (0.01) … -+++++++?++ 17% 0.04

Model 2 … 56 578 0.02 (0.01) … -+++++++++? 0% 0.005

CHARGE indicates Cohorts for Heart and Aging Research in Genetic Epidemiology; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; HDL-C, high-density 
lipoprotein cholesterol; MAF, minor allele frequency; MESA, Multi-Ethnic Study of Atherosclerosis; NEO, Netherlands Epidemiology in Obesity Study; RS, the Rotterdam Study; SNP, 
single nucleotide polymorphism; SSB, sugar-sweetened beverages; TG, triglyceride; WGHS, Women’s Genome Health Study; and YFS, Young Finns Study.

*Top signals represent suggestive interactions PDiff <0.005 or Pinteract <0.005.
†Alleles presented as effect (E)/alternative (A) alleles.
‡Model 1 adjusted for age (y), sex (male/female), total energy intake (kcal/d) field center (CHS, FHS, YFS, Fenland, RS, MESA), and accounted for family or population structure 

where applicable (FHS, YFS, Fenland, NEO, MESA, WGHS, Raine Study, MESA); model 2 adjusted for model 1 covariates plus cohort-specific definition of education, smoking, physi-
cal activity, alcohol intake, and body mass index (kg/m2).

§For the difference test, β (SE) represents the direction and magnitude of the difference in the outcome trait with each additional effect allele among categories of SSB consumption. 
For the cross-product interaction test, β (SE) represents the direction and magnitude of the difference in the outcome trait with each additional effect allele, per each increase in category 
of SSB intake (<1 serving/mo, 1–4 servings/mo, 1–2 servings/wk, 3–7 servings/wk, >1 serving/d).

‖Order of cohorts for regression coefficient directions: FHS, YFS, Fenland Study, CHS, NEO, RS, WGHS, WHI, ARIC, Raine Study, MESA (+, positive effect size; −, negative effect 
size; and ?, SNP not available in cohort).

¶P represents PDiff for the difference test for the highest and lowest category of SSB intake (<1 serving/mo vs >1 serving/d). P represents Pinteract for the cross-product interaction 
regression coefficient of additive SSBxSNP categories.

#Linkage disequilibrium (R2) between rs13240662 and rs71556729=0.55 in European ancestry groups of phase 3 (version 5) of the 1000 genomes project.
**Statistically significant interaction based on Bonferonni-corrected PDiff or Pinteract <0.0001.
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consumers (<1 serving/mo; P>0.05). The effect sizes of 
these SNPs among the highest SSB consumers were 
consistent across all the cohorts. There was no hetero-
geneity (I2=0%) observed for the top 4 distinct signals 
(statistically significant and suggestive) among the high-
est SSB consumers (>1 serving/d), which could be due 
to low power to detect heterogeneity given the smaller 
sample size available among the highest SSB consumers 
(maximum, n=4033).

No statistically significant differences in effect by 
category of SSB intake on triglyceride concentrations 
were observed when applying the difference test (PDiff 
>0.0001 for all SNPs). One SNP (rs799157) in moder-
ate LD with a top SNP identified in the overall analysis 
for triglyceride concentrations (Table X in the Data Sup-
plement; R2 with rs42124=0.44) displayed a suggestive 
difference in effect by category of SSB intake on triglyc-
eride concentrations in minimally adjusted models (model 
1; PDiff=0.005; Table 2). Each additional minor allele at 
rs799157 was associated with higher mean triglyceride 
concentrations among the highest SSB consumers (>1 
serving/d; β [SE]: 0.11 [0.03] ln-mg/dL, P=0.002), but 
this association was attenuated among the lowest SSB 
consumers (β [SE], 0.01 [0.01] ln-mg/dL, P=0.11; Fig-
ure V in the Data Supplement). The direction of the effect 
size of this SNP among the highest SSB consumers was 
consistent across all the cohorts in which these SNPs 
were available, and heterogeneity was low among the 
highest SSB consumers (I2=0%).

Cross-Product Interactions Between SSB 
Consumption and SNPs on HDL-C and 
Triglyceride in CHARGE Cohorts
No statistically significant cross-product interactions 
between SNPs and SSB consumption on HDL-C or 
triglyceride concentrations were observed (Pinteraction 
>0.0001), while some tests were suggestive (Pinteraction 
<0.005; Table 2). Three SNPs displayed a suggestive 
interaction with SSB consumption on HDL-C concentra-
tions in either covariate model, and the clumping identi-
fied 2 distinct signals (rs71556729 and rs79578725). 
One SNP (rs55673514) displayed a suggestive interac-
tion with SSB on triglyceride concentrations in model 2. 
Forest plots for top distinct signals in SSBxSNP interac-
tion analyses on lipid traits are presented in Figures VI 
and VII in the Data Supplement.

Interactions Between SSB Consumption and 
SNPs on Lipid Traits in the UKB and Meta-
Analysis With CHARGE Cohort Results
General characteristics and mean dietary intakes for the 
59 220 UKB participants are shown in Table VI in the 
Data Supplement. Two out of 5 top signals for HDL-C 

(rs35709627 and rs71556729) and one out of 2 top 
signals for triglyceride in the CHARGE consortium were 
replicated among the UKB participants (Table VII in the 
Data Supplement). In a meta-analysis of the top results 
from the CHARGE consortium and data from the UKB, 3 
out of the 5 top SNPs for HDL-C and one out of the 2 top 
SNPs for triglyceride concentrations displayed statistically 
significant interactions (Table 3). The top SNP for HDL-C 
concentrations was located at rs71556729 (Figure 1A). In 
fully adjusted models, the association between the minor 
allele at rs71556729 with HDL-C concentrations was 
observed only among the highest SSB consumers (β, 2.12 
[95% CI, 1.16–3.07] mg/dL, P<0.0001) and not the low-
est SSB consumers (P=0.81; PDiff <0.0001). Similarly, 2 
SNPs in low to moderate LD with rs71556729 (TBL2-
rs35709627: R2 with rs71556729=0.55; rs71556736: R2 
with rs71556729=0.19) displayed similar statistically sig-
nificant differences in effect by category of SSB intake (PDiff 
<0.0001). The SNP at rs55673514 displayed a suggestive 
interaction with triglyceride concentrations in the CHARGE 
meta-analysis and was statistically significant after includ-
ing data from the UKB (Figure 1B, PDiff <0.0005). The 
association of the minor allele at rs55673514 with triglyc-
eride concentrations was observed only among the highest 
SSB consumers (β, 0.06 [95% CI, 0.02–0.09] ln-mg/dL, 
P=0.001) and not the lowest SSB consumers (P=0.84). 
The SNP at rs55673514 is not in appreciable LD with any 
of the top SNPs in the overall analysis for triglyceride con-
centrations (R2<0.1). A heatmap of LD among top SNPs in 
overall and interaction analyses is provided in Figure II in 
the Data Supplement. Sensitivity analyses examining the 
influence of adjustment for other dietary factors and fast-
ing hours among UKB participants yielded similar results 
for the top SNPs identified in the meta-analysis (Results in 
the Data Supplement).

