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ABSTRACT OF THE DISSERTATION

A Semantic Approach To Data Management for Smart Spaces

By

Peeyush Gupta

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Sharad Mehrotra, Chair

Unprecedented growth in sensing, data capture devices, communication, and computing

technologies have enabled us to capture and analyze almost every aspect of our lives. Such

a prospect has resulted in the development of a myriad of applications in the cyber-physical

systems, and the Internet of Things domain. While limitless possibilities exist, their real-

ization has led to the grand challenge of designing a new class of systems that can provide

seamless support for efficient and easier to program sensor-based applications. Furthermore,

as sensor data processing often consists of complex compiled code, expensive machine learn-

ing, and signal processing code, systems that can scale to data generated by a myriad of

interconnected sensors and devices embedded in the environment are needed.

This thesis presents TippersDB, a middleware system designed to build sensor-based smart

space analytical applications. The intended goal of TippersDB is to ease the task of de-

veloping complex smart space applications, to develop an extensible system that allows di-

verse/heterogeneous sensors (with possibly overlapping functionalities) to co-exist and to be

seamlessly integrated into the system without requiring application redesign, and to exploit

the semantics of the physical world, as well as, sensor capabilities to optimize the applica-

tions. TippersDB provides a powerful data model that decouples semantic data about the

application domain from sensor data using which the semantic data is derived. By support-

xiv



ing mechanisms to translate data, concepts, and queries between the two levels, TippersDB

relieves the application developers from having to know or reason about either the type or

location of sensors or write sensor specific code. In addition, it allows for multiple optimiza-

tions based on smart space semantics to improve query processing.

In particular, in this thesis, first we introduce the SmartBench benchmark that we developed

to analyze the existing database technologies in terms of their strength/weaknesses and

suitability in supporting IoT applications. Next, we introduce the TippersDB data model

and describe its query-driven translation of sensor data. We then provide a summary of

the system implementation and show a performance evaluation of TippersDB using IoT

benchmark queries. This is followed by the description of the progressive query processing

techniques used in TippersDB to reduce wait time for the users by providing them early

results. Finally, we highlight the benefits of TippersDB through a case study.
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Chapter 1

Introduction

Today, the information technology revolution, ongoing now for several decades, is focused

on the next breakthrough in the form of ubiquitous deployment and adoption of IoT and

smart space technologies. Such technologies create a distinct possibility to embed sensors

in the physical world and continuously capture and analyze (in real-time) data from the

sensors to create a digital representation of our lives – whether it be personal experiences,

social interactions, or our interactions with engineered, cyber, or physical systems. Such a

prospect has led to a myriad of directions of exploration, in academia and industry alike, in

the form of cyber-physical systems, pervasive computing systems, and the Internet of things

(IoT) systems. In domains such as emergency response, in-situ and mobile sensors coupled

with participatory sensing can create awareness about the extent of damage, the affected

population, and their emerging needs, leading to improved resource planning and improved

response, thereby saving lives and property. Likewise, in domains such as healthcare and

wellness, wearable devices, smart implants, and instrumented facilities/homes could lead to

an awareness that provides deeper insight about ones’ health, disease prevention, improved

diagnosis, and medical practices.

1



With limitless possibilities, there has been a recent surge in efforts to refactor existing data

management technologies and/or design new products to meet the requirements of these

emerging applications. Today, multiple data management products advertise themselves

as platforms for IoT applications [20]. These include standard relational systems [118],

key-value stores, document databases [9], or specialized systems (such as time series stores

that represent time-varying data and queries involving temporal operators and aggregation),

scalable data ingest systems (such as Kafka [2]), stream processing systems (e.g., Storm [127],

Spark Streaming [137], Flink [48]), and big data frameworks (such as Hadoop/Hive) that

can support complex analytical pipelines on very large datasets.

While existing systems individually (or collectively) meet several data management require-

ments of IoT applications, they focus on addressing challenges that arise due to big data

characteristics of IoT domains — viz., the 4V challenges: volume, velocity, variability, and

veracity. This thesis, in contrast, focuses on what we refer to as the data virtualization or

the fifth “V” challenge. By the term data virtualization, we mean the difference in the ab-

straction levels between observations generated by sensing devices and their domain-specific

semantic interpretation. For instance, a sensor observation may be an image captured by a

camera. Its semantic interpretation might be that “John entered the Einstein Building” if,

for instance, the camera was situated at the entrance of the building.

In smart space domains, application logic is best expressed at the semantic level, though

data arrives at the raw sensor level. We call a system that supports data to be viewed at

both levels of abstractions (and provides mechanisms to seamlessly translate concepts, data,

and queries across them) as supporting data virtualization. We argue that such a system

offers several benefits from the perspective of building smart space applications. First, and

foremost, such a system will significantly reduce the complexity of building smart space

applications from the perspective of application developers.

To illustrate the benefits provided by data virtualization, we show the challenges faced by
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application developers in building IoT applications over large-scale sensor deployments using

the following example:

Example 1.1. Consider a smart campus that captures people’s location to support location-

based services such as: locating group members in real-time, customizing heating, ventilation,

and air conditioning (HVAC) controls based on user preferences, contact tracing by deter-

mining who came in contact with whom and when, monitoring occupancy of different parts of

a building over time, analyzing building usage over time, understanding social interactions

amongst residents and visitors, and keeping track of facilities visited by visitors. While a

smart campus requires multiple types of sensors (e.g., HVAC sensors such as temperature,

humidity, and pressure sensors), for the sake of our example, we focus on location sensing.

In particular, people can be located based on (a) GPS sensors on their mobile device which

transmit the GPS coordinates to the system using a client application, (b) camera-based lo-

calization in locations where cameras are installed, (c) using connectivity events in the WiFi

network using techniques such as [83, 82]. Each of these mechanisms has its benefits and

limitations. The GPS-based method works only if the user has actively downloaded an app on

their device, and that too, if the user is outdoors. Cameras are typically installed in limited

locations and are, furthermore, more time consuming to analyze. WiFi events, on the other

hand, provide potentially a ubiquitous localization solution, but might not be as accurate.

Application developers face the following challenges while developing the localization appli-

cation mentioned in the example above.

• Multiplicity of Sensors: Different types of sensors can have overlapping capabilities

and could be used to generate the same application-level information. For example,

WiFi connectivity events, GPS, and/or camera all can be used to localize a person.

The mechanism of how to choose which sensor to use, when, in what context, will have

to be part of the application adding significant complexity to the design.

• Availability of Sensors: The sensing infrastructure of smart spaces may evolve
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constantly. New sensors may be added, e.g., part of the campus gets deployed with

Bluetooth beacons making a new sensing technology available for locating people. A

new algorithm for face detection might be deployed — increasing the set of options.

Furthermore different sensors may be available at different locations and at different

times. For example, if a user’s GPS is off or the user is indoors, the GPS cannot be used

to locate the person. Likewise, cameras can only be used in parts of spaces that are

instrumented. Or, the sensors may themselves be dynamic, e.g., mobile sensors, and as

such, their availability at different times and different locations may vary. Incorporating

such complex situations into application logic will make writing code for smart space

applications very hard.

• Opportunities for optimization: Processing data from different types of sensors

can have different execution cost. E.g., localization, processing one WiFi connectiv-

ity event might take ≈20ms [83] , while analyzing a single camera image might take

≈0.4s [139] (as it will require face recognition code to be run on the image). Both

WiFi APs and cameras may cover multiple (possibly overlapping) regions. In such a

situation, there are multiple possible ways to localize people and the system should be

able to select sensors in such a way so as to minimize the total execution cost and/or

to explore a trade off between quality and cost. Furthermore, as the sensors often fail,

the system should be able to provide tolerance against sensor failures by automatically

moving to available sensors that have capabilities and coverage overlapping with the

faulty sensors. Adding the burden of optimizing such costs or tolerating sensor faults

to application logic is complex and sub optimal as has been shown in the context of

query optimization [77] and database transactions [47] respectively.

A system supporting data virtualization will relieve the application logic from having to deal

with sensor capabilities, placement, and availability. Such complexities will now be hidden

by the appropriate abstractions supported by the system enabling application writers to
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write code almost entirely at the semantic level. Furthermore, data virtualization offers the

benefit of extensibility (since new sensors and sensor types can be added without modify-

ing application code), as well as, unravels multiple unique opportunities to optimize data

processing by exploiting the semantics of the smart space.

This thesis describes TippersDB, a system designed to support data virtualization for smart

space applications. TippersDB offers several unique features discussed below:

Semantic Abstraction. TippersDB supports a novel two-tier data model that separates

the sensor data from the higher-level semantic data. TippersDB models the physical world/-

domain in the same way we model domains in current databases – as physical entities and

relationships. The difference is that we are now modeling the dynamically evolving physical

world that is observed through sensors. TippersDB uses an Entity-Relational Model suit-

ably extended to support the dynamic nature of an evolving smart space for this purpose. In

particular, attributes of entities (and relationships between them) may be static or dynamic

that may change over time. For instance, a person’s name may be static, but his/her location

may change with time. Likewise, relationships between entities may be dynamic. E.g., if

the system captures the fact of persons entering into rooms, then based on the movement of

a person, a new relationship between a person and a room may dynamically emerge. Such

dynamic aspects of data are represented using an extended Entity-Relationship (ER) model,

referred to as the Observational ER (OER) model, which represents temporal data evolu-

tion. In addition to representing data at the semantic level, TippersDB represents data at

the sensor level in the form of data streams. It also provides mechanisms for the specification

of functions to translate data at the sensor level into higher-level semantic abstraction. Such

a layered data model decouples application logic from sensors and alleviates the burden of

dealing with sensor heterogeneity from application programming which greatly reduces the

complexity of developing smart-space applications.

Transparent Translation. TippersDB optimizes the translation of sensor data to generate
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semantic/application-level information. TippersDB associates observing functions with the

dynamic properties, which observe the “value” of the attribute/relationships through sensors.

Also, TippersDB maintains a representation of sensors and their coverage (i.e., what entities

in the physical world they can observe) as a function of time. Different functions may differ

in the cost of generating the observation and different sensors might be available to monitor

a particular entity at a given time. This cost and availability aspect is utilized by TippersDB

to optimize the translation of sensor data to generate values for dynamic attributes.

Query Driven Translation. Sensor data translation can be done at ingestion or during

query execution. In IoT-based systems, sensors continuously generate data, causing the

data arrival rates to be very high. Processing sensor data at ingestion using Streaming

systems (e.g., Spark Streaming [137], Storm [127] – often used for scalable ingestion) leads

to significant overhead. Therefore, complete sensor data translation at ingestion is not

viable. This observation has also been made in several prior works [63, 32]. The alternate

strategy of translating sensor data at query time is more suitable. Not only does it avoid

the large ingestion time delay, but it also reduces redundant translation of sensor data if the

applications end up querying (a small) portion of the data. This query-time translation is also

consistent with the modern data lake view architecture where we store and process only data

that is needed. TippersDB uses such an architecture and performs query-driven translation

by adding translation as an operator inside the query plan, co-optimizing translation, and

query processing.

Progressive Query Processing. Although the query-driven translation avoids the in-

gestion delay, the latency of queries are now increased since the sensor data gets translat-

ed/processed when the query arrives. This causes, the analysts/users to wait longer to get

the results of the query. To overcome this limitation of query-driven translation, we develop

progressive query processing techniques that progressively translate data and provide early

results to the user. To progressively return results TippersDB returns results of lower quality
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or at a coarse level early and keeps returning results of better quality and at a finer-grained

level as more and more time passes. Consider, for instance, our localization example. LO-

CATER [83] shows that the location determination from the WiFi connectivity data at the

region level (coarse-grained) can be done very fast (20ms), however, finding the room level

(fine-grained) location takes a much longer time (200ms). TippersDB uses such a difference

in cost of translation at different levels of hierarchy to return early but lower quality results.

Thesis Contributions

This thesis makes the following main contributions in the context of developing a system to

ease smart space application development:

• We introduce SmartBench, a benchmark that we developed to test different database

systems in their suitability for smart space applications. SmartBench, focuses on work-

loads resulting from (near) real-time applications as well as longer-term analysis of IoT

data. SmartBench, derived from a deployed smart building monitoring system, is com-

prised of; 1) An extensible schema that captures the fundamentals of an IoT smart

space; 2) A set of representative queries focusing on analytical tasks; and 3) A data

generation tool that generates large amounts of synthetic sensor and semantic data

based on seed data collected from a real system. We present an evaluation of seven

representative database systems and highlight some interesting findings that can be

considered when deciding what database technologies to use under different types of

IoT workloads. Using the results of the benchmark we show that the lack of data virtu-

alization in existing database systems, makes them difficult to use with large-scale IoT

systems, and therefore, new architectures that support data virtualization are needed.

• We introduce the TippersDB data model, which provides data virtualization

through semantic abstraction. The data model hides the complexities of sensor in-

frastructure and sensor data processing codes from the application developers and
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provides them an interface to write applications on top of higher-level semantic data.

• We present the design and architecture of TippersDB. We describe how the

data model is realized using a middleware-based system. We describe how TippersDB

translates sensor data to generate semantic data. We show how TippersDB reduces

the number of translations by removing redundant translations using its query-driven

translation mechanism and several other optimizations.

• We present progressive query processing techniques to further reduce query latency

and to provide early results to the users. We describe the semantics of progressive query

processing and ways to provide progressive answers. We show how TippersDB selects

data to be translated, exploits hierarchical data types (e.g., location), and computes

incremental answers.

TippersDB has been developed as the backend of the TIPPERS system [92] which has been

adopted and deployed by multiple schools and campuses including UC Irvine, Ball State

University, Honeywell and Walnut Village. At UC Irvine, it was also used for real time

monitoring of occupancy of different regions [40] during COVID-19. TIPPERS was also

part of the Trident Warrior(TW) exercises in year 2019 and 2020 where it was deployed on

navy ships [35].

The rest of this thesis is organized as follows. In Chapter 2 we explore the previous work

related to TippersDB. In Chapter 3 we present the SmartBench benchmark. Chapter

4 presents the TippersDB’s layered data model. In Chapter 5 we describe realization of

TippersDB’s data model and its query-driven translation mechanism. In Chapter 6 we

discuss progressive query processing techniques to reduce query latency. In Chapter 7 we

show a few case studies based on TippersDB’s data model. Finally, Chapter 8 concludes by

summarizing the contributions and the possible future extensions to the work presented in

this thesis.
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Chapter 2

Related Work

In this chapter, first, we review previous work on designing specialized data models, frame-

works developed to model sensors, and data models designed to manage temporal data.

Next, we highlight the current state of the art systems that are used by IoT applications

in storing and processing sensor data. We describe how these systems can not suffice for

developing efficient and easy to program IoT applications. Next, we discuss previous work

done on query-driven data processing in different domains. We also review, techniques that

were developed in the past to provide users with early results(possibly of lesser quality)

that incrementally get better. Finally, we review several database benchmarks that were

developed in the past in the context of their applicability to IoT applications.

2.1 Specialized Data Models

Database systems are widely used in a variety of application contexts as they provide ways to

efficiently store/process data and support a data model (e.g. relational data model) that al-

lows easy manipulation and retrieval of data. Database systems provide a general technology
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that different applications can use to manage their data. However, for application domains

having large and complex business logic, directly writing applications on top of a database

system using the database’s data model becomes challenging. Application developers are

well versed with the application logic but, in general, do not have the specialized knowl-

edge of tables and the complex network of relationships between them in the underlying

database system. In the past, application specific middleware systems have been devel-

oped on top of existing database systems for several application domains (e.g., Enterprise

Resource Planning (ERP) systems [25, 22], Customer Relationship Management

(CRM) systems [24], and Financial systems [23]). These systems provide higher-level

models that capture the essence of the application domain. For instance, a CRM model may

have an in-built data model for customer contact, buying history, etc. Such a data model

is then appropriately mapped, stored, and processed on top of a database system by the

middleware-based system. This layered approach has been successful and widely adopted

since it leverages the power of database systems to manage, store, and process data while

supporting higher-level models to make application development easier. Given the impor-

tance and emergence of the Internet of Things, sensor-based systems, and smart spaces, we

believe it is time to think of specialized middleware to provide appropriate abstractions to

build applications on top of sensor data.

IoT frameworks: Several IoT frameworks [128, 76, 50, 107] have been proposed in the

past to ease IoT application development. However, these frameworks only abstract out

communication and management of IoT devices. Although these frameworks make the task

of fetching data from different types of sensors easy, they do not provide any semantic

abstraction over sensors to the application developers, who still have to translate sensor

data in the application code itself. Similarly, industrial systems like Nest [10], AWS IoT [4]

only allow easy access to the sensors and sensor data but fails to provide any semantic

level abstraction. Furthermore, there has been prior work in modeling sensors as devices

that generate observations about measurable properties. The most popular of such sensor
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representations are provided by SensorML [46] and the W3C Semantic Sensor Network (SSN)

ontology [70]. Such representations can be used to store metadata about sensors, however,

they still do not fill the gap between the applications and the sensor data.

Temporal data model: As the environment is constantly evolving, it is important for an

IoT system to model constantly changing phenomena. One of the specialized data models

that were developed to model changing data is the temporal data model. In the past, tempo-

ral database systems have been developed [114, 126] that model the dynamically changing

world and maintain all changes. Temporal databases, along with the current state of the

data, maintain all historical values (with the time instances when the values were updated),

allowing users to write queries on any historical database state. Temporal databases, to dif-

ferentiate real world changes with database updates, maintain two types of timestamps [113].

Valid time represents when an event occurred in the real-world and transaction time rep-

resents the time when the database recorded the change. There are also works in the past

[89, 36, 59] that explored different ways to map temporal data models to the relational model.

As we will see in Chapter 3, the TippersDB’s mapping of its Observable ER model to rela-

tions is inspired by the previous work done on the temporal data models and its mapping

to the relational model.

Spatio-Temporal database systems: Modeling spatial extent and the movement of dif-

ferent entities in the spatial extent is an important aspect of a smart-space IoT system. In

the context of database systems, the concept of moving objects has been studied in the past.

Several models to maintain moving objects in a relational database systems have been pro-

posed, for example, authors of [58, 57] have proposed an abstract data-type based approach.

Although these spatio-temporal data models are very useful to represent the movement of

different entities in a spatial region, there is a need for a system that can allow the developers

to write their queries on these spatio-temporal data models without worrying about how the

actual spatio-temporal data is being computed from the sensor data. For example, location of

11



people, dynamic coverage of moving cameras can be modeled using spatio-temporal database

systems, however, these database systems can not directly compute a person’s location at a

given time by finding the appropriate camera.

2.2 Data storage and processing systems

In recent times, several database systems and technologies have started advertising them-

selves as suitable for IoT data management. In this section, we review some state of the art

database technologies that are used by IoT based systems.

Timeseries database systems: One of the main aspects of an IoT system is to efficiently

store and query a large amount of sensor data arriving at a very high velocity. At present,

timeseries database systems such as [33, 95, 20] are the leading systems in storing sensor

data. These are specialized database systems optimized to store and query a large amount of

sensor data. Timeseries database systems support a very high ingestion rate, compression,

columnar storage, time based sampling, and summarization/aggregation. Although time-

series database systems are ideal candidates to store sensor data, IoT applications cannot

be directly supported by such systems as these systems are not good to store traditional

relational data, and most of them do not even support full SQL. Furthermore, they do not

provide any mechanisms to translate sensor data.

Streaming systems: In order to process/translate sensor data as it arrives, IoT systems of-

ten use stream processing systems. Streaming systems such as Apache Kafka [3], Storm [127]

and Flink [48] were developed in the past decade that provide a scalable way of processing

data prior to its ingestion. They provide a distributed, high-throughput, low-latency plat-

form for handling high velocity data streams and therefore, are used to develop scalable data

ingestion pipelines in various domains. Many of these systems (e.g., Spark [137], Apache

12



AsterixDB [29]), allow users to write UDFs (user defined functions) to process streaming

data prior to ingestion. Previous works such as [132] have developed methods to improve

stream data processing by exploiting parallelism and batching data/operations. While such

techniques and systems have improved data processing during data ingestion, they still can-

not scale when the data processing to be done uses much more complex and computationally

expensive functions (as can be the case in IoT applications) and therefore, techniques that

process data at the query time are needed.

Data warehouses: Another possible way to translate sensor data is through an offline

process where the sensor data for a day/week/month is collected and processed using the

traditional extract-transform-load (ETL) [129] approach. In this approach data is period-

ically collected, processed, and then loaded into a data warehouse [1, 13] to be used by

the applications. Typically, such systems, pre-compute summaries/aggregates at different

granularities to make the queries faster. The ETL approach can be used for those IoT appli-

cations that perform long term analysis tasks and do not require real-time data. However,

the ETL approach suffers from several limitations: (1) a long delay between sensor data

arrival and data available for analysis, (2) Redundant translations if applications only use a

small portion of the data and (3) new sensor data processing function cannot be added after

the sensor data is already translated and ingested into the data warehouse.

HTAP systems: To develop a holistic IoT system that can support both real-time as well as

analytical applications, we need systems that can achieve a high sensor data ingestion rate as

well as can answer complex analytical queries quickly. For this purpose, in the past few years,

several Hybrid Transactional/Analytical Proccessing (HTAP) systems [39, 102, 87] have

been developed to support real-time analytics on the data as it arrives. The design choices

made by the HTAP systems, allowed them to support fast transactional workloads with

insertions/updates and yet support near real-time analytics on the incoming data. HTAP

systems support a flexible data storage model, with the incoming data getting stored in
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row format and subsequently getting moved/stored to a columnar format (often maintained

in the main memory). The initial row based format allows HTAP systems to provide good

performance on inserts/updates whereas the columnar format (which is highly compressible)

allows them to support fast analytical queries (e.g., computing aggregates). This eliminates

the need for pre-computing aggregates which is done in the case of data warehouse based

systems. While HTAP systems today have focused on the storage layer and optimization of

queries, based on the new storage models, they have not considered supporting expensive

transformations that might be necessary to prepare the data for analysis, as is the case for

IoT applications domain.

Data lake architectures: Our work on query driven translation has a motivation similar

to that of data lakes [74]. In the data lake architecture, the incoming data from various

data sources are initially just stored into a large data lake system and the analysis and

processing of the data is performed later at the read/query time. Such systems are often

realized through an extract-load-transform (ELT) pipeline, instead of the ETL pipeline.

2.3 Query Execution

As we have shown in Chapter 1, it is not feasible to process sensor data arriving at a very

fast pace using computationally complex functions. Similar issues have been encountered

in other domains as well, which has motivated many researchers to develop query-driven

techniques of data processing. In this section, we review the past work done to integrate

query execution and data processing. We will also review work done in the past to reduce

the increase in latency caused by query-driven data processing.

Query driven data processing: Several areas of database research have developed query

driven techniques to reduce redundant work. In the data cleaning context [63, 32] have
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developed query driven approaches and used query context to eliminate objects that cannot

satisfy the query predicates. More recently, EnrichDB [61] and JENNER [62] have introduced

query driven data enrichment. However, EnrichDB is designed for a different purpose i.e.,

to integrate machine learning based inference functions into the database system. Given its

design criteria, its focus has been on functions such as classification applied to a row at a

time. Sensor data translation, in contrast is very different. It may require accessing data

from several tables at the same time, choosing a plan involving sensors of different types

to generate semantic data. Therefore EnrichDB cannot be directly used for sensor data

translation.

Approximate query processing Query-driven translation can potentially increase the

query latency and the wait time for the end user since the data gets processed during the

query itself. To avoid making the user wait for the results TippersDB provides users with

early but possibly lower quality results. This approach of reducing query latency by providing

lower quality results early is similar in motivation to the approximate query processing (AQP)

systems. Such systems were developed for applications that need complex analytical queries

to be answered quickly on large volume of data but can tolerate bounded inaccuracies in

the answers. AQP systems provide an approximate answer with an error bound to give a

quick insight into the data. AQP systems can be categorized into two types. Offline AQP

systems [27, 100, 54] that maintain a set of pre-computed samples of different sizes consisting

of different column sets and rows. Given a query with an error or latency bound, the system

finds out the best samples for the query. In contrast, online AQP systems [109, 138, 135]

samples data at the query execution time itself. Although AQP systems reduce user wait

time when running queries on large data, they cannot be directly used to reduce query

latency caused due to the translation of sensor data at query time.

