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1 Introduction

The conformal bootstrap [1–4] (see [5–7] for reviews) uses basic consistency conditions to

bound the space of conformal field theories. By making fewer assumptions about the theo-

ries being studied, one can derive more universal bounds.1 The original bounds [4, 34–40]

apply to theories with scalar operators of various dimensions. Bounds from fermionic cor-

relators [18, 19, 41] apply to theories with fermions, and the recent bounds in [42] apply

to any 3d CFT with a continuous global symmetry.

Perhaps the minimal possible assumption about a CFT is the existence of a stress

tensor. Indeed, a stress tensor (i.e. a conserved spin-2 operator whose integrals are the

conformal charges) is necessarily present in any local CFT.2 In this work, we study the

constraints of conformal symmetry and unitarity on a four-point function of stress tensors

in 3d CFTs. For simplicity, we also assume a parity symmetry, so our bounds apply

universally to any unitary parity-preserving local 3d CFT. This birds-eye view of local

CFTs with spacetime symmetry O(3, 2) is similar in spirit to the views of superconformal

theories achieved in [20, 21, 26, 31].

An advantage of a numerical approach is that we can make contact with analytic

results, but we also have the flexibility to perform more sophisticated studies that are

currently not analytically tractable. For instance, we numerically recover the conformal

collider bounds [49–52], but we can additionally study how these bounds are modified

under various assumptions about the spectrum of the CFT. As we discuss below, we

also find a host of new universal bounds constraining e.g. the spectrum of low-dimension

scalar operators.

The bootstrap equations are consistency conditions on the conformal block decompo-

sition of 4-point functions. Written in terms of CFT data, they are quadratic constraints

on OPE coefficients. Self-consistency or “feasibility” of these constraints can be efficiently

analyzed using semidefinite programming [6, 11, 39, 53]. Formulating the bootstrap con-

straints for stress tensors in a way suitable for semidefinite programming involves several

steps, which we briefly describe below. First is the task of writing 3- and 4-point functions

of stress tensors in an explicitly conformally-invariant way. We do this using a combina-

tion of the embedding formalism of [54] and the conformal frame formalism of [55]. The

second step is to get rid of the degeneracies associated with permutation symmetry and

conservation. This is done by identifying a minimal set of linearly-independent crossing

equations, slightly refining the approach of [56]. These steps are explained in detail in

section 2. Finally, the third step is the calculation of conformal blocks which is done in

section 3 by translating the approach of [57] to the conformal frame formalism. In this way

we obtain a set of bootstrap equations suitable for numerical analysis.

1By contrast, one can study a specific theory by inputting characteristic features that distinguish the

theory in question. In this sense, the conformal bootstrap was successfully applied to extract precise

properties of the 3d Ising model [8–13]. Families of critical O(N) models [12, 14–17], Gross-Neveu-Yukawa

models [18, 19], and various supersymmetric theories [20–33] have also been studied in this way.
2Examples of theories without a stress tensor include boundary/defect theories [43–45] and nonlocal

theories like the Long-Range Ising model [46–48].
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In the rest of the paper we analyze the bootstrap constraints supplemented by vari-

ous additional assumptions about the spectrum. In section 4.2 we numerically reproduce,

in full generality, the conformal collider bounds on the “central charges” of unitary theo-

ries [49, 50], previously discussed in the context of the analytic bootstrap in [51, 58]. Our

main result here is a lower bound on the central charge CT as a function of the independent

parameter in the stress-tensor three-point function, characterized by the angle θ defined

in (4.2). In section 4.3 we study constraints on the spectrum of the lightest parity-even and

parity-odd scalars in general unitary 3d CFTs. Some of the results are shown in figure 8.

In particular, we find that any unitary CFT must necessarily have both light parity-even

and light parity-odd singlet scalars in its spectrum. This is similar to a recent finding that

unitary 3d CFTs with global symmetries must have low-dimension scalars in the OPE of

two conserved currents [42].

Quite generally, we find that when the gaps in the spectrum of scalar operators are

sufficiently large to exclude large N theories (by excluding some double-trace operators),

the allowed region for OPE coefficients CT and θ is compact — in particular, there exists

an upper bound on the central charge. This suggests that theories with large CT must

necessarily have double-trace operators in T × T OPE. Furthermore, this may potentially

point to the existence of new strongly-coupled theories residing inside these compact re-

gions. We observe the same phenomenon when imposing a gap on the dimension of the

second lightest spin-2 operator in section 4.4.

In section 4.5 we discuss theories with a gap ∆4 in the spectrum of spin-4 parity-

even operators. In full consistency with the Nachtmann theorem, we observe that when

∆4 approaches 6, the lower bound on CT grows indefinitely for all θ, in accord with the

expectation that the corresponding theory is dual to weakly coupled gravity in AdS4.

Finally, section 4.6 is devoted to studies of the 3d Ising model. Under the assumption of

no relevant parity-odd scalars, and by imposing the known values of the central charge

and the dimensions of certain light operators, we obtain a window 0.01 < θ < 0.05. Under

stronger but still plausible assumptions we obtain a tighter bound 0.010 < θ < 0.019. We

also find an upper bound on the parity-odd scalar gap ∆odd < 11.2. We conclude with a

discussion in section 5.

2 Conformal structures

2.1 3-point structures

To set up the bootstrap equations for the 4-point function 〈TTTT 〉 in 3d CFTs preserving

parity, we first need to understand the possible 3-point functions 〈TTO〉 between the

stress tensor Tµν and various operators O in the CFT. The purpose of this section is to

classify such 3-point functions, and thus the operators which can be exchanged in the OPE

decomposition of 〈TTTT 〉.
First of all, only bosonic operators O can appear in T × T OPE, and so without loss

of generality we can assume that O is a traceless symmetric tensor primary of spin `.

Furthermore, since T is a singlet under all global symmetries, O must be a singlet as well.

However, O may be even or odd under space parity.

– 2 –
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The 3-point functions 〈TTO〉 should be conformally-invariant, symmetric with respect

to permutation of the two T insertions, and satisfy the conservation equation for the

stress tensor,

∂µT
µν = 0 + contact terms. (2.1)

Such 3-point functions have the form

〈TTO〉 =

NTTO∑
a=1

λ
(a)
TTO〈TTO〉(a), (2.2)

where 〈TTO〉(a) are 3-point tensor structures which form a basis of solutions to the above

constraints, and λ
(a)
TTO are OPE coefficients. We can always choose a basis such that λ

(a)
TTO

are real.

The 3-point tensor structures 〈TTO〉(a) can be classified using e.g. the conformal frame

formalism of [55]. We will also need to perform manipulations with explicit expressions,

which we can obtain by constructing the tensor structures using the 5d embedding space

formalism of [54, 57].

In this latter formalism, the parity-even 3-point tensor structures are constructed from

basic invariants denoted by Hij and Vi, where i and j index the operators in the 3-point

function. The structure Hij increases the spin by one unit for operators i and j, while Vi
does so only for the operator i. For example, a general 3-point structure for 〈TTφ〉 with a

scalar φ of dimension ∆ is given by3

〈TTφ〉 =
αH2

12 + βH12V1V2 + γV 2
1 V

2
2

(−2X1 ·X2)
10−∆

2 (−2X2 ·X3)
∆
2 (−2X3 ·X1)

∆
2

, (2.3)

where the constants α, β, γ are subject to linear constraints coming from conservation

of T and permutation symmetry, while Xi are the embedding space coordinates of the

operators [54]. For sufficiently large ` there are 14 different combinations of Hij and

Vi which give the correct spins for the three operators in 〈TTO〉. Not all of them are

independent, since there exist non-linear relations between the invariants H and V , which

were classified in [54]. In our case there is a single redundant structure

H12H23H31V
`−2

3 , (2.4)

which can be expressed in terms of other structures.

Using the results of [54], it is straightforward to impose permutation and conservation

constraints on these tensor structures. An analogous construction works for parity-odd

tensor structures [54]. We will not need the explicit expressions for the tensor structures

in this “algebraic” basis, but rather in the so called differential basis, which we describe in

section 3.4 The explicit expressions in the differential basis are provided in appendix A.

Here, let us summarize the counting of 3-point tensor structures. Let O` denote a

primary operator of spin ` and a scaling dimension ∆ strictly above the unitarity bound.

3We assume that the stress tensors are at positions 1 and 2, while the intermediate operator is at

position 3.
4We will still use input from the algebraic basis to perform calculations in the differential basis.
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This restriction is important since the number of solutions to conservation equations can

increase at special values of ∆.5 In fact, this is what happens for ∆ = 3 and ` = 2, i.e.

when O`=2 = T is the stress tensor itself. With these conventions, the counting of 3-point

tensor structures is given by the table:

O NTTO

O0 1+ + 1−

O2 1+ + 1−

T 2++1−

O2n, n ≥ 2 2+ + 1−

O2n+1, n ≥ 2 1−

where we have separated parity-even and parity-odd tensor structures (indicated by the

± superscripts). For O = T , the tensor structures are invariant under permutations of all

three operators. Note that the parity-odd tensor structure for 〈TTT 〉 does not appear in a

parity-preserving theory, since T is necessarily parity-even, as can be seen from the Ward

identity discussed below.

2.1.1 Ward identities

As mentioned above, the 3-point function 〈TTT 〉 has two allowed parity-even tensor struc-

tures, which can be realized in the theories of a free real scalar and a free Majorana fermion,

〈TTT 〉 = nB〈TTT 〉B + nF 〈TTT 〉F . (2.5)

There exists a non-trivial Ward identity for this correlator. Indeed, one can construct

the dilatation current JµD = xνT
µν from one of the three stress-tensor operators, and

integrate it over a surface surrounding another stress-tensor operator put at x = 0 to

obtain, schematically, ∫
x〈TTT 〉dS = ∆T 〈TT 〉. (2.6)

This Ward identity implies a linear relation between the coefficients nB, nF and the 2-point

function 〈TT 〉. The latter can be parametrized as

〈TT 〉 = CT 〈TT 〉B, (2.7)

where 〈TT 〉B is the 2-point function 〈TT 〉 in the theory of a free real scalar and CT is the

“central charge.” The Ward identity then must be of the form

CBnB + CFnF = CT . (2.8)

The constants CB, CF are simply the central charges of the free real scalar and free Majo-

rana fermion respectively, where our normalization for CT implies CB = CF = 1. However,

in the sections below we will often write results in terms of the ratio CT /CB so that they

also hold for other normalizations of CT .

5Note that the conservations constraints are linear with coefficients dependent on ∆. The rank of a

parameter-dependent linear system is always constant at generic values of the parameters and can only

decrease at special values.

– 4 –
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2.2 4-point structures

The 4-point function 〈TTTT 〉 should satisfy the following properties, which interact with

each other in nontrivial ways:

• conformal invariance,

• permutation symmetry,

• conservation,

• regularity (analyticity).

We will address each property in turn, culminating in a minimal set of crossing symmetry

equations suitable for applying numerical bootstrap techniques.

It is useful to use index-free notation to encode different tensor structures. Let us write

T (w, x) = wµwνT
µν(x), (2.9)

where wµ is an auxiliary polarization vector. Because Tµν is traceless, we can take wµ to

be null, w2 = 0. We can recover Tµν as

Tµν(x) = Dµ
wD

ν
wT (w, x), (2.10)

where Dµ
w is the Todorov operator [59]

Dµ
w =

(
d− 2

2
+ w · ∂

∂w

)
∂

∂wµ
− 1

2
wµ

∂2

∂w · ∂w
, (2.11)

with d = 3 the spacetime dimension. Note that the Todorov operator preserves the ideal

generated by w2,

Dµ
w(w2f(w)) = w2(. . . ), (2.12)

so it is well-defined even though w is constrained to be null.

