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Abstract

Phase Transitions in Inference

By

Sidhanth Mohanty

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Prasad Raghavendra, Chair

What makes an algorithmic problem easy or hard? Many general algorithmic tech-
niques arising from decades of research, along with the theory of NP-completeness
based on reductions between hard problems, offers a good answer for problems
where the input is “worst-case”.

However, this theory has very little to say when the input is random, and com-
prises of independent samples, as is frequently the case for problems in statistics.
Statistical problems seemingly go through abrupt phase transitions in complexity,
from hard to easy once the number of samples crosses a threshold. Understanding
this boundary between “hard” and “easy” for statistical problems is still in nascent
stages.

This thesis comprises recent progress in understanding these phase transitions
from the lens of semidefinite programming.
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Chapter 1

What makes a problem easy or hard?

Checking if a graph is 2-colorable can be done in linear time, but the chances of
even a subexponential time algorithm for checking if a graph is 3-colorable look
bleak. Solving an instance of 2SAT is easy, whereas our best algorithms for 3SAT
run in exponential time. Indeed, friendly structure in the 2SAT and 2-COLORING

problems can be utilized to design efficient algorithms. On the other hand, the
lack of such structure can be used to reduce known NP-hard problems to 3SAT
and 3-COLORING. The worst-case theory of algorithms and complexity, based on a
large collection of algorithmic tools and NP-completeness has quite far-reaching
predictions for whether a problem is easy or hard, when the inputs are contrived by
demons.

However, when the input possesses more structure, for example, when the
input is comprised of independent samples, like in problems from statistics, the
predictions of this theory are moot. To give a concrete example, this theory doesn’t
have anything to say about the complexity of 3SAT when the input instance has
n variables, and m independently drawn clauses. Some average-case algorithmic
tasks of interest include:

• Certification. Output a certificate that a random 3SAT formula has no satisfying
assignment.

• Search. Find an assignment to a random 3SAT formula with high objective value.

• Recovery/Inference. Recover the hidden assignment x to a random 3SAT formula
with x as a planted solution.
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• Hypothesis testing/Distinguishing. Distinguish a random 3SAT formula from
one with a planted solution.

• Counting. Output the number of satisfying assignments to a 3SAT formula.

• Sampling. Produce a uniformly random satisfying assignment to a random 3SAT
formula.

A predicted algorithmic terrain for random 3SAT has been charted out fairly
precisely at this point, as denoted by the phase diagram in Figure 1.1. While we
have similarly precise predictions for the algorithms and hardness landscape for
numerous other average-case problems, a general encompassing theory where these
predictions are on rigorous grounds is still in nascent stages.

Figure 1.1: Predicted complexity of random 3SAT as function of number of clauses
[MZ02, AOW15]
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1.1 A general theory for complexity of average-case
problems?

What would a general theory for the complexity of average-case problems look
like? Ideally, we would like:

1. Simple heuristics we can use to predict if an average-case problem is tractable
or intractable.

2. Generic efficient algorithms when these heuristics predict that a problem is
tractable.

3. Rigorous hardness evidence when these heuristics predict that a problem is
intractable. This evidence could be in the form of unconditional lower bounds
in restricted computational models, or reductions from well-established hard
problems.

Excellent examples of theories in the worst case that serve as inspiration for an
average-case theory are theories for the complexity of constraint satisfaction problems
(CSPs):

1. The CSP dichotomy theorem [Sch78, Zhu20] tells us that every CSP is either
polynomial time solvable, or is NP-hard. Further, it is possible to tell if a CSP
is tractable or intractable based on whether its solution space satisfies certain
algebraic properties (the existence of “polymorphisms”).

2. The Unique Games Conjecture lets us fully characterize the approximability
of CSPs — there is a simple semidefinite programming based algorithm
which attains the optimal approximation ratio for any CSP [Kho02, KKMO07,
Rag08]. Thus approximation ratios for various CSPs can be understood by
studying integrality gaps for this SDP.

One of the goals of this thesis is to contribute to the program for achieving a
general theory of complexity of recovery and hypothesis testing, and we focus on
random constraint satisfaction problems.
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1.2 Technical overview

1.2.1 A generic algorithm for recovery?

Informally, in the class of problems we work with, x is a hidden signal drawn
uniformly at random from some set Σn (for example, {±1}n), and we receive
independent observations E = e1, . . . , em. The algorithmic task is then to estimate
x|E, either by sampling from the distribution, or by producing (an approximation
to) its low-degree moments.

As an example, consider the 2-community stochastic block model (SBM), where
x is in {±1}n, and each ei is a random edge {i, j} for i, j ∈ [n] chosen such that
xi = xj with probability 1+ε

2 and xi ̸= xj with probability 1−ε
2 .

Given the success of semidefinite programming-based methods in giving op-
timal algorithms for combinatorial optimization in the worst-case and for robust
statistics problems in the average-case, an SDP formulation is a natural candidate
for a generic algorithm for recovery. However, the choice of SDP formulation is
unclear. Indeed, even for the special case of the 2-community SBM, the traditional
SDP which is a relaxation of the minimum bisection is suboptimal. That is, it is not
known to recover communities better than random guessing even for parameter
settings where other polynomial time algorithms exist.

The conceptual reason for this suboptimality is that this SDP focuses on optimiz-
ing an objective function, which in this case is the minimum bisection in the graph.
However, for the task of estimating x|E, solving an optimization problem only
makes sense if the distribution of x|E is highly concentrated at the solution achiev-
ing the optimum. In the case of the SBM, the posterior is anti-concentrated and in
fact the minimum bisection is not known to correlate with the low-degree moments
of the posterior, which makes the choice of optimization SDP non-canonical.

Therefore, any general purpose SDP for inference must depart from the opti-
mization paradigm and incorporate information about the prior. In Chapter 2, we
give a semidefinite program hierarchy (the Local Statistics hierarchy) that bakes in
the prior via concentration inequalities satisfied by x|E as constraints, and illustrate
its efficacy by showing that it succeeds at distinguishing stochastic block models
from random graphs for all parameter regimes where the problem is believed to
be tractable. The algorithm can be made more powerful by incorporating more
information about the prior, at the expense of running time.
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More concretely, the problem of distinguishing a stochastic block model from a
random graph is believed to be efficiently tractable when the number of observa-
tions m exceeds the Kesten–Stigum threshold; for the special case of 2 communities,
the problem is tractable when m

n > 1
2ε2 .

Theorem 1.2.1 (Informal). The Local Statistics SDP can be used to distinguish the
stochastic block model from an Erdős–Rényi graph when then number of edges exceeds the
Kesten–Stigum threshold in polynomial time. Further, this algorithm is robust to any o(n)
arbitrary edge insertions and deletions.

1.2.2 The cavity method

Precise predictions for the algorithmic threshold for recovery and hypothesis
testing in stochastic block models came from the cavity method from statistical
physics. It is a very simple and easy-to-implement heuristic to obtain predictions
about the complexity of recovery and hypothesis testing for various problems.

We investigate whether we can rigorously say that the predictions produced by
this method are accurate. To do so, we consider an expressive class of inference
problems that capture stochastic block models and planted CSPs, which we call
Bayesian CSPs, where the observations e1, . . . , em are “local”, i.e., each observation
depends only on a constant number of variables in the hidden signal. We defer a
formal definition of this class of problems to Chapter 3, and instead provide some
examples.
Stochastic Block Models. The hidden signal x is drawn from [q]n, and each
observation is an edge {i, j} drawn between i, j with xi = xj with probability 1+ε

q

and with xi ̸= xj with probability q−ε
q .

Planted NotAllEquals3SAT. The hidden signal x is drawn from {±1}n, and each
observation is a triple (a, b, c) such that xa, xb, xc are not all equal.

The cavity method predictions are based on the assumption that the optimal
algorithm for Bayesian CSPs is belief propagation (BP), an algorithm that aims to
estimate marginals of x|E. The algorithm considers the bipartite graphH between
variables and observations, and maintains a distribution ma→b, called a “message”,
over Σ on every directed edge (a, b). These messages are iteratively updated via
an update rule that depends on the model from which the input is drawn, until the
messages arrive at a fixed point. In particular, for every (a, b), there is a function
Υa→b such that: ma→b is updated to Υa→b

({
mc→b : c ∈ ∂a \ b

})
.
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The predictions of the cavity method are based on the behavior of BP around a
certain set of fixed point messages m, called the uninformative fixed point, since this
set of messages does not depend on the graphH, but only on the model that the
instance is drawn from, and hence does not have any mutual information with the
hidden assignment. When the uninformative fixed point is randomly perturbed,
and BP is run on the perturbed messages, one of two things can happen: either
running BP causes the perturbation to vanish and takes the messages back to the
uninformative fixed point, in which case we say that the fixed point is stable; or
running BP amplifies the magnitude of the perturbation and moves away from the
uninformative fixed point (presumably towards the true solution). The hypothesis
is that if the uninformative fixed point is stable, then recovery is hard, and if the
uninformative fixed point is unstable, then recovery is easy.

In Chapter 3, we give a simple spectral algorithm, inspired by belief propa-
gation and captured by the Local Statistics hierarchy, that succeeds at recovery
whenever the cavity method predicts that recovery should be possible via an
efficient algorithm.

Theorem 1.2.2 (Informal). Given an instance of a Bayesian CSP drawn from a model that
the cavity method predicts is algorithmically tractable, there is a polynomial time algorithm
to recover the hidden signal better than random guessing with high probability over the
randomness of the instance.

A striking feature of this method to obtain predictions is that the stability of
the uninformative fixed point can be tested by checking if the top eigenvalue of a
certain constant-sized matrix depending only on the model is at least 1. We show
three examples below to illustrate its rich predictions.

Example 1.2.3. First, consider the problem of planted NAE3SAT wherein there is a
uniformly random assignment in {0, 1}n and Not-All-Equal clauses on 3 variables
are sampled so that a ρ-fraction of them are satisfied. As one varies the average
constraint-degree of a variable d and the approximation ρ, there is an explicit
prediction of the region of parameters where the problem of recovering the planted
assignment is computationally tractable (blue region in Figure 1.2).

Example 1.2.4. Next, we turn our attention to mixed planted CSPs. For con-
creteness, we consider one particular example: planted NAE-(3, 5)-SAT. In this
example, the variables are given a uniformly random assignment in {0, 1}n and
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Figure 1.2: Easy region for planted NAE-3SAT shaded in blue. Average degree on
x-axis, fraction of clauses satisfied on y-axis.

Not-All-Equals clauses are sampled to be on 3 variables with probability p and on
5 variables with probability 1− p. As one varies the constraint-degree of a vari-
able d and the proportion of NAE3SAT clauses p, we can plot a precise region of
parameters where the recovery problem is computationally tractable (blue region
in Figure 1.3).
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Figure 1.3: Easy region for planted NAE-(3, 5)-SAT shaded in blue. Average NAE3-
degree of vertex on x-axis, average NAE5-degree of vertex on y-axis.

Example 1.2.5. Consider the following version of 4-community stochastic block
model with communities labeled (0, 0), (0, 1), (1, 0) and (1, 1) and 3 parameters d0,
d1 and d2. For a pair of vertices u and v from communities x and y we place an edge

between u and v with probability
ddist(x,y)

n where dist(x, y) is the Hamming distance
between x and y. For an additional twist, let us suppose that the first coordinate of
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the community that every vertex belongs to is also revealed to the algorithm. What
is the region of parameters d0, d1, d2 for which an efficient algorithm can partially
recover the second coordinate of the community labels? See Figure 1.4 for the
hypothesized transition.
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(c) d2 = 9

Figure 1.4: Easy regions for (d0, d1) for variety of settings of d2.

1.3 Open directions

Local algorithms. The spectral and semidefinite programming based algorithms
for many of these inference problems find a solution positively correlated with
the hidden solution, but are far from the optimal achievable overlap. Empirically,
via heuristic calculations, and also in some special settings like the 2-community
stochastic block model, it appears that running a local algorithm such as belief
propagation or the Glauber dynamics Markov chain on top of the output of a
“global” algorithm such as a spectral algorithm of semidefinite program boosts the
overlap to optimality.

Can we give optimal algorithms for recovery with rigorously provable guaran-
tees?

Lower bounds. The broad goal here is to gather rigorous evidence for the validity
of the hardness predictions. One such form of evidence is lower bounds against
restricted families of algorithms. A concrete problem in this direction is:
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Can we prove lower bounds against the subexponential time regime of the local
statistics SDP hierarchy for hypothesis testing problems that the cavity method
predicts are intractable?

Proving such a lower bound would require constructing a pseudodistribution1 that
fools the SDP into seeing a solution even when there is none. A candidate construc-
tion of such a pseudodistribution arises from the stable uninformative fixed point
messages, and it is natural to investigate whether this pseudodistribution indeed
fools the SDP.

The work of [HS17] proposes a heuristic called the low-degree likelihood ratio
(LDLR) heuristic for predicting the computational complexity of general hypothesis
testing problems. It was also shown in the same work that the heuristic predicts
the same threshold as the cavity method for general stochastic block models, which
suggests that the predictions of the LDLR heuristic captures those of the cavity
method.

Does the LDLR heuristic predict the same threshold as the cavity method on
Bayesian CSPs?

The LDLR heuristic is closely related to and was inspired from pseudocalibration,
a technique to construct candidate pseudodistributions for SDPs for hypothesis
testing problems pioneered in [BHK+19]. On many example problems, pseudo-
calibration can be used to prove that a problem is hard for SDPs when the LDLR
heuristic predicts hardness. Strikingly, for Bayesian CSPs, pseudocalibration ap-
pears to produce the same pseudodistribution obtained from the BP fixed point.
This raises the question as to whether pseudocalibration can be used to prove
lower bounds against SDPs when the LDLR heuristic predicts that a problem is
computationally hard.

Does the LDLR hardness for distinguishing problems imply hardness against
semidefinite programs?

1A pseudodistribution is a collection of marginal probability distributions on a bounded number
of variables satisfying some constraints but which do not need to be consistent with a global true
probability distribution.
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1.4 Connections

Much of the technical content in Chapter 2 and Chapter 3 involves understanding
the spectra of sparse random matrices. The proof techniques are amenable to
several other applications in theoretical computer science. In this thesis, we focus
on two of these applications: constructing near-Ramanujan expander graphs, and
in understanding girth-density tradeoffs in hypergraphs.

1.4.1 Expander constructions

Graph expansion has a variety of applications in theoretical computer science to
error-correcting codes, pseudorandomness, metric embeddings, approximation
algorithms, and more, for which we refer the interested reader to [HLW06].

Formally, a λ-spectral expander is a graph such that the second largest absolute
eigenvalue of its normalized adjacency matrix is at most λ. A bound on the second
largest eigenvalue is a powerful analytic handle on graphs as it controls various
combinatorial quantities of interest, such as the mixing time of random walks,
the sparsity of cuts, and the edge density within small subgraphs, which in turn
lend such graphs to various applications. It is of interest to explicitly construct
expanders with small value of λ, since the smaller the value of λ is, the more
the expander resembles the complete graph with respect to these combinatorial
properties. A second demand we have of expander constructions in the context of
applications is sparsity: ideally, all the vertices should have constant degree.

In light of this, it is natural to try to understand the tradeoff between sparsity
and spectral expansion.

For a fixed d, what is the smallest λ such that there is a family of d-regular
expander graphs?

The first result proved in this context was the Alon–Boppana bound [Nil91].

Theorem 1.4.1. For any n-vertex d-regular graph G, |λ|2(G) ⩾ 2
√

d−1−on(1)
d .

We say a graph is Ramanujan if it is an optimal spectral expander, i.e. if
|λ|2(G) ⩽ 2

√
d−1
d . Understanding the existence of Ramanujan graphs has been a

topic of extensive study. Here we list some key results.
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1. Using number theoretic techniques, [LPS88, Mar88] and later [Mor94] gave
constructions of d-regular Ramanujan Cayley graphs for d of the form pr + 1
for prime p and integer r.

2. Friedman’s theorem [Fri08] says that an n-vertex random d-regular graph is
near-Ramanujan (i.e. has second eigenvalue 2

√
d−1+ε

d for arbitrarily small ε)
with high probability for all d ⩾ 3. Eventually, a simpler proof was given by
[Bor19].

3. [MSS15a, MSS15b] pioneered the method of interlacing polynomials and used
it to nonconstructively show the existence of bipartite Ramanujan graphs of
every degree (and therefore the minimum eigenvalue is −1). The latter was
also made algorithmic by [Coh16].

While a random d-regular graph is the easiest to describe and doesn’t require
constraints on the degree or bipartiteness, the constructions based on Cayley
graphs and interlacing polynomials are explicit, in the sense of being deterministic
and constructible in polynomial time.

In Chapter 4, we give an explicit construction of near-Ramanujan graphs of
every degree based on derandomizing Friedman’s theorem, using the trace method
for analyzing sparse random matrices.

Theorem 1.4.2. For every d ⩾ 3 and ε > 0, there is an algorithm that takes in n as
input, and in time poly(n), outputs a d-regular graph G on Θ(n) vertices such that
|λ|2(G) ⩽ 2

√
d−1+ε

d .

1.4.2 Girth-density tradeoffs

A common theme in extremal combinatorics is that of Turán-type problems, where
one studies what subgraphs inevitably arise in dense enough graphs.

The following question is our starting point.

What is the maximum girth possible in a graph with average degree d?

This question was answered by [AHL02], who showed that any graph with average
degree d must have a cycle of length at most 2 logd−1 n + 2.

Here, we study the hypergraph analog of this question. The generalization of
a cycle that we consider here, relevant in the context of understanding refutation
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of random constraint satisfaction problems, and in understanding rate-distance
tradeoffs in low-density parity check codes is that of an even cover.

Definition 1.4.3. An even cover in a hypergraphH is a collection of hyperedges S
such that each vertex is touched an even number of times by S.

The notion of girth of a hypergraph appropriately generalizes to being the size
of the smallest even cover contained inside the hypergraph.

[Fei08] and [NV08] initiated the study of understanding the tradeoff between
the density and girth in hypergraphs, and the full tradeoff was conjectured by
Feige.

Conjecture 1.4.4. A k-uniform hypergraph with n ·
(n

r
) k

2−1 hyperedges must contain an
even cover with r log n hyperedges.

This conjecture was proved by [GKM21] up to a poly log n factor, with an expo-
nent depending linearly in k, via a technique pioneered by them called “spectral
double counting”.

The main analytic handle on the hypergraph is via a generalized adjacency
matrix encoding which hyperedges are present, known as its Kikuchi matrix. They
showed that on one hand the density of edges in the hypergraph could be used to
lower bound the maximum eigenvalue of the Kikuchi matrix, and the girth can
be used to obtain an upper bound. The resulting constraints can be used to prove
Feige’s conjecture.

In Chapter 5, we give a significantly simpler proof of Feige’s conjecture by
carrying out the spectral double counting using techniques from analyzing sparse
random matrices, which is tight up to a single log n factor.
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Chapter 2

Local Statistics SDP

This chapter is adapted from [BMR21], a paper co-authored by the author of this
thesis, Jess Banks, and Prasad Raghavendra.

We propose a hierarchy of semidefinite programming relaxations for inference
and hypothesis testing problems and prove that it succeeds at robust community
detection in stochastic block models. The vertices are partitioned into k commu-
nities, and a graph is sampled conditional on a prescribed number of inter- and
intra-community edges. The problem of detection, where we are to decide with
high probability whether a graph was drawn from this model or the uniform
distribution on regular graphs, is conjectured to undergo a computational phase
transition at a point called the Kesten-Stigum (KS) threshold.

We consider two models of random graphs namely the well-studied (irregular)
stochastic block model and a distribution over random regular graphs we call the
Degree Regular Block Model. For both these models, we show that sufficiently high
constant levels of our hierarchy can perform detection arbitrarily close to the KS
threshold and that our algorithm is robust to up to a linear number of adversarial
edge perturbations. Furthermore, in the case of Degree Regular Block Model, we
show that below the Kesten-Stigum threshold no constant level can do so.

In the case of the (irregular) Stochastic Block Model, it is known that efficient
algorithms exist all the way down to this threshold, although none are robust to a
linear number of adversarial perturbations of the graph when the average degree is
small. More importantly, there is little complexity-theoretic evidence that detection
is hard below the threshold.
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2.1 Introduction

Community detection is a canonical example of a high-dimensional inference
problem, one that is a test-bed to develop algorithmic and lower bound techniques.
Much of the existing literature on community detection concerns the stochastic
block model (SBM). For now let us discuss the symmetric setting where we first
partition n vertices in to k groups, and include each edge independently and with
probability pin or pout depending on whether or not the labels of its endpoints
coincide. Research in this area spans several decades, and it will not be fruitful to
attempt a thorough review of the literature here; we refer the reader to [Abb17] for
a survey. Most salient to us, however, is a rich theory of computational threshold
phenomena which has emerged out of the past several years of collaboration
between computer scientists, statisticians, and statistical physicists.

The key computational tasks associated with the SBM are recovery and detection:
we attempt either to reconstruct the planted communities from the graph, or to de-
cide whether a graph was drawn from the planted model or the Erdős-Rényi model
with the same average degree. A set of fascinating conjectures were posed in De-
celle et al. [DKMZ11b], regarding these tasks in the case of ‘sparse’ models where
pin, pout = O(1/n) and the average degree is O(1) as the number of vertices
diverges.

It is typical to parametrize the symmetric SBM in terms of k, the average degree

d =
npin + (k− 1)npout

k
,

and a ‘signal-to-noise ratio’

λ ≜
npin − npout

kd
.

In this setup, it is believed that as we hold k and λ constant, then there is an
information-theoretic threshold dIT ≈ log k

kλ2 , in the sense that when d < dIT both
detection and recovery are impossible for any algorithm. Moreover, Decelle et
al. conjecture that efficient algorithms for both tasks exist only when the degree
is larger than a point known as the Kesten-Stigum threshold dKS = λ−2. Much of
this picture is now rigorous [MNS18, Mas14a, BLM15, ABH16]. Still, fundamental
questions remain unanswered. What evidence can we furnish that detection and
recovery are indeed intractible in the so-called ‘hard regime’ dIT < d < dKS? How
robust are these thresholds to adversarial noise or small deviations from the model?
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Zooming out, this discrepancy between information-theoretic and computa-
tional thresholds is conjectured to be quite universal among planted problems,
where we are to reconstruct or detect a structured, high-dimensional signal ob-
served through a noisy channel. The purpose behind our work is to begin develop-
ing a framework capable of providing evidence for average case computational
intractability in such settings. To illustrate this broader motivation, consider a
different average-case problem also conjectured to be computationally intractable:
refutation of random 3-SAT. A random instance of 3-SAT with n literals and, say
m = 1000n clauses is unsatisfiable with high probability. However, it is widely
conjectured that the problem of certifying that a given random 3-SAT instance is
unsatisfiable is computationally intractable (all the way up to n3/2 clauses) [Fei02a].
While proving intractability remains out of reach, the complexity theoretic litera-
ture now contains ample evidence in support of this conjecture. Most prominently,
exponential lower bounds are known for the problem in restricted computational
models such as linear and semidefinite programs [Gri01] and resolution based
proofs [BSW01]. Within the context of combinatorial optimization, the Sum-of-
Squares (SoS) SDPs yield a hierarchy of successively more powerful and complex
algorithms which capture and unify many other known approaches. A lower
bound against the SoS SDP hierarchy such as [Gri01] provides strong evidence that
this refutation problem is computationally intractable. This paper is a step towards
developing a similar framework to reason about the computational complexity
of detection and recovery in stochastic block models specifically, and planted
problems generally.

A second motivation is the issue of robustness of computational thresholds
under adversarial perturbations of the graph. Spectral algorithms based on non-
backtracking walk matrix [BLM15] achieve weak-detection as soon as d > dKS,
but are not robust in this sense. Conversely, robust algorithms for recovery are
known, but only when the edge-densities are significantly higher than Kesten-
Stigum [GV16, MMV16, CSV17, SVC16]. The positive result that gets closest to
robustly achieving the conjectured computational phase transition at dKS is the
work of Montanari and Sen [MS15] who observe that their SDP-based algorithm
for testing whether the input graph comes from the Erdős-Rényi distribution or a
Stochastic Block Model with k = 2 communities also works in presence of o(|E|)
edge outlier errors. On the negative side, Moitra et al. [Moi12] consider the problem
of weak recovery in a SBM with two communities and pin > pout in the presence
of monotone errors that add edges within communities and delete edges between
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them. Their main result is a statistical lower bound indicating the phase transition
for weak recovery changes in the presence of monotone errors. This still leaves
open the question of whether there exist algorithms that weakly recover right at
the threshold and are robust to o(|E|) perturbations in the graph.

2.2 Main Results

We define a new hierarchy of semidefinite programming relaxations for inference
problems that we refer to as the Local Statistics hierarchy, denoted LoSt(DG, Dx)

and indexed by parameters DG, Dx ∈ N. This family of SDPs is inspired by the
technique of pseudocalibration in proving lower bounds for sum-of-squares (SoS)
relaxations, as well as subsequent work of Hopkins and Steurer [HS17] extending
it to an SoS SDP based approach to inference problems. The LoSt hierarchy can be
defined for a broad range of inference problems involving a joint distribution µ on
an observation and hidden parameter.

As test cases, we apply our SDP relaxations to community detection in two
families of random graphs with planted community structure: the sparse Stochastic
Block Model (SBM) discussed above, and a degree-regular analogue that we term
the Degree Regular Block Model (DRBM). Our results will concern the problem of
detection, defined formally as follows.

Definition 2.2.1 (Detection and Robustness). Let Pn and Nn denote two sequences
of distributions on graphs. We say that an algorithm A : Graphs → {P, N} solves
the detection problem, or can distinguish Pn and Nn. if

Pn
[
A(G) = P

]
= 1− on(1) and Nn

[
A(G) = N

]
= 1− on(1).

Fix ϵ > 0, and write G ≈ϵ G̃ to mean that two graphs on the same vertex set V
differ at at most ϵ|V| edges. If A solves the detection problem, we say that it does
so ϵ-robustly if

Pn
[
A(G) = A(G̃), ∀G ≈ϵ G̃

]
= 1− on(1) and Nn

[
A(G) = A(G̃), ∀G ≈ϵ G̃

]
= 1− on(1).

The Stochastic Block Model Adapting notation from [BLM15], we will parame-
terize the SBM by average degree d, number of communities k, group size distri-
bution π ∈ Rk, and symmetric, nonnegative edge probability matrix M ∈ Rk×k.
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To sample a graph G = (V(G), E(G)), first choose the label σ(u) of each vertex
u ∈ V(G) independently according to π, and then include each potential edge
(u, v) with probability Mσ(u),σ(v) · d/n. We adopt the natural requirement that the
average degree of a vertex conditional on any group label is d, which is equivalent
to the normalization condition Mπ = e, where the latter is the all-ones vector in
Rk. We will call the model symmetric if

Mi,j =

{
1 + (k− 1)λ i = j

1− λ i ̸= j.
(2.1)

One can check that this recovers the setup in the previous section.
The general SBM, like this symmetric subcase, is conjectured to undergo a series

of phase transitions as (k, M, π) are held fixed and the average degree is varied.
These include an information-theoretic threshold and, most salient to this paper, a
computational ‘Kesten-Stigum’ transition [DKMZ11a]. To describe the latter, it is
necessary to introduce one further piece of notation, which will be of repeated use
to us in the course of the paper. Write T ≜ MDiagπ, noting that T is the transition
matrix for a reversible Markov chain with stationary distribution π. For any
vertex in group i, the label of a uniformly random neighbor is roughly distributed
according to the ith row of T, and, more generally, the vertex labels encountered
by a random non-backtracking random walk are approximately governed by the
Markov process that T defines. As this process is stationary, the spectrum of
T is real, and we will write its eigenvalues as 1 = λ1 ⩾ |λ2| ⩾ · · · ⩾ |λk|. The
second eigenvalue λ2 is a generalization of the signal-to-noise ratio λ from equation
(2.1); in fact one can verify that in the symmetric SBM, λ2 = · · · = λk = λ. The
Kesten-Stigum threshold is thus defined as dKS ≜ λ−2

2 .
Our main theorem regarding the SBM is that, when d > dKS, the LoSt(2, D)

SDP can robustly solve the detection problem for some D = O(1) (albeit tending
to infinity as d→ dKS).

Theorem 2.2.2. Let Nn = G(n, d/n), and Pn denote the n-vertex SBM with parameters
(d, k, M, π). If d > dKS, then there exist δ > 0, D = O(1), and ρ > 0 (all dependent on
d) for which the LoSt(2, D) SDP with error tolerance δ can ρ-robustly solve the detection
problem.

We additionally show that a simplified version of the LoSt(2, D) SDP (Defini-
tion 2.6.2) which is powerful enough to solve the detection problem above the KS
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threshold, fails to do so below it at every constant level. This is the content of the
forthcoming Theorem 2.6.3.

The Degree Regular Block Model We will parametrize the DRBM identically
to the SBM, by a quadruple (d, k, M, π); this time we of course require that d is an
integer. To sample a graph G = (V(G), E(G)), first choose a uniformly random “π-
balanced” partition V(G) =

⊔
i∈[k] Vi(G), by which we mean that |Vi(G)| = π(i)n

for every i. Then, choose a uniformly random d-regular graph, conditioned on
there being exactly π(i)π(j)M(i, j) · dn edges between each pair of distinct groups
i ̸= j, and π(i)2M(i, j) · dn/2 edges internal to each group i. For simplicity, we will
assume that the parameters are such that these group sizes and edge counts are
integers. As with the SBM, we will call the model symmetric if the entries of M are
constant on the diagonal and off-diagonal respectively. As a warm-up for the main
technical arguments of the paper, we will study in Section 2.4 a simplified version
of the Local Statistics SDP that can solve the detection problem on the symmetric
DRBM.

Remark 2.2.3. The DRBM as we have defined it differs from the Regular Stochas-
tic Block Model of [BDG+16], in which each vertex has a prescribed number of
neighbors in every community. Although superficially similar, the behavior of this
‘equitable’ model (as it is known in the physics literature [NM14]) is quite different
from ours. For instance, [BDG+16] show that whenever detection is possible in the
two community case, one can exactly recover the planted labels. This is not true in
our setting.

It is widely believed that the threshold behavior of the general DRBM is analo-
gous to that of the SBM, including an information-theoretic threshold, and Kesten-
Stigum threshold at dKS ≜ λ−2

2 + 1. However, most formal treatment in the
literature has been limited to random d-regular graphs conditional on having a
planted k-coloring, a case not fully captured by our model. Characterization of the
information-theoretic threshold, even in simple cases, remains largely folklore.

Our main result on the DRBM is analogous to Theorem 2.2.2 on the SBM.

Theorem 2.2.4. Let Nn denote the uniform distribution on d-regular graphs with n-
vertices, and Pn the DRBM with parameters (d, k, M, π). If d > dKS, then there exists
a constant m ∈ N, δ > 0, and and ρ > 0 (all dependent on d) so that LoSt(2, m) with
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error tolerance δ can ρ-robustly solve the detection problem. Conversely, if d < dKS, then
every constant level, no matter the error tolerance, fails to do so.

Along the way we will inadvertently prove that standard spectral detection
using the adjacency matrix succeeds above dKS, but cannot have the same ro-
bustness guarantee. It is a now-classic result of Friedman that, with probability
1− on(1), the spectrum of a uniformly random d-regular graph is within on(1) of
(−2
√

d− 1, 2
√

d− 1) ∪ {d}. Conversely, we show:

Corollary 2.2.5. Let G be drawn from the DRBM with parameters (d, k, M, π) satisfying
d > dKS + ϵ. There exists some η = η(ϵ) such that, for each eigenvalue λ of M satisfying
|λ| > 1/

√
d− 1 + ϵ, the adjacency matrix AG is guaranteed one eigenvalue µ satisfying

|µ| > 2
√

d− 1 + η.

Future Work Regrettably, we do not solve the problem of recovery above Kesten-
Stigum in either model. However, we will in Appendix 2.11 reduce recovery in
the DRBM to the following conjecture regarding the spectrum of AG for G drawn
from the planted model.

Conjecture 2.2.6. Let P(d,k,M,π) be any DRBM with |λ1|, ..., |λℓ| > (d− 1)−1/2. Then,
for any η, with high probability, AG has only ℓ eigenvalues with modulus larger than
2
√

d− 1 + η.

Related Work. Semidefinite programming approaches have been most stud-
ied in the dense, irregular case, where exact recovery is possible (for instance
[ABH16, AS15]), and it has been shown that an SDP relaxation can achieve the
information-theoretically optimal threshold [HWX16]. However, in the sparse
regime we consider, the power of SDP relaxations for weak recovery remains
unclear. Guedon and Vershynin [GV16] show upper bounds on the estimation
error of a standard SDP relaxation in the sparse, two-community case of the SBM,
but only when the degree is roughly 104 times the information theoretic thresh-
old. More recently, in a tour-de-force, Montanari and Sen [MS15] showed that for
two communities, the SDP of Guedon and Vershynin achieves the information
theoretically optimal threshold for large but constant degree, in the sense that the
performance approaches the threshold if we send the number of vertices, and then
the degree, to infinity. Semi-random graph models have been intensively studied in
[BS95, FK00, FK01, CO04, KV06, CO07, MMV12, CJSX14, GV16] and we refer the
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reader to [MMV16] for a more detailed survey. In the logarithmic-degree regime,
robust algorithms for community detection are developed in [CL+15, KK10, AS12].
Far less is known in the case of regular graphs.

2.3 Technical Overview

Notation. We will use bold face font for random objects sampled from these
distributions. Because we care only about the case when the number of vertices is
very large, we will use with high probability (w.h.p) to describe any sequence of events
with probability 1− on(1) in N or P as n→ ∞. We will write [n] = {1, ..., n}, and
in general use the letters u, v, w to refer to elements of [n] and i, j for elements of [k].
The identity matrix will be denoted by 1, and we will write XT for the transpose of
a matrix X, ⟨X, Y⟩ = TrXTY for the standard matrix inner product, and ∥X∥F for
the associated Frobenius norm. Positive semidefiniteness will be indicated with
the symbol ⪰. The standard basis vectors will be denoted e1, e2, ..., the all-ones
vector written as e, and the all-ones matrix as J = eeT. Finally, let diag : Rn×n → R

be the function extracting the diagonal of a matrix, and Diag : Rn → Rn×n be the
one which populates the nonzero elements of a diagonal matrix with the vector it
is given as input.

2.3.1 Optimization vs Inference

While it was suspected that a semidefinite programming relaxation could be used
towards community detection in sparse stochastic block models, many earlier at-
tempts at it [GV16, MS15] failed to detect communities right up to the KS threshold
at a fixed degree. These works studied the Goemans-Williamson SDP relaxation
for MaxCut applied to the problem of detecting two communities (k = 2). The idea
being that if we consider a two community SBM with pout > pin, then the partition
induced by the communities should have an unusually large number ( dn

2 ·
pout

pout+pin
)

of crossing edges. Hence an SDP relaxation of MaxCut could be harnessed towards
detecting and possibly recovering the communities. Indeed, in this special case,
the maximum bisection in the graph is a Maximum Likelihood Estimate (MLE) for
the communities x given the graph G, i.e., x = arg maxx p(x|G).

This approach of casting inference as optimization has its limitations. In partic-
ular, as one approaches the KS threshold, the number of crossing edges between
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the two communities, namely dn
2 ·

pout
pout+pin

, is lower than the value of MaxCut in a
random Erdos-Renyi graph! In other words, if we run an exponential-time algo-
rithm that finds the maximum cut via a brute-force enumeration, then it will find a
better MaxCut in a random Erdos-Renyi graph than the true communities in the
planted model. It is therefore unclear whether an SDP relaxation of MaxCut can
solve the problem.

In hindsight, the number of crossing edges is but one statistic associated with
the partition and there is no canonical reason why optimizing this statistic would
be the optimal way to distinguish the two models. For example, in the same setting
one could minimize the number of paths of length two that go between the two
sides of the partition, or maximize the number of paths of length three that cross
the partition and so on. At a more basic level, if we are interested in estimating the
moments of the distribution x|G, it is not clear that we should cast this problem as
optimization.

The local statistics SDP hierarchy that we propose is a "feasibility SDP" that
looks for candidate low-degree moments for the distribution x|G. The constraints
of the SDP ensure that the value of local statistics such as number of crossing edges
is roughly the same as we would expect in a graph drawn from the communities.

2.3.2 Detection, Refutation, and Sum-of-Squares

We will begin the discussion of the Local Statistics algorithm by briefly recalling
Sum-of-Squares programming. Say we have a constraint satisfaction problem
presented as a system of polynomial equations in variables x = (x1, ..., xn) that we
are to simultaneously satisfy. In other words, we are given a set

S = {x ∈ Rn : f1(x), ..., fm(x) = 0}

and we need to decide if it is non-empty. Whenever the problem is satisfiable, any
probability distribution supported on S gives rise to an operator E : R[x] → R

mapping a polynomial x to its expectation. Trivially, E has the properties:

Normalized E 1 = 1 (2.2)

Satisfies of S E fi(x) · p(x) = 0 ∀i ∈ [m], ∀p ∈ R[x] (2.3)

Positive E p(x)2 ⩾ 0 ∀p ∈ R[x] (2.4)

We will extend these definitions to any operator mapping some subset of R[x]→ R.
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Refuting the constraint satisfaction problem, e.g. proving that S = ∅, is
equivalent to showing that no operator obeying (2.2)-(2.4) can exist. The key
insight of SoS is that often one can do this by focusing only on polynomials of
some bounded degree. Writing R[x]⩽D for the polynomials of degree at most D,
we call an operator Ẽ : R[x]⩽D → R a degree-D pseudoexpectation if it is normalized,
positive, and satisfies S for every polynomial in its domain. It is well-known that
one can search for a degree D pseudoexpectation with a semidefinite program of
size O(nD), and if this smaller, relaxed problem is infeasible, we’ve shown that S
is empty. This is the degree-D Sum-of-Squares relaxation of our CSP.

2.3.3 The Local Statistics Hierarchy

Let Pn denote a sequence of distributions on graphs with a planted community
structure, andNn a corresponding ‘null’ distribution with no such prescribed struc-
ture. For us,Pn will always denote the DRBM or SBM, andNn the Erdős-Rényi model
with average degree d, or the uniform distribution on d-regular graphs. Our goal
is to devise an algorithm that can discern, with high probability, which of these
two distributions a graph was drawn from. In this setup, the details of the null
and prior distribution are known to us; the main idea of this work is that it is only
natural to grant an SDP hypothesis testing algorithm access to this information as
well. Our strategy will be do devise an SDP that is satisfiable with high probability
when a graph is drawn from Pn, and unsatisfiable with high probability when it is
drawn from Nn.

The Local Statistics SDP will be assembled from components of the Sum-of-
Squares algorithm, and as such we will need to carefully articulate the null and
planted distribution, and their statistical properties, in the language of polynomials.
Let us write x = {xu,i} for a collection of variables indexed by vertices u ∈ [n]
and group labels i ∈ [k], and G = {Gu,v} for a collection indexed by two-element
subsets {u, v} ⊂ [n]. We will regard a random graph from the null model as
a collection of random variables G = {Gu,v} indexed in the same way, where
Gu,v is the Boolean indicator for the edge (u, v). Similarly, the planted model is a
joint distribution over pairs (x, G), where G is a graph, and xi,u is the indicator
that vertex u has label i. Thus for each polynomial p ∈ R[G, x], we can compute
the statistic E p(G, x). We will see below that one can easily construct such a
polynomial that counts, for instance, the number of triangles in a graph, or the
number of edges between vertices in the same group.
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The random variables G and x take values in the zero locus of the following set
of polynomials in R[G, x]:

G2
u,v = Gu,v ∀u, v ∈ [n] (2.5)

x2
u,i = xu,i ∀u ∈ [n], i ∈ [k] (2.6)

xu,1 + · · ·+ xu,k = 1 ∀u ∈ [n]. (2.7)

For brevity, we will throughout the paper denote by Bk the set of polynomials
constraints in the x variables appearing in (2.6) and (2.7). Moreover, in our case
both the null and planted models have a natural symmetry: they are invariant
under permutations of the vertices. To a first approximation, the (DG, Dx) level of
the Local Statistics SDP, on input G0 ∈ {0, 1}(n

2), will endeavor to find a degree-Dx
pseudoexpectation Ẽ : R[x]⩽Dx → R that (i) satisfies Bk, and (ii) obeys moment
constraints of the form

Ẽ p(G0, x) ≈ E
(G,x)∼Pn

p(G, x)

for symmetric polynomials p ∈ R[G, x] with degree DG in the G variables. We ask
that these moment constraints are only approximately satisfied to ensure that, when
(G, x) is drawn from the planted model, the pseudoexpectation Ẽ p(G, x) ≜ p(G, x)
is with high probability a feasible solution. This formulation is inspired by the
technique of pseudocalibration from the SOS lower bounds literature [BHK+19,
HS17, HKP+17].

Each polynomial p(G, x), when evaluated at a point in the zero locus described
above, counts occurrences of a certain combinatorial structure in G, in which some
of the vertices are restricted to have particular labels. For instance,

∑
u

∏
u ̸=v

(1− Gu,v) and ∑
u ̸=v

Gu,vxu,ixv,j

count the number of isolated vertices, and the number of edges between vertices
in groups i and j, respectively. Note that since Ẽ is required to satisfy the Boolean
constraints on the G variables and the Bk constraints on the x variables, we are free
to consider only polynomials that have been reduced modulo these constraints: for
simplicity we will assume that they are multilinear in G and x, and furthermore
that monomial containts xu,ixu,j for i ̸= j.
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Remark 2.3.1. Although we have stated it in the specific context of the DRBM, the
local statistics framework extends readily to any planted problem involving a joint
distribution µ on pairs (G, x) of a hidden structure and observed signal, if we take
appropriate account of the natural symmetries in µ. For a broad range of such
problems, including spiked random matrix models [AKJ18, PWBM16], compressed
sensing [ZK16, Ran11, KGR11] and generalized linear models [BKM+19] (to name
only a few) there are conjectured computational thresholds where the underlying
problem goes from being efficiently solvable to computationally intractable, and
the algorithms which are proven or conjectured attain this threshold are often not
robust. We hope that the local statistics hierarchy can be harnessed to design robust
algorithms up to these computational thresholds, as well as to provide evidence
for computational intractibility in the conjectured hard regime. The relation (if
any) between the local statistics SDP hierarchy and iterative methods such as belief
propagation or AMP is also worth investigating.

2.3.4 Analyzing the Local Statistics SDP

By design, the Local Statistics SDP is always feasible when given as input a graph
drawn from the planted model. To show that LoSt(2, m) can distinguish between
the null and planted models, then, it suffices to show that it is with high probability
infeasible when passed a graph from the null model.

For a matrix C ∈ Rn×n, let C(t) denote the tth “non-backtracking power” of the
matrix:

C(t)
i,j

def
= ∑

n.b. paths p:i→j
∏

(u,v)∈p
Cu,v

where the sum is over non-backtracking paths of length t from i to j. The local
statistic that serves as a dual certificate to show infeasibility of LoSt(2, m) in the
null model is given by,

p(m)(G, x) = ⟨ϕ(x), (A− (d/n)J)(m)ϕ(x)⟩

for an appropriately chosen ϕ : [k]→ R. In particular, we will see in the sections
below that, if LoSt(2, m) SDP is feasible on input G, there is some matrix X ⪰ 0
with unit trace and bounded entries on its diagonal for which

|⟨X, (A− (d/n)J)(m)⟩| ⩾ ω(dm/2)n.
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The use of this centered non-backtracking walk matrix A(m)
G = (A− (d/n)J)(m)

was inspired by the work of Fan and Montanari [FM17], who use the centered non-
backtracking matrix for m = 2. Thus, to show infeasibility it would be sufficient

to bound the spectral norm of the matrix A(m)
G = (A − (d/n)J)(m) by dm/2 for

sufficiently large constant m.
In the d-regular case, the non-backtracking powers of the adjacency matrix

A can be expressed as univariate polynomials in the matrix A. Thus spectral
norm bounds on the adjacency matrix of a random d-regular graph [Fri03a] can be
translated into spectral norm bounds that we require. This is roughly the approach
taken in the d-regular case.

Unfortunately, things are not so simple in the irregular case: the analogous
bound fails for constant m due to the presence of high-degree vertices in G. The

main challenge in studying A(m)
G , when G is a sparse Erdős-Rényi random graph,

is the presence of of certain localized combinatorial structures which inflate the
number of non-backtracking walks: high-degree vertices and small subgraphs
with many cycles. Instead, we show the spectral norm bound after deleting these
structures from the random graph G and that the deletion does not affect the global
statistic significantly.

Let us make this precise. In any graph G, write Bt(v, G) for the set of vertices
with distance at most t from v; call v (t, ε)-heavy if |Bt(v, G)| ⩾ (1 + ϵ)tdt. We will
call a vertex v (t, r, ε)-vexing if either it participates in a cycle of length less than r
or it is (t, ε)-heavy.

Fix r = Θ(
log n

(log logn)2 ). Let G be an Erdős-Renyi G(n, d/n) graph, let S its the
set of (t, r, ε)-vexing vertices, and let Gt,r,ε be the (t, r, ε)-truncation obtained by
deleting all the vertices in S from G. Let A be the adjacency matrix of Gt,ε,r. Define(

A− d
n

1[n]\S1⊤[n]\S

)(ℓ)

[u, v] = ∑
W length-ℓ nonbacktracking walk

from u to v in complete graph K[n]\S

∏
ij∈W

(
A− d

n
11⊤

)
[i, j]

We prove the following spectral norm bound via the trace method:

Theorem 2.3.2. With probability 1− n−100,∥∥∥∥∥
(

A− d
n

1[n]\S1T[n]\S

)(ℓ)
∥∥∥∥∥ ⩽ ((1 + ε)4

√
d
)ℓ

.
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2.3.5 Proving the spectral norm bound

The proof of the above spectral norm bound is the most technical argument of the
paper. As expected, the proof of the spectral norm bound via trace method reduces
to the problem of computing the expected number of copies of combinatorial
structures that we call linkages in the underlying graph G .

Definition 2.3.3 (Linkages). A closed walk W of length kℓ is a (k× ℓ)-linkage if it can
be split into k segments each of length-ℓ such that the walk W is nonbacktracking
on each segment. Each ℓ-step non-backtracking segment is a “link”.