DISCUSSION
In this study, including up to 86 241 participants for 
whom genetic and SSB consumption data were avail-
able, we identified novel interactions between genetic 
variants at the CHREBP locus and SSB consumption 
on HDL-C and triglyceride concentrations. Our data 
suggest that the magnitude of the inverse association 
between SSB consumption and HDL-C concentrations 
is lower among individuals harboring genetic variants at 
rs71556729, rs35709627, and rs71556736, and the 
positive association between SSB consumption and 
triglyceride concentrations is exacerbated among indi-
viduals harboring genetic variants at rs55673514. In 
the CHARGE cohorts, we also observed a consistent 
inverse association between SSB consumption on fast-
ing HDL-C and positive association on triglyceride con-
centrations. We also replicated previously observed main 
associations between SNPs in the CHREBP locus and 
HDL-C and triglyceride concentrations.
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Our study provides evidence that SSB consumption may 
modify the association of genetic variants in the CHREBP 
locus with HDL-C and triglyceride concentrations. Partici-
pants with the minor allele at rs71556729, rs35709627, 
and rs71556736 and high SSB consumption had higher 
mean HDL-C concentrations than those with the major 
allele who also had high SSB consumption. This suggests 
that participants with the minor allele at rs71556729 
(MAF [minor allele frequency]=0.05), rs35709627 
(MAF=0.05), and rs71556736 (MAF=0.13) may be pro-
tected against SSB-induced reductions in HDL-C concen-
trations. The region containing these SNPs is enriched for 
enhancer histone marks and these SNPs lie within puta-
tive regulatory motifs for transcription factors that could 
potentially regulate ChREBP expression and function 
in an SSB-dependent manner.33 Similarly, rs55673514, 
which associates with triglyceride only among the highest 
SSB consumers, lies within a region enriched for enhancer 
histone marks in several tissues, including liver.33 Given the 
strong inverse relationship between HDL-C and triglycer-
ide concentrations, additional investigation into how these 
SNPs may independently influence HDL-C or triglycer-
ide concentrations could provide new insights into the 
distinct mechanisms contributing to plasma HDL-C and 

triglyceride concentrations. Additional discussion of main 
associations between SNPs and SSB on triglyceride and 
HDL-C in the CHARGE cohorts is provided in the Discus-
sion in the Data Supplement.

The rs71556729 interaction was a top signal when 
testing for interactions using the difference test and the 
cross-product interaction test on HDL-C concentrations 
in the CHARGE cohorts. However, when applying the 
cross-product interaction test, the interaction appeared 
less significant than the result from the difference test. 
This may be due to heterogeneity in the association 
between rs71556729 and HDL-C concentrations result-
ing from increased misclassification of SSB consump-
tion among those reporting low (1–4 servings/mo) to 
moderate (1–2 and 3–7 servings/wk) SSB consumption 
(Figure IV in the Data Supplement). These results sug-
gest that the difference test may be a useful method for 
identifying gene-diet interactions in observational stud-
ies, and this could be due to a reduction in misclassifica-
tion of SSB intake and the potential to detect nonlinear 
interaction effects. However, we do not comprehensively 
compare the difference test to the cross-product interac-
tion test. Future methodological studies comparing the 
usefulness of these 2 methods with varying degrees of 

Table 3. Fixed-Effect Meta-Analysis of Top Candidate SNPs for Difference Test Interactions Between SSB Consumption and 
SNPs on HDL-C and TG Concentrations in CHARGE Consortium Cohorts and UKB*

SNP
Location 
(Hg19)

Alleles 
(E/A)† MAF

SSB intake 
category n Effect size (SE) P value Direction‡ I2 PDiff

HDL-C, mg/dL

rs71556729§
 

72989516 T/C
 

0.05
 

Low 68 701 0.01 (0.05) 0.81 ++ 0% 1.5×10−6∥
 

High 15 227 2.06 (0.44) 3.48×10−6 ++ 74%

rs35709627§
 

72999171 A/G
 

0.05
 

Low 69 667 0.01 (0.04) 0.74 ++ 0% 1.0×10−5∥
 

High 15 883 1.37 (0.32) 2.15×10−5 ++ 87%

rs71556736
 

73034929 T/C
 

0.13
 

Low 69 667 0.02 (0.02) 0.33 ++ 93% 2.5×10−5∥
 

High 15 882  0.84 (0.20) 3.27×10−5 ++ 42%

rs73137017
 

72974413 G/A
 

0.04
 

Low 69 303 0.01 (0.05) 0.82 ++ 0% 0.04
 

High 15 783 0.73 (0.37) 0.05 ++ 81%

rs79578725
 

73002455 A/G
 

0.05
 

Low 68 929 −0.02 (0.04) 0.64 − − 21% 0.55
 

High 15 783 −0.22 (0.36) 0.53 − − 0%

TG, ln-mg/dL

rs55673514
 

73021456 G/A
 

0.04
 

Low 69 096 −0.002 (0.01) 0.84 +− 29% 0.0005∥
 

High 15 395 −0.06 (0.02) 0.001 − − 0%

rs799157
 

73020301 T/C
 

0.05
 

Low 70 235 0.03 (0.01) 2.55×10−7 ++ 59% 0.05
 

High 16 006 0.06 (0.02) 0.0002 ++ 19%

CHARGE indicates Cohorts for Heart and Aging Research in Genetic Epidemiology; HDL-C, high-density lipoprotein cholesterol; MAF, minor allele frequency; SNP, 
single nucleotide polymorphism; SSB, sugar-sweetened beverages; TG, triglyceride; and UKB, UK Biobank.

*Top candidates represent statistically significant or suggestive interactions (PDiff <0.005 or Pinteract<0.005) in CHARGE cohort meta-analysis. Models adjusted for age, 
sex, total energy intake, field center, and accounted for family or population structure where applicable plus education, smoking, physical activity, alcohol intake, and body 
mass index (kg/m2). For the difference test, interaction coefficients are shown as β (SE), where β represents the direction and magnitude of change in the outcome 
trait with each additional effect allele among participants with low (CHARGE <1 serving/mo; UKB: nonconsumers) or high (CHARGE >1 serving/d; UKB: consumers) 
SSB consumption.

†Alleles presented as effect (E)/alternative (A) alleles.
‡Order of cohorts for regression coefficient directions: CHARGE cohorts, UKB (+, positive effect size; −, negative effect size).
§Linkage disequilibrium (R2) between rs13240662 and rs71556729=0.55 in European ancestry groups of phase 3 (version 5) of the 1000 genomes project.
‖Indicates a statistically significant interaction based on Bonferroni-corrected PDiff <0.01 (0.05/5 top signals) for HDL-C and PDiff <0.025 (0.05/2 top signals) for TG 

concentrations.
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misclassification and types of exposures may be useful 
to inform future gene-diet interaction studies.