Progressive data processing: TippersDB approach of providing incrementally improving

results to the users is motivated by previous work done in the context of progressive query
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processing. Progressive query processing techniques not only provide quick results to the

user, they also optimize the overall execution of the task by learning from the execution

of the task itself. EnrichDB [61] and JENNER [62] developed progressive query processing

techniques in the context of query driven data enrichment. They divide the query execution

into epochs and in each epoch they select a set of objects(along with enrichment functions)

to be enriched such that the overall increase in the quality of the query answers is maximized.

Previous work such as [86, 99, 30] have used progressive techniques in the context of entity

resolution. Similarly, progressive approaches have been used in online schema matching [88,

108], and probabilistic databases [52, 110, 111]. Systems built for interactive visualizations

e.g., Cloudberry [78] have also used progressive approaches that provide users with quick

results at a coarser level. However, similar to AQP systems, Cloudberry tries to solve the

problem of doing visualization on large datasets and does not consider the issues arising from

processing datasets using computationally expensive functions.

Incremental View Materialization (IVM): One of the important requirement from

a progressive query processing technique is to be able to generate delta answers (answers

that got added/deleted) without minimal overhead. Incremental views [43] are a very good

candidate for generating delta results and are widely used in generating query answers as the

underlying data gets updated. IVM computes and applies only the incremental changes to

the materialized views. Suppose that view V (Q) is defined by query Q over a state of base

relations D. When D changes D′ = D + δD, we can get the new view state V ′(Q) by from

D, δD and Q using V ′(Q) = V (Q) + δQ(D, δD). Several works in the past have proposed

mechanisms for efficiently updating materialized views e.g., DBToaster [80], LINVIEW [96].

More recently differential data flow system [90] have been developed that provide efficient

state management techniques to speed up delta computation. Furthermore, intermittent

query processing systems [120, 122, 121] and Tempura [133] have developed techniques to

support efficient ways of maintaining and computing delta answers while minimizing resource

consumption. Efficient delta computation has also been studied in data flow systems [93,
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28, 90] that provide efficient state management techniques to speed up delta processing. All

these works are complimentary to TippersDB as we use incremental views as a building

block in our progressive query processing approach.

2.4 Benchmarking

Several benchmarks have been developed to test database systems from diverse perspectives.

The most widely used benchmarks are TPC-H [51] and TPC-DS [94], which were designed

to test a database system’s analytical data processing and data warehousing (OLAP) perfor-

mance under different data workloads. TPC-C [16], is the industry standard for online trans-

action processing (OLTP). These benchmarks, however, all focus on comparing relational

database systems in the context of traditional data management scenarios. As explained

before, IoT environments introduce a set of challenges that require different technologies

and therefore different benchmarking strategies.

IoT benchmarks. Recently, several benchmarks have been developed in the IoT context.

The TPCx-IoT [104] benchmark was introduced for IoT gateway systems. The TPCx-IoT

data model is based on modern electric power stations with more than 200 different sensor

types. It comes as a toolkit that generates a workload consisting of concurrent inserts and

simple range queries. It is more concerned with the end-to-end performance of IoT gateway

systems, irrespective of the database systems these gateways may use. IoTABench [37]

is a benchmark for a smart meter use case and includes queries that focus on mainly on

computations in such a scenario (e.g., bill generation). RIotBench [112] is a benchmark

based on real world IoT applications that aims at evaluating systems using streaming time-

series data workload. Neither RIoTBench nor IoTABench consider the OLAP aspect of an

IoT system and are instead more focused on data ingestion, streaming data, and continuous

queries. Finally, Dayal et al. [53] presented a proposal for a big data benchmark, with an
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IoT industrial scenario as a motivation, which is similar in nature to ours. Their benchmark

design includes representative queries for both streaming and historical data, ranging from

simple range queries to complex queries for such industrial IoT scenarios. However, they

did not provide an implementation of the benchmark and hence, there is no comparison of

different database systems.

Big data and streaming benchmarks. Some of the challenges of IoT data management

are present in other related areas such as big data and streaming. Benchmarks measuring the

performance of stream processing engines, like Linear Road (single node streaming) [34] and

StreamBench (distributed streaming) [84], are focused on testing the performance of real-time

data insertion/processing and queries. In contrast, big data benchmarks like BigBench [60],

BigFUN [103], HiBench [72], and BigDataBench [131] compare systems on their ability to

process a large volume of heterogeneous data. BigBench [60] provides a semi-structured data

model along with a synthetic data generator that mimics the variety, velocity and volume

aspects of big data systems. Also, BigBench queries cover different categories of big data

analytics from both business and technical perspectives. BigFUN [103] is a benchmark based

on a synthetic social network scenario with a semi-structured data model. HiBench [72]

and BigDataBench [131] compare systems performance for analyzing semi-structured big

data, including testing the systems’ ability to efficiently process operators like sort, k-means

clustering, and other machine learning algorithms in a map/reduce setting. IoT systems

have to deal with the amalgamation of both the challenges of running analytical queries

on historical data (big data benchmarks) and testing insertions and queries on recent data

(streaming data benchmarks). This combination is not addressed by the previously described

benchmarks.

Data generation tools. Benchmarks typically offer tools to generate datasets of varying

size to test systems in different situations. Most of these synthetic data-generating tools are

application specific and, hence, not reusable for our purposes. For example, IoTABench [37]
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provides a Markov chain model based synthetic time-series dataset generator specific to smart

metering scenarios that cannot be generalized to other IoT scenarios. Some data generators

provide mechanisms to generate datasets for other applications (e.g., [66, 116, 71, 123, 67]).

Gray et al. [66] developed ways to generate large amounts of data in parallel with different

user-provided distributions. MUDD [116] and PSDG [71] scan a complete user-provided

dataset to compute distributions and dependencies in the data and then generate synthetic

data with the computed distributions. UpsizeR [123] uses clustering algorithms to find for-

eign key based correlations but assumes that non-key attributes depend only upon the key

attributes. Chronos [67] can generate synthetic streaming time series data, preserving tempo-

ral dependencies and column-wise correlations. However, the tools mentioned above cannot

be used to generate generic IoT data that maintains the temporal and spatial correlations of

real-world data and thus, they cannot scale up IoT data in a semantically meaningful way.

Our data generator tool can generate data for heterogeneous sensors preserving the temporal

and spatial correlations of the data generated.
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Chapter 3

SmartBench Benchmark

Central to IoT applications is the database management system (DBMS) technology that

can represent, store, and query sensor data. Given the importance of IoT, a multitude of

DBMSs, whether they be standard relational systems, key-value stores, document DBs, or

specialized systems such as time series stores, have begun branding themselves as being

suitable for IoT applications.

IoT systems pose special requirements on DBMSs. IoT data can be voluminous and is often

generated at high speeds – a single smart phone contains dozens of sensors may generate

data continuously every few seconds, a medium office building has several thousand HVAC

sensors producing data at a similar rate, and a university/office campus may consist of

several hundred thousand of such sensors. Sensor data is typically time-varying arrays of

values and queries over sensor data involve temporal operators and aggregations. In a typical

IoT setting, the underlying DBMS has to process observations captured from heterogeneous

sensors (e.g., cameras, thermal sensors, GSR sensors, wearable technologies, etc.) each

producing data with different structure.

Finally, the sensor data is often too low-level for being useful for the final applications directly
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and needs to be enriched/translated into higher-level semantic inferences. For instance, to

provide personalized thermal comfort, an application may need to know the occupancy of

different parts of a building, which may need to be inferred from diverse sensors including

camera data, WiFi connectivity information, door sensors, and bluetooth beacons. Such

interpretation is often performed using complex machine learning algorithms [85] outside

the database system.

While different DBMSs provide different functionalities, none provide a comprehensive so-

lution to the above challenges. Big Data management technologies built on top of cluster

computing frameworks (e.g., Hive [124], SparkSQL [38]), provide efficient ways to run com-

plex OLAP queries on large amounts of data spanning multiple machines. However, they

fail to do well on fast data ingestion, simple selections, and real-time queries. In contrast,

stream processing systems like Apache Kafka [3], Storm [127], and Flink [48] provide faster

response times on window-based continuous and real-time queries but do not perform well

on historical data queries. Relational database systems, such as PostgreSQL [11], make use

of indices and better join and aggregation operator implementations, but they do not scale

well when the data becomes large and inherently do not support storage of heterogeneous

data. Document stores like MongoDB [9], Couchbase [5], and AsterixDB [29] have an appli-

cable logical data model and can easily store heterogeneous data, but do not provide special

support for time-series data. Specialized time series database systems, such as InfluxDB [19]

and GridDB [7], provide fast ingestion rates and fast selection on time ranges but they fail to

support complex queries. IBM DB2 event store [8] is an in memory database that provides

a very fast ingestion rate along with streaming data analysis capabilities.

The DB community has traditionally relied on benchmarks to understand the trade-offs

between different DBMSs (e.g., the TPC-H [51] benchmark has been widely adopted by

both industry and academia). In recent years, IoT DB benchmarks have begun to appear

(e.g., [34, 37, 53, 84, 104, 112]) but the focus of such benchmarks has been on comparing
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systems based on fast ingestion of streaming sensor data. While ingestion is critical, IoT

settings also require DBMSs to support one-shot queries over IoT data both for real-time

applications and for data analysis.

We present SmartBench,1 a benchmark focusing on evaluating DBMSs for their suitability in

supporting both real-time and analysis queries in IoT settings. SmartBench, derived from a

real-world smart building monitoring system (currently deployed in several smart buildings

of the campus of the University of California, Irvine [91]) is comprised of an IoT data model,

a set of representative queries, and a tool to generate synthetic IoT datasets. The schema

captures the main concepts related to IoT environments and is, thus, extensible to different

environments. It supports heterogeneity of sensors by using a semi-structured representation

that can be mapped to the data model supported by the underlying DBMS. It also presents

several mappings of such a representation to underlying DBMSs.

To provide a holistic view of the efficiency and capabilities of different DBMSs in supporting

real-life IoT systems, SmartBench includes a mixed set of eleven representative queries that

arise when transforming low-level sensor data into semantically meaningful observations

(e.g., as a result of data enrichment during insertion), as a result of applications running

on IoT data in real time, and during IoT data analysis. In addition, we include a mixed

query workload that includes online insertions of sensor data as well as queries. Finally,

SmartBench includes a tool to generate synthetic IoT datasets of different sizes based on

real data used as a seed. The tool preserves the temporal and spatial correlations of the

generated data, as this is important in order to evaluate systems in a realistic environment.

While SmartBench is based on a smart building context, it can be applied to other IoT sys-

tems as well because of its flexible schema which divides an IoT space into data, domain and

device layers. We provide detailed performance results and an analysis of the performance

of seven representative database systems (covering different technologies such as time series

1See http://github.com/ucisharadlab/benchmark for SmartBench (code/data generation tool).
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and specialized databases, relational DBs, document stores, and cluster computing frame-

works). We test scalability (both scale up and scale out) of different DBMSs by comparing

their performance under different data loads for a single node as well as a multi-node setup.

From the results we have affirmed the intuition of a lack of a silver bullet. However, we have

seen that some issues of specialized databases with respect to more traditional approaches

(like the lack of support for complex operations) can be mitigated through external code

that for typical IoT operations can perform adequately. We conclude with some interesting

key observations that can help IoT system developers select DB technology(ies) for their

data management needs and guide future DB developers to support such needs.

3.1 SmartBench Benchmark

We begin discussion of SmartBench by first highlighting the goals that guided our design.

SmartBench is designed to explore data management needs of pervasive sensing environ-

ments, where a single smart space may house a large variety of sensors ranging from video

cameras, microphones, thermostats, beacons, and even WiFi Access Points (which can sense

which devices are connected to them). Sensors may overlap in the type of physical phenom-

ena they can sense E.g., one can determine the occupancy of a location using connectivity of

devices to a WiFi access point. Occupancy can also be estimated based on temperature or

power draw (e.g., number of power outlets connected to devices). It can also be estimated

using the number of times a motion sensor in front of an entrance trips, or by using people

counters. Each of these sensor modalities have their advantages and disadvantages from the

perspective of applications.

Challenge 1: DB technology must provide mechanisms for the dynamic addition/deletion of

new sensor types without requiring the system to stop. The system must support the ability

to store and query data from sensors of newly added types. In designing our benchmark,
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we took into account such heterogeneity by including a general and extensible schema that

enables generation of different types of sensors. The schema is mapped to the underlying

DBMS based on the data model supported by the system.

In general, data captured by sensors is too low-level for applications. In the occupancy

estimation example, sensor data needs to be enriched to generate the right semantic obser-

vations. For instance, if a camera is used for occupancy resolution, an image processing

mechanism to count the number of people must be used in conjunction to determine occu-

pancy. Occupancy might also require merging several sensor modalities using appropriate

fusion algorithms.

Challenge 2: DB technology must provide efficient ways to support data enrichment. In

general, data enrichment requires the use of specific functions that are executed frequently

and can improve the efficiency of the task if executed directly in the database. For example,

to compute the location of a person carrying a smartphone connected to the WiFi network,

one would require a function such as sensor coverage which returns the geometric area that

a sensor can observe. In our benchmark we have designed queries that encapsulate some of

these typically required functionalities.

In smart environments, key concepts/entities are those of space and people immersed in the

space, and most analytic applications revolve around discovering/analyzing relationships

between people or between a person and the space. Such analysis can involve real-time data

(e.g., current occupancy of the building) or historical data (e.g., average occupancy over

weekends for the past 6 months), or both (e.g., a continuous query that checks when the

current occupancy is higher than average over the past duration).

Challenge 3: DBMSs need to support a wide range of applications with different demands

ranging from simple queries over recent data to fairly complex analysis of historical data.

Also, such queries might involve querying raw sensor data as well as abstractions built on
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top of raw data. This can result in complex queries on the higher-level semi-structured data

model, where typical DB operations like joins and aggregation can be desirable. In our

benchmark we have included queries of this kind, including those required for both real-time

and analytical applications.

3.1.1 SmartBench Schema

The schema used in SmartBench is based on the Observable Entity Relationship (OER)

Model. OER is an extensible model that allows incorporating new/heterogeneous types of

sensors, observations, spaces, and users. SmartBench’s complete data model is specified

in Appendix A. In the following, we highlight key entities and concepts in a smart space

categorized into three interrelated layers.

Device Layer. Devices (aka, sensors and actuators) can, in general, be either physical or

virtual. Physical sensors are real devices that capture real-world observations to produce

raw data, whereas Virtual sensors are functions that take data from other sensors (physical

or virtual) to generate higher-level semantic observations. A virtual sensor to detect the

presence of people in the space, for instance, can use observations generated by physical

sensors (e.g., images and connectivity of different MAC addresses to WiFi APs). Virtual

sensors can be significantly more complex and may even include classification tasks based

on machine learning models on past and streaming data.

Each sensor has attributes type, which dictates the type of observation the sensor generate,

and coverage, which corresponds to the spatial region in which the sensor can capture ob-

servations. For physical sensors, coverage is modeled deterministically [136] and simplified

as a function of its location - e.g., the coverage of a camera is its view frustum. For virtual

sensors, coverage is a function of the coverage of the sensors used as their input - the exact

function depends upon the specificity of virtual sensor. For example, the coverage of the
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presence detector (that determines location of people in the immersed space) based on cam-

era inputs is the union of the view frustums of all the input cameras. Each physical sensor

has a location and each virtual sensor has a property, transformer code, corresponding to the

function applied to input sensor data to generate semantic observations.

Observation Layer. Sensors generate observations which are the units of data generated

by a sensor. Physical sensors generate raw observations, whereas, virtual sensors generate

semantic observations that correspond to a higher-level abstraction derived from raw obser-

vations. For example, a camera feed provides raw observations, whereas, the interpretation

from the camera feed that a subject “John” is in “Room 2065” is a semantic observation.

Services/applications are typically significantly easier to build using semantic observations

(compared to raw observations) since one does not need to interpret/extract such observa-

tions from raw data repeatedly in application logic. Instead, such an abstraction is explicitly

represented at the database layer.

All observations have a timestamp and a payload, which is the actual data (e.g., an image

or an event). Semantic observations also have an associated semantic entity, which is the

entity from the domain layer to which the semantic observation is related (e.g., a person or

a space).

Domain Layer. This layer is comprised of the spatial extent of the smart space and in-

formation about subjects who inhabit it. Both of these concepts are inherently hierarchical,

with the hierarchy representing granularity (e.g., a campus may consist of buildings, which

have floors, which, in turn, are divided into rooms and corridors; likewise people are divided

into groups – such as faculty, students, etc.). Domain entities have associated attributes

which are classified as static or dynamic. These attributes, introduced in the W3C SSN

ontology [18], model relevant and high-level information that smart applications would re-

quire about the space itself (e.g., its structure and functioning) or people within. Static

attributes (e.g., the name of a room or a person, the type associated with rooms such as
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meeting room/office) are typically immutable, while dynamic attributes (e.g., the occupancy

or temperature of a room, the location of a person) change with time. Dynamic attributes

are observable if they can take (physical or virtual) sensor input to determine their value.

Observable attributes are mapped to sensors using a function (inverse coverage) that given

an entity (i.e., users/spaces), the type of observations required, and time, returns a list of

sensors that can generate observations of the required type observing the required entity at

the required time. For instance, Inv Coverage(Room 2065, t1, occupancy) will return a set

of (virtual) sensors that can output the occupancy of Room 2065 at time t1.

To implement the above model in a DBMS, one needs to map the appropriate concepts

(viz., domain entities, sensors, observations, etc.), into database objects. These mappings

are database dependent, as we will explain in Section 3.1.4.

3.1.2 Queries & Insert Operations

The benchmark consists of twelve representative queries motivated by the the need to support

diverse applications as mentioned in Section 3.1. The first six queries are on raw sensor data

(selected to support different building administration tasks, as well as queries needed by

virtual sensors to generate semantically meaningful data). The next four queries are on

higher-level semantic data (viz., on the presence of people in the space and occupancy of

such spaces) and are chosen to represent different important functionalities provided by

applications. The last two queries capture window-based operations and continuous queries.

Almost all of the queries have a time range predicate specified, as would be expected of queries

in the IoT domain. Below, we describe the queries and rationale behind their selection.

• (Q1) Coverage(s ∈ Sensors): returns the coverage of a given sensor s. Such queries are

posed every time raw sensor data is transformed into semantic observations.
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• (Q2) InverseCoverage(L, τ), where L is a list of locations, and τ is a sensor type: lists all

sensors that can generate observations of a given type τ that can cover the locations specified

in L. Inverse coverage is computed every time we execute a query over semantic observations

that have not been pre-computed from raw sensor data. Given the rate at which sensor data

is generated and the number and complexity of domain specific enrichments, it may not be

feasible to apply all enrichments at the time of data ingestion. In such a case, enrichments

have to be computed on the fly, requiring inverse coverage queries to first determine the

sensor feeds that need to be processed.

• (Q3-Q4) Observations(S ⊆ Sensors, tb, te): selects observations from sensors in the

list of sensors S during the time range [tb, te]. We differentiate between two instantiations of

this query. Observation queries with a single sensor in S are referred to as Q3. Such queries

arise when applications need to create real-time awareness based on raw sensor data (e.g.,

continuous monitoring of the temperature of a region). Observation queries when S contains

several distinct sensors (often of different types) are referred to as Q4. Q4 arises for a very

different reason – as a result of merging several sensor values (using transformation code) to

generate higher-level observations. Since the two types of queries arise for different reasons,

and (as we will see) their performance depends upon how we map data into the database,

we consider the two queries separately.

• (Q5) C Observations(τ , cond, tb, te): selects observations generated by sensors of given

type τ in the time range [tb, te] that satisfy the condition cond, where cond is of the form 〈attr〉

θ 〈value〉, attr is a sensor payload attribute, value is in its range, and θ is a comparison

operator, e.g, equality. Such queries often arise in large-scale monitoring applications of

multiple regions, e.g., monitoring spaces for abnormal (too high/low) temperatures.

• (Q6) Statistics(S ⊆ Sensors, A, F , tb, te): retrieves statistics (e.g., average) based on

functions specified in F during the time range [tb, te]. The statistics are generated by first

grouping the data by sensor, and further by the value of the attributes in the list A. For
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instance, a query might group observations on sensor id and day (which is a function applied

to timestamp) and compute statistics such as average. Such a query is important to build

applications that provide the building administrator information about the status of sensors

(e.g., if the sensors are generating too much data or none at all, discovery of faulty sensors).

• (Q7) Trajectories(tb,te, lb, le): retrieves the names of users who went from location lb to

location le during the time interval [tb, te]. Such queries arise in tasks related to optimizing

building usage, e.g., for efficient HVAC control, janitorial service planning, graduate student

tracking, etc.

• (Q8) CoLocate(u ∈ Users, tb, te): retrieves all users who were in the same Location

as user u during the specified time period. Any application involving who comes in contact

with who in which location (e.g., to construct spatio-temporal social networks) runs such a

query on the historical presence data of users.

• (Q9) TimeSpent(u ∈ Users, η, tb, te): retrieves the average time spent per day by

subject u in locations of type η, (e.g., meeting rooms, classrooms, office, etc.) during the

specified time period. This query arises in applications that provide users with insight into

how they spend their time on an average during the specified period.

• (Q10) Occupancy(L, ∆t, tb, te): retrieves the occupancy level for each location in the

list L every ∆t units of time within the time range [tb, te]). This query is the direct result

of a requirement to visualize graphs that plot occupancy as a function of time for different

rooms/areas.

• (Q11) Occupancy Smoothing(L, tb, te): retrieves the smoothed out occupancy levels

for each location in the list L, within the time range [tb, te]). The smoothing is done by taking

the average of the last 10 occupancy level after subtracting the minimum and maximum

occupancy level out of the 10 readings. This query produces a smooth and easy to follow

occupancy graph to the end-users.
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• (CQ) Continuous Query(η, α, β): retrieves, after every α seconds (hop size), the

minimum, maximum, and average occupancy levels of locations of type η in the last β

seconds (window size). This is a continuous query which is executed as the data is being

ingested into the database.

• (I) Insert(s ∈ Sensors, t, payload): inserts a sensor observation at time t into the

database.

• (IE) Insert&Enrich(s ∈ Sensors, t, payload, params): takes as input (raw) sensor

observations and mimics execution of an enrichment pipeline to generate and insert semantic

observations. Such a pipeline typically consist of a sequence of operations. Based on the

type of data, it first identifies the set of enrichment functions that need to be invoked. Each

of those functions, may result in one or more queries over both metadata or data (e.g.,

queries of types Q1-Q5). For instance, to transform a WiFi connectivity event (indicating

that a given device connected to a specific AP at a given time) a query of type Q1 may be

executed to determine the location of the AP following which sensor data from neighboring

APs about the device (or other devices) might be accessed (queries of type Q3-Q5) to predict

the semantic location (e.g., the room) in which the owner of the device might be. Likewise,

for a camera sensor, image segmentation and face recognition may need to be performed

to determine the identity of a person in the view. Since enrichment functions (e.g., face

recognition, location determination, etc.) are performed outside of the DBMSs [132], the

choice of specific enrichment function does not influence suitability of a DB technology to

IoT application. We simply model the I&E pipeline as a sequence of queries followed by a

busy wait (to mimic an execution of the enrichment function), followed by an insertion of

the semantic observation. The specific queries generated in the pipeline and the wait time

are parameters which are input to the IE function.

The set of queries listed above represents an important functional aspect of building smart

space applications that have been motivated by the campus-level smart environment that
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we have built at UCI. Note that these queries represent sample IoT data management tasks

involving operations including selections, joins, aggregations, and sorting.

3.1.3 Data And Query Generator

Benchmarks typically offer tools to generate datasets of varying size to test systems in

different situations [66, 116, 71, 123, 67, 37]. SmartBench’s data generation tool2 uses

seed data from a real IoT deployment (our University building) including sensor data and

metadata about the building and sensors, which is able to scale up/down to create a synthetic

dataset. The tool can scale the IoT space (i.e., number of rooms, people, sensors) as well as

sensor data (i.e., number of observations per second, time period during which the sensors

produce data, etc.). The tool preserves temporal and spatial correlations in the seed data

to support realistic selection and join queries. We developed our data generation tool,

rather than using a uniform distribution for every attribute independently, since we aimed

at comparing different DBMSs with more realistic data (for a smart space setting). The data

patterns (e.g., variation of the occupancy values between the day time and the night time,

variation in the number of WiFi connections at different points of time) affect the execution

time of queries based on the query parameters. To maintain a fair comparison, we execute

exactly the same instances of queries on the same data for each DBMS. We do not aim at

characterizing types of smart space data based on the patterns it contains.