We will bound the number of (k× ℓ)-linkages using an encoding argument.
It is instructive to consider the encoding argument in the case when the graph

G is a d + 1-regular tree and the walk W starts at the root. Let us encode a (k× ℓ)-
linkage starting at the root, one link at a time. Each link which is a ℓ-step n.b.walk
in a tree consists of t-steps towards the root followed by ℓ− t steps away from the
root for some t ∈ {0, . . . , r}. We refer to the steps towards the root as "up-steps"
and steps away from the root as "down-steps". Encode each link by specifying:

• The number of up-steps t using log ℓ bits.

• For each down-step, the index of the child as an integer from {1, . . . , d}.

Since the walk begins and ends at the root, the number of up-steps is equal to
the number of down-steps. Therefore the number of down-steps is precisely kℓ/2.
Hence the above encoding uses precisely kℓ/2 · (log d) + k log ℓ bits. As ℓ → ∞,
this is approximately 1

2 log d bits on average per step. Therefore the number of
k× ℓ-linkages starting at the root in a d-regular tree is at most ((1 + ϵ)

√
d)kℓ for

sufficiently large constant ℓ.
In an Erdos-Renyi random graph G, there will be cycles of length < kℓ thus

breaking the above encoding argument. In other words, if we consider the graph
G(W) formed by the edges in the (k× ℓ)-linkage W, then G(W) can include cycles
once we set k = Ω(log n). However, since we deleted all (t, r, ϵ)-vexing vertices
G(W) has no cycles of length < Θ(

log n
(log log n)2 .

The starting point of our encoding argument is a decomposition of G(W) into a
spanning forest F and a few additional edges E(W) \ F, such that the non-forest
edges E(W) \ F are in total traversed o(kℓ) times during the walk. We prove the
existence of such a decomposition using a linear programming based argument.
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Roughly speaking, this decomposition lets us encode the walk W by breaking it
up into closed walks in trees, with the decomposition only introducing a negligible
overhead in the encoding. Therefore, one recovers a bound analogous to the bound
in a d-regular tree, which is approximately 1

2 log d bits per step in the walk.
The remainder of the paper will be laid out as follows. Before embarking on our

investigation of the Local Statistics SDP in the DRBM and SBM in full generality,
we will in Section 2.4 study a simplified SDP that can robustly solve the detection
problem for the symmetric Degree Regular Block Model. Having done so, we will
move on in Section 2.5 to the case of the general DRBM, proving Theorem 2.2.4 by
way of a reduction to some key results from this simpler, symmetric case. Finally,
in Section 2.6 we prove Theorem 2.2.2 regarding the SBM.

2.4 A Simplified SDP for the Symmetric DRBM

Many key ideas from the remainder of the paper are captured by the symmetric
case of the Degree Regular Block Model, in which each group has size exactly n/k,
and the edge probability matrix is

M = kλ1+ (1− λ)J.

Since the communities have equal sizes, we have T = k−1M, and the Kesten-
Stigum threshold is dKS ≜ λ−2 + 1. Throughout this section, let P denote this
symmetric case of the DRBM, and N the uniform distribution on d-regular graphs.
The purpose of this section is to show, in this symmetric case, that a simplified
version of the Local Statistics SDP can robustly solve the detection problem.

To introduce this simpler SDP, let G = (V, E) be any graph on n vertices,
and write A(s)

G for the n× n matrix that counts non-backtracking random walks
of length s; we will develop some further theory regarding these matrices in
Section 4.1 below. Now, let (G, y) ∼ P be drawn from the symmetric DRBM,
and—thinking of y as an n× k matrix—write

Y ≜
k

k− 1

(
yy∗ − 1

k
J

)
⪰ 0. (2.8)

This is a rank-(k− 1) positive semidefinite matrix that is n/k times the projector
onto the subspace spanned by the indicator vectors for the k groups and orthogonal
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to the all-ones vector. The inner product ⟨Y , A(s)
G ⟩ counts non-backtracking walks

weighted according to the labels of their initial and terminal vertices.

Lemma 2.4.1. Let (G, Y) ∼ P . Then for every s ⩾ 1,

E⟨Y , A(s)
G ⟩ = λsd(d− 1)s−1n + o(n)

and with high probability these quantities enjoy concentration of o(n).

Definition 2.4.2. Fix a small number δ > 0. The level m symmetric path statistics SDP
with error tolerance δ > 0, on input G0, is the feasibility problem

Find Y ⪰ 0 s.t. Yu,u = 1 ∀u ∈ [n]
⟨Y, J⟩ = 0∣∣∣⟨Y, A(s)

G ⟩ − λsd(d− 1)s−1n
∣∣∣ ⩽ δn ∀s ∈ [m] (2.9)

We will refer to this as the SPS(m, λ) SDP. To handle adversarial edge corruption,
it is necessary to include the following contingency if the input G0 is not d-regular:
before running the above SDP, delete all edges incident to vertices with degree
greater than d, and then greedily add edges between vertices with degree less than
d to obtain a d-regular graph.

Theorem 2.4.3. If (d− 1)λ2 > 1, then there exists constant m ∈N, δ > 0, and ρ > 0
so that SPS(m, λ) solves the detection problem ρ-robustly. Conversely if (d− 1)λ2 then
no such m, δ, ρ exist.

2.4.1 Non-backtracking Walks and Orthogonal Polynomials

The central tool in our proofs will be non-backtracking walks—these are walks
which on every step are forbidden from visiting the vertex they were at two steps
previously. We will collect here some known results on these walks specific to the
case of d-regular graphs. Write A(s)

G for the n× n matrix whose (v, w) entry counts
the number of length-s non-backtracking walks between verties v and w in a graph
G. It is standard that the A(s)

G satisfy a two-term linear recurrence,

A(0)
G = 1

A(1)
G = AG
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A(2)
G = A2

G − d1

A(s)
G = AA(s−1)

G − (d− 1)A(s−2)
G s > 2,

since to enumerate non-backtracking walks of length s, we can first extend each
such walk of length s− 1 in every possible way, and then remove those extensions
that backtrack.

On d-regular graphs, the above recurrence immediately shows that A(s)
G =

qs(AG) for a family of monic, scalar non-backtracking polynomials {qs}s⩾0, where
deg qs = s. To avoid a collision of symbols, we will use z as the variable in
all univariate polynomials appearing in the paper. It is well known that these
polynomials are an orthogonal polynomial sequence with respect to the Kesten-
McKay measure

dµKM(z) =
1

2π

d√
d− 1

√
4(d− 1)− z2

d2 − z2 dz 1
[
|z| < 2

√
d− 1

]
,

with its associated inner product

⟨ f , g⟩KM ≜
∫

f (z)g(z)dµKM(z)

on the vector space of square integrable functions on (−2
√

d− 1, 2
√

d− 1). One
quickly verifies that

∥qs∥2
KM ≜

∫
qs(z)2 dµKM

= qs(d) =

{
1 s = 0

d(d− 1)s−1 s ⩾ 1
=

1
n
(# length-s n.b. walks on G)

in the normalization we have chosen [ABLS07]. Thus any function f in this vector
space can be expanded as

f = ∑
s⩾0

⟨ f , qs⟩KM

∥qs∥2
KM

qs.

We will also need the following lemma of Alon et al. [ABLS07, Lemma 2.3]
bounding the size of the polynomials qs:

Lemma 2.4.4. For any ε > 0, there exists an η > 0 such that for z ∈ [−2
√

d− 1−
η, 2
√

d− 1 + η],
|qs(z)| ⩽ 2(s + 1)∥qs∥KM + ε.
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The behavior of the non-backtracking polynomials with respect to the inner
product ⟨·, ·⟩KM idealizes that of the A(s)

G = qs(AG) under the trace inner product.
In particular, if s + t < r(G)

⟨A(s)
G , A(t)

G ⟩ = n⟨qs, qt⟩KM =

{
n(# length-s n.b. walks on G) s = t

0 s ̸= t
.

This is because the diagonal entries of A(s)
G A(t)

G count pairs of non-backtracking
walks with length s and t respectively: if s ̸= t any such pair induces a cycle of
length at most s + t, leaving only the degenerate case when s = t and the two
walks are identical. Above the girth, if we can control the number of cycles, we can
quantify how far the A(s)

G are from orthogonal in the trace inner product.
Luckily for us, sparse random graphs have very few cycles. To make this

precise, call a vertex bad if it is at most L steps from a cycle of length at most C.
These are exactly the vertices for which the diagonal entries of A(s)

G A(t)
G are nonzero,

when s + t < C + L.

Lemma 2.4.5. For any constant C and L, with high probability any graph G ∼ P has at
most O(log n) bad vertices.

We will defer the proof of this lemma to the appendix, but one can immediately
observe the consequence that, with high probability,

⟨A(s)
G , A(t)

G ⟩ = O(log n)

for any s, t = O(1).

2.4.2 Distinguishing

Let us now prove the first assertion in Theorem 2.4.3, namely that if (d− 1)λ2 > 1,
then the SPS(m, λ) SDP, for some δ > 0 sufficiently large m, can distinguish the
null and planted models. From Lemma 2.4.1, if (G, Y) ∼ P , then the matrix Y
from equation (2.8) is with high probability a feasible solution to SDP (2.9). Thus,
it remains only to show that with high probability over G ∼ N , some round of the
SPS(m, λ) SDP is infeasible. Our strategy will be to first reduce this infeasibility to
a univariate polynomial design problem, and then solve this with the machinery
developed in the prior subsection.
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Proposition 2.4.6. If there exists a degree-m polynomial f ∈ R[z] which is (i) strictly
nonnegative on the interval [−2

√
d− 1, 2

√
d− 1] and (ii) satisfies

⟨ f ,
m

∑
s=0

λsqs⟩KM < 0,

then with high probability the SPS(m, λ) SDP is infeasible for G ∼ N , at any error
tolerance

δ <
|⟨ f , ∑m

s=0 λsqs⟩km|√
m∥ f ∥KM

.

Proof. First note that, for any such polynomial f , our discussion in the previous
section implies

f =
m

∑
s=0

⟨ f , qs⟩KM

∥qs∥2
KM

qm. (2.10)

Moreover, since f is strictly positive on [−2
√

d− 1, 2
√

d− 1], it is nonnegative on
some fattening I of this interval.

Now, let G be a uniformly random d-regular graph. By Friedman’s Theorem
[Fri08], the spectrum of AG consists of a ‘trivial’ eigenvalue at d, plus n− 1 eigen-
values whose magnitudes—with high probability—are at most 2

√
d + 1 + on(1).

In particular, these remaining eigenvalues with high probability lie inside the
fattening of [−2

√
d− 1, 2

√
d− 1] on which f is nonnegative. We can project

away this trivial eigenvalue by passing to the centered adacency matrix AG =

(1− J/n)AG(1− J/n) = AG − dJ/n, and observe that 0 ⪯ f (AG).
Assume, seeking contradiction, that Y is a feasible solution to the SPS(m) SDP.

We can compute that

0 ⩽ ⟨Y , f (AG)⟩

= ⟨Y ,
m

∑
s=0

⟨ f , qs⟩KM

∥qs∥2
KM

qm(AG)⟩

= ⟨Y ,
m

∑
s=0

⟨ f , qs⟩KM

∥qs∥2
KM

(qm(AG)− qs(d)J/n)⟩

= ⟨Y ,
m

∑
s=0

⟨ f , qs⟩KM

∥qs∥2
KM

A(s)
G ⟩
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⩽
m

∑
s=0

⟨ f , qs⟩KM

∥qs∥2
KM

· λs∥qs∥2
KMn + δ

m

∑
s=0

|⟨ f , qs⟩KM|
∥qs∥2

KM

⩽ ⟨ f ,
m

∑
s=0

λsqs⟩+ δ
√

m∥ f ∥KM < 0

The following proposition implies a proof of the first part of Theorem 2.4.3.

Proposition 2.4.7. If λ2(d− 1) > 1, there exists a polynomial satisfying the hypotheses
of Proposition 2.4.6.

Proof. Call m′ the largest even number less than or equal to m, let ε > 0 be a very
small number, and take

f (z) = −qm′(z) + 2m′∥qm′∥KM + ε,

which by Lemma 2.4.4 has the desired positivity property. This choice of f satisfies

⟨ f ,
m

∑
s=0

λsqs⟩ = −∥qm′∥2
KM|λ|m

′
+ 2m′∥qm′∥KM + ε,

which is negative when

λ2 >

(
2m′

∥qm′∥KM
+

ε

∥qm′∥2
KM

) 2
m′

=

(
2m′√

d(d− 1)m′−1
+

ε

d(d− 1)m−1

) 2
m′

;

this tends to 1
d−1 as m→ ∞.

2.4.3 Lower Bound

We now turn to the complementary bound: when (d − 1)λ2 < 1, no constant
level of the symmetric path statistics SDP can distinguish the null and planted
distributions. It suffices to show that, for d in this regime, SPS(m, λ) is feasible for
every constant m. Once again, we will reduce to and solve a univariate polynomial
design problem.
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Proposition 2.4.8. If there exists a polynomial g ∈ R[z] that is (i) strictly positive on
(−2
√

d− 1, 2
√

d− 1), and (ii) satisfies

⟨g, qs⟩KM = λs∥qs∥2
KM For all s = 0, ..., m,

then the SPS(m, λ) SDP at any constant error tolerance δ > 0 is with high probability
feasible for a uniformly random d-regular graph.

Proof. Letting G be the random regular graph in question, and fixing arbitrary
δ > 0, we need to produce Y ⪰ 0 with ones on the diagonal, zero inner product
with the matrix J, and satisfying∣∣∣⟨Y, A(s)

G ⟩ − λs∥qs∥2
KMn

∣∣∣ ⩽ δn.

Our strategy will be to modify the matrix g(AG) = g(AG)− g(d)J/n.
First, note that by expanding g in the non-backtracking basis and invoking

Lemma 2.4.5, for any 0 ⩽ s ⩽ m we have

⟨g(AG), A(s)
G ⟩ = ⟨g(AG), A(s)

G ⟩+ g(d)∥qs∥2
KM = λs∥qs∥2

KM · n + O(log n),

since g(d)∥qs∥2
KM is a constant. Moreover, as g is strictly positive between−2

√
d− 1

and 2
√

d− 1 it is by continuity nonnegative on any constant size fattening of this
interval, and by Friedman’s theorem the spectrum of AG other than the eigenvalue
at d is contained w.h.p. in such a set. Thus g(AG) is positive semidefinite, and as a
polynomial in the centered adjacency matrix, is orthogonal to the all-ones matrix.

However, the diagonal of g(AG) may not be equal to one, for two different
reasons. The diagonal entries of g(AG) = g(AG) + g(d)J/n different from one are
exactly those corresponding to vertices within deg g steps of a constant length cycle;
from Lemma 2.4.5 we know that there are at most O(log n) of these bad vertices
(keeping the terminology from the aforementioned Lemma). However, when
we subtract g(d)J/n, even the Ω(n− log n) diagonal entries equal to one—those
corresponding to good vertices—are shifted. Let us therefore define

Ỹ =
1

1− g(d)/n
g(AG),

which restores the diagonal entries of the good vertices.
Now, Ỹ is PSD, and is accordingly the Gram matrix of some vectors α1, ..., αn ∈

Rn. The scale factor we have applied ensures that for every good vertex u, ∥αu∥ = 1,
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and orthogonality to the all-ones matrix—which is preserved by this constant
scaling—is equivalent to ∑u αu = 0.

The remaining diagonal elements are at worst some constant C dependent on d
and g, since the diagonal entries of each A(s)

G are all O(1). Thus, writing Γ for the
set of good vertices, we know∥∥∥∥∥∑

u∈Γ
αu

∥∥∥∥∥ =

∥∥∥∥∥∑
u/∈Γ

αu

∥∥∥∥∥ ⩽ C log n

It is clear that by removing at most C log n vertices from Γ to create a new set Γ′ we
can choose a collection of unit vectors βu for each u ∈ U′ so that

∑
u/∈Γ′

βu = ∑
u∈Γ′

αu.

Our final matrix Y will be the Gram matrix of these new β and remaining α vectors.
We must finally check that the affine constraints against the A(s)

G matrices are still
approximately satisfied. However, even starting from a bad vertex, there are at
most a constant number of vertices within s steps of it, and at most a constant
number of non-backtracking walks to any such vertex. Thus∣∣∣⟨Y, A(s)

G ⟩ − ⟨Ỹ, A(s)
G ⟩
∣∣∣

=

∣∣∣∣∣2 ∑
u/∈Γ′,v∈Γ′

(A(s)
G )u,vαT

u (αv − βv) + ∑
u,v/∈Γ′

(A(s)
G )u,u (∥αu∥ − ∥βu∥)

∣∣∣∣∣
= O(log n)

where we have used that maxu ∥αu∥ = O(1) and broken up both summations by
first enumerating the O(log n) vertices in U′ and then the at most O(1) vertices in
its depth s neighborhood. Thus, for our fixed δ > 0, we have∣∣∣⟨Ỹ, A(s)

G ⟩ − λs∥qs∥2
KM

∣∣∣ = O(log n) ⩽ δn

for n sufficiently large.

The second part of Theorem 2.4.3 ensues from the following proposition.

Proposition 2.4.9. Whenever λ2(d− 1) < 1, there exists a polynomial satisfying the
conditions of Proposition 2.4.8.
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Proof. Such a polynomial y is exactly of the form

g =
m

∑
s=0

λsqs + terms with larger qs’s.

We will use the extremely simple construction of letting the coefficients on the terms
qm+1, qm+1, · · · also be powers of λ. The idea here is that, whenever λ2(d− 1) < 1,
the series ∑s⩾0 λsqs converges to a positive function on (−2

√
d− 1, 2

√
d− 1), so

by taking a long enough initial segment, we can get a positive approximant.
In particular, let p≫ m be even, and set

g =
p

∑
s=0

λsqs.

It is a standard calculation, employing the recurrence relation on the polynomials
qs, that

g(z) =
1− λ2 + λp+2(d− 1)qp(z)− λp+1qp+1(z)

(d− 1)λ2 − λz + 1
.

One an quickly verify that

1− λ2

(d− 1)λ2 − λz + 1
> 0 for all |z| ⩽ 2

√
d− 1,

so we only need to check that λ2(d− 1) < 1 ensures λp+2(d− 1)qp− λp+1qp+1 →p

0. This follows immediately from Lemma 2.4.4, as |qp| ⩽ 2p
√

d(d− 1)p.

2.4.4 Robustness

We have shown already that if (d− 1)λ2 > 1, then for some constant m(λ) and
error tolerance δ(λ) > 0, the level m symmetric path statistics SDP can solve the
detection problem, and that otherwise no such δ and m = O(1) can exist. In this
section we show that this result is robust. To do so, we need to argue (i) that when
G ∼ P , or G ∼ N with (d− 1)λ2 < 1, the SDP with high probability remains
feasible for any error tolerance δ, even after perturbing ρn edges, and (ii) that
when G ∼ N and (d− 1)λ2 > 1, for some ρ > 0 and δ′ < δ(λ), the SDP remains
infeasible at tolerance δ′, even after perturbing ρn edges.

Assume that G was drawn from either the planted or null distribution, and
that H̃ ≈ρ G. When we defined the SPS(m, λ) SDP, we stipulated that in the event
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of an irregular input, we greedily remove edges until the maximum degree is d,
and then greedily add edges among degree-deficient vertices until the minimum
degree is d as well. Thus the actual input to the SDP is a graph H, which one
can verify satisfies H ≈ρξ G for some absolute constant ξ. Call a vertex v ∈ [n]
corrupted if its (m + 1)-neighborhood in H differs from its (m + 1)-neighborhood
in G. We begin by analyzing the difference A(s)

G − A(s)
H for s ∈ [m]. Supposing v is

not a corrupted vertex, then A(s)
G and A(s)

H agree on the vth row and column, which

means (A(s)
G − A(s)

H )v,: = 0. On the other hand, if v is a corrupted vertex,

∥∥∥∥(A(s)
G − A(s)

H

)
v,−

∥∥∥∥
1
⩽
∥∥∥A(s)

G

∥∥∥
1
+
∥∥∥A(s)

H

∥∥∥
1
⩽ 2d(d− 1)s−1

In particular, this means the entrywise 1-norm of A(s)
G − A(s)

H , is bounded by 2ξρn ·
2d(d− 1)s−1 since there are at most 2ξρn corrupted vertices (i.e. if all corrupted
edges had disjoint endpoints).

To prove (i), assume that the SDP is feasible at error tolerance δ on input G, and
write Y for a solution. Then∣∣∣⟨Y, A(s)

H ⟩ − ⟨Y, A(s)
G ⟩
∣∣∣ ⩽ ∥∥∥A(s)

H − A(s)
G

∥∥∥
1
⩽ 2ξρd(d− 1)s−1,

and thus Y is feasible on input H with error tolerance

δ′ = 2ξρd(d− 1)m−1 + δ.

Since on G ∼ P , or G ∼ N with (d− 1)λ2 < 1 the SDP is feasible for every δ > 0,
we can take δ→ 0, and find we are free to choose ρ so long as we work at tolerance
2ξρd(d− 1)m.

To prove (ii), assume G ∼ N and (d− 1)λ2 > 1. Infeasibility of the SDP on
input G is witnessed by the polynomial f from Proposition 2.4.7. So, let Y be a
putative solution to the SDP on input H, at tolerance δ′, seeking a contradiction:
recycling some computations from the proof of Proposition 2.4.6

0 ⩽ ⟨Y , f (AG)⟩

= ⟨Y ,
m

∑
s=0

⟨ f , qs⟩KM

∥qs∥2
KM

A(s)
G ⟩

⩽
m

∑
s=0

⟨ f , qs⟩KM

∥qs∥2
KM

(
⟨Y , A(s)

H ⟩ ± 2ρξd(d− 1)s
)
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⩽ ⟨ f ,
m

∑
s=0

λsqs⟩KM + 2ρξ
m

∑
s=0
|⟨ f , qs⟩|KM + δ′

√
m∥ f ∥KM

⩽ ⟨ f ,
m

∑
s=0

λsqs⟩KM + (δ′ + 2ρξ)
√

m∥ f ∥KM.

Thus we have a contradiction if

δ′ <
|⟨ f , ∑m

s=0 λsqs⟩KM|√
m∥ f ∥KM

− 2ρξ.

Here our choice of ρ must be constrained so that the right hand side of this expres-
sion is positive. This indicates a tradeoff between proximity to the KS threshold
and robustness.

2.5 The Degree Regular Block Model

In this section we generalize the results from the previous section in two ways
simultaneously: we study the fully general Degree Regular Block Model, and
the full Local Statistics SDP. Both add some technical hurdles, but we will find
that once these have been dealt with, the core arguments reduce to the symmetric
results from Section 2.4. Throughout, assume that N is the uniform distribution
on d-regular graphs, and P is the DRBM with fixed parameters (d, k, M, π). In this
section we prove Theorem 2.2.4.

2.5.1 Local Statistics and Partially Labelled Subgraphs

As in the introduction let x = {xu,i} and G = {Gu,v} be sets of variables indexed
by u ∈ [n] and i ∈ [k]. Our random graphs G and community labels x take values
in the subset of {0, 1}(n

2) × {0, 1}n×k ⊂ R(n
2) ×Rn×k defined by the polynomial

equations

G2
u,v − Gu,v = 0

x2
u,i − xu,i = 0

∑
i

xu,i − 1 = 0 (2.11)

as in the introduction, we will write the ideal generated by the polynomials on
the left of the second two equations as Bk. Any point x in the vanishing locus
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of Bk corresponds to a map σx : [n] → [k]. Write S[G, x] ⊂ R[G, x] for the vector
subspace of multilinear polynomials, fixed under the action of the symmetric
group Sn on the index set [n], and for which no monomial contains xu,ixu,j for
i ̸= j. This contains some polynomials that vanish modulo the equations above,
but is convenient to work with.

The local statistics SDP, given as input a graph G0 ∈ {0, 1}(n
2), attempts to find a

pseudoexpectation Ẽ : R[x]→ R that (i) evaluates to zero on any polynomial in
Bk, and (ii) assigns certain prescribed values to polynomials p(G0, x) obtained by
evaluating a low-degree-polynomial p ∈ S[G, x] at the input graph. To state it fully,
we will first construct a combinatorially meaningful vector space basis for S[G, x].

Definition 2.5.1 (Partially Labelled Subgraph). A partially labelled graph (H, S, τ)

consists of a graph H, distinguished subset of vertices S ⊂ V(H), and a labelling
τ : S→ [k]. An occurrence of (H, S, τ) in a fully labelled graph (G, σ) is an injective
homomorphism φ : H → G which respects the labelling. In other words, it is an
injective map φ : V(H)→ V(G) satisfying (i) (φ(u), φ(v)) ∈ E(G) for every edge
(u, v) ∈ E, and (ii) σ(φ(v)) = τ(v) for every v ∈ S.

Lemma 2.5.2 (Partially Labelled Subgraphs are a Basis). Let (H, S, τ) be a partially
labelled subgraph. Then there is a symmetric polynomial pH,S,τ ∈ R[G, x] with degree |S|
in x and |E(H)| in G that, for any (G, x) satisfying equations (2.11), counts occurrences
of H in (G, σx). Furthermore, these polynomials form a basis for S[G, x].

Proof. These polynomials are exactly the monomial basis obtained by considering
the Sn orbit of each multilinear monomial in G and x which does not conatin
xu,ixu,j for i, j ∈ [k]. Each such monomial is of the form

∏
(u,v)∈E

Gu,v ∏
u∈S

xu,τ(u),

where E ⊂ ([n]2 ), S ⊂ [n], and τ : S → [k]. Letting H be the graph whose vertices
are those present either in S or in one of the pairs in E, when this monomial is
evaluated at (G0, x0) satisfying the above equations, it is simply the indicator for
one occurrence of (H, S, τ). By symmetrizing with respect to Sn, one obtains
indicators for all possible such occurrences.

The Local Statistics L(2, m), on input G0, contains constraints of the form

Ẽ pH,S,τ(G0, x) ≈ E
(G,x)∼P

pH,S,τ(G, x).
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where |S| ⩽ 2 and |E(H)| ⩽ m. The following theorem computes the right
hand side of the above equation in the planted, for this class of partially labelled
subgraphs. We will discuss it briefly below and remit the proof to the appendix.
Let (H, S, τ) be a partially labelled graph, and define

CH(d) ≜
∏v∈V(H)(d)deg(v)

d|E(H)| (2.12)

L(H,S,τ)(M, π) ≜ ∑
τ̂:τ̂|S=τ

∏
v∈v(H)

π(τ̂(v)) ∏
(u,v)∈E(H)

Mτ̂(u),τ̂(v). (2.13)

Here (d)s = d(d − 1) · · · (d − s + 1) is the falling factorial, and the sum in the
second line is over all τ̂ : V(H) → [k] which agree with τ on S. Define also
χ(H) = |V(H)| − |E(H)| and c(H) = # connected components of H.

Theorem 2.5.3 (Local Statistics). Let (H, S, τ) be a partially labelled graph with O(1)
edges. Then, with high probability over (x, G) ∼ P ,

p(H,S,τ)(x, G) = nχ(H)L(H,S,τ)(M, π) · CH(d)± o(nc(H)).

The proof may be found in Appendix 2.8, but some comments are in order here.
First, when H is a forest and χ(H) = c(H), we see that p(H,S,τ)(x, G) concentrates,
and that

n−c(H)p(H,S,τ)(x, G)→ L(H,S,τ)(M, π)CH(d),

Conversely, it is well-known that (for instance) the number of cycles in G is Poisson
distributed with constant mean, and thus all we can say with high probability
is that there are o(n) of them. This fact is reflected in greater generality in the
discrepency between the O(nχ(H)) and O(nc(H)) scales of p(H,S,τ)(x, G) and its
fluctuations, respectively, when H contains at least one cycle. Since we need to
give the Local Statistics algorithm affine constraints that are satisfied with high
probability in the planted model, we will include these two distinct scales in our
full statement of the algorithm.

Second, the constants L(H,S,τ)(M, π) and CH(d) have a pleasant interpretation
in the case when H is a forest. If G is an unlabelled and locally treelike d-regular
graph, in the sense that the shortest cycle is much larger than the longest path in
H, then there are exactly nc(H)CH(d) injective homomorphisms of H into G. On
the other hand, L(H,S,τ)(M, π) describes the probability of a certain outcome in a
natural Markov process: start at some vertex s ∈ S, choose its label i according to
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π, and for each neighbor choose a label j with probability Ti,j = Mi,jπ(j). If one
continues this until all of H is labelled, L(H,S,τ)(M, π) gives the probability that
every vertex s ∈ S is given label τ(s).

We may finally define formally the Local Statistics algorithm.

Definition 2.5.4. The degree (Dx, DG) Local Statistics algorithm with error tolerance
δ > 0, on input G0, is the following SDP: find a pseudoexpectation Ẽ : R[x]⩽Dx →
R that is positive, normalized, satisfies Bk, and for which

Ẽ p(H,S,τ)(x, G0) = nχ(H)L(H,S,τ)(M, π)CH(d)± δnc(H)

for every (H, S, τ) with |S| ⩽ Dx and |E(H)| ⩽ DG.

Lemma 2.5.5. For any δ > 0, the LoSt(Dx, DG) algorithm is with high probability
feasible on input G ∼ P .

Proof. Let x be the hidden signal; we will set Ẽ p(H,S,τ)(x, G) = p(H,S,τ)(x, G).
This is clearly positive, satisfies Bk, and from Theorem 2.5.3 it satisfies the affine
constraints in Definition 2.5.4.

2.5.2 Distinguishing

Let us prove the first part of Theorem 2.2.4: when (d − 1)λ2
2 > 1, there exist

constant m, ρ, and δ > 0 for which the LoSt(2, m) SDP at error tolerance δ solves
the detection problem ρ-robustly. Since the SDP is with high probability feasible
for any m and δ > 0 when G ∼ P , it remains only to show infeasibility for some
m, ρ, δ when G ∼ N .

Let G ∼ N , and assume we have a viable pseudoexpectation Ẽ for the
LoSt(2, m) SDP with some tolerance δ > 0. Write X ⪰ 0 for the nk × nk ma-
trix whose (u, i), (v, j) entry is Ẽ xu,ixv,j; it is routine that positivity of Ẽ implies
positive semidefiniteness of X. It will at times be useful to think of X as a k× k
matrix of n× n blocks Xi,j, and at others as an n× n matrix of k× k blocks Xu,v. Let

us also define matrices A⟨s⟩G that count self-avoiding walks of length s, as opposed

to the non-backtracking walks counted by the matrices A(s)
G whose notation they

echo. Our strategy will be to first write the moment matching constraints on Ẽ as
affine constraints of the form ⟨Xi,j, Y⟩ = C, and then combine these to contradict
feasibility of X.
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Lemma 2.5.6. For any i, j, and any s = 0, ..., m, recall that A(s)
G is the matrix counting

non-backtracking walks of length s, and J is the all-ones matrix. For any δ′ > δ,

⟨Xi,j, A(s)
G ⟩ = π(i)Ts

i,j∥qs∥2
KMn± δ′n

⟨Xi,j, J⟩ = π(i)π(j)n2 ± δ′n2

Proof. For the first assertion, let (H, S, τ) be the path of length s whose endpoints
are labelled i, j ∈ [k]. In this case CH(d) = d(d − 1)s−1 = ∥qs∥2

KM, and one can
quickly verify that L(H,S,τ) = π(i)Ts

i,j. Each self-avoiding walk of length s in G is an
occurrence of H, so from Theorem 2.5.3

⟨Xi,j, A⟨s⟩G ⟩ = Ẽ pH,S,τ(x, G) = π(i)Ms
i,j∥qs∥2

KMn± δn

It is an easy consequence of Lemma 2.4.5 that for every constant s, A(s)
G and A⟨s⟩G

differ only on O(log n) rows, and since each row has constant L2 norm,∥∥∥A(s)
G − A⟨s⟩G

∥∥∥2

F
= O(log n).

The matrix X has diagonal elements X(u,i),(u,i) = Ẽ x2
u,i = Ẽ xi,u by the Boolean

constraint, and Ẽ (xu,1 + · · ·+ xu,k) = 1 by the Single Color constraint. By PSD-
ness of X, every Ẽ x2

u,i = Ẽ xu,i is nonnegative, so each is between zero and one. It
is a standard fact that the off-diagonal entries of such a PSD matrix have magnitude
at most one, so from Lemma 2.4.4

⟨Xi,j, A(s)
G ⟩ = ⟨Xi,j, A⟨s⟩G ⟩+ ⟨Xi,j A

⟨s⟩
G − A(s)

G ⟩ = ⟨Xi,j, A⟨s⟩G ⟩ ±O(log n)

= π(i)Ms
i,j∥qs∥2

KMn± δ′n

for s = 0, ..., m, any δ′ > δ, and n sufficeintly large. For the second assertion, when
i ̸= j take (H, S, τ) to be the partially labelled graph on two disconnected vertices,
with labels i and j respectively. In this case CH(d) = 1, and L(H,S,τ)(M, π) =

π(i)π(j). We then have

⟨Xi,j, J⟩ = Ẽ pH,S,τ(x, G) = π(i)π(j)n2 ± δn2

For the case i = j, let (H′, S′, τ′) be a single vertex labelled i, for which CH(d) = 1
and L(H′,S′,τ′)(M, π) = π(i). We can write

⟨Xi,i, J⟩ = Ẽ p(H,S,τ)(x, G) + Ẽ p(H′,S′,τ′)(x, G)
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= π(i)2n2 + π(i)n± δn2 = π(i)π(j)n2 + δ′n2

for any δ′ > δ and n sufficiently large.

We will now apply a fortuitous change of basis furnished to us by the transition
matrix T. Let us write F for the matrix of right eigenvectors of T, normalized so
that every column has unit norm, and sorted so that the first column is a multiple
of the all-ones vector. Thus TF = FΛ, where Λ is a diagonal matrix containing the
eigenvalues, sorted in decreasing order of magnitude. It is a standard fact from the
theory of reversible Markov chains that F−1Diag(π)F = 1.

Now, define a matrix X̌ ≜ (FT ⊗ 1)X(F⊗ 1), by which we mean that

X̌ =

F1,11 · · · F1,k1
... . . . ...

Fk,11 · · · Fk,k1


X1,1 · · · X1,k

... . . . ...
Xk,1 · · · Xk,k


F1,11 · · · F1,k1

... . . . ...
Fk,11 · · · Fk,k1

 .

We will think of X̌, analogous to X, as a k× k matrix of n× n blocks X̌i,j. Note that
we can also think of this as as a change of basis x 7→ FTx directly on the variables
appearing in polynomials accepted by our pseudoexpectation.

Lemma 2.5.7. For any s = 0, ..., m, and any δ′′ > ∥F∥2
√

kδ, we have

⟨X̌i,j A
(s)
G ⟩ =

{
0 i ̸= j

λs
i∥qs∥2

KM i = j
± δ′′n

⟨X̌i,j, J⟩ =
{

n2 i = j = 1

0 else
± δ′′n2

Proof. Our block-wise change of basis commutes with taking inner products be-
tween the blocks Xi,j and the non-backtracking walk matrices. In other words,
invoking Lemma 2.5.6 with δ′ > δ and keeping track of how the additive errors
compound as we take linear combinations,
⟨X̌1,1, A(s)

G ⟩ · · · ⟨X̌1,k, A(s)
G ⟩

... . . . ...
⟨X̌k,1, A(s)

G ⟩ · · · ⟨X̌k,k, A(s)
G ⟩


i,j

=

FT


⟨X1,1, A(s)

G ⟩ · · · ⟨X1,k, A(s)
G ⟩

... . . . ...
⟨Xk,1, A(s)

G ⟩ · · · ⟨Xk,k, A(s)
G ⟩

 F


i,j

=
(

FTDiag(π)TsF
)

i,j
· ∥qs∥2

KMn± ∥F∥2
√

kδ′n
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=
(

FTDiag(π)FΛs
)

i,j
· ∥qs∥2

KMn± ∥F∥2
√

kδ′n

= Λs
i,j · ∥qs∥2

KMn± ∥F∥2
√

kδ′n.

A parallel calculation gives us⟨X̌1,1, J⟩ · · · ⟨X̌1,k, J⟩
... . . . ...

⟨X̌k,1, J⟩ · · · ⟨X̌k,k, J⟩


i,j

=

FT

⟨X1,1, J⟩ · · · ⟨X1,k, J⟩
... . . . ...

⟨Xk,1, J⟩ · · · ⟨Xk,k, J⟩

 F


i,j

=
(

FTππTF
)

i,j
· n2 ± ∥F∥2

√
kδ′n2

=
(

e1eT
1

)
i,j
· n2 ± ∥F∥2

√
kδ′n2

where e1 is the first standard basis vector. The final line comes since π, being the
left eigenvector associated to λ1 = 1, is (up to scaling) the first row of F−1.

With Lemma 2.5.7 in hand, the remainder of the proof follows from Proposi-
tion 2.4.6 and Proposition 2.4.7 in the previous section. In particular, each block
X̌i,i for i = 2, ...k is a feasible solution to SPS(m, λi) SDP with error tolerance
δ′′ > ∥F∥2

√
kδ. We showed already that when λ2(d− 1) > 1, and for small enough

error tolerance and large enough m, this SDP is w.h.p. infeasible on input G ∼ N .
Thus we need simply to make δ small enough so that δ′′ is below the minimum
tolerance in Proposition 2.4.6.

2.5.3 Spectral Distinguishing

Our argument in the previous section can be recast to prove Corollary 2.2.5, namely
that above the Kesten-Stigum threshold the spectrum of the adjacency matrix can
also be used to distinguish the null and planted distributions.

Let (G, x) ∼ Pd,k,M,π, and write X ≜ xxT, and

X̌ = (FT ⊗ 1)X(F⊗ 1) = (FTx)(FTx)T ≜ x̌x̌T.

Think of X̌ as a block matrix (Xi,j)i,j∈[k], as we did X in the previous section, and x̌
as a block vector (x̌i)i∈[k]. Applying Theorem 2.5.3 and repeating the calculations
in Lemma 2.5.6 and Lemma 2.5.7 mutatis mutandis with X instead of X, we can
show that w.h.p.

⟨X̌i,j, A(s)
G ⟩ = λi∥qs∥2

KMn + o(n) if i = j
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and zero otherwise, for every s = O(1) and

⟨X̌1,1, J⟩ =
{

n2 i = j = 1

0 else
,

with strict equality following from the rigidity of the group sizes in the planted
model. Because A(s)

G = 1, we know

x̌T
i x̌j = ⟨X̌i,j,1⟩ = 0

when i ̸= j. In other words, the k vectors x̌1, ..., x̌k are orthogonal.
We can show that AG has an eigenvalue with a separation η > 0 from the bulk

spectrum by proving

x̌T
i f (AG)x̌i = ⟨X̌i,i, f (AG)⟩ < 0

for some polynomial f (x) positive on of (−2
√

d− 1− η, 2
√

d− 1 + η). As long as
(d− 1)λ2

i > 1, the same polynomial from Proposition 2.4.7 works here. As the x̌i
are orthogonal, we get one distinct eigenvalue outside the bulk for each eigenvalue
of T satisfying this property.

Remark 2.5.8. To distinguish the null model from the planted one using the spec-
trum of AG, simply return PLANTED if AG has a single eigenvalue other than d
whose magnitude is bigger than 2

√
d− 1 + δ for any error tolerance δ you choose,

and NULL otherwise. Unfortunately, this distinguishing algorithm is not robust to
adversarial edge insertions and deletions. For instance, given a graph G ∼ N , the
adversary can create a disjoint copy of Kd+1, the complete graph on d + 1 vertices,
whose eigenvalues are all ±d. The spectrum of the perturbed graph is the disjoint
union of ±d and the eigenvalues of the other component(s), so the algorithm will
be fooled. We will show in Section 2.5.5 that the Local Statistics SDP is robust to
this kind of perturbation.

2.5.4 Lower Bounds

In this section, we prove the second half of Theorem 2.2.4, which gives a comple-
mentary lower bound: if every one of λ2, ..., λk has modulus at most 1/

√
d− 1

there exists some feasible solution to the Local Path Statistics SDP for every m ⩾ 1.
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We can specify a pseudoexpectation completely by way of an (nk + 1)× (nk + 1)
positive semidefinite matrix(

1 Ẽ xT

Ẽ x Ẽ xTx

)
≜
(

1 lT

l X

)
.

After first writing down the general properties required of any quadratic pseudo-
expectation satisfying Bk, we’ll show that in order for Ẽ to match every moment
asked of it by the LoSt(2, m) SDP, it suffices for it to satisfy

Ẽ pH,S,τ(x, G) ≈ E pH,S,τ(G, x)

when (H, S, τ) is a path of length 0, ..., m with labelled endpoints, or a pair of
disjoint, labelled vertices. Finally, we’ll construct a pseudoexpectation matching
these path moments out of feasible solutions to the symmetric path statistics SDP
from the previous section.

Lemma 2.5.9. The set of Bk-satisfying pseudoexpectations is parameterized by pairs
(X, l) ∈ Rnk×nk ×Rnk for which(

1 lT

l X

)
⪰ 0 (2.14)

diag(X) = l (2.15)

TrXu,u = eTl = 1 ∀u ∈ [n] (2.16)

Xu,ve = lu ∀u, v ∈ [n] (2.17)

Proof. Recall that the set Bk is defined by the polynomial equations

Boolean x2
u,i = xu,i ∀u ∈ [n] and i ∈ [k]

Single Color ∑
i

xu,i = 1 ∀u ∈ [n]

That a degree-two pseudoexpectation satisfies these constraints means

Ẽ p(x)x2
u,i = Ẽ p(x)xu,i ∀p s.t. deg p = 0

Ẽ p(x)∑
i

xu,i = Ẽ p(x) ∀p s.t. deg p ⩽ 1.
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Writing X = Ẽ xTx and l = Ẽ x as above, the first constraint is equivalent to
l = diag(X), since the degree-zero polynomials are just constants, and we can
guarantee that the second holds for every polynomial of degree at most one by
requiring it on p = 1 and p =, xv,j for all v and j. The Lemma is simply a concise
packaging of these facts, using the block notation X = (Xu,v)u,v∈[n] and l = (lu)u∈[n].

Proposition 2.5.10. Let G ∼ N , and let the pair (X, l) ∈ Rnk×nk × Rnk satisfies
(2.14)-(2.17) and

⟨e, li⟩ = π(i)n± δn

⟨Xi,j, A(s)
G ⟩ = π(i)Ts

i,jn± δn

⟨Xi,j, J⟩ = π(i)π(j)n2 ± δn2,

then with high probability the degree-two pseudoexpectation that they induce is a feasible
solution to the LoSt(2, m) SDP with any error tolerance δ′ > δ.

We will defer the proof of Proposition 2.5.10 to Appendix 2.8. Its conclusion in
hand, we can now set about constructing a pseudoexpectation. Since (d− 1)λ2

2 < 1,
the SPS(λi, m) SDP is feasible for every error tolerance δ′ > 0. Thus for each i =
2, ..., k there exists a feasible solution in the form of a PSD matrix Y(λi) satisfying

Y(λi)u,u = 1 ∀u ∈ [n]

⟨Y(λi), A(s)
G ⟩ = λs

i∥qs∥2
KMn± δ′n ∀s ∈ [m]

⟨Y(λi), J⟩ = 0± δ′n2.

Now, define X̌ to be the k× k block diagonal matrix

X̌ =


J

Y(λ2)
. . .

Y(λk),


i.e. X̌i,j = 0 when i ̸= j, and the diagonal blocks are as above, and similarly let ľ =
(e, 0, ..., 0)T. We claim that the pair X = (F−T ⊗ 1)X̌(F−1 ⊗ 1) and l = (F−1 ⊗ 1)ľ
satisfies the conditions of Lemma 2.5.9 and Proposition 2.5.10.
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First (
1 lT

l X

)
=

(
1

F−T ⊗ 1

)(
1 ľT

ľ X̌

)(
1

F−1 ⊗ 1

)
⪰ 0

by taking a Schur complement. Since π is the first row of F−1, we know li = π(i)e
for each i =∈ [k]. Moreover, since X is obtained by changing basis block-wise, the
diagonal of X depends only on the diagonals of J and the Y(λi), all of which are
all ones, so

diag X = diag
(
(F−T ⊗ 1)Diag(diag(X̌))(F−1 ⊗ 1)

)
= diag

(
(F−T ⊗ 1)1(F−1 ⊗ 1)

)
= diag

(
F−TF−1 ⊗ 1

)
= diag (Diagπ ⊗ 1)

= (π(1)e, ..., π(k)e) = l

as desired. Similarly, because X̌ is block diagonal when regarded as k× k matrix
of n× n blocks, if we treat it instead as an n× n matrix of k× k blocks X̌u,v, then
X̌u,u = 1 for every u ∈ [n], and

TrXu,u = TrF−TX̌u,uF−1 = TrF−TF−1 = TrDiagπ = 1.

Finally, the top row of each X̌u,v is the vector eT
1 , so

Xu,ve = F−TX̌u,vF−1e = F−TX̌u,ve1 = F−Te1 = π = lu.

It remains to verify the affine conditions in Proposition 2.5.10. As in the proof
of Lemma 2.5.7, since each Y(λi) is a feasible solution to the SPS(λi, m) SDP with
error tolerance δ′,

⟨Xi,j, A(s)
G ⟩ =

F−T


⟨J, A(s)

G ⟩
⟨Y(λ2), A(s)

G ⟩
. . .

⟨Y(λk), A(s)
G ⟩

 F−1


i,j

=
(

F−TΛsF−1
)

i,j
· ∥qs∥2

KMn± ∥F−1∥2
√

kδ′n

= (Diag(π)Ts)i,j · ∥qs∥2
KMn± ∥F−1∥2

√
kδ′n
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= π(i)Ts
i,j · ∥qs∥2

KMn± ∥F−1∥2
√

kδ′n

and

⟨Xi,j, J⟩ =

F−T


⟨J, J⟩

⟨Y(λ2), J⟩
. . .
⟨Y(λk), J⟩

 F−1


i,j

=
(

F−Te1eT
1 F−1

)
i,j
· n2 ± ∥F−1∥2

√
kδ′n2

=
(

ππT
)

i,j
· n2 ± ∥F−1∥2

√
kδ′n2

= π(i)π(j) · n2 ± ∥F−1∥2
√

kδ′n2,

and by setting δ′ sufficiently small, we can make each of these errors at most any
δ > 0 of our choosing.

2.5.5 Robustness

The proof of robustness largely reduces to the discussion in Section 2.4.4. Recall that
we need to produce a ρ > 0 for which (i) when G ∼ P , or G ∼ N with (d− 1)λ2

2 <

1, the SDP with high probability remains feasible for any error tolerance δ, even
after perturbing ρn edges, and (ii) that when G ∼ N and (d − 1) > λ2

2, if the
SDP is infeasible at tolerance δ, it remains so at some tolerance δ′ < δ even after
perturbing ρn edges.