There is a limited body of evidence describing how 
genes implicated in various diseases may interact with 
SSB consumption to modify cardiometabolic health and 
noncommunicable disease risk.34 One large prospective 
cohort study among Swedish adults examined whether 
genetic risk for dyslipidemia (using a weighted genetic 
risk score) interacted with SSB consumption to influence 
plasma lipid concentrations, but no significant interac-
tions were observed.35 Although genetic risk scores can 
be useful for translation, as previously shown for the 
interaction between SSB consumption and genetic risk 
for obesity,36 a weakness of genetic risk scores is that 
aggregation of multiple SNPs from across the genome 
does not allow inclusion of potential interacting SNPs 
that may not be associated with the outcome in overall 
analyses. In addition, interaction effects of SNPs may be 
mitigated by the null interaction effects of other SNPs 

included in the genetic risk score. The candidate gene 
approach in the current study allows for the potential to 
generate hypotheses of the mechanisms underlying the 
interaction that could be tested using animal and human 
models in future studies.

No previous studies have examined the interaction 
between SNPs in the CHREBP region and SSB con-
sumption on lipid concentrations. We previously inves-
tigated how selected SNPs in the ChREBP-FGF21 
pathway interacted with SSB consumption to influence 
fasting insulin and glucose measures among 34 748 
adults from CHARGE cohorts, but we did not identify 
a significant cross-product interaction that was consis-
tent among the discovery and replication phases of that 
study.37 In the current study, we applied a comprehen-
sive approach that tested a wide range of SNPs in the 
CHREBP region that were not necessarily identified in 
GWAS. Given that our suggestive interaction results do 
not include any SNPs that were statistically significant in 

Figure. Associations between top candidate single nucleotide polymorphisms (SNPs) and HDL-C (high-density lipoprotein cholesterol) 
and triglyceride (TG) concentrations stratified by category of sugar-sweetened beverages (SSB) intake in a random effects meta-
analysis of the Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) cohorts and the UK Biobank (UKB).
A, In a random effects meta-analysis of the CHARGE cohorts and the UKB, the association of the minor allele at rs71556729 with HDL-C 
concentrations was observed only among the highest SSB consumers (β, 2.12 [95% CI, 1.16–3.07] mg/dL, P<0.0001) and not the lowest 
SSB consumers (P=0.81; PDiff<0.0001). B, In a random effects meta-analysis of the CHARGE cohorts and the UKB, the association of the 
minor allele at rs55673514 with TG concentrations was observed only among the highest SSB consumers (β, 0.06 [95% CI, 0.02–0.09]) 
ln-mg/dL, P=0.001), and not the lowest SSB consumers (P=0.84; PDiff <0.0005); linear regression models represent associations between 
each additional effect allele and HDL-C (mg/dL) or TG (ln-mg/dL) concentrations among SSB consumption categories accounting for family, 
population structure, and field center (where applicable) and adjusting for age, sex, total energy intake, education, smoking, physical activity, 
alcohol intake, and body mass index. Intake categories are different for the highest SSB consumers (CHARGE: >1 serving/d; UKB: SSB 
consumers) and lowest SSB consumers (CHARGE: <1 serving/mo; UKB: SSB nonconsumers) in the 2 samples.
https://www.ahajournals.org/journal/circgen
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the overall SNP analyses, our data indicate that there may 
be additional SNPs not identified in GWAS contributing 
to the heritability of HDL-C and triglyceride concentra-
tions, but their contribution is influenced by SSB con-
sumption. Similar to previous GWAS for body mass index 
that have identified new loci when adjusting for environ-
mental factors,38,39 we provide an additional example of 
how missing genetic heritability may be revealed when 
accounting for environmental factors, such as SSB con-
sumption in the current study.

The strengths of our study include the large sample 
size attained through meta-analysis of multiple indepen-
dent cohorts, the ability to standardize the analyses con-
ducted in all cohorts through a collaborative approach, 
the use of an external cohort to validate findings, and the 
use of multiple methods to screen for potential interac-
tions between SSB consumption and over 1606 SNPs 
in the CHREBP region on HDL-C and triglyceride con-
centrations. The analytic approach revealed novel SNPs 
that may contribute to unexplained heritability of HDL-C 
and triglyceride concentrations. Limitations of this study 
include its observational design that constrain our ability 
to infer causality, the sample of European-descent adults 
that limits generalizability, the use of self-reported dietary 
data from food frequency questionnaires and 24-hour 
recall that may lead to misclassification of food and nutri-
ent intakes, and the possibility of residual confounding, 
even after controlling for potential dietary and lifestyle fac-
tors that co-vary with SSB intake. Our focus on the com-
parison of the highest SSB consumers to the lowest SSB 
consumers helps minimize this potential misclassification 
by focusing on extreme consumption patterns. Misclas-
sification in the UKB is likely given that a snapshot of 
intake on a single day cannot provide a reliable estimate 
of usual SSB consumption. However, this misclassifica-
tion is likely nondifferential by genotype, which would only 
result in attenuation of our results. Additionally, while our 
definition of SSB did consider a range of SSB, it was not 
comprehensive. For example, it did not include commonly 
consumed beverages, such as sweetened tea or coffee, 
and we included several types of SSB in the same expo-
sure definition (colas and fruit drinks). The blood collection 
among UKB participants was conducted after less than 
the recommended 8 hours of fasting before measurement 
of lipids. We adjusted for fasting hours to help account 
for this variability and conducted a sensitivity analysis to 
examine the top interactions observed by fasting hours. 
The LD-based method used to estimate the number of 
independent tests in the region may be overly conserva-
tive, which could potentially lead to inflation of type II error 
rate. Thus, we additionally present suggestive results that 
did not reach statistical significance. Given these weak-
nesses, results from this study should be used to inform 
future studies with larger samples sizes or detailed experi-
mental studies. Minority populations are disproportionality 
burdened by dyslipidemia and have higher SSB intake,40,41 

and thus more studies in these populations may help 
reduce health inequality and disparity.

In conclusion, our findings suggest that the minor 
alleles of 3 SNPs in the CHREBP region (rs71556729, 
rs35709627, and rs71556736) may be protective 
against SSB-induced low HDL-C concentrations and 
the minor allele at rs55673514 may exacerbate positive 
associations between SSB consumption and triglycer-
ide concentrations. Several of the top SNPs identified 
in the interaction analyses were not top SNPs identified 
in the overall analyses, providing evidence that some 
genetic associations may be revealed only when con-
ditioned on environmental factors, such as the range of 
SSB consumption in the current study. As larger data 
sets with genetics, diet, and lipids data become avail-
able, additional suggestive interactions between SSB 
consumption and SNPs within the CHREBP region on 
HDL-C and triglyceride concentrations observed here 
may warrant further investigation.

ARTICLE INFORMATION
Received December 4, 2020; accepted June 21, 2021.