In addition, the tool also generates an actual query workload based on the query templates

described above. Its input is the already generated metadata and a configuration file con-

taining different parameters. All of the queries except Q1 and Q2 include a time range based

filter [tb, te]. tb is selected at random from the range [Tb, Te] where Tb and Te are the minimum

and maximum timestamp of the entire observation dataset, respectively, and te is selected

at random from the range [tb + δa, tb + δb] where values for δa and δb are provided in the

2An extended explanation of the tool, including configuration parameters supported, is available in [12].
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Table 3.1: Different DBMS and their capabilities.

DBMS Sec.

In-

dexes

Joins Agg. Column/

Row

Store

Structured/

Semi-

Structured

Compress. Storage

Struc-

ture

Query

Lan-

guage

PostgreSQL Yes Yes Yes Row Structureda No In-place

updateb
SQL

AsterixDB Yes Yes Yes Row Semi-

Structured

Noi LSM SQL++

MongoDB Yes Yesc Yes Row Semi-

Structured

Block In-place

updateb
MongoDB

QL

GridDB Yes No No Row Structured Block In-place

updateb
TQLd

CrateDB Yese Yes Yes Column Structureda No Inverted

Index

SQL

SparkSQL No Yes Yes Column Structureda Columnarh Dataframes SQL

InfluxDB Nof No Yes Column Structured Columnar TSMg InfluxQLd

aprovides a JSON column type to store semi-structured data, bheap files supported by BTree indexes, conly

with an unsharded collection, dsubset of SQL, erequires index on every column used in where clause, f tags

are implicitly indexed but the values cannot be indexed, gTSM (time structured merge trees) are similar

to LSM trees and store data in read-only memory-mapped files similar to SSTables, however these files

represents block of times and compactions merge blocks to create larger blocks of time, h Parquet files

on HDFS, iAsterixDB recently added support for compression that will be generally available in its next

release.

configuration file. List based query parameters, e.g., the list of sensors in query Q4 and Q6

and the list of locations in query Q10, are generated by randomly picking (without replace-

ment) n elements from the already generated metadata; n itself is selected at random from

the range [na, nb], where na and nb are provided in the configuration file. Scalar parameters

like user u in query Q8 are selected at random from the available values in the metadata.

3.1.4 Model Mapping

There are several ways in which the schema in Section 3.1.1 can be represented in the

underlying DBMS. We explore multiple mappings of IoT data to the underlying databases,

which are broadly characterized based on how sensor data is stored in the database: (A)

Single table for observations from all sensors; (T) Multiple tables with one per sensor type;
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and (S) Multiple tables with one per sensor instance.

Figure 3.1: Mappings for docu-
ment stores (A1 and A2).

A given mapping approach can be simple and reason-

able to apply on some database systems, while difficult

or unnatural for others. With PostgreSQL, mapping T

is straightforward, while mapping A can be applied using

its JSON data type (although not intuitively since the

JSON type is stored as a BLOB). Mapping S is not prac-

tical since it would create a very large number of tables.

Since CrateDB support structured data, mapping T is

most natural while A can again be applied using a JSON

data type since CrateDB internally stores data in the form of documents. For document

stores (e.g., AsterixDB and MongoDB), mapping A is the most natural due to their support

for a semi-structured data model). We generate two distinct strategies for document stores

(see Figure 3.1 for examples of both) – a Sub-Document Model (A1), where each observation

is stored as a nested document by embedding related data together (however, since complete

nesting can create very large documents, we only nested those attributes that can help in

reducing the number of joins), and a second Normalized Model (A2) where each observation

is stored as a fully normalized document, where every relationship is modeled as a reference

between two documents.

Timeseries databases such as InfluxDB and GridDB do not support JSON and hence can-

not support mapping A directly. However, as mentioned in Section 3.2, GridDB provides

two types of fixed schema containers, general purpose and time series only (time stamp

as primary key). We can use the general purpose containers to store observations/seman-

tic observations from each type together in one container (though, a container in GridDB

can not be partitioned and therefore this model will not scale well for GridDB). Also, for

GridDB, mapping S can be realized using its specialized time series container for storing
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sensor data, where observations/semantic observations from a single sensor can be stored in

a separate time series container. InfluxDB stores time series data in terms of data points.

A point is composed of: a measurement, a list of tags (each tag is a key value pair used

for storing metadata about the point), a list of fields (each field is a key value pair use for

storing recorded scalar values), and a timestamp. Tags are indexed in InfluxDB but fields

are not. Related points having different tag lists but generating the same types of readings

can be associated into a measurement (synonymous with a SQL table). We create separate

measurements for different sensor types and store Observations/Semantic Observations of

different types in different measurements. InfluxDB does not provide any means of storing

non-time series data, so we cannot apply any mapping other than mapping T and we cannot

store all of the metadata. Hence, we store the building metadata in a PostgreSQL database

when using InfluxDB. This metadata is fetched from PostgreSQL database whenever it is

required by the application.

3.2 Database Systems

To evaluate a wide range of database technologies in supporting analytic workloads on IoT

data, we broadly classify systems into four categories: traditional relational database sys-

tems, timeseries databases, document stores, and cluster computing based systems. For

our experiments, we selected representatives from each category to cover a wide range of

data models, query languages, storage engines, indexing strategies, and computation engines

(see Table 3.1). Our main considerations in selecting a particular DBMS were that it: (a)

Provides a community edition widely used for managing and analyzing IoT data at many

institutions; (b) Is popular based on its appearance on the DBEngine website [6]; or (c) Is

advertised as a specialized timeseries database system optimized for IoT data management.

In our selection, we did not restrict systems based on their specific underlying data model or
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Table 3.2: Summary table with pros and cons of different database technologies.

DBMS Technology Pros Cons Systems Impacts

Semi-structured data

model

Flexible schema No standard query

language

AsterixDB, MongoDB Mapping

Structured Model Well established

with standard query

language (SQL)

Difficult to model

complex and dynamic

data

PostgreSQL, CrateDB,

SparkSQL, GridDB, In-

fluxDB

Mapping

Full SQL or similar

language support

No need to imple-

ment application

level operators

None PostgreSQL, CrateDB,

SparkSQL, AsterixDB

Ease of

use

Row Storage Faster Inserts Slower OLAP queries PostgreSQL, Aster-

ixDB, MongoDB,

GridDB

I

Columnar Storage Faster OLAP

queries

Slower Inserts CrateDB, SparkSQL,

InfluxDB

Q6-Q10

LSM/TSM Trees Faster writes Slower reads AsterixDB, InfluxDB,

SparkSQL

I

Secondary Indexes Faster reads Slower writes PostgreSQL, Mon-

goDB, AsterixDB,

GridDB, InfluxDB,

CrateDB

Q1-Q10

Specialized Timeseries

Databases

Fast inserts, fast se-

lection and other

simple queries

Limited functionality

(no support for JOIN)

GridDB, InfluxDB Q3-Q5

Sharding/Distributed

Query Engine

Important for scal-

ing out

None AsterixDB, MongoDB,

CrateDB, SparkSQL,

InfluxDB

Scale

Out

their query language. We appropriately convert our high-level data model and corresponding

queries to the data model and query language supported by the database system. In IoT

use cases, the sensor data is typically append only and updates are applied only to the

metadata. We, therefore, require database systems to support atomicity at the level of

a single row/document but do not require or use multi-statement transactions. For the

systems that provide stricter transaction consistencies, we set the weakest consistency level

that provides atomic single row/document insert so that database locking would not affect

the performance of the inserts and queries.

Relational database systems. From this category, we chose PostgreSQL since it is open
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source, robust, and ANSI SQL compatible. PostgreSQL supports a cost-based optimizer

and also supports a JSON data type, which is useful in storing heterogeneous sensor data.

PostgreSQL has a large user base with many deployments for IoT databases.

Timeseries database systems These systems are optimized to support time varying data,

often generated by machines, including sensor data, logs, events, clickstreams, etc. Such

data is often append-only, and timeseries databases are designed to support fast ingestion

rates. Furthermore, time series databases support fast response times for queries involv-

ing time-based summarization, large range scans, and aggregation over both real-time or

historical data. We selected two time series database systems in our benchmark study:

(a) InfluxDB, which is the most popular timeseries database at present (according to the

DBEngine ranking [6]). Along with the typical requirements for handling time series data,

InfluxDB provides support for various built-in functions that can be called on time series

data. It has support for retention policies to decide how data is down sampled or deleted.

It also supports continuous queries that run periodically, computing target measurements.

(b) GridDB, which is a specialized time series database. We selected GridDB because it has

a unique key-container data model. The data in the container has a fixed schema on which

B-tree based secondary indexes can be created. The container is synonymous with a table in

relational database system on which limited SQL functionality is available. GridDB, how-

ever, does not provide support for queries that involve more that one container, disallowing

aggregation over more than one time series. Containers can be either general purpose or

time series only containers. Time series containers have a time stamp as the primary key

and provide several functions to support time-based aggregation and analysis.

Document stores. We selected two document stores as representatives of this category for

our evaluation: (a) MongoDB, which is one of the most popular open source document stores

that supports flexible JSON-like documents that can directly be mapped to objects in appli-

cations. MongoDB provides support for queries, aggregation, and indexing. It has sharding

36



and replication built in to provide high availability and horizontal scaling. MongoDB sup-

ports multiple storage engines. In this study, we used MongoDB with WiredTiger, which

is the default storage engine and supports B-tree indexes and compression (including pre-

fix compression for indexes). (b) AsterixDB, which, much like MongoDB, stores JSON-like

documents. It, however, supports many more features including a powerful semi-structured

query language SQL++[97] (which is similar to SQL but works for semi structured data).

AsterixDB is designed for cluster deployment and supports joins and aggregation operations

on partitioned data through a runtime query execution engine that does partitioned-parallel

execution of query plans. AsterixDB has LSM-based data storage for fast ingestion of data

and it supports B-tree, R-tree, and inverted keyword based secondary indexes. It can also

be used for querying and indexing external data (e.g., in HDFS).

Cluster computing frameworks like Hadoop and Spark provide distributed storage and

processing of big datasets. Database query layers like Hive & SparkSQL, built on top, provide

SQL abstraction to applications to increase portability of analytics applications (usually built

using SQL) to cluster computing environments. We selected SparkSQL as a representative

of this group. SparkSQL uses columnar storage and code generation to make queries fast.

Since it is built on top of the Spark core engine, it can also scale to thousands of nodes and

can run very long queries with high fault tolerance. These features are intended to make

the system perform well for queries running on large volumes of historical data (business

intelligence, data lakes).

Other database systems. We also chose CrateDB, which is advertised as a SQL database

for timeseries and IoT applications but does not fit the criteria for a specialized time series

database system. CrateDB supports a relational data model for application developers but

internally stores data in the form of documents supporting JSON as one of the data types.

However, along with storing documents as is, CrateDB stores data in columnar format as

well. Its distributed query engine provides full SQL support along with other time based
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functions. CrateDB is built on top of ElasticSearch [65] and therefore naturally supports

inverted indexes, although it has no support for B-tree based indices.

Table 3.2 lists our apriori expectations regarding the impact of the DB technology choice on

the performance of different queries based on factors such as row versus column based storage,

support for LSM/TSM trees, temporal predicates, indexing mechanisms, query optimization

and processing. The last column in the table lists our expectation on how each technology

impacts different aspects of the benchmark. For instance, the choice of underlying data

model (semi-structured/structured) would affect how SmartBench data model is mapped

to the underlying data model supported by the database system, and the usability of the

system.

3.3 Experiments And Results

Dataset and queries. We used the data generator tool with seed data from a real IoT

data management system, TIPPERS [91], deployed in the DBH building at UC Irvine. DBH

is equipped with various kinds of sensors including 116 HVAC data points (e.g., vents and

chillers), 216 thermometers, 40 surveillance cameras, 64 WiFi APs, 200 beacons; there are

also 50 outlet meters that measure the energy usage of members of the ISG research group.

The TIPPERS instance has been running for two years and has collected over 200 million

observations from these sensors. This data also includes higher-level semantic information

generated through virtual sensors about the presence of people within the building and

occupancy levels.

We specifically used as seed TIPPERS data for one week from 340 rooms, observations

from three types of sensors – 64 WiFi Access Points, 20 plug meters, and 80 thermometers–

and semantic observations about location of people and occupancy of rooms. With this
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Table 3.3: Dataset sizes.

Dataset
Single Node Multi Node

Small Large Small Large

Users 1,000 2,500 10,000 25,000

Sensors 300 600 3,000 15,000

Rooms 300 600 2,500 7,500

Days 90 120 150 180

Frequency 1/300s 1/200s 1/150s 1/100s

Observations 14 mil 30 mil 150 mil 800 mil

Semantic Observations 14 mil 30 mil 150 mil 800 mil

Size 12GB 25GB 125GB 600GB

seed we generated three datasets with different sizes (see Table 3.3). The query parameters

were also generated using SmartBench’s generation tool. We controlled the query selectivity

by restricting the time range to be 1 day < te − tb < 4 days for the base experiments

(larger periods of time were used in an experiment to test the impact of query selectivity

on the systems’ performance). For each benchmark query template, we generated 25 query

instances with different parameters. We ran each generated query instance on every DBMS

sequentially and their average execution time along with the variance is reported.

Database System Configuration. We used MongoDB CE v3.4.9, GridDB SE v3.0.1,

AsterixDB v0.9.4, PostgreSQL v11.2, CrateDB v3.2.3, InfluxDB v1.7 and SparkSQL v2.4.0.

For the client side, we used Java connectors for MongoDB and GridDB, the HTTP APIs for

AsterixDB and InfluxDB, and JDBC connectors for PostgreSQL, SparkSQL, and CrateDB.

We used default settings for most of the configuration parameters setting the buffer cache

size to 2 GB per node for all. We created a secondary index on the timestamp attribute for

all systems except for SparkSQL (since it does not support secondary indices). For CrateDB,

we created indices on all columns since it requires an index on all columns that could be part

of any selection predicate. For GridDB, with its container per sensor model (S), we created

a primary index on timestamp, since the timestamp needs to be a primary key in GridDB’s

time series containers.
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3.3.1 Single Node Experiments

We tested the DBMSs using the datasets in Table 3.3 on a single node (Intel i5 CPU 8GB

RAM, 64 bit Ubuntu 16.4, and 500 GB HDD).

Experiment 1 (Insert Performance - Table 3.4): We compare the insert performance

on a hot system (with 90% data preloaded). We used single inserts for GridDB and InfluxDB,

batched prepared statements for PostgreSQL, CrateDB, and SparkSQL, batched document

inserts for MongoDB, and socket based data feeds for AsterixDB to insert the 10% insert

test data. The batch size used is 5,000 rows/documents which amounts to 5 minutes worth

of observation data for the large dataset. WAL is enabled for all the systems and the default

configuration is used for compression in the systems that support it. We did not perform

insert performance tests on SparkSQL since it does not manage storage by itself (instead it

depends on external sources – Parquet files on HDFS in our case). Table 3.4 shows the size

of the dataset after ingestion and ingestion throughput.

InfluxDB performs best due to its TSM based storage engine and to its support for columnar

compression, which reduces the size of data inserted to about one-third. GridDB (with

mapping S) performs the second best due to the following: 1) It maintains a relatively small

size of data (compared to other row stores); 2) It flushes data to disk only when the memory is

full (or due to checkpoints, the default value for which is 20 minutes), which achieves benefits

similar to LSM storage; and 3) It does not flush WAL at every insertion, but periodically

every 1 second.3 With mapping T, GridDB still remains efficient – though it takes 25% more

time compared to mapping S due to higher index update overheads.

AsterixDB performs better than MongoDB due to its support for LSM storage even though

MongoDB has a slightly smaller database size from insertions due to its row-level compres-

sion. PostgreSQL performs better than AsterixDB, even though it lacks LSM storage, due

3May result in a loss of the last 1 second of data in case of failure.
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Table 3.4: Dataset sizes after ingestion (including indices) and ingestion throughput for
single node and multi node.

Dataset Map
Data Size (GB) Inserts/sec

Small Large Multi Small Large Multi

griddb
S 4 8.6

85
42,425 32,500

9,332
T 5.6 11 32,941 24,045

postgresql
A 8 18

-
1,451 1,018

-
T 7.5 17 5,490 5,110

mongodb
A1 7 16

115
2,060 1,640

955
A2 6.2 15 4,087 3,286

asterixdb
A1 9 22

128
2,023 2,019

3,750
A2 7.5 20 4,160 4,050

cratedb
A 10 25

140
2,017 1,495

748
T 12 30 1,565 1,138

sparksql
A 7.5 14

95 - - -
T 6.5 12

influxdb S 2.8 6.4 - 59,222 58,320 -

to the following: 1) The overall size of records stored in PosgreSQL is smaller compared to

AsterixDB (which is a document store), thereby saving I/O; 2) PostgreSQL supports heap

storage and new records are inserted in memory with the data spilling over to disk only when

the memory is full. Such a storage mitigates many of the advantages of LSM for insert-only

workloads, while preventing the processing overhead due to merging incurred by LSM stor-

age; 3) In PostgreSQL, updates to index pages could result in random I/O, in contrast to

AsterixDB (since its indexes are also LSM trees). However, the indexes created on primary

key and time were relatively small (and mostly memory resident), thereby limiting the ad-

vantages of an LSM tree for index updates. CrateDB performed the worst given its columnar

storage engine with no compression (by default). The requirement to create indexes on all

the columns used for selections caused more index updates at insertion time. Data ingestion

takes about 20% more time on mapping T compared to mapping A for CrateDB, since this

mapping requires more columns to be indexed.

We conducted an additional experiment on insert with enrichment. The IE pipeline (see

Section 3.1.2 consists of query Q1 for the sensor specified in IE operator (metadata query),
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followed by one of Q3 or Q4 (queries on the sensor data already ingested) chosen randomly.

The parameters for Q3/Q4 are generated using the method mentioned in Section 3.1.3, with

min and max time interval of 4 and 8 hours, respectively. We chose τ (busy wait to simulate

execution of enrichment function) to be 100ms, based on the time taken for enrichment

functions in [132] in the context of tweet processing. Sensor data enrichment, e.g., ML

functions on images, could even take longer. Even for this relatively modest value of τ ,

enrichment cost quickly dominates and becomes a bottleneck and the rate at which semantic

observations are generated (10,000/second) could easily be sustained by all the systems.

Thus, the experiment did not further provide insight from the perspective of comparing

across different DB technologies. Nonetheless, the result points to two interesting asides:

(a) optimizing enrichment at the time of ingestion in DBs [132] is an important challenge

to support real-time applications that need enrichment, and (b) scaling systems requires

additional hardware where enrichment can be performed prior to data being stored in the

DBMS.

Experiment 2 (Query Performance - Figure 3.2 and 3.3): We compare the per-

formance for the benchmark queries in Section 3.1.2. For all systems, except GridDB and

InfluxDB, every benchmark query maps to a single query in the query language supported

by the system. For GridDB and InfluxDB, the benchmark queries that involve joins and ag-

gregation cannot be directly executed due to the lack of support for such operations. Hence,

we implemented these operators at the application level by pushing selections down, using

the best join order, and performing the equivalent to an index nested loop based join. Sim-

ilarly, for database systems which do not support window queries (i.e., GridDB, InfluxDB,

and MongoDB), we implemented an application-level window operator that first fetches data

according to the where clause, partitions it based on the grouping key using in-memory hash

table, and then sorts the list corresponding to each key based on the ordering attribute.

Also, since InfluxDB does not support any way to store non-timeseries data, we stored the

building metadata information (users, building info, sensor attributes) in PostgreSQL. Fig-
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ure 3.3 shows the average execution time per query on the large dataset, along with standard

deviation. Since the same query is run with 25 different sets of parameters (the parame-

ters are the same across DBMSs), we see a significant variance in most queries. The longer

the query execution time, the higher the variance, but variance to execution time ratio is

larger for queries running within a second. Even with the observed variance, the relative

performance among most of the systems can be compared.

Metadata Queries (Q1,Q2). All the systems performed relatively well on the metadata

queries, included to compare the ability to store arbitrary data, except for InfluxDB which

does not provide a way to store complex metadata.

Simple Selection and Roll Up (Q3-Q6). Time series DBs performed well on these queries,

specially on Q3-Q5 which are range selection queries over timestamp: GridDB (mapping S)

performs very well, since it stores data clustered based on timestamp (the primary key), and

InfluxDB’s performance is comparable (slightly better). PostgreSQL and CrateDB perform

similarly since these queries required most of the columns to be retrieved and do not include

any aggregation operations (the columnar storage of CrateDB did not provide much benefit).

MongoDB and AsterixDB are slower since these queries involve scanning a set of rows and,

due to the document model, they have to deal with larger record sizes. Also, AsterixDB’s

LSM tree based storage can slow down reads since the system has to first look for the corre-

sponding primary keys in possibly multiple index files (due to LSMified secondary indexes)

and then search for the corresponding rows in multiple LSM files (if the immutable files

are not already merged). MongoDB performed slightly better than AsterixDB thanks to its

WiredTiger storage engine supporting data compression and the use of index compression

by default that helps in better secondary index scans.

Complex Queries (Q7-Q10). These queries involve complex joins and aggregations that

are not natively supported in GridDB or InfluxDB. Hence, their processing requires the

application-level implementation of these operators. At low selectivity (date range of only 1
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Figure 3.2: Query runtime (seconds) on small dataset (single node, 5 minutes timeout).

to 4 days), the number of rows to be joined and grouped after all the execution of selection

predicates is small and so application-level joins did not cause significant overhead. In fact,

except for Q7 and Q8, GridDB and InfluxDB outperformed all the other databases (with

native JOIN support) except for PostgreSQL and CrateDB. For Q9 the application level

sort-based GROUP BY operator could not store the number of rows fetched in memory

what resulted in an out of memory error. GridDB’s performance drops significantly with

mapping T since it is not able to use the primary index on any of the queries, while InfluxDB

performs slightly better than GridDB due to its faster read performance (see Q3-Q5).

CrateDB, a column oriented DBMS (with the benefit of having indexes on all the columns

involved in the selection predicate and not just timestamp column), performed best on Q7

and Q9. It took a considerable amount of time on Q8, as it failed to come up with an
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Figure 3.3: Query runtime (seconds) on large dataset (single node, 15 minutes timeout).

optimized query plan (it tried to do selection after join) and did not perform well on Q10 as

the query involved most of the table columns.

All the queries on MongoDB perform better with mapping A2 which suggests that a join

(lookup) with smaller metadata tables is many times better than having bigger nested doc-

uments in our use case (scanning data based on a time range). Queries that involve joins of

two big collections (e.g., queries Q7 and Q8) timed out since the join (lookup) operator in

MongoDB is limited in functionality and it failed to push selections down in its aggregation

pipeline. AsterixDB supports full SQL functionality, has a more advanced query optimizer,

and better JOIN support compared to MongoDB which made its performance much better.

PostgreSQL outperformed AsterixDB as the latter has to scan rows which are comparatively

larger in size and the former came up with a better query plan since it has a more mature
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optimizer and it stores statistics about the data. SparkSQL, even with columnar storage

(parquet files on HDFS), did not perform well since it has to scan the entire dataset for all

the queries due to the lack of support for secondary indexes.

Window based query (Q11). For Q11 we used the best mapping configuration per system

according to the previous results. PostgreSQL performed best because of its superior query

optimizer and execution engine. Even when GridDB, InfluxDB, and MongoDB had the added

overhead of the window task performed outside of the database, they performed better than

SparkSQL since it does not support secondary indexes. Also, since the difference in query

execution time for these database systems only depend upon the time to fetch the filtered

data from the DB (rest of the computation is done in the application side), the performance

trend for these systems follow the trend described for Q3-Q6.

Experiment 3 (Application vs. Database Joins - Figure 3.4): Experiment 2 showed

that GridDB and InfluxDB, outperformed systems with native join support using application

level joins. We compared them further by varying query selectivity levels. We selected

PostgreSQL and Q8 to compare native vs. application-level join as comparing across different

systems would make it difficult to determine whether the performance is due to the type of

join or other factors. To implement application-level joins, we first send a selection query

to the outer presence table, and then, for each row in the result set, a selection to the inner

presence table.