2.2.1 Conformal invariance

To study the above properties, it is useful to fix a conformal frame and use representation

theory of stabilizer groups to classify tensor structures, following [55]. This approach makes

it easy to deal with degeneracies between tensor structures in low spacetime dimensions,

and will also help us understand regularity conditions on the z = z line. We work in

Euclidean signature throughout.

Using conformal transformations we can place the four operators in the 1-2 plane in

the following configuration:

g(z, z, wi) = 〈T (w1, 0)T (w2, z)T (w3, 1)T (w4,∞)〉. (2.13)

We have z = x1 + ix2 and z = x1− ix2, with the direction perpendicular to the plane being

x3. For brevity, we have written only the holomorphic coordinate of each operator.

– 5 –
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We define the operator at infinity in a non-standard way, where we do not act with an

inversion on the polarization vector,

T (w,∞) ≡ lim
L→∞

L2∆T T (w,L), ∆T = 3 . (2.14)

The virtue of this convention is that the polarization vectors are treated more symmetri-

cally, so it will be easier to understand the action of permutations.

We will consider parity-preserving theories, so the group of spacetime symmetries is

O(4, 1). The points 0, z, 1,∞ are stabilized by an O(1) = Z2 subgroup of O(4, 1) consist-

ing of reflections in the x3 direction (perpendicular to the plane). The 4-point function

g(z, z, wi) must be invariant under this stabilizer subgroup or “little-group.” Little-group

invariance then guarantees that g(z, z, wi) can be extended to an O(4, 1)-invariant function

for arbitrary configurations of the T (wi, xi).

Let `± denote the parity-even/odd spin-` representation of O(3), and let •± denote

the even and odd representations of O(1). Each operator T (w, x) transforms in the repre-

sentation 2+ of O(3). Little-group invariants are O(1) singlets in(
Res

O(3)
O(1)2

+
)⊗4

=
(
3 •+ ⊕ 2 •−

)⊗4
= 313 •+ ⊕ 312 •−, (2.15)

where ResGHρ denotes the restriction of a representation ρ of G to a representation of

H ⊆ G. In particular, there are 313 parity-even tensor structures (and 312 parity-odd

tensor structures).

These structures are easy to enumerate. Define components of the polarization vectors

ω = wz = w1 + iw2

ω = wz = w1 − iw2

ω0 = w3. (2.16)

For each “helicity” h ∈ {−2,−1, 0, 1, 2}, we can construct a unique monomial [h] with

degree 2 and charge h under rotation in the z-plane,

[−2] = ω2, [−1] = ωω0, [0] = ωω, [1] = ωω0, [2] = ω2. (2.17)

(Using the fact that wµw
µ = (ω0)2 + ωω = 0, we can ensure that the degree in ω0 is

at most one.) Let [h1h2h3h4] denote a product of the corresponding monomials for each

polarization vector wµi .6 It is easy to verify that there are 313 structures [h1h2h3h4] which

are even under parity ω0 → −ω0, i.e. such that
∑

i hi ≡ 0 mod 2. The 4-point function is

a linear combination of these structures, with coefficients that are functions of z and z,

g(z, z, wi) =
∑

∑
i hi even

[h1h2h3h4]g[h1h2h3h4](z, z). (2.18)

Using rotations around the x1 axis, we can relate the point (z, z) to its reflection in

the imaginary direction (z, z). Invariance of the full correlator under this transformation

implies

g[h1h2h3h4](z, z) = g[−h1,−h2,−h3,−h4](z, z). (2.19)

6This definition differs from the one based on spinor polarizations in [55] by a numerical factor.

– 6 –



J
H
E
P
0
2
(
2
0
1
8
)
1
6
4

Meanwhile, reality7 of g implies

g[h1h2h3h4](z, z) = g[−h1,−h2,−h3,−h4](z, z), (2.20)

where we used the notation f(z, z) ≡ (f(z, z))∗, from which it follows that

g[h1h2h3h4](z, z) = g[h1h2h3h4](z, z). (2.21)

In other words, the functions g[h1h2h3h4](z, z) must have real coefficients in a Taylor series

expansion in powers of z and z.

2.2.2 Permutation invariance

The 4-point function 〈T (w1, x1) · · ·T (w4, x4)〉 must be invariant under permutations of the

four operators. Permutations that change the cross-ratios z, z lead to nontrivial crossing

equations that we explore later. However, permutations that leave z, z invariant, which we

call “kinematic permutations,” give constraints on tensor structures alone [55, 56]. In our

case, the group of kinematic permutations is (in cycle notation)

Πkin = {id, (12)(34), (13)(24), (14)(23)} = Z2 × Z2. (2.22)

As shown in [55], Πkin-invariant tensor structures are in one-to-one correspondence with(
4⊗
i=1

Res
O(3)
O(1)2

+

)Πkin

, (2.23)

where Πkin acts on tensor factors in the natural way, and (ρ)G denotes the G-invariant

subspace of ρ. These can be counted using

(ρ⊗4)Z2×Z2 = ρ4 	 3(∧2ρ⊗ S2ρ), (2.24)

where 	 represents the formal difference in the character ring. Plugging in ρ = 3 •+⊕ 2 •−

to (2.24), we find

((3 •+ ⊕ 2 •−)⊗4)Z2×Z2 = 97 •+ ⊕ 78 •−, (2.25)

so there are 97 permutation-invariant parity-even structures.

To write the structures explicitly, we must be more specific about the action of per-

mutations on polarization vectors. A permutation π ∈ Πkin acts on a monomial [hi] as

π : [hi] 7→ n(ri(π))hi [hπ(i)], (2.26)

where n(x) =
√
x/x is a phase and the ri(π) are given in the table 1. Permutation-invariant

structures are given by symmetrizing with respect to this action:

〈h1h2h3h4〉z ≡
1

mh1h2h3h4

(
[h1h2h3h4]

+ n(1− z)−h1+h2+h3−h4 [h2h1h4h3]

+ n(z)h1+h2−h3−h4 [h4h3h2h1]

+ n(z)h1+h2−h3−h4n(1− z)−h1+h2+h3−h4 [h3h4h1h2]
)
, (2.27)

7Reality of 〈TTTT 〉 follows from a combination of space parity and Euclidean Hermitian conjugation.
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r1 r2 r3 r4

id 1 1 1 1

(12)(34) −(1− z) −(1− z) −(1− z) −(1− z)

(13)(24) z(1− z) z(1− z) z(1− z) z(1− z)

(14)(23) −z −z −z −z

Table 1. Permutation phases for a 4-point function of identical operators, computed in [55].

where mh1h2h3h4 is the number of elements Πkin which stabilize [h1h2h3h4]. We have

also added an index z to the symmetric tensor structures to indicate that they depend

on z and z. Here, it’s clear that independent Πkin-invariant structures are in one-to-one

correspondence with orbits of Z2 × Z2 when acting on quadruples [h1h2h3h4]. Making a

choice of representative for each of the 97 parity-even orbits, we can write

g(z, z, wi) =
∑
hi/Z2

2∑
i hi even

〈h1h2h3h4〉z g[h1h2h3h4](z, z). (2.28)

Note that the functions g[h1h2h3h4](z, z) are the same as those appearing in (2.18).

2.2.3 Conservation

Imposing conservation of Tµν(x) gives nontrivial differential equations relating the func-

tions g[h1h2h3h4](z, z). These equations can be solved up to some undetermined functions of

z, z that we call “functional degrees of freedom.” Conversely, after imposing conservation,

the functional degrees of freedom fix the entire correlator (modulo boundary terms that

we discuss below). Thus, an independent set of crossing-symmetry equations should make

reference to functional degrees of freedom alone.

In [56], it was shown that there are 5 functional degrees of freedom in a 4-point function

of stress tensors in 3d. We can obtain the number 5 with a simple group-theoretic rule

from [55]. To account for conservation, we simply replace

Res
O(3)
O(1)2

+ → Res
O(2)
O(1)2 = •+ ⊕ •− (2.29)

in (2.23). Here, O(2) can be interpreted as the little group of a massless particle in 4

dimensions, and 2 on the right-hand side of the arrow represents the spin-2 representation

of O(2). Plugging ρ = •+ ⊕ •− into (2.24), we find 5 •+ ⊕ 2 •−, so there are indeed 5

parity-even functional degrees of freedom.

Let us see more explicitly how these 5 degrees of freedom come about. Because the

permutation group Πkin acts freely on the four points, it suffices to impose conservation at

one of the points, say x2. The conservation equation is

Dw2 ·
∂

∂x2
〈T (w2, x2) · · ·〉 = 0, (2.30)

– 8 –
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where Dw is the Todorov operator (2.11). Restricting to the conformal frame configura-

tion (2.13), this gives8((
3

2
− ω∂ω

)
∂ω∂z +

(
3

2
− ω∂ω

)
∂ω∂z +

iD3
wL23

z − z

)
g(z, z, wi) = 0, (2.31)

where

L23 = i
∑
k

(
ω0
k (∂ωk − ∂ωk) +

1

2
(ωk − ωk)∂ω0

k

)
(2.32)

is the generator of rotations in the 2-3 plane acting on polarization vectors. In (2.31),

ω, ω, ω0 refer to ω2, ω2, ω
0
2, respectively. The last term in the conservation equation is

naively singular at z = z. However, the singularity will be cancelled by zeros in the action

of L23. These complications stem from the fact that z = z is a locus of enhanced symmetry,

where the little group becomes O(2) instead of O(1). We will study these issues in more

detail below.

Following [56], we can solve (2.31) by thinking of one of the directions in the z-z plane

as “time” t and the other as “space” ξ and integrating away from a constant time slice.

The conservation equation then has the structure

(A∂t +B∂ξ + C)g = 0, (2.33)

where A,B,C are linear operators on the space of tensor structures. The number of

functional degrees of freedom is the dimension of the kernel of A.

In our case, it is convenient to choose z as the time direction, with z as the space

direction. The operator A is then Az =
(

3
2 − ω2∂ω2

)
∂ω2 , which vanishes on any structure

that is independent of ω2. This restricts the helicity h2 to be either 1 or 2. Because

permutations Πkin act freely, all helicities must be either 1 or 2, so the kernel of Az is

spanned by the five structures

〈2222〉z, 〈1111〉z, 〈1212〉z, 〈1122〉z, 〈2112〉z. (2.34)

When integrating the conservation equation, we can set the coefficients of these struc-

tures to anything we like. In practice, it will be useful to use a slightly different basis of

functional degrees of freedom. Let

〈h1h2h3h4〉±z =
1

2
(〈h1h2h3h4〉z ± 〈−h1,−h2,−h3,−h4〉z) , (2.35)

and define the corresponding coefficient functions

g±[h1h2h3h4](z, z) = g[h1h2h3h4](z, z)± g±[−h1,−h2,−h3,−h4](z, z). (2.36)

Equation (2.19) implies

g±[h1h2h3h4](z, z) = ±g±[h1h2h3h4](z, z). (2.37)

8The Todorov operator in the first two terms simplifies because of our choice of tensor structures (2.17),

which is at most linear in ω0.
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We will take the functions g+
[h1h2h3h4](z, z) as our functional degrees of freedom. Fixing these

functions is sufficient to remove ambiguities when integrating the conservation equation in

the z-direction. By working in a Taylor expansion in z, z, it is easy to argue that fixing

g+
[h1h2h3h4](z, z) removes ambiguities when integrating in any direction. In particular, later

we will integrate the conservation equation in the x2 = Im z direction.

As explained in [56], in order to consistently integrate (2.33) away from a spatial slice,

the initial data might need to satisfy additional constraints. Suppose N is a matrix such

that NA = 0. Acting with N on (2.33), we obtain

(NB∂ξ +NC)g = 0. (2.38)

This constraint turns out to be first class, meaning that we only need to impose it on the

initial data. Our initial slice will be the line z = z. Because this is a locus of enhanced

symmetry, we must take care while analyzing the conservation equation around it.