Affiliations
Nutritional Epidemiology Program (D.E.H., M. Guirette, K.A.L., N.M.M.), Car-
diovascular Nutrition Laboratory (A.H.L.), Nutrition and Genomics Laboratory 
(C.E.S.), Jean Mayer U.S. Department of Agriculture Human Nutrition Research 
Center on Aging, and Friedman School of Nutrition Science and Policy (D.M.), 
Tufts University, Boston, MA. Channing Division of Network Medicine (D.E.H., 
J.E.M.), Division of Preventive Medicine (J.E.M., S.M., P.M.R., D.I.C.) and Cardio-
vascular Division of Medicine and Center for Lipid Metabolomics (S.M., P.M.R.), 
Brigham and Women's Hospital and Harvard Medical School, Boston, MA. De-
partment of Nutrition (D.E.H.) and Department of Epidemiology (J.E.M.), Harvard 
T.H. Chan School of Public Health, Boston, MA. Department of Biostatistics, 
Boston University School of Public Health, MA (G.M.P., A.N.P., J.D.). Medical 
Research Council Epidemiology Unit, University of Cambridge, United Kingdom 
(F.I., J.L., N.G.F., N.J.W.). Cardiovascular Health Research Unit, Departments of 
Biostatistics (T.M.B.), Department of Medicine (T.M.B., R.N.L., B.M.P.), and De-
partments of Epidemiology and Health Services (B.M.P.), University of Wash-
ington, Seattle. School of Medicine and Public Health, Faculty of Medicine and 
Health, The University of Newcastle, NSW, Australia (C.A.W., C.E.P.). Department 
of Clinical Epidemiology (R.L.G., D.O.M.-K., F.R.R., R.dM.) and Department of 
Public Health and Primary Care (J.C.L.d.J., D.O.M.-K.), Leiden University Medical 
Center, the Netherlands. Dordt University, Sioux Center, IA (J.M.W., N.T.). Au-
ria Biobank (N.P.), Research Centre of Applied and Preventive Cardiovascular 
Medicine (N.P., O.T.R.), Department of Medicine (J.S.V.), and Centre for Popula-
tion Health Research (O.T.R.), University of Turku, Finland. Division of Medicine 
(J.S.V.) and Department of Clinical Physiology and Nuclear Medicine (O.T.R.), 
Turku University Hospital, Finland. Department of Epidemiology, Gillings School 
of Global Public Health (K.L.Y., M. Graff, K.N.) and Carolina Center for Genome 
Science (K.N.), University of North Carolina, Chapel Hill. USDA/ARS Children's 
Nutrition Research Center, Department of Pediatrics, Baylor College of Medi-
cine, Houston, TX (A.C.W.). Department of Epidemiology (K.V.E.B., J.C.K.-d.J., M. 
Ghanbari, M.A.I.) and Department of Internal Medicine (A.G.U.), Erasmus MC 
University Medical Center Rotterdam, the Netherlands. Department of Clini-
cal Physiology (M.K.) and Research Development and Innovation Centre (M.H.), 
Tampere University Hospital, Finland. Department of Clinical Physiology (M.K.) 
and Department of Clinical Chemistry (T.L.), Finnish Cardiovascular Research 
Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 
Finland. Faculty of Social Sciences, Health Sciences, Tampere University, Fin-
land (M.H.). Department of Epidemiology and Population Health, Albert Einstein 
College of Medicine, Bronx, NY (Y.M.-R.). Department of Epidemiology, Univer-
sity of Iowa, Iowa City (L.S.). George Washington University School of Medicine 
and Health Sciences, Washington, D.C. (L.W.M.). Menzies Institute for Medical 
Research, University of Tasmania, HOB, Australia (W.H.O.). Kaiser Permanente 
Washington Health Research Institute, Seattle, WA (B.M.P.). The Institute for 



Haslam et al SSB-CHREBP Interactions on Lipid Traits

Circ Genom Precis Med. 2021;14:e003288. DOI: 10.1161/CIRCGEN.120.003288 August 2021 514

Translational Genomics and Population Sciences, Department of Pediatrics, 
The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical 
Center, Torrance, CA (J.I.R., K.D.T.). Department of Clinical Chemistry, Fimlab 
Laboratories, Tampere, Finland (T.L.). Center for Public Health Genomics and 
Department of Public Health Sciences, University of Virginia School of Medi-
cine, Charlottesville (S.S.R.). Program in Medical and Population Genetics (J.M., 
J.B.M., H.S.D.) and Program in Metabolism (J.M., J.B.M.), Broad Institute of MIT 
and Harvard, Cambridge, MA. Department of Medicine, Harvard Medical School, 
Boston, MA (J.M., J.B.M.). Institut d'Investigació Sanitària Pere Virgili, Universitat 
Rovira i Virgili, Reus, Spain (J.M.). Diabetes Unit and Center for Genomic Medi-
cine (J.M., H.S.D.), Division of General Internal Medicine (J.B.M.), and Depart-
ment of Anesthesia, Critical Care and Pain Medicine (H.S.D.), Massachusetts 
General Hospital and Harvard Medical School, Boston. Division Of Endocrinol-
ogy, Metabolism, and Nutrition, Department of Medicine and Duke Molecular 
Physiology Institute, Duke University School of Medicine, Durham, NC (M.A.H.).

Acknowledgments
Preliminary results were presented as abstracts at the annual meeting for the 
American Society for Nutrition 2020. Please see Table I in the Data Supplement 
for cohort-specific acknowledgments. The authors’ responsibilities were as fol-
lows: Dr Haslam, Dr Peloso, M. Guirette, Dr Dashti, Dr Lichtenstein, Dr Smith, Dr 
Dupuis, Dr Herman, and Dr McKeown designed the study. Dr Haslam, Dr Peloso, 
M. Guirette, Dr Lemaitre, Dr Tintle, Dr Mook-Kanamori, Dr North, Dr Viikari, Dr 
Snetselaar, Dr Mossavar-Rahmani, Dr Martin, Dr Oddy, Dr Pennell, Dr Rosendall, 
Dr Arfan Ikram, Dr Uitterlinden, Dr Voortman, Dr Psaty, Dr Mozaffarian, Dr Rotter, 
Dr Taylor, Dr Lehtimäki, Dr Raitakari, K.A. Livingston, Dr Forouhi, Dr Wareham, Dr 
Luan, Dr de Mutsert, Dr Rich, Dr Manson, Dr Mora, Dr Ridker, Dr Meigs, Dr Chas-
man, Dr Lichtenstein, Dr Smith, Dr Dupuis, Dr Herman, and Dr McKeown played 
a role in acquisition of the data and critical editing of the article; Dr Haslam, Dr 
Peloso, M. Guirette, Dr Imamura, T.M. Bartz, Dr Pitsillides, Dr Wang, Dr Li-Gao, 
J.M. Westra, Dr Pitkänen, Dr Young, Dr Graff, Dr Wood, Dr Braun, Dr Luan, Dr 
Kähönen, Dr Kiefte-de Jong, Dr Ghanbari, and Dr Tintle conducted statistical 
analyses; Dr Haslam, Dr Peloso, M. Guirette, Dr Dashti, Dr Merino, Dr Lichten-
stein, Dr Smith, Dr Dupuis, Dr Herman, and Dr McKeown interpreted the data; Dr 
Haslam, Dr Peloso, M. Guirette, Dr Dashti, Dr Merino, K.A. Livingston, Dr Lichten-
stein, Dr Smith, Dr Dupuis, Dr Herman, and Dr McKeown contributed to writing 
of the article; all authors read and approved the final version of the article. Drs 
Haslam and McKeown are the guarantors of this work and, as such, had full ac-
cess to all the data in the study and take responsibility for the integrity of the data 
and accuracy of the data analysis.