As expected, native joins outperformed application-level joins (see Figure 3.4) due to the

higher overhead of the latter (e.g., multiple independent queries compiled separately). For

the native join case, PostgreSQL selected, for low selectivities, a plan consisting of an index

scan on the timestamp predicate of the outer presence table followed by a nested loop index

join with the inner presence table and, for higher selectivities, a sequential scan of the outer

presence table followed by a nested loop index join. For the application-level join case, it

selected the index scan for the outer table at low selectivities, changing to a sequential scan
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Figure 3.4: Performance of application vs DB joins.

at higher selectivities. All queries on the inner presence table used an index scan on the join

column value for all selectivities.

The results show that for very small selectivities (below 0.5 percent of the dataset)

application-level joins perform very competitively to native joins. This is interesting since

in IoT applications joins are often between small metadata tables and large timeseries data

and queries can be very selective, filtering data corresponding to a small time range. In such

contexts, simpler timeseries databases such as InfluxDB and GridDB (that typically do not

support joins) could outperform more complex systems by relying on external application-

level joins.

Experiment 4 (Effect of Time Ranges - Figure 3.7): Time is a fundamental component

of IoT data and queries. We explore further the effect of varying time ranges in queries

w.r.t. systems’ performance. We chose Q6 and Q8 and varied their associated time ranges

to: one day, one week, two weeks, one month, and two months. GridDB, InfluxDB, and

CrateDB continue to outperform other systems on Q6 (see Figure 3.7 on the left), although

their runtimes increase with the selectivity. PostgreSQL performed as well as the timeseries

database systems for low selectivities on Q6, but its performance suffers due to increased

secondary index lookups as selectivity increases. SparkSQL performance was not affected

since it always performs a table scan. The relative performance of the document stores on Q6
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gets worse with increased selectivity due to their comparatively larger record sizes. On Q8

(see Figure 3.7 on the right), AsterixDB, SparkSQL, and CrateDB chose a hash join based

approach and took almost the same time for all selectivity values. PostgreSQL, on the other

hand, with its mature query optimizer and statistics, chose an index nested loop join, which

performed well on low selectivities but dropped with with increase in selectivity. Timeseries

databases, using our index nested loop based application-level joins, performed quite well for

low selectivity values, but their performance grew super-linearly with increasing selectivity.

Experiment 5 (HDD vs. SSD - Table 3.5): The bulk of our experiments was performed

in a cluster with hard disks. We performed an additional experiment to explore the impact

of SSDs. To this end, we setup two AWS EC2 instances with same specifications: one with

a general purpose SSD and another one with throughput optimized HDD. SSD’s provide

performance improvement over HDDs on sequential reads and writes, however, they are

mainly optimized for random reads and writes and provide order of magnitudes faster IO

per second compared to HDDs [79]. We performed insert and query performance test for the

single node large dataset (for the best performing mapping in our previous experiments).

For all the DBMSs (see Table 3.5) the insert throughput increased because of the superior

write performance of SSDs. However, as there were very few random updates and most of

the IO performed was sequential and not random, the increase in throughput was limited.

For Q6 every system experienced a decrease of execution time due to SSD’s higher IOPS.

However, the improvement for InfluxDB and GridDB was limited since the data is arranged

based on timestamp which implies fewer random updates. For query Q10, all the systems

showed a decrease of about 2 times in execution time with SSD since Q10 involves scanning

the dataset and therefore the reads are mostly sequential.

CPU and IO Usage: We analyzed the percentage of execution time than went into CPU

and IO tasks per query (plots are shown in Figure 3.5). In cases where the query timed

out or threw an out of memory error, we analyzed the CPU/IO breakdown before that. For
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Figure 3.5: CPU and IO breakdown per query for a single node setup.

Metadata Queries Q1 and Q2, both the CPU and IO utilization is very low and balanced

across DBMS, since these queries run in few milliseconds. For Simple Selection and Roll

Up queries Q3-Q6, almost all the systems spent more time on IO operations. CrateDB and

SparkSQL spent more time in CPU as they need to decompress and de-serialize after reading

data from disk. For Complex queries Q7-Q10, AsterixDB spent a higher amount of time on

IO than other systems, as it requires scanning comparatively larger records. InfluxDB and

GridDB have smaller record size and support compression, hence they spend comparatively

less time in IO and have CPU as their bottleneck. Additionally, part of the higher CPU

utilization is due to the implementation of unsupported Join and Aggregation operations in

the application domain. SparkSQL spends some time doing IO (since it does not support

secondary indexes and scans the complete table) but since it needs to perform de-serialization

of data [98], it spends longer time on CPU than other systems, making CPU the bottleneck.

CrateDB spends considerably less time doing IO as it uses indexes and columnar compression,

causing CPU to be the bottleneck because of the added cost of decompression. PostgreSQL

also, had CPU as the bottleneck for queries Q7-Q10.
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Figure 3.6: Query runtime (s) on small dataset (multi node, 1 hour timeout).

50



Table 3.5: Ingestion throughput and query latency.

DBMS
Ingestion (row/s) Q6 (s) Q10 (s)

HDD SSD HDD SSD HDD SSD

griddb 40,610 54,973 0.72 0.43 2.40 1.02

postgresql 18,300 28,391 3.71 0.75 4.12 2.45

mongodb 12,543 15,408 5.17 1.55 47.80 24.90

asterixdb 17,100 26,907 7.92 3.26 8.24 4.58

cratedb 4,620 5,400 0.25 0.15 6.59 3.04

influxdb 66,670 71,428 0.12 0.08 4.03 2.60

sparksql - - 12.93 5.41 10.40 4.85

3.3.2 Multi-Node Experiments

For multi-node experiments we used larger datasets (see Figure 3.3). Data was partitioned

over 1, 3, 6, 9, and 12 nodes (each node is an Intel i5 CPU, 8GB RAM, 800GB HDD, and

CentOS 7 machine connected via a 1 Gbps network link). The DBMS instances on each node

have the same configuration as in the case of the single node setup. We skipped PostgreSQL

and InfluxDB for multinode experiments since the former does not support horizontal shard-

ing natively and the latter supports sharding features only in its enterprise edition which is

not open source. For the remaining systems, we chose their most performant mapping for

our workload, inferred from the results of the single node experiments. MongoDB, CrateDB,

allow data to be partitioned on any arbitrary key, so we partitioned the observation data

based on the sensor-id and the semantic observation data on the semantic entity-id. For As-

terixDB, data is partitioned on the primary key, as it uses hash-partitioning on the primary

key for all datasets. In GridDB, a container is stored fully on a single node since GridDB

does not provide an explicit partitioning method. GridDB balances data across nodes by

distributing different containers to different nodes based on the hash of their key/name. The

information regarding the allocation of containers to nodes is populated to all the nodes in

the cluster, making it easy for the client library to locate any container.

Experiment 6 (Insert Performance - Table 3.4): Similar to Experiment 1, GridDB

performs well on inserts as expected, although the per tuple insertion time increased w.r.t.
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Table 3.6: Query runtimes (s) on large dataset (12 nodes).

Query cratedb mongodb asterixdb sparksql
Q1 0.02 0.02 0.08 2.5
Q2 1.14 0.7 0.67 3.8
Q3 42.83 239.95 95.16 264.86
Q4 44.28 285.17 97.63 255.46
Q5 89.25 494.50 98.08 305.40
Q6 35.72 310.85 90.35 292.76
Q7 60.93 NA 924.66 1, 245.57
Q8 TO NA 876.44 1, 197.45
Q9 12.18 30.46 162.13 180.77
Q10 103.23 2, 235.8 80.73 251.35

the single node case even with multiple nodes writing data in parallel; the data size per node

has increased by 2.5 times, causing more data flushes from memory to disk compared to

the single node case. MongoDB’s per tuple insertion time also increased with respect to the

single node experiments. Since each tuple is now required to be routed by mongos service to

the appropriate node based on the sharding key, it was not able to make use of the batched

insert, causing its insertion time to increase. AsterixDB’s per tuple insert time also increased,

but, with this larger dataset, we started seeing the benefits of write optimized LSM-trees

as its write performance got considerably better than MongoDB. CrateDB, because of its

columnar storage, took the most amount of time in the insert tests.

Experiment 7 (Query Performance - Figure 3.6 & Table 3.6): Figure 3.6 shows the

query performance results while Table 3.6 shows the results for a 12 node configuration for

the large database with 1.6 billion rows.4

Since every query in GridDB can only involve one container, its query processing happens

only on a single node. GridDB remains better compared to other databases for queries Q3-

Q6 for upto a 3 node setup. Its performance did not improve with an increasing number of

nodes except for query Q3 which requires data to be fetched from only one node.5 For other

queries, that require data to be fetched from multiple containers, GridDB’s performance

4We do not include results for GridDB on the 12 node configuration since inserting the large database would take over 50 hours
(due to a lack of bulk insertion and insertion rate of 10k tuples/second).

5GridDB performance for Q3 improves since data per node reduces as the number of nodes increase.
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does not improve since it natively executes only single container queries and, thus, query

processing happens only at a single node. Since the application code we wrote initially

to execute queries in GridDB was a sequential program, GridDB was not able to leverage

any parallelism from the multi-node setup. We implemented multi-threaded programs to

fetch data from multiple containers simultaneously for GridDB. This improved the query

performance for GridDB considerably, especially for queries Q3-Q5, as these queries just

fetch data from multiple containers based on conditions, without any reduction step due to

aggregation type. We did not see much improvement on queries Q7 and Q8.

For the CrateDB cluster, the sharding information is available at all the nodes each of which

runs a query execution engine that can handle a distributed query (involving distributed

joins, aggregations etc.). However, only the metadata primary node can update this in-

formation. An application can send queries to any of the nodes in the cluster. CrateDB

again performed well on complex queries (Q7, Q9, Q10) due to its columnar storage. Also,

CrateDB was able to scale well with its performance improving with increasing number of

nodes for all queries.

An AsterixDB cluster consists of a single controller node and several worker nodes (storing

partitioned data) called node controllers. Applications send queries to the cluster controller,

which converts the query into a set of job descriptions. These job descriptions are passed

to the node controllers running a parallel data flow execution engine called Hyracks [45].

The Cluster controller reads the sharding information and other metadata from a special

node controller called the metadata node controller. Among all the databases, AsterixDB

scaled the best, with its performance improving significantly with increasing numbers of

nodes. AsterixDB outperformed every other database on queries Q5 and Q8 for the 9 node

cluster configuration. For the smallest queries AsterixDB suffered from the overhead of its

job distribution approach.

In a clustered setting, MongoDB uses a router process/node called mongos that fetches
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Figure 3.7: Performance with time selectivity.

information about the shards from a centralized server (possibly replicated) called the config

server. The application sends its query to the mongos process, which processes the query

and asks for data from respective shards (in parallel if possible) and does the appropriate

merging of data. Even with the mongos service, MongoDB does not support joins between

two sharded collections, so we skipped queries Q7 and Q8. MongoDB stores all unsharded

collections together on the same shard called the primary shard. MongoDB was not able to

scale as well as AsterixDB, with many queries not able to benefit from multiple nodes being

able to work in parallel. Furthermore, for queries Q5 and Q10, its performance actually

degraded with an increasing number of nodes, as its optimizer started to pick a collection

scan over an index scan.

CPU and IO Usage CPU and IO usage for 3 node setup is shown in Figure 3.8. The

results (representing the percentage of the total query time spent in CPU and IO on all

nodes –master and 3 workers–) are similar in nature to the results for the single node setup.

Queries Q1-Q6 are IO bound and Q7-Q10 are CPU bound on most DBMSs.

3.3.3 Mixed Workloads Experiments

We compare system performance under the online mixed workload where queries of the same

template are executed in parallel with data ingestion. We used two different levels of data
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Figure 3.8: CPU and IO breakdown per query for a 3-node setup.

insertion rate, slow and fast, where data is available to insert at the rate of 10,000 and 50,000

observations per second, respectively. The experiment was repeated 6 times with different

sizes of data (based on days) already ingested. The experiment starts from a database state

where data of a varying number of days is already ingested. The inserts and queries are then

done in parallel (multiple threads). In order to make the queries consistent (return the same

result) across different database systems (even if they support a lower ingestion throughput

than required), we generated query instances that have a time range corresponding to the

dataset ingested prior to the time of the insert commands - that is, the queries retrieve data

that had already been inserted at the beginning of the experiments.

Experiment 8 (Online inserts and queries - Figure 3.9): Figure 3.9 shows the average

query latency for Q6 w.r.t. the number of days for slow data generation rate on a single node

as well as a multi node (3 node) setup. The query latency is increasing with increasing num-

ber of days for all the database systems, as the data size is increasing. The latency increase

rate is comparatively higher in case of faster insert rate as expected since the queries are now

running in parallel with a much higher load of inserts. The results for multi-node version of
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Figure 3.9: Q6 in mixed workload (slow insertion rate).
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Figure 3.10: Q6 in mixed workload (fast insertion rate).

the experiment show a similar scalability trend for the DBMSs as discussed in Experiment

7, with AsterixDB, CrateDB showing lower query latency with multi node setup, whereas

GridDB and MongoDB did not show much improvement. The same relative performance of

the systems is observed for the fast data generation rate is shown in Figure 3.10.

Experiment 9 (Continuous Query - Figure 3.11): We perform an experiment with a

mixed workload and the sliding window continuous query (CQ). We set the window length

to 10 seconds and the length of the sliding to 5 seconds. Since none of the DBMSs support

stream processing, we implemented the continuous query logic on the application side. We

buffered occupancy data of all the rooms in the last 10 seconds time window, followed by

running a selection query on the DBMS to discover the rooms of type “Lecture Hall” and
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Figure 3.11: Insertion throughput (CQ).

finally joined it with the buffered data. Figure 3.11 shows the results for slow and fast data

generation rate on a single node as well as a multi-node (3 node) setup. Since the query

is executed as part of the application, the difference in performance can be attributed to

the DBMS ingestion rate supported and performance of a simple selection query on a static

table. Hence, GridDB and InfluxDB performed significantly better because of their better

ingestion performance (discussed in more detail in Experiment 1).

3.4 Lessons Learnt

The design of SmartBench and the analysis of the performance results have lead to several

interesting observations to us: 1) In an IoT system, the data exhibits a lot of temporal and

spatial correlations among different entities and events. Application queries are posed on

such correlations as well as on time-varying sensor data. 2) The mapping of heterogeneous

sensor data to the database representation plays a critical role for ingestion and query per-

formances. 3) The complexity of IoT query workload varies widely. It ranges from simple

selections on temporal attributes to multiway-joins, grouping, and aggregations. Depending

on application context, efficient application level joins can be devised. 4) An IoT system

must support a high rate of data arrival and thus databases with higher ingestion rates are
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more applicable. Data follows an append-only pattern with rare updates. The volume of

data can be very large and hence scale up and scale out functionalities of databases are

required.

We highlight some key observations about the suitability of DBMSs and implementation

choices for IoT workloads:

• Specialized timeseries databases are suited for sensor data (fast insertion and time-based

selection queries) but they do not provide natural ways to store other data needed to build

IoT applications (e.g., spatial relationships, entities, events). For instance, InfluxDB does

not provide any way to store non-timeseries data (e.g., metadata). One can overcome such

limitations by storing such information in a different database and appropriately co-executing

a query across both systems (as we did for InfluxDB using PostgreSQL).

• Document stores are suited to represent heterogeneous data but an embedded representa-

tion comes at a high cost in terms of performance compared to a normalized representation.

For instance, queries with foreign key based joins, on datasets with normalized documents,

run faster compared to queries without foreign key based joins with large denormalized doc-

uments. This holds even in a multi-node setting where the smaller collection may not be

even present on the same node. Thus, a system that supports document level specification,

but (semi)-automatically maps such data to an underlying structured representation could

offer the best of both worlds. Examples of such a strategy are closed datasets in AsterixDB

and JSON shredding in Teradata [14].

• Time series databases, such as InfluxDB and GridDB, performed well on inserts, simple

selection queries, and several complex join queries by exploiting application-level joins. This

suggests an opportunity to write wrappers that split SQL queries into a set of queries that

can be executed directly on such a system, and continue the remainder of the query execution

using application-level operators (e.g., application-level joins). Such a wrapper could provide

58



a timeseries database with the capability of executing full SQL and still being better in terms

of performance in situations where at least one of the tables being joined is small, perhaps,

due to selection, as is the case in SmartBench.

• Traditional relational database systems like PostgreSQL do well on both insert and query

performance on single node but do not scale horizontally. Document stores, while they scale

easily (specifically AsterixDB, which performs very well with a large cluster), have query

performance that is not as good as a mature relational system on a single node.

• UDF technologies supported by today’s databases are not adequate to enrich data during

ingestion. Enrichment, today, is performed outside the database (e.g., in application code,

or through a streaming engine) during ingestion. Such an architecture can be sub-optimal

specially if complex enrichment function need to run queries to retrieve past data [132]. Co-

optimizing enrichment with ingestion (e.g., through batching, or selectively choosing which

enrichment to perform in real-time, and which to do progressively, etc.) is an important

challenge to support real-time smart applications.

Finally, our key observation (based on the discussion above) is that, like in other domains,

while different systems offer different advantages, there is no single system that offers the

“best” choice. The emerging field of Polystores [55], which aims to provide integration

middleware allowing applications to store different parts of their data in different underlying

databases, may be a relevant solution.
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Chapter 4

Data Model

In this chapter we describe the TippersDB data model that provides an abstraction to write

applications independently of the sensor infrastructure. The data model is a layered data

model and consists of four distinct layers as shown in Figure 4.1. The spatial extent layer

models the physical space or the extent of the smart space (§4.1). The semantic layer (§4.2)

models entities inhabiting the smart space and their relationships. The sensor layer (§4.3)

models the type and instances of sensors embedded into the space. The glue layer (§4.4)

provides mechanisms to translate data from the sensor layer into the semantic layer and vice

versa.

4.1 Spatial Extent Layer

TippersDB models the geography in which the smart space is embedded hierarchically in

the form of a tree where the root corresponds to the entire extent of the smart space.

For instance, it may represent the campus in our running example as root with children

including buildings, parks, and walkways which might be further divided into floors in a

60



building, rooms in a floor, etc. Such a spatial hierarchy naturally supports viewing data and

postulating queries at different spatial granularity. For instance, an application may pose an

occupancy query at the room, floor, or building level.

Managing spatial data in databases has been extensively studied in the literature [64, 69, 117]

with SQL/MM [117] having emerged as a standard to store, retrieve, and process spatial data

using SQL. In TippersDB, we adopt SQL/MM, implemented by DBMSs such as SQL Server,

DB2, and PostgreSQL, to manage spatial objects. We additionally allow users to define and

store hierarchical/topological relationships between spatial objects explicitly. TippersDB

supports the following ways to define extents and topological relationships:

CREATE T_Extent Name(boundary ST_Rectangle);

CREATE T_TopologicalRel relation(parent Extent , child Extent);

where boundary is a SQL/MM rectangle which represents the geographical shape of this

extent; relation represents that the child extent is topologically contained inside the parent

extent.

Through SQL/MM, TippersDB supports a variety of spatial predicates (overlap, intersection,

meet, etc.) and spatial operations (intersection, union, area, etc.) over spatial objects. We

define a custom version of the difference operator among spatial objects. While SQL/MM

supports difference operator between spatial objects (which is a more complex polygon),

in determining regions covered by a sensor we will require to partition and represent the

resulting difference as a set of rectangles that together represent the space covered by the

difference between spatial objects (this requirement will become clear in § 5.2.1).

Difference operator: Given two spatial objects with corresponding bounding boxes A

and B, the difference A − B, returns the region of rectangle A that does not overlap with

rectangle B. Since the resultant region may not be a rectangle, we partition the region into

multiple rectangles. Figure 4.2 shows the difference between two rectangles (subtracting a
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Figure 4.1: TippersDB data model layers.

Algorithm 1: Difference Operation.

1 Inputs: Two rectangles A and B defined by left bottom [x1, y1] and top right [x2, y2]
co-ordinates

2 Function Difference(A,B) begin
3 if Intersect(A,B) 6= φ then
4 A1 = Rectangle([B.x1, B.y2], [min(A.x2, B.x2), A.y2])
5 A2 = Rectangle([A.x1, A.y1], [B.x1, A.y2])
6 A3 = Rectangle([B.x1, A.y1], [min(A.x2, B.x2), B.y2])
7 A4 = Rectangle([B.x2, A.y1], [A.x2, A.y2])

8 Return the rectangles from (A1, A2, A3, A4) with area ¿ 0

1 1 2 1 2 3 1

2

4

3

Figure 4.2: Difference operator.

red rectangle from a black one) and the partitioning of the resultant region under different

scenarios. Note that for 2-d rectangles, the partitioning can result in at most four rectangles.

Also, note that the rectangular representation of the difference between two spaces A and

B is not unique. For instance, the partitioning in the second scenario in Figure 4.2 could

be done along the x axis instead of the y axis as shown in the figure. To prevent ambiguity,

TippersDB gives precedence to partitioning along the y axis over the x axis. Finally, note

that the definition (and the algorithm to compute differences) naturally extends to more

complex situations where one (or both) operands may be regions defined by a set of rectangles

themselves (e.g, as a result of computing a difference between two other rectangles). The

extended representation captures spaces such as ((A − A1) − A2)....An where rectangles

62



A1, A2, ...An are n rectangles subtracted in sequence from A. The number of rectangles

used to represent the different space in this sequence of n subtractions can be shown to be

bounded by n2. [75] considers a more general problem of sequence of differences between

d-dimensional spatial objects. We observe that despite the n2 bound, in practice, such a

cover includes much less than n2 rectangles.

4.2 Semantic Layer

At the semantic level, TippersDB models applications using an extended entity-relation (ER)

model that we refer to as observable entity-relation (OER) model.

4.2.1 Observable ER Model

OER extends the ER model by defining some attributes and relationships to be observable.

Observable attributes. Observable attributes of entities/relationships are those for which

changes can be observed (or computed) using data captured by sensors. Figure 4.3 shows an

example entity set “occupant” that is either a “visitor” or a “resident”. The resident entity

set has an observable attribute “vitals” whose value changes with time and can be observed,

among others, through a smartwatch or Fitbit. Besides observable attributes, an entity may

have additional attributes (e.g, occupant entities have an attribute name) the value of which

is not associated with any sensor. We refer to such attributes as non-observable or regular

attributes.

Observable relationship. Relationships between entities in an OER model may themselves

be observable - that is, can also be observed using sensor data. For instance, in the OER

diagram shown in Figure 4.3, contact is one such relationship since contact between two
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Figure 4.3: Entities with observable attributes/relationships.

occupants can be observed using a Bluetooth sensor in their smartphones (it records all

Bluetooth devices in close proximity).

Cardinality Constraints: An observable relationship is characterized as observational 1-1

if an entity e1 of entity set E1 at any instance of time can be related to a single entity e2 of

entity set E2 and likewise any entity e2 in E2 at any time is related to a single entity e1 in E1.

Note that the definition of observational 1-1 is not identical to that in a regular ER model

since an entity e1 can, indeed be related to one or more entities e2 and e3 in the entity set

E2. It is just that e1 cannot be related to both simultaneously. The concept of observational

cardinality constraints generalizes naturally to 1-N, N-1, and N-N relationships. For instance,

the Location relationship in Figure 4.3 is an example of an N-1 relationship since a person

can be only in a single room at a given time, though a room may have multiple individuals

at the same time. In an N-N relationship, entities from both entity sets can be related to

multiple entities at a given time instant. The C ontact relationship is such an example since

multiple people can be in contact with each other simultaneously.

Participation Constraints: An entity set is characterized to have total participation in

an observable relationship if every entity of the entity set is related to at least one entity of

other entity set at a given time. For instance Occupant entity set in Location relationship

is an example of total participation since every person is located in some room at a given
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ID Name Age

1 John 28

2 Smith 30

Start End Value

0 30 MISSING

30 100 20

Start End Value

0 90 10

90 100 15

Resident

Start End Value

0 10 MISSING

10 20 L-09

20 100 MISSING

Start End Value

0 90 L-1

90 100 L-3

(a) Vitals Temporal maps

ID Name

1 John

2 Smith

Occupant

(a) Location Temporal maps

Figure 4.4: Mapping OER to Temporal Maps.