For (i), assume that the SDP is feasible at error tolerance δ on input G. We
build the SDP as a linear combination of solutions Y(λi) to the SPS(m, λi) SDP,
which we argued in Section 2.4.4 is robust in the desired sense. For (ii), when
G ∼ N and (d− 1)λ2

2 > 1, we reduced infeasibility of the LoSt(2, m) SDP to that
of the SPS(m, λ2) SDP, which we showed already is infeasible. Moreover, from
Section 2.4.4, the latter remains infeasible after a sufficiently small perturbation.

2.6 The Stochastic Block Model

We turn, finally, to the proof of Theorem 2.2.2 concerning the local statistics algo-
rithm and Stochastic Block Model. For the sake of exposition, as we did for the
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DRBM, we will first write down a simpler SDP that can robustly solve the detection
problem above the KS threshold, and then show that feasibility of the full SDP
implies feasibility of this simpler one.

Throughout this section, letP denote the SBM with fixed parameters (d, k, M, π),
and N = G(n, d/n). Recall that to sample a pair (G, x) from the planted model,
we first choose a partition V1(G) ⊔ · · · ⊔ Vk(G) = [n] by placing each vertex in
group Vi with probability π(i), setting xu,i equal to 1 if u ∈ Vi; it will be convenient
to write σ : [n]→ [k] for this random labelling map. Then, we include each edge
(u, v) ∈ E(G) with probability Mσ(u),σ(v)d/n, setting Gu,v = 1 in this event.

Now, for any graph G, define the matrices A(s)
G as follows. For each walk in

the complete graph Kn, write γ : u → v if it begins with u and ends with v, let
wG(γ) = ∏e∈γ(Ge − d/n), and set(

A(s)
G

)
u,v

= ∑
γ:u→v,|γ|=s

wG(γ). (2.18)

When (G, x) ∼ P , define as in Section 2.5.1 and Section 2.5.2 an nk× nk matrix
X ≜ xx∗. As before, we will at times think of X as an n× n matrix of k× k blocks
Xu,v, and at others a k× k matrix of n× n blocks Xi,j.

Claim 2.6.1. Let T = T − eTπ. Then

E⟨Xi,j, A(s)
G ⟩ = π(i)Ts

i,j · dsn + O(1),

and this inner product enjoys concentration of O(
√

n).

Proof. Let γ be some length-s self-avoiding walk in the complete graph; WLOG we
can label its vertices with the set [s + 1]. We need to calculate the expectation of
wG(γ) on the event that its endpoints are labelled i and j:

E[wG(γ), labels i and j] = ∑
η:[s+1],η(1)=i,η(s+1)=j

π(i)·

∏
t∈[s]

(Mη(t),η(t+1) − 1)(d/n)π(η(t + 1))

= π(i)(T − eTπ)s
i,j · (d/n)s.

There are n(n− 1)(n− 2) · · · (n− s) length-s self avoiding walks in the complete
graph, so already the total expectation of wG(γ) among these walks accounts for the
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quantity in the claim. On the other hand, those γ’s which contain a cycle contribute
negligiblly: there are O(nv) γ’s with v vertices, and for each one E wG(γ) =

O(n−e), so the total contribution of γ’s with e ⩾ v is at best O(1).

This motivates the following SDP:

Definition 2.6.2. For each m ⩾ 1, the level m path statistics SDP with error tolerance
δ > 0 is the feasibility problem

Find X = (Xi,j) ⪰ 0 s.t. (Xi,i)u,u ⩽ 1 ∀u ∈ [n], i ∈ [k] (2.19)

Tr(Xu,u) = 1 ∀u ∈ [n] (2.20)

⟨Xi,j, A(s)
G ⟩ = π(i)Ts

i,j · dsn± δn ∀i, j ∈ [k], s = 0, ..., m.
(2.21)

Theorem 2.6.3. When λ2
2d > 1, there exists m = O(1) and δ > 0 for which the level m

path statistics SDP can solve the detection problem. Conversely, when λ2
2d < 1, no such

m and δ exist.

Recall that Λ is a k× k diagonal matrix containing the eigenvalues of T, sorted
in descending order of modulus from the upper left corner. Since e and π∗ are right
and left eigenvectors, respectively, of T, T commutes with T and satisfies TF = FΛ,
where Λ is obtained from Λ by deleting the upper left entry (which in our setup is
equal to 1). We will accordingly take the same change-of-basis approach as in the
DRBM. For any feasible solution X to this SDP, we can form an analogous matrix
X̌ ≜ (FT ⊗ 1)X(F⊗ 1), with blocks X̌i,j. Following Lemma 2.5.7, observe that

⟨X̌i,j, A(s)
G ⟩ =


⟨X̌1,1, A(s)

G ⟩ · · · ⟨X̌1,k, A(s)
G ⟩

... . . . ...

⟨X̌k,1, A(s)
G ⟩ · · · ⟨X̌k,k, A(s)

G ⟩


i,j

=

FT


⟨X1,1, A(s)

G ⟩ · · · ⟨X1,k, A(s)
G ⟩

... . . . ...

⟨Xk,1, A(s)
G ⟩ · · · ⟨Xk,k, A(s)

G ⟩

 F


i,j

=
(

FTDiag(π)(T − eπ∗)sF
)

i,j
· dsn± ∥F∥2

√
kδn

=
(

FTDiag(π)FΛ
s
)

i,j
· dsn± ∥F∥2

√
kδn
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= Λ
s
i,j · dsn± ∥F∥2

√
kδn.

Moreover, the diagonal entries of X̌ are bounded by a constant dependant only
on M and π, which we can check by considering the blocks X̌u,u = FTXu,uF. Since
TrXu,u = 1, the maximal diagonal entry of X̌u,u is at most TrFTXu,uF ⩽ ∥F∥2.

Our observations about the matrices X̌i,i from Section 2.5 carry over here—
namely each of these is PSD with ones on the diagonal. Thus we have shown that
if the level-m Path Statistics SDP is feasible, then for some constant C,

sup
Y⪰0,TrY=n,Yi,i⩽C

|⟨Y, A(m)
G ⟩| ⩾ |dλ2|s · n−O(δ)n,

(where the constant in the O(δ) may be taken as the quantity ∥F∥2
√

kδ above). In
particular this is true when G ∼ P . On the other hand, we will prove the following
upper bound on this quantity when G is drawn from the null model.

Theorem 2.6.4. Let G ∼ N . Then for any ϵ, C > 0 there exists m ∈N so that with high
probability

sup
Y⪰0,TrY=n,Yi,i⩽C

|⟨Y, A(m)
G ⟩| ⩽ ((1 + ϵ)d)m/2n.

This, and the preceding dicsussion, prove one half of Theorem 2.6.3, namely that
whenever λ2

2d > 1, there are some m = O(1) and δ > 0 for which the level m
Path Statistics SDP is with high probability infeasible on inout G ∼ , but feasible
on input G ∼ P . We will prove the other half in Section 2.7. Theorem 2.2.2, the
analogous statement to Theorem 2.6.3 for the full local statistics algorithm, follows
from a final observation:

Observation 2.6.5. With high probability over G ∼ N , if the level-m Path Statis-
tics SDP is infeasible at error tolerance δ, then the LoSt(2, m) SDP at some error
tolerance δ′(δ) is infeasible as well.

Proof. The quadratic block of the LoSt(2, m) SDP concerns nk× nk matrices, and
includes all hard constraints—bounds on diagonal entries, trace of diagonal blocks—
present in the Path Statistics SDP. Moreover, it has access to affine constraints

involving the counts of subgraphs with at most m edges. Since the entries of A(s)
G

for s ⩽ m are simply linear combinations of such counts, LoSt(2, m) has access to
the affine constraints from the Local Path Statistics SDP as well.
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The promised robustness guarantee in Theorem 2.2.2 can be achieved by choos-
ing B as per Theorem 2.10.4, deleting edges incident to all vertices of degree > B,
and inputting the resulting graph into the LoSt(2, m) SDP.

2.6.1 Local Statistics in the SBM

We pause to compute the local statistics of the SBM; by setting k = 1 and M = 1,
we recover analogous results for the Erdős-Rényi model. Recall that for a partially
subgraph (H, S, τ),

L(H,S,τ)(M, π) ≜ ∑
τ̂:τ̂|S=τ

∏
v∈v(H)

π(τ̂(v)) ∏
(u,v)∈E(H)

Mτ̂(u),τ̂(v).

Theorem 2.6.6. Let (H, S, τ) be a partially labelled graph with O(1) edges and ℓ connected
components. Then with high probability

p(H,S,τ)(G, x) = nχ(H)L(H,S,τ)(M, π) · d|E(H)|n|V(H)|−|E(H)| + o(nc(H))

Proof. Fix (H, S, τ). There are(
n

|V(H)|

)
|V(H)|! = n|V(H)| + O(n|V(H)|−1)

injective maps from V(H) ↪→ [n]. The probability that each is an occurrence, once
we condition on the labels σ of the relevant vertices, is given by

∏
(u,v)∈E(H)

Mσ(u),σ(v) · d/n.

The probability of each labelling σ is ∏u∈V(H) π(σ(u)), and we only consider
labellings that agree with τ at the relevant vertices. Thus

E p(H,S,τ)(x, G) = nχ(H)L(H,S,τ)(M, π) + O(nχ(H)−1).

and one immediately sees that this expectation decomposes as a product of analo-
gous expectations over the connected components of H.

To prove concentration, in the case when H has at least one cycle, c(H) > χ(H)

and the assertion follows from Markov. Otherwise, let us consider

E pH,S,τ,U,W(G, x)2.
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This is a sum over pairs of maps ϕ, ψ : V(H) → [n], and as H is acyclic, it is
dominated by terms in which the images of these two maps are disjoint. Thus,
to leading order, this variance is equal to the expected number of occurrences of
two disjoint copies of (H, S, τ), which we just observed is (E pH,S,τ,U,W(G, x))2 to
leading order. We finish by using Chebyshev and observing that χ(H) = c(H).

2.6.2 Proof of Theorem 2.6.4

The main challenge in studying A(m)
G , when G is a sparse Erdős-Rényi random

graph, is the presence of of certain localized combinatorial structures which inflate
the number of non-backtracking walks: high-degree vertices and small subgraphs

with many cycles. Our strategy will be to decompose A(s)
G as a sum of two matrices,

one of which “avoids” these structures and admits spectral norm bounds, and
the other of which has a small entrywise L1 norm. Let us make this precise. In
any graph G, write Bt(v, G) for the set of vertices with distance at most t from v;
call v (t, ε)-heavy if |Bt(v, G)| ⩾ (1 + ϵ)tdt. We will call a vertex v (t, r, ε)-vexing if
either it participates in a cycle of length less than r or it is (t, ε)-heavy. Let H be the
subgraph obtained by deleting every vexing vertex, and write(

A(m)
H

)
u,v

= ∑
γ:u→v,|γ|=s,γ∈V(H)

wG(γ).

We will also refer to H as the (t, r, ε)-truncation of G. In the sequel, we assume
r = Θ

(
log n

(log log n)2

)
. Then Theorem 2.6.4 is an immediate consequence of the

following two results.

Theorem 2.6.7 (Truncated Spectral Norm Bound). For every ϵ > 0, there exist t, m
satisfying m = t3 so that with high probability

∥A(m)
H ∥ ⩽ ((1 + ϵ)d)m/2.

Proposition 2.6.8 (L1 Bound). For every δ > 0, and every r = O(1), for any t ⩾
Ω(

log m−log δ
log(1+ϵ)

) so that with high probability

∥A(m)
G − A(m)

H ∥1 ⩽ δn.
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With these two results in hand, Theorem 2.6.4 quickly follows: any matrix Y ⪰ 0
with unit diagonal satisfies |Yu,v| ⩽ 1, so

|⟨Y, A(m)
G ⟩| ⩽ |⟨Y, A(m)

H ⟩|+ |⟨Y, A(m)
G − A(m)

H ⟩|

⩽ n∥A(m)
H ∥+ ∥A(m)

G − A(m)
H ∥1

⩽
(
((1 + ϵ)d)m/2 + δ

)
n.

Theorem 2.6.7 is the heavier technical lift, so we will warm up with the proof of
Proposition 2.6.8. The proof of Theorem 2.6.7 is deferred to Section 2.6.3.

2.6.2.1 Proof of Proposition 2.6.8

For a non-backtracking walk γ on the complete graph, write V(γ) for the event
that γ visits a vexing vertex. Then

∥A(m)
G −A(m)

H ∥1 ⩽ ∑
γ∈Kn,|γ|=m

|wA(γ)|1 [V(γ)] ⩽ ∑
γ∈Kn,|γ|=m

(d/n)# non-edges1 [V(γ)] .

Once we choose G, γ alternates between segments of edges on G and segments
of non-edges. We do not lose too much by relaxing slightly the condition that γ

is non-backtracking, instead asking only that it is non-backtracking whenever it
walks on G.

Let us define an m-scribble s with type (p1|q1| · · · |pl|ql) on the complete graph
to be a path comprised of l non-backtracking segments of lengths p1, ..., pl inter-
spersed with l ‘free’ segments of lengths q1, ..., ql. We require that ∑ pi + ∑ qi = m,
and all but perhaps p1, ql are strictly positive. Define w(s) = (d/n)∑ qi , and let us
write s ⊂ G to mean that every non-backtracking segment of s appears in G. We
will call a scribble vexing and write V(s), if any of the vertices of s is vexing. In
view of the preceding paragraph, it suffices to bound

∑
s∈Kn,|s|=m

w(s)1 [s ⊂ G] 1 [V(s)] .

We will divide the event V(s) that s is vexing into two subcases: write H(s) if s
contains a heavy vertex, and C(s) if it ever encounters a vertex on a cycle of length
at most r.

We will need the following simplified version of the forthcoming Lemma 2.9.8.
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Lemma 2.6.9. Let Γ ⊂ Kn, and write Γ ⊂ G to mean that every edge of Γ appears in G.
Then there exist universal C, c so that

P[Γ ⊂ G and contains a (t, ε)-heavy vertex] ⩽ P[Γ ⊂ G] · |V(Γ)| · C·

exp
(
− c

1 + |V(Γ)| (1 + ε)t
)

Proof. Write Gc for the graph obtained by removing every one of Γ’s edges, and
write Bt(v, Gc) for the t-neighborhood of a vertex in this modified graph. We
claim that if Γ ⊂ G and one of its vertices is (t, ε)-heavy, then one of its vertices
is (t, ε′)-heavy in Gc, where ε′ = (1 + ε)(1 + |V(Γ)|)−1/t − 1. Assume that v is the
heavy vertex in G, noting that

|Bt(v, G)| ⩽ |Bt(v, Gc)|+ |Bt(V(Γ), Gc)|

by dividing the shortest paths of length t emanating from v according to whether
they use edges from Γ or not. Since v is (t, ε)-heavy, the left hand side is at
least (1 + ϵ)tdt. If for some ε′ no other vertex in Γ is (t, ε′)-heavy in Gc, then
|Bt(V(Γ), Gc)| ⩽ |V(Γ)|(1+ ε′)tdt, and we conclude that |Bt(v, Gc)| ⩾ (1+ ε)t(1−
εt|V(Γ)|), which is a contradiction if ε′ is set as in the theorem statement.

Thus we have shown that the event we care about is contained in the intersection
of two independent ones: that Γ ⊂ G, and that there exists a vertex in Γ that is
(t, ϵ′)-heavy in Gc. We can bound this second probability by taking a union bound
over all vertices in Γ, and noting that the probability of being heavy in Gc is at
most the probability of being heavy in G. From Lemma 2.9.8, the probability that a
given vertex is (t, ϵ′)-heavy in G is, for some universal C, c, at most C exp(−c(1 +
ϵ′)t) ⩽ C exp(− c

|V(Γ)|+1(1 + ϵ)t). We then execute the union bound and assemble
everything.

With this lemma in hand, and using the fact that s contains at most m + 1
vertices,

P[s ⊂ G,HN(s)] ⩽ P[s ⊂ G]C(m+ 1) exp
(
− c

m + 2
(1 + ϵ)t

)
≜ P[s ⊂ G]Υ(m, ε).

Thus

E ∑
s∈Kn,|s|=m

w(s)1 [s ⊂ G] 1 [H(s)] ⩽ Υ(m, ε)E ∑
s∈Kn|s|=m

w(s)1 [s ⊂ G] .
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We need to perform a similar calculation for the scribbles which visit a vertex
on a cycle. Fixing s, if s itself contains a cycle, then P[s ⊂ G, C(s)] = b[s ⊂ G].
Otherwise, s does not contain a cycle, and there must be a path of length at most r,
using no edges in s, that connects two of its vertices. This event is independent of
the event s ⊂ G; for any fixed length s, there are at most ns−1 such paths, and each
occurs with probability O(n−s), meaning that the total probability is bounded by
O(r/n).

Combining all of this,

E ∑
s∈Kn,|s|=m

w(s)1 [s ⊂ G] 1 [V(s)] ⩽ (Υ(m, ε) + O(r/n))E ∑
s∈Kn,|s|=m

w(s)1 [s ⊂ G]

+ E ∑
s∈Kn,|s|=m

w(s)1 [s ⊂ G] 1 [s contains a cycle]

+ lower order terms.

To compute term in the second line, fix a scribble of type (p1|q2| · · · |ql). To choose
a scribble with this type in G, one needs to select a subgraph in G with at most
l connected components, at least one of which contains a cycle of length at most
m. In expectation there are o(nl−1) of these. For each of q1, ..., ql−1, there are qi − 1
choices of a free vertex, and we pay a weight of O(n−qi); for ql, if it is nonzero,
there are ql free vertices at a cost of O(n−ql). Thus the final term, the expected,
weighted counts of scribbles that contain a cycle, contributes o(n).

It therefore remains only to compute the expected weighted sum of all m-
scribbles in G. Analogous to the previous paragraph, to choose a scribble of type
(p1|q1| · · · |pl|ql) in G, one first selects a tuple of non-backtracking walks in G with
lengths p1, ..., pl, and then connects them with free segments. In expectation there
are dp1+···pl nl +O(nl−1) such tuples of walks in G. For each of q1, ..., ql−1, there are
qi − 1 choices of a free vertex, and we pay a weight (d/n)qi ; for ql, if it exists, there
are ql free vertices at a cost of (d/n)ql = dql . There are at most 2m+1 types, giving

E ∑
s∈Kn,|s|=m

w(s)1 [s ⊂ G] ⩽ 2(2d)mn + O(1).

Having computed its expectation, we now need to show that the number of
vexing scribbles is concentrated. We begin by recalling the well-known Efron-Stein
inequality.
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Lemma 2.6.10. Let (Y, X1, X2, ..., XT) be i.i.d. real random variables. Then for any
function f : RT → R,

Var f (X1, ..., XT) ⩽
1
2 ∑

u∈[T]
E
[
( f (X1, ..., Xu, ..., XT)− f (X1, ..., Y, ..., XT))

2
]

.

We will apply this to the function f that counts weighted, vexing scribbles.
Let G be an ER random graph, and G̃ be the same graph with some edge re-
randomized. With probability 1− 2d/n, the graphs G = G̃ and the weighted
scribble counts are the same. With the remaining probability, we are comparing
the weighted, vexing scribble counts on two graphs that differ at an edge. Since
the addition of an edge can only make more vertices vexing, the count can only
increase; thus we can clumsily bound the difference by the total number of scribbles
(vexing or not) that use the added edge.

Fact 2.6.11. Let G ∼ N . Then the probability that there is a vertex with degree larger than
∆d is at most n(e/∆)d∆. In particular, setting ∆ = 2 log n, this probability is o(n−c) for
every c.

In a graph with maximum degree ∆, the weighted sum of m-scribbles with the
property that at least one of the non-backtracking segments uses a given edge is
upper bounded by m(2∆)m, so let us split into the events that the maximum degree
in G is less than vs. greater than log n. On the first event, whose probability we
will upper bound by 1, we get m(2 log n)m weighted scribbles. The second event
gives us at most m(2n)m weighted scribbles, has probability better than any inverse
polynomial in n. Thus by Efron-Stein inequality the variance of the number of
weighted scribbles is at most

2(d/n) ·
(

n
2

)(
m2(2 log n)2m + o(1)

)
= O(n log2m n),

so we get concentration of O(
√

n logm n).
All told, then, we have that with high probability

∥A(m)
G − A(m)

H ∥1 ⩽ (m + 1)C exp
(
− c

m + 2
(1 + ϵ)t

)
· 2(2d)mn + O(

√
n logm+1 n).

To make this smaller than δn + o(n), it suffices to set t = Ω(
log m−log δ

log(1+ϵ)
).
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2.6.3 Spectral norm bounds

In this section, we prove Theorem 2.6.7.

2.6.3.1 Setup

Choosing parameters. Let ε and d be constants given to us. With the privilege
of hindsight, we choose a small constant δ < 1

100
√

(1+ε)d
; t to be a large enough

integer (depending on ε, d and δ) so that:

1. the hypothesis of Theorem 2.9.1 holds on parameters d′ := (1 + ε)d, d and δ,

2. ((1 + ε)d)1/t2
t30/t3

< 1 + ε,

3. δ−24/t < 1 + ε,

ℓ := t3; k is any even integer in
[

log n log log n
2ℓ , 4 log n log log n

ℓ

]
; and r := kℓ

ln3(kℓ)
. Observe

that since t is constant, r = O
(

log n
(log log n)2

)
.

Let G be an Erdős-Renyi G(n, d/n) graph, let S its the set of (t, r, ε)-vexing
vertices, and let Gt,r,ε be the (t, r, ε)-truncation of G. Let A be the adjacency matrix
of Gt,ε,r. Define(

A− d
n

1[n]\S1⊤[n]\S

)(ℓ)

[u, v] = ∑
W length-ℓ nonbacktracking walk

from u to v in K[n]\S

∏
ij∈W

(
A− d

n
11⊤

)
[i, j]

We are interested in obtaining bounds on the spectral norm of
(

A− d
n 1[n]\S1T[n]\S

)(ℓ)
,

and towards doing so we employ the trace method. In particular, we prove:

Theorem 2.6.12. With probability 1− n−100,∥∥∥∥∥
(

A− d
n

1[n]\S1T[n]\S

)(ℓ)
∥∥∥∥∥ ⩽ ((1 + ε)4

√
d
)ℓ

.

We will obtain spectral norm bounds on
(

A− d
n 1[n]\S1T[n]\S

)(ℓ)
that hold with

high probability by achieving high probability bounds on

F := Tr

((A− d
n

1[n]\S1T[n]\S

)(ℓ)
)2k

 .
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When F is bounded by R,∥∥∥∥∥
(

A− d
n

1[n]\S1T[n]\S

)(ℓ)
∥∥∥∥∥ ⩽ R

1
2k .

2.6.3.2 From High Trace to Counting

We borrow some more terminology from [MOP20]:

Definition 2.6.13 (Linkages). We call a closed walk of length kℓ on Kn a (k× ℓ)-
linkage if it can be split into k segments each of length-ℓ such that W is nonback-
tracking on each segment. We refer to each such length-ℓ nonbacktracking segment
as a link. We use V(W) to denote the vertices visited by W and E(W) to denote the
(undirected) edges visited by W.

Within a linkage W, we use aij(W) to denote the number of times the undirected
edge {i, j} is walked on (which in this exposition we will simply abbreviate to aij),
S(W) to denote the set of singleton edges in E(W), i.e. all edges {i, j} such that
aij = 1, and D(W) to denote all the remaining edges (each of which has aij ⩾ 2),
which we call duplicative edges. We use e(W) to denote the “excess” number of
edges in W, i.e., e(W) = |E(W)| − |V(W)| − 1 Finally, let E(W) denote the event
that V(W) ∩ S is empty. We will call a subset of edges E′ good if there are no
(t, r, ε)-vertices in the graph induced by E′. We have,

F = ∑
W is (k× ℓ)-linkage of Kn

∏
ij∈W

(
A[i, j]− d

n

)
· 1[E(W)]

= ∑
W is (k× ℓ)-linkage of Kn

∏
ij∈S(W)

(
A[i, j]− d

n

)
∏

ij∈D(W)

(
A[i, j]− d

n

)aij(W)

1[E(W)]

(2.22)

We write one of the terms in the above expression in a more convenient form:

(
A[i, j]− d

n

)aij(W)

=

aij(W)

∑
t=0

A[i, j]t
(
− d

n

)aij(W)−t
·
(

aij(W)

t

)

= A[i, j]
aij(W)

∑
i=1

(
− d

n

)aij(W)−t
·
(

aij(W)

t

)
+

(
− d

n

)aij(W)
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= A[i, j]

((
1− d

n

)aij(W)

−
(
− d

n

)aij(W)
)
+

(
− d

n

)aij(W)

.

Writing γij =
(

1− d
n

)aij(W)
−
(
− d

n

)aij(W)
, we can rewrite (2.22) as

∑
W is (k× ℓ)-linkage of Kn

∏
ij∈S(W)

(
A[i, j]− d

n

)
∏

ij∈D(W)

(
A[i, j]γij +

(
− d

n

)aij(W)
)
·

1[E(W)]

In the subsequent steps we will use ∑
W

as short for ∑
W is (k× ℓ)-linkage of Kn

. Thus, we

have:

F = ∑
W

∏
ij∈S(W)

(
A[i, j]− d

n

)
∑

L⊆D(W)
∏
ij∈L

A[i, j]γij ∏
ij/∈L

(
− d

n

)aij(W)

1[E(W)]

where ij /∈ L actually means ij ∈ D(W) \ L. We are interested in bounding |E[F]|.
We first point out that γij ⩽ 1 for large enough n. Then:

|E[F]| =∣∣∣∣∣∣E
∑

W
∏

ij∈S(W)

(
A[i, j]− d

n

)
∑

L⊆D(W)
∏
ij∈L

A[i, j]γij ∏
ij/∈L

(
− d

n

)aij(W)

1[E(W)]

∣∣∣∣∣∣
=

∣∣∣∣∣∣∑W ∑
L⊆D(W)

∏
ij∈L

γij ∏
ij/∈L

(
− d

n

)aij(W)

E

 ∏
ij∈S(W)

(
A[i, j]− d

n

)
∏
ij∈L

A[i, j]1[E(W)]

∣∣∣∣∣∣
⩽ ∑

W
∑

L⊆D(W)
∏
ij∈L

γij ∏
ij/∈L

(
d
n

)aij(W)
∣∣∣∣∣∣E
 ∏

ij∈S(W)

(
A[i, j]− d

n

)
∏
ij∈L

A[i, j]1[E(W)]

∣∣∣∣∣∣
By Theorem 2.9.1:

⩽ ∑
W

∑
L⊆D(W)
L good

∏
ij/∈L

(
d
n

)aij(W)

· C log2 n ·
(

d
n

)|S(W)∪L|
· n.8e(W) · 4|S(W)| · δ|S(W)|−24kt

⩽ ∑
W

∑
L⊆D(W)
L good

∏
ij/∈L

(
d
n

)aij(W)−1

· C log2 n ·
(

d
n

)|S(W)∪L|
·
(

d
n

)|D(W)|−L
·
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n.8e(W) · 4|S(W)| · δ|S(W)|−24kt

⩽ C(n)∑
W

 ∑
L⊆D(W)
L good

∏
ij/∈L

(
d
n

)aij(W)−1

 ·
(

d
n

)|S(W)|+|D(W)|
· n.8e(W) · 4|S(W)| · δ|S(W)|−24kt

(2.23)

where C(n) = C log2 n. Now we analyze

∑
L⊆D(W)
L good

∏
ij/∈L

(
d
n

)aij(W)−1

.

Call the weight of a subset L of D(W) as w(L) := ∑ij∈L(aij(W)− 1). Let D∗(W)

be a maximum weight good subset of D(W), and define ∆(W) as w(D(W)) −
w(D∗(W)). We say ∆(W) is the number of profligate steps in the graph. Then:

∑
L⊆D(W)
L good

∏
ij/∈L

(
d
n

)aij(W)−1

= ∑
L⊆W

L good

(
d
n

)w(D(W))−w(L)

Since aij(W) for every edge is at least 2, we can bound the above by:

⩽ ∑
L⊆W

(
d
n

)max{|D(W)|−|L|, ∆(W)}

= ∑
η⩽∆(W)

(
d
n

)∆(W)

·
(
|D(W)|

η

)
+ ∑

η>∆(W)

(
d
n

)η

·
(
|D(W)|

η

)

⩽ (∆(W) + 1)
(

d|D(W)|
n

)∆(W)

+ ∑
η>∆(W)

(
d|D(W)|

n

)η

⩽ (∆(W) + 2)
(

d|D(W)|
n

)∆(W)

⩽ 2
(

2d|D(W)|
n

)∆(W)

.
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Plugging the above back into (2.23) and “absorbing” a factor of 2 into C(n) tells us:

(2.23) ⩽C(n)∑
W

(
2d|D(W)|

n

)∆(W)

·
(

d
n

)|S(W)|+|D(W)|
·

n.8e(W) · 4|S(W)| · δ|S(W)|−24kt. (2.24)

We will split the above sum based on properties of the walk (such as |S(W)|, e(W),
∆(W), |V(W)|) and count the number of terms in each split part using an encoding
argument. Before we get into the counting argument, we make a key definition:

Definition 2.6.14. We say a step from u to v in a linkage W is fresh if v was never
visited earlier in W. We will use f (W) to denote the number of fresh steps in W.

Remark 2.6.15. For a linkage W, |V(W)| = f (W) + 1.

A consequence of Remark 2.6.15 along with the fact that |S(W)|+ |D(W)| =
|E(W)|, we get that |E(W)| = f (W) + e(W). Thus, (2.24) is bounded by

C(n)∑
W

(
2d|D(W)|

n

)∆(W)

·
(

d
n

)e(W)+ f (W)

· n.8e(W) · 4|S(W)| · δ|S(W)|−24kt. (2.25)

To complete the proof, we need the following, which is proved in Section 2.6.4:

Theorem 2.6.16. The total number of (k, ℓ)-linkages with f fresh edges, e excess edges, s
singleton edges and ∆ profligate steps is at most:

n f+1 · (4λ(W))7λ(W)+1 · (kℓ)3λ(W)+1 · (ℓ+ 1)6k · ((1 + ε)d)tk+kℓ/2−|D(W)|−s/2

where λ(W) ⩽ 3e + 12kℓ ln(kℓ)
r + 3∆.

Now recall that we wished to obtain bounds on the following from (2.25):

Q := C(n)∑
W

(
2d|D(W)|

n

)∆(W)

·
(

d
n

)e(W)+ f (W)

· n.8e(W) · 4|S(W)| · δ|S(W)|−24kt.

From Theorem 2.6.16:

Q ⩽ C(n) ∑
f ,e,∆,s⩾0

(
2d|D(W)|

n

)∆

·
(

d
n

) f
·
(

d
n.2

)e
· 4s · δs−24kt·
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n f+1 · (4λ(W))7λ(W)+1 · (kℓ)3λ(W)+1 · (ℓ+ 1)6k · ((1 + ε)d)tk+kℓ/2−|D(W)|−s/2

⩽ C(n) · n ∑
f ,e,∆,s⩾0

(
2d|D(W)|

n

)∆

· ((1 + ε)d) f+kℓ/2−|D(W)|−s/2·(
d

n.2

)e
· (4δ)s · δ−24kt·

(4λ(W)kℓ)7λ(W)+1 · ((ℓ+ 1)6((1 + ε)d)t)k

Defining C′(n) := C(n) · n and the fact f = s + |D(W)| − e, we get:

⩽ C′(n) ∑
f ,e,∆,s⩾0

(
2d|D(W)|

n

)∆

· ((1 + ε)d)s/2−e+kℓ/2 ·
(

d
n.2

)e
· (4δ)s · δ−24kt·

(4λ(W)kℓ)7λ(W)+1 · ((ℓ+ 1)6((1 + ε)d)t)k

⩽ C′(n) · ((1 + ε)d)kℓ/2 ∑
f ,e,∆⩾0

(
2d|D(W)|

n

)∆

·
(

1
n.2

)e
·

δ−24kt · (4λ(W)kℓ)7λ(W)+1 · ((ℓ+ 1)6((1 + ε)d)t)k ∑
s⩾0

(
4δ
√
(1 + ε)d

)s

where the inequality above is true since no other term depends on s. By our choice
of δ, the summation over s is bounded by 2.

⩽ 2C′(n) · ((1 + ε)d)kℓ/2 · ((ℓ+ 1)6((1 + ε)d)t)k · δ−24kt

∑
f ,e,∆⩾0

(
2d|D(W)|

n

)∆

·
(

1
n.2

)e
· (4λ(W)kℓ)7λ(W)+1

By noting that 4λ(W)kℓ ⩽ poly(k, ℓ):

⩽ 2C′(n) · ((1 + ε)d)kℓ/2 · ((ℓ+ 1)6((1 + ε)d)t)k · δ−24kt

∑
f ,e,∆

(
2d|D(W)| · poly(k, ℓ)

n

)∆

·
(

poly(k, ℓ)
n.2

)e

· poly(k, ℓ)84kℓ ln(kℓ)/r

⩽ 8C′(n) · ((1 + ε)d)kℓ/2 · ((ℓ+ 1)6((1 + ε)d)t)k · δ−24kt · poly(k, ℓ)84 ln6(kℓ) · (kℓ)

We know that F is a nonnegative random variable since it is the trace of an even
power of a Hermitian matrix, i.e., it is the trace of a positive semidefinite matrix.
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Hence, by Markov’s inequality, we know that except with probability n−100, the
random variable F defined in (2.22) is bounded by

n100 · 8C′(n) · ((1 + ε)d)kℓ/2 · ((ℓ+ 1)6((1 + ε)d)t)k · δ−24kt · poly(k, ℓ)84 ln6(kℓ) · (kℓ)
(2.26)

By our choice of parameters, the kℓ-th root of the above is bounded by:

(1 + ε)4
√

d.

In particular, this means the k-th root of (2.26) is bounded by
(
(1 + ε)4

√
d
)ℓ

with

probability 1− n−100.
In summary, we have shown that whp:

Tr

((A− d
n

1[n]\S1T[n]\S

)(ℓ)
)k
1/k

⩽
(
(1 + ε)4

√
d
)ℓ

(2.27)

thereby establishing:

Theorem 2.6.17 (Restatement of Theorem 2.6.12). With probability 1− n−100:∥∥∥∥∥
(

A− d
n

1[n]\S1T[n]\S

)(ℓ)
∥∥∥∥∥ ⩽ ((1 + ε)4

√
d
)ℓ

.

2.6.4 Counting Walks

This section is dedicated to proving Theorem 2.6.16. Let W be a (k× ℓ)-linkage
with f fresh steps, e excess edges, s singleton edges, ∆ profligate steps. In this
section, we will give an efficient encoding of W which will help us upper bound
the number of such linkages.

We use G(W), defined to have vertex set V(W) and edge set E(W), to denote
the graph of the linkage W. Further, each edge {i, j} has a weight aij, which is the
number of times edge {i, j} is walked on in W. We can write E(W) as the disjoint
union S(W) ∪ D(W) where S(W) is the set of singleton edges and D(W) is the
set of duplicative edges. Let D∗(W) denote a maximum weight subset of D(W)

such that no vertices in the graph induced by those edges on vertices in W are
(t, r, ε)-vexing within W.
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Remark 2.6.18. For any set of edges E′, we will use V(E′) to denote the set of
endpoints of edges in E′.

Remark 2.6.19. |D(W)| = |D∗(W)|+ ∆ and |E(W)| = |D∗(W)|+ ∆ + s.

Remark 2.6.20. For any subset of edges E′ ⊆ E(W), the total number of times W
walks on an edge in E′ is given by

∑
ij∈E′

aij.

A special case of the above is that when E′ = E(W), the sum above is equal to kℓ.

Our next step is to prove:

Claim 2.6.21. There is a spanning forest F of D∗(W) ∪ S(W) such that:

1. ∑
ij∈D∗(W)\F

aij ⩽
4kℓ ln(kℓ)

r
.

2. |S(W) \ F| ⩽ e.

In service of proving the above claim we will need the following standard fact
which can be found in [KV12, Theorem 13.21]:

Fact 2.6.22. Let P be the polytope in RD∗(W) given by the convex hull of indicator vectors
of spanning forests of D∗(W). P is also the feasible region of the following linear program:

x ∈ RD∗(W)

x ⩾ 0

∑
ij∈R

xij ⩽ |V(R)| − 1 ∀R ⊆ D∗(W). (2.28)

We additionally also state the following from [MOP19, Corollary 2.18] which is
a consequence of the “irregular Moore bound” of [AHL02]:

Fact 2.6.23. Let H be a graph with v ⩾ 3 vertices and girth g ⩾ 20 ln v. Then |E(H)| −
v ⩽ 2v ln v

g .
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Proof of Claim 2.6.21. Consider the following assignment to the variables of LP
(2.28):

x̃ij = 1− 4 ln(kℓ)
r

.

We will first show that this assignment is indeed feasible for the LP. Recall that we
need to show that for every R ⊆ D∗(W), ∑ij∈R x̃ij ⩽ |V(R)| − 1. The LHS of this

expression is simply |R|
(

1− 4 ln(kℓ)
r

)
so it suffices to prove:

|R|
(

1− 4 ln(kℓ)
r

)
⩽ |V(R)| − 1 ∀R ⊆ D∗(W).

Case 1: |V(R)| < r. In this case R is a forest as there R has no cycles of length
smaller than r. Since R is a forest |R| ⩽ |V(R)| − 1 and hence the above inequality
we wish to prove is definitely true.

Case 2: |V(R)| ⩾ r: Since the girth of (V(R), R) is at least r, by Fact 2.6.23,

|R| ⩽ |V(R)|
(

1 +
2 ln |V(R)|

r

)
|R|

1 + 2 ln |V(R)|
r

⩽ |V(R)|

|R| − |R|2 ln |V(R)|
r

− 1 ⩽ |V(R)| − 1

|R| − |R|4 ln(kℓ)
r

⩽ |V(R)| − 1.

If we augment the linear program (2.28) with the objective function

max ∑
ij∈D∗(W)

aijxij,

by Fact 2.6.22 we know that there is a spanning forest F̃ such that maximum of
the above objective is achieved at the indicator vector of F̃. Since we showed x̃ is
feasible,

∑
ij∈F̃

aij ⩾ ∑
ij∈D∗(W)

aij x̃ij.
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Subtracting both sides of the above inequality from ∑ij∈D∗(W) aij yields

∑
ij∈D∗(W)\F̃

aij ⩽ ∑
ij∈D∗(W)

aij(1− x̃ij) ⩽
4kℓ ln(kℓ)

r
.

Now we extend F̃ to a spanning forest F of D∗(W) ∪ S(W). Initially, we set F = F̃
and process edges of S(W) sequentially in an arbitrary order i1 j1, . . . , is js. We add
it jt to F if its addition does not create a cycle and “reject” it otherwise. The number
of rejected edges is bounded by e and hence F must contain at least s− e edges of
S. Thus, |S(W) \ F| ⩽ e. Furthermore, since D∗(W) \ F = D∗(W) \ F̃,

∑
ij∈D∗(W)\F

aij ⩽
4kℓ ln(kℓ)

r
.

Claim 2.6.21 lends itself to a natural decomposition of the edges of G(W) into
forest edges, which we denote F(W), and crossing edges, which we denote C(W).

Remark 2.6.24. C(W) can be written as the following natural disjoint union of sets:

C(W) = (S(W) \ F(W)) ∪ (D∗(W) \ F(W)) ∪ (D(W) \ D∗(W)).

At a high level, the linkage W breaks into stretches of steps on F(W) between steps
on C(W); a large chunk of this section is dedicated to showing how to encode the
portions of W on forest edges highly efficiently.

Let’s now express the linkage W in terms of the sequence of vertices walked on:
in particular W = w0w1w2 . . . wkℓ.

Definition 2.6.25. We call each consecutive pair wiwi+1 a step. If the edge {wi, wi+1}
is a crossing edge, we call the step wiwi+1 a crossing step, and a forest step otherwise.
We call a maximal contiguous sequence of forest steps a cruise.

Remark 2.6.26. Any (k× ℓ)-linkage W can be expressed as

W = C1s1C2s2 . . . Cγ(W)sγ(W)Cγ(W)+1

where each Ci is a (possibly empty) cruise, each si is a crossing step, and γ(W) is
the number of crossing steps in W.
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Next, we wish to bound γ(W).

Claim 2.6.27. γ(W) ⩽ e + 4kℓ ln(kℓ)
r + ∆.

Proof. By Remark 2.6.24:

γ(W) = ∑
ij∈S(W)\F(W)

aij + ∑
ij∈D∗(W)\F(W)

aij + ∑
ij∈D(W)\D∗(W)

aij

⩽ ∑
ij∈S(W)\F(W)

1 +
4kℓ ln(kℓ)

r
+ ∆ (by Claim 2.6.21)

⩽ e +
4kℓ ln(kℓ)

r
+ ∆. (by Claim 2.6.21)

Definition 2.6.28. We refer to endpoints of edges in C(W) as well as the start/end
vertex of W1 as terminal vertices. We use T(W) to refer to the set of terminal vertices
of G(W).

Remark 2.6.29. |T(W)| ⩽ 2|C(W)|+ 1 ⩽ 2γ(W) + 1. We will use λ(W) to refer to
2γ(W) + 1.

Remark 2.6.30. Each cruise starts and ends at terminal vertices.

Definition 2.6.31 (Skeleton forest). We use Skel(F(W)) to refer to the subforest of
F(W) given by the union of paths in F(W) connecting terminal vertices. Formally,

Skel(F(W)) :=
⋃

P path in F(W)
endpoints of P in T(W)

P.

Observation 2.6.32. Every leaf in Skel(F(W)) is a terminal vertex and hence by
Remark 2.6.29 the number of leaves in Skel(F(W)) is at most λ(W).

Goal 1: Encoding Skel(F(W)). Our first goal is to find an efficient encoding of
Skel(F(W)). Towards this goal, we first prove the following.

Lemma 2.6.33. Let ΓL,v be the set of forests with at most L leaves on vertex set {1, . . . , v}.
There is a subset Q ⊆ ΓL,v of at most (4Lv)2L+1 forests such that any forest in ΓL,v is
isomorphic to a forest in Q.

1which are the same since W is closed
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We will need the following classical graph theory fact called Cayley’s formula;
a reader can find multiple proofs in [Cas06]:

Fact 2.6.34. The number of labeled spanning trees on v vertices is vv−2.

We will also need the following fact about trees:

Fact 2.6.35. Let T be a tree where vi is the number of vertices of degree i. Then the following
are true:

3(v1 − 2) ⩾ ∑
i⩾3

ivi

v1 − 2 ⩾ ∑
i⩾3

vi

Proof. Using the fact that the sum of degrees in a tree is 2|V(T)| − 2 we have:

2 ∑
i⩾1

vi − 2 = ∑
i⩾1

ivi

v1 + ∑
i⩾3

vi − 2 = ∑
i⩾3

ivi

v1 − 2 = ∑
i⩾3

(i− 2)vi (2.29)

Lower bounding i− 2 by 1 in the RHS of (2.29), it follows that:

v1 − 2 ⩾ ∑
i⩾3

vi (2.30)

Adding 2·(2.30) and (2.29) gives us:

3(v1 − 2) ⩾ ∑
i⩾3

ivi.

Proof of Lemma 2.6.33. Let Ξ be any tree in ΓL,v. If we split V(Ξ) into leaves V1(Ξ),
degree-2 vertices V2(Ξ), and degree-⩾ 3 vertices V⩾3(Ξ), we have the following
from Fact 2.6.35:

|V1(Ξ)| − 2 ⩾ |V⩾3(Ξ)|.

Thus, |V⩾3(Ξ)| ⩽ L− 2. Let Ξ̃ be the weighted tree described in the following way:
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Its vertex set is [|V1(Ξ) ∪V⩾3(Ξ)|]. Let π be an arbitrary bijection from
[|V1(Ξ) ∪V⩾3(Ξ)|] to V1(Ξ) ∪V⩾3(Ξ). Place an edge between vertices
i and j if there is a path between π(i) and π(j) such that all vertices
in between are in V2(Ξ). The weight of an edge ij in Ξ̃ is the distance
between i and j in Ξ.

Observe that Ξ̃ has ṽ ⩽ 2L vertices and the weight of an edge is an integer between
1 and |V(Ξ)|. By Cayley’s formula (Fact 2.6.34) the number of labeled spanning
trees on ṽ vertices is at most (ṽ)ṽ−2. Consequently the number of spanning forests
on ṽ vertices is at most (2ṽ)ṽ (since every spanning tree on ṽ vertices has 2ṽ−1

subforests). Since ṽ ⩽ 2L and there are at most 2L possibilities for ṽ, each labeled
spanning forest on vertex set [ṽ] that can be encoded by a number in

[
(4L)2L+1].

In particular this gives us a way to encode the edge set of any Ξ̃ by a number in[
(4L)2L+1].

All the weights of the edges can be encoded by a number in
[
|V(Ξ)|2L], and

consequently we can encode Ξ̃ by a number in
[
(4L|V(Ξ)|)2L+1]. It is possible to

reconstruct a forest isomorphic to Ξ from Ξ̃ and hence our proof is complete.

Lemma 2.6.36. Skel(F(W)) can be encoded by a number in[
(4λ(W)kℓ)2λ(W)+1 · n|V(Skel(F(W)))|

]
.

Proof. At a high level, our proof uses Lemma 2.6.33 to encode an unlabeled version
of Skel(F(W)) in

[
(4λ(W)kℓ)2λ(W)+1

]
bits and encodes labels using a number in[

n|V(Skel(F(W)))|
]
.

Encoding “unlabeled” version of Skel(F(W)). Let π be an arbitrary function
that maps V(F(W)) to {1, . . . , |V(F(W))|}. Note that the graph π(Skel(F(W))) is
isomorphic to Skel(F(W)). By Observation 2.6.32, Lemma 2.6.33, and bounding
|V(Skel(F(W)))| by kℓ, π(Skel(F(W))) can be encoded (up to isomorphism) by a
number in

[
(4λ(W)|V(Skel(F(W)))|)2λ(W)+1

]
.

Encoding labels of Skel(F(W)). From the encoding of π(Skel(F(W))), we can re-
cover a graph on vertex set {1, . . . , |V(Skel(F))|} isomorphic to Skel(F(W)), which
we call ϕ(Skel(F(W))). We thus encode the map ϕ−1 as it is possible to reconstruct



CHAPTER 2. LOCAL STATISTICS SDP 71

Skel(F(W)) from ϕ(Skel(F(W))) and ϕ−1; such a map can be encoded using a num-
ber in

[
n|V(Skel(F(W)))|

]
.

