UCLA

Posters

Title

ACT6: Strategies for Sampling the Environment

Permalink

https://escholarship.org/uc/item/9cp530k4

Authors

Cathy Kong Richard Pon Mohammed Rahimi <u>et al.</u>

Publication Date

2005

Center for Embedded Networked Sensing

Strategies for Sampling the Environment

Xiangming Kong, Mohammed Rahimi, Richard Pon, Bill Kaiser, Mark Hansen, Greg Pottie, Gaurav Sukhatme, and Deborah Estrin

Explore different sampling strategies for achieving high fidelity with limited resources

Motivation

Fundamental challenges

- Phenomena show high rate of spatiotemporal variation
- High fidelity reconstruction is required
- Extensive resource allocation is expensive
- Solution
 - Probe capability of diverse sensing resources
 - Examine features in the environment
 - Adapt by exploiting actuated sensing nodes

Space-Filling Design

- Cost includes

· Sampling cost (time) · Navigation cost

- Optimize filling of sample points

- Modulate density by sampling cost

Condition $(x \mid S)$

 $T_M + d(x_0, x)/v$

- Sample points with maximum distance

- Bounded convergence on expected value

Primary Strategies

Multiscale sampling

- Applied when diverse sensing resources are available
- Examples
 - Solar radiation: Resources include fixed sensor and actuated imager Environmental temperature: Resources include fixed and actuated temperature sensors and infrared imager
- Adaptive sampling
 - Applied when only one type of sensing resource is available
 - Examples:
 - CO₂ Flux Water contamination

Strategy design

• Multiscale sampling

- Sparse multiscale/multimode sensing can yield accuracy equivalent to exhaustive sampling
- Advantages and disadvantages of each mode: · Image sensor offers high speed, but, low accuracy · Fixed or actuated PAR (intensity) sensor offers high accuracy, low speed
- Strategy based on field variable model
- One multiscale sampling level directs another level based on model results

Experimental Results

Multiscale Field Partitioning

- Inhomogeneous variable field
- May be partitioned into homogeneous subarea

- Bright and dark areas are approximately uniform
- - continuously
 - approximated by linear function

Space Filling Design

- x is robot position and d(x,y) is distance to a candidate sample point in Ω
- Select each sample point such that this criteria is maximum:

Condition $(x | S) = \min_{x \in S} d(x, y)$

- Voronoi Tessellation
- Maximum distance
- Continuously refinable - Regular convergence of estimation error

• Effect of sensor delay

From continuous design to a disconnected design

Adaptive Design

- Track most "interesting" features
- Adaptivity requires bootstrap
- information - Balance competition between
- feature tracking and space filling - Gradual relaxation

Condition($x \mid S$) + $\lambda \times Features(x \mid S)$ $T_M + d(x_0, x)/\nu$

 $\lambda(i) = \lambda_{\infty} \times (1 - e^{-(i/\tau)})$

Adaptive Design

- Track features
- · In the case of light, error dominated by bias or curvatures
- · Find model error, compensate model error by increased sample density in high error rate areas.

- Field Reconstruction
 - More points alongside edges - Silhouette is the location of the maximum error

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced

- Penumbra effect - Due to extended light source - Light intensity changes
- Intensity distribution can be

Calibration

- Transformation between PAR sensor coordinate

- Outliers in image due to varying reflectivity
- system and image coordinate system
- · Collaboration between nodes

- Camera image provides global information

- In-situ static PAR sensor detects local intensity
- Mobile PAR sensor complements static sensor
- Image sensing tasks mobile sensor to obtain new measurement

- · Digitize the environment
 - Limit computation cost
 - Occupancy map overlay for complex shapes

· Algorithm:

- · Static, mobile sensor