Sources of Funding
This work is supported by National Institutes of Health (NIH) 5T32HL069772-15 
and NIH 2T32CA009001-39 (Haslam), American Heart Association 
16CSA28590003 (Haslam, McKeown, and Herman), NIH R01 DK100425 
(Herman), R01 DK121710 (McKeown, Herman, Smith, and Dupuis), K08 
HL112845 (Smith), USDA ARS agreement No. 58-1950-4-003 (McKeown) 
and 588-1950-9-001 (Lichtenstein). Infrastructure for the Cohorts for Heart and 
Aging Research in Genetic Epidemiology (CHARGE) Consortium is supported in 
part by the National Heart, Lung, and Blood Institute grant HL105756. Please 
see Table I in the Data Supplement for funding sources associated with investiga-
tors and infrastructure of individual CHARGE cohorts.

Disclosures
Dr Mora received institutional research grant support from Atherotech Diag-
nostics for research outside the current work, served as a consultant (modest) 
to Quest Diagnostics and Pfizer outside the current work. The other authors 
report no conflicts.

Supplemental Materials
Supplemental Methods
Supplemental Results
Supplemental Discussion
Supplemental Tables I–XI
Supplemental Figures I–XXII
Appendix I

REFERENCES
 1. Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism. 2014;63:1469–

1479. doi: 10.1016/j.metabol.2014.08.010
 2. Rader DJ, Hovingh GK. HDL and cardiovascular disease. Lancet. 

2014;384:618–625. doi: 10.1016/S0140-6736(14)61217-4

 3. Navar AM. The Evolving Story of Triglycerides and Coronary Heart Disease 
Risk. JAMA. 2019;321:347–349. doi: 10.1001/jama.2018.20044

 4. Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, 
Gibbons R, Greenland P, Lackland DT, Levy D, O’Donnell CJ, et al. 2013 
ACC/AHA Guideline on the Assessment of Cardiovascular Risk. Circulation. 
2014;129:S49–S73. doi: 10.1161/01.cir.0000437741.48606.98

 5. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, 
Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, et al. 2018 AHA/
ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/
PCNA Guideline on the Management of Blood Cholesterol. Circulation. 
2019;73:3168–3209. doi: 10.1016/j.jacc.2018.11.002

 6. Heller DA, de Faire U, Pedersen NL, Dahlén G, McClearn GE. Genetic 
and environmental influences on serum lipid levels in twins. N Engl J Med. 
1993;328:1150–1156. doi: 10.1056/NEJM199304223281603

 7. Abney M, McPeek MS, Ober C. Broad and narrow heritabilities of quantita-
tive traits in a founder population. Am J Hum Genet. 2001;68:1302–1307. 
doi: 10.1086/320112

 8. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, 
Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, et al. Biologi-
cal, clinical and population relevance of 95 loci for blood lipids. Nature. 
2010;466:707–713. doi: 10.1038/nature09270

 9. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, 
Cooper GM, Roos C, Voight BF, Havulinna AS, et al. Six new loci associ-
ated with blood low-density lipoprotein cholesterol, high-density lipoprotein 
cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–197. doi: 
10.1038/ng.75

 10. Peloso GM, Demissie S, Collins D, Mirel DB, Gabriel SB, Cupples LA, 
Robins SJ, Schaefer EJ, Brousseau ME. Common genetic variation in 
multiple metabolic pathways influences susceptibility to low HDL-choles-
terol and coronary heart disease. J Lipid Res. 2010;51:3524–3532. doi: 
10.1194/jlr.P008268

 11. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, Gustafsson S, 
Kanoni S, Ganna A, Chen J, et al. Common variants associated with plasma 
triglycerides and risk for coronary artery disease. Nat Genet. 2013;45:1345–
1352. doi: 10.1038/ng.2795

 12. Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, Gagnon  
DR, DuVall SL, Li J, Peloso GM, et al; Global Lipids Genetics Consortium; 
Myocardial Infarction Genetics (MIGen) Consortium; Geisinger-Regeneron 
DiscovEHR Collaboration; VA Million Veteran Program. Genetics of blood 
lipids among ~300,000 multi-ethnic participants of the Million Veteran Pro-
gram. Nat Genet. 2018;50:1514–1523. doi: 10.1038/s41588-018-0222-9

 13. Uyeda K, Repa JJ. Carbohydrate response element binding protein, 
ChREBP, a transcription factor coupling hepatic glucose utilization and lipid 
synthesis. Cell Metab. 2006;4:107–110. doi: 10.1016/j.cmet.2006.06.008

 14. Fisher FM, Kim M, Doridot L, Cunniff JC, Parker TS, Levine DM, 
Hellerstein MK, Hudgins LC, Maratos-Flier E, Herman MA. A critical role for 
ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol 
Metab. 2017;6:14–21. doi: 10.1016/j.molmet.2016.11.008

 15. Kooner JS, Chambers JC, Aguilar-Salinas CA, Hinds DA, Hyde CL, 
Warnes GR, Gómez Pérez FJ, Frazer KA, Elliott P, Scott J, et al. Genome-
wide scan identifies variation in MLXIPL associated with plasma triglycer-
ides. Nat Genet. 2008;40:149–151. doi: 10.1038/ng.2007.61

 16. Chasman DI, Paré G, Mora S, Hopewell JC, Peloso G, Clarke R, 
Cupples LA, Hamsten A, Kathiresan S, Mälarstig A, et al. Forty-three loci 
associated with plasma lipoprotein size, concentration, and cholesterol 
content in genome-wide analysis. PLoS Genet. 2009;5:e1000730. doi: 
10.1371/journal.pgen.1000730

 17. Postic C, Dentin R, Denechaud PD, Girard J. ChREBP, a transcriptional reg-
ulator of glucose and lipid metabolism. Annu Rev Nutr. 2007;27:179–192. 
doi: 10.1146/annurev.nutr.27.061406.093618

 18. Erion DM, Popov V, Hsiao JJ, Vatner D, Mitchell K, Yonemitsu S, Nagai Y, 
Kahn M, Gillum MP, Dong J, et al. The role of the carbohydrate response 
element-binding protein in male fructose-fed rats. Endocrinology. 
2013;154:36–44. doi: 10.1210/en.2012-1725

 19. Kim M, Astapova II, Flier SN, Hannou SA, Doridot L, Sargsyan A, Kou HH, 
Fowler AJ, Liang G, Herman MA. Intestinal, but not hepatic, ChREBP is 
required for fructose tolerance. JCI Insight. 2017;2:96703. doi: 10.1172/ 
jci.insight.96703

 20. Linden AG, Li S, Choi HY, Fang F, Fukasawa M, Uyeda K, Hammer RE, 
Horton JD, Engelking LJ, Liang G. Interplay between ChREBP and SREBP-
1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J 
Lipid Res. 2018;59:475–487. doi: 10.1194/jlr.M081836

 21. de Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB. 
Sweetened beverage consumption, incident coronary heart disease, and 