2.2.4 Regularity and boundary conditions

For numerical bootstrap applications, we would like to write the crossing equations in a

Taylor series expansion around the point z = z = 1
2 . The line z = z corresponds to

the four points xi becoming collinear, which means the stabilizer group is enhanced from

O(1)→ O(2). Since the tensor structures have to be invariant under the stabilizer group,

we can see that there are boundary conditions at z = z which the functions g[h1h2h3h4] have

to satisfy in a well-defined correlator. As we will now show, smoothness of the correlator

places further constraints on the Taylor expansion of g[h1h2h3h4] around this locus.

Consider the 4-point function after fixing x1, x3, x4, but before rotating x2 into the

1-2 plane,

g(x2, wi) = 〈T (w1, 0)T (w2, x2)T (w3, e)T (w4,∞)〉. (2.39)

Here, e = (1, 0, 0) is a unit vector in the 1-direction. We want the correlator to be smooth

in x2. In particular, it should have a Taylor expansion in the directions orthogonal to e,

g(x2, wi) =

∞∑
n=0,`=0

gµ1···µ`
n (wi, x)yµ1 · · · yµ`y

2n, (2.40)

where yµ = (x2)µ−eµ(x2 ·e) is the projection of x2 onto the directions orthogonal to e, and

x = e · x2. The coefficient functions gµ1···µ`
n (wi, x) are symmetric tensors of the stabilizer

group O(2), built out of polarization vectors. Let us count them. Let 0± denote the parity-

even/odd scalar of O(2), and let ` denote the spin-` representation of O(2). Each operator

transforms in the representation

ρ = Res
O(3)
O(2)2

+ = 2⊕ 1⊕ 0+. (2.41)

Although Z2 × Z2 permutations act in a way that depends on x and yµ, the leading-order

in y action is simply the obvious permutation of polarization vectors, because the phases
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n(ri(π)) are trivial on the line z = z.9 Thus, for the sake of counting new permutation-

invariant tensor structures at each order in yµ, we can use (2.24), which gives

(ρ⊗4)Z2×Z2 = 22 0+ ⊕ 3 0− ⊕ . . . . (2.42)

Equation (2.40) implies that a polarization structure transforming in ` of O(2) can

appear starting at order ` in the y-expansion. From (2.42) we see that at zeroth order

in y, there are 22 parity-even permutation-invariant structures that can appear (out of 97

total).10 In order for the 4-point function to be well-defined at z = z, only the coefficients

of these 22 structures can be nonzero.

It turns out that thanks to the conservation equation, this is the only condition that

we have to worry about. In general, since (2.42) gives O(2) spins up to 8, in the absence

of the conservation equation we would have to write similar conditions for the first 8

orders in Im z. However, as the derivation above shows, these constraints follow from O(2)

invariance. In particular, the conservation equation is compatible with (2.40) in the sense

that it produces a recursion relation for the coefficients gn. Therefore, as long as the zeroth

order constraints are satisfied, higher orders follow automatically.11 We have explicitly

verified this by working order-by order in a Taylor expansion in Im z.

Thus, our initial conditions include 22 undetermined functions of a single variable

Re z. We can take 5 of these to be the restrictions of our two-variable degrees of freedom

to the z = z line, g+
[h1h2h3h4](Re z,Re z) where the hi are given in (2.34). Even though

the structures 〈h1h2h3h4〉+z do not lie in the 22-dimensional subspace of O(2) singlets, we

can choose the coefficients of other structures to cancel the non-O(2)-invariant parts. The

projection of the 5 bulk structures onto the O(2)-invariant subspace at Im z = 0 is five-

dimensional. Thus, there are exactly 22−5 = 17 remaining one-variable degrees of freedom.

Finally, the constraints (2.38) give 8 independent first-order equations that these uni-

variate functions must satisfy. Thus, in addition to 5 two-variable degrees of freedom, we

have 9 one-variable degrees of freedom and 8 integration constants. We are free to choose

these however we like, as long as the projection of the corresponding structures to the

O(2)-invariant subspace is 22-dimensional.

2.2.5 Summary and crossing equations

Altogether, we choose the following functions as our undetermined degrees of freedom.

9In fact, as shown in [55], we can define polarization vectors w̃i = wi +O(y), which permute with trivial

phases to all orders in y. We can then use these polarization vectors in (2.40).
10Incidentally, 22 is also the number of functional degrees of freedom in a 4-point function of stress tensors

in 4d. This is because the stabilizer group of a generic configuration of 4-points in 4d is O(2), while the

little group for massless particles in 5d is O(3). Thus, the representation theory computation is the same

as the one here (see [55, 56]).
11One should make sure that the choice of independent two-variable degrees of freedom does not contradict

the regularity constraints. Or, equivalently, that these degrees of freedom are indeed independent from the

point of view of the recursion relation for (2.40). We have checked that it is true for our choice of two-variable

degrees of freedom.
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• Two-variable degrees of freedom:

g+
[2222](z, z), g+

[1111](z, z), g+
[1212](z, z),

g+
[1122](z, z), g+

[2112](z, z). (2.43)

• One-variable degrees of freedom:

g+
[0000](z), g+

[0101](z), g+
[0202](z),

g+
[0112](z), g+

[1012](z),

g+
[0011](z), g+

[1001](z),

g+
[0,0,−1,1](z), g+

[−1,0,0,1](z). (2.44)

• Integration constants:

g+
[0022](1/2), g+

[2002](1/2),

g+
[0,1,−1,2](1/2), g+

[−1,1,0,2](1/2),

g+
[0,−1,1,2](1/2), g+

[1,−1,0,2](1/2),

g+
[1,−1,−1,1](1/2), g+

[−1,−1,1,1](1/2). (2.45)

The statement of crossing symmetry is simply

g+
[h1h2h3h4](z, z) = g+

[h3h2h1h4](1− z, 1− z). (2.46)

We have chosen the set of helicities in our independent degrees of freedom (2.43), (2.44),

and (2.45) to be invariant under h1 ↔ h3. Thus, crossing symmetry becomes a constraint

on these degrees of freedom alone.

As usual, we Taylor-expand the crossing equations around z = z to obtain the following

system, parametrized by n ≤ n, n+ n ≤ Λ.

• Two-variable equations:

∂nz ∂
n
z g

+
[2222](1/2, 1/2) = 0, (n+ n odd),

∂nz ∂
n
z g

+
[1111](1/2, 1/2) = 0, (n+ n odd),

∂nz ∂
n
z g

+
[1212](1/2, 1/2) = 0, (n+ n odd),

∂nz ∂
n
z g

+
[1122](1/2, 1/2) = (−)n+n∂nz ∂

n
z g

+
[2112](1/2, 1/2). (2.47)

• One-variable equations

∂nz g
+
[0000](1/2) = 0, (n odd),

∂nz g
+
[0101](1/2) = 0, (n odd),

∂nz g
+
[0202](1/2) = 0, (n odd),

∂nz g
+
[0112](1/2) = (−)n∂nz g

+
[1102](1/2),

∂nz g
+
[0011](1/2) = (−)n∂nz g

+
[1001](1/2),

∂nz g
+
[0,0,−1,1](1/2) = (−)n∂nz g

+
[−1,0,0,1](1/2). (2.48)
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• Integration constants

g+
[0022](1/2) = g+

[2002](1/2),

g+
[0,1,−1,2](1/2) = g+

[−1,1,0,2](1/2),

g+
[0,−1,1,2](1/2) = g+

[1,−1,0,2](1/2),

g+
[1,−1,−1,1](1/2) = g+

[−1,−1,1,1](1/2). (2.49)

Note that the analysis of the conservation constraints was necessary to make sure that the

crossing equations we write are independent. We have explicitly verified that this indeed

is the case by Taylor expanding to some finite order Λ and checking that, modulo the

conservation equation, the full set of crossing equations is indeed equivalent to (2.47)–

(2.49) and that there are no linear dependencies among the equations (2.47)–(2.49).

3 Conformal blocks

We compute the conformal blocks for 〈TTTT 〉 using the approach of [57]. In this approach,

the conformal blocks for external operators with large spins are obtained by acting with

differential operators on simpler conformal blocks, known as seed blocks, exchanging the

same intermediate representation. Since in our case we only need the conformal blocks for

the exchange of traceless symmetric operators, we can take the scalar blocks as our seeds.

This is exactly the case studied in [57].

Consider the contribution of a single primary state |Oα〉 and its descendants P {A}|Oα〉
to the 4-point function,∑

{A},{B}

〈T (w4, x4)T (w3, x3)P {B}|Oβ〉Qβ{B},α{A}〈Oα|K{A}T (w2, x2)T (w1, x1)〉. (3.1)

Here α and β are indices in the SO(3) irrep of O, {A} and {B} are multi-indices such that

P {A} = PA1 · · ·PAn , (3.2)

and Qα{A},β{B} is the matrix inverse to 〈Oβ |K{B}P {A}|Oα〉. The inner products in (3.1)

are derivatives of the 3-point functions

〈Oβ |T (w2, x2)T (w1, x1)〉 = λ
(a)
TTO〈O

β |T (w2, x2)T (w1, x1)〉(a), (3.3)

〈T (w4, x4)T (w3, x3)|Oα〉 =
(
λ

(a)
TTO

)∗
(a)〈T (w4, x4)T (w3, x3)|Oα〉, (3.4)

where λ are the OPE coefficients and the objects multiplying them are the tensor structures.

We choose our tensor structures so that the OPE coefficients λTTO are real. The sum over

contributions (3.1) can be then written as

〈T (w4, x4)T (w3, x3)T (w2, x2)T (w1, x1)〉 =
∑
O
λ

(a)
TTOλ

(b)
TTOGO,ab(wi, xi), (3.5)
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where we defined the conformal block

GO,ab(wi, xi) ≡∑
{A},{B}

(b)〈T (w4, x4)T (w3, x3)P {B}|Oβ〉Qβ{B},α{A}〈Oα|K{A}T (w2, x2)T (w1, x1)〉(a). (3.6)

Note that if O is parity-even then both a and b should correspond to parity-even structures,

and if O is parity-odd then both a and b should correspond to parity-odd structures. The

corresponding conformal blocks will have different properties in what follows, and we hence

refer to these cases as even-even and odd-odd respectively.

The main observation in [57] was that one can find conformally-invariant differential

operators D(a)
ij (wi, wj) acting on a pair of points such that12

〈Oα|T (w2, x2)T (w1, x1)〉(a) = D(a)
12 (w1, w2)〈Oα|φ2(x2)φ1(x1)〉,

(b)〈T (w4, x4)T (w3, x3)|Oβ〉 = D(b)
34 (w3, w4)〈φ4(x4)φ3(x3)|Oβ〉. (3.7)

Here in the right-hand side the operators act on some standard scalar 3-point functions,13

which we choose to be, in the formalism of [54],

〈φ1φ2O3〉 ≡
V `3

3

X
∆1+∆2−∆3−`3

2
12 X

∆2+∆3−∆1+`3
2

23 X
∆3+∆1−∆2+`3

2
31

, Xij = −2Xi ·Xj . (3.8)

Conformal invariance of these differential operators means that the same relations (3.7)

hold even if we insert P {B} or K{A} in these 3-point functions. We thus find

Ga,b(wi, xi) = D(a)
12 (w1, w2)D(b)

34 (w3, w4)Gscalar(xi), (3.9)

where the scalar block is given by

Gscalar(wi, xi) =
∑
{A},{B}

〈φ4(x4)φ3(x3)P {B}|Oβ〉Qβ{B},α{A}〈Oα|K{A}φ2(x2)φ1(x1)〉.

(3.10)

This relation can also be seen directly from the OPE as discussed in [57]. The problem of

calculating conformal blocks then reduces to three subproblems:

1. Construction of the conformally-invariant differential operators D(a)
ij which satisfy (3.7).

2. Computation of the scalar conformal blocks Gscalar.

3. Performing the differentiation in the right-hand side of (3.9).

12The existence of the D(a)
ij can be understood in terms of “weight-shifting operators” [60].