Combining the above two encodings proves the lemma.

Goal 2. Our next goal is to give an encoding of the collection of start and end
points of each cruise.

Lemma 2.6.37. Given the encoding of Skel(F(W)) from Lemma 2.6.36, the collection of
start and end points of each cruise

C = (C1[start], C1[end]), . . . , (Cγ+1[start], Cγ+1[end])

can be encoded by a number in
[
(kℓ)λ(W)

]
.

Proof. Let ϕ be the function from the proof of Lemma 2.6.36. The sequence

Φ = ϕ(C1[start]), ϕ(C1[end]), . . . ϕ(Cγ+1[start])2

is a sequence of length λ(W) of elements in {1, . . . , |V(Skel(F))|} and |V(Skel(F))|⩽
kℓ, and hence can be encoded by a number in

[
(kℓ)λ(W)

]
. C can be recovered from

Φ and ϕ−1, and since the encoding of Skel(F(W)) gives us ϕ−1, so we are done.

Goal 3: Encoding cruises. Now we move on to encoding cruises. Let Ci be a
cruise that starts at terminal vertex tstart and ends at terminal vertex tend.

Remark 2.6.38. There is a unique path between tstart and tend in F as follows:

v0v1v2 . . . vpvp+1.

where v0 = tstart and vp+1 = tend.

Definition 2.6.39. Let Ci be a cruise. We say a contiguous subwalk of Ci is a detour
if it starts and ends at the same vertex.

2We skip out on Cγ+1[end] since it is equal to C1[start].
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Claim 2.6.40. Cruise Ci can be constructed by taking the path from tstart to tend as
described in Remark 2.6.38 and inserting at most one detour after each vertex in
the path. In particular, Ci can be written in the form

Ci = v0 . . . vj1Detouri,j1 . . . vj2Detouri,j2 . . . . . . vjbDetouri,jb . . . vp+1

where 0 ⩽ j1 ⩽ . . . ⩽ jb ⩽ p + 1.

Proof. We can express Ci in the desired form using the following recursive proce-
dure:

If every vertex is visited once, the path from Remark 2.6.38 is the cruise.
If there exists a vertex that occurs more than once, find the first such
visited vertex vj1 , and define Detouri,j1 as the subwalk of Ci between the
first and last occurrence of vj1 ; now repeat this procedure on the walk
starting at the last occurrence of vj1 and ending at the end of the cruise.

Goal 3.1: Encoding locations of detours. Recall that W is composed of k links of
length-ℓ each. We utilize this structure of W to encode the locations as well as the
length of all detours in W.

Definition 2.6.41. Given a detour Detour in W, we say the timestamp of Detour is
the tuple (a, b) where a is the position of the start step of Detour in W and b is the
position of the end step of Detour in W.

Lemma 2.6.42. There is an encoding of the timestamps of all detours in W in
[
(ℓ+ 1)2k].

Proof. Let L1, . . . , Lk denote the k links that compose W. Due to the nonbacktracking
nature of links, each link can have at most one “start step” of a detour and at most
one “end step” of a detour. We associate a tuple (ai, bi) to link Li where ai is 0
if there is no start step of a detour in Li and the position of that step (which is
a number in [ℓ]) if there is such a step. Likewise, bi is 0 if Li contains no end
step, and is the position of the end step otherwise. It is possible to reconstruct
timestamps of all detours from the m tuples (ai, bi), and since each tuple can be
encoded by a number in

[
(ℓ+ 1)2], this list of tuples can be encoded by a number

in
[
(ℓ+ 1)2k].
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Goal 3.2: Encoding detours. Before describing how we encode detours we make
some structural observations about detours.

Claim 2.6.43. All the edges visited by any detour Detour are in D∗(W) ∩ F(W).

Proof. Since Detour is contained inside a cruise, all its edges are in F(W). Hence,
all edges of Detour are in D∗(W) ∪ S(W) because F(W) is a spanning forest of
D∗(W) ∪ S(W). Since Detour is a closed walk in a tree, it must visits each edge an
even number of times; in particular, Detour does not contain any singleton edges
and hence is completely contained in D∗(W).

Corollary 2.6.44. For any detour Detour, the graph G(Detour) has no (t, r, ε)-vexing
vertices.

Observation 2.6.45. Any detour Detour can be decomposed into a sequence of links
of length exactly ℓ, with the exception of the first and last link, which can both have
any length between 1 and ℓ.

Definition 2.6.46. Any detour Detour starts and ends at some vertex v. We call v
the root of Detour and denote it with Root(Detour).

Remark 2.6.47. One should think of a detour as a closed walk on a tree rooted at a
distinguished vertex.

Definition 2.6.48. We call a step from u to v in Detour an up-step if v is closer to
Root(Detour) than u. In similar spirit, we call that step a down-step if v is further
from Root(Detour) than u.

Definition 2.6.49. We further classify down-steps in a detour Detour into three
types:

1. We call a down-step from u to v a fresh skeleton step if the edge {u, v} is part
of Skel(F(W)) and has not been traversed by any detour so far.

2. We call a down-step from u to v a fresh intrepid step if the edge {u, v} is not
part of Skel(F(W)) and has not been traversed so far. We use fi to denote the
total number of fresh intrepid steps across all detours in the walk.

3. We call a down-step from u to v a stale step if it is not a fresh skeleton step or
a fresh intrepid step.
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Claim 2.6.50. Suppose there is a stale step from u to v at time T. Then there is an
occurrence of a step from u to v as well as from v to u in a detour at an earlier time.

Proof. Since the step at time T between u and v occurs in a detour, the edge {u, v}
must be part of D∗ ∩ F(W). If {u, v} is part of Skel(F(W)), then it must have
been traversed in a detour at a time before T, since otherwise this step would be
classified as a fresh skeleton step. If {u, v} is not part of Skel(F(W)), then it must
be part of F(W) \ Skel(F(W)) and these edges are only traversed in detours; and
if {u, v} was not traversed in an earlier detour, it would have been classified as a
fresh intrepid step.

Thus, we have established that the edge {u, v} is traversed by a detour. Now,
if {u, v} was traversed in a detour, there must have been both a step from u to v
and a step from v to u since if a directed edge is traversed in a detour then so is its
reversal; in particular, a step between u and v occurs in a detour before time T.

Definition 2.6.51. We call a (possibly empty) contiguous sequence of steps a stretch.

Observation 2.6.52. Due to nonbacktracking nature of links and the tree structure
of detours, every link in a detour can be broken into 4 phases:

• Phase 1: an up-stretch,

• Phase 2: a stale stretch,

• Phase 3: a fresh skeleton stretch

• Phase 4: a fresh intrepid stretch.

Lemma 2.6.53. Given the encoding of Skel(F(W)) from Lemma 2.6.36, the encoding of
endpoints of cruises from Lemma 2.6.37, and the encoding of timestamps of detours from
Lemma 2.6.42, it is possible to encode all detours in W using a number in[

ℓ4k · ((1 + ε)d)tm · ((1 + ε)d)
1
2 (kℓ−2|D(W)|−|S(W)|) · (3λ(W) + 1)5λ(W) · n fi

]
.

Proof. Let Detour1, . . . ,Detourb be the sequence of detours of W in order of time.
We first specify how we encode detours, and then prove that the encoding is valid,
i.e., recovery of all Detoura from the given encoding is possible. As pointed out in
Observation 2.6.45 each Detoura can be broken into a sequence of links L1, . . . , Lτ.
We now describe how to encode each Lj.
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Encoding metadata. For each link Lj, we first specify four numbers in [ℓ] denoting
the lengths of the up-stretch, stale stretch, fresh skeleton stretch, and fresh intrepid
stretch in the detour. Now we zoom in and encode each phase carefully.

Encoding up-stretches. We don’t specify any extra information about the up-
stretch.

Encoding a stale stretch. Given a stale stretch ζ, let Eζ denote the set of edges
visited before ζ starts. From Claim 2.6.43 ζ is completely contained in D∗(W).
Since ζ is a stale stretch, it must be contained in Eζ ∩ D∗(W). We first break ζ into⌈
|ζ|
t

⌉
substretches ζ1, . . . , ζ⌈ |ζ|

t

⌉ each of length at most t and encode each substretch.

Let vi be the vertex at the start of ζi and v′i be the end of ζi. Since Eζ ∩ D∗ has no
(t, r, ε)-vexing vertices, there are at most ((1 + ε)d)t vertices within distance t of
vi; in particular, there are at most ((1 + ε)d)t possible candidates for v′i. We sort
these candidates in increasing order of time first visited in a detour, and encode ζi
with the index of v′i in this list of candidates. Note that this index is a number in[
((1 + ε)d)t]. To encode ζ, we specify

⌈
|ζ|
t

⌉
such numbers, one corresponding to

each ζi.

Encoding a fresh skeleton stretch. For each step u → v of the fresh skeleton
stretch, we don’t specify any information if the degree of u within Skel(F(W)) is
⩽ 2 and u is not a terminal. If the degree of u is at least 3 or if u is a terminal, we
create a list of neighbors of u sorted in increasing order of their identities in Kn,
and specify the index of v in this list. Note that this index is at most the degree of u
within Skel(F(W)), which from Fact 2.6.35 is at most 3× (# leaves in Skel(F(W))),
which in turn from Observation 2.6.32 is bounded by 3λ(W).

Encoding a fresh intrepid stretch. For every fresh intrepid step uv, we specify
the identity of v in Kn, so each fresh intrepid step is encoded by a number in [n].

Recovery of detours. We now show how to recover the detours from the given
encodings. First, it is possible to recover the root of every detour from the encodings
given by Lemma 2.6.36, Lemma 2.6.37 and Lemma 2.6.42. We now show how to
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recover the detours in order

Detour1,Detour2, . . . ,Detourb.

Suppose Detour1, . . . ,Detouri have been recovered, we show how to recover Detouri+1.
Let L1, . . . , Lτ be the links in Detouri+1. We show how to sequentially recover the
links. Suppose L1, . . . , Lj have been recovered. We now describe how to recover
Lj+1.

Recovering the up-stretch in Lj+1. The length of the up-stretch, which is part of
the “metadata encoding” is sufficient to reconstruct the up-stretch of Lj+1.

Recovering the stale stretch in Lj+1. By Claim 2.6.50 every step in the stale stretch
of Lj+1 has been taken in a detour before. Since we know the the length of the stale
stretch in Lj+1 from the metadata encoding, and we have recovered all steps before
the stale stretch in Lj+1 that are part of a detour, we can infer a list of candidate
endpoints of the stale stretch. Further, we also know the order in which these
candidates were visited in detours, and hence we can recover the stale stretch in
Lj+1 from the encoding of stale stretches we described.

Recovering the fresh skeleton stretch in Lj+1. Now we describe how to recover
the fresh skeleton stretch of Lj+1. Once the stale stretch of Lj+1 has been recovered,
we know the start vertex of this stretch, v. We also can infer the length of the fresh
skeleton stretch LenSkel from the metadata encoding. We recover this full stretch by
performing the following walk, which traces the same steps as the fresh skeleton
stretch of Lj+1:

• Let x be a counter that is initially 0.

• Let v′ be initially set to v (v′ denotes the “current vertex” in our walk).

• While x ⩽ LenSkel:

– If the degree of v′ within Skel(F(W)) is ⩽ 2 and v′ is not a terminal,
then step along the unique unvisited edge incident to v′ (called v′w) and
update v′ to w. Note that if the first x steps of this walk and those in the fresh
skeleton stretch coincide, then v′w must be the (x + 1)-th step in the fresh
skeleton stretch.
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– If the degree of v′ within Skel(F(W)) is ⩾ 3 or v′ is a terminal vertex: then
assuming the first x steps of the current walk match those of the fresh
skeleton stretch, we can recover the next step v′w of the fresh skeleton
stretch from the encoding of Skel(F(W)) in Lemma 2.6.36 combined the
encoding of fresh skeleton stretches described earlier in this proof. Thus,
we update v′ to w.

– Increment x by 1.

Recovering the fresh intrepid stretch in Lj+1. We can straightforwardly recover
this stretch step-by-step since the identity of each vertex within Kn is given in the
encoding.

Recovery wrapup. Thus, we have established how we recover link Lj+1 from the
given encoding and all links in all detours that occurred before. Inductively, this
gives us a method to recover all detours in W.

Counting. Now we finally turn our attention to bounding the number of encod-
ings of all detours. We will bound the number of metadata encodings, the number
of stale stretch encodings, the number of fresh skeleton stretch encodings and
finally the number of fresh intrepid stretch encodings.

Bounding the number of metadata encodings. Since there are at most k links in
detours and the metadata of each link contains 4 numbers in [ℓ], there are at most
ℓ4k possible metadata encodings.

Bounding the number of stale stretch encodings. Let us call the stale stretch
corresponding to a link L as ζ(L). Each stale stretch ζ is encoded using

⌈
|ζ|
t

⌉
numbers in

[
((1 + ε)d)t]. The total number of stale stretch encodings is then

bounded by

∏
L∈Links(W)

(
((1 + ε)d)t

)⌈ |ζ(L)|
t

⌉
⩽
(
((1 + ε)d)t

)∑L∈Links(W)

(
|ζ(L)|

t +1
)

. (2.31)
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We turn our attention to bounding ∑L∈Links(W)

(
|ζ(L)|

t + 1
)

.

∑
L∈Links(W)

(
|ζ(L)|

t
+ 1
)
= k +

1
t ∑

L∈Links(W)

|ζ(L)| (2.32)

Note that ∑L∈Links(W) |ζ(L)| is the total number of stale steps across all detours.
From Claim 2.6.50 the (undirected) edge that a stale step is taken on is being
traversed for at least the third time. Further, since the stale step is a down-step,
there must be a corresponding up-step that is the reversal of the down-step in the
detour. Thus, an edge {i, j} is traversed by a stale step at most

aij−2
2 times. Further,

since there are multiple steps that traverse the same edge that a given stale step
traverses, every stale step must traverse an edge in D(W). Thus, we can bound
(2.32) by:

k +
1
t ∑
{i,j}∈D(W)

1
2
(aij − 2) = k +

1
2t

 ∑
ij:aij⩾2

(aij − 2) + ∑
ij:aij=1

(aij − 1)


= k +

1
2t

(kℓ− 2|D(W)| − |S(W)|)

Plugging in the above into (2.31) gives us a bound of:

((1 + ε)d)tk · ((1 + ε)d)
1
2 (kℓ−2|D(W)|−|S(W)|) .

Bounding the number of fresh skeleton stretch encodings. Let P be the set of
vertices that either are terminal vertices or have degree-⩾ 3 in Skel(F(W)). We can
extract our encoding of fresh skeleton stretches from the following map H.

For every v ∈ P, H(v) is equal to the list of numbers in [degSkel(F(V))(v)]
such that number i is in this list if vwi is a fresh skeleton step, where wi
is the ith neighbor of v in lexicographic order of names in Kn; further,
this list is sorted in order of time the corresponding steps are taken.

There are at most (degSkel(F(V))(v) + 1)degSkel(F(V))(v) possibilities for H(v) since
every edge in the skeleton can occur at most once in a fresh skeleton stretch. Since
the number of possible encodings is upper bounded by the number of candidates
for H, we have a bound of

∏
v∈P

(degSkel(F(V))(v) + 1)degSkel(F(V))(v) ⩽ (3λ(W) + 1)∑v∈P degSkel(F(V))(v) (2.33)
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Now we focus on bounding ∑v∈P degSkel(F(V))(v).

∑
v∈P

degSkel(F(V))(v) = ∑
v:degSkel(F(V))(v)⩾3

degSkel(F(V))(v)+

∑
v:degSkel(F(V))(v)⩽2

v∈T(W)

degSkel(F(V))(v)

From Fact 2.6.35 the first term is bounded by 3× # leaves in Skel(F(W)), which
from Observation 2.6.32 is bounded by 3λ(W). The second term is bounded by
2|T(W)|, which from Remark 2.6.29 is at most 2λ(W). As an upshot we have:

∑
v∈P

degSkel(F(V))(v) ⩽ 5λ(W).

Plugging this into (2.33) gives us a bound on the number of possible skeleton fresh
stretch encodings of:

(3λ(W) + 1)5λ(W).

Bounding the number of fresh intrepid stretch encodings: The encoding of
fresh intrepid stretches comprises of fi identities of vertices in Kn, each of which is
represented by a number in [n]. Hence there are at most n fi fresh intrepid stretch
encodings.

Combining all the above bounds, we get a bound on the total number of possible
encodings of all the detours of

ℓ4k · ((1 + ε)d)tk · ((1 + ε)d)
1
2 (kℓ−2|D(W)|−|S(W)|) · (3λ(W) + 1)5λ(W) · n fi

Since it is possible to recover a linkage W from Skel(W), the endpoints of its
cruises and the order in which the cruises occur, the timestamps of the detours,
and the detours, by a combination of Lemma 2.6.36, Lemma 2.6.37, Lemma 2.6.42
and Lemma 2.6.53 along with a bound on λ(W) from Claim 2.6.27 we have the
following bound:

Theorem 2.6.54 (Restatement of Theorem 2.6.16). The total number of (k, ℓ)-linkages
with f fresh edges, e excess edges, s singleton edges and ∆ profligate steps is at most:

n f+1 · (4λ(W))7λ(W)+1 · (kℓ)3λ(W)+1 · (ℓ+ 1)6k · ((1 + ε)d)tk+kℓ/2−|D(W)|−s/2

where λ(W) ⩽ 3e + 12kℓ ln(kℓ)
r + 3∆.
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2.7 Lower Bounds in the Stochastic Block Model

In this section, we finish the proof of Theorem 2.6.3 by proving lower bounds for
the level-M path statistics SDP (as described by Definition 2.6.2) for every constant
M for detection in the stochastic block model under the Kesten-Stigum threshold.

An ingredient we will need is an Ihara–Bass formula for weighted graphs,
which appears in [WF11, FM17] as well as a related power series identity, which to
our knowledge is novel. We give a proof for the sake of being self-contained.

2.7.1 Weighted Ihara-Bass and a Power Series Identity

Let G = (V, E) be any graph. For any edge weights c : E → R, write Ac for the
weighted adjacency matrix of G, and Dc for the diagonal matrix of c-weighted
vertex degrees. More generally let A(ℓ)

c count c-weighted non-backtracking walks
on G, C ∈ R2|E|×2|E| be the diagonal matrix with Ci→j,i→j = C(i → j), and write
Bc = CB where B is the nonbacktracking matrix of the complete graph.

Theorem 2.7.1 (Weighted Ihara-Bass). For any weights c : E→ R, let ĉ = c(1− c2)−1.
Then

det(1− Bc) = ∏
(i,j)∈E

(1− c(i, j)2)det(1− Aĉ + Dcĉ),

and
(1− Aĉ + Dcĉ)

−1 = ∑
ℓ⩾0

A(ℓ)
c

whenever this series converges.

Proof. Regard each edge as a pair of directed edges in opposite directions. Write
S ∈ R|V|×2|E| and T ∈ R2|E|×|V| for the start and terminal matrices (i.e. if (u, v) ∈ E
the former has Su,u→v = 1 and the latter has Tu→v,v = 1) and Π ∈ R2|E|×2|E|

for the involution that reverses directed edges. Let’s adopt the convention that
B = TS−Π, and note for later that CΠ = ΠC, since the weights c are a function of
undirected edges. Moreover SΠCT = Dc and S(CB)ℓCT = A(ℓ+1)

c for every ℓ ⩾ 0;
indeed analogous identities hold for any diagonal weight matrix commuting with
Π.

Now consider the matrix

Bc ≜
(

1 S
CT 1 + CΠ

)
.
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We can compute the determinant of Bc using two different Schur complements:

detBc = det(1− CB) = det(1 + CΠ)det(1− S(1 + CΠ)−1CT).

It remains now to understand the matrix 1 − S(1 + CΠ)−1CT. Since C and Π
commute,

(1 + CΠ)−1 = (1− C2)−1(1− CΠ)

making

1− S(1 + CΠ)−1CT = 1− S
(
(1− C2)−1 − C(1− C2)−1Π

)
CT

= 1− Aĉ + Dcĉ;

the second line follows from our initial discussion and the definition ĉ = c(1−
c2)−1.

To prove the power series identity, let invert Bc(z) with the Schur complement
formula:

1 = BcB
−1
c

=

(
1 S

CT 1 + CΠ

)(
(1− Aĉ + Dcĉ)

−1 −S(1− CB)−1

−(1− CB)−1CT (1− CB)−1

)
.

Considering the upper left block, we see

(1− Aĉ + Dcĉ)
−1 = 1 + S(1− CB)−1CT

= 1 + ∑
ℓ⩾0

S(CB)ℓCT

= ∑
ℓ⩾0

A(ℓ)
c

2.7.2 Construction of SDP solution

Let G be a G(n, d/n) graph. Our goal is to construct a solution to the SDP given in
Definition 2.6.2 when G ∼ G(n, d/n), and d is under the KS threshold. We instead
construct a solution to the following simpler SDP, and obtain a solution for the
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SDP in Definition 2.6.2 via an identical procedure to the one described after the
statement of Proposition 2.5.10. Given parameters λ, M, δ and graph G:

Find n× n matrix Y ⪰ 0 s.t.

Yi,i = 1 ∀i ∈ [n]〈
Y,
(

AG −
d
n

11⊤
)(ℓ)

〉
= dℓλℓn±O(δn) ∀ℓ ⩽ M. (2.34)

Our main technical result in this section is:

Theorem 2.7.2. For G ∼ G(n, d/n), for |λ| < 1√
d
, and for any δ, M > 0, the SDP

(2.34) is feasible with high probability.

Let ε > 0 be an arbitrary constant, ℓ0 ∈ [⌈log n log log n⌉, 2⌈log n log log n⌉],
t = ℓ1/3

0 , r = 2ℓ0
ln3(2ℓ0)

; let Gt,r,ε be its (t, r, ε)-truncation and let At,r,ε denote the
adjacency matrix of Gt,r,ε. Now, let S be the set of vertices deleted in truncating G,
and define edge weights c : E→ R so that

Ac = At,r,ε −
d
n

1[n]\S1⊤[n]\S

Define A(m)
c as 1 when m = 0 and akin to how A(m)

was defined in Section 2.6.2
when m ⩾ 1. And finally define Bc the way it is defined in Section 2.7.1. Our next
ingredient is establishing an operator norm bound on Bℓ0

c . Indeed:

∥Bℓ0
c ∥ ⩽

√
Tr
(

Bℓ0
c (B∗c )ℓ0

)
.

The above quantity can be seen to be upper bounded by:√
n2Tr

((
A(ℓ0−1)

c

)2
)

which from (2.27) is bounded by:

n ·
(
(1 + ε)4

√
d
)ℓ0−1

,

which by our choice of ℓ0 is at most(
(1 + ε)5

√
d
)ℓ0

.
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Note that the following is true for any ℓ0 ∈ I := [⌈log n log log n⌉, 2⌈log n log log n⌉]:

∥Bℓ0
c ∥ ⩽

(
(1 + ε)5

√
d
)ℓ0

. (2.35)

Since any ℓ ⩾ 2⌈log log n⌉ can be expressed as

ℓ := ℓ1 + · · ·+ ℓs

for ℓi ∈ I, we can conclude from a combination of submultiplicativity of operator
norm and (2.35) that

∥Bℓ
c∥ ⩽ ∥B

ℓ1
c ∥ · · · ∥Bℓs

c ∥ ⩽
(
(1 + ε)5

√
d
)ℓ

. (2.36)

Via the expression A(ℓ)
c = SBℓ−1

c CT in the proof of Theorem 2.7.1 and the fact that
∥S∥ ⩽ n and ∥CT∥ ⩽ n, we know:

∥A(ℓ)
c ∥ ⩽

(
(1 + ε)6

√
d
)ℓ

(2.37)

for all ℓ ⩾ ℓ0. Another consequence of (2.36) is

ρ(Bc) ⩽ ∥Bℓ
c∥1/ℓ ⩽ (1 + ε)5

√
d. (2.38)

Now, let
Ms(z) := ∑

0⩽ℓ⩽s
A(ℓ)

c zℓ.

Define ĉ in terms of c identically to how it is defined in the statement of Theo-
rem 2.7.1. From Theorem 2.7.1,

M∞(z) = (1− Aĉz + Dczĉz)
−1.

Next, we use a proposition that is similar to (and whose proof follows) a similar
statement in [WF11, FM17]:

Proposition 2.7.3. Suppose z ∈ R and |z| < min{1/ρ(Bc), 1}, then M∞(z) ⪰ 0.

Proof. M∞(0) is the identity matrix and hence is certainly positive definite, which
means all its eigenvalues are positive. Additionally, by the fact that all edge weights
c(i, j) are bounded by 1 and the weighted Ihara–Bass formula (Theorem 2.7.1), we
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can deduce that for all real z such that |z| < min{1/ρ(Bc), 1}, det(M∞(z)) > 0.
Since the determinant (which is the product of eigenvalues) is strictly positive on a
continuous interval, the eigenvalues of M∞(z) are a continuous function of z on this
interval, and the eigenvalues of M∞ are strictly positive at one point in this interval,
all eigenvalues of M∞ must be positive for all real z where |z| < min{1/ρ(Bc), 1}.
Thus, the proposition follows.

Our next goal will be to lower bound the minimum eigenvalue of Mr/2−1(z), i.e.
prove that the minimum eigenvalue is not too negative when z is in an appropriate
range.

Proposition 2.7.4. Suppose |z| < 1
(1+2ε)6

√
d
, then λmin(Mr/2−1(z)) ⩾ −δ(n) where

δ(n) = on(1).

Proof. λmin(Mr/2−1(z)) = λmin

(
M∞(z)−∑ℓ⩾⌊r/2⌋ A(ℓ)

c zℓ
)

, which by PSDness of
M∞(z) is lower bounded by

−
∥∥∥∥∥ ∑
ℓ⩾r/2−1

A(ℓ)
c zℓ

∥∥∥∥∥ ⩾ − ∑
ℓ⩾r/2−1

∥∥∥A(ℓ)
c

∥∥∥ |z|ℓ.
By a combination of Theorem 2.6.7 and (2.37), along with the assumption on |z| we
know the above is lower bounded by

− ∑
ℓ⩾r/2−1

(
1 + ε

1 + 2ε

)6ℓ

⩾ −α

(
1 + ε

1 + 2ε

)3r−6

.

where α := ∑ℓ⩾0

(
1+ε
1+2ε

)6ℓ
is an absolute constant depending only on ε. The

proposition follows from the choice of r.

Let δ(n) be the function in the statement of Proposition 2.7.4, and define

X(z) := (1− δ(n)) ·Mr/2−1(z) + δ(n) · 1.

By Proposition 2.7.4, X(z) is positive semidefinite when |z| < 1
(1+2ε)6

√
d
. At this

point, we state a fact that will be used later.

Fact 2.7.5. With probability 1− on(1), the maximum degree of a vertex in G is bounded
by log2 n.
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Our next goal is to argue that the diagonal entries of X(z) are 1± on(1). Towards
this, let us try to understand the contribution of A(ℓ)

c to the diagonal. In particular:

Proposition 2.7.6. Let ℓ < r. The diagonal entries of A(ℓ)
c are all bounded in magnitude

by (2 log2 n)
ℓ

n with probability 1− on(1).

Proposition 2.7.6 is a direct consequence of Fact 2.7.5 and the forthcoming
Proposition 2.7.8 which we prove and use later.

Proposition 2.7.7. The diagonal entries of X(z) are all 1± δ′(n) with probability 1−
on(1) as long as |z| < 1 where δ′(n) is some function which is on(1).

Proof. As long as the maximum degree of G is bounded by log2 n, which happens
with probability 1− on(1), by Proposition 2.7.6 the diagonal entries of X(z) are
bounded by

∑
0⩽ℓ⩽r/2−1

contribution of A(ℓ)
c to diagonal ⩽ r ·

(
2 log2 n

)r

n
,

which is on(1).

Finally for |z| < 1
(1+2ε)6

√
d

we define Y(z) := (1 − δ′(n))X (z) + Γ where Γ

is a diagonal matrix chosen so that the diagonal of Y(z) is all-ones. By Proposi-
tion 2.7.7, Γ is positive semidefinite and combined with the fact that X(z) is positive
semidefinite, we can conclude that Y(z) is positive semidefinite as well.

2.7.3 Matching path statistics

In this section, we are interested in understanding the value of〈(
A− d

n
11⊤

)(ℓ)

, Y(z)

〉

where A is the adjacency matrix of G. It suffices to understand the value of

each
〈(

A− d
n 11⊤

)(ℓ)
, A(m)

c

〉
where ℓ, m ⩽ r

2 − 1. To lighten the notation, in this

subsection we will use A′ to denote At,r,ε.
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To set up Proposition 2.7.8, we introduce some notation — let NBi,j,ℓ for i, j ∈ [n]
and ℓ ∈N denote the set of all nonbacktracking walks that start at i, end at j, and
are of length-ℓ. Given a nonbacktracking walk W, we will interpret W as a set of
tuples (i, ab) for i ∈ [ℓ] where ab is the edge walked on in the ith step of W. For
any S ⊆ W, we will overload notation and use S to also denote the subset of edges
with the timestep-indices removed.

Proposition 2.7.8. Suppose G is a n-vertex graph with maximum degree bounded by
∆ ⩾ d, then for all i, j ∈ [n]:∣∣∣∣∣∣∣∣∣∣∣

∑
(W,S):S⊆W,S ̸=W

W∈NBi,j,ℓ
S⊆E(G)

(
− d

n

)ℓ−|S|

∣∣∣∣∣∣∣∣∣∣∣
⩽

ℓ · (2∆)ℓ

n
.

Proof.∣∣∣∣∣∣∣∣∣∣∣
∑

(W,S):S⊆W,S ̸=W
W∈NBi,j,ℓ
S⊆E(G)

(
− d

n

)ℓ−|S|

∣∣∣∣∣∣∣∣∣∣∣
⩽

ℓ−1

∑
k=1

∑
(W,S):S⊆W,|S|=k

W∈NBi,j,ℓ

(
d
n

)ℓ−k

=
ℓ−1

∑
k=1

(
d
n

)ℓ−k
·

|{(W, S) : S ⊆W, |S| = k, W ∈ NBi,j,ℓ, S ⊆ E(G)}|.
(2.39)

For each k, we bound the above summand via an encoding argument. Given a
walk W = u0u1u2 . . . uℓ−1uℓ where u0 = i and uℓ = j along with a proper subset of
steps S which are all contained in E(G), we first find the last ut−1ut on the segment
which is not in S (which always exists since S is always a proper subset). Therefore
the segment ut . . . uℓ must be composed only of edges in G. In our encoding we
specify:

• The set S via timestamps (for which there are 2ℓ − 1 choices),

• The value of t (for which there are ℓ choices),
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• For t ⩽ s ⩽ ℓ− 1, the index a ∈ [∆] such that us is the a-th neighbor of us+1
in G.

• For 1 ⩽ s ⩽ t− 1, if us−1us is in S, we specify index a ∈ [∆] such that us is the
a-th neighbor of us−1 in G; and if us−1us is not in S, we specify the identity of
us (of which there are n choices).

The total number of possible encodings is bounded by

ℓ · 2ℓ · (∆)k nℓ−k−1.

Thus, the k-th summand is bounded by

ℓ · 2ℓ ·
(

∆
d

)k
dℓ

n
.

Plugging in this bound into (2.39) implies the desired statement.

As an upshot of Proposition 2.7.8 and Fact 2.7.5 we have:(
A− d

n
11⊤

)(ℓ)

= A(ℓ) + Rℓ

A(ℓ)
c = A′(ℓ) + R′ℓ

where R and R′ are entrywise bounded by ℓ·(2 log2 n)ℓ
n with high probability. Thus,〈(

A− d
n

11⊤
)(ℓ)

, A(m)
c

〉
= ⟨A(ℓ), A′(m)⟩+ ⟨A(ℓ), R′m⟩+ ⟨A′(m), Rℓ⟩+ ⟨Rℓ, R′m⟩.

(2.40)

The entrywise ℓ1 norms of A(ℓ) and A′(m) are the total number of nonbacktracking
walks of length-ℓ and m in G and Gt,r,ε respectively, which by the degree-bound
of log2 n and the fact that ℓ, m ⩽ r, are each at most n(log2 n)r. Since the entries

of Rℓ and R′m are bounded by ℓ·(2 log2 n)r

n , the second and third terms of (2.40) are
bounded by r · (2 log2 n)2r. It is easy to see that the fourth term is bounded by
r2(2 log2 n)2r. It remains to understand the first term.

By Lemma 2.6.9 and our choice of t, there is no (t, ε)-heavy vertex in the graph
with high probability. Thus, with high probability the only vertices in Gt,r,ε which
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were truncated are the ones that are part of a cycle of length at most r. To get a high
probability bound on the number of such vertices, we observe that the number of
cycles of length exactly k passing through a vertex v in the complete graph is at

most nk−1, whereas the probability of a fixed cycle occuring in G is
(

d
n

)k
, which

implies via a union bound that the probability that v is part of a k-cycle is at most
dk

n . Consequently, the probability that v is part of a length-⩽ r cycle is at most rdr

n ,
which means the expected number of vertices that are part of a length-⩽ r cycle is
at most rdr. By Markov’s inequality, with high probability the number of of such
vertices is bounded by, say, rdr · log n.

We now use S to denote the set of vertices that are within distance r− 1 of a
truncated. From the high probability bound on the maximum degree in G of log2 n,

the size of S is, with high probability, at most r
(

d log2 n
)r

. For a matrix L and
T, U ⊆ [n], let’s use LT,U to denote the principal submatrix obtained from the rows
indexed by T and columns indexed by U. For all t ⩽ r/2− 1:

A(t)
[n]\S,[n] = A′(t)

[n]\S,[n]

A(t)
[n],[n]\S = A′(t)

[n],[n]\S.

Thus,

⟨A(ℓ), A′(m)⟩ = ⟨A(ℓ)
S,S, A′(m)

S,S ⟩+ ⟨A
(ℓ)
S,[n]\S, A′(m)

S,[n]\S⟩+ ⟨A
(ℓ)
[n]\S,S, A′(m)

[n]\S,S⟩+

⟨A(ℓ)
[n]\S,[n]\S, A′(m)

[n]\S,[n]\S⟩.

By Fact 2.7.5 and the bound on |S|, the first term is bounded by r
(

d log2 n
)2r

with
high probability. If ℓ ̸= m, then each of the second to fourth terms is equal to
0. If ℓ = m, the sum of the second to fourth terms is sandwiched between the
total number of length-ℓ self-avoiding walks in G that also avoid S and the total
number of length-ℓ self-avoiding walks in G. By Fact 2.7.5 and the bound on

|S| with high probability the two quantity differ by at most r
(

d log2 n
)2r

, and by

Theorem 2.6.6 the latter quantity is (1± on(1))dℓn with high probability. Since M
from the statement of Theorem 2.7.2 is a constant, by a union bound, the latter
quantity is (1± on(1))dℓn with high probability simultaneously for all ℓ ⩽ M.
Additionally observe that when ℓ ̸= m, the inner product quantity we wish to
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bound remains bounded as long as the desired bounds on |S| and the maximum
degree in the graph hold. In conclusion, with high probability the following holds
simultaneously for all ℓ ⩽ M and m ⩽ r/2− 1:〈(

A− d
n

11⊤
)(ℓ)

, A(m)
c

〉
=

{
(1± on(1)) · dℓn if ℓ = m

O(2r2(2 log2 n)2r) if ℓ ̸= m.

As a consequence:〈(
A− d

n
11⊤

)(ℓ)

, Y(z)

〉
= (1± on(1))dℓzℓn.

Since Y(z) is PSD with high probability for all |z| < 1
(1+ε)6

√
d

and the choice of ε

was arbitrary, Theorem 2.7.2 follows.

2.8 Local Statistics in the DRBM

In this section we will prove Theorem 2.5.3 and Proposition 2.5.10. Since the first
posting of this paper, we have updated and streamlined the arguments using the
framework developed by one of the authors in [BKW19]. Several lemmas below
have analogues in that work with similar proofs, and we will point these out along
the way.

We first prove Theorem 2.5.3 by computing the quantities E p(H,S,τ)(x, G) in
the planted model. Fix parameters d, k, M, π, recalling that M is symmetric, and
MDiag(π) is stochastic. For any partially labelled graph (H, S, τ), let χ(H) =

|V(H)| − |E(H)|, c(H) denote its number of connected components, and recall

CH(d) ≜
∏v∈V(H)(d)deg(v)

d|E(H)|

L(H,S,τ)(M, π) ≜ ∑
τ̂:τ̂|S=τ

∏
v∈V(H)

π(τ(v)) · ∏
(u,v)∈E(H)

Mτ(u),τ(v),

where the latter sum is over extensions τ̂ : V(H) → [k] of τ. Note that both
quantities are well-defined, by the symmetry relation of M and π, and that both
are multiplicative on disjoint unions. We are aiming to show if (H, S, τ) has O(1)
edges, then with high probability over (x, G) ∼ P ,

p(H,S,τ)(x, G) = nχ(H)L(H,S,τ)(M, π) · CH(d)± o(nc(H)).
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To do so, we will work in the configuration model P̂ , a distribution over d-regular
multigraphs which, (i) outputs a simple graph with probability bounded away
from zero in n, and (ii) conditioned on simple output agrees with P . It is routine
that high probability statements in the configuration model, like the conclusion of
this proposition, therefore transfer to P .

To sample a multigraph Ĝ from P̂ , first choose a random π balanced labelling
σ, and adorn each vertex v ∈ [n] with d half-edges v1, ..., vd. Then, for each
i ∈ [k] randomly label the half-edges on the ith group i → 1, ..., i → k so that a
π(i)π(j)Mi,jdn have label i → j for each j ∈ [k]. Finally, choose random perfect
matchings joining the i→ j and j→ i edges for each i, j ∈ [k].

Lemma 2.8.1. Condition on a π-balanced labelling σ : [n]→ [k], and let P be the random
perfect matching on half-edges output by P̂ . Let R be a simple partial matching involving
constantly many half-edges, and for short write (u, v) ∈ R if some pair (ua, vb) appears in
the matching. Then

P̂ [R ⊂ P] = (1± on(1)) ∏
(u,v)∈R

Mσ(u),σ(v)

dn
.

Proof. Throughout this proof, we will call a pair (ua, vb) appearing in R an edge.
Write Si for the collection of half-edges that adorn the vertices in σ−1(i), Ui for the
number of half-edges in R that belong to Si, and Ui,j the number of edges in R with
one half-edge each in Si and Sj, respectively. We have

P̂ [R ⊂ P] =
∏i<j

(π(i)π(j)Mi,jdn)!
(π(i)π(j)Mi,jdn−Ui,j)!

∏i
(π(i)2 Mi,idn)!

(π(i)2 Mi,idn−2Ui,i)!
π(i)2 Mi,idn−2Ui,i−1)!!

(π(i)2 Mi,idn−1)!!

∏i
(π(i)dn)!

(π(i)dn−Ui)!

.

Up to on(1) fluctuations, this is equal to

∏i<j(π(i)π(j)Mi,jdn)Ui,j ∏i(π(i)2Mi,idn)Ui,i

∏i(π(i)dn)Ui
.

For each edge (ua, vb) ∈ R, the numerator has a term π(σ(u))Mσ(u),σ(v), and the
denominator has two terms π(σ(u))dn and π(σ(v))dn; the dropped subscripts are
intentional here. Since R is simple, we can alternatively account for these terms
by looking at pairs (u, v) ∈ R. Thus, again suppressing on(1) fluctuations, we can
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rewrite as

∏
(u,v)∈R

π(σ(u))π(σ(v))Mσ(u),σ(v)dn
π(σ(u))dn · π(σ(v))dn

= ∏
(u,v)∈R

Mσ(u),σ(v)

dn
.

Proof of Theorem 2.5.3. Let’s begin by computing the expectation of p(H,S,τ)(x, Ĝ)

over (x, Ĝ) sampled from the configuration model. This necessitates that we extend
the quantity p(HS,τ)(x, Ĝ) to the case when Ĝ is a multigraph—we will simply take
it to mean the evaluation of p(H,S,τ) on the simple graph obtained by removing all
self-loops and merging all multi-edges.

Choose an extension τ̂ : V(H)→ [k] of τ, and an injection ϕ : V(H)→ [n] that
agrees on labels. The image of each vertex in V(H) has d half-edges, so there are

∏
v∈V(H)

(d)deg(v)

matchings that “collapse” to H. For each, Lemma 2.8.1 tells us the probability of
inclusion in Ĝ ∼ P̂ . Finally, there are ∏v∈(H)(π(τ(v))n) such injective maps ϕ.
Putting this all together, and summing over all extensions τ̂,

E p(H,S,τ)(x, Ĝ) = nχ(H)L(H,S,τ)(dM, π) · CH(d) + O(nχ(H)−1)).

If H has at least one cycle, then c(H) > χ(H), and an application of Markov’s
inequality finishes the proof. If instead H is a forest, then the assertion will follow
from an application of Chebyshev’s inequality. In particular, E p(H,S,τ)(x, Ĝ)2 is a
sum over pairs of injective maps ϕ1, ϕ2 of the probability that both are occurrences.
We can think of each pair as a single injective map ϕ′ : V(H′) → [n], where
(H′, S′, τ′) is the image of the union of the two copies of (H, S, τ) under ϕ1, ϕ2
respectively. In other words,

E p(H,S,τ)(x, Ĝ)2 = ∑
H′

p(H′,S′,τ′)(x, Ĝ),

where the sum is over all (H′, S′, τ′) that can arise by identifying some pairs of
vertices in two copies of (H, S, τ). Since H has no cycles, χ(H′) ⩽ 2χ(H), with
equality only if H′ = H ⊔ H. Thus, as L(H,S,τ) and CH are multiplicative on disjoint
unions,

E p(H,S,τ)(x, Ĝ)2 =
(

E p(H,S,τ)(x, Ĝ)
)2

+ O(n2χ(H)−1).

We finally apply Chebyshev and note that c(H) = χ(H) for forests.
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It remains now to prove Proposition 2.5.10, the content of which is that in
constructing a feasible pseudoexpectation in the planted model, it suffices to check
only certain moment constraints. We first show that the moment constraints
involving partially labelled subgraphs which contain a cycle are automatically
satisfied. The argument below is essentially identical to [BBK+20, Lemma 5.19]

Lemma 2.8.2. Let G ∼ N , and assume that Ẽ is a degree-Dx pseudoexpectation—perhaps
dependent on G—satisfying Bk. For every δ > 0, with high probability

Ẽ p(H,S,τ)(x, G) = E
(x,G)∼P

p(H,S,τ)(x, G)± δnc(H)

for every (H, S, τ) with constantly many edges and containing a cycle.

Proof. Using Cauchy-Schwartz for pseudoexpectations, for every multilinear mono-
mial m(x) we have (Ẽ m(x))2 ⩽ Ẽ m(x)2 = Ẽ m(x), since Ẽ x2

u,i = Ẽ xu,i; thus
Ẽ m(x) ∈ [0, 1]. In other words, for any (H, S, τ), we have

∣∣∣Ẽ p(H,S,τ)(x, G)
∣∣∣ =

∣∣∣∣∣∣ ∑
ϕ:V(H)↪→[n]

∏
(u,v)∈E(H)

Gϕ(u),ϕ(v) ∏
u∈S

xϕ(u),τ(u)

∣∣∣∣∣∣
⩽

∣∣∣∣∣∣ ∑
ϕ:V(H)↪→[n]

∏
(u,v)∈E(H)

Gϕ(u),ϕ(v)

∣∣∣∣∣∣ .

The latter is the number of occurrences of H in G, with both regarded as unlabelled
graphs; from the proof of Theorem 2.5.3 above, if H has a cycle, then this is o(nc(H).
Thus with high probability

Ẽ p(H,S,τ)(x, G) = o(nc(H)) = nχ(H)L(H,S,τ)(M, π)CH(d)± δn(c(H)

for any δ > 0, as χ(H) < c(H).

This lemma leaves us to check only the partially labelled trees, and we next
show that in fact it suffices to verify only a subset of these. The following appeared
as Definition 5.20 in [BBK+20].

Definition 2.8.3. The pruning of a partially labelled tree (H, S, τ) is the unique
maximal subtree with the property that all leaves are distinguished vertices; if
(H, S, τ) is unlabelled, its pruning is empty. The pruning of a forest is obtained by
taking the pruning of each tree.
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Lemma 2.8.4. Let (H, S, τ) be a partially labelled, tree, (H̃, S, τ) its pruning. Then

L(H,S,τ)(M, π) = L(H̃,S,τ)(M, π)

Proof. We’ll argue inductively that one can delete any unlabelled leaf without
affecting L(H,S,τ). Let v be such a leaf, w its parent, and (H′, S, τ) be obtained by
deleting v. Then

L(H,S,τ)(M, π) = L(H′,S,τ)(M, π) ∑
ℓ∈[k]

Mτ(w),ℓπ(ℓ) = L(H′,S,τ)(M, π),

as MDiag(π) is Stochastic.

Lemma 2.8.5. Let G ∼ N , and let (H, S, τ) and (H̃, S, τ̃) be a partially labelled forest
and its pruning, respectively. Then, with high probability,∥∥∥∥p(H,S,τ)(x, G)− nc(H)−c(H̃)CH(d)

CH̃(d)
p(H̃,S,τ̃)(x, G)

∥∥∥∥
1
= o(nc(H)),

where by ∥ · ∥1 we mean the L1 norm of the coefficients.

Proof. This argument adapted with minor elaboration from [BBK+20, Lemma 5.21].
For each occurrence ϕ̃ : V(H̃) ↪→ [n] of (H̃, S, τ̃), call an occurrence ϕ : V(H) ↪→ [n]
of H an extension of ϕ̃ if they agree on V(H̃) ⊂ V(H). Write Φ̃ for the set of
occurrences of the pruning, and for each ϕ̃ ∈ ϕ̃, write Φ(ϕ̃) for its set of extensions.