Haslam et al SSB-CHREBP Interactions on Lipid Traits

Circ Genom Precis Med. 2021;14:e003288. DOI: 10.1161/CIRCGEN.120.003288 August 2021 515

biomarkers of risk in men. Circulation. 2012;125:1735–41, S1. doi: 
10.1161/CIRCULATIONAHA.111.067017

 22. Welsh JA, Sharma A, Abramson JL, Vaccarino V, Gillespie C, Vos MB. 
Caloric sweetener consumption and dyslipidemia among US adults. JAMA. 
2010;303:1490–1497. doi: 10.1001/jama.2010.449

 23. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, 
Hatcher B, Cox CL, Dyachenko A, Zhang W, et al. Consuming fructose-
sweetened, not glucose-sweetened, beverages increases visceral adiposity 
and lipids and decreases insulin sensitivity in overweight/obese humans. J 
Clin Invest. 2009;119:1322–1334. doi: 10.1172/JCI37385

 24. Haslam DE, Peloso GM, Herman MA, Dupuis J, Lichtenstein AH, Smith CE, 
McKeown NM. Beverage consumption and longitudinal changes in lipo-
protein concentrations and incident dyslipidemia in US adults: the Fram-
ingham heart study. J Am Heart Assoc. 2020;9:e014083. doi: 10.1161/ 
JAHA.119.014083

 25. de Koning L, Malik VS, Rimm EB, Willett WC, Hu FB. Sugar-sweetened and 
artificially sweetened beverage consumption and risk of type 2 diabetes in 
men. Am J Clin Nutr. 2011;93:1321–1327. doi: 10.3945/ajcn.110.007922

 26. Hu FB, Malik VS. Sugar-sweetened beverages and risk of obesity and type 
2 diabetes: epidemiologic evidence. Physiol Behav. 2010;100:47–54. doi: 
10.1016/j.physbeh.2010.01.036

 27. Imamura F, O’Connor L, Ye Z, Mursu J, Hayashino Y, Bhupathiraju SN, 
Forouhi NG. Consumption of sugar sweetened beverages, artificially sweet-
ened beverages, and fruit juice and incidence of type 2 diabetes: systematic 
review, meta-analysis, and estimation of population attributable fraction. 
BMJ. 2015;351:h3576. doi: 10.1136/bmj.h3576

 28. Popkin BM, Hawkes C. Sweetening of the global diet, particularly bever-
ages: patterns, trends, and policy responses. Lancet Diabetes Endocrinol. 
2016;4:174–186. doi: 10.1016/S2213-8587(15)00419-2

 29. Singh GM, Micha R, Khatibzadeh S, Lim S, Ezzati M, Mozaffarian D; 
Global Burden of Diseases Nutrition and Chronic Diseases Expert Group 
(NutriCoDE). Estimated Global, Regional, and National Disease Burdens 
Related to Sugar-Sweetened Beverage Consumption in 2010. Circulation. 
2015;132:639–666. doi: 10.1161/CIRCULATIONAHA.114.010636

 30. Dai H, Much AA, Maor E, Asher E, Younis A, Xu Y, Lu Y, Liu X, Shu J, 
Bragazzi NL. Global, regional, and national burden of ischaemic heart dis-
ease and its attributable risk factors, 1990–2017: results from the Global 
Burden of Disease Study 2017. Eur Heart J Qual Care Clin Outcomes.  2020 
Oct 5: qcaa076. doi: 10.1093/ehjqcco/qcaa076

 31. Psaty BM, O’Donnell CJ, Gudnason V, Lunetta KL, Folsom AR, Rotter JI, 
Uitterlinden AG, Harris TB, Witteman JC, Boerwinkle E; CHARGE Con-
sortium. Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) Consortium: design of prospective meta-analyses of genome-
wide association studies from 5 cohorts. Circ Cardiovasc Genet. 2009;2:73–
80. doi: 10.1161/CIRCGENETICS.108.829747

 32. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, 
Elliott P, Green J, Landray M, et al. UK biobank: an open access resource 
for identifying the causes of a wide range of complex diseases of 
middle and old age. PLoS Med. 2015;12:e1001779. doi: 10.1371/ 
journal.pmed.1001779

 33. Kheradpour P, Kellis M. Systematic discovery and characterization of 
regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res. 
2014;42:2976–2987. doi: 10.1093/nar/gkt1249

 34. Haslam DE, McKeown NM, Herman MA, Lichtenstein AH, Dashti HS. Inter-
actions between Genetics and Sugar-Sweetened Beverage Consumption 
on Health Outcomes: a Review of Gene–Diet Interaction Studies. Front 
Endocrinol. 2018;8:368. doi: 10.3389/fendo.2017.00368

 35. Sonestedt E, Hellstrand S, Drake I, Schulz CA, Ericson U, Hlebowicz J, 
Persson MM, Gullberg B, Hedblad B, Engström G, et al. Diet quality and 
change in blood lipids during 16 years of follow-up and their interaction 
with genetic risk for dyslipidemia. Nutrients. 2016;8:E274. doi: 10.3390/ 
nu8050274

 36. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, 
Ridker PM, Hunter DJ, Willett WC, Rimm EB, et al. Sugar-sweetened bever-
ages and genetic risk of obesity. N Engl J Med. 2012;367:1387–1396. doi: 
10.1056/NEJMoa1203039

 37. McKeown NM, Dashti HS, Ma J, Haslam DE, Kiefte-de Jong JC, Smith CE, 
Tanaka T, Graff M, Lemaitre RN, Rybin D, et al. Sugar-sweetened bever-
age intake associations with fasting glucose and insulin concentrations 
are not modified by selected genetic variants in a ChREBP-FGF21 path-
way: a meta-analysis. Diabetologia. 2018;61:317–330. doi: 10.1007/ 
s00125-017-4475-0

 38. Justice AE, Winkler TW, Feitosa MF, Graff M, Fisher VA, Young K, 
Barata L, Deng X, Czajkowski J, Hadley D, et al. Genome-wide meta-analysis 

of 241,258 adults accounting for smoking behaviour identifies novel loci for 
obesity traits. Nat Commun. 2017;8:14977. doi: 10.1038/ncomms14977

 39. Graff M, Scott RA, Justice AE, Young KL, Feitosa MF, Barata L, Winkler TW, 
Chu AY, Mahajan A, Hadley D, et al; CHARGE Consortium; EPIC-InterAct 
Consortium; PAGE Consortium. Correction: Genome-wide physical activity 
interactions in adiposity - A meta-analysis of 200,452 adults. PLoS Genet. 
2017;13:e1006972. doi: 10.1371/journal.pgen.1006972

 40. Pu J, Romanelli R, Zhao B, Azar KM, Hastings KG, Nimbal V, Fortmann SP, 
Palaniappan LP. Dyslipidemia in special ethnic populations. Cardiol Clin. 
2015;33:325–333. doi: 10.1016/j.ccl.2015.01.005

 41. Han E, Powell LM. Consumption patterns of sugar-sweetened bever-
ages in the United States. J Acad Nutr Diet. 2013;113:43–53. doi: 
10.1016/j.jand.2012.09.016