13Of course, this relation is purely kinematical (i.e between tensor structures), and the operators φi do

not actually exist in the physical theory.
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3.1 Differential basis

Construction of the differential operators D(a)
ij has been discussed in [57]. Let us first

consider the operators D(a)
12 and restrict ourselves to parity-even structures. They are

constructed as products of the basic operators

D11, D12, D21, D22, H12, (3.11)

where the first order operators Dij increase spin at position i by 1 while decreasing the

scaling dimension at position j by 1. The operator H12 is just multiplication by the

structure H12 and it increases the spin and the scaling dimension by 1 at both positions.

These operators do not commute, but their algebra closes, so that one can consider the

following general ansatz,

D(a)
12 =

∑
nij ,mk

c(a)
n12,n23,n13,m1,m2

Hn12
12 Dn13

12 Dn23
21 Dm1

11 D
m2
22 Σn12+n23+m1

1 Σn12+n13+m2
2 , (3.12)

where the parameters in the sum are constrained so that the resulting operator increases

spin by 2 at both points. Here Σi is a formal operator which increases the scaling dimension

at position i by 1. This is needed because various terms in the sum change the scaling

dimensions by different amounts. Accordingly, (3.9) should actually contain several types

of scalar blocks differing by the scaling dimensions of the external operators. We will return

to this issue when we discuss the calculation of these scalar blocks.

One can check that the differential basis ansatz (3.12) contains 14 different operators.

This is the same as the number of algebraic (not yet conserved or symmetric) tensor

structures for 〈TTO`〉 one can build out of Hij and Vi for ` ≥ 4. We can therefore find a

change of basis between the algebraic and differential bases.

We can then easily formulate the conservation and the permutation symmetry con-

straints for 〈TTO`〉 in the algebraic basis and then translate these constraints to the dif-

ferential basis. This results in a system of linear equations for the coefficients c,∑
nij ,mk

Mα
nij ,mk

(∆)c(a)
nij ,mk

= 0. (3.13)

The coefficients in this equation are rational functions of the dimension ∆ of the exchanged

primary O, and thus the solutions are rational functions of ∆ as well. Consistently with the

discussion in section 2.1, we find that there exist 2 solutions for even ` ≥ 4. To simplify the

numerical evaluation of (3.9), we choose a basis of the solutions c
(a)
nij ,mk which is polynomial

in ∆ of the lowest possible degree. These degrees are 6 and 4 for the two solutions.

In the above discussion we have glossed over a slight subtlety that in the algebraic

basis in 3d, there is one tensor structure (2.4) which is redundant and can be expressed in

terms of other structures, so the number of independent structures is actually 13. There

is also a corresponding relation in the differential basis. If we were to ignore this relation,

we would find more solutions to the conservation constraints. Taking it into account, we

can use it to simplify the form of the solutions c
(a)
nij ,mk .
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A similar procedure works for ` ≤ 4, the only difference being that there appear new

relations in the differential basis (while the algebraic basis simply becomes smaller). These

relations are easily controlled by the transformation matrix which expresses the differential

basis structures in terms of the algebraic ones. We then use these relations to find the

simplest form of the non-redundant solutions of (3.13).

The parity-odd structures can be treated in a similar way, except that we generally

find more redundancies than in the parity-even case. We describe the construction of

parity-odd differential basis in appendix A, together with the explicit expressions for the

coefficients c
(a)
nij ,mk . In both the parity-even and the parity-odd cases the operators D(a)

34

can be obtained by applying a simple permutation to the operators D(a)
12 .

3.2 Computing the scalar blocks

Since (3.12) involves the formal dimension-shifting operators Σ1,2, there are several scalar

conformal blocks entering (3.9), which differ by the dimensions ∆i of the external scalars.

Let us analyze the dimensions of the scalar at positions 1 and 2. The exponents

in (3.12) are constrained by the spins of the stress tensors

n12 + n13 +m1 = n12 + n23 +m2 = 2. (3.14)

On the other hand, the dimensions of the scalar operators in each term are given by

∆1 = ∆T + n12 + n23 +m1, (3.15)

∆2 = ∆T + n12 + n13 +m2. (3.16)

It follows that the sum

∆1 + ∆2 = 2∆T + 4 = 10 (3.17)

is the same for all the terms. On the other hand, the difference is

∆12 = ∆1 −∆2 = n23 − n13 +m1 −m2 = 2(m1 −m2), (3.18)

and one can see that it takes all even values −4 ≤ ∆12 ≤ 4. The same is true for ∆34.

The analysis for parity-odd operators is similar, with the result that ∆1 + ∆2 = 9,

while ∆12 assumes all odd values −3 ≤ ∆12 ≤ 3. The same is true for ∆34.

Note that the scalar blocks essentially depend only on the differences ∆12 and ∆34.

Furthermore, there is a Z2 × Z2 group of permutations of the external operators which

preserves the OPE s-channel and the cross-ratios,14 and thus acts in a simple way on the

conformal blocks. The elements of this group change the scaling dimensions of the scalar

blocks according to

(12)(34) : ∆12 → −∆12, ∆34 → −∆34, (3.19)

(13)(24) : ∆12 ↔ ∆34, (3.20)

(14)(23) : ∆12 ↔ −∆34. (3.21)

14Of course, we can also use the permutations which change the cross-ratios, but in practice it is easier

to have all scalar blocks with the same arguments.

– 16 –



J
H
E
P
0
2
(
2
0
1
8
)
1
6
4

●

● ● ●

● ● ● ● ●

■ ■

■ ■ ■ ■

-4 -2 2 4
Δ34

1

2

3

4

Δ12

Figure 1. Parameters of scalar conformal blocks for the even-even (blue dots) and odd-odd (red

squares) cases.

We thus only need to compute the scalar blocks with ∆12 and ∆34 in a fundamental domain

for these transformations, and then all the other blocks can be easily inferred. It is easy to

check that a fundamental domain is given by

∆12 ≥ |∆34|. (3.22)

The resulting fundamental set of the parameters ∆12, ∆34 for the scalar blocks is shown

in figure 1. There are 9 scalar blocks required for the computation of even-even 〈TTTT 〉
blocks, and 6 scalar blocks required for the computation of odd-odd 〈TTTT 〉 blocks.15 In

practice we compute them efficiently using the pole expansion of [11, 62] evaluated on the

diagonal z = z combined with the recursion relation implied by the Casimir equation to

evaluate scalar block derivatives away from the diagonal.

3.3 Applying the differential operators

To finish the calculation of the stress-tensor conformal blocks, it is necessary to apply the

differential operators D(a)
ij to the scalar blocks. The embedding-space definition of these

operators, given in [57], seems inadequate for this purpose because the embedding-space

4-point tensor structures in 3d contain many degeneracies. Therefore, it is convenient to re-

formulate these operators directly in the conformal frame basis constructed in section 2.2.1.

The first step is to convert the embedding-space expression for the differential operators

to explicit expressions in 3 dimensions. For this purpose, we consider an explicit uplift of

3 dimensional primary operators to embedding space operators,

O(Z,X) =
1

(X+)∆
O
(
Zµ − Z+ X

µ

X+
,
Xµ

X+

)
, (3.23)

15Note that by using the dimension-shifting differential operators [60, 61] we can reduce this set to just

one scalar conformal block for each parity.
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where on the right-hand side we have the 3d operator O(w, x). Applying embedding-space

differential operators to this expression, we reproduce on the right-hand side the corre-

sponding differential operators in 3 dimensions. Choosing a different uplift will yield the

same result due to the consistency conditions imposed on the embedding space differential

operators.

With the 3-dimensional expressions at hand, we can understand the action of the

differential operators in the conformal frame. In the conformal frame, some of the operators

are placed at fixed positions. In order to apply derivatives in these constrained directions,

we simply solve the equations

4∑
k=1

Lk AB〈TTTT 〉 = 0 (3.24)

for these derivatives. Here Lk are the conformal generators acting on point k. For example,

consider the equation corresponding to LAB = D the dilatation operator,

4∑
k=1

(
xk ·

∂

∂xk
+ ∆T

)
〈TTTT 〉 = 0. (3.25)

Here ∆T = 3 is the scaling dimension of T . We give expressions for the other generators

in appendix B. Evaluating this equation in the conformal frame16 (2.13) we find(
z∂z + z∂z +

∂

∂x1
3

+ 6

)
g(z, z, wi) = 0. (3.26)

Here ∂
∂x1

3
g(z, z, wi) should be understood as ∂

∂x1
3
〈TTTT 〉 evaluated in conformal frame.

This allows us to conclude

∂

∂x1
3

g(z, z, wi) = −(z∂z + z∂z + 6)g(z, z, wi). (3.27)

By using (3.24) with LAB equal to translations, special conformal transformations, and

rotations we find 3 + 3 + 3 = 9 more equations which allow us to solve for the remaining

9 derivatives — all derivatives in x1 and x4, 2 unknown derivatives in x3 and 1 unknown

derivative in x2.17 Note that the equations for special conformal and rotation genera-

tors will involve derivatives in wi in addition to z and z (see appendix B). In practice we

solve these equations in Mathematica. We do not write out the solution explicitly since

it is rather complicated. Note that if we need higher-order derivatives, we can differenti-

ate (3.24) and proceed analogously.

As a result, taking into account also (2.18), we can write for any 3d differential

operator D

D
(
[h1h2h3h4]g[h1h2h3h4](z, z)

)
=
∑
h′i

[h′1h
′
2h
′
3h
′
4]D

[h′1h
′
2h
′
3h
′
4]

[h1h2h3h4]g[h1h2h3h4](z, z), (3.28)

16And taking into account that we should replace x4 · ∂
∂x4

by −2∆T since we put operator 4 at infinity.

This has to do with the fact that the correlator decays as x−2∆T
4 .

17We have just found 1 derivative in x3 from LAB = D and the two derivatives in x2 are simply the z

and z derivatives.
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where D
[h′i]

[hi]
are differential operators in z and z. In this equation, we can keep the spins `i

and the parameters hi as variables, in which case h′i differ from hi by finite shifts. Using in

place of D the basic differential operators (3.11) and their parity-odd analogs, we obtain

their counterparts in the conformal frame.

This allows us to efficiently compute the more complicated compositions (3.12) di-

rectly in conformal frame without encountering any redundancies in tensor structures in

intermediate steps. In the end, we find expressions for the 〈TTTT 〉 blocks of the form

(G∆,`,ab)[h1h2h3h4] (z, z) =

Nscalar∑
i=1

∑
m,n

ai,mn,ab[h1h2h3h4](∆, `, z, z)∂mz ∂
n
zG

∆
(i)
12 ,∆

(i)
34

∆,` (z, z), (3.29)

where a are some rational functions of z, z, `, and polynomial in ∆,18 while ∆
(i)
12 and ∆

(i)
34

are the parameters of the scalar conformal blocks from the fundamental region (3.22). The

derivative order is m + n ≤ 8 for even-even blocks and m + n ≤ 10 for odd-odd blocks;

Nscalar is 9 and 6 respectively.

The functions a contain powers of (z−z) in their denominators, but these get canceled

when one takes into account that the scalar blocks are symmetric under z ↔ z. For exam-

ple, if we rewrite the above expression in coordinates z+z and (z−z)2, then the functions a

manifestly have only the OPE singularities. This is to be expected, since the functions en-

tering the decomposition (2.18) must have the same singularities as the physical correlator.

Therefore, we can take further derivatives directly in this expression, and then evaluate it

at z = z = 1/2 to find the derivatives of 〈TTTT 〉 blocks in terms of linear combinations

of the derivatives of scalar blocks with coefficients polynomial in ∆. Substituting rational

approximations for the derivatives of the scalar blocks then immediately yields rational

approximations for 〈TTTT 〉 blocks suitable for use in SDPB [53].