Again using the fact that each multilinear monomial has Ẽ m(x) ∈ [0, 1], we
may write ∥∥∥∥p(H,S,τ)(x, G)− nc(H)−c(H̃)CH(d)

CH̃(d)
p(H̃,S,τ̃)(x, G)

∥∥∥∥
1

⩽ ∑
ϕ̃∈Φ̃

∣∣∣∣|Φ(ϕ̃)| − nc(H)−c(H̃)CH(d)
CH̃(d)

∣∣∣∣
Only o(nc(H̃)) occurrences in this sum have the property that their |E(H)| neigh-
borhoods in G contain a cycle, so to prove the assertion in the lemma we are free
to ignore these terms entirely. For each remaining occurrence ϕ̃, and each con-
nected component J̃ of H̃ containing a distinguished vertex, and the corresponding
component J of H, there are precisely

∏
v∈V(H)

degJ(v)−1

∏
q=deg J̃(v)

(d− q) =
CJ(d)
C J̃(d)
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ways to extend it to an occurrence of J. To finish counting the number of extensions
of ϕ̃, we need to choose an occurrence of K, the disjoint union of every connected
component of H which contains no distinguished vertex, that does not interact
with ϕ̃(H̃) or the already-chosen extensions of the J̃’s. But, there are

nc(K) ∏
v∈V(K)

degK(v)−1

∏
q=0

(d− q) + o(nc(K)) = nc(H)−c(H̃)CK(d) + o(nc(H)−c(H̃))

ways to do this. Thus, using multiplicativity of CH(d) on disjoint unions,

|Φ(ϕ̃)| = nc(H)−c(H̃)CH(d) + o(nc(H)−c(H̃)),

there are O(nc(H̃) possible occurrences of H̃, and we are done.

Taking a union bound and applying the above lemma, we immediately obtain:

Lemma 2.8.6. Let G ∼ N , and assume that Ẽ is is a degree-Dx pseudoexpectation,
which may depend on G. If Ẽ satisfies the affine moment constraints for every pruned,
partially labelled forest with at most DG edges and Dx distinguished vertices, then with
high probability ∣∣∣∣Ẽ p(H,S,τ)(x, G)− E

(x,G)∼P
p(H,S,τ)(x, G)

∣∣∣∣ = o(nχ(H))

for every partially labelled forest (H, S, τ) with at most DG edges and Dx distinguished
vertices.

Proof. For each (H, S, τ), let (H̃, S, τ̃) be its pruning. Recalling again that each
monomial has pseudoexpectation in the interval [0, 1], we have, with high proba-
bility,

Ẽ p(H,S,τ)(x, G) = nc(H)−c(H̃)CH(d)
CH̃(d)

p(H̃,S,τ̃)(x, G) + o(nc(H))

= nc(H)L(H,S,τ)(M, π)CH(d) + o(nχ(H)).

Taking a union bound over the finitely many extensions of the finitely many pruned
partially labelled forests, we are done.
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To prove Proposition 2.5.10, we need to specialize this result to the case of
pruned partially labelled forests with at most two distinguished vertices. These are
exactly the paths with labelled endpoints, a pair of labelled vertices, and a single
labelled vertex. Recalling the notation of X ∈ Rnk×nk as the matrix X(u,i),(v,j) =

Ẽ xu,ixv,j and l ∈ Rnk as the vector with l(u,i) = Ẽ xu,i, our argument in Lemma 2.5.6
may be rephrased to say that the moment constraints on Ẽ for the first two cases
at any error tolerance δ′ > δ are implied by

⟨Xi,j, A(s)
G ⟩ = π(i)Ts

i,j∥qs∥2
KMn± δn

⟨Xi,j, J⟩ = π(i)π(j)n2 ± δn2.

The third case, of a single labelled vertex, is implied by

⟨li, e⟩ = π(i)n± δn

Proposition 2.5.10 now follows from Lemma 2.8.2 and Lemma 2.8.6.

2.9 Bounding Singleton Expectation

Let

ζW(A)
def
= ∏

i∈V(W)

βi(A) · γi(A)

where γi, βi are boolean functions given by,

βi(A)
def
= 1[i is (t, d′) bounded in A]

γi(A)
def
= 1[i is NOT in a cycle of length ⩽ r in A]

This section is devoted to showing the following bound on the expectation of
products involving singleton edges S(W).

Theorem 2.9.1. For every d′ > d > 1 and δ ∈ (0, 1), the following holds for all
sufficiently large t. Suppose S(W) is the singleton edges and J ⊆ D(W) a set of duplicative
edges in a (k, ℓ)-linkage W, and g ⩽ log n

log log n we have,∣∣∣∣∣∣E
 ∏

ij∈S(W)

(
Aij −

d
n

)
·∏

ij∈J
Aij · ζW(A)

∣∣∣∣∣∣ ⩽ C log2 n ·
(

d
n

)|S(W)∪J|
(2.41)
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· n0.8e(W) · 4|S(W)|δ|S(W)|−24kt (2.42)

for some absolute constant C. Here exc(W) is the excess edges in the walk defined as
e(W) = |E(W)| − |V(W)|+ 1.

We wish to emphasize that the key aspect of (2.41) is the term δ|S(W)|, showing
that the expectation decays exponentially in |S(W)|.

Proof. Henceforth in this section, We will use S to denote S(W). We begin the proof
of the theorem by expanding out the expectation in (2.41).

E

[
∏
ij∈S

(
Aij −

d
n

)
·∏

ij∈J
Aij · ζW(A)

]

= ∑
α∈{0,1}S

Pr[AS = α]E

[(
1− d

n

)|α| (
− d

n

)|S|−|α|
·∏

ij∈J
Aij · ζW(A)

]
.

Using Pr[AS = α] =
(

d
n

)|α|
·
(

1− d
n

)|S|−|α|
, we can simplify the above expression

to,

=

(
1− d

n

)|S|
·
(

d
n

)S∪J
· ∑

α∈{0,1}S

(−1)α
E
Ac
[ζW (Ac, AS = α, AJ = 1)] ,

where Ac denotes the random variables {Aij|ij ∈ S ∪ J}, each of which is an
independent Bernoulli random variable with expectation d

n .
We will now select a subset of edges Q ⊆ S(W) such that the following two

conditions hold:

1. Edges in Q are far from each other in the graph G(W). Formally, for all
ij, i′ j′ ∈ Q,

distG(W)(i, i′) ⩾ 4t .

2. Neighborhoods of each of the edges in Q have a small number of vertices.
Specifically, for all ij ∈ Q, |B2t(i, G0)| ⩽ 2t + 2.

We will show in Lemma 2.9.2 that there exists such a set Q with |Q| ⩾ |S(W)|/8t−
3k− 6e(W).
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Let R def
= S(W) \Q. Let α = αQ ∪ αR where αQ ∈ {0, 1}Q and αR ∈ {0, 1}R. We

can upper bound the above term by,(
d
n

)S∪J
2|R| · max

αR∈{0,1}R

∣∣∣∣∣∣ ∑
αQ∈{0,1}Q

(−1)|αQ| E
Ac

[
ζW
(

Ac, AQ = αQ, AR = αR, AJ = 1
)]∣∣∣∣∣∣

(2.43)

For any fixed choice of Ac, let ζAc,αR : {0, 1}Q → {0, 1} denote the function,

ζAc,αR(z)
def
= ζW

(
Ac, AQ = z, AR = αR, AJ = 1

)
.

Rewriting the LHS of (2.43) in terms of ζAc,αR ,

⩽
(

d
n

)S∪J
2|R| · max

αR∈{0,1}R

∣∣∣∣∣∣EAc

 ∑
αQ∈{0,1}Q

(−1)|αQ| · ζAc,αR(αQ)

∣∣∣∣∣∣
Observe that for any function ψ : {0, 1}Q → {0, 1}, ∑z∈{0,1}Q(−1)|z|ψ(z) = 0 if
ψ is independent of any bit in z. Otherwise, the sum is upper bounded by 2|Q|.
Therefore, we can rewrite the above bound as,

⩽
(

d
n

)S∪J
2|Q∪R| · max

αR∈{0,1}R

(
Pr
Ac

[
ζAc,αR depends on all bits in Q

])
(2.44)

Recall that ζW(A) = βW(A) · γW(A) where βW(A) = ∏i∈W βi(A) and γW(A) =

∏i∈W γi(A).
Analogous to the definition of ζAC,αR

, define corresponding boolean functions
βAC,αR

and γAC,αR
over {0, 1}Q, i.e.,

βAc,αR(z)
def
= βW

(
Ac, AQ = z, AR = αR, AJ = 1

)
.

γAc,αR(z)
def
= γW

(
Ac, AQ = z, AR = αR, AJ = 1

)
.

By a simple union bound, we can write

Pr
Ac

[
ζAc,αR depends on all bits in Q

]
⩽ ∑

Q′⊂Q
Pr
Ac

[
βAc,αR depends on all bits in Q′

∧
γAc,αR depends on all bits in Q \Q′

]
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⩽ ∑
Q′⊂Q

(2.45)

min
(

Pr
Ac

[
βAc,αR depends on all of Q′

]
, Pr

Ac

[
γAc,αR depends on all of Q \Q′

])
(2.46)

We will the probabilities in the above sum in Claim 2.9.4 and Claim 2.9.3 respec-
tively. Substituting these bound on probabilities into (2.46)

⩽ ∑
Q′⊂Q

min
(

δ16t|Q′|, C(log2 n)n−0.7(|Q\Q′|/r−#c(Q∪R∪J)
)

(2.47)

⩽ C(log2 n)n0.7#c(Q∪R∪J) ∑
Q′⊂Q

·min((δ16t)|Q
′|, (n−0.7/g)|Q\Q

′|) (2.48)

⩽ C(log2 n)n0.7e(W) · 2|Q| · (δ16t)|Q|/2 (2.49)

⩽ C(log2 n)n0.7e(W) · 2|S(W)| · (δ)|S(W)|−24kt−48e(W) (2.50)

⩽ C log2 n · n0.8e(W) · 2|S(W)| · δ|S(W)|−24kt (2.51)

Substituting back in (2.44) we get the bound in the theorem.

Lemma 2.9.2. For all t < ℓ, in a k × ℓ-linkage there exists Q ⊂ S(W) with |Q| ⩾
|S(W)|

8t − 3ℓ− 6e(W) such that,

1. For all ij, i′ j′ ∈ Q, distG(W)(i, i′) ⩾ 4t.

2. For all ij ∈ Q, |B2t(i, G0)| ⩽ 2t + 2.

Proof. All the steps of the walk are divided into consecutive segments of singleton
edges (“singleton stretches") and duplicative edges (“duplicative stretch").

The walk can step from a singleton stretch into a duplicative stretch, either by a
turn-around or at an edge that creates a cycle. The number of such transitions is
therefore at most ℓ+ 2e(W) where 2e(W) is the number of excess edges.

Hence there are |S(W)| singletons split into ℓ+ 2e(W) disjoint path segments.
Given a path of length ∆, delete segments of length 8t from both end, and then
pick edges at a regular intervals of length 8t from the each other in the remaining.
This yields ⌊ (∆−16t)

8t ⌋ edges which are pairwise 8t away, and the 2t neighborhood
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around each of them is a path and thus has only 2t + 2 edges. Perform this
operation on each of the singleton segments to select a subset Q of singleton edges.
By construction edges in Q satisfy the conditions of the Lemma above. It remains
to lower bound the size of Q. If ∆1, . . . , ∆q are the lengths of the singleton stretches,
we can write

|Q| ⩾
q

∑
i=1

⌊
(∆i − 16t)

8t

⌋
⩾

q

∑
i=1

(∆i − 16t)
8t

− 1

⩾
|S(W)|

8t
− 3q ⩾

|S(W)|
8t

− 3ℓ− 6e(W)

edges.

2.9.1 Away from short cycles

Claim 2.9.3. For any subset Q∗ ⊂ Q,

Pr
Ac

[
γAc,αR depends on all bits in Q∗

]
⩽ C(log2 n)n−0.7(|Q∗|/r−NumCycles(Q∪R∪J)

Proof. The function γAc,αR(z) = γW(Ac, AQ = z, AR = αR, AJ = 1) is a anti-
monotone function of z.

For every pair ij ∈ Q∗, since γAc,αR depends on zij there is some setting of
zQ\{ij} such that γAc,αR(zij = 0, zQ\{ij}) = 1 but γAc,αR(zij = 1, zQ\{ij}) = 0. By
definition of γW , this implies that addition of edge ij creates a cycle of length at
most r.

Therefore, in the graph given by A′ = (Ac, AR = αR, AJ = 1, AQ = 1) every
edge ij ∈ Q∗ is in a cycle of length at most r. There are at least |Q∗|/r cycles in
the graph A′, and at least |Q∗|/r −NumCycles(Q ∪ R ∪ J) involve edges of the
random graph Ac.

Now we appeal to Lemma A.3 in [FM17] to conclude the claim.

2.9.2 Heavy Vertices

The goal of this section is to prove the following claim, a component in the proof of
Theorem 2.9.1.

Claim 2.9.4. Given d′ > d > 1 and δ > 0, for all sufficiently large value of t the
following holds for every subset Q∗ ⊂ Q,

Pr
Ac

[
βAc,αR depends on all bits in Q∗

]
⩽ (δ)t|Q∗|
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First, let us setup some notation. For a graph G and a set of vertices S, we make
the following definitions.

Br(S, G)
def
= {i|distG(i, S) ⩽ r}

Nr(S, G)
def
= {i|distG(i, S) = r}

Here distG refers to the shortest path distance on the graph G. We borrow the
following tail bound on the sizes of neighborhoods in G(n, d

n ) from [FM17].

Lemma 2.9.5. Fix d > 1 and consider the Erdős–Rényi graph G ∼ G(n, d
n ). Then there

exists C, c > 0 such that for any s ⩾ 0, t ⩾ 1 and v ∈ [n]

Pr
[
|Bt(v; G)| ⩾ sdt] ⩽ Ce−cs

Critical to the proof of Claim 2.9.4 is the notion of being heavy vertex, and close-
to heavy vertices. A heavy vertex is any vertex with Bt(v, G) ⩾ (d′)t. A vertex is
marked as close-to-heavy if it is within distance t of a heavy vertex. Formally, we
have the following definition

Definition 2.9.6. A vertex v in a graph G = (V, E) is (t, d′)-close to heavy if there
exists v′ such that distG(v, v′) ⩽ t such that |Bt(v′; G)| > (d′)t.

First, we will bound the probability that a vertex in an Erdős-Rényi graph is
(t, d′)-close to heavy.

Lemma 2.9.7. There exists absolute constant C, c such that for all t and d′ > d, for a
graph G ∼ G(n, d

n ) and a vertex v,

Pr
G

[
v is (t, d′)-close to heavy

]
⩽ Cdte−c(d′/d)t

Proof. Let X be the random variable denoting the number of vertices that are (t, d′)-
close to heavy in a graph G ∼ G(n, d

n ). Clearly the above probability is given by
1
nE[X]. Suppose a vertex v has |Bt(v; G)| = γ(d′)t for some γ > 1. Then every
vertex u ∈ Bt(v; G) is (t, d′)-close to heavy. Therefore, we can upper bound the
expected number of vertices that are (t, d′)-close to heavy in a graph G ∼ G(n, d

n )

by,

1
n

E[X]
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⩽
∫ ∞

γ=1
Pr[|Bt(v; G)| = γ(d′)t] · (γ(d′)t)dγ

⩽
∫ ∞

s=(d′/d)t
Pr[|Bt(v; G)| = s(d)t] · (sdt) ·

(
dt

(d′)t ds
)

⩽
d2t

(d′)t

∫ ∞

s=(d′/d)t
Ce−cssds ⩽

C
c2 ·

d2t

(d′)t ·
[
−e−zz− e−z]∞

c(d′/d)t < C′dte−c(d′/d)t

where the last inequality holds whenever (d′/d) > 1 and C′ > C(1+c)
c2 .

The following Lemma upper bounds the probability of a vertex v being close to
heavy in a more complicated setup. Here a subgraph G′ = (V′, E′) is chosen to be
included in the graph, and a set of vertices F are forbidden in the neighborhood of
v.

Lemma 2.9.8. There exists absolute constants C, c such that the following holds for all t
and d′ > d > 1.

Suppose G′ = (V′, E′) be a subgraph of the complete graph and let v ∈ V′ be a vertex
in G′.

Let F ⊆ [n] be a set of vertices disjoint from V′, i.e., F ∩V′ = ∅. Suppose we draw
Gc ∼ G(n, d

n ) and set G = G′ ∪ Gc then,

Pr
G

[
v is (t, d′)-close to heavy in G|B2t(v, G) ∩ F = ∅

]
⩽ C|V′|dte−c 1

|V′ |+1
·
(

d′
d

)t

Proof. Notice that the indicator of the event

E1 = 1[v is (t, d′)-close to heavy in G]

is a monotone function of the edges Gc. On the other hand, the event E2 =

1[B4t(v, G) ∩ F = ∅] is an anti-monotone function.
By FKG inequality, the two events are negatively correlated and therefore

conditioning on E2 reduces the chance of E1, i.e.,

Pr
G

[
v is (t, d′)-close to heavy in G|B4t(v, G) ∩ F = ∅

]
⩽ Pr

G

[
v is (t, d′)-close to heavy in G

]
.

Now we make the following claim which will prove subsequently.
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Claim 2.9.9. Let ρ
def
=
(

1
|V′|+1

)1/t
. If no vertex w ∈ V′ is (t, ρd′)-close to heavy in

Gc, then v is not (t, d′)-close to heavy in G.

Assuming the above claim, we can use the union bound to argue

Pr
G

[
v is (t, d′)-close to heavy in G

]
⩽ Pr

Gc

[
∃u ∈ V′ which is (t, ρd′)-close to heavy in Gc]

⩽ ∑
u∈V′

Pr
Gc

[
u is (t, ρd′)-close to heavy in Gc]

⩽ C|V′|dte−c 1
|V′ |+1

·
(

d′
d

)t

where the last inequality follows from Lemma 2.9.7

Now we return to proving Claim 2.9.9.

Proof. (Proof of Claim 2.9.9) Suppose v ∈ V′ is (t, d′)-close to heavy in G, and let
u ∈ [n] be the heavy vertex with distG(u, v) ⩽ t.

Now we will lower bound |Bt(u, Gc)|. To this end, consider any u′ ∈ [n] with
distG(u, u′) ⩽ t. The path from u → u′ is either completely contained in Gc in
which case distGc(u, u′) ⩽ t or the path from u→ u′ uses edges in G′ which implies
that u′ ∈ Bt(V′, Gc). Therefore, we can write

|Bt(u, G)| ⩽ |Bt(u, Gc)|+ |Bt(V′, Gc)|.

Since u is (t, d′)-heavy, |Bt(u, G)| ⩾ (d′)t. If no vertex w ∈ V′ is (t, ρd′)-close to
heavy in Gc, then

|Bt(V′, Gc)| ⩽ ∑
w∈V′
|Bt(w, Gc)| ⩽ |V′| ·

(
ρd′
)t

One can thus conclude that,

|Bt(u, Gc)| ⩾ (d′)t (1− ρt|V′|
)
⩾ (ρd′)t .

Finally since distG(v, u) ⩽ t, there exists some vertex w ∈ V′ such that

distGc(w, u) ⩽ t.

Thus w is (t, ρd′)-close to heavy in Gc.
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Lemma 2.9.10. For every d′ > d and δ > 0, there exists t such that the following holds.
Fix a subset V0 ⊂ [n] of vertices and a graph G0 = (V0, E0) with at most |E0| < log2 n
edges. Suppose V∗ ⊂ V0 be such that,

1. For every vertex i ∈ V∗, |B2t(i; G0)| < t2.

2. distG0(i, j) ⩾ 4t for all i, j ∈ V∗.

Then if we sample a graph G by including each of the remaining edges (n
2)− E0 indepen-

dently with probability d
n ,

Pr
[
∀v ∈ V∗, v is (t, d′)-close to heavy in G

]
⩽ δt|V∗|

Proof. Let Gc = ([n], Ec) denote the graph consisting of edges in (n
2)− E0 each of

which is included independently with probability d
n .

Consider the neighborhood B2t(v; G) around a vertex v ∈ V∗. Clearly, the
neighborhood contains the sub-graph B2t(v, G0) since G0 ⊂ G. All the additional
vertices (and edges) in B2t(v; G) are those reachable by taking the newly sampled
edges in Gc.

Intuitively, up to constant distances, the graph Gc will be “tree-like". More
specifically, for a typical sample, one would expect that the neighborhood can be
decomposed as,

B2t(v, G) = B2t(v, G0) ∪
⋃

w∈B2t(v,G0)

Tw

where Tw is a tree with vertex w as root, and no other vertices in V0. Call a
vertex v ∈ V∗ to be typical if the above assumptions hold.

We will first show that there is a significant fraction of vertices in |V∗| are typical
with all but negligible probability.

To this end, consider the graphH formed by the edges in

E[B2t(V∗; G)]− E[B2t(V∗; G0)] ,

where E[S ] denotes the set of edges contained in a set of vertices S .
Consider a vertex v ∈ V∗. For every vertex w ∈ B2t(v; G0) and dist(w, v) = d,

the graphH contains the subgraph B2t−d(w, G)− B2t−d(w, G0). In fact, in a typical
vertex v ∈ V∗, this would be a tree of depth 2t− d with vertex w as root.
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Claim 2.9.11. The number of typical vertices is at least |V∗| − 2s where s def
=

#c(B2t(V0; G))− #c(G0).

Proof. Consider the execution of a depth-first-traversal on the graph H. More
precisely, consider the execution of the following algorithm:

• ExploreGraph()

– Set visited[w] = f alse for all w ∈ H ∪V0

– For each vertex w ∈ B2t(V∗; G0)

* If visited[w] = f alse then Mark w as isolated and Explore(w)

• Explore(v)

– for each edge (v, w) ∈ H do

* If w ∈ V0, mark (v, w) as stale edge and set visited[w] = true.

* If w /∈ V0 and visited[w] = true, mark the edge (v, w) as back edge

* If w /∈ V0 and visited[w] = f alse set visited[w] = true and call
Explore(w)

Execution of ExploreGraph will consist of a sequence of DFS traversals each
producing a connected component of H. Each traversal starts at some node w ∈
B2t(V∗, G0) that has not been visited yet. The traversal goes through edges inH,
visiting new nodes, marking some edges as back and stale.

Observe that every stale edge or a back-edge increases the cycle number of
B2t(V0; G) by adding an edge, but no new vertex. Therefore, the total number
of stale/back edges is at most #c(B2t(V0; G))− #c(G0). For brevity, let us denote

s def
= #c(B2t(V0; G))− #c(G0).

A vertex v ∈ V∗ is typical if the following hold:

1. Every vertex w ∈ B2t(v; G0) is marked isolated (never visited via a stale edge).

2. For every vertex w ∈ B2t(v; G0), the corresponding call Explore(w) did not
produce a stale or back edge in one of its descendants.

Since there
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As there are at most s-stale edges, at most s vertices v ∈ V∗ have some vertex
w ∈ B2t(v, G0) visited by a stale edge. Furthermore, at most s vertices v ∈ V∗ have
a vertex w ∈ B2t(v, G0) that produced a stale or back edge. Hence at least |V∗| − 2s
vertices are typical.

Returning to the proof of Lemma 2.9.10, let V∗typ = {i1, . . . , iR} ⊆ V∗ denote
the set of typical vertices in V∗. Now we will describe how to sample a graph
G = Gc ∪ G0 from the conditional distribution:

(
G | V∗typare typical

)
.

• For j = 1 to R

– Sample B2t(ij; G) conditioned on ij being typical or equivalently,

B2t(ij; G) ∩ Gj−1 = B2t(ij, G0)

.
For sake of concreteness, we will outline how to sample B2t(ij; G). For
each vertex w ∈ B2t(ij, G0), with distance dist(w, ij) = D, sample the
local neighborhood tree Tw of depth D in a breadth first manner, while
avoiding vertices in Gj−1.

– Gj = Gj−1
⋃
B2t(ij; G).

• Sample all the remaining unrevealed edges by including them independently
with probability d

n , conditioned on V∗typ being typical.

By virtue of the above order of sampling, we can write

Pr
[
∀v ∈ V∗typ, v is (t, d′)-close to heavy in G|V∗typ is typical

]
(2.52)

=
R

∏
j=1

Pr
[
ij is (t, d′)-close to heavy in Gj

∣∣∣Gj−1

]
(2.53)

where recall that Gj is sampled conditioned on ij being typical.
By virtue of being typical, the neighborhood of ij, B2t(ij, Gj−1) is same as its

original neighborhood B2t(ij, G0) in G0. Let Fj be the remaining vertices in Gj−1
namely,

Fj = Gj−1 − B2t(ij, G0)
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Since ij conditioned on being typical, vertices in Fj are forbidden to be chosen in
the neighborhood B2t(ij; Gj). Therefore deleting all edges among Fj has no effect
on whether ij is (t, d′)-close to heavy. That is,

ij is (t, d′)-close to heavy in Gj ⇐⇒ ij is (t, d′)-close to heavy in B2t(v, G0) ∪ Gc

We will bound the probability of the latter event using Lemma 2.9.8. Specifically,
apply Lemma 2.9.8 with G′ = Bt(ij, G0) and Fj we get that,

Pr
[
ij is (t, d′)-close to heavy in |B2t(v, G) ∩ F = ∅

]
⩽ Ct2 · dte−c

(
d′
d

)t
· 1

1+t2

def
= ∆(d, d′, t)

Substituting back in (2.52),

Pr
[
∀v ∈ V∗typ, v is (t, d′)-close to heavy in G|V∗typ is typical

]
⩽ ∆(d, d′, t)|V

∗
typ|

(2.54)

⩽ ∆(d, d′, t)|V
∗|−2s

(2.55)

where recall that s def
= #c(B2t(V0, G))− #c(G0). By Lemma A.3 in [FM17], we know

that or all k < log2 n,

Pr[#c(B2t(V0, G))− #c(G0) ⩾ k] ⩽ C(log2 n)n−0.7k

Along with (2.54), this implies that

Pr
[
∀v ∈ V∗, v is (t, d′)-close to heavy in G

]
⩽ Pr

[
s >
|V∗|

4

]
+ ∆(d, d′, t)|V

∗|−2( |V
∗|

4 ) ⩽ 2∆(d, d′, t)|V
∗|/2

for large enough n. Finally, the lemma follows by observing that for all fixed d, d′, δ,
we can make ∆(d, d′, t) ⩽ δ4t for sufficiently large t.

We now have all the pieces need to prove Claim 2.9.4.
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Proof. (Proof of Claim 2.9.4) The function βAc,αR(z) = βW(Ac, AQ = z, AR =

αR, AJ = 1) is a anti-monotone function of z.
For every pair ij ∈ Q∗, since βAc,αR depends on zij, there is some setting of

zQ\{ij} such that βAc,αR(zij = 0, zQ\{ij}) = 1 but βAc,αR(zij = 1, zQ\{ij}) = 0. This
implies that addition of edge ij creates a vertex v that is not (t, d′)-bounded. The
vertex v is within distance t of both endpoints i and j, since otherwise the addition
of the edge ij has no effect on the (t, d′)-boundedness of vertex v.

Therefore we can upper bound,

Pr
Ac

[
βAc,αR depends on all bits in Q∗

]
⩽ Pr

Ac

[
∀ij ∈ Q∗, i is (t, d′)-close to heavy in graph Ac ∪ J ∪Q ∪ R

]
By construction of the set of edges Q, the set V∗ = {i|ij ∈ Q∗} satisfy the conditions
in the hypothesis of Lemma 2.9.10 in the graph formed by Q ∪ R ∪ J. Hence the
claim follows by appealing to Lemma 2.9.10.

2.10 Robustness in the Stochastic Block Model

In this section, we will show that the local statistic SDP relaxation yields a robust
algorithm. Throughout this section, let G be drawn from either the Erdős-Rényi or
Stochastic Block Model on n vertices, with average degree d. We will prove that an
adversarial modification of ϵn edges, for sufficiently small ϵ, cannot meaningfully
later subgraph occurrences, except by creating vertices of high degree. Therefore,
if we run the Local Statistics SDP after deletion of sufficiently high-degree vertices,
the resulting algorithm is robust to adversarial edge meddling.

Let us make this intuition precise. In a similar vein to the partially labelled
graph formalism from the main body of the paper, let us define now a pinned
graph to be a pair (H, R) where R ⊂ V(H) contains exactly one vertex from each
connected component of H. Write ℓ(H) = |R| for the number of such components.
Given a graph G and a subset T of ℓ(H) vertices, an occurrence of (H, R) in (G, T)
is an (injective?) homomorphism that maps the pinned vertices R to the target set
T. Let’s write ΓH,R(G, T) for the set of such occurrences.

Claim 2.10.1. For every pinned graph (H, R) and any then for any T ⊂ [n],

lim
n→∞

E
G
[|ΓH,W(H)(G, T)|2] = cH
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for a constant cH dependent only on H.

Proof. First let us consider the following expectation:

E[|ΓH,R(G, S)|] = ∑
ϕ:V(H)→[n]

P [ϕ is an occurrence]

The number of nonzero terms in the summation is ( n
|V(H)|−ℓ(H))(|V(H)| − ℓ(H))! =

n|V(H)|−ℓ(H) + O(n|V(H)|−ℓ(H)). For each term, the probability that ϕ is an occur-
rence is O(n−|E(H)|) Since |E(H)| ⩾ |V(H)| − ℓ(H) in a graph with at most ℓ
connected components, the above expectation is a constant depending on graph H.

Now we turn our attention to E[|ΓH,R(G, T)|2], which we can expand as

E[|ΓH,R(G, T)|2] = ∑
ϕ,ψ:V(H)→[n]

P[ϕ, ψ are occurrences]

Each nonzero term gives rise to a graph H∗ obtained by taking the union of the
images of ϕ(H) and ψ(H); this union is a graph with ℓ connected components, each
of which contains one of the target vertices T. There are only finitely many graphs
on at most 2|V(H)| vertices that have this form, so we can write the expectation of
concern to us as a sum of expected occurrence counts of these types, and apply our
initial observation.

Lemma 2.10.2. Fix d > 0, ϵ ∈ (0, 1), and a finite pinned graph (H, R). There exists
∆(H, R, d, ϵ) > 0 such that the following holds: with probability 1− ϵ for all Q ⊂ [n]
with |Q| ⩽ ∆(H, R, ϵ)n, ∣∣∣∣∣∣ ⋃

T∩Q ̸=∅

ΓH,R(G, T)

∣∣∣∣∣∣ ⩽ ϵnℓ(H)

Proof. We can expand the size of this union as a sum over subsets T ∈ ( [n]
ℓ(H)

):∣∣∣∣∣∣ ⋃
T∩Q ̸=∅

ΓH,R(G, T)

∣∣∣∣∣∣ = ∑
T∈( [n]

ℓ(H)
)

|ΓH,R(G, T)| · 1 [T ∩Q ̸= ∅]

⩽

 ∑
T∈([n]ℓ )

|ΓH,R(G, T)|2


1/2

·

 ∑
T∈([n]ℓ )

1 [T ∩Q ̸= ∅]2


1/2

(2.56)
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With probability at least 1− ϵ, we have

∑
T∈( []n]

ℓ(H)
)

|ΓH,R(G, T)|2 ⩽ 1
ϵ

E

 ∑
T∈( [n]

ℓ(H)
)

|ΓH,R(G, T)|2

 ⩽
cH

ϵ
nℓ(H)

where cH is the constant depending on H from Claim 2.10.1. Set ∆(H, d, ϵ) = ϵ3

ℓcT
.

Notice that for a set Q smaller than ∆(H, d, ϵ), the number of T ⊂ ( [n]
ℓ(H)

) is at most

ℓ · ϵ3

ℓ(H)cH
nℓ(H) = ϵ3

cH
nℓ(H). Conditioned on this event of probability 1− ϵ, we can

use (2.56) to conclude that,∣∣∣∣∣∣ ⋃
T∩Q ̸=∅

ΓH,R(G, T)

∣∣∣∣∣∣ ⩽ ϵnℓ(H)

whenever |Q| ⩽ ∆(H, d, ϵ)n.

By taking a union bound over all trees of size k and all choices of designated
vertices, we have the following corollary.

Corollary 2.10.3. For every d, k > 0 and ϵ ∈ (0, 1), there exists η such that following
holds. Denoting by H the set of all graphs with at most m edges, then with probability
1− ϵ, for all Q ⊂ [n], |Q| ⩽ ηn and H ∈ H we have

|ΓH(G, Q)| ⩽ ϵnℓ(H).

Now we are ready to prove the main theorem of this section, namely robustness
of local statistics SDP relaxation.

Theorem 2.10.4. (Robustness of Local Statistics SDP) For every d, ϵ, k, there exist B and
γ such that, with probability at least 1− ϵ over G = (G, E), the following holds:

Let G̃ = ([n], Ẽ) be an arbitrary graph such that |E△Ẽ| ⩽ γn; write G∗ = ([n], E∗)
for the graph obtained by deleting edges incident to all vertices of degree > B in G̃. Then
for every graph H with at most m edges,

|ΓH(G)△ΓH(G∗)| ⩽ ϵnℓ(H)

Consequently, if Ẽ : R[x]⩽2 → R is a pseudoexpectation that is a feasible solution to the
level (2, m) local statistics SDP on G∗ (or G) with tolerance δ, then Ẽ is a feasible solution
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on level (2, m) local statistics SDP with tolerance δ + ϵ on G (or G∗). Further, if Ẽ is
infeasible for the level (2, m) local statistics SDP on G∗ (or G) by a margin of δ, then Ẽ
remains infeasible on the level (2, m) local statistics SDP by margin of δ− ϵ on G (or G∗).

Proof. Let η > 0 be the choice for which Corollary 2.10.3 holds given d, k, ϵ/4. Set

B def
= ⌈2d

η ⌉ and γ = ϵ

4m2mBm3 . We will express ΓH(G)△ΓH(G∗) = Γdel ∪ Γtrunc ∪ Γadd

and bound the size of each of the three sets.

• Γdel = ΓH(G)− ΓH(G̃) are the occurrences of H in G that were deleted by
the adversarial corruption of edges.

Since the corruption deletes at most γn edges, which are incident on at most
2γn < ηn vertices, we can use Corollary 2.10.3 to conclude that this set is at
most ϵnℓ(H)/4

• Γtrunc = (ΓH(G) ∩ ΓH(G̃)) \ ΓH(G∗) are the occurrences of H that were
deleted due to the removal of edges incident to high-degree vertices while
constructing G∗.

The average degree of the graph G is d + o(1) with 1− on(1). Therefore,
the average degree of G̃ is at most d + 2γ < 2d. Hence, the number of
vertices of degree > B is at most (2d/B) · n < ηn. Again by Corollary 2.10.3,
|Γtrunc| ⩽ ϵn/4.

• Γadd = ΓH(G∗) \ ΓH(G) are the occurrences of H in G that were added by the
adversarial corruption, and survived the truncation of high-degree vertices.

Every occurrence in Γadd includes one of the γn edges in Ẽ− E.

Since the degree of each vertex of G∗ is at most B, there are at most Bm vertices
in their neighborhood of radius m around every vertex v. Hence, for any
given connected component C ⊆ H, the number of occurrences of C that
contain a vertex i ∈ [n] is at most |C| · (Bm)|C|.

For every edge e = (u, v) ∈ Ẽ− E, there are at most 2Bm vertices in their
neighborhood of radius m. The number of occurrences of any connected
component C in this neighborhood is thus at most (2Bm)|C|.

Hence the number of occurrences that use at least one edge in |Ẽ− E| is at
most

∑
C⊂H

(
nℓ(H)−1 · (Bm)|V(H)|−|C|

)
· (|(Ẽ− E) ∩ E∗| · (2Bm)|C|
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⩽ ℓ(H) · 2mBm2ℓ(H)γnℓ(H)

By the choice of γ, the desired bound follows.

Conditioned on the event that assertion in Corollary 2.10.3 holds, for every choice
of corruptions, we have that

ΓH(G)△ΓH(G∗) ⩽ ϵn/4 + ϵn/4 + ϵn/4 < ϵn

The claim about the solution to the level (2, m)-local statistics SDP is immediate
by observing that for any partially labelled subgraph (H, S, τ),

Ẽ[|pH,S,τ(G∗, x)− pH,S,τ(G, x)]| ⩽ |ΓH(G)△ΓH(G∗)|

for any Ẽ that satisfies Bk.

2.11 Conjectural recovery in the DRBM

As discussed in the introduction, this paper will not settle fully the question of
recovering the planted communities. However, we can at least reduce some key
aspects of this problem to Conjecture 2.2.6 regarding the spectrum of AG when
G ∼ P(d,k,M,π).

There are numerous ways to pose the recovery task, and as many metrics of
success, but let us set ourselves the modest goal of, given G drawn from a planted
model with λ2

1, ..., λ2
ℓ > (d− 1)−1 and knowledge of the parameters (d, k, M, π),

recovering a vector in Rn with constant correlation to each of the vectors x̌1, ..., x̌ℓ
from the Section 2.5. If ℓ = k, we can use this and our knowledge of M to apply
the change-of-basis F−1 and recover vectors correlated to the indicators x1, ..., xk
for each of the k communities.

Our first claim is that, assuming Conjecture 2.2.6, the eigenvectors of AG can
be used to approximate the x̌i’s. In Section 2.4 we showed that there exists a
polynomial f strictly positive on (−2

√
d− 1, 2

√
d− 1) ∪ {d} with the property

that
x̌T

i f (A)x̌i < −δn

for some constant δ. Writing µ1, ..., µn for the eigenvalues of AG and Π1, · · ·Πn for
the orthogonal projectors onto their associated eigenspaces, we can expand this as

−δn > ∑
u∈[n]

f (µu)x̌T
i Πu x̌i
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= ∑
|µu|<2

√
d−1

f (µu)x̌T
i Πu x̌i + ∑

|µu|⩾2
√

d−1

f (µu)x̌T
i Πu x̌i

⩾ ∑
|µu|⩾2

√
d−1

f (µu)x̌T
i Πu x̌i

⩾ inf
|x|⩽d

f (x) · x̌T
i

 ∑
|µu|⩾2

√
d−1

Πu

 x̌i.

Thus, even if there are only constantly many eigenvectors outside the bulk, a (for
instance) random vector in their span will have O(n) correlation with each of the
x̌i’s.

In order to recover robustly we will lean on the results of Section 2.5.5. If we
begin with G from the planted model, perform ϵn adversarial edge insertion or
deletions, and then run the SDP again, we showed that the old SDP solution will
still be feasible. Thus, if we take X̌ from the SDP run on the corrupted graph, we
will still have

−δn > ⟨ f (AG), X̌i,i⟩ ⩾ inf
|x|⩽d

f (x) · ⟨ ∑
|µu|⩾2

√
d−1

Πu, X̌i,i⟩,

so a, say, Gaussian vector with covariance X̌i,i will have constant correlation with
the subspace spanned by the outside-the-bulk eigenvectors of AG, the adjacency
matrix of the unperturbed graph, which we showed above have the same correlation
guarantee with the x̌i’s.
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Chapter 3

Efficient algorithms from unstable
belief propagation fixed points

This chapter is adapted from [LMR22], a paper co-authored by the author of this
thesis, Siqi Liu, and Prasad Raghavendra.

Many statistical inference problems correspond to recovering the values of
a set of hidden variables from sparse observations on them. For instance, in a
planted constraint satisfaction problem such as planted 3-SAT, the clauses are
sparse observations from which the hidden assignment is to be recovered. In the
problem of community detection in a stochastic block model, the community labels
are hidden variables that are to be recovered from the edges of the graph.

Inspired by ideas from statistical physics, the presence of a stable fixed point for
belief propogation has been widely conjectured to characterize the computational
tractability of these problems. For community detection in stochastic block models,
many of these predictions have been rigorously confirmed.

In this chapter, we consider a general model of statistical inference problems
that includes both community detection in stochastic block models, and all planted
constraint satisfaction problems as special cases. We carry out the cavity method
calculations from statistical physics to compute the regime of parameters where de-
tection and recovery should be algorithmically tractable. At precisely the predicted
tractable regime, we give:

(i) a general polynomial-time algorithm for the problem of detection: distinguish-
ing an input with a planted signal from one without;
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(ii) a general polynomial-time algorithm for the problem of recovery: outputting
a vector that correlates with the hidden assignment significantly better than a
random guess would.

Analogous to the spectral algorithm for community detection [KMM+13, BLM15],
the detection and recovery algorithms are based on the spectra of a matrix that
arises as the derivatives of the belief propagation update rule. To devise a spectral
algorithm in our general model, we obtain bounds on the spectral norms of certain
families of random matrices with correlated and matrix valued entries. We then
demonstrate how eigenvectors of various powers of the matrix can be used to
partially recover the hidden variables.

3.1 Introduction

In the PLANTED-q-COLORING problem, a hidden coloring c : [n] → {1, . . . , q} is
sampled from the uniform distribution over [q]n. A random graph G = ([n], E)
is drawn from the Erdős-Rényi distribution conditioned on c being a legitimate
coloring. So every edge (i, j) is included in the graph with probability d

n · 1[c(i) ̸=
c(j)] independently at random. Given the edges E as input, the goal of an inference
algorithm is to recover (even partially) the hidden coloring c.

PLANTED-q-COLORING is the archetypal example of a broad class of statistical
inference problems where the goal is to recover a set of hidden variables from
sparse observations on it (see [Mon08]). A large number of inference problems
ranging from decoding LDPC codes to community detection in random graphs
fall into this broad framework. Broadly speaking, the setup in these inference
problems is as follows. A set of hidden variables {c(1), . . . c(n)} are drawn from
a known prior product distribution Pc. A sequence of observations (a.k.a. hyper-
edges) E on these hidden variables are revealed to the algorithm. Each hyperedge
(i1, . . . , ik) is included with probability 1

nk−1 ·Φ(c(i1), . . . , c(ik)) for some constant
Φ(c(i1), . . . , c(ik)) that depends on the values of hidden variables c(i1), . . . , c(ik).
Thus the inference algorithm receives Θ(n) observations with high probability and
its goal is to partially recover the values of the hidden coloring.

The key computational task is to recover the values of the hidden variables. In
a sparse setup where the number of observations is linear, it is typically impossible
to recover the hidden variables exactly. Therefore, one settles for the relaxed goal
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of weak recovery where the algorithm is required to produce an assignment which
correlates better than random with hidden variables.

It is often useful to also define a related decision problem of "detection" . Here,
the algorithm is required to distinguish between a set of observations consistent
with a single fixed assignment to hidden variables (planted distribution) or a set of
observations each sampled independently by drawing a new assignment to the
hidden variables (null distribution).

In this work, we will be considering a more general model that will permit
constantly many types of variables and observations. The prior distribution of
each variable depends on its type, and the probability of sampling an observation
depends on the types and values of variables involved. We defer the formal de-
scription of our general model to Section 3.2.1, but instead present a few examples
of these problems.

Example 3.1.1. (Stochastic Block Models) A natural generalization of the PLANTED-
q-COLORING problem is the stochastic block model (SBM). The stochastic block
model is defined by a parameter q (the number of labels), a distribution Pc over [q]
(the expected fraction of vertices with a specific label), and a matrix P ∈ R[q]×[q]

such that P[c, d] gives the probability of an edge between two vertices with labels c
and d. In the community detection problem, a hidden labelling c : [n]→ {1, . . . , q}
is sampled from the product distribution Pn

c . Given c, a random graph G = ([n], E)
is drawn by including each edge (u, v) independently with probability P[c(u), c(v)]
depending on the labels of the endpoints. The goal of the problem is to recover the
labelling c from the graph G.

Example 3.1.2. (Planted CSPs) In a planted CSP over a domain [q], an assignment
x ∈ [q]n is chosen at random and clauses are sampled conditioned on being
satisfied by the planted assignment x. Depending on the predicate used, one
obtains different planted CSPs such as Planted NAE-k-SAT and Planted k-SAT.

Many more examples of problems that fit our framework will be presented
in the rest of the paper. Alternatively, this class of problems can be viewed as

“Bayesian CSPs”. Traditionally, a constraint satisfaction problem involves variables
taking values over finite domain and a set of local constraints on them. The goal
is to find an assignment that satisfies either all the constraints (exact CSPs) or the
largest fraction of constraints (approximate CSP). The key difference in this setup
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is that there is a prior distribution associated with assignment on the variables and
the constraints.

Constraint satisfaction problems (CSP) lie at the bedrock of worst-case complex-
ity theory tracing back all the way to SAT and NP-completeness and by now there is
a rich and comprehensive theory that correctly predicts the computational complex-
ity of the traditional CSPs, with (i) the CSP dichotomy conjecture [Sch78, Zhu20] for
exact CSPs, which cleanly classifies a constraint satisfaction problem as polynomial-
time solvable or NP-hard depending on whether a pair of solutions could be
combined to form a third solution via a function called a polymorphism, and
(ii) the Unique Games Conjecture for approximate CSPs, which characterizes the
best approximation ratio possible in polynomial time with an integrality gap of a
semidefinite program [Kho02, KKMO07, Rag08]. There is also a well understood
picture of the complexity of refutation of random CSPs from the lens of the Sum-
of-Squares semidefinite programming hierarchy [AOW15, RRS17, KMOW17]. On
the other hand, our understanding of the complexity of Bayesian CSPs is still in
its nascent stages. Bayesian CSPs are a rich and natural class of average case prob-
lems, and understanding their complexity would be a good test-bed for average
case complexity theory. Indeed, Goldreich’s pseudorandom generator [Gol11] is
precisely based on harnessing the computational intractability of certain Bayesian
CSPs.

A naive exponential-time algorithm for the problem would be to use the Bayes
rule to compute/sample from the conditional distribution c|E. The fundamental
question here is to understand the limits of efficient algorithms for this class of
statistical inference problems. Furthermore, both exact and approximate versions of
traditional CSPs exhibit abrupt transitions wherein the computational complexity
of the problem changes from polynomial to exponential. It is a compelling question
whether Bayesian CSPs also exhibit similar abrupt transitions in computational
complexity, and whether there exist broadly applicable optimal algorithms for
them.

3.1.1 Belief Propogation and Cavity Method

A natural candidate for an optimal algorithm for Bayesian CSPs (especially in the
sparse case) is belief propogation (BP). BP is often hypothesized to be theoretically
optimal, and is also very efficient in practice. There is a vast body of literature
on belief propogation (BP) drawing ideas from statistical physics (see [MM09a,
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Chapter 14] and [ZK16] for a comprehensive treatment). It is often very difficult to
analyze BP as a standalone algorithm and we are quite far from demonstrating its
optimality among polynomial-time algorithms. However, there has been a growing
body of work in the past decade which suggest a very general and precise theory
to predict the computational complexity of Bayesian CSPs.

To the best of our knowledge, it appears that the work of Krzakala and Zde-
borova [KZ09] is the first to hypothesize a precise computational phase transition
for planted problems based on ideas from statistical physics. Specifically, Krzakala
and Zdeborova [KZ09] hypothesized that for a broad class of planted distributions,
the problem of distinguishing the planted vs null distributions becomes computa-
tionally intractable at a well-defined threshold. In the case of community detection,
this threshold coincides with the so-called Kesten-Stigum threshold. More broadly,
in this work, we will often refer to this threshold of intractability for Bayesian CSPs
as the stable fixed point barrier for reasons that will be soon clear.