 42. Becker BJ, Wu MJ. The synthesis of regression slopes in meta-analysis. Stat 
Sci. 2007;22:414–429.

 43. Cochran WG. The combination of estimates from different experiments. Bio-
metrics. 1954;10:101–129.

 44. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. 
Stat Med. 2002;21:1539–1558. doi: 10.1002/sim.1186

 45. Yang J, Ferreira T, Morris AP, Medland SE, Madden PA, Heath AC, 
Martin NG, Montgomery GW, Weedon MN, Loos RJ, et al; Genetic Inves-
tigation of ANthropometric Traits (GIANT) Consortium; DIAbetes Genetics 
Replication And Meta-analysis (DIAGRAM) Consortium. Conditional and 
joint multiple-SNP analysis of GWAS summary statistics identifies addi-
tional variants influencing complex traits. Nat Genet. 2012;44:369–75, S1. 
doi: 10.1038/ng.2213

 46. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics. 2010;26:2190–2191. doi: 
10.1093/bioinformatics/btq340

 47. Winkler TW, Justice AE, Cupples LA, Kronenberg F, Kutalik Z, Heid IM; 
GIANT consortium. Approaches to detect genetic effects that differ between 
two strata in genome-wide meta-analyses: recommendations based on 
a systematic evaluation. PLoS One. 2017;12:e0181038. doi: 10.1371/ 
journal.pone.0181038

 48. Voorman A, Lumley T, McKnight B, Rice K. Behavior of QQ-Plots and 
Genomic Control in Studies of Gene-Environment Interaction. PLoS One. 
2011;6:e19416. doi: 10.1371/journal.pone.0019416

 49. Gao X. Multiple testing corrections for imputed SNPs. Genet Epidemiol. 
2011;35:154–158. doi: 10.1002/gepi.20563

 50. 1000 Genomes Project Consortium. A global reference for human genetic 
variation. Nature. 2015;526:68. doi: 10.1038/nature15393

 51. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, 
Maller J, Sklar P, de Bakker PI, Daly MJ, et al. PLINK: a tool set for whole-
genome association and population-based linkage analyses. Am J Hum 
Genet. 2007;81:559–575. doi: 10.1086/519795

 52. Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, 
LeFaive J, VandeHaar P, Gagliano SA, Gifford A, et al. Efficiently controlling 
for case-control imbalance and sample relatedness in large-scale genetic 
association studies. Nat Genet. 2018;50:1335–1341. doi: 10.1038/ 
s41588-018-0184-y

 53. Hert KA, Fisk PS II, Rhee YS, Brunt AR. Decreased consumption of sugar-
sweetened beverages improved selected biomarkers of chronic disease 
risk among US adults: 1999 to 2010. Nutr Res. 2014;34:58–65. doi: 
10.1016/j.nutres.2013.10.005

 54. Duffey KJ, Gordon-Larsen P, Steffen LM, Jacobs DR Jr, Popkin BM. Drinking 
caloric beverages increases the risk of adverse cardiometabolic outcomes in 
the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am 
J Clin Nutr. 2010;92:954–959. doi: 10.3945/ajcn.2010.29478

 55. Dhingra R, Sullivan L, Jacques PF, Wang TJ, Fox CS, Meigs JB, 
D’Agostino RB, Gaziano JM, Vasan RS. Soft drink consumption and risk 
of developing cardiometabolic risk factors and the metabolic syndrome in 
middle-aged adults in the community. Circulation. 2007;116:480–488. doi: 
10.1161/CIRCULATIONAHA.107.689935

 56. Yu Z, Ley SH, Sun Q, Hu FB, Malik VS. Cross-sectional associa-
tion between sugar-sweetened beverage intake and cardiometa-
bolic biomarkers in US women. Br J Nutr. 2018;119:570–580. doi: 
10.1017/S0007114517003841

 57. Te Morenga LA, Howatson AJ, Jones RM, Mann J. Dietary sugars and 
cardiometabolic risk: systematic review and meta-analyses of randomized 
controlled trials of the effects on blood pressure and lipids. Am J Clin Nutr. 
2014;100:65–79. doi: 10.3945/ajcn.113.081521

 58. Talmud PJ, Drenos F, Shah S, Shah T, Palmen J, Verzilli C, Gaunt TR, 
Pallas J, Lovering R, Li K, et al; ASCOT investigators; NORDIL investiga-
tors; BRIGHT Consortium. Gene-centric association signals for lipids and 



Haslam et al SSB-CHREBP Interactions on Lipid Traits

Circ Genom Precis Med. 2021;14:e003288. DOI: 10.1161/CIRCGEN.120.003288 August 2021 516

apolipoproteins identified via the HumanCVD BeadChip. Am J Hum Genet. 
2009;85:628–642. doi: 10.1016/j.ajhg.2009.10.014

 59. The Atherosclerosis Risk in Communities (ARIC) Study: design and objec-
tives. The ARIC investigators. Am J Epidemiol. 1989;129:687–702.

 60. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, 
Kuller LH, Manolio TA, Mittelmark MB, Newman A, et al. The cardiovascular 
health study: design and rationale. Ann Epidemiol. 1991;1:263–276. doi: 
10.1016/1047-2797(91)90005-w

 61. Dawber TR, Kannel WB, Lyell LP. An approach to longitudinal studies in a 
community: the Framingham Study. Ann N Y Acad Sci. 1963;107:539–556. 
doi: 10.1111/j.1749-6632.1963.tb13299.x

 62. Feinleib M, Kannel WB, Garrison RJ, McNamara PM, Castelli WP. The 
Framingham offspring study. Design and preliminary data. Prev Med. 
1975;4:518–525. doi: 10.1016/0091-7435(75)90037-7

 63. Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, 
D’Agostino RB Sr, Fox CS, Larson MG, Murabito JM, et al. The Third Genera-
tion Cohort of the National Heart, Lung, and Blood Institute’s Framingham 
Heart Study: design, recruitment, and initial examination. Am J Epidemiol. 
2007;165:1328–1335. doi: 10.1093/aje/kwm021

 64. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, 
Greenland P, Jacob DR Jr, Kronmal R, Liu K, et al. Multi-Ethnic Study of Ath-
erosclerosis: objectives and design. Am J Epidemiol. 2002;156:871–881. 
doi: 10.1093/aje/kwf113

 65. de Mutsert R, den Heijer M, Rabelink TJ, Smit JWA, Romijn JA, Jukema JW, 
de Roos A, Cobbaert CM, Kloppenburg M, le Cessie S, et al. The Netherlands 
Epidemiology of Obesity (NEO) study: study design and data collection. Eur 
J Epidemiol. 2013;28:513–523. doi: 10.1007/s10654-013-9801-3

 66. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, 
Elliott P, Green J, Landray M, et al. UK biobank: an open access resource for 
identifying the causes of a wide range of complex diseases of middle and old 
age. PLoS Med. 2015;12:e1001779. doi: 10.1371/journal.pmed.1001779

 67. Newnham JP, Evans SF, Michael CA, Stanley FJ, Landau LI. Effects of fre-
quent ultrasound during pregnancy: a randomised controlled trial. Lancet. 
1993;342:887–891. doi: 10.1016/0140-6736(93)91944-h