4 Numerical bounds

In this section we discuss how to use the crossing equations and conformal blocks derived

in the previous sections to compute numerical bounds on the OPE coefficients and scaling

dimensions appearing in the T × T OPE. Further details of our numerical implementation

are given in appendix C.

4.1 Initial comments: CT and θ

To begin, let us return to the conformal block decomposition of the stress-tensor 4-point

function in a general 3d CFT,

〈TTTT 〉 = λ2
TT1G1 +

1

CT
λ

(a)
TTTλ

(b)
TTTGT,ab +

∑
O
λ

(a)
TTOλ

(b)
TTOGO,ab, (4.1)

where we have explicitly separated the contribution of the identity operator and the stress

tensor itself. We have also assumed that the CFT in question possesses a unique stress

18Because of our polynomial choice of the solutions c
(a)
nij ,mk to (3.13).
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tensor. The factor 1
CT

comes from the fact that CT enters the 2-point function of the

canonically-normalized stress tensor T .

The OPE coefficient λTT1 of the identity operator is just the coefficient in the 2-point

function 〈TT 〉, and thus is essentially the central charge CT . At the same time, the OPE

coefficients for the stress tensor itself are given by λ
(1)
TTT = nB and λ

(2)
TTT = nF . Due to the

Ward identity constraint (2.8), these three coefficients are not independent. It is therefore

convenient to introduce the following parametrization,19

nB = CT
cos θ

sin θ + cos θ
, (4.2)

nF = CT
sin θ

sin θ + cos θ
. (4.3)

Note that θ = tan−1(nF /nB) is π-periodic, so we can assume that θ ∈ (−π/4, 3π/4), where

the denominators are positive. We also renormalize the 4-point function 〈TTTT 〉 so that

CT appears only in one of the terms,

C−2
T 〈TTTT 〉 = G1 +

1

CT
ΘabGT,ab +

∑
O
λ̂

(a)
TTOλ̂

(b)
TTOGO,ab

= G1 +
1

CT
ΘabGT,ab +

∑
∆,ρ

Mab
∆,ρG∆,ρ,ab, (4.4)

where λ̂
(a)
TTO = C−1

T λ
(a)
TTO and the positive-semidefinite matrix Θab is given by

Θ =
1

(sin θ + cos θ)2

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
. (4.5)

We have also defined the positive-semidefinite OPE matrix Mab
∆,ρ to be the sum of

λ̂
(a)
TTOλ̂

(b)
TTO over the operators O with scaling dimension ∆ and in the O(3) representation

ρ. Of course, the operators appearing in the T × T OPE are singlets of global symmetries

and we generically do not expect there to be any degeneracies. Therefore, we expect that

all matrices M∆,ρ have rank 1. However, without additional assumptions the operators are

allowed to have arbitrarily close scaling dimensions, which is numerically indistinguishable

from a degeneracy in the spectrum. In other words, even if we had a way of constraining

all M∆,ρ to have rank 1, numerically this would make no difference unless we also input

assumptions about gaps between operators. The stress-tensor four-point function written

in the form (4.4) is suitable for numerical analysis using the standard methods which we

review in appendix C. Here, let us make some initial comments about our assumptions and

on the kind of bounds we can expect to find.

Note that C−1
T Θ is essentially a special case of the OPE matrices M∆,ρ. We only

consider the theories with a unique spin-2+ conserved operator, and this is reflected in the

fact that we explicitly assume Θ to have rank 1 by writing (4.5). Unlike in the case of generic

19Another, perhaps more natural, parametrization would be nB = CT cos2 θ′, nF = CT sin2 θ′. However

this parametrization doesn’t allow us to numerically test negative values of nB and nF so we adopt the one

in the text in order to probe the conformal collider bounds.
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M∆,ρ, this constraint matters. Indeed, parity-even spin-2 operators strictly above the

unitarity bound only have a single OPE coefficient and thus are clearly distinguishable from

T even if their scaling dimension is arbitrarily close to 3. It is therefore more appropriate

to think about T as an isolated operator.20

It is important to note that although this assumption on the form of Θ is non-trivial, it

does not necessarily imply that this CFT has a unique conserved spin-2+ operator. Indeed,

consider a decoupled system of any number N ≥ 2 of CFTs, all of which satisfy (4.5) with

the same value of θ. If the stress tensors in these theories are Ti, then the stress tensor of

the full system is

T =
N∑
i=1

Ti. (4.6)

We also have CT =
∑

iCTi . It is easy to check that 〈TTTT 〉 in this system satisfies (4.4)

and (4.5), even though each Ti is a distinct conserved spin-2+ operator.

This also shows that for any value of θ which is allowed by the crossing symmetry

of (4.4) the central charge CT is unbounded from above — we can simply take N copies

of the same CFT for arbitrarily large N . In the limit N → ∞, the corresponding four-

point function approaches that of the mean field theory (MFT). The stress-tensor 4-point

function in MFT is dual to the 4-point scattering of free spin-2 massless particles in AdS4

and is given by Wick’s theorem,

〈TTTT 〉 = 〈TT 〉〈TT 〉+ 〈TT 〉〈TT 〉+ 〈TT 〉〈TT 〉. (4.7)

In this theory CT is formally infinite. In other words, it gives a unitary solution to crossing

symmetry for which the second term in (4.4) vanishes. In particular, its existence shows

that any value of θ is formally allowed unless one excludes CT =∞.

From the above discussion it follows that we cannot put upper bounds on CT or con-

strain θ without extra assumptions which go beyond unitarity, parity invariance, crossing

symmetry and existence of a unique stress tensor. Importantly, this is not a technical ob-

struction of the associated semidefinite problem. As we noted, T is effectively an isolated

operator and thus there is no a-priori problem with such bounds. The problem is more

physical in nature and ultimately due to existence of the MFT. We will repeatedly see that

as soon as MFT is excluded by additional assumptions, these bounds become possible.

4.2 General theories

Given that MFT has infinite central charge, we can hope to exclude some values of θ by

assuming that CT is finite. One way this can be possible is if there exists a θ-dependent

lower bound on CT which diverges for some values of θ. Of course, numerically we might

not reproduce the divergence but instead see a finite bound which grows as we improve our

numerical approximation (i.e. increase the derivative order Λ).

20Although not completely appropriate — there is still a direction in the 3-dimensional space of symmetric

matrices Θ which can be “altered” by spin-2+ operators with ∆ = 3 + ε. This direction, however, coincides

with (4.5) only if θ → −π/4 + πk.
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Figure 2. A series of lower bounds on CT as a function of θ, valid in any unitary parity-preserving

3d CFT. The shaded region is allowed.

This is indeed what happens. In figure 2 we show a series of lower bounds on CT as

a function of θ for derivative orders Λ = 3, . . . , 19, with no assumptions beyond unitarity,

crossing symmetry, parity conservation, and the existence of a unique stress tensor. The

behavior of the bound differs dramatically depending on whether θ ∈ [0, π/2] or not. For

θ ∈ [0, π/2], the bound appears to converge to a finite value. Strikingly, for θ < 0 or

θ > π/2 the bound diverges with growing Λ.

These numerical results strongly suggest that for unitary parity-preserving theories

with finite CT , θ necessarily lies in the interval [0, π/2]. Note that θ ∈ [0, π/2] corresponds

to nB, nF ≥ 0, which is equivalent to the conformal collider bounds [49, 50]. We have

thus essentially recovered the stress-tensor conformal collider bounds using the numerical

bootstrap.21 Note that the recent analytical proof [51] of the conformal collider bounds uses

the lightcone limit of the crossing equation. The analysis of [13] suggests that numerical

bootstrap techniques at high derivative order can probe the lightcone limit of the crossing

equation (despite the fact that the numerical bootstrap usually involves expanding the

crossing equation around a Euclidean point). Thus, it is perhaps unsurprising that we

make contact with analytical results at large Λ.

When the conformal collider bounds are saturated (nF = 0 or nB = 0), the theory is

expected to be free [63]. Our lower bounds at θ = 0, π/2 are consistent with the existence

of the free boson theory (θ = 0) and the free fermion theory (θ = π/2), though they are not

yet saturated by those theories. However, the bounds continue to change as we increase

21Similar conformal collider bounds for OPE coefficients of conserved currents were recovered numerically

in [42].
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Figure 3. A lower bound on CT as a function of θ in 3d CFTs with no relevant parity-even scalars.

the derivative order Λ. It is possible that at sufficiently large Λ, our lower bound will

become CB at each endpoint. We do not currently have enough data to perform a reliable

extrapolation to Λ =∞ (as in, e.g. [26]).

4.3 Scalar gaps

4.3.1 Parity-even scalar gaps

Let us now explore how the bounds on CT and θ change when we impose further restrictions

on the CFT data. It is natural to ask: what is the allowed space of (θ, CT ) in theories

with no relevant parity-even scalars in the T × T OPE — i.e. CFTs in which no tuning

would be required if all global symmetries (including parity) were preserved microscopically.

Denoting the dimension of the lowest-dimension parity-even scalar by ∆even, we show a

bound on theories with ∆even ≥ 3 in figure 3. The free fermion at θ = π is allowed (the

lowest-dimension parity-even singlet in the free-fermion theory is ψ2∂µψ
α∂µψα, which has

∆ = 6), whereas the free boson is of course excluded. The lower bound on CT falls quickly

as θ varies between 0 and π, dipping below CB only for a small range θ ∈ [1.3, π].

As we increase the imposed gap in the parity-even scalar sector, ∆even ≥ ∆min
even, the

lower bounds on CT get stronger, while still remaining consistent with the existence of the

free fermion up to ∆min
even = 6. We illustrate these bounds in figure 4. Note that it is not

possible to place upper bounds on CT when ∆min
even < 6, because of the existence of MFT,

which has ∆even = 6 (associated with Oeven = TµνT
µν) and infinite CT . However, when

∆min
even > 6, upper bounds become possible, and indeed CT and θ become confined to a small

island in the vicinity of the free fermion point. For example, when ∆min
even = 6.8, we find

θ ∈ [1.54, 1.57] and CT /CB ∈ [1.2, 2.6]. It is interesting to ask whether any CFT realizes

these values. For even larger values of ∆min
even, the allowed region disappears.
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Figure 4. Bounds on (θ, CT ) with varying gaps in the parity-even scalar sector. When ∆min
even =

4.0, . . . , 6.0, we have a series of lower bounds on CT as a function of θ. When ∆min
even > 6.0, we have

closed islands which eventually shrink to zero size.

4.3.2 Parity-odd scalar gaps

Next we study the effect of a gap in the parity-odd scalar operators. In figure 5, we show a

series of bounds on CT as a function of θ, for various gaps in the parity-odd scalar sector,

∆odd ≥ ∆min
odd. The bounds are roughly a mirror image of those in the previous subsection.

For ∆min
odd = 2, . . . , 7, we find a series of increasingly strong bounds pushing the allowed

region towards smaller θ. When ∆min
odd > 7, our assumption excludes MFT (which has

Oodd = εµνρT
µσ∂νT ρσ, of dimension 7), and it becomes possible to find both upper and

lower bounds on CT . Indeed, we find a series of islands (figure 6), which finally exclude the

free-boson theory when ∆odd & 11.22 A common corner point of these islands is very close

to the CT value of the 3d Ising CFT. We return to this point in section 4.6, where we will

see that further imposing known gaps in the 3d Ising CFT slightly reduces this apparent

upper bound on θIsing.

Finally, note that these bounds imply that any CFT with a large parity-odd gap must

have a stress-tensor 3-point function close to the bosonic one, with θ < .023.

4.3.3 Scalar gaps in both sectors

In figure 7, we show a bound constraining the space of “dead-end” CFTs, i.e. theories

with no parity-preserving or parity-breaking relevant deformations. Strictly speaking, our

bound only assumes the absence of relevant scalar deformations that are singlet under

other global symmetries (so they are allowed to appear in the T × T OPE). We see from

22The lightest parity-odd Z2-even scalar in the theory of a single free boson is the dimension-11 scalar

εµνρφ(∂α∂β1∂β2∂µφ)(∂α∂νφ)(∂β1∂β2∂ρφ) + desc.