Building on the ideas from [KZ09], [DKMZ11b, DKMZ11a] made a fascinating
set of conjectures on community detection. For example, they conjectured that the
k-coloring problem is easy exactly when the average degree of a vertex in the model
satisfies d > k2. Their conjectures fuelled a flurry of work, leading to algorithms
that match the conjectured computational thresholds [MNS18, Mas14b, BLM15,
AS15].

The stable fixed point barrier suggested by [KZ09, DKMZ11a] is applicable be-
yond the setting of community detection. For instance, Krzakala and Zdeborova
point out that this stable fixed point barrier is shared by problems such as hyper-
graph bicoloring and locked CSPs. Here locked CSPs are those wherein every
pair of assignments to a predicate have Hamming distance at least 2 (analogous
to pairwise-independence leading to approximation resistance [AM09]). More
broadly, there is a heuristic cavity method calculation to pinpoint the location of
the stable fixed point barrier in general (see Section 3.2.4 to Section 3.2.7).

Unfortunately, we are still far from establishing the veracity of these heuristic
predictions. For most of these problems, BP has not been proven to succeed in
the blue region of parameters, nor is any other polynomial time algorithm known.
There is no roadmap to establishing intractability of these problems when the
parameters are chosen in the white region.

Our main result takes a step towards establishing these predictions by giving a
spectral algorithm to partially recover the hidden variables whenever the parame-
ters are in the blue region. Specifically, we devise a spectral algorithm that uses a
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linearization of BP, an approach that has been succesfully carried out for the case
of community detection in [KMM+13, BLM15].

3.1.2 Stable Fixed Point Barrier

Belief propogation (BP) aims to estimate the marginals of the hidden variables, in
our case c(v) for v ∈ [n]. To visualize BP, it will be useful to consider the bipartite
graphH with variables [n] on one side and the factors (a.k.a. observations) E on
the other. There is an edge between a variable v and an observation e ∈ E if v ∈ e.
The execution of BP is divided into rounds where in each round, the variable nodes
send messages to factor nodes or vice versa.

Let mv→e denote the message sent by a variable v to a factor e ∈ E and let
me→v denote the message from a factor e ∈ E to a variable v. All messages
exchanged are distributions over the domain [q], i.e., mv→e = (mv→e

1 , . . . , mv→e
q )

and similarly me→v = (me→v
1 , . . . , me→v

q ). Intuitively speaking, mv→e
c is an estimate

of the marginal probability that v is assigned the color c when the factor e is absent,
and me→u

c is an estimate of the marginal probability that u has color c when all
other factors involving u are absent.

The general schema of a BP algorithm is to start BP with some intialization of
the messages

{mv→e[0], me→v[0]}v∈[n],e∈E

and iteratively update the messages as specified by the functions Υ, until the
messages stabilize into a fixed point, i.e., a set of messages {m̂v→e, m̂e→v} so that,

m̂v→e = Υv→e

(
{m̂ f→v | f ∈ ∂v\e}

)
m̂e→v = Υe→v ({m̂u→e | u ∈ ∂e\v})

There is a canonical starting point m for the BP iterations where the messages
me→v correspond to uniform distribution over the possible values [q]. Conjecturally,
this canonical initialization m plays a critical role in characterizing the computa-
tional complexity of inferring the hidden variables in model M. There appear to be
three possible cases with regards to this canonical initialization.

Case 1: m is not a fixed point Suppose m is not a fixed point for the BP iteration
over the model M, then BP iteration can be expected to make progress, thereby
yielding a weak recovery of hidden variables.
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In fact, we will present a self-contained algorithm that weakly-recovers the hid-
den coloring in this case. Formally, we will show the following in Appendix 3.10:

Lemma 3.1.3. If m is not a fixed point for the BP iteration on model M, then there is a
polynomial time algorithm A and an ϵ > 0 such that

1. if (E, τ) ∼ M: A outputs a coloring that beats the correlation random guessing
achieves with the hidden coloring by ε,

2. A solves the M vs. M× (the null distribution) distinguishing problem with high
probability.

In light of the above lemma, it is natural to restrict our attention to the case
where m is a fixed point for the BP iteration.

Case 2: m is an unstable fixed point m is an unstable fixed point if arbitrarily small
perturbations of m will lead to the BP iteration moving away from the fixed point m.
This case was marked by the blue region in Figure 1.2 and Figure 1.4. In this case,
our main algorithmic result is a spectral algorithm to recover a coloring c′ that beats
the correlation random guessing achieves with the hidden coloring. Alternatively,
the spectral algorithm can be used to distinguish between the planted and the null
distributions.

Case 3: m is a stable fixed point m is a stable fixed point if there exists a neighbor-
hood U around m such that for any initialization m̂ ∈ U, BP iteration converges
to the canonical fixed point m. In this case, the canonical fixed point m clearly
highlights a potential failure of BP algorithm. The hypothesis of Krzakala and
Zdeborova [KZ09] asserts that existence of this stable fixed point marks the onset
of computational intractability in general.

3.1.3 Related Work

Ideas from statistical physics have long been brought to bear on inference problems.
We refer the reader to [Nis01, MM09b, ZK16, RTSZ19] for an introduction to the
phase transitions that mark changes in statistical and computational properties of
these problems.
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Planted models Special cases of the planted model we consider have appeared
extensively in literature. The conditional probability of the hidden vector given the
noisy observations takes the form of a graphical model, i.e. factorizes according to
an hypergraph whose nodes correspond to variables and hyperedges correspond
to noisy observations. Such graphical models have been studied by many authors
in machine learning [LMP01] under the name of conditional random fields. We high-
light a few among the extensive body of literature on information-theoretic and
structural properties of these planted models. Montanari [Mon08] characterized
the posterior marginals in terms of fixed points of the associated density evolution
operator. Subsequently, Abbe and Montanari [AM13] show concentration for the
conditional entropy per hidden variable given the observations. More recently,
Coja-Oghlan et. al. [COHKL+20] study the information theoretic limits to recov-
ery and confirm a conjectured formula for the mutual information between the
observations and the planted assignment.

Spectral algorithms via non-backtracking operator The idea of using the spectra
of non-backtracking matrix for recovery in planted problems can be traced back
to the seminal work of Krzakala et al. [KMM+13] in the context of community
detection. While this work provided heuristic arguments supporting the correct-
ness of the algorithm, it was rigorously established in the work of Bordenave et.
al. [BLM15]. Subsequently, [SLKZ15] devised spectral algorithms for solving the
recovery problem in the censored block model, a variant of community detection
wherein the edges are weighted and the weights carry the information about the
community labels, but the edges don’t. Building on the result of [BLM15], this
work shows that the eigenvectors of non-backtracking matrix can be used to par-
tially recover the communities, right up to the threshold. Finally, Angelini et al.
[ACKZ15] consider a model of sparse hypergraphs that includes planted CSPs as a
special case. The paper proposes a spectral algorithm based on a generalization
of a non-backtracking matrix to hypergraphs, and gives a heuristic argument that
the algorithm solves detection whenever belief propogation succeeds. Unlike our
work, the algorithm proposed in [ACKZ15] uses an unweighted non-backtracking
matrix that is independent of the prior probabilities. While it is a desirable fea-
ture that the algorithm is non-parametric, i.e., does not rely on the knowledge of
prior distributions generating the instance, it is unclear if such a non-parametric
algorithm can achieve detection up to the threshold in general.
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Apart from recovery in planted models, the non-backtracking operator and the
closely related Bethe-Hessian matrix have also been applied towards computing
upper bounds for the log-partition function in ferro-magnetic Ising models on
general graphs [SKZ17].

Quiet Planting Planted distributions that are indistinguishable from their ran-
dom counterparts are often referred to as "quiet planting", though the terminology
is not often consistent on whether the distributions are computationally or statisti-
cally indistinguishable.

A quiet planting that is statistically indistinguishable from random was used
as a technical tool to study random instances in [AC08]. Krzakala and Zdeborova
[KZ09] studied the existence of quiet plantings for graph coloring problem and
were the first to hypothesize that under the Kesten-Stigum threshold, the planted
ensembles are a computationally indistinguishable from random. Subsequently,
the authors [ZK11] considered planted distributions for locked CSPs, wherein every
pair of assignments to a predicate have Hamming distance at least 2 and showed
that problem is easy above a threshold that coincides with the Kesten-Stigum
threshold and hypothesize that non-trivial recovery is computationally hard under
it. Finally, a statistically quiet planting for the random k-SAT problem has been
proposed in [KMZ12].

Community Detection Extensive work on community detection for stochas-
tic block models has led to the confirmation [MNS18, Mas14b, BLM15, AS15] of
conjectures of Decelle et. al. [DKMZ11b, DKMZ11a]. As predicted, existing algo-
rithms [Mas14b, BLM15, AS15] can partially recover community labels up to the
Kesten-Stigum threshold, but no lower. For q = 2 communities, the Kesten-Stigum
threshold also matches the information theoretic threshold beyond which recov-
ery is impossible. However, for q ⩾ 3 communities, the problem is believed to
exhibit a statistical-vs-computational gap, in that there is a range of parameters
where partial recovery is possible but is computationally intractable. The pres-
ence of a gap between the Kesten-Stigum threshold and the information theoretic
threshold for all q > 5 was established in [Sly09]. More recently, Ricci-Tersenghi
et al. [RTSZ19] predicted the existence of such a gap for q = 4 communities for
some degree distributions, and also identifies a threshold beyond which there is a
hard phase in asymmetric SBM. Furthermore, this work predicts the existence of
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hybrid-hard phases where it is computationally easy to reach a non-trivial inference
accuracy, but computationally hard to match the information theoretically optimal
one. Specifically, there are stable fixed points for BP that are not the trivial fixed
point, but also don’t correspond to optimal recovery.

Spectral norm bounds Technically, our work draws on ideas from Bordenave,
Lelarge and Massoulie [BLM15] who established spectral norm bounds for non-
backtracking matrices associated with Erdős-Renyi random graphs. Closer to our
own setup, Stephan et al. [SM20] show eigenvalue bounds for the non-backtracking
matrices of random graphs that have independent and bounded edge weights,
and bounded model complexity (measured by the rank of the expected adjacency
matrix). However, in our model the edges have correlated matrix weights instead
of independent scalar weights, so their eigenvalue bounds do not generally apply
to our model. Another work we draw several ideas from is that of Bordenave and
Collins [BC19], who prove that the spectra of a wide family of random graphs,
namely those arising from matrix-weighted noncommutative polynomials of ran-
dom permutation matrices (see [OW20] for a comprehensive characterization and
examples in this family), are roughly contained within the spectrum of an appro-
priately defined infinite graph. The key techniques useful in our work are the
ones they employ to bound the spectral norms of the non-backtracking matrices of
random regular graphs whose the edges are endowed with varying matrix weights.

3.1.4 Technical Overview

We define a general model for sparse observations on a hidden vector, and carry out
the cavity method calculations in full generality following [DKMZ11a]. We obtain
a criterion for computational tractability of the recovery and detection problems on
this model, and provide spectral algorithms for recovery (Theorem 3.2.10) and de-
tection (Theorem 3.2.11) in the tractable regime. The key technical ingredient in our
work is tight eigenvalue bounds for nonbacktracking matrices of sparse random
hypergraphs with (possibly varying) matrix-valued edge weights (Theorem 3.3.8).

In this section, we will attempt a brief technical outline of our result specialized
to the case of distinguishing a random NAE3SAT instance from one with a hidden
satisfying assignment. Concretely, consider the problem distinguishing Dnull from
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Dplanted where:1

• An instance I ∼ Dnull is obtained by sampling each triple of distinct ver-
tices (u, v, w) in [n]3 independently with probability d

3!n2 and then placing
uniformly random negations (σu, σv, σw) on each variable.

• An instance I ∼ Dplanted is sampled in a two-stage process: (1) sample a hid-
den assignment x ∼ {±1}n, (2) sample each triple of distinct vertices (u, v, w)

in [n]3 independently with probability d
3!n2 and place uniformly random

negations (σu, σv, σw) conditioned on NotAllEquals(σuxu, σvxv, σwxw) = 1.

First, let us map out the statistical physics prediction of the smallest value of d
at which the problem becomes computationally tractable. In particular, we need
to work out the value of d for which the trivial fixed point for belief propogation
is unstable. To this end, one emulates the cavity method heuristic calculations
analogous to the one carried out in [DKMZ11a] for stochastic block models. Over-
simplifying for the sake of presentation, the cavity method heuristic amounts to
carrying out the calculation by treating the neighborhood of each variable to be an
infinite tree (see Section 3.4 for more details).

Concretely, the setup in the cavity method calculation is as follows. The neigh-
borhood of a variable v in the NAE3SAT instance is modelled as an infinite tree with
alternating layers of variable and NAE3SAT constraint nodes. The tree is generated
by a Galton-Watson process where each variable v picks a degree dw ∼ Poisson(d)
from the Poisson distribution, and has dw NAE3SAT constraint nodes as chil-
dren, and each constraint node has exactly 2 children. For each path of length 2,
u→ C → w from a variable u to its constraint node C followed by another variable
w in the constraint, there is an associated constant sized matrix MuCw depending
on the prior distribution. For the case of NAE3SAT, all of the matrices MuCw are
given by MuCw = σuσwM where

M :=
[
−1/6 1/6
1/6 −1/6

]
.

1Strictly speaking, this model and the distribution over NAE3SAT instances our generic model
yields differ slightly. Nevertheless they are contiguous and so the phenomena in one carry to the
other.
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For any depth t, consider the following quantity ρt where the expectation is over
the choice of the infinite tree T ,

ρt(d) =

E
tree T

[
∑

pathsu0=v→C0→u1→C1→u2→···→ut

Tr

((
t−1

∏
i=0

MuiCiui+1

)(
t−1

∏
i=0

MuiCiui+1

)∗)]

The threshold d∗ predicted by the cavity method is precisely the smallest value of
d for which limt→∞ ρt(d) > 1.

This characterization of d∗ is a little unwieldy in that it is not immediate that the
value of the threshold d∗ is decidable. Fortunately, through ideas from the work
of Bordenave and Collins [BC19], the above characterization can be equivalently
written in terms of the spectral radius of an associated finite matrix. Specifically, for
NAE3SAT, d∗ is the smallest d for which the spectral radius of L exceeds 1 where:

L = d ·


1/18 −1/18 −1/18 1/18
−1/18 1/18 1/18 −1/18
−1/18 1/18 1/18 −1/18
1/18 −1/18 −1/18 1/18

 .

(see Section 3.2.9 for an overview of how to construct L in general, and Section 3.4
for details). Hence, for NAE3SAT, the problem is hypothesized to become algorith-
mically tractable once d > 4.5. Our main results are algorithms for distinguishing
the null and planted distributions, and for partially recovering a hidden assign-
ment in the general model we consider whenever the spectral radius ρ(L) of the
matrix L corresponding to the model exceeds 1. In the case of NAE3SAT, we prove:

Theorem 3.1.4. When d > 4.5, given I ∼ Dnull or Dplanted:

1. There is an efficient algorithm to distinguish Dnull from Dplanted with probability
1− o(1).

2. There is an efficient algorithm to produce Θ(1) unit vectors V where ⟨v, x⟩ ⩾
Ω(
√

n) for some v ∈ V.

We now describe the distinguishing algorithm, which is spectral in nature,
and briefly survey the techniques to analyze the matrix involved. The matrix we
employ is a power of the so-called non-backtracking matrix obtained by linearizing
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belief propogation. For each clause C and pair of variables u, v in the clause signed
by σu, σv we define matrix MuCv := σuσvM. The s-th nonbacktracking power matrix
is a n× n block matrix where each block is 2× 2:

A(s)[a, b] := ∑
uC1u1C2u2...us−1Csv

MuC1u1 Mu1C2u2 · · ·Mus−1Csv.

The algorithm is then fairly simple:

• Let s = ⌊
√

log n⌋, and let κ be strictly between
√

ρ(L) and ρ(L).

• If ∥A(s)∥ < κs output Dnull, otherwise output Dplanted.

In order to prove that the algorithm is correct, there are two key technical steps: (1)
to prove that in the planted model, the operator norm is large, (2) to prove that in
the null model, the operator norm is bounded.

The key insight in proving (1) is that the large operator norm of A(s) arises from
the hidden assignment to the planted instance I itself. In particular, denoting

y := x⊗
[

1
−1

]
we prove:

Lemma 3.1.5. With probability 1− o(1):

⟨y, A(s)y⟩
∥y∥2 ⩾ Ω(ρ(L)s).

This is proved in full generality in Section 3.6.
The main technical difficulty is in proving (2) in the general model, as is done

in Section 3.7. We prove:

Lemma 3.1.6. With probability 1− o(1):

∥A(s)∥ ⩽
(
(1 + o(1))

√
ρ(L)

)s
.

Our proof is largely inspired by the works of [BLM15, BC19, SM20]. On one
hand, [BLM15] and [SM20] show tight eigenvalue bounds for the nonbacktracking
matrices of sparse (possibly inhomogenous) Erdős-Rényi graphs with scalar edge
weights. The proof exploits the commutativity of scalar products, i.e. the product
of edge weights along a walk is invariant under reordering. However, the graphs
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we consider have matrix-valued weights, which in general don’t commute under
multiplication. Therefore the product of edge weights changes depending on the
order of multiplication. On the other hand, random regular graphs with matrix-
valued edge weights is handled in the work of [BC19]. However, the proof in
[BC19] heavily exploits the regularity of the model — each vertex has exactly d
adjacent edges and these edges have the exact same set of matrix weights. This
leads to every vertex having isomorphic neighborhoods, and simplifies the analysis,
which does not occur in our setting due to the lack of regularity. Our situation
is further complicated by the fact that due to hyperedges of size greater than 2
even the random matrix weights in different blocks are not independent, which
introduces mild correlations. The proof follows the general framework of the trace
method and gives a more fine-grained analysis for nonbacktracking walks based
on their shapes.

While the spectral radius of non-backtracking powers A(s) serve as a distin-
guisher, recovering the hidden assignment from the eigenvectors is little more
subtle. In particular, this requires proving a converse of Lemma 3.1.5 that the every
vector v for which ⟨v, A(s)v⟩ is large, is actually correlated with the planted assign-
ment. Instead, we bypass this issue by collating information from eigenvectors of
A(s) for a range of values of s (see Section 3.8 for details).

3.1.5 Discussion and Future Work

In this work, we have shown that for a very general class of planted problems, the
problem is computationally tractable whenever the trivial fixed point is unstable.
This establishes the algorithmic side of the predictions of Krzakala and Zdeborova
[KZ09] for all these problems. Several compelling open questions remain, we list a
few here.

Reductions. From the standpoint of average case complexity, the main open ques-
tion is to establish or refute the stable fixed point barrier. Given that all Bayesian
CSPs have a uniform onset of intractability as specified by the stable fixed point
barrier, perhaps these problems are reducible to one another. Traditional CSPs are
very amenable to reductions, it is compelling to see if there are reductions between
Bayesian CSPs, and stable fixed point barrier can be obtained as a consequence of
the intractability of a single Bayesian CSP. The main challenge here is in coming
up with reductions between problems that are distribution-preserving and we spec-
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ulate that the ideas in [BBH18, BB20], which are examples of recent successes in
reductions between average case problems, might be useful.

Hardness evidence in restricted computational models. Evidence on the stable
fixed point barrier would also be very interesting. [HS17] showed that an algorithm
based on low-degree polynomials solves the distinguishing problem in community
detection up to Kesten-Stigum threshold, and also proves matching hardness in
that low-degree polynomials fail to solve the problem under the Kesten-Stigum
threshold. Recent work introduced the local statistics SDP hierarchy [BMR21]
and showed the same algorithmic result for this class of algorithms and proved a
negative result for the degree-2 SOS version of this algorithm. It will be useful to
show that low-degree method and local statistics SDP hierarchy fail to solve the
detection problem in the general model we consider in the presence of a stable
fixed point. It will also be interesting to see if conditional hardness results for
the problem can be obtained in other models such as statistical query algorithms
[FGR+17].

Another direction in the spirit of the recent work of [BBH+20] which establishes
an equivalence between the predictions of statistical query algorithms and the
low-degree polynomials method would be to formally establish the equivalence of
the predictions for the stable fixed point based on the cavity method with the other
restricted models of computation such as the ones mentioned above.

Goldreich’s PRG for 1-wise independent, balanced, local predicates Goldreich
proposed a construction of pseudorandom generators from random CSPs with
balanced local predicates [Gol00]. The generator mapping n variables to {0, 1}m

is constructed as follows: let E1, . . . , Em be a randomly chosen set of constraints
on n input variables, then the i-th bit of the output string indicates whether Ei is
satisfied by the input or not.

The constraints in Goldreich’s generator can be sampled from the null distri-
bution of the model that we study. Then on any input c (analogous to the hidden
variables in the model), the output of the generator together with the constraints
can be viewed as observations from the model’s planted distribution. Roughly
speaking, we say that this generator produces pseudorandom strings if and only if
the detection problem for this model is intractable.
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For any random CSP with 1-wise independent predicates, the cavity method
yields a concrete predicate density threshold above which the detection problem
should be tractable (indeed the threshold is always of order O(n)). Our distin-
guishing algorithm confirms tractability in this regime, and therefore provides a
concrete linear upper bound on the stretch of the Goldreich’s PRG constructed
from the random CSP. Indeed, the upper bounds would be tight if the stable fixed
point barrier hypothesis holds.

NP problem If the stable fixed point barrier hypothesis holds, then these Bayesian
CSPs are excellent examples of average-case hard problems that are easy to sample.
Their intractability can be harnessed to build cryptographic and pseudorandom
primitives whose security depends on the existance of average-case hard problems.
To this end, it is important that the underlying intractable problem is in NP, i.e.,
given the true hidden assignment, an efficient algorithm must be able to recognize
it. Formally, this motivates the following NP-version of the problem:

Problem 3.1.7. (NP version) Devise an efficient verification algorithmA that, given
observations E from the planted model M and a candidate assignment c : [n]→ [q],
has the following property:

• If (c, E) are generated from the model M, the algorithm A accepts (c, E) with
high probability.

• If the observations E are generated from the null model M, then for every
assignment c : [n]→ [q], the algorithm rejects (c, E) with high probability.

Dense models The focus of this paper has been the sparse settings, where in the
underlying variable-observation graph is constant degree on average. Stability
of trivial fixed point is also hypothesized to indicate computational intractability
in dense problems such as spiked Wigner matrix (see [MV17] for some rigorous
results). In this setting, it is the stability of fixed points of the approximate message
passing (AMP) algorithm. A natural open question is whether the spectral algorithm
based on linearizing AMP can be shown to generically hold in the dense setting.

Optimal Recovery Finally, in the region where weak recovery is possible, BP is
conjectured to achieve the optimal recovery rate, i.e., achieve the maximum possible
correlation with the hidden communities. While spectral algorithms provably
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achieve weak recovery, there has only been partial progress on the problem of
achieving the optimal recovery rate [MNS14] — in particular, optimal recovery
even in the 2-community block model close to the Kesten-Stigum threshold is open.
In analogy with traditional CSPs, stable fixed point barrier marks the onset of
"approximation resistance" for some problems, while the recovery rate corresponds
to the approximation ratio.

3.2 Preliminaries

3.2.1 Observation Model

We will now formally define the observation model that is used throughout this work.
The basic setup consists of a set of hidden variables c(1), . . . , c(n) taking values
over a finite domain [q] = {1, . . . , q}. Borrowing terminology from the PLANTED

COLORING problem, we will refer to [n] = {1, . . . , n} as the set of variables, [q] as
the set of colors and c : [n]→ [q] as the hidden coloring.

The hidden coloring c : [n] → [q] is drawn from a prior distribution Pc. A
sequence of hyperedges E on the vertex set [n] are drawn, and we will refer to
these hyperedges as observations. More precisely, an observation is effectively a
hyperedge e ∈ E with a type τ(e).

Definition 3.2.1. An observation model M = ([q], T, T , {Pτ}τ∈T, Φ) describes a
distribution on n-vertex hypergraphs Mn for every n ⩾ 1 and is specified by,

• (Variable Types T). A set of types T for the hidden variables and a distribu-
tion T over them.

Each variable is assigned a random type sampled from T and is described by
τ : [n]→ T; in aggregate there are ≈ T (τ) · n variables of type τ.

• (Prior Distributions {Pτ}τ∈T). For each variable of type τ ∈ T, a prior
distribution Pτ.

The prior distribution of hidden coloring c : [n]→ [q] is the product distribu-
tion,

Pc = Pτ(1) ×Pτ(2) . . .×Pτ(n)
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• (Observation Types Φ). Set of observation types Φ = {ϕ1, . . . , ϕF}. The arity
of a type i observation is denoted by a(i).

Each observation on the variables is a hyperedge with a type from Φ. Specif-
ically, the set of all observations is a set of hyperedges E partitioned as
E = ∪i∈[F]Ei where Ei is a set of a(i)-tuples of distinct elements in [n].

• (Observation Distributions). For each observation type ϕi ∈ Φ, we have a
bounded function ϕi : Ta(i) × [q]a(i) → R+.

For every a(i)-tuple (v1, . . . , va(i)) of distinct elements in [n], the observation
ϕi(v1, . . . , va(i)) is included independently with probability

Pr
[
ϕi(v1, . . . , va(i)) ∈ Ei

]
def
=

ϕi

(
(τ(v1), c(v1)), . . . , (τ(va(i)), c(va(i)))

)
na(i)−1

Notice that the probability of drawing an observation ϕi(v1, . . . , va(i)) de-
pends both on the types of the variables and their colors.

We refer the reader to the work of Montanari [Mon08], where this model has
been previously used for a wealth of concrete examples captured in this framework.
Here we will exhibit a few examples.

Example 3.2.2. (Stochastic Block Model in semi-supervised setting)
In this variant of community detection, a graph G = (V, E) is drawn from a

[q]-community SBM and in addition an α-fraction of the vertex labels are revealed.
[ZMZ14] study the KS threshold in this model using the cavity method.

To encode this problem into our framework, we will have vertex types T =

[q] ∪ {⊥} wherein the type of a vertex v is τ(v) ∈ [q] if the label of v is revealed,
and τ(v) =⊥ if it is unrevealed.

We have a single observation type namely the edges of the SBM, and the prob-
ability of an edge (u, v) is clearly ϕ ((τ(u), c(u)), (τ(v), c(v))) /n for a function ϕ

depending on the types and colors of two vertices.

More generally, the model can encode variants of SBM wherein there is addi-
tional attributes revealed about the vertices or edges or both. For example, SBM
with labelled edges [HLM12] are subsumed by different types of observations,
while SBM with vertex features [DSMM18] are captured by vertex types.
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Further, the model can also be used to express geometric SBM [GMPS18] in
restricted cases. In a geometric SBM, the vertices are distributed on a compact
metric space like the sphere, and the probability of including an edge between
vertices u, v is a function of the distance between the two. If the metric space is
compact, say a sphere in a constant dimensional space, then one can use an ϵ-net of
the compact set as a finite set of vertex types to model the SBM in our framework.

3.2.1.1 Miscellaneous simplifying notation

Class function Cl: For notational convenience, we will make a modification to
our Definition 3.2.1 that does not affect the generality of our results. We will enforce
that each observation type ϕi have a fixed tuple of variable types on which it applies.
Formally, each observation type ϕi has an associated class type Cl(i) ∈ Ta(i) such
that all occurrences of the observation ϕi have input variable types given by Cl(i).
It is clear that this restriction is a special case of Definition 3.2.1 with the additional
restriction that,

ϕi

(
(τ1, c1), . . . , (τa(i), ca(i))

)
= 0 if (τ1, . . . , τa(i)) ̸= Cl(i)

Conversely, given a general model M as per Definition 3.2.1, for each obser-
vation type ϕi and each tuple τ = (τ1, . . . τa(i)), introduce an observation type
ϕ′i,τ that is identical to ϕi, but restricted to variable types τ, i.e., set Cl(i) = τ. It
is easy to see that this transformation creates a model M′ that is equivalent to
M. Without loss of generality we will henceforth use ϕi(c1, . . . , ca(i)) to denote
ϕi((τ1, c1), . . . , (τa(i), ci)) where τ = Cl(i).

Average factor density: We will use ϕi to denote the average density of a factor:

ϕi := ∑
(c1,...,ca(i))∈[q]a(i)

(
a(i)

∏
k=1

PCl(i)k

)
· ϕi(c1, . . . , ca(i)).

Bipartite view: Given a collection of sampled observations E = ∪F
i=1Ei, we

associate a bipartite graph G where the left vertex set is given by the variables [n]
and the right vertex set is given by the collection of all (i, γ) for γ in Ei.
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Index function: For e = (i, (v1, . . . , va(i))) we define ie(vs) as s and e[s] as vs.
When e is clear from context we will drop the e and just use i(vs).

Definition 3.2.3. For an observation model M = ([q], T, T , {Pτ}τ∈T, Φ) the corre-
sponding null model M× is the observation distribution where for every a(i)-tuple
(v1, . . . , va(i)) a hidden coloring c is sampled independently, and the observation
ϕi(v1, . . . , va(i)) is included with probability

Pr
[
ϕi(v1, . . . , va(i)) ∈ Ei

]
def
=

ϕi

(
(τ(v1), c(v1)), . . . , (τ(va(i)), c(va(i)))

)
na(i)−1

.

Equivalently, in the null model for every (v1, . . . , va(i)) the observation ϕi(v1, . . . , va(i))

is included independently with probability:

Pr
[
ϕi(v1, . . . , va(i)) ∈ Ei

]
def
=

ϕi

na(i)−1
.

Remark 3.2.4. For a model M we will refer to it as the planted model and we will
refer to N as the null model. Two computational problems we are interested in are
distinguishing whether a sample is drawn from M or N , and inferring the hidden
coloring for a sample drawn from M.

3.2.2 Bayesian Inference

Given the variable types τ : [n] → T and the observations E, the canonical
algorithm to infer the hidden coloring c is to use the Bayes rule to compute
the conditional distribution Pc|E. Formally, the probability that a model M =

([q], T, T , {Pτ}τ∈T, Φ) generates a hidden coloring c and observations E is

Pr[E1, . . . , EF, c | τ] = Pr[c | τ] · Pr[E1, . . . , EF | c, τ]

=

 ∏
v∈[n]

Pτ(v)(c(v))

 ·
∏

i∈[F] ∏
(vj)j∈[n]a(i)

[
ϕi(c(v1), . . . , c(va(i)))

na(i)−1

]1(vj)j∈Ei
[

1−
ϕi(c(v1), . . . , c(va(i)))

na(i)−1

]1(vj)j ̸∈Ei

 .
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By applying Bayes rule,

Pr[c | E1, . . . , EF, τ] =
Pr[E1, . . . , EF, c | τ]

∑c∗ Pr[(E1, . . . , EF, c∗ | τ]
.

Ignoring the normalizing constant, we can write

Pr[c | E1, . . . , EF, τ] ∝ e−H(c|E1,...,EF,τ) ,

where

H(c | E1, . . . , EF, τ) =

− ∑
i∈[F]

∑
(vj)j∈[n]a(i)

1(vj)j∈Ei
log

(
ϕi(c(v1), . . . , c(va(i)))

na(i)−1

)
+

1(vj)j ̸∈Ei
log

(
1−

ϕi(c(v1), . . . , c(va(i)))

na(i)−1

)
− ∑

v∈[n]
log Pτ(v)(c(v)).

The function H(c|E1, . . . , EF, τ) is referred to as the Hamiltonian, and the distribu-
tion is the Boltzmann distribution with Hamiltonian H and inverse temperature
β = 1.

Since in our setting, the hypergraph is sparse, i.e., ϕi = O(1), the terms

log

(
1−

ϕi(c(v1), . . . , c(va(i)))

na(i)−1

)
≈ 0 (3.1)

for all (vj)j ̸∈ Ei. So the these terms can be dropped to simplify the Hamiltonian to

H(c | E1, . . . , EF, τ) = − ∑
i∈[F]

∑
(vj)j∈Ei

log
(

ϕi(c(v1), . . . , c(va(i)))
)
− (3.2)

∑
v∈[n]

log Pτ(v)(c(v)). (3.3)

The Hamiltonian H is a sum of local terms each depending on a constant number
of variables. The observations E and the variables c together form what is termed
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as factor graphs (see [MM09a]), where each observation is a factor of the Boltzmann
distribution. Recall that the Boltzmann distribution is given by

Pr[c | (E1, . . . , EF, τ)] =
e−H(c|E1,...,EF,τ)

∑c∗ e−H(c∗|(E1,...,EF,τ)

The normalization term in the denominator is called the partition function of the
distribution and is denoted Z(M). Notice that a naive algorithm to infer the hidden
coloring via the Bayes rule as described above would take exponential time.

3.2.3 Belief Propogation

The algorithm of choice to infer the hidden variables in a sparse factor model would
be belief propogation. We refer the reader to [MM09a] for a detailed exposition of
belief propogation, and restrict ourselves to a broad outline.

Belief propogation (BP) aims to estimate the marginals of the hidden variables,
in our case c(v) for v ∈ [n]. BP draws its inspiration from a dynamic programming
algorithm to compute the marginals when the underlying factor graph is a tree,
and is broadly applicable to sparse settings where the local neighborhood of a
vertex is tree-like. In particular, while BP computes the marginals exactly on a tree,
it is very succesful in practice over sparse factor models that are locally tree-like.

To visualize BP, it will be useful to consider the bipartite graphH with variables
[n] on one side and the factors (a.k.a. observations) E on the other. There is an
edge between a variable v and an observation e ∈ E if v ∈ e. The execution of BP
is divided into rounds where in each round, the variable nodes send messages to
factor nodes or vice versa.

Let mv→e denote the message sent by a variable v to a factor e ∈ E and let me→v

denote the message from a factor e ∈ E to a variable v. All messages exchanged
are marginal distributions over the domain [q], i.e., mv→e = (mv→e

1 , . . . , mv→e
q ) and

similarly me→v = (me→v
1 , . . . , me→v

q ). Intuitively speaking, mv→e
c is an estimate of

the marginal probability that v is assigned the color c when the factor e is absent,
and me→u

c is an estimate of the marginal probability that u has color c when all
other factors involving u are absent.

BP specifies an update rule for every variable/factor node to update its outgoing
messages each round, depending on its incoming messages. Let ∂e denotes the
set of variables incident a factor e and let ∂v denote the set of factors incident on
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a variable v. BP specifies functions Υv→e, Υe→v so that if {mv→e[t], me→v[t] denote
the messages in round t, then the updated messages are given by

mv→e[t + 1] = Υv→e

(
{m f→v[t] | f ∈ ∂v\e}

)
(3.4)

me→v[t + 1] = Υe→v ({mu→e[t] | u ∈ ∂e\v}) (3.5)

We will describe the specific form of the functions Υ in Appendix 3.9, but
there are two salient details that we would like to highlight at this time. First, the
functions Υ are smooth rational functions that map marginals over [q] to a marginal
distribution over [q]. Second, the updated outgoing message mv→e[t + 1] depends
on all messages incoming to variable v except the message me→v[t]. Similarly, the
updated outgoing message me→v[t + 1] is independent of the incoming message
mv→e[t].

The general schema of a BP algorithm is to start BP with some intialization of
the messages

{mv→e[0], me→v[0]}v∈[n],e∈E

and iteratively update the messages as specified by the functions Υ, until the
messages stabilize into a fixed point, i.e., a set of messages {m̂v→e, m̂e→v} so that,

m̂v→e = Υv→e

(
{m̂ f→v | f ∈ ∂v\e}

)
m̂e→v = Υe→v ({m̂u→e | u ∈ ∂e\v})

While it can often be difficult at times to show convergence to a fixed point, BP
is very succesful in practice over locally tree-like factor models.

3.2.4 Stable Fixed Point Barrier

A natural starting point for BP iteration for a model M is given by the following:

mv→e def
= prior distribution Pτ(v) (3.6)

me→v def
= uniform distribution over support of Pτ(v) (3.7)

Conjecturally, this canonical initialization m plays a critical role in characterizing
the computational complexity of inferring the hidden variables in model M.

There appear to be three possible cases with regards to this canonical initializa-
tion.
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Case 1: m is not a fixed point Suppose m is not a fixed point for the BP iteration
over the model M, then BP iteration can be expected to make progress, thereby
yielding a weak recovery of hidden variables.

In fact, we will present a self-contained algorithm that weakly-recovers the hid-
den coloring in this case. Formally, we will show the following in Appendix 3.10:

Lemma 3.2.5. If m is not a fixed point for the BP iteration on model M, then there is a
polynomial time algorithm A and an ϵ > 0 such that

1. if (E, τ) ∼ M: A outputs a coloring that beats the correlation random guessing
achieves with the hidden coloring by ε,

2. A solves the M vs. M× distinguishing problem with high probability.

In light of the above lemma, it is natural to restrict our attention to the case
where m is a fixed point for the BP iteration. m being a fixed point of BP is
equivalent to a “detailed balance” condition holding (in the sense of (3.47)).

Case 2: m is an unstable fixed point m is an unstable fixed point if arbitrary
small perturbations of m will lead to the BP iteration moving away from the
fixed point m. BP is conjectured to succeed in weak-recovery of hidden coloring
and distinguishing between M vs. M× in this case, and this has been extensively
demonstrated experimentally [DKMZ11a, ZMZ14].

Case 3: m is a stable fixed point m is a stable fixed point if there exists a neighbor-
hood U around m such that for any initialization m̂ ∈ U, BP iteration converges
to the canonical fixed point m. In this case, the canonical fixed point m clearly
highlights a potential failure of BP algorithm. A priori, it is conceivable that by
using BP with an alternative starting point or an entirely different algorithm, one
could still efficiently infer the hidden coloring in this case.

Surprisingly, it is conjectured that the existence of this canonical fixed point
that is stable marks the onset of computational intractability! Inspired by ideas
from statistical physics, Krzakala and Zdeborova [KZ09] were the first to hypothe-
size that the existence of a trivial fixed point that is stable marks computational
intractability. Building on these intuitions, Decelle et. al. [DKMZ11a] outlined a
fascinating set of conjectures on community detection problem which fuelled a
flurry of activity, resulting in algorithms matching the conjectured computational
thresholds [MNS18, Mas14b, BLM15, AS15].
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3.2.5 Analyzing Stability

The stability of the canonical fixed point m under BP iteration can be analyzed
using derivatives of the BP update rule. Suppose Γ denote the map associated with
running two rounds of BP iteration to produce the messages, i.e.,

{mv→e[t + 2]}v∈[n],e∋v = Γ
(
{mv→e[t]}v∈[n],e∋v

)
In other words, Γ is given by the composition of the functions in (3.4) and (3.5). If
m is a fixed point of BP, then we will have,

Γ({mv→e}) = {mv→e}

To analyze the stability of the fixed point m, one uses the linear approximation
of Γ in a neighborhood of m, by setting

Γ(m + ϵ) = m + Bϵ

where B is the matrix of partial derivatives, i.e.,

B[mu→e, mu′→e′ ] =
∂Γ(m)u′→e′

∂mu→e |m

With this linear approximation Γℓ(m + ϵ) ≈ m + Bℓϵ. Therefore, the stability of the
fixed point is characterized by the spectral radius of the operator B.

Specifically, m is a stable fixed point if and only if ρ(B) ⩽ 1 where ρ(B) def
=

maxi |λi(B)| is the largest magnitude of an eigenvalue of B.
Notice that B is an asymmetric random matrix depending on the set of obser-

vations E. The cavity method is a heuristic to guess the spectral radius of a typical
derivative matrix B in terms of the spectral radius of some constant sized linear
operator L. In the rest of the section we first use the cavity method to obtain a
precise condition on M for ρ(B) ⩽ 1, then state our main theorem that the distin-
guishing problem and the weak recovery problem are efficiently solvable when
ρ(B) > 1, and finally define the operator L whose spectral bound λL satisifies that
ρ(B) = λ1/2

L .

3.2.6 The local distributions of M

Before diving into the calculation, we define a few local distributions of M that
would be used later.
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The color assigment distribution µi For each factor ϕi ∈ Φ, define a local distri-
bution µi over [q]a(i) as,

µi(c1, . . . , ca(i)) ∝

 ∏
j∈[a(i)]

PCl(i)j
(cj)

 · ϕi(c) (3.8)

For each ϕi ∈ Φ and a, b ∈ [a(i)] define a matrix Ψi,a|b ∈ R[q]×[q] by fixing,

Ψi,a|b(α, β)
def
= Pr

(c1,...,ca(i))∼µi

[ca = α|cb = β] (3.9)

This says that conditioned on that ϕi is in the observations E, the matrix Ψi,a|b
encodes the color distribution of a conditioned on the color of b. Finally for ϕi ∈ Φ
and a, b ∈ [a(i)] we define a matrix that is useful later,

Mi,a|b = (I−PCl(i)a1T)Ψi,a|b. (3.10)

The neighbor factor distribution of a variable We now take a closer look at a
type τ variable’s neighbor factor distribution. Here a variable’s neighbor factors
refer to all factors that are connected to the variable in the factor graph.

To study this neighborhood distribution, we first define random variables
degi,j(τ) for a type τ variable v.

Definition 3.2.6. For τ ∈ T, ϕi ∈ Φ, degi,j(τ) is the random variable denoting the
number of type ϕi factors in the neighborhood of the type τ variable v such that
the index of v in all these factor is j.

From the definition, we see that each degi,j(τ) is the sum of many binomial
variables each of which indicates whether a specific type ϕi factor exisits in the
factor graph. We formally define these binomial variables.

Definition 3.2.7. For τ ∈ T, (v1, . . . , va(i)) ∈ [n]a(i), b
v1,...,va(i)
τ is the indicator variable

of whether the type ϕi factor e whose j-th variable is vj for all j ∈ [a(i)] is in the
observations E.

We can compute the probability of b
v1,...,va(i)
τ = 1 in Mn.

Pr
Mn

[
b

v1,...,va(i)
τ = 1

]
=

1
T (τ) ·

a(i)

∏
j=1
T (Cl(i)j)·
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∑
(c1,...,ca(i))∈[q]a(i)

a(i)

∏
j=1

PCl(i)j
(cj) ·

ϕi(c1, . . . , ca(i))

na(i)−1

=
1
T (τ) ·

ϕi

na(i)−1
·

a(i)

∏
j=1
T (Cl(i)j)

Thus b
v1,...,va(i)
τ has distribution Binomial

(
ϕi

T (τ)na(i)−1 ·∏
a(i)
j=1 T (Cl(i)j)

)
.

Now we can express degi,j(τ) as the sum of na(i)−1 binomial random variables.

degi,j(τ) = ∑
(vj)j∈[n]a(i)|vj=v

b
v1,...,va(i)
τ .

We also note that most of the b
v1,...,va(i)
τ s are independent. Two random variables

b
v1,...,va(i)
τ and b

v′1,...,v′a(i)
τ are not independent only if there exist j, j′ ∈ [a(i)] such that

vj = v′j′ but Cl(i)j ̸= Cl(i)j′ . That is the two factors share some variable but require

the variable to have different types. However, only O
(

n−(a(i)−1)
)

fraction of the

pairs are correlated. Thus, when n is large we can treat the na(i)−1 random variables
as being independent. Then each degi,j(τ) has a Poisson distribution.

Claim 3.2.8. degi,j(τ) ∼ Poisson
(

ϕi
T (τ) ·∏

a(i)
j=1 T (Cl(i)j)

)
.

For similar reason as above, when n is large we can treat the random variables
{degi,j(τ)}i∈[F],j∈[a(i)] of a variable v as independent. Therefore for large n, the
neighbor factor distribution of a type τ variable v is very close to the product
distribution of the random variables {degi,j(τ)}i∈F,j∈[a(i)].

3.2.7 The stability condition

Now we continue to explore the condition on M that makes m stable. We focus
on sparse models whose average factor degrees ϕi = O(1) for all ϕi ∈ Φ. In such
models, a variable node is contained in constant number of factors, and its o(log n)-
neighborhood is locally tree-like with high probability. Set the tree depth ℓ be a
function such that ℓ(n) ∈ o(log n), and consider the distance (2ℓ+ 1) neighborhood
of a variable v0. Assume each level-(2ℓ+ 1) factor node eℓ’s outgoing message
to some level-2ℓ variable vℓ is perturbed to meℓ→vℓ = meℓ→vℓ + ϵeℓ . Recall that
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meℓ→vℓ is the trivial fixed point message, and ϵeℓ is the random perturbation that
is independent across different edges eℓ → vℓ. We want to compute the expected
influence of the perturbations on the messages to the root v0.

We first consider the distance 2ℓ+ 1 neighborhood of a variable v0. The treelike
neighborhood can be constructed by the following process.

1. Sample the type of the root variable τ(v0) from T .

2. Sample the level-1 factors: for each type of factor ϕi ∈ Φ sample the number
of type ϕi neighbor factors of v0 by sampling {degi,j(τ(v0))}i∈F,j∈[a(i)] inde-
pendently. Add v0’s neighbor factors to level 1. Add the other variables in
these factors to the next level of the tree, assuming that there is no shared
variables other then v0. Note that these variables already have types.

3. Repeat step 2 for the new variables until we get a depth-(2ℓ+ 1) tree Tℓ.

We next use the tree Tℓ to give a precise condition on M for the fixed point m to
be stable.

In a Tℓ, a leaf node eℓ is connected to the root node v0 via a path eℓ, vℓ, . . . , e0, v0.
A perturbation on the leaf message meℓ→vℓ influence the next level message meℓ−1→vℓ−1

via the partial deriviative matrix ∂Γ(m)eℓ−1→vℓ−1

∂meℓ→vℓ . We can express the partial derivia-
tive matrix evaluated at the fixed point using the matrix defined in (3.10).

Claim 3.2.9 (Claim 3.4.1).

∂Γ(m)eℓ−1→vℓ−1

∂meℓ→vℓ
|m = Mθ(eℓ−1),ieℓ−1 (vℓ−1)|ieℓ−1 (vℓ)

.

This claim is proved in Appendix 3.11. When writing the matrix Mθ(e),ie(v)|ie(v′),
it’s clear that the index function is associated with the factor e, so we drop the
subscript e in ie for simplicity.

Using the chain rule, we can compose the partial deriviative matrices along a
path, and conclude that each path influences the root message by(

ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)
ϵeℓ .

Thus the influence of all paths in Tℓ is

∑
(eℓ,vℓ,...,e0,v0)∈Tℓ

(
ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)
ϵeℓ
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To decide if the fixed point is stable, we compute the variance αℓ of this influ-
ence.