ID Start End Value

1 0 10 MISSING

1 10 20 L-09

1 20 100 MISSING

2 0 90 L-1

2 90 100 L-3

(b) OccupantLocation

ID Start End Value

1 0 30 MISSING

1 30 100 20

2 0 90 10

2 90 100 15

(a) ResidentVitals

ID Start End Value

1 0 60 MISSING

1 60 100 2

1 60 100 3

2 0 100 1

2 0 100 3

3 0 100 MISSING

(c) OccupantContact

Table 4.1: Temporal Relations.

time. Similarly, an entity set is characterized to have partial participation in an observable

relationship if not all entities of the entity set are related to an entity of another entity set

at a given time. For instance the Room entity set in the Location relationship is an example

of partial participation since there can be rooms with no person located in them at a given

time.

TippersDB provides the following commands to create entity sets, to add observable prop-

erties to the entity sets, and to create observable relationships.

CREATE T_ESET Occupant(ID int , name char (20), age int , KEY (ID));

CREATE T_ESET Room(ID int , name char (20), area float , KEY (ID));

ADD T_OBSERVABLE Property vitals TO Occupant (value int));

ADD T_OBSERVABLE Property occupancy TO Room (value int));

CREATE T_OBSERVABLE RELATIONSHIP location (Occupant , Room);

CREATE T_OBSERVABLE RELATIONSHIP Contact (Occupant , Occupant);
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4.2.2 Mapping OER Model to Relations

Entities and relationships in the OER model are mapped to the relations using the standard

ER to relational mapping. However, the observable attributes and relationships cannot be

modeled as simple attributes as their values change with time. First, we note that prior

literature has explored several ways to represent time-varying data. Broadly, techniques

are: point-based [125] (that models time as discretized points with a value associated with

each time point) or interval-based [115] (that models time as a continuous timeline with a

value associated with each time interval). TippersDB uses an interval-based representation

to represent observable attributes and relationships. Before we describe how observable

attributes and relationship sets are mapped to relations, we first describe the concept of

temporal maps.

Temporal Map. A temporal map (denoted by T pj
ei ) for an entity ei and a dynamic property

pj is a set of pairs (I, v) where I is a time interval and v is the value of property pj for entity

ei during time interval I. A dynamic property for an entity has a value at any given time

and therefore the time intervals in a temporal map cover the entire time range and are

non-overlapping. However, there can be time intervals in a temporal map when the value is

MISSING.1 Note that a MISSING value is different from NULL in SQL. Unlike NULL, MISSING

means that the value exists but has not yet been computed and can be filled in the future;

Since temporal maps are defined over the complete timeline, they are associated with a

concept of lowest and highest value of time. These values can be set by a user but in the

following we assume that the smallest value is 0 and the largest is referred to as Infinity

(which can be set to an arbitrarily large number). A temporal map can be formally defined

as follows:

T pj
ei = {(I1, v1], (I2, v2], ...(Ik, vk)} | ∪k

j=1 Ij = [0, Infinity)

1In TippersDB’s layered design (discussed in detail in §5.1), to represent MISSING value, TippersDB reserves a special value
for each data type.
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Mapping Observable Attributes. To represent an observable attribute of an entity set,

TippersDB creates a temporal map for each entity in the entity set and initializes it with

a single default time interval of [0, infinity] and a corresponding MISSING value. Figure 4.4

shows two temporal maps (one for each entity) for the vitals observable attribute of the

resident entity set. Observe that no two intervals in the temporal map overlap, and the

intervals together cover the entire time range (with the maximum time (infinity) set as 100).

Mapping Observable relationships. A 1-1 observable relationship is mapped as a tem-

poral map created for the entities of either of the two entity sets. A 1-N or N-1 observable

relationship is stored as temporal maps created for the entities on the N-side. For exam-

ple, for the location relationship in Figure 4.3, which is a 1-N relationship between room

and occupant entity set, we create temporal maps for each occupant entity. Mapping of an

observable N-N relationship is more complex. We map this by creating temporal maps for

each entity in both the entity sets. except in the case of a self-referencing symmetric rela-

tionship, in which case the two temporal maps will be identical, and hence only one needs

to be stored. Note that the value column in temporal maps created for N-N relationships is

a multiset, since it stores a list of entities a given entity is related to in a given time interval.

Note that N-N relationship introduce a constraint that if a temporal map of entity e1 of

entity set E1 contains an entity e2 of entity set E2 in its multiset value for time interval I,

then the temporal map for e2 must contain e1 in its multiset value for time interval I. For

example, for the contact relationship in Figure 4.3, which is a self-referencing symmetric N-N

relationship of the occupant entity set, we create temporal maps for each occupant where

the value is a multiset containing all the other occupants that he/she came in contact with

at a given time.

The temporal maps corresponding to an observable attribute (or a relationship) associated

with each entity in the entity set are stored together in a single relation referred to as the

temporal relation for that attribute. A temporal relation Ripj for an observable property
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pj of an entity set Ri consists of a set of triples: a reference to the identity of an entity in

Ri, a time interval, and a value pj for that entity and time interval. Table 4.1a shows the

ResidentVitals temporal relation containing temporal maps for all entities in the resident

entity set for the observable attribute vitals. In case the temporal map consisted of a multiset

(as in the case of N-N relationships), we flatten the multiset by inserting a triple for each

element in the multiset. For example Table 4.1c shows the OccupantContact temporal

relation with flattened multisets.

4.2.3 SQL with Temporal Relations.

TippersDB allows users to write SQL queries on top of temporal relations, e.g., the following

query retrieves John’s location in a time interval [10, 15].

SELECT * FROM Occupant O, OccupantLocation OL WHERE O.name=’John’

AND OL.id=O.id AND Overlaps ([start , end], [10, 50])

Initially the temporal relations contain a single time interval of [0, infinity) with a MISSING

value for all entities. MISSING values are computed and materialized by translating appro-

priate sensor data during query execution. For example, John’s location in the Occupant-

Location temporal relation (Table 4.1b) is MISSING for time interval [0, 10], which will be

computed during the query execution. Note that computing a MISSING value may add

more rows in a temporal relation, e.g., it may happen that John was in room L-1 during

interval [0, 5) and was in room L-2 during interval [5, 10).

4.3 Sensor Layer

At the sensor layer, TippersDB provides a way to specify sensor type, to associate observation

type, and to instantiate sensors in the system. As an example, the following first three
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commands define two observation types: ConnectivityData (i.e., a data type including

device and AP mac address), ImageData and VideoData, and the last two commands define

two sensor types: WiFiAP that generate ConnectivityData and Camera ImageData and

VideoData observation types.

CREATE T_ObservationType ConnectivityData(devMac str , APMac str;

CREATE T_ObservationType ImageData(filelocation str);

CREATE T_ObservationType VideoData(filelocation str);

CREATE T_SensorType WiFiAP ([ ConnectivityData ]);

CREATE T_SensorType Camera ([ImageData , VideoData ]);

After defining observation and sensor types, sensors can be instantiated in the system. Sen-

sors in TippersDB are classified as: (1) space-based that generate observations in a physical

region and are referred to as covering that space (irrespective of the entity they observe)

or (2) entity-based that generate the observation about a specific entity (irrespective of the

location of the entity). An example of the former is a WiFi access point or a fixed camera

deployed at a specific location, while a GPS sensor on a phone carried by an individual or any

wearable device that provides input about a specific individual is an example of entity-based

sensors. Space-based sensors are instantiated using the following command:

CREATE T_Sensor Name(type T_SensorType , mobility bool ,

location Temporal <Extent >,physical coverage Temporal <Extent >);

In the above, mobility denotes if the sensor is static or mobile/dynamic, location refers to the

sensor’s actual location, and physical coverage represents the geographic area in which the

specific sensor can capture observations. For instance, a camera could be located in a room,

while the physical coverage of the camera is the bounding box surrounding its view frustum.

In other words, the physical coverage is modeled deterministically and is simply a function

of its location. Both the location and the physical coverage of a sensor can change with time,

either because the sensor is mobile or it was moved at some point. We need to preserve
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historical information about the location and coverage attribute to answer historical queries,

e.g., “which rooms John visited last year.” Hence, in TippersDB, location and coverage

are modeled as spatio-temporal attributes. Entity-based sensors are instantiated using the

following command:

CREATE T_Sensor Name(type T_SensorType ,mobility bool ,entity E_SET)

In the above, entity refers to the entity that this particular instance of sensor covers.

Different sensors can also be bundled together and be part of a single platform. For example,

GPS and Accelerometer sensors can be part of a smartphone or a smartwatch. In that case,

the location of all sensors belonging to a platform is determined by that of the platform. To

add different sensors to a platform, TippersDB provides the following command:

CREATE T_Platform Name(mobility bool , location Temporal <Extent >, sensors [

T_Sensor ])

CREATE T_Platform JohnPhone(true , Temporal <locJS >, sensors [GPS1])

Both these models focus on sensor configuration and sensor observations.2 However, they

do not deal with type, mobility, and the dynamic coverage of sensors.

4.4 Glue Layer

The glue layer in TippersDB translates sensor data into semantic information at the appli-

cation level (i.e., values for the observable attributes and relationships of entities). In this

layer, users specify wrapper functions, entitled observing functions, for sensor data analysis.

Users can also specify Semantic Coverage functions that help identifying data from which

sensors can be used to generate which semantic observations.

2This work does not deal with actuators that perform actions (e.g., switching something on/off).

70



4.4.1 Observing Functions

Observing functions convert sensor data into semantic observations. These functions are

invoked at query time to process sensor data based on the user query. Users first specify

their sensor analysis code3 using the following command.

ADD Function Image2Occupancy(Image);

The above command adds a sensor data processing function named Image2Occupancy that

computes occupancy from an image.

To enable such functions to be used as observing functions, the user needs to further connect

the type of sensor inputs such a function may take and the observing attribute the function

can generate. For instance, a user can write the following code to wrap the Image2Occupancy

as an observing function.

CREATE T_ObservingFunction Camera2Occupancy("Image2Occupancy",

T_Temporal <Room.occupancy >, inputType: [Camera ]){}

The above command creates an observing function named Camera2Occupancy that computes

values for observable attribute occupancy (of room entity set) using data from a camera as

input. Note that an observing function can take input from more than one sensor. Sensors

can be of different types, e.g., an observing function that takes data from both WiFi APs

and cameras can be added.

4.4.2 Semantic Coverage Functions

We define a concept of Semantic Coverage (Coverage for short) with spatial sensors. The

semantic coverage of a sensor (or a set of sensors) is defined with respect to an observing

3Currently TippersDB supports Python and Java-based functions.

71



function and it denotes the spatial region for which the observing function can compute

values of an observable attribute using the sensor. For instance, for a given camera (sensor),

the coverage with respect to face recognition (function) is the region where the image from

the camera can be used to detect and recognize the person. The camera image may be

used for a different purpose (e.g., detecting people) and its coverage with respect to such a

function, used, for instance, to determine occupancy of a region might be different compared

to its coverage w.r.t. face recognition. Semantic coverage of a sensor is defined as a function

of the physical coverage (which is a property of the sensor, see §4.3 ).

Similar to the physical coverage, the semantic coverage can also change with time for sensors

that are mobile or were moved at some point in time. Formally, the Coverage function is

defined below:

Coverage(fl, {S}, t)→ {(pi,Γj)}

where fl is an observing function, {S} is a set of sensors, t is the time instant, pi is the

observable property that fl computes and Γj is a spatial region. Note that the type of a

sensor s ∈ S should be one of the input sensor types of fl. Also, there should be at least

one sensor in S for each input sensor type of fl. Users can specify semantic coverage as

a function in TippersDB, however in case it is not specified, TippersDB uses the physical

coverage of a sensor as its semantic coverage.

Based on semantic coverage, TippersDB further defines the notion of Coverage−1. Given an

observable property of interest (e.g., vitals, occupancy, location), such a function identifies

all possible sets of sensors the input from which can be used to observe the property. For

instance, consider a room wherein a person can be located using a camera. Let us further

assume that the user can also be located within a room through connection events with a

specific WiFi access point. In such a case, Coverage−1 function returns both the possible

sensors. Formally Coverage−1 is defined as follows:

Coverage−1(pi,Γ, t) = {(fl, {S})|∃{(pi,Γk)} ∈ Coverage(fl, {S}, t)
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such that Γk ∩ Γ 6= φ}

As will become clear, the Coverage−1 function is computed, on the fly, when processing

any query that contains observable attributes or relationships. TippersDB uses specialized

indexing mechanisms to ensure efficient implementation of the function.
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Chapter 5

Design and Architecture

In this chapter, we describe the realization of TippersDB’s data model on top of an existing

database system. We describe the query-driven translation technique of TippersDB. We

also discuss a few optimization techniques that reduce the number of redundant translations

(translations that do not affect the query results) and therefore reduce the query latency.

5.1 TippersDB Layered Design

The TippersDB model can be realized either by developing a new database system or by

layering on top of an existing one. While the former might enable further optimizations, the

latter has often been a preferred route for new technologies (among others, [20, 100, 101]).

We followed the layered approach since, first, this approach is largely platform-agnostic and

it exploits common features available in a large number of modern databases, viz., indexes,

stored procedures, and UDFs. Second, a layered implementation allows organizations/im-

plementations already vested in specific database technology to potentially benefit from

TippersDB without having to migrate completely to a new system.
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We describe how TippersDB schema, data, functions, and queries are mapped/layered on

the underlying database system.

5.1.1 Mapping Schema, Data, and Functions

Mapping Space Metadata. TippersDB space model (see §4.1) defines the hierarchical

spatial extent including geographical bounds of buildings, regions, and rooms. To store such

spatial metadata, TippersDB creates special tables called the Spatial Metadata tables in

the underlying database.

Mapping Temporal Relations. There are multiple options to map temporal relation-

s/observable attributes to the underlying database: (1) Adding observable attributes to the

table created for the entity set; (2) Creating a table for each entity’s observable attributes,

i.e., a table for each temporal map; (this is similar to the key-container model of [7]) (3)

Creating a table for each temporal relation. The first design option will incur a very high

space overhead since the space will grow exponentially as the number of observable attributes

increases. The second design option can be useful if there are fewer entities and/or most

queries fetch data for a single entity at a time. However, in IoT environments, the number

of entities can be large and the queries can be ad-hoc, asking for data for multiple entities

at the same time. This way, the second option will result in a very large number of tables

in most IoT scenarios. Hence, we opted for the third option and create a table for each

temporal relation.

Mapping Sensors and Sensor Data. Static information related to sensors (i.e., sensor

types, observation types, mobility) is stored in Sensor Metadata tables. Potentially dynamic

information related to sensors (i.e., location and coverage area) is modeled as temporal

relations and mapped to the database as explained above (i.e., a table per sensor type).

Observations from all sensors generating the same type of data (i.e., same observation type)
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SELECT * FROM Occupant AS O, 
OccupantLocation AS OL, 
RoomOccupancy AS RO

WHERE OL.id=O.id AND
((O.name=John AND Overlaps
([OL.start, OL.end], [2, 5])) AND
RO.id = OL.value AND RO.value > 50

(a) Query on temporal relations.

(b) Original query tree.

(c) Query tree with translation operators.
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(d) Query execution in blocks.

Figure 5.1: Query processing in TippersDB.

are stored together in one table. In our reference implementation (see [15]), to support very

high intermittent data rates, observations are first pushed to a message queue before they

are stored in the database system.

Mapping Functions. TippersDB currently supports Python and Java-based observing

and coverage functions (described in §4.4.2). TippersDB also provides a library for developers

to wrap their existing sensor processing code into observing functions. The metadata related

to the observing functions (i.e., input sensor types, observable property that is generated) is

also stored in the Metadata tables.
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5.1.2 Mapping Queries

In TippersDB, application developers pose queries directly on the application-level semantic

data (i.e., temporal relations) using the OER model. For example, an application developer,

using the OER model shown in Figure 4.3, who is interested in finding out the occupancy

of all rooms that ‘John’ have visited between time interval [2, 5] and had occupancy >

50, could write the query in Figure 5.1a. The query involves temporal relations for the

observable properties location of occupants entity set and occupancy of rooms entity set,

i.e., OccupantLocation (Table 4.1b) and RoomOccupancy (Table 5.1a), respectively.

It is possible that parts of temporal relations required to answer the query are not computed

yet (i.e., have MISSING values). Hence, the query shown in Figure 5.1a with the correspond-

ing query tree shown in Figure 5.1b cannot be executed directly on the underlying database.

To fill the missing values during query execution, TippersDB extends the set of relational

operators with a new operator called the translation operator denoted by τpj . The trans-

lation operator τpj maps MISSING values in the temporal relation for observable property pj

to sensor data and observing functions using the spatial information, sensor metadata, and

coverage functions. The logic and layered implementation of the translation operator will

be explained in §5.2.1 and §5.1.2. TippersDB updates the original query plan by placing

translation operators in the query tree, so that MISSING values of the temporal relations that

are required to answer the query are filled during query execution. Figure 5.1c shows one

possible query tree after placing translation operators τlocation and τoccupancy in the original

query tree as shown in Figure 5.1b.

Translation Operator Placement

There are multiple possible positions in the query tree to place translation operators. While

placing the translation operators, TippersDB needs to make sure that in the new query plan,

no operator (except a translation operator) ever sees a MISSING value. Hence, a TippersDB
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Figure 5.2: Multiple valid query plans.

valid query plan is one that for every non-translation operator ηi (e.g., join, selection,

union) involving the value column of a temporal relation Ripj (corresponding to an observable

property pj) places a translation operator τpj at a node downstream of ηi. The total cost

of a valid query plan is the sum of the cost of all translation operators and all relational

operators, as:

Cost(q) = ΣCost(τ) + ΣCost(η)

where τ is a translation operator and η is a relational operator. The cost of a relational

operator can be estimated using the standard histograms-based methods [105]. However,

the cost of the translation operator cannot be estimated by the underlying database system.

We discuss the cost estimation of a translation operator in §5.2.1.

Multiple valid query plans (each with a different cost) can be generated for the same query

by placing translation operators at different nodes in the query tree. For example, Figure 5.2

shows two different valid query trees generated by TippersDB for query tree of Figure 5.1b.

In both the query trees shown in Figure 5.2, there is a τlocation operator downstream of the

join operator involving the value column of OccupantLocation relation. Also, there is a

τoccupancy operator placed downstream of the projection operator involving the value column
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of RoomOccupancy relation.

The number of valid query plans increases exponentially with the number of operators in-

volved in the query. TippersDB selects a plan (with appropriately placed translation op-

erators) with minimum total cost using the traditional dynamic programming algorithm of

query optimization [49] used by many cost-based optimizers.

Query Execution

The new query plan cannot be directly executed on the underlying database system as the

translation operator is not a standard operator. To execute the query plan, TippersDB

divides it into query blocks such that a block contains either only translation operators or

only relational operators. Figure 5.1d shows five query blocks created for the query plan

shown in Figure 5.1c. After creating the query blocks, TippersDB generates code for a

stored procedure called executor, that executes each block one by one. For instance, the

code for the executor stored procedure generated for the query blocks shown in Figure 5.1d

is as follows:

1. SELECT * FROM Occupant O, OccupantLocation OL WHERE O.id=OL.eid

And Overlaps ([OL.start , OL.end], [2, 5]) INTO Temp1

2. Translator(Temp1 , ’location ’, Temp3)

3. SELECT * FROM Room R, RoomOccupancy RO WHERE R.id=RO.eid

And Overlaps ([RO.start , RO.end], [2, 5]) INTO Temp2

4. SELECT * FROM Temp2 ,Temp3 WHERE Temp2.id=Temp3.value INTO Temp4

5. Translator(Temp4 , ’occupancy ’, Temp5)

6. SELECT * FROM Temp5 WHERE Temp5.value > 50 INTO Answer

Note that the query blocks without translation operators are simply executed as a query on

the underlying database. The output of these queries is stored in temporary tables that are

later used by other query blocks. The query blocks containing only translation operators are
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Figure 5.3: Query-driven materialization architecture.

executed using a stored procedure that implements the translation operator1 and takes a

temporary relation (output of downstream query block) as input and fills all missing values

for a particular observable attribute in it (§5.2.1 provides details of translation operator).

In this query execution strategy, a block cannot be executed unless all its child blocks are

completely executed, making it a blocking strategy.

5.1.3 Query Driven Materialization

There are several architectural possibilities to realize TippersDB’s layered design. One option

is to fully materialize the temporal relations at sensor data ingestion time. This way, queries

can directly run on the materialized temporal relations without any query time translation.

However, such an architecture can incur a very high ingestion delay. For example, in our

running example, analyzing a single WiFi connectivity event takes ∼20ms [83], and analyzing

a single camera image takes ∼0.4s. In a medium-sized campus with hundreds of WiFi APs

and cameras (producing ∼1,000 WiFi events/sec and ∼100 images/sec), we will need 5

minutes of processing time for locating the person using the data that has been generated

in one second, and this processing time is infeasible.

1Implementing the translation operator as a UDF is not possible since it adds/updates rows of temporal relations (which is not
possible for UDFs). Hence, TippersDB implements the translation operator as a stored procedure.
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Another possibility is to not materialize temporal relations at all (i.e., the semantic data is

not physically stored and every query is rewritten on top of the raw sensor data to compute

the semantic data). This way, every query needs to perform translation from scratch as

semantic data computed by previous queries is not stored.

TippersDB takes a query-driven materialization (see Figure 5.3) approach where temporal

relations are materialized during query execution. Temporal relations are physically stored

but can have MISSING values denoting which part of the data is not yet materialized and needs

to be computed at query time. In this case, queries directly use the already materialized

values and only compute the MISSING values in the temporal relation. Also, the newly

computed values during query execution get materialized into the temporal relations. Note

that the current TippersDB implementation performs translation (if needed) only at query

time. The approach can, however, be intermingled with techniques to selectively translate

sensor data at ingestion or periodically using a background process. Such a generalized

approach is an interesting future extension.

5.2 TippersDB Translation

We describe how the translation operator transforms sensor data to compute MISSING values

(§5.2.1). We discuss strategies to further optimize the translation by exploiting hierarchical

data types (§5.3.1) and by indexing temporal relations for interval search queries (§5.3.3).

5.2.1 Translation Operator

The translation operator τpj , for an observable property pj, takes as input a time interval I,

a set of entities {e} for which the values of pj is missing and a set of regions {Γ} that need

to be covered to generate the value of pj to meet the query’s requirement. The translation
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Figure 5.4: Categories of translation operator call.

operator generates and executes a translation plan, plan(τpj), that fills all the missing values

of pj for all the entities in {e} for the interval I.

Query Cases: The calls to the translation operator can be divided into four categories as

shown in Figure 5.4. The entities input to τpj could be a set of entities, or it could be ALL,

representing the entire set of entities in the corresponding temporal relation. Likewise, the

spatial regions in the input to translate could be ALL referring to any region in the extent.

Example 5.1. Consider the RoomOccupancy temporal relation (for occupancy property) as

shown in Table 5.1(a). Consider also that for a given query, we need to fill the MISSING values

in the temporal relation for tuples corresponding to rooms with id 1 and 2 for time interval

[0, 50]. Table 5.1(b) shows a sample translation plan generated by the translation operator,

viz., τoccupancy([0,50], {room1, room2}, {room1, room2}). Note that, in RoomOccupancy,

the entity itself represents a spatial region, therefore the set of regions to be covered, in this

case, is also room 1, room 2. The translation plan shows that the value of occupancy for

entity room 1 in interval [0, 10] can be computed through CamFunction1 using data from

sensor Cam2. Likewise, it shows plans to capture occupancy for room 2 for the interval [0,30]

and for intervals [20, 35] and [40, 50]. Note that the translation plan for an entity can

involve different combinations of functions and sensors for different time intervals if this is

deemed as the best plan by TippersDB. To fetch occupancy of all rooms in interval [0, 50]

the translation operator can be invoked as τoccupancy([0,50], ALL, ALL). This invocation will

fill the missing occupancy values for all the rooms (i.e., rooms 1, 2, and 3).
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Algorithm 2: Translation plan generation.