– 24 –



J
H
E
P
0
2
(
2
0
1
8
)
1
6
4

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1

2

3

4

5

6

7

8

θ

C
T
/C
B

CT bounds, Δodd ≥ 2.0,...,8.0

Figure 5. Bounds on (θ, CT ) with varying gaps in the parity-odd scalar sector. When the value of

the gap ∆min
odd > 7, it becomes possible to find both upper and lower bounds on CT as.
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Figure 6. Closed regions for (θ, CT ), given various large gaps in the parity-odd scalar sector. The

lower horizontal line shows the value of CT in the 3d Ising CFT.
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Figure 7. Lower bound on CT as a function of θ assuming no relevant scalar operators.

this plot that such theories must have CT & 2. In addition, for a given CT , θ is constrained

to lie towards the middle of the range [0, π/2].

For each of the parity-even and parity-odd sectors, we have seen that there exists a

maximal gap beyond which no CFT can exist (figures 4 and 6). In figure 8, we show the

full space of allowed gaps in the both sectors. Along the axes, this plot reproduces the gaps

at which the islands disappear in figures 4 and 6. The full bound shows several interesting

features that approximately coincide with known theories. Notable points include MFT at

(∆even,∆odd) = (6, 7), the free Majorana fermion at (6, 2), the free real scalar at (1, 11),23

and the N =∞ limit of the O(N) models at (2, 7). We also see the maximal possible gaps

∆even ≤ 7.0 and ∆odd ≤ 11.78.

The known scaling dimension ∆ε = 1.412625(10) [12] of the energy operator ε in the

3d Ising CFT is shown in figure 8 by a vertical line. We see that while most features seem

to be related to free theories, there appears to be a sharp transition in the upper part of

the allowed region, very close to the Ising line. We return to this point in section 4.6.

There is also a feature near (∆even,∆odd) = (7, 1), which does not seem to correspond

to a known theory. Such a theory, if exists, is constrained by the bound in figure 4 to

have CT /CB ∼ 2 and a value of θ very close to but lower than the free fermion value,

1.55 < θ < 1.563. Since this putative theory requires a very light parity-odd operator

Oodd, such a large parity-even gap should be excluded by the bootstrap constraints for

4-point functions of Oodd unless the Oodd ×Oodd OPE contains an additional parity-even

scalar not present in the T × T OPE. We leave it as an open question whether this can

occur and if this region has any physical significance.

23Note that the fundamental field in a free scalar theory is charged under a Z2 symmetry and thus does

not appear in the T × T OPE.
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Figure 8. Bound on the allowed gaps in parity-even and parity-odd scalar sectors (imposed si-

multaneously). The blue shaded region is allowed by the 〈TTTT 〉 bootstrap. The vertical grey

line indicates the scaling dimension of ε in the Ising model. The red region is excluded from the

scalar bootstrap for 4-point functions 〈OoddOoddOoddOodd〉 assuming Oeven appears in both the

Oodd ×Oodd and T × T OPEs.

Note that every point which is allowed in this plot must be allowed together with a

rectangular region to its lower left. Because of this, a large part of the allowed region

is due to existence of MFT. It is therefore interesting to study analogous bounds under

assumptions which would exclude the MFT. We leave this question for future work.

4.4 Spin-2 gaps

Next we turn to imposing gaps in the spin-2 spectrum. First we ask how the gap until

the second parity-even spin-2 operator T ′ of dimension ∆2 affects the lower bounds on CT .

This is shown for gaps ∆2 ≥ 3, . . . , 6 in figure 9. We can see that such gaps have a minimal

effect on the lower bound. The gap ∆2 = 6 is special because this dimension occurs for the

operator T ′µν = TµσT
σ
ν in a number of different CFTs, including free theories, O(N) models

at large N , and MFT. Thus it is not surprising that the full range of θ is still allowed at

this gap and that the bound is not very strong.

However, we expect that if the ∆min
2 is raised above 6, then we may be able to start ex-

cluding MFT and large N theories by obtaining an upper bound on CT . This is because the

“double-trace” operator TµσT
σ
ν in large CT theories will have a dimension ∆2 =6+O(1/CT ),

so imposing a gap above 6 will exclude some set of these theories. This is realized in

figures 10 and 11, where for gaps slightly above 6 the upper bound is fairly weak, but as it

is raised further it becomes very strong and for gaps near 8.5 the closed region shrinks to a

small island around CT /CB ∼ 1 and .4 . θ . .9. It is interesting to ask if there is a unitary

CFT with such a large spin-2 gap and θ ≈ π/4 which lives inside of this allowed region.
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Figure 9. Lower bounds on CT as a function of θ in 3d CFTs for different gaps between the stress

tensor and the second parity-even spin-2 operator.
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Figure 10. Upper bounds on CT as a function of θ in 3d CFTs for different gaps between the

stress tensor and the second parity-even spin-2 operator.

4.5 Spin-4 gaps

In this section we move on to considering the constraints resulting from imposing a bound

on the dimension of lightest spin-four operator ∆4. Consistency of crossing with the OPE

in Minkowski space when two operators are light-like separated imposes a number of non-
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Figure 11. Upper and lower bounds on CT as a function of θ in 3d CFTs for different gaps between

the stress tensor and the second parity-even spin-2 operator.

trivial constraints on the spectrum of “intermediate” operators. In particular the “Nacht-

mann theorem” stipulates that the leading twist, defined as the twist of the lightest primary

of spin ` appearing in the OPE O ×O,

τ` = ∆` − ` , (4.8)

is a monotonically non-decreasing convex function of ` which asymptotes to 2τO [58, 64–67].

So far this has been rigorously established for scalar O and even `, although the result is

expected to hold more generally, for primary O of any spin. Applying this to the stress

tensor one finds that the dimension of the lightest operator of spin ` should not exceed `+2.

For the leading spin-4 operator this implies inconsistency of unitary theories with ∆4 > 6.

Moreover, when ∆4 = 6, the lightest operators of spin ` > 4 must have dimensions exactly

equal to ` + 2. The corresponding theory is a MFT dual to pure gravity in AdS4 with

Newton’s constant taken to zero. The operators in question are double-trace operators,

schematically T∂`−4T , where we omit indices for simplicity.

When ∆4 approaches 6 from below, by convexity all higher spin operators must ap-

proach ` + 2. This is exactly the behavior expected for a theory dual to weakly coupled

gravity in AdS4. The double-trace anomalous dimensions ∆` − ` − 2 are due to graviton

exchange in the bulk, which is proportional to Newton’s constant GN ∼ 1/CT . This picture

suggests that imposing a gap ∆4 > 6− ε should result in a numerical bound on the central

charge CT ≥ C∗T , with C∗T going to infinity as C∗T ∼ 1/ε.

Such behavior was observed previously in the context of the N = 8 numerical super-

symmetric bootstrap in 3d [21]. There the lower bound on CT was studied as a function

of the dimensions of spin-0 and spin-2 long multiplets, ∆∗0 and ∆∗2 respectively. When the

– 29 –



J
H
E
P
0
2
(
2
0
1
8
)
1
6
4

Figure 12. Lower bounds on CT as a function of θ and the spin-4 gap ∆4.

dimensions approached the values associated with N → ∞ ABJM theory, the exclusion

region for CT grew accordingly, with the lower bound on CT scaling as 1/(2−∆∗2). Another

related result is in the context of numerical bootstrap of four conserved currents [42]. In

this case imposing ∆4 = 6 resulted in the lower bound on CT growing indefinitely as the

numerical precision (the derivative order Λ) increased.

The numerical results of imposing a gap on ∆4 are shown in figure 12, with some

projections at smaller values of ∆4 shown in figure 13. For each value of ∆4 and 0 ≤ θ ≤ π/2
we find a minimal allowed value of CT . This value is quite sensitive to θ, generally reaching

maximal values for θ → 0, π/2 and remaining relatively small around θ ≈ π/4. At the same

time when ∆4 approaches 6 the bound rapidly grows for all value of θ, and seems to diverge

(numerically we see bounds of O(600–700)) as ∆4 → 6, consistent with the Nachtmann

theorem. Our bounds do not seem to show sufficient convergence to read off the expected

1/ε scaling, but it will be interesting to study this divergent behavior more closely in

future work.

4.6 Ising-like spectrum

Next we focus our attention on what can be learned about the 3d Ising model from the

〈TTTT 〉 bootstrap. In earlier numerical bootstrap work [9], a precise determination of the

central charge CIsing
T /CB = 0.946534(11) was found. As far as we are aware, no determi-

nations of the 〈TTT 〉 3-point function in the 3d Ising model have been made previously.

The Ising model has a Z2 global symmetry, but only Z2-even operators appear in the

T×T OPE. Such operators can be either even or odd under spacetime parity. The scaling di-

mensions of the leading parity-even operators in the 3d Ising spectrum have been computed

to high precision using numerical bootstrap methods (see table 2 of [13] for a summary).

However, as far as we are aware very little is known about the parity-odd spectrum.
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Figure 13. Lower bounds on CT as a function of θ for spin-4 gaps ∆4 ≥ 5.01, 5.1, 5.2, 5.4.

In figure 14 we show the result of inputting the approximate known scaling dimensions

for the leading parity-even scalars {ε, ε′}, the second spin-2 operator T ′, and the leading

spin-4 operator. The horizontal lines show the 3d Ising value of CT as well as the free

scalar value. Regions very close to θ = 0 and θ = π/2 are excluded (primarily due to the

spin-4 gap) but otherwise this data does not place a very strong constraint.

On the other hand, we find that imposing a parity-odd gap places a very strong con-

straint on the allowed region. In figure 15 we show the effect of inputting the expectation

(e.g., from the ε-expansion) that the leading parity-odd scalar is irrelevant,24 in addition

to inputting the leading parity-even scalar dimensions. Only a tiny window at small θ is

compatible with the 3d Ising value of CT . We show a zoom of this region in figure 16,

where it can be seen that these assumptions imply .01 < θ < .05.

In fact, it is likely that the parity-odd scalar gap in the 3d Ising model is significantly

larger than 3. E.g., it may be close to the free scalar value ∆odd = 11. This large gap is

also plausible given figure 8, where it can be seen that a sharp transition in the allowed

region occurs near the Ising value of ∆even. In light of this plot, if the gap is maximal we

see that it may be as large as ∆odd . 11.2.

Previously in figure 6 we saw that a parity-odd gap close to this value on its own

imposes a robust restriction θ < .023, with an allowed region compatible with CIsing
T . In

figure 17 we show the result on the allowed region of additionally imposing the known values

of ∆ε and ∆ε′ , combined with the sequence of assumptions ∆odd ≥ 9, 10, 11, 11.1, 11.2.

24It would be nice to directly confirm this by identifying a system in the Ising universality class with parity

(or time-reversal) symmetry breaking at the microscopic level. We thank Slava Rychkov for discussions on

this issue.

– 31 –



J
H
E
P
0
2
(
2
0
1
8
)
1
6
4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

2

4

6

8

θ

C
T
/C
B

Δϵ = 1.412625, Δϵ' ≥ 3.82968, Δ2 ≥ 5.5, Δ4 ≥ 5.022

Figure 14. Lower bound on CT as a function of θ assuming known low-lying gaps in the parity-even

spectrum in the 3d Ising CFT.

These assumptions lead to closed islands and if the gap is close to being saturated allow

us to make the tighter determination .01 < θ < .018− .019, with the precise upper bound

depending on the gap.