E
Tℓ,ϵ


∥∥∥∥∥∥ ∑
(eℓ,vℓ,...,e0,v0)∈Tℓ

(
ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)
ϵeℓ

∥∥∥∥∥∥
2


= E
Tℓ,ϵ

 ∑
(eℓ,vℓ,...,e0,v0)∈Tℓ

ϵ⊤eℓ

(
ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)∗( ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)
ϵeℓ


= E

Tℓ

 ∑
(eℓ,vℓ,...,e0,v0)∈Tℓ

Tr

((
ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)(
ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)∗) ·
Eϵeℓ

[∥ϵeℓ∥2]

q

So the squared norm of the perturbations ϵeℓ is amplified by

αℓ
def
= E

Tℓ
∑

(eℓ,vℓ,...,e0,v0)∈Tℓ

Tr

((
ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)(
ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)∗)
.

We note that for a model M, by definition of αℓ and the operator B in Sec-
tion 3.2.5, ρ(B) = limn→∞ α1/2ℓ

ℓ (recall that ℓ is a function of n). Thus when
limn→∞ α1/2ℓ

ℓ ⩽ 1, m is a stable fixed point.

3.2.8 Efficient recovery and detection when the fixed point is
unstable

For a model M whose fixed point m is unstable, it is conjectured that the BP
algorithm can successfully weak-recover the hidden coloring. We provide a BP-
inspired spectral algorithm that solves the weak recovery problem in this regime.
We state the result somewhat informally below; the full formal statement can be
found in Theorem 3.8.1. However, before we state the result we go on a small
digression on how to set the benchmark for weak recovery. A first attempt might
be:
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For a fixed type τ ∈ T and color c ∈ [q], produce a vector u ∈ Rn

such that w correlates with the following “centered indicator vector” of
(τ, c): χτ,c where χτ,α is an n-dimensional vector with i-th coordinate
1[τ(i) = τ] · (1[c(i) = c]−Pτ(c)).

However, this benchmark is unattainable since for a problem such as PLANTED-q-
COLORING there is no way to statistically discriminate between a given coloring
and a different coloring obtained by permuting the names of the colors. Thus, to
account for this complication we consider the following modification of the above
benchmark, which we first state in words.

Produce a vector u ∈ Rn such that after some permutation is applied
to the names of the colors, for some type τ ∈ T and color c ∈ [q], u
correlates with the centered indicator vector of (τ, c).

More formally:

Theorem 3.2.10. If a model M has limℓ→∞ α1/2ℓ
ℓ > 1, there is a spectral algorithm A

that solves the weak-recovery problem. A bit more concretely, for G ∼ Mn, the algorithm
A(G) produces OM(1) vectors {u1, . . . , ur} such that one of these vectors uj has constant
correlation with the planted coloring in the following sense:

There is a type τ ∈ T, and a color α ∈ [q] such that if we construct χτ,α ∈ Rn

as
χτ,α[i] = 1[τ(i) = τ](1[c(i) = α]−Pτ(α))

then
⟨uj, χτ,α⟩ ⩾ ΩM(1) ·

√
n.

For a model M with m as an unstable fixed point, it is conjectured that the BP
algorithm can successfully distinguish it from the null model N . We provide a
BP-inspired spectral algorithm that solves the detection problem in this regime. We
state the result below but leave the proof sketch to the technical overview section.

Theorem 3.2.11. If a planted model M has limℓ→∞ α1/2ℓ
ℓ > 1, there is a spectral algorithm

A : factor graphs→ {P, N} that solves the detection problem in the following sense

Pr
Mn

[A(factor graph) = P] = 1− on(1) and Pr
Nn

[A(factor graph) = N] = 1− on(1).
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3.2.9 The stability condition via a finite linear operator L

In this part we define a finite linear operator L whose spectral radius gives a
criterion for when limℓ→∞ α1/2ℓ

ℓ is greater than 1 or less than 1.
Naively, computing limℓ→∞ α1/2ℓ

ℓ requires us to consider trees whose size grows
with ℓ. However we can simplify the expression for α1/2ℓ

ℓ via an insight of [BC19]
by observing that the tree Tℓ is constructed recursively. For any even level variable
node vk in the tree, the distribution of its children factor nodes depends only on
vk’s type. Furthermore, the factor node distribution {degi,j(τ(vk))}i∈F,j∈[a(i)] also
fully describes the distance 2 neighborhood of vk. For a type τ variable v, define the
random variable numτ(i, j, j′) to be the number of variables u that are connected
to v via some type ϕi factor, and additionally u have index j′ in the factor and v has
index j. These random variables give a way to concisely express the total influence
of the distance 2 type τ′ variables to the type τ variable. This influence is

∑
i,j,j′|Cl(i)j′=τ′

numτ(i, j, j′) ·Mi,j|j′ ∈ R[q]×[q].

Then we can build a 2 step quadratic influence operator L : RT·[q]×T·[q] →
RT·[q]×T·[q] such that the (τ, τ) block of L(M) is

L(M)τ,τ = ∑
τ′

∑
i∈F,j,j′∈[a(i)]

∑
i,j,j′|Cl(i)j′=τ′

numτ(i, j, j′) ·Mi,j|j′ Mτ′,τ′ M∗i,j|j′ ,

and the off-diagonal blocks are L(M)τ,τ′ = 0.
Suppose the input M is such that each Mτ′,τ′ captures the quadratic influence

of some path v1, e1, . . . , vℓ, eℓ such that the endpoint v1 has type τ′,(
ℓ

∏
j=2

Mθ(ej−1),i(vj−1)|i(vj)

)(
ℓ

∏
j=2

Mθ(ej−1),i(vj−1)|i(vj)

)∗
.

And all other blocks in M are 0. Then after applying the operator, every diagonal
block L(M)τ,τ captures the expected quadratic influence of all paths v0, e0, . . . , vℓ, eℓ
which are 2-step extensions of the path v1, e1, . . . , vℓ, eℓ and whose endpoint v0 has
type τ.
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Using this operator L we can rewrite αℓ as

αℓ = E
Tℓ

∑
(eℓ,vℓ,...,e0,v0)∈Tℓ

Tr

((
ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)(
ℓ

∏
j=1

Mθ(ej−1),i(vj−1)|i(vj)

)∗)
= Tr

(
Lℓ(Diag(P))

)
,

where Diag(P) ∈ RT·[q]×T·[q] is a diagonal matrix whose ((τ, c), (τ, c)) entry has
value Pτ(c).

Use λL to denote the maximum eigenvalue of L. Then by standard linear
algebra fact,

lim
n→∞

Tr
(

Lℓ(Diag(P))
)
→ λℓ

L.

Therefore we obtain the following equivalence relation between αℓ and λL.

Lemma 3.2.12. For a model M, limℓ→∞ α1/2ℓ
ℓ = λ1/2

L . Thus the fixed point m of M is
stable if and only if λL ⩽ 1.

3.3 Technical Overview

3.3.1 Algorithm for distinguishing

We now describe our algorithm for distinguishing if an instance G was sampled
from the null distribution N from the planted distribution P . Our algorithm
constructs a matrix MG obtained from linearizing ℓ rounds of the belief propagation
algorithm at the uninformative fixed point on input G and tests if its largest
eigenvalue exceeds a chosen threshold κ. If it does then the algorithm declares
that G came from the planted distribution, and otherwise claims G was sampled
from the null distribution. A bulk of the technical work is in proving that this
particular matrix MG has all its eigenvalues bounded by the chosen threshold
κ when G is sampled from the null model, and in illustrating that MG has an
“outlier” eigenvalue exceeding κ otherwise. In this section, we delve more into the
description of MG and then give a brief description of how we prove the statements
about the eigenvalues of MG in the null and planted models.

More concretely, given a random instance G sampled either from N or P , we
set MG as the following matrix A(ℓ)

G called the length-ℓ centered nonbacktracking walk
power of G, for which we provide a slightly informal description below.
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Definition 3.3.1 (Centered nonbacktracking power (slightly informal)). A(ℓ)
G is a

nq× nq matrix which we treat as a n× n grid of q× q blocks. The block rows and
columns are indexed by [n]. In the (i, j)-th block, we place the following q × q
matrix:

∑
ie1v1e2v2...eℓ j∈

all nonbacktracking walks
from i to j in complete

factor graph

Me1,i|v1
·Me2,v1|v2

· · ·Meℓ,vℓ−1|j·

(1[e1 ∈ G]− Pr
N
[e1 ∈ G]) · · · (1[eℓ ∈ G]− Pr

N
[eℓ ∈ G]).

Recall the matrix L from Section 3.2.8 which the stability prediction of belief
propagation was based on, and let λL denote its largest eigenvalue. The two main
technical theorems we prove about A(ℓ)

G in service of proving that our algorithm is
correct with high probability are:

Theorem 3.3.2 (Local statistics in planted model). When G ∼ P , with probability

1− on(1): λmax(A(ℓ)
G ) ⩾ λℓ

L
q .

The proof of this is carried out in Section 3.6 and uses two ingredients: the first
is recognizing that A(ℓ)

G is self-adjoint under a certain inner product ⟨·, ·⟩H, due to
which for any vector x:

⟨x, A(ℓ)
G x⟩H ⩽ λmax

(
A(ℓ)

G

)
· ⟨x, x⟩H.

The second ingredient is in identifying a vector x depending on the planted solution
the instance G was sampled with which makes the above quadratic ⟨x, A(ℓ)

G x⟩H
larger than the desired lower bound of λℓ

L
q with high probability.

The second main technical theorem, which is proved in Theorem 3.3.3 is:

Theorem 3.3.3 (Eigenvalue bound in null model). When G ∼ N and (log log n)2 ⩽

ℓ ⩽ log n
(log log n)2 , for every constant ε > 0 with probability 1− on(1), all eigenvalues of A(ℓ)

G

are bounded in magnitude by ((1 + ε)
√

λL)
ℓ.

When λL > 1, we choose δ > 0 so that 1 + δ <
√

λL, ℓ as (log log n)2, and
κ as ((1 + δ)

√
λL)

ℓ. Then as an immediate consequence of Theorem 3.3.2 and
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Theorem 3.3.3 we know that the algorithm correctly distinguishes between N and
P with high probability.

We now elaborate on Theorem 3.3.3 and elucidate the exact random matrix
concentration statement.

3.3.2 Matrix concentration vignette

Consider an Erdős-Rényi graph H sampled from G
(

n, d
n

)
. Pick a random ver-

tex v in H and observe a “large” radius neighborhood around v. Typically, this
neighborhood around v will be a tree, and additionally, and in the large-n limit the
distribution of this tree is a Galton-Watson process – a random (possibly infinite) tree
T generated by starting at a root vertex r, attaching Poisson(d) children to r, and
then attaching Poisson(d) children to each child of r and so on.2 So this tells us
that there is some sense in which T “approximates” the finite random graph. This
intuition is spectrally articulated by a theorem which is (implicitly) due to [BLM15]
(see also [FM17] and [BMR21]). Before we state the theorem, we bring up a natural
quantity to associate to the random tree: the growth rate which is defined as

lim
ℓ→∞

E[# of vertices at depth-ℓ]1/ℓ,

which is equal to d for the aforementioned Galton-Watson process.

Theorem 3.3.4 ([BLM15, FM17, BMR21]). Let AH := AH − E AH be the centered
adjacency matrix of H. Suppose d > 1, then:

|λ|max(A(ℓ)
H ) ⩽ ((1 + o(1))

√
d)ℓ = ((1 + o(1))

√
growth rate of T)ℓ

for ℓ ∈
[
(log log n)2, log n

log log n

]
.

Now, let’s add a small twist: sample two Erdős-Rényi graphs H1 ∼ G
(

n, d1
n

)
and H2 ∼ G

(
n, d2

n

)
and consider the weighted graph H = 0.9H1 − H2. The

random tree that H locally resembles is the following different Galton-Watson
process T′: start at a root vertex r, connect Poisson(d1) children with edges of

2The reader is advised to not pay too much attention to the fact that the number of children are
distributed according to a Poisson random variable. The important property is that a vertex has d
children on average.
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weight 0.9 and Poisson(d2) children with edges of weight −1 to r, then repeat the
same for each child vertex, and keep going. The following quantity is the correct
generalization of growth rate to weighted graphs, which we call the weighted growth
rate of the tree:

wgr(T′) := lim
ℓ→∞

E

 ∑
P∈length-ℓ paths

starting at root

∏
e∈P

w2
e

 .

For illustrative purposes, one subcase of our matrix concentration result is:

Theorem 3.3.5. Let AH := AH − E AH be the centered adjacency matrix of H. Suppose
wgr(T′) > 1, then:

|λ|max(A(ℓ)
H ) ⩽ ((1 + o(1))

√
wgr(T′))ℓ

for ℓ ∈
[
(log log n)2, log n

(log log n)2

]
We now discuss our full matrix concentration theorem which captures both of

the above mentioned theorems. Before doing so, it is worth noting that the picture
for random graphs being spectrally approximated by infinite graphs is far more
well understood in the setting of models of random regular graphs through works
of [Fri03b, Bor19, BC19, MOP20, OW20] but we defer the readers to [OW20] for an
extensive discussion of what is known in that setting.

3.3.3 Matrix concentration statement

Let ⟨·, ·⟩ν be an inner product on Rnq and let M∗ denote the adjoint of a matrix M
under this inner product. We consider nq× nq random matrices sampled according
to the following model (whose notation the reader should treat independently
from the preceding notation related to distinguishing instances from the null and
planted distributions).

Definition 3.3.6 (Random matrix model (slightly informal)). The model has an
underlying left vertex set which is equal to [n]. First, every vertex v is assigned a
type τ(v) in [T] sampled according to a distribution π. There are F types of right
vertices, given by set [F]. Each right vertex type i comes with an arity ki, which
is a positive integer, a profile χi which is a tuple in [T]ki , a collection of ki(ki − 1)
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matrices {Mi,(a,b)}(a,b)∈[ki]2:a ̸=b, and a density ϕi. A random instance H is sampled
in the following way: for every (i, (v1, . . . , vki)) for i ∈ [F] and tuple (v1, . . . , vki) in
[n]ki of distinct elements such that (τ(v1), . . . , τ(vki)) = χi we add (i, (v1, . . . , vki))

as a right vertex with probability ϕi
nki−1 , connect edges to v1, . . . , vki and mark the

edge to vt with number t. We use Kn to refer to the bipartite graph with left vertex
set [n], and the right vertex set containing every potential right vertex. Now let
γ = (i, (v1, . . . , vki)); for a two-step va → γ→ vb in the complete graph for a ̸= b
we use Mvaγvb to denote the matrix Mi,(a,b). The random matrix we are interested

in, which we denote A(ℓ)
H , is the matrix where the uv entry contains:

A(ℓ)
H [i, j] := ∑

iγ1v1...γℓ j
nonbacktracking walks in K

Miγ1v1 · · ·

Mvℓ−1γℓ j · (1[γ1 ∈ H]− Pr[γ1 ∈ H]) · · · (1[γℓ ∈ H]− Pr[γℓ ∈ H]).

Definition 3.3.7 (Galton-Watson tree approximating random matrix (informal)).
For a given setting of parameters for the random model from Definition 3.3.6, the
bipartite Galton-Watson tree T which “locally resembles” an instance H sampled
from the model is as follows:

1. Start with a left root vertex r and assign it type τ(r) ∼ π.

2. For each i ∈ [F] and each j ∈ [ki] such that (χi)j = τ(r) sample

ni,j ∼ Poisson

(
ϕi

πτ(v)

ki

∏
t=1

π(χi)t

)
,

and attach ni,j right vertices of type i to r and mark the corresponding edge
with j. Then to each such right vertex, attach ki − 1 (left vertex) children and
mark the edges with numbers from [ki] \ {j}. To each added child vertex v
with edge marked with t, assign it type (χi)t.

3. Repeat step 2 for each added left vertex child.

We define the matrix weighted growth rate of T to be the following:

mwgr(T) := lim
ℓ→∞
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E

Tr
 ∑

aγ1v1...γℓb
nonbacktracking walks in K

Maγ1v1 . . . Mvℓ−1γℓbMbγℓvℓ−1
. . . Mv1γ1a




1/ℓ

.

We prove:

Theorem 3.3.8 (Main matrix concentration theorem (slightly informal)). Let H be a
random instance of a setting of parameters for the model from Definition 3.3.6 and let T be
the tree which locally approximates H in the sense of Definition 3.3.7. Suppose:

1. For every right vertex γ = (i, (v1, . . . , vki)) in Kn and every 1 ⩽ a, b ⩽ ki for
distinct a, b the nq× nq matrix obtained by placing Mvaγvb in the (va, vb) block and
zeros everywhere else is adjoint to the nq× nq matrix obtained by placing Mvbγva in
the (vb, va) block and zeros everywhere else under ⟨·, ·⟩ν.

2. There is a constant C such that for any nonbacktracking walk v0γ1v1 . . . γsvs in Kn:

∥Mv0γ1v1 . . . Mvs−1γsvs∥ ⩽ C.

3. mwgr(T) ⩾ 1.

Then if (log log n)2 ⩽ ℓ ⩽ log n
(log log n)2 , with probability 1− on(1):

|λ|max(AH)
(ℓ) ⩽ ((1 + o(1))

√
mwgr(T))ℓ.

The full formal set-up for Theorem 3.3.8 along with its proof is in Section 3.7.

3.4 A conjectured detection/recovery threshold

In Section 3.2.9 we see the connection between λL and αℓ of a model M. In this
section we prove this connection more rigorously, and conclude with a conjectured
weak-recovery threshold in terms of λL. We start by quickly going through the def-
initions of the partial derivative matrices Mθ(ej),iej (vj)|iej (vj+1)

, the color distribution

matrix Dτ, the influence variance αℓ, and their connections.

Claim 3.4.1. The following matrices satisfy:
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1. Mθ(ej),iej (vj)|iej (vj+1)
=
(

I−Pτ(vj)
1⊤
)

Ψθ(ej),iej (vj)|iej (vj+1)
.

2. Let Dτ := Diag(Pτ). Then D†
τ(vj)

Mθ(ej),i(vj)|i(vj+1)
= M⊤θ(ej),i(vj+1)|i(vj)

D†
τ(vj+1)

where the † in the superscript denotes the pseudoinverse of the matrix.

This claim is proved in Appendix 3.11. From here on we drop the subscript
e from the index function ie whenever it is clear from the context which factor is
being considered.

Using these notations we can express the influence variance, or the amplification
factor, αℓ as follows:

αℓ := E
T

Tr
 ∑

(eℓ,vℓ,...,e0,v0)∈T

(
ℓ

∏
i=1

Mθ(ei−1),i(vi−1)|i(vi)

)(
ℓ

∏
i=1

Mθ(ei−1),i(vi−1)|i(vi)

)∗.

The key property of the above amplification factor we are interested in is its
limiting behavior as k goes to infinity. We say that the uninformative fixed point
of the belief propagation update rule is stable if limn→∞ α1/2ℓ

ℓ ⩽ 1, and unstable
otherwise. Furthermore, if the fixed point is stable, the problem of weak-recovering
the hidden coloring of M is conjectured to be hard, and if the fixed point is unstable,
this problem is conjectured to be easy.

In the remainder of this section, we focus on obtaining a simpler criterion for
stability by simplifying the expression for the amplification factor. In particular, we
give a constant dimensional linear transformation whose top eigenvalue is greater
than 1 if the fixed point is stable and is less than 1 if the fixed point is unstable. For
a leaf-to-root path eℓvℓeℓ−1vℓ−1 . . . e0v0 we say its type is

θℓ → outℓ → τℓ → · · · → in0 → θ0 → out0 → τ0

where θt is the factor type of et, τt is the variable type of vt, outt is the index of vt in
et, and int is the index of vt+1 in et. The amplification factor can then be written as:

αℓ = Tr

(
∑

θℓ→···→τ0

M(θℓ → · · · → τ0)

)

where the sum is enumerated over all leaf-to-root path types and M(θℓ → · · · → τ0)

is defined as follows:

M(θℓ → · · · → τ0) = T (τ0)·
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ℓ−1

∏
t=0

ϕθt

T (τt)
·

a(θt)

∏
s=1
T (Cl(θt)s) · 1[Cl(θt)outt = τt] · 1[Cl(θt)int = τt+1]

)
·(

ℓ−1

∏
t=0

Mθt,outt|int

)(
ℓ−1

∏
t=0

Mθt,outt|int

)∗
·

ϕθℓ

T (τℓ)

a(iℓ)

∏
s=1
T (Cl(θℓ)s) · 1[Cl(θℓ)outℓ = τℓ].

Now, let’s define Vℓ,τ as:

Vℓ,τ := ∑
θℓ→···→τ0

τ0=τ

M(θℓ → · · · → τ0)

and Vℓ as the following |T| · q× |T| · q block diagonal matrix comprised of q× q-
dimensional blocks with block rows and columns indexed by T:

Vℓ[τ, τ] = Vℓ,τ.

Finally, we define a linear transformation L on the space of |T| · q× |T| · q matrices.
To define L(M) we treat M as a block matrix comprised of q× q-dimensional blocks
with blocks rows and columns indexed by T.

L(M)[τ, τ] :=

T (τ) ∑
τ′→in→θ→out→τ

ϕθ

T (τ)

a(θ)

∏
s=1
T (Cl(θ)s) · 1[Cl(θ)out = τ] · 1[Cl(θ)in = τ′]·

Mθ,out|in ·M[τ′, τ′] ·M∗θ,out|in.

L(M)[τ1, τ2] := 0 for τ1 ̸= τ2.

Now observe that Vℓ+1 = L(Vℓ); consequently Vℓ = Lℓ(V0) and αℓ = Tr
(

Lℓ(V0)
)
.

We now connect the limiting behavior of the amplification factor αℓ to the
eigenvalues of L. We start by making a few observations:

Observation 3.4.2. If M is a positive semidefinite matrix, then L(M) is also a
positive semidefinite matrix.

Observation 3.4.3. V0 is a diagonal matrix with strictly positive entries on its
diagonal and hence is positive definite.

Observation 3.4.4. Since Lℓ(V0) is positive semidefinite:

∥Lℓ(V0)∥F ⩽ Tr
(

Lℓ(V0)
)
⩽
√

q · |T|∥Lℓ(V0)∥F.
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Our final ingredient is a lemma that appears in [BC19, Theorem 16, part (ii)].

Lemma 3.4.5. If L is a linear operator on r× r matrices with spectral radius λL such that
for any positive semidefinite matrix M, L(M) is also positive semidefinite, then for any
positive definite M′,

λL = lim
ℓ→∞
∥Lℓ(M′)∥1/ℓ

F .

By Observation 3.4.2, Observation 3.4.3 and Lemma 3.4.5:

λL = lim
ℓ→∞
∥Lℓ(V0)∥1/ℓ

F .

Observation 3.4.4 lets us conclude:

λL = lim
ℓ→∞

Tr
(

Lℓ(V0)
)1/ℓ

= lim
ℓ→∞

α1/ℓ
ℓ .

Thus we prove Lemma 3.2.12, and make the following conjecture:

Conjecture 3.4.6. If λL > 1, then limℓ→∞ αℓ goes to ∞ we conjecture that recovery is
easy and if λL ⩽ 1, then limℓ→∞ αℓ = 0 and we conjecture that it is hard.

3.5 A spectral distinguishing algorithm

We now describe the spectral distinguisher we use, which is based on lineariz-
ing the belief propagation algorithm outlined in Section 3.4. Recall that given G
sampled from either N or P our goal is to output “null” if G ∼ N and “planted”
if G ∼ P with probability 1 − o(1). Further, the messages given by (3.6) and
(3.7) are a fixed point for the BP update rule for P (which is equivalent to the
detailed balanced condition (3.47) holding). The sample G is given by the tu-
ple ([n], E1, . . . , EF, τ). Our algorithm constructs a matrix called the null-centered
nonbacktracking power matrix and thresholds on its largest eigenvalue against a
particular value t which is a function of the null and planted models and outputs
“planted” if the largest eigenvalue exceeds t and “null” otherwise.

Recall the definition of the matrix A(ℓ)
G .

∑
ie1v1e2v2...eℓ j∈

all nonbacktracking walks
from i to j in complete

factor graph

Me1,i|v1
·Me2,v1|v2

· · ·Meℓ,vℓ−1|j·
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(1[e1 ∈ G]− Pr
N |τ

[e1 ∈ G]) · · · (1[eℓ ∈ G]− Pr
N |τ

[eℓ ∈ G])

where the complete factor graph is defined as follows.

Definition 3.5.1. We define the complete factor graph Kn = ([n], E1, . . . , EF) where
Ei denotes the collection of all potential type-i factors that could appear in G.

We now describe our algorithm.3

• Compute a matrix representation of the linear operator L from the statement
of Conjecture 3.4.6.

• Let λL be the spectral radius of L.

• Choose κ strictly in between
√

λL and λL.

• Let s = ⌈
√

log n⌉. Compute A(s)
G and compute its largest eigenvalue ρ.

• If ρ > κs, output “planted”, otherwise output “null”.

To prove that the above algorithm works it suffices to prove that when G is
sampled from the null distribution, all its eigenvalues are all less κs and when G
is sampled from the planted distribution there is an eigenvalue greater than κs.
Henceforth we assume λL > 1. To prove both of these facts under the hypothesis
that λL > 1, one ingredient we need is that the matrix A(s)

G is self-adjoint under an
appropriate inner product.

Given a vector in Rnq we treat it as a block vector comprising of n blocks of
dimension q each where each block corresponds to a vertex in [n]. Now, we define
a nq× nq-dimensional positive diagonal matrix Hτ where the (v, v) block is equal
to:

Hτ,(v,v)[c, c] :=

{
Pτ(v)(c) if Pτ(v)(c) > 0

1 otherwise.

We will use the following inner product on Rnq:

⟨x, y⟩H := x⊤H−1
τ y.

3The details for why each step can be carried out efficiently are briefly discussed at the end of
this section.
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Remark 3.5.2. Ideally, we would like to simply place Pτ(v)(c) in every diagonal
entry [(v, c), (v, c)] and use the pseudoinverse of H instead. But doing so leads to
some complications of the defined bilinear form not necessarily satisfying strict
positive definiteness required of an inner product. The choice of 1 is arbitrary
and does not influence any of the statements since all the vectors we work with
have zeros in the (v, c) coordinates where Pτ(v)(c) is 0, and also that coordinate
subspace is in the kernel of every matrix we work with.

Claim 3.5.3. The matrix A(s)
G is self-adjoint under ⟨·, ·⟩H.

Proof. For any vectors x, y:

⟨x, A(s)
G y⟩H = ∑

u,v∈[n]
∑

ue1v1e2v2
...eℓv∈Kn

x[u]⊤H−1Me1,u|v1
·Me2,v1|v2

· · ·Meℓ,vℓ−1|vy[v]·

(1[e1 ∈ G]− Pr
N |τ

[e1 ∈ G]) · · · (1[eℓ ∈ G]− Pr
N |τ

[eℓ ∈ G])

From Part 2 of Claim 3.4.1,

x[u]⊤H−1[u, u]Me1,u|v1
· · ·Meℓ,vℓ−1|vy[v] =

x[u]⊤(Meℓ,v|vℓ−1
· · ·Me1,v1|u)

⊤H−1[v, v]y[v].

Plugging this back into the above gives:

= ∑
u,v∈[n]

∑
ue1v1e2v2
...eℓv∈Kn

x[u]⊤(Meℓ,v|vℓ−1
· · ·Me1,v1|u)

⊤H−1[v, v]y[v]·

(1[e1 ∈ G]− Pr
N |τ

[e1 ∈ G]) · · · (1[eℓ ∈ G]− Pr
N |τ

[eℓ ∈ G])

= ∑
u,v∈[n]

∑
ue1v1e2v2
...eℓv∈Kn

(Meℓ,v|vℓ−1
· · ·Me1,v1|ux[u])⊤H−1[v, v]y[v]·

(1[e1 ∈ G]− Pr
N |τ

[e1 ∈ G]) · · · (1[eℓ ∈ G]− Pr
N |τ

[eℓ ∈ G])

= ⟨A(s)
G x, y⟩H

which proves the claim.

We first focus on obtaining spectral norm bounds on A(s)
G in the null model. We

obtain these bounds from Theorem 3.7.4 so we verify that the matrix A(s)
G indeed
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meets the hypothesis of the theorem statement. 1 is satisfied due to Claim 3.5.3. As
a consequence of the first part of Claim 3.4.1, all the matrices M(p) are Markov
transition matrices with an eigenspace projected away, and hence have all their
entries bounded by 1. Since these matrices have dimension q× q, their operator
norm is bounded by some constant C depending only on q, and hence 2 is also
satisfied. Next, ρ(Bl, M×) is exactly equal to

√
λL, which by our assumption is

greater than 1. Finally, we chose s in the range handled by the theorem statement
and thus Theorem 3.7.4 implies:

Theorem 3.5.4. Suppose G ∼ N . For every constant ε > 0, with probability 1− o(1):

|λ|max

(
A(s)

G

)
⩽ ((1 + ε)

√
λL)

s.

We can choose ε small enough so that |λ|max

(
A(s)

G

)
⩽ κs for G ∼ N whp.

Finally, to prove that there is an eigenvalue greater than κs when G ∼ P , by
Claim 3.5.3 it suffices to illustrate a vector x ∈ Rnq such that ⟨x,AGx⟩H

⟨x,x⟩H
⩾ κs. Then as

a direct consequence of Theorem 3.6.1:

Theorem 3.5.5. Suppose G ∼ P . There is an absolute constant C such that with
probability 1− o(1):

|λ|max

(
A(s)

G

)
⩾ Cλs

L.

Since s is super-constant and κ is strictly less than λL, it is indeed true that
|λ|max

(
A(s)

G

)
⩾ κs for G ∼ P whp. Consequently, we can summarize our main

theorem on distinguishing the null distribution from the planted distribution:

Theorem 3.5.6. When λL > 1, the task of distinguishingN from P with high probability
can be done in polynomial time.

3.5.1 Implementation details

Our first goal is to explain how to efficiently choose κ which strictly between
√

λL
and λL when λL > 1. First note that there is a small enough ε such that if λ̃L is an

additive ε-approximation of λL, then λ̃L+
√

λ̃L
2 lies strictly in between

√
λL and λL.

By Lemma 3.4.5 there is large enough constant C such that ∥LC(I)∥1/C
F is ε-close to
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λL. Thus, if our estimator λ̃L is ∥Llog n(I)∥1/ log n
F , then for large enough n, choosing

κ as λ̃L+
√

λ̃L
2 would give us a number strictly between

√
λL and λL.

Our second goal is to explain how to efficiently compute the matrix A(s)
G . To-

wards doing so, define the nonbacktracking walk generator matrix as the matrix with
rows and columns indexed by vev′ for variable vertices v and v′ and constraint
vertex e′:

BG[(v1e1v2), (v3e2v4)] =Me2,v3|v4
·
(

1[e2 ∈ G]− PrG∼P|τ [e2 ∈ G]
)

if e1 ̸= e2, v2 = v3

0 otherwise.

Let SG be the matrix with rows indexed by variables in [n] and columns indexed
by all vev′ where the (v, vev′) entry contains Me,v|v′ · (1[e ∈ G]− PrG∼P|τ [e ∈ G])

and the remaining entries contain 0, and let TG be the matrix with rows indexed by
all vev′ and columns indexed by variables in [n] where the (vev′, v′) entry is I and
the remaining entries contain 0. Then SGBs−1

G TG = A(s)
G , and it is apparent that the

LHS can be computed efficiently.
Finally, since A(s)

G is self-adjoint under ⟨·, ·⟩H by Claim 3.5.3 its largest eigen-
value can be efficiently computed via standard methods such as the power iteration
method to a precision necessary for the distinguishing algorithm.

3.6 Statistics for the planted model

Consider the planted model Mn = (n, T, T , C, P, ϕ). Use G = ([n], E1, . . . , EF, τ, c)
to denote a sample from M[n]

P . Recall that in this section our goal is to prove a lower
bound on the spectral radius of A(s)

G for s ⩽ log n
(log log n)2 by illustrating a “witness”

vector with large quadratic form.
We define the local statistics vector associated to G denoted g ∈ Rq·n to be the

concatenation of vectors gv = ucv for all v ∈ [n], where uc ∈ Rq is the indicator of
vector of color c. We will shorten ⟨g, g⟩H to ∥g∥2 in this section.

In this section we prove:
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Theorem 3.6.1. Let s ⩽ log n
(log log n)2 . There exists a constant γ such that with probability

1− on(1): 〈
g, A(s)

G g
〉

H

∥g∥2 = γλs
L.

To prove Theorem 3.6.1 we will introduce and recall some notation to streamline
the proofs. First recall that we defined Kn in Definition 3.5.1 as the instance on
variable set [n] with all potential factors that could appear in a graph sampled
from Mn. Let p be some length-2s walk (v0 → e0 → v1 . . . vs−1 → es−1 → vs) in
Kn starting and ending at a variable node. Use pe to denote the factor nodes in p
and pv to denote the variable nodes in ∂pe.4 We use pv[i] to denote vi and pe[i] to
denote ei. Recall that we use θ(e) to denote the type of a factor node e. We use χ(p)
to denote the number of excess edges in p. Concretely:

Definition 3.6.2. χ(p) = |pv| −∑j∈[s] (a(θ(pe[j])).

Definition 3.6.3. Let NB(s) denote the set of all length-s nonbacktracking walks in
Kn.

Definition 3.6.4. Mp := ∏s−1
j=0 Mθ(pe[j]),i(pv[j])|i(pv[j+1]).

Definition 3.6.5. Ψp := ∏s−1
j=0 Ψθ(pe[j]),i(pv[j])|i(pv[j+1]).

For G ∼ Mn, we define the following notation:

Definition 3.6.6. w(G, p) := Mp ∏s−1
j=0

(
1[pe[j] ∈ G]− PrG∼P|τ [pe[j] ∈ G]

)
.

Definition 3.6.7. We will use wt(p) to denote

s−1

∏
j=0

(
1[pe[j] ∈ G]− Pr

G∼P|τ
[pe[j] ∈ G]

)
.

Remark 3.6.8. In the above language, the centered nonbacktracking power matrix
of G is:

A(s)
G [u, v] = ∑

p∈NB(s)|pv[0]=u,pv[s]=v
w(G, p).

4We would like to stress that pv also includes vertices that are not walked on, but are incident to
factor nodes which are walked on.
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Recall that a block (u, v) in the centered nonbacktracking power matrix A(s)
G

captures the matrix weight of all length-2s nonbacktracking walks from u to v.
Although the paths are nonbacktracking, there could be variables that are visited
multiple times and there could also be off-path variables in pv connected to multiple
factors. It is hard to pinpoint the statistics precisely for this kind of walks, but
luckily their contribution is negligible. Thus, we first remove these “bad” walks

from A(s)
G and analyze the resulting matrix A(s)

G , and then bound the contribution
of these bad walks.

We give a formal definition of the “nice” walks that are kept in A(s)
G .

Definition 3.6.9. A path p is self-avoiding if χ(p) = |pv| −∑j∈[s]
(
a(Clp(j))− 1

)
= 1.

In any self-avoiding path, every variable node in the interior of the path has
degree 2 (i.e. is contained in 2 factors in p) and each of the other variable nodes has
degree 1 (i.e. is contained in 1 factor in p).

Definition 3.6.10. Let SA(s) denote the set of all length-2s self-avoiding walks in
Kn.

Definition 3.6.11. The centered self-avoiding-walk matrix of G is A(s)
G ∈ Rqn×qn

where the (u, v)-th block of the matrix is

A(s)
G [u, v] = ∑

p∈SA(s)|pv[0]=u,pv[s]=v
w(G, p).

3.6.1 Statistics for the centered self-avoiding-walk matrix

Claim 3.6.12. For any self-avoiding path p in Kn,

E
G

[〈
gpv[0], w(G, p)gpv[s]

〉
H

]
= Pr

G∼M|τ
[p ∈ G] · Tr

(
MpM∗p

)
.

Proof. The proof is via a chain of equalities. To lighten notation we use ej to denote
pe[j] and vj to denote pv[j]. We use Int(pv) to denote the interior vertices of p.

E
G|τ

[⟨gv0 , w(G, p)gvs⟩H] =

∑
c:pv→[q]

∏
w∈pv

Pτ(w)(c(w)) · E
G|τ,c

[
H−1[(v0, c(v0)), (v0, c(v0))]·
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s−1

∏
j=0

(1[ej ∈ G]− Pr
G∼M|τ

[ej ∈ G])Mp[c(v0), c(vs)]

]

= ∑
c:pv→[q]

∏
w∈pv

Pτ(w)(c(w)) ·
s−1

∏
j=0

( Pr
G∼M|τ,c

[ej ∈ G]− Pr
G∼M|τ

[ej ∈ G])·

1
Pτ(vs)(c(vs))

·M∗p[c(vs), c(v0)]

= ∑
c:pv→[q]

∏
w∈Int(pv)

1
Pτ(w)(c(w))

·
s−1

∏
j=0

Pr
G∼M|τ

[ej ∈ G]·µej(c(∂ej))− ∏
w∈∂ej

Pτ(w)(c(w))

 ·
1

Pτ(vs)(c(vs))
·M∗p[c(vs), c(v0)]

= Pr
G∼M|τ

[p ∈ G] ∑
c:{v0,...,vs}→[q]

s−1

∏
j=0

(Ψej,vj|vj+1
[c(vj), c(vj+1)]−Pτ(vj)

)·

M∗p[c(vs), c(v0)]

= Pr
G∼M|τ

[p ∈ G] ∑
c(v0),c(vs)

Mp[c(v0), c(vs)] ·M
∗
p[c(vs), c(v0)]

= Pr
G∼M|τ

[p ∈ G] · Tr
(

MpM∗p
)

Now we give precise estimates for the statistics of the centered self-avoiding
walk matrix.

Lemma 3.6.13.
E
G

[〈
g, A(s)

G g
〉

H

]
= (1− on(1))λs

Ln.

Proof. Expanding out A(s)
G as a sum by its definition in Definition 3.6.11 gives:

E
G

[〈
g, A(s)

G g
〉

H

]
= ∑

p∈SA(s)
E
G

[〈
gpv[0], w(G, p)gpv[s]

〉
H

]
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= ∑
p∈SA(s)

Pr
G∼M|τ

[p ∈ G] · Tr
(

MpM∗p
)

(via Claim 3.6.12)

=n · (1− on(1))λs
L (by the definition of λL).

We next bound the variance of the local statistics.

Lemma 3.6.14. There is an absolute constant C such that:

E
G

[〈
g, A(s)

G g
〉2

H

]
− E

G

[〈
g, A(s)

G g
〉

H

]2
⩽ n(Cs)Cs.

Proof. If two walks p and p̃ do not share any vertices, then their contribution to

EG

[〈
g, A(s)

G g
〉2

H

]
satisifies

contribution of p, p̃ =E
G

[〈
gpv[0], w(G, p)gpv[s]

〉
H

〈
g p̃v[0], w(G, p̃)g p̃v[s]

〉
H

]
=E

G

[〈
gpv[0], w(G, p)gpv[s]

〉
H

]
E
G

[〈
g p̃v[0], w(G, p̃)g p̃v[s]

〉
H

]
.

So this contribution cancels out with the identical term in EG

[〈
g, A(s)

G g
〉

H

]2
. Thus

it suffices for us to consider self-avoiding walks p and p̃ that share some vertices.
We write p ∥ p̃ if they share some variable or factor nodes and the shared nodes

have consistent types and use p∪ to denote the union of the two walks. Now, note
that:

1. Conditioned on τ and c every factor node with arity k is chosen indepen-
dently with probability at most α

nk−1 for some constant α. Thus, for any
subgraph of Kn on e edges and r factor nodes, the probability of it occurring
in G is at most αrne−r.

2. The matrix weight Mp of any self-avoiding path has entries bounded in
magnitude by 1 since it is a product of projected stochastic matrices.

Using the above facts, a straightforward calculation tells us:∣∣∣∣EG [〈gpv[0], w(G, p)gpv[s]
〉

H

〈
g p̃v[0], w(G, p̃)g p̃v[s]

〉
H

]∣∣∣∣ ⩽ (α′)s n−(∑e∈p∪e
a(e)−1).

(3.11)
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We say p∪1 ∼ p∪2 if the subgraphs induced by them are isomorphic. ∼ partitions the
space of all p∪ into equivalence classes. We use [p∪] to denote the equivalence class
of p∪. The number of equivalence classes can be bounded by (C′s)C′s for some
constant C′ > 1 (since the graph representing the equivalence class of p ∪ p̃ is on
O(s) vertices can be specified by a list of O(s) edges). Due to the shared vertices,
p∪ is connected and χ(p∪) ⩽ 1. Thus, we now bound the variance as follows:

E
G

[〈
g, A(s)

G g
〉2

H

]
− E

G

[〈
g, A(s)

G g
〉

H

]2

= ∑
p∥ p̃

E
G

[〈
gpv[0], w(G, p)gpv[s]

〉
H

〈
g p̃v[0], w(G, p̃)g p̃v[s]

〉
H

]
⩽∑

p∪
∑

p∥ p̃:p∪ p̃=p∪
(α′)sn−(∑e∈p∪e

a(e)−1)

⩽ ∑
[p∪]

∑
p∪i ∈[p∪]

(9α′s)sn−(∑e∈p∪e
a(e)−1)

= ∑
[p∪]

(9α′s)sn|p
∪
v |−(∑e∈p∪e

a(e)−1)

= ∑
[p∪]

(9α′s)snχ(p∪)

⩽(9C′α′s2)C′sn.

Thus, the claim follows.

3.6.2 Bounding contribution of non-self-avoiding walks

In comparison to the self-avoiding walks, the non-self-avoiding walks have negli-
gible contributions to the expectation and the variance of the statistics. We prove
this statement using the following claim.

Claim 3.6.15. We can bound the statistics of non-self-avoiding walks as follows:∣∣∣∣∣EG
[

∑
p non-self-avoiding

〈
gpv[0], w(G, p)gpv[s]

〉
H

]∣∣∣∣∣ ⩽ (Cs)Cs.

E
G

 ∑
p∥ p̃

p or p̃ non-self-avoiding

〈
gpv[0], w(G, p)gpv[s]

〉
H
·
〈

g p̃v[0], w(G, p̃)g p̃v[s]
〉

H

 ⩽ (Cs)Cs
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for some absolute constant C.

Proof. The first part is derived by applying Item 1 in the proof of Lemma 3.6.14.∣∣∣∣∣EG
[

∑
p non-self-avoiding

〈
gpv[0], w(G, p)gpv[s]

〉
H

]∣∣∣∣∣
⩽ ∑

p non-self-avoiding

∣∣∣∣EG [〈gpv[0], w(G, p)gpv[s]
〉

H

]∣∣∣∣
⩽ ∑

p non-self-avoiding
Pr
G
[p ∈ G] ·O(1)

⩽ ∑
p non-self-avoiding

(α′)snχ(p)−|pv|

⩽ ∑
p non-self-avoiding

(α′)sn−|pv|

⩽ (Cs)Cs.

where the equality from the second to third line is a consequence of Item 1 in the
proof of Lemma 3.6.17, and the last inequality is due to χ(p) ⩽ 0 for a non-self-
avoiding walk.

The second expression is equal to:

∑
p∥ p̃

p or p̃ non-self-avoiding

E
G

[〈
gpv[0], w(G, p)gpv[s]

〉
H
·
〈

g p̃v[0], w(G, p̃)g p̃v[s]
〉

H

]
.

By (3.11) the above can be bounded by:

∑
p∥ p̃

p or p̃ non-self-avoiding

(
α′
)s nχ(p∪)−|p∪v |

where p∪, recall, is the union of p and p̃. Since p and p̃ share vertices, χ(p∪) ⩽
min{χ(p), χ( p̃)}, and since at least one of the two walks is non-self-avoiding,
χ(p∪) ⩽ 0. This lets us bound the above by:

∑
p∥ p̃

p or p̃ non-self-avoiding

(
α′
)s n−|p

∪
v | ⩽ ∑

p∪
∑

p∥ p̃:p∪ p̃=p∪

(
α′
)s n−|p

∪
v |
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= ∑
[p∪]

∑
p∪i ∈[p∪]

(9α′s)sn−|p
∪
v |

= ∑
[p∪]

(9α′s)s

⩽ (9C′α′s2)C′s

which gives us the desired bound in the second part of the statement.

3.6.3 Wrapping up estimates of statistics

The following claim about the statistics of the centered non-backtracking-walk
matrix A(s)

G is an immediate consequence of combining Lemma 3.6.13 and the first
part of Claim 3.6.15.

Lemma 3.6.16. For s ⩽ log n
(log log n)2 :

E
G

[〈
g, A(s)

G g
〉

H

]
= (1± on(1))λs

Ln.

Lemma 3.6.17. For some absolute constant C:

E
G

[〈
g, A(s)

G g
〉2

H

]
− E

G

[〈
g, A(s)

G g
〉

H

]2
⩽ n(Cs)Cs.

Proof. Using the observation that only pairs of walks that share some vertices
contribute to the variance, we have:

E
G

[〈
g, A(s)

G g
〉2

H

]
− E

G

[〈
g, A(s)

G g
〉

H

]2

= E
G

[〈
g, A(s)

G g
〉2

H

]
− E

G

[〈
g, A(s)

G g
〉

H

]2

+ ∑
p∥ p̃

p or p̃ non-self-avoiding

E
G

[〈
gη(p0

v), w(G, p, η)gη(ps
v)
〉

H
·
〈

gη( p̃0
v), w(G, p̃, η̃)gη̃( p̃s

v)
〉

H

]
We can conclude the desired bound immediately from Lemma 3.6.14 and the
second part of Claim 3.6.15.
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Finally, to establish Theorem 3.6.1 we first use Chebyshev’s inequality to con-
clude that when s ⩽ log n

(log log n)2 ,〈
g, A(s)

G g
〉

H
= (1± on(1))λs

Ln

with probability 1− on(1). Now, since the ∥g∥2 is (1± on(1)) n
γ with probability

1− on(1) for some constant γ, we can conclude that with probability 1− on(1),〈
g, A(s)

G g
〉

H
∥g∥2 = (1± on(1))γλs

L

thereby finishing the proof.

3.7 Eigenvalue bounds

In this section we show an eigenvalue upper bound for the centered nonbacktracking-
walk matrix in the null model. We first describe the matrix distribution in detail.

Recall the definition of a null model M× (Definition 3.2.3). Let H :=
⋃F

i=1 Ei be
an observation sampled from M×. As discussed in Section 3.2.1.1, the observation
H has an associated bipartite graph which we denote Bip(H). The left vertex set is
given by the variables [n] and the right vertex set is given by the factors γ ∈ H. We
will use L(H) and R(H) to denote the left and right vertex sets of Bip(H).