 68. Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, 
Kieboom BCT, Klaver CCW, de Knegt RJ, Luik AI, et al. Objectives, design 
and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol. 
2020;35:483–517. doi: 10.1007/s10654-020-00640-5

 69. Ridker PM, Chasman DI, Zee RY, Parker A, Rose L, Cook NR, Buring JE; 
Women’s Genome Health Study Working Group. Rationale, design, and 
methodology of the Women’s Genome Health Study: a genome-wide asso-
ciation study of more than 25,000 initially healthy american women. Clin 
Chem. 2008;54:249–255. doi: 10.1373/clinchem.2007.099366

 70. Design of the Women’s Health Initiative clinical trial and observational study. 
The Women’s Health Initiative Study Group. Control Clin Trials. 1998;19:61–
109. doi: 10.1016/s0197-2456(97)00078-0

 71. Raitakari OT, Juonala M, Rönnemaa T, Keltikangas-Järvinen L, Räsänen L, 
Pietikäinen M, Hutri-Kähönen N, Taittonen L, Jokinen E, Marniemi J, et al. 
Cohort profile: the cardiovascular risk in Young Finns Study. Int J Epidemiol. 
2008;37:1220–1226. doi: 10.1093/ije/dym225

 72. Stevens J, Metcalf PA, Dennis BH, Tell GS, Shimakawa T, Folsom AR. Reli-
ability of a food frequency questionnaire by ethnicity, gender, age and edu-
cation. Nutr Res. 1996;16:735–745.

 73. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, 
Hennekens CH, Speizer FE. Reproducibility and validity of a semiquantita-
tive food frequency questionnaire. Am J Epidemiol. 1985;122:51–65. doi: 
10.1093/oxfordjournals.aje.a114086

 74. Kumanyika S, Tell GS, Fried L, Martel JK, Chinchilli VM. Picture-sort method 
for administering a food frequency questionnaire to older adults. J Am Diet 
Assoc. 1996;96:137–144. doi: 10.1016/S0002-8223(96)00042-9

 75. Bingham SA, Gill C, Welch A, Day K, Cassidy A, Khaw KT, Sneyd MJ, 
Key TJ, Roe L, Day NE. Comparison of dietary assessment methods in 
nutritional epidemiology: weighed records v. 24 h recalls, food-frequency 

questionnaires and estimated-diet records. Br J Nutr. 1994;72:619–643. 
doi: 10.1079/bjn19940064

 76. Bingham SA, Gill C, Welch A, Cassidy A, Runswick SA, Oakes S, Lubin R, 
Thurnham DI, Key TJ, Roe L, et al. Validation of dietary assessment meth-
ods in the UK arm of EPIC using weighed records, and 24-hour urinary 
nitrogen and potassium and serum vitamin C and carotenoids as bio-
markers. Int J Epidemiol. 1997;26(suppl 1):S137–S151. doi: 10.1093/ 
ije/26.suppl_1.s137

 77. Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett  
WC. Reproducibility and validity of an expanded self-administered semi-
quantitative food frequency questionnaire among male health profes-
sionals. Am J Epidemiol. 1992;135:1114–26; discussion 1127. doi: 
10.1093/oxfordjournals.aje.a116211

 78. Mayer-Davis EJ, Vitolins MZ, Carmichael SL, Hemphill S, Tsaroucha G, 
Rushing J, Levin S. Validity and reproducibility of a food frequency interview 
in a Multi-Cultural Epidemiology Study. Ann Epidemiol. 1999;9:314–324. 
doi: 10.1016/s1047-2797(98)00070-2

 79. Verkleij-Hagoort AC, de Vries JH, Stegers MP, Lindemans J, Ursem NT, 
Steegers-Theunissen RP. Validation of the assessment of folate and vitamin 
B12 intake in women of reproductive age: the method of triads. Eur J Clin 
Nutr. 2007;61:610–615. doi: 10.1038/sj.ejcn.1602581

 80. Voortman T, Kiefte-de Jong JC, Ikram MA, Stricker BH, van Rooij FJA, 
Lahousse L, Tiemeier H, Brusselle GG, Franco OH, Schoufour JD. Adher-
ence to the 2015 Dutch dietary guidelines and risk of non-communi-
cable diseases and mortality in the Rotterdam Study. Eur J Epidemiol. 
2017;32:993–1005. doi: 10.1007/s10654-017-0295-2

 81. Klipstein-Grobusch K, den Breeijen JH, Goldbohm RA, Geleijnse JM, 
Hofman A, Grobbee DE, Witteman JC. Dietary assessment in the elderly: 
validation of a semiquantitative food frequency questionnaire. Eur J Clin 
Nutr. 1998;52:588–596. doi: 10.1038/sj.ejcn.1600611

 82. Goldbohm RA, van den Brandt PA, Brants HA, van’t Veer P, Al M, Sturmans F, 
Hermus RJ. Validation of a dietary questionnaire used in a large-scale pro-
spective cohort study on diet and cancer. Eur J Clin Nutr. 1994;48:253–265.

 83. Feunekes GI, Van Staveren WA, De Vries JH, Burema J, Hautvast JG. Rela-
tive and biomarker-based validity of a food-frequency questionnaire esti-
mating intake of fats and cholesterol. Am J Clin Nutr. 1993;58:489–496. 
doi: 10.1093/ajcn/58.4.489

 84. Paalanen L, Männistö S, Virtanen MJ, Knekt P, Räsänen L, Montonen J, 
Pietinen P. Validity of a food frequency questionnaire varied by age and 
body mass index. J Clin Epidemiol. 2006;59:994–1001. doi: 10.1016/j. 
jclinepi.2006.01.002

 85. Liu B, Young H, Crowe FL, Benson VS, Spencer EA, Key TJ, Appleby PN, 
Beral V. Development and evaluation of the Oxford WebQ, a low-cost, web-
based method for assessment of previous 24 h dietary intakes in large-
scale prospective studies. Public Health Nutr. 2011;14:1998–2005. doi: 
10.1017/S1368980011000942

 86. McCance RA, Widdowson EM, Institute of Food Research (Great Brit-
ain), Public Health England, & Royal Society of Chemistry (Great Britain). 
McCance and Widdowson's The Composition of Foods. 2015 

 87. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, 
Vukcevic D, Delaneau O, O’Connell J, et al. The UK Biobank resource with 
deep phenotyping and genomic data. Nature. 2018;562:203–209. doi: 
10.1038/s41586-018-0579-z

 88. Brage S, Westgate K, Franks PW, Stegle O, Wright A, Ekelund U, Wareham NJ. 
Estimation of free-living energy expenditure by heart rate and movement 
sensing: a doubly-labelled water study. PLoS One. 2015;10:e0137206. doi: 
10.1371/journal.pone.0137206

 89. Kannel WB, Sorlie P. Some health benefits of physical activity. The Framing-
ham Study. Arch Intern Med. 1979;139:857–861.

 90. Machiela MJ, Chanock SJ. LDlink: a web-based application for explor-
ing population-specific haplotype structure and linking correlated alleles 
of possible functional variants. Bioinformatics. 2015;31:3555–3557. doi: 
10.1093/bioinformatics/btv402