1 Inputs: pj, {e}, I, {Γ}. // Γ: A region that needs to be covered.
2 Outputs: Translation plan T .
3 Function GeneratePlan() begin
4 T = φ
5 foreach ∆ ∈ I do
6 Tentity ← EntityBasedPlan({e},∆) // if {e} is not ALL
7 Tregion ← RegionBasedPlan(Γ,∆)
8 if Cost(Tentity) < Cost(Tall) then T.add(∆, Tentity) )
9 else T.add(∆, Tregion)

10 Return T

11 Function EntityBasedPlan({e},∆) begin
12 Plan = φ
13 foreach ei ∈ List{e} do
14 Plan.add(GetBestSensor(ei,∆))
15 Return Plan

16 Function RegionBasedPlan({Γ},∆) begin
17 Plan = φ
18 foreach Γi ∈ {Γ} do
19 PlanSpacei ← Coverage−1(pj,Γi, t) // t is a time point in ∆
20 uncovered = {Γi}, Plani = φ
21 while uncovered 6= φ do
22 Choose f, S ∈ PlanSpacei such that rank is lowest
23 Plani.add(〈f, S〉)
24 forall S ′ ∈PlanSpacei do
25 if S ′.rank 6= NULL then Adjust(ΓS′ ,ΓS, uncovered, S

′)
26 uncovered = Difference(uncovered,ΓS) // Described in Section 3.1

27 Plan.add(Plani)

28 Return Plan

29 Function Adjust(ΓS′,ΓS, uncovered , S′) begin
30 Γ′S′ = Intersect(ΓS′ ,ΓS)
31 // Intersection with each region ∈ uncovered
32 {Γ′′S′} = IntersectMulti(Γ′S′ , uncovered)
33 if {Γ′′S′} = φ then S ′.rank = NULL
34 else S ′.area = S ′.area− area({Γ′′S′}), S ′.rank = S ′.cost/S ′.area

Algorithm 2 shows the logic of the translation operator. Since the coverage of sensors can

change with time, TippersDB divides the time interval I into smaller equi-sized sub-intervals

of size ∆ and generates an optimal sub-plan for each ∆. ∆ is chosen to be small enough such

that the coverage of sensors is expected to be stable (not changing) in its duration.2 For

2If the coverage changes (e.g., a sensor becomes available/unavailable during a ∆ interval), then TippersDB may select a non-
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each ∆, TippersDB generates two types of plans (Lines 3-8): entity-based and region-based

plans; and of the plans generated, it selects the one with a lowest cost.

Entity-Based Plan (Lines 11-15)

Recall that entity-based sensors always observe a particular entity irrespective of the space

they are in. To generate an entity-based plan, TippersDB, for each entity in the input to the

translate operator, finds the minimum cost observing function and the entity-based sensor

that can observe the given entity for the entire ∆. We generate this plan only when the

entities are explicitly listed on the input, i.e., not ALL, or if the region-based plan is not

feasible. Note that we could generate an entity-based plan for situations when the input

contains ALL, but since number of entities can be arbitrarily large, such plans would be

expensive.

Region-Based Plan (Lines 16-28)

TippersDB generates plans using space-based sensors, i.e., sensors that cover all entities in

a particular region of the space. Here, TippersDB generates a plan for each region in the

queried set of regions. To do so, for each region Γi in {Γ}, a plan space that includes all

possible plans is generated from which a minimum cost plan will be selected.

Plan Space: To generate the plan space, TippersDB calls the Coverage−1 function (dis-

cussed in §4.4.2) on the space Γi and a time point t from time interval ∆ .3 Recall that

the Coverage−1 function returns a set of pairs having the observing function fl and a set of

sensors S. Consider ΓS as the sub-region of Γi that can be covered by the set of sensors S

using observing function fl in time interval ∆. Note that different sets of sensors may cover

optimal plan; e.g., a better plan might be possible by dividing ∆ into smaller values and choosing different plans for the two
different parts of the ∆ interval.

3We could run Coverage−1 for any point of time ∆ since ∆ is small enough such that the coverage of sensors does not change
for any time point in its duration.
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ID Start End Value

1 0 10 MISSING

1 10 100 25

2 0 35 MISSING

2 35 40 50

2 40 100 MISSING

3 0 100 MISSING

(a) RoomOccupancy

Entity
ID

Start End Observing 
Function

Sensors

1 0 10 CamFunction1 Cam2

2 0 30 WiFiFunction1 WiFi30

2 30 35 CamFunction2 Cam2,Cam3

2 40 50 CamFunction1 Cam3

(b) Translation Plan

Table 5.1: Translation Plan.

(a) Plan Space (b) Selected Plan

S1𝜞

S3

S2
S4

S5 S5

S1

S2

𝜞

Figure 5.5: Region-based plan generation.

overlapping sub-regions inside Γi. For example, Figure 5.5a represents one such plan space

and shows a region Γ with different sets of sensors covering different overlapping sub-regions

of Γ.

Plan Selection: Executing all the observing functions (with the corresponding sensors)

included in the plan space will result in redundant translation work, since multiple sets

of sensors might cover overlapping sub-regions of the given region. TippersDB selects a

minimum cost subset of the plan space such that the subset covers the entire region. This

subset is called a translation plan. The condition to select a translation plan is formally

defined as:

arg min
plan

∑
(fl,S)∈plan

Cost(fl(S)) |
⋃

(fl,S)∈Plan

Coverage(fl, S, t) ⊇ Γi

where Cost(fl(S)) denotes the estimated amount of time spent in executing fl on data

generated by sensors in S for the time interval ∆ and t is any time point in ∆.
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The problem of finding the minimum cost plan that covers a region of interest is related

to the problem of covering a polygon with minimum number of rectangles which is NP-

complete [119]. This polygon covering problem can be easily reduced to the problem of

covering a rectangle R by the fewest given rectangles. Let us consider R be a bounding box

of a polygon P , and construct a set of rectangles to be used to cover R that include every

maximal rectangle contained in P and a set of rectangles obtained from R− P by slicing it

into rectangles (so that there is only one way to cover R − P ). Therefore the problem of

covering a rectangle by the fewest given rectangles is also NP-complete.

Thus, to generate the minimum cost translation plan we use a greedy algorithm. First,

we sort the plan space based on the ratio of the cost of the function and the area of the

sub-region covered, i.e., Cost(fl(S))/area(ΓS) (denoted as the rank of S). We select the

entry, (fl, S), with the lowest rank from the plan space and add it to the translation plan.

Note that selecting S will reduce the benefit (i.e., will increase the rank) of other sensors S ′

that are covering regions overlapping with the region covered by S, since parts of the regions

covered by S ′, are now covered by S. Therefore, we adjust the rank of all other S ′ in the plan

space as Cost(fl(S
′))/(area(Γ′S)−area(Γ′′S)) where Γ′′S is the region of S ′ overlapping with S.

Next, we remove the region covered by S, ΓS, from those regions of Γi which are not already

covered by current sets of sensors in the translation plan. We maintain such regions of Γi as a

set of regions called Γuncovered (initially containing the entire Γi). To remove a covered region

ΓS from Γi, we simply subtract ΓS from Γuncovered (using the difference function mentioned

in §4.1). We keep on iterating the above-mentioned steps until the entire region Γi is covered

or there are no more entries left in the plan space.

Cost estimation for translation operator placement: The previous section describes

how translation is implemented during query execution. Recall that before the execution

of the query, we need to place translation operators in the query tree (see Section 5.1.2).

As discussed there, we need to determine the cost of translation operator when placed at
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different nodes in the query tree. Note that since the translation operator placement is

done before query execution, we need to develop ways to estimate the cost of a translation

operator.

To estimate the cost of a translator operator, TippersDB uses the the cardinality estimates

provided by the database. From the input cardinalities, TippersDB estimates the number

of entities which will have MISSING values and the estimated number of regions that will

need to be covered. The cost of per entity plan of a translation operator will be minimum

if the minimum cost observing function has a sensor available for each entity during a time

interval. Similarly, the cost of per region plan of a translation operator will be minimum if

the minimum cost observing function has a set of sensors available that cover each region.

The same idea can be extended to estimate the maximum cost of a per entity and per region

translation plan. The minimum and maximum cost of a translation plan is as follows:

Costmin(T ) = min[N × Cost(f e
min),M × Cost(fΓ

min)]× (I/∆)

Costmax(T ) = max[N × Cost(f e
max),M × Cost(fΓ

max)]× (I/∆)

where N and M are the estimated number of entities and spaces respectively, f e
min and f e

max

are minimum and maximum cost entity-based observing functions, and, fΓ
min and fΓ

min are

minimum and maximum cost space-based observing functions. We assume that the cost of

a translation plan is uniformly distributed and therefore we estimate the cost of translator

operator as the average of the minimum and maximum cost. This estimated cost is used to

place translation operators appropriately in the query tree (§5.1.2).
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5.3 Translation Optimizations

5.3.1 Optimizing Hierarchical Data Types

An entity or an observable property in TippersDB can have a hierarchical data type, for

example, as mentioned in §4.1, the location property of occupant relation can be represented

at different granularity (e.g., room-level, region-level, building-level). For some hierarchical

data types it is possible that the translation at a higher/coarser level level of granularity is less

expensive compared to translation at a lower/finer level. For example, LOCATER [83] has

shown that locating a person at region-level using WiFi events is much faster than locating a

person at the room-level. TippersDB exploits this difference in cost of translation at different

granularity of hierarchical data types to reduce the cost of translation by generating more

efficient query plans.

Example 5.2. Consider the query given in Figure 5.1b that finds out the occupancy of all

rooms that ‘John’ has visited between time interval [2, 5] and had occupancy > 50. Let us

assume, localizing a person at the granularity level of a room or of a region takes 100ms

and 10ms, respectively, and finding occupancy of a room takes 50ms. There are 10 regions

with 10 rooms per region and the occupancy of rooms is uniformly distributed between 0 to

100. Also, let us assume that John has visited five different rooms belonging to two different

regions during the queried time interval. Since the location property is hierarchical, there are

the following possible plans (shown in Figure 5.6) for the query of Figure 5.1b.

• Plan 1: first localize John at room-level and then, for the rooms John was in, find the

occupancy and check if occupancy > 50. The cost of this plan is 100*100 + 50*5 = 10,250

ms.

• Plan 2: first find out the occupancy of each room and then, for each room where occupancy

> 50, check if John was there. The cost of this plan is 50*100 + 100*50 = 10,000 ms.

• Plan 3: first localize John at region-level and then, for the rooms in the regions John was
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present, check if John was there. For the rooms where John was present, find the occupancy

and check if it is more than 50. The plan cost is 10*10 + 100*20 + 50*5 = 2,350 ms.

• Plan 4: first localize John at region-level and then, for the rooms in the regions John was

present, find the occupancy. For the rooms where the occupancy was greater than 50, check

if John was there. The plan cost is 10*10 + 50*20 + 100*10 = 3,020 ms.

Observe that plans 3 and 4, that leverage location hierarchy, have much lower translation

cost than other plans. Depending on the difference in cost of room/region-level localization

and the number of rooms per region, one plan may be better than the other.

In general, an expression pj op am, where pj is a hierarchical observable attribute, op is one of

the comparison operators (e.g., =, IN), and am is a possible value of pj, can be transformed to

a condition (parent(pj) op parent(am)) AND (pj op am), where parent(pj) is the parent

node of pj. Note that the above transformation can be applied as long as the following

condition holds.

pj op am ≡ true =⇒ parent(pj) op parent(am) ≡ true

For example, consider that room ‘L-1’ is contained inside region ‘A’. If an equality predicate

“room = L-1” is true, it implies “region = A”. Note that this condition might not be true for

every hierarchical attribute and predicate. For example, the predicate “room 6= L-1” does

not imply “region 6= A”. However, this condition is always true for the much more common

cases of equality and IN predicates.

Note that this transformation is useful if the cost of translation of the new expression is

smaller than the cost of translation of the original expression, i.e., Cost(τparent(pj)) < (1 −

α)× Cost(τpj), where α is the selectivity of the predicate parent(pj) op parent(am).

This approach of adding hierarchical filters can be extended to more than two levels of hier-

archy. For example, a building-level localization using GPS data is even cheaper then WiFi

based region-level localization. Therefore, Example 5.2 can be extended to include a chain of
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πRO.id,RO.I,RO.value

σRO.value>50

τoccupancy

./
OL.value=RO.id

τroom

./
O.id=OL.id

σname=′John′

Occup.(O)

σoverlap(I,[2,5])

Occup.-Loc(OL)

σoverlap(I,[2,5])

Rooms-Occ.(RO)

πRO.id,RO.I,RO.value

./
OL.value=RO.id

τroom

./
O.id=OL.id

σname=′John′

Occup.(O)

σoverlap(I,[2,5])

Occup.-Loc.(OL)

σRO.value>50

τoccupancy

σoverlap(I,[2,5])

Rooms-Occ.(RO)

πRO.id,RO.I,RO.value

σRO.value>50

τoccupancy

./
OL.value=RO.id

τroom

τregion

./
O.id=OL.id

σname=′John′

Occup.(O)

σoverlap(I,[2,5])

Occup.-Loc(OL)

σoverlap(I,[2,5])

Rooms-Occ.(RO)

πRO.id,RO.I,RO.value

σRO.value>50

τoccupancy

./
RO.id IN children(OL.value)

τregion

./
O.id=OL.id

σname=′John′

Occup.(O)

σoverlap(I,[2,5])

Occup.-Loc.(OL)

σoverlap(I,[2,5])

Rooms-Occ.(RO)

Figure 5.6: Different query plans with hierarchical translation (Plans 1,2,3,4 starting form
top-left to bottom-right).
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Figure 5.7: Reduced translation space.

Figure 5.8: Contextual filter based on last
known location.

transformations containing first the building-level localization, followed by region-level local-

ization and then finally the room-level localization. This approach of adding transformations

based on hierarchy is related to a more general problem of multi-version predicates studied

in [81], where multiple cheaper versions of predicates are created for an expensive predicate

present in the queries and the less expensive predicates are evaluated first to reduce the

number of tuples that are used to evaluate the expensive predicates.

5.3.2 Reducing Plan Space Using Contextual Information

As mentioned in Section 5.2.1 the translation operator for a given observable property pj

and a given time interval ∆, generates a translation plan that covers all the entities or all

the spatial regions returned from the upstream operator. This list of entities and/or spatial

regions can be very big. However, often, by using some contextual information it is possible

to use the set of entities to reduce/prioritize the set of spatial regions to be covered as shown

in Figure 5.7. The following example shows how to reduce the set of spatial regions to be

covered using contextual information.

Example 5.3. Consider a query asking for the location of John in a given time interval. In

this query the set of entities to be covered is {John} and set of spaces to be covered is ALL. To

answer this query, if a personal sensor for John is not available, TippersDB has to generate
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a space-based plan to cover all the spaces which could be highly inefficient. However, using

the fact that a person can physically move only a certain distance in a given time interval,

we can limit the spactial regions to be covered to only those spaces that ‘John’ could have

possibly physically moved from his last known location as shown in Figure 5.8.

Similarly, the set of entities to be covered can be reduced or prioritized using contextual

information as shown in the following example.

Example 5.4. Consider a query asking a list all people who were in Room-2065 at a given

time. In this query the set of entities to be covered is ALL and set of spaces to be covered is

Room-2065. In this case, if there is no space-based sensor available whose physical coverage

overlaps with the physical extent of Room-2065, TippersDB has to generate a entity-based

plan to cover all the entities which could also be highly inefficient. However, if we find out

last known locations of all the entities we can filter out all those persons who could not have

physically moved to Room-2065.

Users can add their application specific logic of using contextual information by adding

contextual filter function to an observable property. A contextual filter function takes as

input a set of entities, spatial regions and a time interval, and returns a subset of entities

and the spatial regions as output. Formally, contextual filter functions can be defined as:

ContextualF ilter(pj, {e}, {Γ}, I)→ ({e′}, {Γ′}, I) such that {e′} ⊂ {e} And {Γ′} ⊂ {Γ}

where {e} is a set of entities, {Γ} is a set of spatial regions and I is the time interval. During

the query execution, before every translation operator τpj , TippersDB calls all the contextual

filter functions added for the observable property pj.

Based on output i.e., reduced set of entities and spatial regions, contextual filter functions

can be classified into the following two categories.

• MUST Contextual Filters: Contextual filter functions that return a subset of
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entities and/or spaces such that generating a translation plan for the returned set of

entities and spaces is sufficient to answer the query. Therefore, the rest of the entities

and spatial regions do not need to be considered for translation. Formally, a con-

textual filter is classified as a must contextual filter if it satisfies the following condition.

τpj({e}, {Γ}, I) ≡ τpj(ContextualF ilter(pj, {e}, {Γ}, I))

here τpj is the translation operator called for observable property pj. The context filter

described in Example 5.3 is a must context filter, as it uses the deterministic physical

constraint on the distance moved by a person to reduce the set of spatial regions.

• MAYBE Contextual Filters: Contextual filters that return a subset of entities and

spatial regions that should be prioritized for translation. However, the remaining set of

entities and spaces can not be discarded as the translation of the reduced set of entities

and spatial region may not result in generating an answer. For example, consider a

query asking for the current location of ‘John’. If ’John’ has an office, we can first try

to locate ‘John’ in the region containing his office before covering other spatial regions.

Similarly, if we know that ‘John’ is a student, we can prioritize localizing ‘John’ in

lecture halls. However, since it is possible that we are not able to localize ’John’ in

any of the lecture halls, we may have to consider other spatial regions. Note that using

the query execution strategy described in §5.1.2, the maybe class of contextual filter

functions cannot be implemented since given a set of entities, spatial regions and time

interval, the translation operator generates a plan fully covering the entities or the

spatial regions. However, in Chapter 6 we will describe a progressive query processing

approach, that allows this class of contextual filters to prioritize certain entities and

spatial regions to be translated.

TippersDB provides the following command to add a contextual filter function. Note that

TippersDB allows multiple contextual filter functions to be added for the same observable

property.
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CREATE T_ContextualFilter UseLastLocation(T_Temporal <Occupancy.location >,

’MAYBE/MUST’)

5.3.3 Optimizing Interval Search Queries

TippersDB executes interval-based search i.e., fetches rows from temporal relations having

intervals that overlap with a given interval, during query execution. In particular inter-

val based search is used to find coverage of sensors during a particular time interval in

implementing the translation operator. Hence, TippersDB needs to have an efficient imple-

mentation of such interval search queries to minimize the overall cost of the query. Several

indexing structures for interval search queries are proposed in the past [56, 44]. But all these

strategies either create or change the indexing structures inside the database system. Since

we designed TippersDB using a layered approach, we need to use existing database indexes

for interval search queries. One possible way is to maintain separate indexes for both the

start-time (referred to as STI ) and end-time attribute (referred to as ETI ) of a temporal

relation (shown in Table 4.1). To search rows in a temporal relation having time intervals

overlapping with a queried time interval [tqstart, t
q
end] first, STI is used to find out all the

records with their start-time less than tqstart. Similarly, ETI is used to find out all records

with end-time less than tqend. Finally, an intersection between the rids (i.e., record IDs) of the

two lists is performed. This implementation works well as long as the size of the temporal

relation is small. However, when the size of the temporal relation grows, the range search

with an unbounded side on STI and ETI , makes the index-based search very inefficient as

it may result in a large number of records to be matched before the intersection of rid lists

even when the length of the queried time interval, tqend − t
q
start , is very small.

To avoid scanning the entire temporal relation, we bound the number of records that can

satisfy the range-lookup on STI and ETI . We maintain a parameter called interval threshold
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ID Start End Value

1 0 30 MISSING

1 31 60 32

2 0 15 25

2 16 25 MISSING

2 26 50 50

ID Start End Value

1 0 19 MISSING

1 20 30 MISSING

1 31 50 32

1 51 60 32

2 0 15 25

2 16 25 MISSING

2 26 45 50

2 46 50 50(a)

(b)

Table 5.2: Room occupancy temporal relation with (a) no interval threshold (b) interval
threshold of 20.

Sensor No. Rows
(M)

Size
(GB)

Observing Functions (Cost)

WiFi 300 80 76 location(room:150ms,region:10ms)
occupancy(room:100ms, region:8ms)

WeMo 1,400 37 4 energy(room:20ms)

Hvac 250 15 10 energy(region:50ms)

Camera 1,400 20 840 location(room:200ms); occupancy(room:120ms)

GPS 5,000 50 10 building-location (5ms)

Watch 5,000 50 20 vitals (18ms)

Table 5.3: Sensor Dataset and Functions.

(referred to as φ), which represents the maximum length of a time interval in a temporal

relation. If the length of an interval is longer than φ, then the interval is divided into

multiple time intervals, each with a duration less than or equal to φ, with each new interval

having the same value. Table 5.2(a) shows the RoomOccupancy temporal relation without

any interval threshold and Table 5.2(b) shows the same temporal relation after setting an

interval threshold of 20. This strategy makes the overlapping interval search queries to

become bounded. For a queried interval [tqstart , t
q
end ], we use the STI to retrieve records with

start-time ≤ tqstart and ≥ (tqstart − φ). Similarly, the ETI is used to retrieve the records with

end-time ≥ tqend and ≤ (tqend + φ). Finally, to find the overlaps, the intersection between

these two lists of record IDs are performed.
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Q1 Fetch room-location of John during time (t1, t2)

Q2 Find all people in room r during time (t1, t2)

Q3 Fetch occupancy of room r during time (t1, t2)

Q4 Fetch all rooms with occupancy greater than 100 during time (t1, t2)

Q5 Fetch all users co-located (same room, same time) with John during (t1, t2)

Q6 Retrieve users who went from room r1 to r2 during (t1, t2)

Q7 Retrieve average time spent by users in different types of rooms during (t1, t2)

Q8 Find occupancy of all rooms visited by John during (t1, t2) and with occupancy > 50

Q9 Find rooms consuming > 100 energy units with average occupancy < 50 during (t1, t2)

Q10 Find all users who were healthy and visited buildings that were visited by unhealthy
individuals prior to them between (t1, t2)

Table 5.4: Queries.

5.4 Evaluation

We evaluate the following aspects of TippersDB in our experiments: (1) Ease of application

development, flexibility, and extensibility provided by TippersDB; (2) Performance gain by

TippersDB through its query-driven translation approach compared to translation done at

ingestion; (3) Effect of optimization strategies used by TippersDB.

5.4.1 Experimental Setup

For the experiments, we use the smart campus scenario described in §1.1. We consider

that the buildings inside the smart campus are instrumented with WiFi APs, cameras,

power meters (WeMo devices [17]), and HVAC sensors. Also, we assume that the campus is

inhabited by various people and majority of people carry a GPS-enabled smartphone and a

smartwatch. As mentioned in §4.2, the OER model in this scenario consists of people and

rooms as main entities. In the model, people have location and vitals as observable properties,

and rooms have occupancy and energy consumption as their observable properties. The

location property is hierarchical (as discussed in §4.1). The granularity of time for the

sensor data and time intervals in temporal relation is set to one second.

Datasets. We used the sensor data generation tool provided in [68] to generate synthetic
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Figure 5.9: Possible translation
plans.

EID Start End Observing 
Function

Sensors

3 50 80 WiFiFunc1 WiFi30

3 80 120 CamFunc1 Cam2

3 120 130 CamFunc1 Cam3

3 130 200 WiFiFunc1 WiFi31

(a) Plan version 1 (b) Plan version 2 

EID Start End Observing 
Function

Sensors

3 100 130 WiFiFunc1 WiFi30

3 130 180 WiFiFunc1 Cam2

3 180 210 CamFunc1 Cam3

3 210 250 WiFiFunc1 WiFi30

Figure 5.10: Sample translation plans.

sensor data for a month for a campus with 25 buildings. Table 5.3 shows the number of

instances of each sensor type, the number of rows, and the size of the generated sensor data.

Queries. We selected the following ten queries; see Table 5.4: Queries Q5-Q8 are extracted

from SmartBench [68], an IoT database benchmark. All queries are expressed on the semantic

model referring to entities and their observable (or not) attributes. Note that during the

evaluation we set the value of the time interval parameter, i.e., (t1, t2), such that t2 − t1 is

30 minutes unless explicitly stated.

Observing Functions: We use observing functions to compute building location/occu-

pancy from GPS data, region and room location/occupancy from WiFi data, and room

location/occupancy from camera data. Similarly, the energy usage of a room is computed

using WeMo data and at region level using HVAC data. We use smartwatch data (i.e., heart

rate, O2 level) to generate a health report of a person. The cost of each function is given in

Table 5.3.

5.4.2 Flexibility and Extensibility Evaluation

TippersDB provides a layered data model which acts as a semantic abstraction to devel-

opers. This way, it allows them to write applications directly on the semantic/application
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data, without handling specific sensors and their produced data. We evaluate the benefit of

TippersDB with respect to simplification of smart application development.