5 Discussion

In this work we used the numerical conformal bootstrap to study the space of unitary parity-

preserving CFTs in three dimensions. Assuming the existence of a unique stress tensor

(conserved spin-2 current) and imposing crossing symmetry of its four-point correlation

function, we found a number of universal bounds on CFT data. One striking discovery

is the necessity of both light parity-even (∆even ≤ 7) and parity-odd (∆odd ≤ 11.78)

scalars in the spectrum of any consistent local unitary CFT, see figure 8. Among other

universal results are those limiting the value of the central charge CT modulo additional

assumptions. For example, in hypothetical “dead-end” CFTs without any relevant scalars

CT is constrained to be larger than roughly twice the central charge of a free 3d scalar or

Majorana fermion. These, and other similar findings presented in this paper are of a new

kind, in the sense that they cannot be derived (as far as we know) using any theoretical

tools other than the numerical bootstrap.

There is another class of discoveries presented in this paper which further support

and extend previously established theoretical results. Our numerical results reproduce the

“conformal collider” bounds, see figure 2. Imposing scalar or spin-2 gaps above the values

they take in holographic theories further allows us to place upper bounds on CT . Similarly,

imposing a gap on the dimension of the lightest spin-4 operator discussed in section 4.5,
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Figure 15. Lower bound on CT as a function of θ assuming known low-lying gaps in the parity-even

scalar spectrum in the 3d Ising CFT, combined with the assumption that the leading parity-odd

scalar is irrelevant.
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Figure 16. Lower bound on CT as a function of θ assuming known low-lying gaps in the parity-even

scalar spectrum in the 3d Ising CFT, combined with the assumption that the leading parity-odd

scalar is irrelevant.
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Figure 17. Lower and upper bounds on (θ, CT ) assuming known low-lying gaps in the parity-

even scalar spectrum in the 3d Ising CFT, combined with various larger gaps in the parity-odd

spectrum. A gap ∆odd = 11.1 is compatible with CIsing
T (shown as the lower horizontal line) but a

gap ∆odd = 11.2 is not.

∆4 ≥ 6 − ε, ε → 0, forces the CFT in question to have an apparently diverging central

charge and a spectrum likely dual to weakly coupled gravity in AdS4, in full consistency

with the Nachtmann theorem [58, 64–67]. Reproducing these results is a strong consistency

check on our numerical setup.

Many exclusion plots in this work exhibit characteristic features potentially signaling

the existence of an underlying theory saturating the corresponding bounds. The scalar

exclusion plot in figure 8 has a kink that tentatively corresponds to the 3d Ising model, in

addition to reassuring corners that coincide with other known free or mean-field solutions.

This gives hope to extend our results to further elucidate precise properties of particular

theories. The first few steps in this direction for the 3d Ising model were already undertaken

in section 4.6, where known dimensions of light scalar operators25 were used to obtain a

strong bound 0.01 < θ < 0.05 on the OPE coefficient controlling the 3pt function of stress

tensors (4.2). By assuming larger gaps in the parity-odd scalar sector this window can be

reduced down to 0.010 < θ < 0.019. We also find closed islands in figures 4 and 11 which

may indicate new nontrivial solutions to the bootstrap equations and could be interesting

to study further.

Our work paves the way for many future investigations. Below we briefly describe only

some of the possible directions, which we find particularly interesting and important. A

substantial extension of this work would be to combine stress tensors with other operators,

such as scalars, fermions, or global symmetry currents, using a larger mixed correlator

25Assuming that the lightest parity-odd scalar is irrelevant.
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bootstrap. In this way one should be able to isolate e.g. theories with global O(N) sym-

metry and obtain a host of new constraints pertaining to such theories. One can also

extend our work to CFTs with varying amounts of supersymmetry, requiring additional

computation of the necessary superconformal blocks. From the technical point of view

these generalizations are relatively straightforward and only require combining previously

developed ingredients.

Yet another natural generalization is to extend the analysis of this paper to parity-

breaking theories. This direction is interesting in part because it would help us gain a

better understanding of the large family of Chern-Simons-matter theories in three dimen-

sions, recently understood to be interconnected by a large web of RG flows and dualities

(e.g. [68–70]). From the technical point of view such an extension would require the straight-

forward task of generalizing the analysis of sections 2 and 3 to additional parity-breaking

structures.

Finally, the numerical analysis performed in this paper, and the theoretical develop-

ments which it required, constitute significant progress in the development of the conformal

bootstrap in d = 3 dimensions. It would be very interesting to generalize the current anal-

ysis to higher dimensions, first to d = 4. The needed conformal blocks in four dimensions

were recently calculated implicitly in a number of works [60, 71–75]. Accordingly, the boot-

strap for the stress tensor and other operators with spin in four dimensions is now accessible

in principle, although it still represents a substantial technical challenge. We hope to ad-

dress this problem in the future. This research program can also be potentially extended

to arbitrary d yielding universal constraints on CFTs in d = 5, 6 and beyond. We hope

this study will eventually yield new non-trivial results contributing to our understanding

of interacting CFTs, or their absence, in d > 6.
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A Tensor structures

In this section we give the explicit expressions for the three-point tensor structures in the

differential basis as required for the computation of conformal blocks in section 3.

A.1 Parity-even structures in differential basis

For a given spin `, we define the basis of parity-even differential operators for 〈TTO`〉 as

Dn23,n13,n12 = Hn12
12 Dn13

12 Dn23
21 Dm1

11 D
m2
22 Σn12+n23+m1

1 Σn12+n13+m2
2 , (A.1)

where m1 = 2− n12 − n13 and m2 = 2− n12 − n23.

Structures for 〈TTO0〉. There exists a single parity-even tensor structure for 〈TTO0〉,
given by the differential operator

D(1)
0+ = −D0,0,0 + (∆− 5)(∆ + 2)D0,0,1 −

1

8
(∆− 5)(∆− 3)∆(∆ + 2)D0,0,2. (A.2)

Structures for 〈TTO2〉. There exists a single parity-even tensor structure for 〈TTO2〉,
with ∆ > 3, given by the differential operator

D(1)
2+ =−8

(
7∆2−13∆+30

)
D0,0,0+16(∆+2)(5∆−11)D1,0,0

−16(∆+2)(∆+4)D2,0,0+16(∆+2)(5∆−11)D0,1,0

−32∆(2∆−5)D1,1,0−16(∆+2)(∆+4)D0,2,0+8∆
(
∆2+29∆−78

)
D0,0,1

−8(∆−3)(∆+2)
(
∆2−2∆−2

)
D1,0,1−8(∆−2)(∆+2)

(
∆2−3∆+8

)
D0,1,1

+8(∆−2)2(∆−1)∆D1,1,1+(∆−2)(∆−1)∆
(
∆3−6∆2−25∆+78

)
D0,0,2. (A.3)

〈TTT 〉 structures. There exist two parity-even tensor structures for 〈TTT 〉, one realized

in the theory of a single free scalar field, and the other in the theory of single free Majorana

fermion. They are given by the following differential operators

D(B)
T =− 9

128π3
D0,0,0+

35

256π3
D1,0,0−

245

1024π3
D2,0,0+

35

256π3
D0,1,0−

33

512π3
D1,1,0

− 245

1024π3
D0,2,0+

153

1024π3
D0,0,1−

35

256π3
D1,0,1−

159

1024π3
D0,1,1−

63

1024π3
D1,1,1, (A.4)

D(F )
T =− 9

64π3
D0,0,0+

5

16π3
D1,0,0−

35

64π3
D2,0,0+

5

16π3
D0,1,0−

9

64π3
D1,1,0−

35

64π3
D0,2,0

+
45

128π3
D0,0,1−

5

16π3
D1,0,1−

39

128π3
D0,1,1−

9

64π3
D1,1,1. (A.5)
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Structures for 〈TTO`〉. There exists two parity-even tensor structure for 〈TTO`〉 for

even ` ≥ 4, given by the differential operators

D(1)
`+ = (∆4 − 6∆3 + 43∆2 − 102∆ + 3`4 + 6`3 − 4∆2`2

+ 12∆`2 − 35`2 − 4∆2`+ 12∆`− 38`+ 184)D0,0,0

− 2(−∆ + `+ 1)(∆ + `)
(
−∆2 + 3∆ + `2 + `− 14

)
D1,0,0

+ (−∆ + `− 1)(−∆ + `+ 1)(∆ + `)(∆ + `+ 2)D2,0,0

− 2(−∆ + `+ 1)(∆ + `)
(
−∆2 + 3∆ + `2 + `− 14

)
D0,1,0

− 4
(
−∆4 + 6∆3 − 13∆2 + 12∆ + `4 + 2`3 − 7`2 − 8`+ 44

)
D1,1,0

+ 2(−∆ + `+ 1)(∆ + `)
(
∆2 − 3∆ + `2 + `− 10

)
D2,1,0

+ (−∆ + `− 1)(−∆ + `+ 1)(∆ + `)(∆ + `+ 2)D0,2,0

+ 2(−∆ + `+ 1)(∆ + `)
(
∆2 − 3∆ + `2 + `− 10

)
D1,2,0

+ (∆4 − 6∆3 − 5∆2 + 42∆ + `4 + 2`3 − `2 − 2`+ 40)D2,2,0

− 2(`− 1)(`+ 2)
(
12∆2 − 36∆ + `4 + 2`3 −∆2`2 + 3∆`2 − 13`2

−∆2`+ 3∆`− 14`+ 72
)
D0,0,1

− 12
(
`2 + `− 4

)
(−∆ + `+ 1)(∆ + `)D1,0,1

− 8`(`+ 1)(−∆ + `+ 1)(∆ + `)D0,1,1 − 8(`− 1)`(`+ 1)(`+ 2)D1,1,1

+
1

4
(`− 1)`(`+ 1)(`+ 2)

(
−∆4 + 6∆3 + 5∆2 − 42∆ + `4 + 2`3 − 17`2

−18`+ 104)D0,0,2, (A.6)

D(2)
`+ = (−∆2 + 3∆− `2 − `+ 36)D0,0,0 + 2(−∆ + `+ 1)(∆ + `)D1,0,0

+ 2(−∆ + `+ 1)(∆ + `)D0,1,0 + 4
(
∆2 − 3∆ + `2 + `− 6

)
D1,1,0

+ (∆4 − 6∆3 − 5∆2 + 42∆ + `4 + 2`3 − 17`2 − 18`+ 72)D0,0,1

+ 2(−∆ + `+ 1)(∆ + `)D1,0,1

+
1

8

(
−∆6 + 9∆5 − 13∆4 − 57∆3 + 86∆2 + 120∆− `6 − 3`5 −∆2`4 + 3∆`4

+15`4 − 2∆2`3 + 6∆`3 + 35`3 −∆4`2 + 6∆3`2 + 6∆2`2 − 45∆`2 − 54`2

−∆4`+ 6∆3`+ 7∆2`− 48∆`− 72`
)
D0,0,2. (A.7)

A.2 Parity-odd structures in differential basis

To construct the differential operators for parity-odd tensor structures, we use the differ-

ential operators derived in [57],

Q1 = ε

(
Z1, Z2, X1, X2,

∂

∂X1

)
, (A.8)

Q2 = ε

(
Z1, Z2, X1, X2,

∂

∂X2

)
, (A.9)

D̃1 = ε

(
Z1, X1,

∂

∂X1
, X2,

∂

∂X2

)
, (A.10)

D̃2 = ε

(
Z2, X2,

∂

∂X2
, X1,

∂

∂X1

)
. (A.11)
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Note that the operators D̃i satisfy all consistency conditions of [57] only when operators 1

and 2 have spin 0.26

Using these, we can define the operators

E13 = D̃1, (A.12)

E23 = D̃2, (A.13)

E12 =
1

2

(
Q1Σ1

1 +Q2Σ1
2

)
. (A.14)

We define the basis of parity-odd differential operators for 〈TTO`〉 as

D−n23,n13,n12,1
= Dn23,n13,n12E23, (A.15)

D−n23,n13,n12,2
= Dn23,n13,n12E13, (A.16)

D−n23,n13,n12,3
= Dn23,n13,n12E12. (A.17)

Here Dn23,n13,n12 are the parity-even differential operators with m1,m2 defined depending

on which Eij it multiplies so that the total spins at points 1 and 2 agree.