Eval 1 - Complexity of Number of Translation Plans: TippersDB creates a translation

plan space per query (representing all possible plans), before selecting the best one, thus

hiding the complexity of generating and iterating over possible translation plans from the

application developer. The number of plans considered by TippersDB can be viewed as an

indicator of simplification the system offers - without using TippersDB the developer would

need to reason about such plans. Figure 5.9 shows the number of possible translation plans

to find room-location of a person in a given set of regions. Observe that to cover a set of 25

regions is more than 1 million possible plans which increase exponentially with the increase

in the number of regions to be covered.

Eval 2 - Changing Translation Plans: TippersDB dynamically generates a translation

based on the query, available sensors and observing functions. A small change in the query

might result in a totally different translation plan. TippersDB hides such complexities from

developers who using TippersDB do not have to change the application code to reflect new

plans. Consider two versions of query Q3 where the value of (t1, t2) in version 1 and 2 is set

to (50, 200) and (100, 250), respectively. Figure 5.10(a) and (b) shows the translation plans

(generated to fill the missing values in OccupantLocation temporal relation) for version

1 and 2, respectively. Observe that, with only a slight change in the query parameter,

the translation plans generated are different wrt to the observing function and sensor pairs

selected even when the entity of interest (the room) is exactly the same.

Eval 3 - Lines of Code: Developing the localization application mentioned in §1.1 using

TippersDB is much simpler (50 lines of code) as compared to writing directly on sensor data.

In the latter, sensor data processing functions are explicitly called by the application code

which increases its complexity (500 lines of code).

98



Entity Set Occupants Rooms
Property location vitals contacts occupancy energy

Time(days) 70 8 17 34 12

Table 5.5: Exp 1 - Eager translation.

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Translation 85% 83% 70% 88% 83% 81% 95% 84% 82% 91%
Planning 12% 15% 15% 9% 12% 17% 4% 14% 15% 8%

DB Queries 3% 2% 5% 3% 5% 2% 1% 2% 3% 1%

Table 5.6: Exp 3 - Abstraction overhead.

5.4.3 Performance Evaluation

The following experiments were performed on a server with 16 core 2.50GHz Intel i7 CPU,

64GB RAM, and 1TB SSD. Both the sensor data and the temporal relations were stored in

PostgreSQL.

Exp 1 - Eager Translation: We mentioned in § 1 that processing/translating the entire

sensor data to generate meaningful observations is not practical. Table 5.5 shows the amount

of time required to process all the sensor data at ingest using the functions and their cost

mentioned in Table 5.3. For example, Table 5.5 shows that time to process 37M rows of

WeMo data using the observing function that takes 20ms per row to compute energy used

by a room will be 37 × 106 × 20ms ≈ 8 days. Complete translation of GPS, WiFi, and

Camera data captured in a month to generate location values would take ≈70 days, which

is highly impractical.

Exp 2 - TippersDB performance and effect of optimizations: Figure 5.11 shows

the total execution time of queries in TippersDB including effect of the two optimizations:

a) strategy to reduce translation cost for observable properties of hierarchical data types

(see §5.3.1), and b) Indexing of the temporal relation using the strategy in § 5.3.3 with

interval threshold=15 mins. Figure 5.11 shows that queries Q1, Q4, Q5, and Q8 benefit

extensively from the hierarchical optimization - the total query time for Q1 and Q4 reduced
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Figure 5.11: Exp 2 - Performance and effect of optimizations.

Query Avg.
Diff.

Query Avg. Diff.

Q1 4.8% Q6 10%

Q2 3.9% Q7 4%

Q3 2% Q8 4.5%

Q4 8.8% Q9 6.2%

Q5 3% Q10 2.5%

Table 5.7: Accuracy of translation operator cost estimation.

from 240s to 23s and from 350s to 46s, respectively. The optimization does not benefit Q10

since it is already at the coarse level. Q2 and Q3 that are room-based queries require that

users be localized to fine (room) level and cannot exploit the optimization. Likewise, Q7

requires localizing all users at room-level. In each of the queries, Figure 5.11 shows indexing

reduces the execution time by 5 to 10% of the cost. Note that of all the queries Q7 is difficult

to optimize since it requires all users to be localized to room level. However, note that the

times are still only a small fraction of the eager approach.

Exp 3 - Abstraction Overhead: Table 5.6 shows for each query Q1-Q10, the percentage

of the total time of query execution spent in translation, generating translation plans and

executing queries on the underlying database(executing a query in TippersDB may result in
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multiple queries on the underlying database as mentioned in §5.1.2). For all queries, more

than 80% of time is spent in translation and only a small part of the total time is spent in

translation planning and running queries on the database.

Exp 4 - Accuracy of Translation Operator Cost Estimation: In this experiment

we study accuracy of translation operator cost estimation technique mentioned in §5.1.2.

We measure accuracy of the cost estimation technique by running each query 10 times and

calculating the average of the difference (show in Table 5.7) of the actual translation cost

and the estimated translation cost for each query as a percentage with respect to the actual

translation cost. Observe that the difference between the estimation cost and the actual cost

is at most 10% of the actual cost.

Exp 5 - Effect of contextual filter functions In this experiment we study the effect of

contextual filter functions. For this experiment, we added a contextual filter function for

the location observable property that limits the set of spatial regions to be covered to find

a person’s location using his last known location as describe in Example 5.3. With the help

of this contextual filter function the query execution time for Q1 reduced from 230s to 45s

as the numbers of spatial regions to be covered reduced from 1400 to 280.
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Figure 5.12: Exp 6 - Effect of query
selectivity.

Exp 6 - Effect of Selectivity: In this experiment

we study the effect of the query selectivity on the

TippersDB query execution time. For this purpose,

we vary the selectivity of query Q1 by changing the

duration of the time interval i.e., (t1, t2) parameter.

Figure 5.12 shows that the total query execution time

(and hence the translation cost) of Q1 increases lin-

early with increasing duration of the time interval.
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5.5 Conclusion

In this chapter we described the realization of TippersDB data model on top of an existing

database system. We described the translation mechanism of TippersDB and showed how

TippersDB integrates query processing with translation. We also introduced a few optimiza-

tion techniques that reduce the number of translations to be done. Note that, this chapter

describe a blocking approach of query processing where the intermediate query results are

fully materialized. This approach can increase the wait time for the user and also can en-

counter high storage overhead if the intermediate results are large. In the next chapter we

will see a modified query processing approach that progressively provides users with answers

and also does not require any explicit materialization of intermediate results.
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Chapter 6

Progressive Query Processing

In this chapter, we address the issue of increased query latency and user wait time which

arises due to query driven translation strategy mentioned in Chapter 5. In this chpater, we

describe a query processing approach that progressively returns results to the end users/ana-

lysts instead of making them wait for the query to finish executing. In particular, we develop

techniques to progressively translate sensor data and incrementally compute answers. We

begin by defining the semantics of progressive query processing and then describe ways to

achieve progressiveness.

6.1 Progressive Queries

Similar to EnrichDB [61], to return progressive results to users, we first discretize the query

execution time into epochs : {ep0 , ep1 , . . . , epn} as shown in Figure 6.1. In each epoch,

TippersDB refines previously produced answers, by adding or retracting tuples from the set

of tuples returned in the previous epochs. Specifically, the answer set Ans(Q, epi) for a query
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Figure 6.1: Progressive query processing.

Q at the end of an epoch epi is defined as follows:

Ans(Q, epi) = {Ans(Q, epi−1) ∪∆(Q, epi)} \ ∇(Q, epi) (6.1)

where ∆(Q, epi) and (∇(Q, epi)) is the set of tuples added to and removed from query answers

returned before epoch epi.

6.1.1 Progressive Score

The effectiveness of TippersDB progressive query processing is measured using a progressive

score (similar to other progressive approaches used in [99, 31]):

P(Ans(Q, epn)) =
n∑

i=1

W (epi) · [Qty(Ans(Q, epi))−Qty(Ans(Q, epi−1))] (6.2)

where {ep1 , ep2 , . . . , epn} is a set of epochs, W (epi) ∈ [0, 1] is the weight allotted to the

epoch epi, W (epi−1 ) > W (epi)), Qty is the quality of answers, and [Qty(Ans(Q, epi)) −

Qty(Ans(Q, epi−1))] is the improvement in the quality of answers occurred in epoch epi.

Assigning higher weights to the earlier epochs provides higher importance to the improvement

in quality in the earlier epochs. Since weights Wi in the progressive score defined above are

decreasing, optimizing the progressive score is equivalent to selecting in every epoch a set of
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entities and spaces to translate such that it results in maximum increase in quality in the

following epoch, that is, Maximize(Qty(Ans(Q, ei))−Qty(Ans(Q, ei−1))).

6.1.2 Quality

The quality Qty in Equation 6.2, for a set-based query answer corresponds to a set-based

quality metrics such as F1-measure [106] defined as follows.

F1(Answ) =
Pre(Answ) ·Rec(Answ)

(Pre(Answ) +Rec(Answ))
(6.3)

where Ansreal is the real answer of the query in ground truth set G, Pre is precision,

i.e., Pre(Answ) = |Answ ∩ Ansreal |/|Answ|, and Rec is recall, i.e., Rec(Answ) = |Answ ∩

Ansreal |/|Ansreal |. The quality of an aggregation query could be measured using root-mean-

square error [73] or mean-absolute-error [134].

6.2 Probe Queries

Before the epoch-based progressive query execution, it is important to find out for each

observable property pj involved in the query, the minimal set (as small as possible subset)

of entities of temporal relation Ripj that have MISSING values and may have an impact

on the query results. Similarly, for each involved observable property pj we need to find

the minimal set of spaces that need to be covered to answer the query. One could add all

the entities that have MISSING values to this set, however, it would result in a significant

number of redundant translations, i.e., the tuples that do not satisfy predicates on the regular

attributes may be added to this set for translation. Therefore, we generate entity and space

probe queries for each observable property pj (that is part of the query) to identify the

minimal subset of entities and spaces respectively.
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(a) Original Query
(b) Entity probe query for OccupantLocation re-
lation.

(c) Entity probe query for RoomsOccupancy relation.

Figure 6.2: Entity probe query generation.

6.2.1 Entity Probe Query

To compute the minimal subset of entities containing MISSING values, TippersDB generates

an entity probe query (denoted as EPQ(pj)) for each pj that needs to be translated to execute

Q. TippersDB uses the following three ideas to generate the probe queries:

• Selection Conditions on Regular Attributes: Given a selection condition on a regular

(non-observable) attribute, an entity that does not satisfy that condition could be

dropped from consideration for translation since the tuples consisting of this entity

will anyways be dropped during the query execution.
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• Join Conditions: Given a join condition on a temporal relation Ripj, if for an entity

Ripj, there is no tuple in Ripj that satisfies the join condition, then that entity can

also be dropped from the translation process.

• Prior Translation: We need to consider only those entities that have MISSING values

for the observable property pj. All the other entities that got translated as a result of

previous queries can be discarded.

Example 6.1. We illustrate how the entity probe queries can exploit the selection and join

conditions using the query shown in Figure 6.2a that finds out the occupancy of all rooms that

‘John’ have visited during time interval [2, 5] and had occupancy > 50. In this query, for the

temporal relation OccupantLocation, there is a selection condition on the time interval, i.e.,

the condition overlap(I, [2, 5]), therefore we need to consider only those rows of Occupant-

Location that have time interval overlapping with [2,5]. Also, since we only need to translate

entries related to ‘John’, the rows of OccupantLocation relation can be further reduced by

performing a semi-join with the Occupants table as shown in Figure 6.2b. Similarly, Fig-

ure 6.2c shows the entity probe query generated by TippersDB to reduce the number of rows

of RoomOccupancy relation that need to be translated. The entity probe query for RoomOc-

cupancy exploits the selection condition on the time interval along with the join condition

requiring translation of only those rooms that ‘John’ has visited.

Following are the steps to generate an entity probe query for an observable property.

[Step 1]: Rewrite of Selection Condition (σC(Ripj)): Given a selection condition C of

the form C ′ ∧Ck where Ck is a predicate on the value column of temporal relation Ripj e.g.,

Ripj.value = 10. The condition C is rewritten as (C ′)∧ (Ck ∨Ripj.value =MISSING). This

step keeps all those tuples that have a MISSING value and are required to be translated to

answer the query.

[Step 2]: Generating Join Graph : Given a modified query after rewriting it using Step
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1, we generate a join-graph from the query. The purpose of the join graph is to find out

for a temporal relation Ripj in the query which join conditions with other relations can

be utilized to reduce the number of tuples of Ripj that require translation. In the join

graph, the nodes correspond to reduced relations, i.e., relations with the selection conditions

applied on them. An edge between two nodes shows the join conditions between two relations

(based on the original query). Next, from each edge of the join graph, all the join conditions

containing a predicate Ck on the value attribute i.e., RiPj.value = Rl.A1 is rewritten as

Ck∨RiPj.value =MISSING. In a query tree union, set-difference, or cross product operators

are ignored, since they cannot be utilized to reduce the number of tuples in probe queries

apart from the join conditions.

[Step 3]: Semi-join Program Generation : Given the join graph as an input, for each

node Ni in the graph, this step generates a set of semi-join programs for Ni to reduce the

number of tuples of Ni that require translation. For Ni, semi-join programs are generated by

exploiting join conditions among nodes of the graph. For node Ni, this step starts from node

Ni in the join graph and generates a spanning tree, denoted as ST (Ni), that contains all nodes

of the graph with the minimum possible number of edges (using breadth-first traversal). From

ST (Ni), multiple semi-join programs are generated based on the join conditions in ST (Ni).

Semi-join programs for a node Ni are generated in a bottom-up manner from ST (Ni) starting

from the children nodes and reaching up to Ni. For each node encountered in the path, a

semi-join program is generated. The nodes in ST (Ni) are traversed in a breadth-first order

from the leaf node to the root node. All the semi-join programs between the leaf node and

their immediate parent nodes are created first. This step is continued until all the paths

from the leaf node to the root node are consumed. This step for semi-join program creation

is based on the seminal work on semi-join reduction given in [42].

[Step 4]: Generating probe queries : Given the semi-join programs (obtained in the

previous step), this step simply converts the semi-join programs into queries.
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(a) Original query.

(b) Space probe query for OccupantLocation relation.

6.2.2 Space Probe Query

TippersDB generates space probe queries to find the minimal set of spaces that need to

be covered to answer a query. Note that the space-probe queries are generated for only

those observable properties that are of spatial data types e.g., location property of occupant

relation. To generate a space probe query for an observable property pl (with Ri.pl as the

corresponding temporal relation) having a spatial data type, we exploit the selection and

join condition on the value column of temporal relation Ri.pl.

Example 6.2. Consider the query shown in Figure 6.3a that finds out the occupancy of

all rooms that John have visited between time interval [2, 5] and had occupancy > 50. To

execute this query, we only need to localize John in the rooms that either have an occupancy

greater than 50 or their occupancy is MISSING (is not computed yet) in the time interval

[2, 5]. Figure 6.3b shows the space probe query generated for the OccupantLocation temporal

relation using the observation made above. Note that, for RoomOccupancy temporal relation,

the set of entities is the same as the set of spaces, and therefore, there is no separate space
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probe query generated for the RoomOccupancy relation.

TippersDB performs the following two steps to generate the space probe queries for an

observable property pl having a spatial data type.

[Step 1]: Similar to the step 1 of entity probe query generation strategy, we first rewrite all

the selection conditions C of the form C ′ ∧Ck (where Ck is a predicate on the value column

of a temporal relation Ripj) to (C ′) ∧ (Ck ∨Ripj.value =MISSING).

[Step 2]: Then we exploit the selection/join condition on the observable property pl (which

is of a spatial data type). If there is a join condition C on the value column of the temporal

relation Ripl, of the form Ri.pl.value = Rj.A1, then the space probe query for pl is the

sub-query rooted at the node containing the join condition C in the query tree. Note that,

if instead of the join condition there is a selection condition on Ripl of the form Ripl.value

IN (a1, a2, .., am), the space probe query is simply ‘select (a1, a2, ..am)’ as the only spaces

required to be covered are a1, a2, ..am.

6.3 Epoch-based Query Processing

In this section, we describe the epoch-based query execution in TippersDB. Figure 6.4 shows

the complete end-to-end pipeline of TippersDB’s progressive query processing approach. At

the high level, the progressive approach consists of the following steps.

• We compute the minimal set of entities and spaces (for each observation property) to

be covered to answer the query.

• We divide the query execution into multiple epochs. In each epoch, we select a subset

of entities and spaces to be translated.

• We create a translation plan for the selected entities and spaces. The translation plan
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Figure 6.4: Progressive Query Processing Architecture.

is then executed to compute some of the MISSING values, resulting in updates to

temporal relations.

• We return a result to the user by executing the query on the partially materialized

temporal relations.

• We repeat the above steps until there is no MISSING value remaining to be computed

to answer the query.

Below we describe the above approach in more detail. We will also discuss ways to implement

each of the steps efficiently on existing database systems.

6.3.1 Query Setup

Before starting the epoch-based query processing, TippersDB performs a query setup/initial-

ization phase (Lines 5- 8 of Algorithm 3). Given a query Q, we first generate the entity and

space probe queries for each observable property pj involved in the query Q i.e., EPQpj and

SPQpj , using the technique mentioned in Section 6.2. Note that, in TippersDB’s epoch-

based query processing, MISSING values get computed in each epoch. As a result, the
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Algorithm 3: Progressive Query Processing.

Inputs: Query Q and the duration of each epoch epoch duration.
Outputs: Results of query Q after every epoch ei

1 Function ExecuteQuery() begin
QuerySetup()

2 for each epoch ei do
3 ExecuteEpoch(ei)
4 Results ← Run(“Select * From IVM Q”)

5 Function QuerySetup() begin
6 for each pj ∈ Q do
7 IVM EPQ[pj]← GetEntityProbeQuery(Q, pj)
8 IVM SPQ[pj]← GetSpaceProbeQuery(Q, pj)

9 IVM Q ← Q

10 Function ExecuteEpoch(ei) begin
11 EntityJobList ← ∅
12 SpacesList ← ∅
13 for each pj ∈ Q do
14 EntityJobList ← Run(“Select * From IVM EPQ[pj]”)
15 SpacesList ← Run(“Select * From IVM SPQ[pj]”)
16 Sentities , Sspaces ← SelectJobsToTranslate(pj ,EntityJobList , SpacesList)
17 Tpj ← GeneratePlan(pj, Sentities , Sspaces)

18 ExecuteTranslation(T );

underlying temporal relations also get updated in each epoch. With the update of temporal

relations in an epoch epi, as a side effect, it can happen that many of the entities/spaces that

were part of the output of probe queries and were not picked to be translated in the current

epoch, can be discarded for translation consideration in subsequent epochs (epi+1, epi+2...)

as they no longer affect the answer of the original query.

Example 6.3. Let us assume that for the query shown in Figure 6.2a, using the probe

queries, we found that the set of rooms to be covered to localize John is Room-45, Room-20,

Room-100. Furthermore, the set of rooms for which the occupancy needs to be computed

is Room-20, Room-100. In the first epoch, consider that we selected Room-45 to localize

John and Room-20 for occupancy computation. Now in the situation where the computed

occupancy of Room-20 is < 50, we can safely discard Room-20 from the set of spaces that

are required to be covered to localize John.

Therefore, it is important that we re-execute the probe queries at the beginning of each epoch
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to get the latest set of spaces and entities that require translation. However, re-executing the

probe queries in each epoch can add significant overhead. Therefore, instead of re-executing

the probe queries, we create an Incremental View Maintenance (IVM) for each probe query

to compute only the change in the output of the probe queries.

Background on Incremental View Maintenance (IVM). Given a view corresponding

to a query q, for each table Ri ∈ q, IVM algebraically derives an incremental query ∆q that is

executed (e.g., using triggers as in [80]) whenever the base tables change. ∆q query computes

only the delta changes of the materialized view q. Correctness of IVM is characterized by

ensuring that: [q(D+∆D) = q(D)+∆q(D,∆D)], where D is an instantiation of a database,

∆D are the updates toD, q(D) is the prior query results based onD, ∆q is the modified query

that needs to be executed on ∆D, and the notation ‘+’ in the expression q(D)+∆q(D,∆D)

refers to the way of combining answers of the two queries to generate the overall answer to

q over the modified data.

6.3.2 Epoch-based Execution

After setting up the probe queries, we start the epoch based query execution (Lines 10-17

of Algorithm 3). At the beginning of each epoch, first, we update the minimal set of entities

and spaces to be translated using the incremental views created on the probe queries. Then

we follow the following three steps.

Selecting Entities/Spaces In each epoch, we need to select a sample of entities and

spaces to be translated from the minimal set of entities and spaces to be covered (computed

using the probe queries). Note that, we select a subset such that the estimated cost of

translation (as described in Section 5.1.2) for the selected entities is less than the epoch

duration. Sample selection methods have been extensively studied for AQP [27, 100, 109]. In

such systems, typically a random sample of tuples is selected based on which the approximate
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aggregate values are computed. Similar to such techniques, we also choose entities or spaces

or time intervals at random.

• Sampling Entities: We randomly select a set of entities from the output of the entity

probe query for each observable property.

• Sampling Spaces: We randomly select a set of spaces from the output of space probe

queries for each observable property.

• Sampling time intervals: Recall that, in Section 5.2.1 we mentioned that we divide

the queried time interval into ∆ intervals and generate a translation plan for each

interval. In the sampling time interval strategy, we randomly select a set of ∆ intervals.

Along with the sampling-based methods, we can select a set of entities and spaces using

the output of the MAYBE contextual filter functions. Recall that, in Section 5.3.2 we

described MAYBE contextual filter functions that take as input a set of entities, spaces,

and a time interval and return a list of entities and spaces that should be prioritized for

translation before other entities and spaces.

Translation After selecting the set of entities and spaces to translate, we generate a

translation plan for the selected entities and spaces. We then execute the translation plan

to compute the MISSING values and update the underlying temporal relations.

Incremental Computation We can simply execute the query at the end of each

epoch to compute the new answer set. However, executing the complete query in each epoch

will result in high overhead and therefore is not feasible. Instead, we should execute the

query progressively such that only the delta answers based on temporal relations modified

due to translations are computed. For this purpose, we create an incremental materialized

view denoted as IVMQ for the original query Q. Users can fetch complete query results at

the end of an epoch by querying the IVMQ. If the complete answer set is large, users can
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Figure 6.5: Progressive results at different levels of hierarchy.

retrieve delta changes of answers, i.e., inserted/deleted/updated tuples from the previous

epoch. The current implementation allows users to fetch delta answers only from the last

epoch. Fetching delta answers from any arbitrary epoch using a cursor is complex (will be

supported in a future version), since the query processing in both designs is not demand-

driven, as in SQL databases.

6.4 Exploiting Hierarchy for Progressiveness

In Section 5.3.1, we showed that in many cases, for observable properties having a hierarchical

data types, it is possible that the translation at a higher/coarser level level of granularity is

less expensive compared to translation at a lower/finer level, and therefore, hierarchical data

types can be used to reduce the amount of translation to be done. In this section, we develop

a method to use hierarchical data types not only to reduce the number of translations but

also to provide users with early answers at coarse levels. For instance, consider a query

asking for rooms that John visited on a given day. As we have shown in Section 5.3.1,

localization at the floor/region level is much cheaper than localization at the room level.

Therefore, instead of directly returning the set of rooms that John has visited, we can first

return the regions that John has visited, and then progressively return the set of rooms that

John has visited (as shown in Figure 6.5).
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Location__id name Parent Space_type_id

1 DBH NULL 1

2 Floor1 1 2

3 Room1 2 3

4 Room2 2 3

parent child

1 1

1 2

1 3

1 4

2 2

2 3

2 4

3 3

4 4

(a) Locations

(b) LocationTree

Figure 6.6: Locations and LocationTree tables

(a) Original Query (b) Entity probe query for OccupantLocation relation.

Figure 6.7: Probe query generation for hierarchical data types.

6.4.1 Probe Queries

Recall that in Section 6.2.1, we described that for translation we only need to consider

those entities that have MISSING values. However, for an observable property with the

hierarchical data type, it is possible that an entity has a value at a coarser level stored in the

temporal relation, computed as a result of the translation done during previous queries or

epochs. Therefore, along with the entities with MISSING values, we need to consider those

entities as well for which the value of the observable property is at a coarser level.