Structures for 〈TTO0〉. There exists a unique parity-odd tensor structure for 〈TTO0〉,
given by the differential operator

D̃(1)
0− = −4D−0,0,0,3 + (∆− 4)(∆ + 1)D−0,0,1,3. (A.18)

There is a slight complication in this case, since the transition matrix between the differ-

ential and algebraic bases vanishes at ∆ = 1. Thus any differential basis structure with

polynomial coefficients vanishes for ∆ = 1, which is undesirable since we would like to

have a non-zero conformal block for every ∆ ≥ 1/2. We therefore in this case consider the

non-polynomial solution given by

D(1)
0− =

1

∆− 1
D̃(1)

0− . (A.19)

In practice, we work with D̃(1)
0− and only in the end divide the numerator of the resulting

rational approximation to the parity-odd scalar block by (∆ − 1)2.27 The construction

guarantees that this division is possible.

Structures for 〈TTO2〉. There exists a unique parity-odd tensor structure for 〈TTO2〉,
given by the differential operator

D(1)
2− =−4D−0,1,0,1−2(∆−2)(∆+3)D−0,1,0,3+(∆4−6∆3−13∆2+66∆+144)D−0,0,1,3

+2(∆−6)(∆+2)D−0,1,1,1−(4)D−1,0,0,2−2(∆−2)(∆+3)D−1,0,0,3+8(∆+6)D−1,1,0,3
+2(∆−6)(∆+2)D−1,0,1,2. (A.20)

26In [57] these operators are defined with extra terms containing derivatives in polarizations. However,

even with that definition D̃1 does not commute with X1 · ∂
∂Z1

and one needs to add extra terms to ensure

full consistency for action on generic operators.
27We need the square since there are left and right three-point structures.
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Structures for 〈TTO`〉 for even `. There exists a unique parity-odd tensor structure

for 〈TTO`〉 for even ` ≥ 4, given by the differential operator

D(1)
`− = 8

(
−3∆2+9∆+`2+`+24

)
D−0,0,0,1−16(∆−4)(∆+1)D−0,0,0,2

−16
(
∆4−6∆3−∆2+30∆+∆2`2−3∆`2−4`2+∆2`−3∆`−4`

)
D−0,0,0,3

+16
(
`2+`+6

)
D−0,1,0,1+8(`−∆)(∆+`+1)D−0,1,0,2

+8
(
∆4−6∆3−9∆2+54∆+44

)
D−0,1,0,3

+4
(
∆4−6∆3−7∆2+48∆+∆2`2−3∆`2+∆2`−3∆`+72

)
D−0,2,0,1

+4
(
∆6−9∆5+13∆4+57∆3−86∆2−120∆+∆2`4

−3∆`4+2∆2`3−6∆`3+2∆4`2−12∆3`2−11∆2`2

+87∆`2+40`2+2∆4`−12∆3`−12∆2`+90∆`+40`
)
D−0,0,1,1

−4(∆−3)∆
(
∆2−3∆+`2+`−16

)
D−0,0,1,2+8(`−∆)(∆+`+1)D−0,0,1,3

+16
(
∆2−3∆+`2+`−10

)
D−0,1,1,1+8

(
∆2−3∆+`2+`−16

)
D−1,0,0,1. (A.21)

Structures for 〈TTO`〉 for odd `. There exists a unique parity-odd tensor structure

for 〈TTO`〉 for odd ` ≥ 5, given by the differential operator

D(1)
`− = −4(∆− 2)(∆− 1)

(
∆2 − 3∆− 3`2 − 3`+ 32

)
D−0,0,0,1

+ 8(`− 3)(`− 1)(`+ 2)(`+ 4)D−0,0,0,2
+ 8`(`+ 1)

(
−6∆2 + 18∆ + `4 + 2`3 + ∆2`2 − 3∆`2 − 11`2

+∆2`− 3∆`− 12`+ 12
)
D−0,0,0,3

− 8
(
−∆4 + 6∆3 − 25∆2 + 48∆ + `4 + 2`3 + ∆2`2 − 3∆`2

−11`2 + ∆2`− 3∆`− 12`− 4
)
D−0,1,0,1

+ 4(∆− 2)(∆− 1)(`−∆)(∆ + `+ 1)D−0,1,0,2
− 4(∆− 2)(∆− 1)

(
`4 + 2`3 − 21`2 − 22`+ 84

)
D−0,1,0,3

− 2
(
`6 + 3`5 + ∆2`4 − 3∆`4 − 15`4 + 2∆2`3 − 6∆`3 − 35`3 − 17∆2`2

+51∆`2 + 54`2 − 18∆2`+ 54∆`+ 72`− 144
)
D−0,2,0,1

− 2`(`+ 1)
(
−2∆4 + 12∆3 + 82∆2 − 300∆ + `6 + 3`5 + 2∆2`4 − 6∆`4

−13`4 + 4∆2`3 − 12∆`3 − 31`3 + ∆4`2 − 6∆3`2 − 23∆2`2 + 96∆`2

+20`2 + ∆4`− 6∆3`− 25∆2`+ 102∆`+ 36`+ 64
)
D−0,0,1,1

+ 2(`− 3)(`− 2)(`+ 3)(`+ 4)
(
∆2 − 3∆ + `2 + `

)
D−0,0,1,2

− 4(∆− 2)(∆− 1)(`−∆)(∆ + `+ 1)D−0,0,1,3
− 8(∆− 2)(∆− 1)

(
∆2 − 3∆ + `2 + `− 10

)
D−0,1,1,1

+ 4(∆− 2)(∆− 1)
(
∆2 − 3∆ + `2 + `− 16

)
D−1,0,0,1. (A.22)
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B Conformal generators

The conformal generators act on a local operator O(w, z) (with spin degrees of freedom

encoded by the polarization vector w) of scaling dimension ∆ as

D · O(w, x) = (x · ∂ + ∆)O(w, x), (B.1)

Pµ · O(w, x) = ∂µO(w, x), (B.2)

Kµ · O(w, x) = (2xµx
σ − x2δσµ)∂σO(w, x) + 2∆xµO(w, x)

− 2xσ
(
wσ

∂

∂wµ
− wµ

∂

∂wσ

)
O(w, x) (B.3)

Mµν · O(w, x) =

(
xν∂µ − xµ∂ν + wν

∂

∂wµ
− wµ

∂

∂wν

)
O(w, x). (B.4)

Here D,P,K,M are the dilatation, translation, special conformal, and rotation generators

respectively.

C Details on the numerics

In this appendix we give specific details on how the bounds in this paper are obtained from

the crossing equations (2.47)–(2.49) and the conformal block decomposition (4.4).

First, we organize the crossing equations (2.47)–(2.49) in a single vector equation

~FTTTT = 0. (C.1)

The conformal block decomposition (4.4) then induces a decomposition of the vector
~FTTTT ,

~FTTTT = ~F1 +
1

CT
Θab ~FT,ab +

∑
(∆,ρ)∈S

Mab
∆,ρ

~F∆,ρ,ab = 0. (C.2)

Here we have explicitly specified that the summation is over some assumed set of dimensions

and spins S. This equation has to be satisfied in any theory whose spectrum of operators

is a subset of S. For example, when we say that we impose a gap ∆min
even in the parity-even

scalar sector, we choose

S = {(∆, `+)|∆ ≥ `+ 1, ` = 2k ≥ 2}∪
{(∆, `−)|∆ ≥ `+ 1, ` ≥ 4}∪
{(∆,2−)|∆ ≥ 3}∪
{(∆,0+)|∆ ≥ ∆min

even}∪{
(∆,0−)|∆ ≥ 1

2

}
. (C.3)

Given a choice of S, we then study two questions:

1. Feasibility: Does the system (C.2) have a solution for some θ?

2. Optimization: What is the minimal (maximal) value of CT for a given θ?
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Feasibility. To answer the feasibility question, we look for a vector ~α such that

~α · ~F1 = 1, (C.4)

~α · ~FT � 0, (C.5)

~α · ~F∆,ρ � 0, ∀(∆, ρ) ∈ S. (C.6)

Clearly, if such ~α is found, then there cannot be a solution to (C.2), since positive-

semidefiniteness of M∆,ρ, Θ and CT > 0 imply

~α · ~FTTTT ≥ 1. (C.7)

We then conclude that CFTs with the spectral assumption S do not exist. As usual, this

conclusion is rigorous for any Λ, given that the equations (C.4)–(C.6) are satisfied to a

sufficient precision. If such an ~α cannot be found, we cannot conclude anything and the

spectral assumption S is formally “allowed” by our bounds.

Optimization. Let us start with the case that we want to find a lower bound on CT for

a given θ. Suppose that we have found a vector ~α such that

~α · ~F1 = −1, (C.8)

~α · ~F∆,ρ � 0, ∀(∆, ρ) ∈ S. (C.9)

It then follows from ~FTTTT = 0 that

− 1 +
1

CT
~α · (Θab ~FT,ab) ≤ 0, (C.10)

and thus

CT ≥ ~α · (Θab ~FT,ab). (C.11)

We then search for an ~α which maximizes

~α · (Θab ~FT,ab) (C.12)

subject to (C.8) and (C.9) in order to find the optimal bound. Again, the bounds are

rigorous for every Λ.

If our goal is to find an upper bound on CT , we replace (C.8) with

~α · ~F1 = +1, (C.13)

which then analogously implies

CT ≤ −~α · (Θab ~FT,ab). (C.14)

We again look for such ~α which maximizes (C.12) in order to find the optimal bound.
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Numerical implementation. To search for the vectors α we use the semidefinite solver

SDPB [53]. In section 3 we explained how to obtain rational approximations of the 〈TTTT 〉
conformal blocks required by SDPB starting from rational approximations of scalar confor-

mal blocks arising from their pole expansions [11, 62].

These approximations are controlled by the integral parameter κ defined in [53]. The

blocks become exact in the limit κ → ∞; the convergence is exponential. In practice we

use a finite value of κ and check that our results don’t change if κ is increased. Another

approximation that we have to make is the truncation to a finite range of spins in con-

straints (C.6) and (C.9). Again, we choose a sufficiently large cutoff and check that the

results are independent of it.

Below we list κ, the spin cutoff, and the relevant SDPB parameters that we used in

calculations for various values of Λ (all figures except figure 2 correspond to Λ = 19):

Λ ≤ 11 13 15 17 19

κ 20 24 24 24 24

spins ≤ 25 ≤ 30 ≤ 36 ≤ 42 ≤ 42

precision 832 832 832 832 1024

findPrimalFeasible False False False False False

findDualFeasible False False False False False

detectPrimalFeasibleJump False False False False False

detectDualFeasibleJump False False False False False

dualityGapThreshold 10−10 10−10 10−10 10−10 10−10

primalErrorThreshold 10−30 10−30 10−30 10−30 10−30

dualErrorThreshold 10−30 10−30 10−30 10−30 10−30

initialMatrixScalePrimal 1020 1020 1020 1020 1020

initialMatrixScaleDual 1020 1020 1020 1020 1020

feasibleCenteringParameter 0.1 0.1 0.1 0.1 0.1

infeasibleCenteringParameter 0.3 0.3 0.3 0.3 0.3

stepLengthReduction 0.7 0.7 0.7 0.7 0.7

choleskyStabilizeThreshold 10−120 10−120 10−120 10−120 10−180

maxComplementarity 10100 10100 10100 10100 10100

The exclusion plot in figure 8 requires testing only feasibility so we set findPrimalFeasible

and findDualFeasible to True. For the scalar bound in figure 8 we used the parameters

of [53] with Λ = 35. The stress-tensor conformal blocks as well as the code used for their

generation and setting up SDPB are available upon request.
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