Example 6.4. Consider the query shown in Figure 6.7a that finds all the rooms that ‘John’

visited in the DBH building during the time interval [2, 5]. In this query along with those
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tuples of ‘John’ in OccupantLocation relation that have MISSING values, we have to consider

those tuples also where John’s location is already computed at a coarser level than the room

level i.e., region, floor or building as long as the location is inside DBH.

In general, to generate an entity probe query for an observable property pj of hierarchical

data type, along with the steps mentioned in section 6.2.1, we perform the following two

more steps.

• Expanded Tree Table: Using a recursive CTE, we create a table that stores for each

node in the hierarchy of the data type of property pj all its children. We denote such a

table by Treepj . For example, for the Locations table containing all the spatial regions,

a LocationTree table is created containing for each spatial region all its children.

• Rewriting selection and join conditions : We rewrite the selection condition of type

Ripj.value = a1 as (Ripj.value = MISSING ∨ Ripj.value = Treepj .child) ∧

Treepj .parent = a1. Similarly, a join condition of type Ripj.value = Rk.A1 is rewrit-

ten as (Ripj.value = MISSING ∨ Ripj.value = Treepj .child) ∧ Treepj .parent =

Rk.A1. Figure 6.7b shows the entity probe query generated for the query in Fig-

ure 6.7a. In the query we can see that the condition OL.value=location id is

rewritten as (OL.value=MISSING OR OL.value=LocationTree.child) AND Location-

Tree.parent=location id.

6.4.2 Epoch-based Execution

Selecting entities/spaces: For hierarchical observable properties, we modify the sampling

strategies mentioned in Section 6.3.2. Instead of selecting entities randomly, we first prioritize

entities having MISSING values and translate them at a coarser level. Once no entity have

MISSING values, we sample from entities having values at a coarse level and translate them
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at a finer level. We keep on sampling entities based on the granularity of their value using

the above steps until all the entities have values at the granularity required by the query.

currently selecting select entities having values at a coarser level before selecting the entities

having values at a finer level.

Example 6.5. Consider a query asking for the current location of all graduate students. For

this query, we will first sample from students for whom the location is completely MISSING

and and for them we will compute the building level location. If there is no student left for

whom the location is MISSING, we will sample from the students who have location at the

building level and for them compute the location at the region level. Finally, when there is no

student left for whom the location is at the building level, we will sample from the students

who have location at the region level and for them we will compute the location at the room

level.

Translation After selecting the set of entities and spaces to translate, we generate a trans-

lation plan for the selected entities and spaces. Note that, for the hierarchical data types we

pass the level of granularity to the translation operator at which the translation is required

to be done.

Incremental Computation: To allow answers at a coarser level to be returned, we cannot

directly run the original query on the partially materialized temporal relations. We need to

make sure that we re-write the selection and join conditions on the hierarchical observable

properties such that along with the tuples that directly satisfy the condition, the tuples that

will satisfy the same condition when written at a coarse level are also passed. In particular, to

generate the result query we rewrite the selection condition Ripj.value = a1 as (Ripj.value =

parent∨Ripj.value = Treepj .child)∧(Treepj .parent = a1∨Treepj .child = a1). For example,

Figure 6.8 shows the IVM query generated for the query shown in Figure 6.7a.
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Figure 6.8: IVM query for hierarchical data types.

6.4.3 Quality

In the previous section we showed that, TippersDB can return fast answers at coarser level

first before returning answers at a finer level. Consider a query asking for room level location

of ‘John’. In such a query, the system may return coarser level results e.g., region or building

level location of John. In such a situation we cannot use the F1 measure to compute the

quality of answers returned at the end of an epoch. We need a quality metric that can give

credit for partially correct answer i.e., an ancestor of the actual value. Therefore, we define a

modified quality metric based on the hierarchical precision, recall and F1 measure as follows.

HF1(Answ) =
HPre(Answ) ·HRec(Answ)

(HPre(Answ) +HRec(Answ))

HPre(Answ) =

Answ∑
i=1
|Children(Answ[i]) ∩ Children(Ansreal [i])|

Answ∑
i=1
|Children(Answ)|

HRec(Answ) =

Answ∑
i=1
|Children(Answ[i]) ∩ Children(Ansreal [i])|

Answ∑
i=1
|Children(Ansreal )|

(6.4)

where Children(x) represents the set of all the child nodes of the node represented by x.
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Sensor No. Rows
(M)

Size
(GB)

Observing Functions (Cost)

WiFi 300 80 76 location(room:150ms,region:10ms)
occupancy(room:100ms, region:8ms)

WeMo 1,400 37 4 energy(room:20ms)

Hvac 250 15 10 energy(region:50ms)

Camera 1,400 20 840 location(room:200ms); occupancy(room:120ms)

GPS 5,000 50 10 building-location (5ms)

Watch 5,000 50 20 vitals (18ms)

Table 6.1: Sensor Dataset and Functions.

Q1 Fetch room-location of John during time (t1, t2)

Q2 Find all people in room r during time (t1, t2)

Q3 Fetch occupancy of room r during time (t1, t2)

Q4 Fetch all rooms with occupancy greater than 100 during time (t1, t2)

Q5 Fetch all users co-located (same room, same time) with John during (t1, t2)

Q6 Retrieve users who went from room r1 to r2 during (t1, t2)

Q7 Retrieve average time spent per room by users in different types of rooms
during (t1, t2)

Q8 Find occupancy of all rooms visited by John during (t1, t2) and with occu-
pancy > 50

Q9 Find rooms consuming > 100 energy units with average occupancy < 50
during (t1, t2)

Q10 Find all users who were healthy and visited buildings that were visited by
unhealthy individuals prior to them between (t1, t2)

Table 6.2: Queries.

6.5 Experiments

For the experiments, we use the smart campus scenario. We consider that the buildings

inside the smart campus are instrumented with WiFi APs, cameras, power meters (WeMo

devices [17]), and HVAC sensors. Also, we assume that the campus is inhabited by various

people and the majority of people carry a GPS-enabled smartphone and a smartwatch.

As mentioned in §4.2, the OER model in this scenario consists of people and rooms as

main entities. In the model, people have location and vitals as observable properties, and

rooms have occupancy and energy consumption as their observable properties. The location

property is hierarchical (as discussed in §4.1). The granularity of time for the sensor data

and time intervals in temporal relation is set to one second.
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Figure 6.9: Effect of selectivity on query execution time.

Dataset. We used the sensor data generation tool provided in [68] to generate synthetic

sensor data for a month for a campus with 25 buildings. Table 5.3 shows the number of

instances of each sensor type, the number of rows, and the size of the generated sensor data.

Queries. We selected the following ten queries; see Table 5.4: Queries Q5-Q8 are extracted

from SmartBench [68], an IoT database benchmark. All queries are expressed on the semantic

model referring to entities and their observable (or not) attributes.

Observing Functions: We use observing functions to compute building location/occu-

pancy from GPS data, region and room location/occupancy from WiFi data, and room

location/occupancy from camera data. Similarly, the energy usage of a room is computed

using WeMo data and at region level using HVAC data. We use smartwatch data (i.e., heart

rate, O2 level) to generate a health report of a person. The cost of each function is given in

Table 5.3.

The following experiments were performed on a server with 16 core 2.50GHz Intel i7 CPU,

64GB RAM, and 1TB SSD. Both the sensor data and the temporal relations were stored in

PostgreSQL.
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Figure 6.10: Effect of materialization on query execution.

6.5.1 TippersDB Performance

In the following experiments we study the effect of selectivity and materialization on the

latency of a query executed using TippersDB, but without the epoch-based execution i.e.,

all the entities and spaces that are in the output of the probe queries are translated together.

Effect of selectivity: This experiment studies the effect of selectivity on the query execu-

tion time of different queries. Figure 6.9 shows the execution time of different queries under

different level of selectivity. We vary the selectivity of queries by varying the length of time

interval (t1, t2) parameter in the queries. Observe that, as expected for all queries, the query

execution time increases with an increase in query selectivity as the system has to do more

translations.

Effect of Materialization: This experiment studies the effect of materialization level (the

percentage of data that has non MISSING values) of temporal relation on query execution.

Figure 6.10 shows the execution time of different queries under different levels of material-

ization. For all queries, we can see that the higher the materialization level lower the query

execution time, which is expected since probe queries will filter all those entities and spaces

that already have the value of the observable property computed.
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Figure 6.11: Total query execution time with different strategies

6.5.2 Progressiveness

The following experiments evaluate the the effectiveness of progressive query processing

approach in reducing the wait time for the users.

Query Latency with and without Progressiveness: Figure 6.11 shows the total ex-

ecution time of queries in TippersDB under three different settings: a) no progressiveness

i.e., a translation plan is generated for all the entities, and spaces that are in the output

of probe queries; b) epoch-based progressive query execution; c) epoch-based progressive

query execution including optimization for hierarchical observable properties. Observe that

for queries Q8, Q9, Q10 that involve more that one observable property and joins between

them, the total execution time with the progressive approach is less than the total execution

time with no progressiveness setting. This reduction in query execution time is due to the

removal of entities and spatial regions from the plan space through the incremental views

created on the probe queries. Furthermore, almost all queries benefited extensively from

hierarchical optimization. For instance, the total query time for Q1 and Q4 reduced from

670s to 90s and from 410s to 184s, respectively.
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Figure 6.12: Progressive improvement of quality of different queries.

Number of Translations: Table 6.3 shows the total number of translations done by

TippersDB for each query with/without progressiveness and with/without hierarchical opti-

mization. We compute the number of translations as the sum of the number of entities and

the number of spaces over all delta time intervals for which a translation plan was generated.

Observe that for many queries the progressive approach reduced the number of translations.

Furthermore, the number of translations reduced significantly with hierarchical optimization.

For instance, for query Q1 and Q4 the number of translations reduced from 198K to 32K

and from 145K to 48K respectively.

Progressiveness Achieved: In this experiment we evaluate the different progressive ap-

proaches in terms of progressive quality improvement achieved. Figure 6.12 shows the quality
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Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

No Prog. 198K 30 30 145K 198K 60 198K 343K 290K 396K

With Prog. 198K 30 30 145K 198K 60 198K 230K 116K 340K

Prog. with Opti-
mizations

32K 30 30 48K 32K 60 144K 74K 38K 340K

Table 6.3: Number of translations.

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Translation 93% 81% 80% 93% 91% 81% 95% 92% 89% 91%
Planning 6% 15% 15% 6% 8% 14% 4% 6% 9% 8%

DB Queries 1% 4% 5% 1% 1% 5% 1% 2% 2% 1%

Table 6.4: TippersDB overhead.

with respect to time for queries Q1, Q4, Q5, and Q7 using three different progressive ap-

proaches a) sampling spaces, b) sampling time interval c) hierarchical data type optimization.

Note that the quality of answers for set based answers are computed using F1 measure and

hierarchical F1 measure (for results with hierarchical data types) and using root mean square

error for aggregation queries. Figure 6.12 shows that all the approaches are able to provide

users with high quality results early during the query execution and therefore reduced the

wait time for the user. Furthermore, the progressive approach with hierarchical data types

performed the best and was able to provide users with answers that improved faster as

compared to the progressive approaches without the hierarchical optimization.

System Overhead: Table 5.6 shows for each query Q1-Q10, the percentage of the total

time of query execution spent in translation, generating translation plans, and executing

incremental view-based probe and result queries on the underlying database. For most

queries, more than 90% of time is spent in translation and only a small part of the total time

is spent in translation planning and running queries on the database.
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Chapter 7

Case Study

In this chapter we show TippersDB’s usability through different IoT deployments. We show

how applications from different domains can be modeled using the TippersDB Observable

ER model.

7.1 Assisted Living Space

A large number of older adults live in assisted living spaces. An IoT system for assisted

living spaces provides care givers access to the information about an individual’s changing

health conditions, their personalized needs and identifies those in need of specialized triage

and critical care. It provides access to information about the living facilities (e.g., floor

plans, operational status, number of residents) and about the residents, for example, health

conditions such as need for dialysis, oxygen, and personal objects to reduce anxiety. It can

also empower first responders to improve response outcomes during disasters.

The assisted living smart space setting, which is a part of the CareDEX project [21], aims to

ensure the safety of older adults who require personalized care. Here, senior housing facilities
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Figure 7.1: OER model for an assisted living space showing entities with observable at-
tributes/relationships (in red).

and residents are instrumented with diverse sensors (fall detection, wander alerts, motion

detectors) enabling personalized monitoring of residents by caregivers to identify those in

need of urgent care. Information generated from in-situ motion sensors and WiFi access

points are merged with mobile fall detection or wander alert sensors in TippersDB to create

improved awareness applications for caregivers. TippersDB applications will support analysis

to pinpoint unsafe regions where most falls have taken place, identify isolated residents who

exhibit low levels of interaction with others, and track residents who are an elopement risk

and at danger of leaving the facility. An OER model for an assisted living scenario is given

in Figure 7.1. Along with showing different entities and relationships between them, it

shows the observable attributes and relationships, for example resident entity set has the

isFallen attribute marked as observable. We have created some prototype dashboards for

the deployments. Figure 7.2 shows as spatial region of an assisted living space modeled

using TippersDB, Figure 7.3 shows coverage of different WiFi access points in the space
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Figure 7.2: Screenshot of space model of a
assisted living space.

Figure 7.3: Screenshot of coverage of WiFi
access points in an assisted living space.

Figure 7.4: Screenshot showing a dashboard running various queries in the assisted living
smart space scenario.

and Figure 7.4 shows a dashboard running several queries on the OER model.

128



Grid Cell

Id

IsFire

Fire Fighters

Name

Location
1N

Flame Length

Intensity

IsFire

Region

Id

IsFire

Contains

Neighbour
Fuel

Figure 7.5: OER model for a prescribed fire exercise showing entities with observable at-
tributes/relationships (in red).

7.2 Prescribed Fire Monitoring

We also used TippersDB in the context of Prescribed Fire Monitoring as part of the SPARx-

Cal project [26]. Prescribed Fires are planned, intentional and controlled applications of

fire to a land area, under specified predicted weather conditions - it is used as a proactive

technique to prevent rapid spread of wildfires in forests and wild-land urban communities.

Prescribed fires run the risk of escaping; fast and accurate monitoring of their progress is

critical. In SPARx, a range of devices/sensors are used to monitor burn progress, drones

are used to capture aerial imagery of fire levels while insitu sensors at the burn site cap-

ture environmental parameters (wind, smoke, air quality). Thermal and RGB images from

drones and insitu cameras are analyzed for fire presence, flame length and fire intensity

in different regions. Simultaneously, wind sensors (wind direction and speed), air quality

sensors (levels of particulate matter and smoke) and humidity sensors provide local environ-

mental conditions that dictate fire progress. GPS devices carried by personnel are used for

crew location to direct them to regions where attention is required for ignition or control.

Through a TippersDB deployment, an analyst will be able to pose queries to better monitor
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Figure 7.6: OER model for a smart campus showing entities with observable attributes/re-
lationships (in red).

the burn (identify regions with fire presence/absence, determine regions with unfavorable

wind/humidity conditions, locations of fuel with low humidity) and control further data col-

lection through drone path planning. An OER model for a prescribed fire scenario is given

in Figure 7.5.

7.3 Smart Campus

Another use case of TippersDB is a Smart Campus deployment. A smart campus is in-

strumented with variety of sensors to help improve ways in which people interact with the

campus infrastructure and among themselves. TippersDB deployment at a smart campus
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provide several services/applications to the users as well as campus administrators. These

services could correspond to locating group members in real-time, customizing heating, ven-

tilation, and air conditioning (HVAC) controls based on user preferences, contact tracing by

computing who came in contact with whom and when, monitoring occupancy of different

parts of a building over time, analyzing building usage over time, understanding social inter-

actions amongst residents and visitors, and keeping track of facilities visited by visitors. To

enable these services, a smart campus supports diverse type of sensors ranging from HVAC

sensors (e.g., temperature, humidity, and pressure sensors), motion and activity sensors,

Bluetooth sensors, cameras, WiFi access points. Note that in most of the smart campus

applications listed above, localization of users plays an important role, therefore location

sensing technologies are an integral part of such a deployment. Location sensing technolo-

gies can broadly be classified as: active or passive based on whether it requires a user to

carry new hardware, download software, and/or participate in the localization process, or

if the infrastructure can determine the user’s location without his/her active participation.

Active technologies include GPS on mobile devices carried by a user, WiFi or cellular signal

strength triangulation, and inertial sensing. Passive techniques include camera-based local-

ization as well as localization-based on connectivity events in the WiFi network. Also, the

campus supports GPS-based localization of individuals who have downloaded an application

to transmit their GPS coordinates from their mobile phones to the system. The OER model

shown in Figure 7.6 represents different entities, relationships along with corresponding ob-

servable properties in a smart campus scenario. Figure 7.7 shows screenshots of different

applications built using TippersDB for a smart campus.
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(a) Engineering buildings dashboard.

(b) Crowd-Flow application.

(c) Occupancy application.

Figure 7.7: Smart space applications built using TippersDB.
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7.4 Naval Base

Another use case of TippersDB is a deployment at a pier in Naval Base San Diego [41], the

goal was to perform fine-grained tracking of people. The space, a pier at the naval base, was

instrumented with WiFi APs, Bluetooth beacons, RFID readers, and smartphones with a

client application (capturing GPS readings among others). The challenge in this deployment

was to accurately locate individuals so that requirements related to social distancing (in terms

of minimum distance between two persons) can be fulfilled. This required data form all the

above mentioned sensors to be fused together to localize people accurately and robustly. The

experiments performed (tailored towards COVID-19 mitigation) involved 30 participants,

who performed a series of scenarios as they moved between different zones on the pier.

Data was passively captured using the WiFi infrastructure and and actively using the client

application on the smartphones. Then, the data was correlated by to locate individuals in

the different zones of the pier (each zone had been defined in the system to cover a small

area). In this process, observing functions using machine learning techniques were used to

triangulate the location of a person given the signal obtained from the Bluetooth beacons,

WiFi APs and GPS data. Finally, the information of multiple individuals had to be correlated

to check whether social distancing criteria were met. Several applications were build using

TippersDB. One example is the quarantine zone application, that monitors which areas have

been visited by infected individuals and raise alerts when an infected individual visited a safe

location. Another example is the “secure bubble” transfer application, in which a group of

individuals have to be protected and alerts have to be triggered if any of its members came

in contact with an infected individual. Figure 7.8 shows screenshots of different applications

built using TippersDB for the naval base scenario.
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(a) Contact Awareness.

(b) Social Distancing.

(c) Alerts Dashboard.

Figure 7.8: Naval base applications built using TippersDB.
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Chapter 8

Conclusion And Future Work

In this chapter we present the conclusions of the work presented in this thesis on developing

a middleware based system, designed to build smart-space analytical applications. We also

discuss some of the future directions of research related to the work presented in this thesis.

8.1 Conclusions

In this thesis, first we introduced the SmartBench benchmark which is derived from a de-

ployed smart building monitoring system. We described SmartBench’s extensible schema

that captures the fundamentals of an IoT smart space and. We listed a set of eleven bench-

mark queries and described the motivation behind each of them. We described, the data

generation tool of SmartBench that generates large amounts of synthetic sensor and se-

mantic data based on seed data collected from a real system. We presented an evaluation

of seven database systems (representing different database technologies) using the Smart-

Bench benchmark. We highlighted key findings that can be considered when deciding what

database technologies to use under different types of IoT workloads. Using the results of the
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benchmark we made a case for the need of data virtualization query-driven translation.

Then, we introduced the TippersDB data model that provides data virtualization through

semantic abstraction. We showed how the data model hides the complexities of sensor in-

frastructure and sensor data processing codes from the application developers and provides

them with an interface to write applications on top of higher-level semantic data. We de-

scribed the realization of TippersDB data model on top of an existing database system. We

described the translation mechanism of TippersDB and showed how TippersDB integrates

query processing with translation. We discussed how TippersDB reduces the number of

translations by removing redundant translations using the query context. We also intro-

duced an optimization that exploits the hierarchical nature of certain data types to further

reduce the number of translations.

Finally, we presented progressive query processing techniques to further reduce query la-

tency and to provide early results to the users. We described the semantics of progressive

query processing and ways to provide progressive answers. We described how TippersDB

selects data to be translated, exploits hierarchical data types (e.g., location), and computes

incremental answers.

8.2 Future Work

Self Driving Translation: In this thesis we explored query-driven sensor data translation.

Query-driven translation makes data available for analysis early and removes redundant

translation. However, depending upon the resource availability, it is possible that some data

can be translated at the ingestion time itself. In this case, the system, based on the resources

and workload, should carefully select the subset of the sensor data (along with the observing

functions) that should be translated at the ingestion time, such that the later queries can
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benefit the most. Therefore, a possible future work is to develop a self-driving engine that

figures out what data should be translated at the ingestion, in the background (as an offline

process) or at the query time.

Native Implementation of TippersDB: Our focus in this thesis was on designing mech-

anisms for sensor data translation and progressive query processing techniques layered on

top of existing database systems, treating them as essentially black boxes. While such an

approach offers flexibility and an easier path to the adoption of technology, mechanisms

to modify the underlying storage, indexing, and query processing mechanisms to support

sensor data translation natively in database systems with the goal of exploring how much

improvement in performance can result by modifying the underlying technology is worthy of

exploration in the future.

Privacy: In this thesis we explored techniques to map/translate an application level query to

sensor data. However, it is important that the system only uses the sensor data that is allowed

for the query getting executed. Furthermore, the system should allow the applications to

create policies at the higher semantic level and implicitly translate them on to the sensor

data. Therefore, enhancing TippersDB to support semantic as well as sensor level policies,

making it GDPR [130] compliant, designing an efficient policy aware translation mechanism

are all interesting future work.

Supporting what-if analysis: In this thesis we focused on supporting real-time as well as

analytical IoT applications. Exploratory analysis e.g., what-if analysis is also an important

part of data analytics. A possible future work is to explore mechanisms to perform progressive

what-if analysis inside database systems.

Multi-query optimization: In this thesis, we have considered optimizing sensor data

translation in the context of a single query, executed at the TippersDB server. However, it

is possible that multiple queries requiring overlapping translations might arrive at the same
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time in the system. In this case, the translations done for one query affect other queries and

therefore, a technique that generates a translation plan keeping other queries in consideration

is needed.

Edge computing: In this thesis, we considered a model, where sensor data is collected

from sensors and then processed (at query-time) at a centralized server. Many sensor devices

themselves have capability to store and process data to a certain limit. Enabling the compute

and storage capabilities of such devices with TippersDB by supporting mechanisms to run

observing functions directly on the sensing device is an interesting direction of future work.
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Appendix A

SmartBench Schema

A.1 Building And User Data

Group{

id: string, name: string, description: string

}

User{

id: string, email: string, name: string, groups: Groups[...]

}

Location{

id: string, x: double, y: double, z: double

}

InfrastructureType{

id: string, name: string, description: string

}
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Infrastructure{

id: string, name: string, type: InfrastructureType{...}

floor: integer, geometry: Locations[...]

}

A.2 Devices

PlatformType{

id: string, name: string, description: string

}

Platform{

id: string, name: string, type: PlatformType{..}

owner: User{..}, hashedMac: string

}

A.3 Sensors and Observations

SensorType{

id: string, name: string, description: string, mobility: string

payloadSchema: {...}, captureFunctionality: string

}

SensorCoverage{

id: string, radius: float, entitiesCovered: Infrastructure[..]

}

Sensor{

id: string, name: string, description: string,
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infrastructure: Infrastructure{...}, type: SensorType{...}

owner: User{..}, coverage: Infrastructure[..], sensorConfig: {...}

}

Observation{

id: string, sensor: Sensor{..}, timestamp: datetime, payload: {...}

}

A.4 Virtual Sensors and Semantic Observations

SemanticObservationType{

id: string, name: string, description: string, payloadSchema: {...}

}

VirtualSensorType{

id: string, name: string, description: string, inputType: SensorType{..}

semanticObservationType: SemanticObservationType{...}

}

VirtualSensor{

id: string, name: string, description: string, type: VirtualSensorType{...}

language: string, projectName: string

}

SemanticObservation{

id: string, virtualSensor: VirtualSensor{...}, timeStamp: datetime

payload: {...}, type: SemanticObservationType{..}

semanticEntity: User{..} or Infrastructure{..}

}
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