Next associate with each triple vγu, where v, u ∈ γ and v ̸= u, a q× q matrix
Mvγu. Like before, the value of the matrix only depends on the factor type θ(γ)

and the two variables’ indices i(v), i(u) in γ. We use Bl to denote the collection of
these q× q matrices {Maϕib}i∈[F],a ̸=b∈[a(i)]. Now we are ready to define the matrix
distribution.

Definition 3.7.1. The matrix distribution is defined as follows. First sample an
observation H from some null model M×. We define the length-ℓ M×-centered
nonbacktracking power A(ℓ)

H is the n× n block matrix where the (i, j)-block as the
following q× q matrix:

A(ℓ)
H [i, j] := ∑

(v0γ1v1...vℓ−1γℓvℓ)
∈NB(Kn,ℓ,i,j)

ℓ

∏
t=1

Mv2t−2γtv2t−1

(
1[γt ∈ H]− Pr

M×
[γt ∈ H]

)
,
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where NB(Kn, ℓ, i, j) denote the set of all length-2ℓ nonbacktracking walks in the
complete bipartite factor graph Bip(Kn) starting at variable i and ending at variable
j.

We are interested in obtaining a high probability upper bound on ∥A(ℓ)
H ∥ in

terms of a particular quantity depending on Bl and M×, which we denote by
ρ(Bl, M×). Before giving its definition, we simplify the notation a bit:

Definition 3.7.2. Given a length-2ℓ nonbacktracking walk W = v0γ1 . . . vℓ−1γℓvℓ
in Bip(H), we define the weight of the walk with MW to be

MW := Mv0γ1v1 Mv1γ2v2 . . . Mvℓ−1γℓvℓ .

We use γi(W) to denote the i-th factor visited by W.

We now define ρ(Bl, M×).

Definition 3.7.3. For a positive integer m, construct a length-m path P with random
matrix weights in the following way. Start with a vertex v0 and assign to it a
random label τ(v0) sampled from T . We iteratively construct a path with edges
weighed by matrices until its length is equal to m. Suppose we already have a path
v0v1 . . . vt where each vi has a label τ(vi), and for an edge {vi, vi+1} its two directed
edges (vi, vi+1) and (vi+1, vi) have matrix weights Wi,i+1 and Wi+1,i respectively.
To grow this path, we sample (s, a) where s ∈ [F] and a ∈ [a(s)] with probability
proportional to ϕs · 1[Cl(s)a = τ(vt)] ·∏t

j=1,j ̸=a T (Cl(s)j), followed by a uniformly
random b in [a(s)] \ {a}. Add vertex vt+1 and set τ(vt+1) = Cl(s)b. Then add
edge {vt, vt+1} and let the matrix weight of the directed edge (vt, vt+1) be Wt,t+1 =

Maϕsb ∈ Bl, and matrix weight of directed edge (vt+1, vt) be Wt+1,t = Mbϕsa ∈ Bl.5

We then define wm as:

wm := ETr(W0,1W1,2 . . . Wm−1,mWm,m−1 . . . W2,1W1,0).

Now define r(Bl, M×) as

r(Bl, M×) := lim sup
m→∞

w
1

2m
m .

5For the sake of intuition the reader should think of the distribution of vt+1 as first sampling
H ∼ M×, then choosing a random vertex v with label τ(vt) and finally choosing as a random
neighbor w of v within H. τ(vt+1) is then set to the label of w and the matrix weight on edge
(vt, vt+1) is chosen as the matrix weight on (v, w).
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Next, define d(M×) (which, intuitively, is the average degree of a vertex in a sample
from M×) as

d(M×) :=
T

∑
t=1
T (t)

F

∑
i=1

ki

∑
j=1

ϕi1[Cl(i)j = t].

Finally, we define ρ(Bl, M×) as

ρ(Bl, M×) := r(Bl, M×)
√

d(M×).

We remark that if the weight collection Bl is defined such that Mbϕia = Mi,a|b
(defined in (3.10)) for all i ∈ [F], a ̸= b ∈ [a(i)], then ρ(Bl, M×) =

√
λL.

The main result of this section is that ∥A(ℓ)
H ∥ ⩽ ((1 + on(1))ρ(Bl, M×))ℓ for a

wide range of ℓ when H ∼ M×.

Theorem 3.7.4. Suppose:

1. There is an inner product ⟨·, ·⟩ν on Rnq such that for every right vertex γ =

(v1, . . . , va(i)) in KBl,n, for all 1 ⩽ a, b ⩽ a(i), the nq × nq matrix obtained by
placing Mvaγvb in the (va, vb) block and zeros everywhere else is the adjoint of
the nq × nq matrix obtained by placing Mvbγva in the (vb, va) block and zeroes
everywhere else under ⟨·, ·⟩ν.

2. There is a constant C ⩾ 1 such that the weight MW every nonbacktracking walk W
in Kn satisfies:

∥MW∥ ⩽ C

where ∥ · ∥ is the operator norm induced by ⟨·, ·⟩.

3. ρ(Bl, M×) ⩾ 1.

Then for every ε > 0 and (log log n)2 ⩽ ℓ ⩽ log n
(log log n)2 , with probability 1− on(1):

|λ|max

(
A(ℓ)

H

)
⩽
(
(1 + ε)ρ(Bl, M×)

)ℓ .

3.7.1 Proof of Theorem 3.7.4

The proof of Theorem 3.7.4 is via the trace method. One preliminary observation
is that 1 implies that A(ℓ)

H is self-adjoint and hence all its eigenvalues are real.
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Consequently, for any positive even integer k:

∥A(ℓ)
H ∥

k ⩽ Tr

((
A(ℓ)

H

)k
)

. (3.12)

Our goal is now to obtain a handle on S := Tr

((
A(ℓ)

H

)k
)

and obtain a high

probability bound on it. We borrow some terminology from [MOP20]:

Definition 3.7.5 (Linkages). A (k × 2ℓ)-nonbacktracking Bl-linkage is a length-
2kℓ closed walk in Bip(Kn) that starts and ends in the left vertex set and can be
expressed as a concatenation of k nonbacktracking walks of length-2ℓ each. Each
length-2ℓ nonbacktracking segment is called a link. We use Lkgs(Bl, n, k, ℓ) to
denote the collection of all (k× 2ℓ)-nonbacktracking Bl-linkages.

Definition 3.7.6. Given a (k × 2ℓ)-nonbacktracking Bl-linkage W, we use L(W)

to denote the set of left vertices visited by W, R(W) to denote the set of right
vertices visited by W, V(W) to denote L(W) ∪ R(W), E(W) to denote the set of
edges visited by W, and G(W) to denote the graph (V(W), E(W)) induced by W.

With the above terminology and notation in hand, we can write S as:

S = ∑
W∈Lkgs(Bl,n,k,ℓ)

Tr(MW)
kℓ

∏
t=1

(
1[γt(W) ∈ H]− E

H|τ
1[γt(W) ∈ H]

)
.

A natural strategy to obtaining a high probability bound on S is to bound E[S] by
some Z and use Markov’s inequality to conclude that S is bounded by, say, nZ
with high probability. However, E[S] is not as small as we would hope due to
blowing up in magnitude owing to the occurrences of certain rare and problematic
subgraphs in Bip(H). So this suggests a natural tweak of conditioning away these
rare subgraphs and trying to carry out the same strategy. This tweak is an idea
that occurs in many previous papers in the line of work on getting eigenvalue
bounds on sparse random matrices [Fri03b, BLM15, Bor19, BC19, MOP20]. These
problematic subgraphs all share one common trait – having multiple cycles in a
small neighborhood.

Definition 3.7.7. We say a graph Γ is r-bicycle free if for every vertex v, the radius-r
ball around v contains at most one cycle. We say Γ is an r-bicycle if it has at most
r edges and has at least two cycles, and we say Γ is an r-bicycle frame if it is an
r-bicycle such that no subgraph of it is an r-bicycle.
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Lemma 3.7.8. With probability 1− on(1), Bip(H) is r-bicycle free for r = log n
log log n .

We refer the reader to Corollary 3.12.9 for a proof of this fact.
Henceforth, we use E to denote the event that H is r-bicycle free for r = log n

log log n .
Now define U := S · 1[E ]. By Lemma 3.7.8 with probability 1− on(1), S = U so if
we can prove that U ⩽ Z with probability 1− on(1), we can also show that S ⩽ Z
with probability 1− on(1). Thus, we turn our attention to bounding E[U].

U = ∑
W∈Lkgs(Bl,n,k,ℓ)

Tr(MW)
kℓ

∏
t=1

(
1[γt(W) ∈ H]− E

H|τ
1[γt(W) ∈ H]

)
1[E ]. (3.13)

We now study the quantity ∏kℓ
t=1

(
1[γt(W) ∈ H]− EH|τ 1[γt(W) ∈ H]

)
.

Definition 3.7.9. For a given right vertex γ of Kn the multiplicity mW(γ) of γ in W
is the number of times γ is visited by W. S(W) denotes the set of all right vertices
that are visited exactly once and are called singleton right vertices. D(W) denotes
the set of all right vertices that are visited more than once, and are called duplicative
right vertices.

Henceforth, we shorten 1[γ ∈ H] to 1γ and EH|τ 1[γ ∈ H] to µγ. Thus:

kℓ

∏
t=1

(
1γt(W) − µγt(W)

)
= ∏

γ∈S(W)

(1γ − µγ) ∏
γ∈D(W)

(1γ − µγ)
mW(γ)

= ∏
γ∈S(W)

(1γ − µγ) ∏
γ∈D(W)

(
1γ ·

mW(γ)

∑
i=1

(−µγ)
mW(γ)−i

(
mW(γ)

i

)
+ (−µγ)

mW(γ)

)

To lighten notation, we use αγ to denote ∑
mW(γ)
i=1 (−µγ)mW(γ)−i(mW(γ)

i ).

= ∏
γ∈S(W)

(1γ − µγ) ∏
γ∈D(W)

(1γαγ + (−µγ)
mW(γ))

= ∏
γ∈S(W)

(1γ − µγ) ∑
L⊆D(W)

∏
γ∈L

1γαγ ∏
γ∈D(W)\L

(−µγ)
mW(γ)

= ∑
L⊆D(W)

∏
γ∈L

αγ ∏
γ∈D(W)\L

(−µγ)
mW(γ) ∏

γ∈S(W)

(1γ − µγ) ∏
γ∈L

1γ. (3.14)
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Plugging in (3.14) into (3.13) gives:

U =

∑
W∈Lkgs(Bl,n,k,ℓ)

Tr(MW) ∑
L⊆D(W)

∏
γ∈L

αγ

∏
γ∈D(W)\L

(−µγ)
mW(γ) ∏

γ∈S(W)

(1γ − µγ) ∏
γ∈L

1γ1[E ]

We are interested in understanding E[U]. Note that this is equal to Eτ EH|τ [U]. We
will first focus our attention on understanding EH|τ [U]. We have:

E
H|τ

[U] =

∑
W∈Lkgs(Bl,n,k,ℓ)

Tr(MW) ∑
L⊆D(W)

∏
γ∈L

αγ ∏
γ∈D(W)\L

(−µγ)
mW(γ)

E
H|τ

 ∏
γ∈S(W)

(1γ − µγ) ∏
γ∈L

1γ1[E ]


⩽ ∑

W∈Lkgs(Bl,n,k,ℓ)
Tr(MW) ∑

L⊆D(W)
∏
γ∈L
|αγ| ∏

γ∈D(W)\L
µ

mW(γ)
γ∣∣∣∣∣∣ E

H|τ

 ∏
γ∈S(W)

(1γ − µγ) ∏
γ∈L

1γ1[E ]

∣∣∣∣∣∣ .

Notice that αγ = (1− µγ)mW(γ) − (−µγ)mW(γ) and hence |αγ| ⩽ (1− µγ)mW(γ) +

µ
mW(γ)
γ ⩽ (1 − µγ) + µγ = 1 where the second inequality is a consequence of

µγ ∈ [0, 1]. The result is:

E
H|τ

[U] ⩽ ∑
W∈Lkgs(Bl,n,k,ℓ)

Tr(MW) ∑
L⊆D(W)

∏
γ∈D(W)\L

µ
mW(γ)
γ ·∣∣∣∣∣∣ E

H|τ

 ∏
γ∈S(W)

(1γ − µγ) ∏
γ∈L

1γ1[E ]

∣∣∣∣∣∣ . (3.15)

Next, we would like to obtain a bound on
∣∣∣EH|τ

[
∏γ∈S(W)(1γ − µγ)∏γ∈L 1γ1[E ]

]∣∣∣.
Towards doing so, we first set up a couple of definitions and an observation.
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Definition 3.7.10 (Closure of subgraph). Given a subgraph Γ of Bip(Kn) with right
vertex set R(Γ), we define its closure Clos(Γ) as the induced subgraph on the vertex
set
(⋃

γ∈R(Γ) N(γ)
)⋃

R(Γ). We say Γ is closed if Clos(Γ) = Γ.

Definition 3.7.11 (Excess). Given a graph Γ on e edges, v vertices and c connected
components, we define the excess of Γ, denoted Exc(Γ), to be e− v + c.

The following is immediate from the observation that the excess of a graph
cannot decrease on adding a new vertex or a new edge.

Lemma 3.7.12. If Γ = (V, E) and Γ′ = (V′, E′) are two graphs such that Γ is a subgraph
of Γ′, i.e. V ⊆ V′ and E ⊆ E′, then Exc(Γ′) ⩾ Exc(Γ).

If Clos(L) is not r-bicycle free, then ∏γ∈L 1γ1[E ] is equal to 0. Otherwise
Lemma 3.12.11 then shows that:∣∣∣∣∣∣ E

H|τ

 ∏
γ∈S(W)

(1γ − µγ) ∏
γ∈L

1γ1[E ]

∣∣∣∣∣∣ ⩽
∏

γ∈S∪L
µγ · 2|S(W)|

(
1

n.5

) |S(W)|
r −Exc(Clos(S(W)∪L))

.

Plugging the above into (3.15) tells us:

E
H|τ

[U] ⩽ ∑
W∈Lkgs(Bl,n,k,ℓ)

Tr(MW)

∑
L⊆D(W)

Clos(L) r-bicycle free

∏
γ∈R(W)

µγ ∏
γ∈D(W)\L

µ
mW(γ)−1
γ 2|S(W)|

(
1

n.5

) |S(W)|
r −Exc(Clos(S(W)∪L))

.

Henceforth, we will shorten Exc(Clos(S(W)∪D(W))) to ExcW for simplicity of no-
tation. Since Clos(S(W)∪ L) is a subgraph of Clos(S(W)∪D(W)), by Lemma 3.7.12
we have ExcW ⩾ Exc(Clos(S(W) ∪ L)), which means:

E
H|τ

[U] ⩽ ∑
W∈Lkgs(Bl,n,k,ℓ)

Tr(MW)
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∑
L⊆D(W)

Clos(L) r-bicycle free

∏
γ∈R(W)

µγ ∏
γ∈D(W)\L

µ
mW(γ)−1
γ 2|S(W)|

(
1

n.5

) |S(W)|
r −ExcW

= ∑
W∈Lkgs(Bl,n,k,ℓ)

Tr(MW) · 2|S(W)|
(

1
n.5

) |S(W)|
r −ExcW

∏
γ∈R(W)

µγ ∑
L⊆D(W)

Clos(L) r-bicycle free

∏
γ∈D(W)\L

µ
mW(γ)−1
γ (3.16)

Next, we focus on bounding ∑ L⊆D(W)
L r-bicycle free

∏γ∈D(W)\L µ
mW(γ)−1
γ . For starters, ob-

serve that:

∑
L⊆D(W)

Clos(L) r-bicycle free

∏
γ∈D(W)\L

µ
mW(γ)−1
γ ⩽ ∑

L⊆D(W)
Clos(L) r-bicycle free

∏
γ∈D(W)\L

(
ϕmax

n

)mW(γ)−1

We proceed to bound this in a manner identical to [BMR21]. We define a weight
function w on subsets of D(W) as follows: w(K) = ∑γ∈K mW(γ) − 1. Choose
D∗(W) as a maximum weight subset (according to w) of W such that Clos(D∗(W))

is r-bicycle free, and let ∆(W) := w(D(W))− w(D∗(W)). Note that for any L ⊆
D(W) such that Clos(L) is r-bicycle free, ∆(W) ⩽ w(D(W) \ L).

∑
L⊆D(W)

Clos(L) r-bicycle free

∏
γ∈D(W)\L

(
ϕmax

n

)mW(γ)−1

⩽ ∑
L⊆D(W)

Clos(L) r-bicycle free

(
ϕmax

n

)w(D(W)\L)

Since L ⊆ D(W) every mW(γ)− 1 ⩾ 1. Using this along with ∆(W) ⩽ w(D(W) \
L) we can bound the above by:

⩽ ∑
L⊆D(W)

(
ϕmax

n

)max{|D(W)\L|,∆(W)}
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= ∑
i⩽∆(W)

(
ϕmax

n

)∆(W)

·
(
|D(W)|

i

)
+

∑
i>∆(W)

(
ϕmax

n

)i (|D(W)|
i

)

⩽ (∆(W) + 1)
(

ϕmax
n

)∆(W)

+ ∑
i>∆(W)

(
ϕmax|D(W)|

n

)i

⩽ (∆(W) + 2)
(

ϕmax
n

)∆(W)

⩽ 2
(

2ϕmax
n

)∆(W)

Plugging this back into (3.16) gives us:

(3.16)

⩽ 2 ∑
W∈Lkgs(Bl,n,k,ℓ)

Tr(MW) · 2|S(W)| ·
(

1
n.5

) |S(W)|
r −ExcW

·
(

2ϕmax
n

)∆(W)

· ∏
γ∈R(W)

µγ

As a first step towards simplifying the above quantity we make the following
definition:

Definition 3.7.13 (Shape of a linkage). Given a (k× 2ℓ)-nonbacktracking linkage
W = v0v1 . . . v2kℓ that visits v distinct vertices, we say the shape of W denoted
Sh(W) is the (k× 2ℓ)-nonbacktracking linkage on graph on vertex set [v] obtained
by first constructing map ξ : V(W) → [2kℓ] where ξ(v) = i where v is the i-th
distinct vertex visited by W and defining the t-th step of the walk Sh(W) to be
ξ(vt−1)ξ(vt). We say the left vertex set of Sh(W) is ξ(L(W)) and the right vertex set
is ξ(R(W)). For a ∈ V(Sh(W)) we will use the notation W[a] to denote ξ−1(a). We
use Shps(k, ℓ) to denote the set of all distinct shapes of linkages in Lkgs(Bl, n, k, ℓ),
and Shps(k, ℓ, v, e) to denote the set of all shapes in Shps(k, ℓ) on v vertices and e
edges.

We can rewrite the bound on (3.16) as:

(3.16) ⩽ 2 ∑
Sh∈Shps(k,ℓ)

2|S(Sh)| ·
(

1
n.5

) |S(Sh)|
r −ExcSh

·
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2ϕmax
n

)∆(Sh)

∑
W:W∈Lkgs(Bl,n,k,ℓ)

Sh(W)=Sh

Tr(MW) · ∏
γ∈R(W)

µγ. (3.17)

For a given linkage W, we begin by deriving an upper bound on Tr(MW). A
preliminary observation is:

Observation 3.7.14. Tr(MW) ⩽ q∥MW∥.

Our next step is to decompose W into simpler “subwalks”. This segment of the
argument follows [BC19, OW20]

Definition 3.7.15. We call a vertex v in L(W) a landmark of W if it satisfies at least
one of the following conditions: (i) is an endpoint of a link, (ii) degG(W)(v) ⩾ 3,
(iii) degG(W)(w) ⩾ 3 for some w ∈ R(W) which is incident to v within G(W). We
refer to the set of all landmark vertices in W as Lm(W) We call any path between
two landmark vertices v1 and v2 with no intermediate landmark vertices a trail.
We call a trail a forked trail if it has an intermediate vertex w in R(W) such that
degG(W)(v) ⩾ 3, and an unforked trail otherwise. We use Trs(W) to denote the
collection of all trails in W, UTrs(W) to denote the collection of all unforked trails
in W and FTrs(W) to denote the collection of all forked trails in W.

Observation 3.7.16. Any forked trail must be a single two-step of the form uγv
where u and v are left vertices and γ is a right vertex.

Any W ∈ Lkgs(Bl, n, k, ℓ) is a sequence of nonbacktracking walks on trails. W
can be written as the sequence of vertices visited v0γ1v1 . . . γkℓvkℓ. Let T be the set
of all times t such that vt is a landmark. Using T, we construct a set of pause times
P in the following way:

For each t ∈ T, if the trail starting or ending at time t is visited for the
first or second time, we add t to P.

Recall from Definition 3.7.2 that MW is the product of kℓ matrices Mv0γ1v1 . . . Mvkℓ−1γkℓvkℓ .
Let p1 < · · · < ps be the sequence of all pause times. By submultiplicativity of the
operator norm,

∥MW∥ ⩽ ∥Mv0γ1v1 · · ·Mvp1−1γp1 vp1
∥ · ∥Mvp1 γp1+1vp1+1 · · ·Mvp2−1γp2 vp2

∥ · · · ∥Mvps γps+1vps+1

· · ·Mvkℓ−1γkℓvkℓ∥.
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Each segment between consecutive pauses pi and pi+1 falls into one of the following
categories:

• Seg⩽2(W): the segment is composed of exactly one trail and is the first or
second visit to the trail.

• Seg>2(W) the segment is a union of trails and each of these trails has already
been visited at least twice before.

Rewriting the above upper bound, we now have:

∥MW∥ ⩽ ∏
ω∈Seg⩽2(W)

∥Mω∥ · ∏
ω∈Seg>2(W)

∥Mω∥.

Given a trail T with endpoints u and v, there are two nonbacktracking walks ω1 and
ω2 that cover T, one from u to v and another from v to u. By 1, M∗ω1

= Mω2 where
the ∗ in the superscript refers to the adjoint induced by the inner product ⟨·, ·⟩v and
so ∥Mω1∥ = ∥Mω2∥. Henceforth we use ∥MT∥ to denote ∥Mω1∥ = ∥Mω2∥. Using
the notation UTrs⩾2(W) for unforked trails that are visited more than once, we can
write the above as:

∥MW∥ ⩽ ∏
T∈UTrs⩾2(W)

∥MT∥2 · ∏
ω∈Seg>2(W)∪Seg1(W)\UTrs⩾2(W)

∥Mω∥.

2 further lets us get the following bound:

∥MW∥ ⩽ C|Seg1(W)|+|Seg⩾2(W)| · ∏
T∈UTrs⩾2(W)

∥MT∥2 ⩽ C|P|+1 · ∏
T∈UTrs⩾2(W)

∥MT∥2

(3.18)
We now turn our attention to bounding |P|. Given a landmark vertex v and an
edge e incident to it, there are at most amax trails that start at v and tread on e
on their first step, and hence the number of distinct trails starting at v is at most
amax · degG(W)(v). By the construction of P, the number of pauses at vertex v
is at most twice the number of distinct trails starting at v, and hence is at most
2amax · degG(W)(v). Thus:

|P| ⩽ 2amax ∑
v∈Lm(W)

degG(W)(v) ⩽ 2amax

2|Lm⩽2(W)|+ ∑
v∈Lm⩾3(W)

degG(W)(v)


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where Lm⩽2(W) and Lm⩾3(W) denote the sets of landmark vertices of degree-⩽ 2
and degree-⩾ 3 respectively. Each vertex in Lm⩽2(v) is either an endpoint of a link
or a neighbor of a degree-⩾ 3 right vertex. There are exactly k + 1 endpoints of
links, and at most ∑v∈G(W):degG(W)(v)⩾3 degG(W)(v) landmark vertices induced as
neighbors of degree-⩾ 3 right vertices, and hence:

|P|
⩽ 2amax·2(k + 1) + 2 ∑

v∈G(W):degG(W)(v)⩾3
degG(W)(v) + ∑

v∈G(W):degG(W)(v)⩾3
degG(W)(v)


(3.19)

It remains to bound ∑v∈G(W):degG(W)(v)⩾3 degG(W)(v). Let X be a set of edges of size
ExcW such that T(W, X) := (V(W), E(W) \ X) is a tree. Since G(W) has at most
k leaves, T(W, X) has at most k + 2ExcW leaves. We now state the following well
known fact about trees and refer the reader to [BMR21, Fact 6.35] for a proof.

Fact 3.7.17. Let T be a tree with l leaves. Then 3l ⩾ ∑v∈V(T):degT(v)⩾3 degT(v).

As a consequence of Fact 3.7.17:

∑
v∈V(T(W,X)):degT(V,X)(v)⩾3

degT(V,X)(v) ⩽ 3(k + 2ExcW).

Now observe that for any graph Γ and graph Γ′ obtained by adding a single edge
to Γ:

∑
v∈V(Γ′):degΓ′ (v)⩾3

degΓ′(v) ⩽

 ∑
v∈V(Γ):degΓ(v)⩾3

degΓ(v)

+ 6,

and thus

∑
v∈G(W):degG(W)(v)⩾3

degG(W)(v) ⩽ 3(k + 2ExcW) + 6ExcW = 3k + 12ExcW . (3.20)

Plugging this back into (3.19) and using k ⩾ 2 gives:

|P| ⩽ 2amax (12k + 36ExcW) = 24amax (k + 3ExcW) .
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Remark 3.7.18. Observe that the above also proved the following, which will be of
utility later in the proof:

∑
v∈Lm(W)

degG(W)(v) ⩽ 12k + 36ExcW .

Next, plugging the bound on |P| back into (3.18) along with Observation 3.7.14
gives:

Tr(MW) ⩽ qC24amax(k+3ExcW)+1·

∏
T∈UTrs⩾2(W)

∥MT∥2 ⩽ qC25amax(k+3ExcW) · ∏
T∈UTrs⩾2(W)

∥MT∥2.

And via (3.17) and introducing the expected value over the randomness of τ:

E
τ

E
H|τ

[U] ⩽ 2q ∑
Sh∈Shps(k,ℓ)

(
2r

n.5

) |S(Sh)|
r
·
(

n.5C75amax
)ExcSh

C25amaxk ·
(

2ϕmax
n

)∆(Sh)

∑
W:W∈Lkgs(Bl,n,k,ℓ)

Sh(W)=Sh

∏
T∈UTrs⩾2(W)

∥MT∥2 · E
τ

∏
γ∈R(W)

µγ

(3.21)

Thus, for a fixed shape Sh we now restrict our attention to bounding:

∑
W:W∈Lkgs(Bl,n,k,ℓ)

Sh(W)=Sh

∏
T∈UTrs⩾2(W)

∥MT∥2 · E
τ

∏
γ∈R(W)

µγ. (3.22)

We now define the notion of Cl-consistent.

Definition 3.7.19. Let Γ be a subgraph of the complete bipartite factor graph
Bip(Kn). We say Γ is Cl-consistent if there exists a τ such that every

γ = (v1, . . . , va(i)) ∈ R(Γ)

satisfies (τ(v1), . . . , τ(va(i))) = Cl(θ(γ)). If Γ is Cl-consistent we use τΓ to refer to
the unique τ such that Γ is (τ, Cl)-consistent.

Observation 3.7.20. For W ∈ Lkgs(Bl, n, k, ℓ), ∏γ∈R(W) µγ is equal to 0 if W is not
Cl-consistent.
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Thus:

(3.22) = ∑
W:W∈Lkgs(Bl,n,k,ℓ)

Sh(W)=Sh
W Cl-consistent

∏
T∈UTrs⩾2(W)

∥MT∥2·

∏
γ∈R(W)

ϕθ(γ)

na(θ(γ))−1
· ∏

v∈L(Clos(W))

T (τW(v)).

Definition 3.7.21. We call two walks W1 and W2 equivalent denoted W1 ∼W2 if

• Sh(W1) = Sh(W2) =: Sh,

• for any a ∈ R(Sh), θ(W1[a]) = θ(W2[a]),

• for any edge {v, γ} in Sh for v ∈ L(Sh) and γ ∈ R(Sh), i(W1[γ], W1[v]) =

i(W2[γ], W2[v]).

We say W1 and W2 are closure equivalent denoted W1 ∼Clos W2 if W1 ∼W2 and the
graphs induced by Clos(W1) and Clos(W2) are isomorphic.

The relationship ∼ partitions the space of all Cl-consistent W in Lkgs(Bl, n, k, ℓ)
with shape Sh into a collection of equivalence classes C. We use [W] to denote the
equivalence class it is contained in. ∼Clos further partitions each equivalence class
[W] ∈ C into a collection of sub-equivalence classes C[W], and we denote the sub-
equivalence class of W with [[W]]. We use J(W) to denote |E(Clos(W))| − |E(W)|.
With these definitions and notation in hand, we can write:

(3.22) =

∑
[W]∈C

∑
[[W]]∈C[W]

∑
W ′∈[[W]]

∏
T∈UTrs⩾2(W)

∥MT∥2 · ∏
γ∈R(W)

ϕθ(γ)

na(θ(γ))−1
·

∏
v∈L(Clos(W))

T (τW(v))

⩽ ∑
[W]∈C

∑
[[W]]∈C[W]

∏
T∈UTrs⩾2(W)

∥MT∥2 · ∏
γ∈R(W)

ϕθ(γ)

na(θ(γ))−1
·

∏
v∈L(Clos(W))

T (τW(v)) · n|L(Clos(W))|
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= ∑
[W]∈C

J(W)

∑
t=0

∑
[[W]]∈C[W]

|L(Clos(W))|=|L(W)|+t

∏
T∈UTrs⩾2(W)

∥MT∥2 · ∏
γ∈R(W)

ϕθ(γ)

na(θ(γ))−1
·

∏
v∈L(Clos(W))

T (τW(v)) · n|L(W)|+|J(W)|

n|J(W)|−t

To enumerate the innermost sum, first observe that any W can be changed to
Clos(W) where |L(Clos(W))| − |L(W)| = t via the following procedure. First add
J(W) new vertices and to each γ ∈ R(W) attach an edge from γ to a(θ(γ)) −
degW(γ) of the new vertices. There exists a sequence of J(W)− t “merge” opera-
tions on the left vertices, and a labeling of the newly added left vertices in [n] that
would result in Clos(W). The number of possible sequences of merge operations is
at most (amaxkℓ)2(|J(W)|−t). Thus, the above sum can be bounded by:

⩽ ∑
[W]∈C

J(W)

∑
t=0

∏
T∈UTrs⩾2(W)

∥MT∥2 · ∏
γ∈R(W)

ϕθ(γ)

na(θ(γ))−1
·

∏
v∈L(Clos(W))

T (τW(v)) · n|L(W)|+|J(W)|·

(
(amaxkℓ)2

n

)|J(W)|−t

= ∑
[W]∈C

J(W)

∑
t=0

∏
T∈UTrs⩾2(W)

∥MT∥2·

∏
γ∈R(W)

 ϕθ(γ)

na(θ(γ))−1
· ∏

v∈L(Clos(W))\L(W)

T (τW(v))

 ·
∏

v∈L(W)

T (τW(v))·

∏
v∈L(Clos(W))\L(w)

1
T (τW(v))degW(v)−1

· n|L(W)|+|J(W)| ·
(
(amaxkℓ)2

n

)|J(W)|−t

⩽ ∑
[W]∈C

J(W)

∑
t=0

∏
T∈UTrs⩾2(W)

∥MT∥2·
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∏
γ∈R(W)

 ϕθ(γ)

na(θ(γ))−1
· ∏

v∈L(Clos(W))\L(W)

T (τW(v))

 ·
∏

v∈L(W)

T (τW(v)) · n|L(W)|+|J(W)| ·
(
(amaxkℓ)2

Tminn

)|J(W)|−t

We can use the bound ∑
J(W)
t=0

(
(amaxkℓ)2

Tminn

)|J(W)|−t
⩽ 2 to deduce:

⩽ 2 ∑
[W]∈C

∏
T∈UTrs⩾2(W)

∥MT∥2·

∏
γ∈R(W)

 ϕθ(γ)

na(θ(γ))−1
· ∏

v∈L(Clos(W))\L(W)

T (τW(v))

 ·
∏

v∈L(W)

T (τW(v)) · n|L(W)|+|J(W)|

= 2 ∑
[W]∈C

∏
T∈UTrs⩾2(W)

∥MT∥2 · ∏
γ∈R(W)

ϕθ(γ) · ∏
v∈L(Clos(W))\L(W)

T (τW(v))

 ·
∏

v∈L(W)

T (τW(v)) · n1−ExcW . (3.23)

We decompose ∏γ∈R(W)

(
ϕη(γ) ·∏v∈L(Clos(W))\L(W) T (τW(v))

)
into three parts:

the contribution of singleton right vertices

∏
γ∈S(W)

ϕη(γ) · ∏
v∈L(Clos(W))\L(W)

T (τW(v))


which can be bounded by ϕ

|S(Sh)|
max , the contribution of duplicative degree-⩾ 3 right

vertices ∏ γ∈D(W)
degW(γ)⩾3

(
ϕη(γ) ·∏v∈L(Clos(W))\L(W) T (τW(v))

)
which via (3.20) can be

bounded by ϕ
3k+12ExcSh
max , and finally the contribution of duplicative degree-2 right

vertices ∏ γ∈D(W)
degW(γ)=2

(
ϕη(γ) ·∏v∈L(Clos(W))\L(W) T (τW(v))

)
. For each γ considered

in the final case we can identify a unique T ∈ UTrs⩾2(W) such that γ is in T, and
likewise for every T ∈ UTrs⩾2(W), every right vertex γ in T is duplicative and has
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degree exactly 2 and hence appears in the product. Thus, the third product can be
written as

∏
T∈UTrs⩾2(W)

∏
γ∈R(T)

ϕθ(γ) · ∏
v∈L(Clos(T))\L(T)

T (τW(v))

 .

Next, observe that using the facts that each πi ∈ [0, 1] and every interior left vertex
of a trail occurs in no other trail, ∏v∈L(W) T (τW(v)) can be upper bounded by

∏
T∈UTrs⩾2(W)

∏
v∈L(T)

T (τW(v)) · ∏
v∈Lm(W)

1

T (τW(v))degG(W)(v)
,

which by Remark 3.7.18 is at most

∏
T∈UTrs⩾2(W)

∏
v∈L(T)

T (τW(v)) ·
(

1
Tmin

)12k+36ExcSh

.

(3.23) ⩽ 2ϕ
|S(Sh)|+3k+12ExcSh
max

(
1
Tmin

)12k+36ExcSh

n−ExcSh+1·

∑
[W]

∏
T∈UTrs⩾2(W)∥MT∥2 · ∏

γ∈R(T)
ϕθ(γ) · ∏

v∈L(Clos(T))\L(T)
T (τW(v)) · ∏

v∈L(T)
T (τW(v))


⩽ 2ϕ

|S(Sh)|+3k+12ExcSh
max

(
1
Tmin

)12k+36ExcSh

n−ExcSh+1·

∏
T∈UTrs⩾2(Sh)

∑
[U]:Sh(U)=T∥MU∥2 · ∏

γ∈R(U)

ϕθ(γ) · ∏
v∈L(Clos(U))\L(U)

T (τW(v)) · ∏
v∈L(U)

T (τW(v))


For any constant ε, there exists a constant Cε such that the above is at most:

⩽ 2ϕ
|S(Sh)|+3k+12ExcSh
max ·
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1
Tmin

)12k+36ExcSh

n−ExcSh+1 ∏
T∈UTrs⩾2(Sh)

Cε ·
(
(1 + ε)ρ(Bl, M×)

)2|T|

Since |UTrs⩾2(Sh)| is at most the sum of degrees of landmark vertices on which
we have an upper bound by Remark 3.7.18, and since ∑T∈UTrs⩾2(Sh) |T| ⩽ kℓ

2 :

⩽ 2ϕ
|S(Sh)|+3k+12ExcSh
max ·(

1
Tmin

)12k+36ExcSh

n−ExcSh+1C12k+36ExcSh
ε ·

(
(1 + ε)ρ(Bl, M×)

)kℓ .

Since (3.23) is an upper bound on (3.22), rearranging the terms in the above gives:

(3.22) ⩽ 2n · ϕ|S(Sh)|
max ·

(
ϕ

3
maxC12

ε

T 12
min

)k

·
(

ϕ
12
maxC36

ε

T 36
minn

)ExcSh

·
(
(1 + ε)ρ(Bl, M×)

)kℓ .

Plugging this upper bound on (3.22) into (3.21) gives us:

E
τ

E
H|τ

[U] ⩽

4nq
(
(1 + ε)ρ(Bl, M×)

)kℓ ·

∑
Sh∈Shps(k,ℓ)

(
2rϕ

r
max

n.5

) |S(Sh)|
r
(

C75amaxϕ
12
maxC36

ε

T 36
minn.5

)ExcSh

(
C25amaxϕ

3
maxC12

ε

T 12
min

)k (
2ϕmax

n

)∆(Sh)

.

To notationally lighten the above, we choose β as a constant larger than 2ϕmax,
C75amax ϕ

12
maxC36

ε

T 36
min

and C25amax ϕ
3
maxC12

ε

T 12
min

. Then:

E
τ

E
H|τ

[U] ⩽ 4nq
(
(1 + ε)ρ(Bl, M×)

)kℓ
βk · ∑

Sh∈Shps(k,ℓ)

(
βr

n.5

) |S(Sh)|
r
(

β

n.5

)ExcSh
(

β

n

)∆(Sh)

(3.24)
To obtain a bound on (3.24) we first bound:

∑
Sh∈Shps(k,ℓ)

(
βr

n.5

) |S(Sh)|
r
(

β

n.5

)ExcSh
(

β

n

)∆(Sh)

(3.25)
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We proceed by partition all Sh ∈ Shps(k, ℓ) into sets where each set of Sh share
the same |S(Sh)|, ExcSh, and ∆(Sh). We bound the sum for each set with the
following claim proved in Appendix 3.12.

Claim 3.7.22. Let Us,x,∆ denote the set of all Sh ∈ Shps(k, ℓ) with |S(Sh)| = s,
ExcSh = x, and ∆(Sh) = ∆. Then

∑
Sh∈Us,x,∆

(
βr

n.5

) |S(Sh)|
r
(

β

n.5

)ExcSh
(

β

n

)∆(Sh)

⩽

(
βr · (4kℓ)r

n.5

) s
r
(

β · 2(kℓ)3

n.5

)x (4β · (2kℓ)2

n

)∆

(2kℓ)O(k log kℓ).

Using this claim we can derive

(3.25)

= ∑
s∈[kℓ],x∈[2kℓ],∆∈[kℓ]

∑
Sh∈Us,x,∆

(
βr

n.5

) s
r
(

β

n.5

)x (β

n

)∆

⩽ ∑
s∈[kℓ],x∈[2kℓ],∆∈[kℓ]

(
βr · (4kℓ)r

n.5

) s
r
(

β · 2(kℓ)3

n.5

)x (4β · (2kℓ)2

n

)∆

(2kℓ)O(k log kℓ)

⩽ (2kℓ)O(k log kℓ)kℓ · 2kℓ · kℓ max
s∈[kℓ],x∈[2kℓ],∆∈[kℓ](

βr · (4kℓ)r

n.5

) s
r
(

β · 2(kℓ)3

n.5

)x (4β · (2kℓ)2

n

)∆

We set the bicycle-free radius to r := o(log n.5/ log 4kℓβ) so that all three terms
βr·(4kℓ)r

n.5 , β·2(kℓ)3

n.5 , 4β·(2kℓ)2

n are less than 1. Then we observe that

(3.25) ⩽ 2k3ℓ3(2kℓ)O(k log kℓ).

Plugging this bound into (3.24) gives us:

E
τ

E
H|τ

[U] ⩽
(
(1 + ε)ρ(Bl, M×)

)kℓ · 2nqβk2k3ℓ3(2kℓ)O(k log kℓ)

Set kℓ = O (log n · log log n), and ℓ = ω(log kℓ). Then we have the bound(
n E

τ
E

H|τ
[U]

)1/k
⩽
(
(1 + ε)ρ(Bl, M×) ·

(
4qβk · n2 · (kℓ) · (2kℓ)O(log kℓ)/ℓ

)1/kℓ
)ℓ
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⩽
(
(1 + ε)ρ(Bl, M×) ·

(
8qβk · n3

)1/kℓ
)ℓ

⩽

(
(1 + ε)ρ(Bl, M×) ·

(
1 +

2 log(8qβk)

kℓ
+

2 log(n3)

kℓ

))ℓ

⩽
((

1 + ε + O
(

1
log log n

))
ρ(Bl, M×)

)ℓ

.

We now complete the proof of Theorem 3.7.4.

3.8 Weak Recovery

We begin the section by briefly describing an algorithm for weak recovery.
Weak Recovery Algorithm

1. Fix δ > 0 such that λL ⩾ (1 + δ)4.

2. C = OM,δ(1) is a sufficiently large constant depending on model M and δ.

3. For (log log n)3 ⩽ t ⩽ (log log n)5, vt ∈ Rnq be the eigenvector with largest
eigenvalue of A(t)

G and let Λt
t denote the largest eigenvalue. Compute vt, Λt

and A(t)
G for all t in this range.

4. Find m ∈ [(log log n)3, (log log n)5] such that for all s ∈ [(log log n)3, m], we
have

∥A(s)
G vm∥ ⩽ Λs

m(1 + δ)m−s

(see Claim 3.8.6 for proof of existence of m)

5. For each 0 ⩽ ℓ ⩽ C, set
wℓ

def
= A(m−ℓ)

G vm

and let wℓ
def
= 1
∥wℓ∥
· wℓ.

6. Output the set of vectors {uℓ,β} in Rn for 0 ⩽ ℓ ⩽ C, β ∈ [q] defined as,

uℓ,β[i] = wℓ[i, β]
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Theorem 3.8.1. There exists a constant C = OM,δ(1) depending on model M and δ

such that the following holds with probability 1− on(1): For some ℓ ∈ {1, 2, . . . , C}
and β ∈ [q], the unit vector uℓ,β is correlated with the coloring in the following sense:
∃τ ∈ T, α ∈ [q] such that if we construct χτ,α ∈ Rn as

χτ,α[i] = 1[τ(i) = τ](1[c(i) = α]−Pτ(α))

then
|⟨uℓ,β, χτ,α⟩| ⩾ ΩM(1) ·

√
n

In the rest of the section, we will outline the proof of correctness of the above
described weak-recovery algorithm. To this end, we begin by recalling the matrix
AG ∈ Rnq×nq. For all i ̸= j ∈ [n],

AG[i, j] def
= ∑

e∈Kn,e∋ij
Me,i|j · (1[e ∈ G]− Pr

M
[e ∈ G|τ])

and AG[i, i] = 0. Similarly, for all i ̸= j ∈ [n] we set

BG[i, j] def
= ∑

e∈Kn,e∋ij
Me,i|j · (1[e ∈ G]− Pr

M
[e ∈ G|τ, c])

and BG[i, i] = 0. Finally, let

RG[i, j] def
= AG[i, j]− BG[i, j]

= ∑
e∈Kn,e∋ij

Me,i|j

(
Pr
M
[e ∈ G|τ, c]− Pr

M
[e ∈ G|τ]

)
Let xG ∈ R|T| encode the number of variables of each type in G and yG ∈ Rq|T|

encode the number of variables of each type and color in G. Then block RG[i, j]
only depends on τ(i), τ(j), c(i), c(j) and yG. More specifically

RG[i, j] =

∑
e∈Kn,e∋ij

Me,i|j

(
Pr
M
[e ∈ G|τ(i), τ(j), c(i), c(j), yG]− Pr

M
[e ∈ G|τ(i), τ(j), xG]

)
Remark 3.8.2. We remark that with probability 1− on(1) each entry of yG satisifies
yG[τ, α] ∈ (1± ϵ) · EM[yG[τ, α]] for some small constant ϵ. From now on we only
consider G that satisifies this condition.
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Next we introduce notation for the non-backtracking product of two matrices.

Definition 3.8.3. For two matrices A, B ∈ Rnq×nq, define A ◦ B to be the non-
bactracking product of A and B by setting for all i, j ∈ [n]

(A ◦ B)[i, j] =

{
∑k A[i, k]B[k, j] if i ̸= j

0 otherwise

Inductively define A(s) def
= A(s−1) ◦ A

Suppose vt ∈ Rnq be the eigenvector with largest eigenvalue of A(t)
G , and let

its eigenvalue be Λt
t. By Theorem 3.6.1, we know that for each s, with probability

1− on(1),
λmax(A(s)

G ) ⩾ ΩM(1) · λs
L

Therefore,

vs A(s)
G vs ⩾ ΩM(1) · λs

L

On the other hand, by the spectral norm bound for all s ⩾ (log log n)3 in the
null model,

vsB(s)
G vs ⩽ (1 + o(1))s

(√
λL

)s

For simplifying notation, we will ignore the (1 + o(1))s term in the above bound,
here in the rest of the section. Rewriting the difference we get,

vT
t

(
A(t)

G − B(t)
G

)
vt =

t−1

∑
s=0

vT
t B(s)

G ◦ RG ◦ A(t−s−1)
G vt

Now we can replace the non-backtracking product in the above expression with
the usual matrix product using Lemma 3.8.4.

Lemma 3.8.4. For all A, B, R ∈ Rnq×nq,

∥A(s) ◦ R ◦ B(t) − A(s)RB(t)∥ ⩽ q∥R∥∞·(
∥A(s)∥∥B(t−s)∥+ ∥A∥1→1∥A(s−1)∥∥B(t)∥+ ∥BT∥1→1∥A(s)∥∥B(t−1)∥

)
where ∥R∥∞ = maxℓ,ℓ′∈[nq] |Rℓ,ℓ′ |
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We will postpone the proof of this Lemma to later in the section, and proceed
with the argument.

Notice that under the condition in Remark 3.8.2,

∥RG∥∞ ⩽ OM(1) · 1
n

(3.26)

The maximum degree of a variable in the factor graph is O(log n) with probability
1− on(1). Therefore a naive bound on the spectral norm of A(s)

G would be

∥A(s)
G ∥ ⩽ O(log n)s ⩽ o(n1/4) (3.27)

for s ⩽ o(log n/ log log n). Similarly, we can bound ∥B(t)
G ∥ ⩽ o(n1/4). Using these

bounds in Lemma 3.8.4, we can replace non-backtracking product by the usual
product to conclude,

vT
t

(
A(t)

G − B(t)
G

)
vt =

t−1

∑
s=0

vT
t B(s)

G RG A(t−s−1)
G vt + on(1)

We will now rewrite the matrix RG explicitly in terms of the coloring c. To this
end, we make a few definitions. For types τ, τ′ ∈ T and colors α, α′ ∈ [q] define
Γτ,τ′

α,α′ ∈ R[q]×[q] as,

Γτ,τ′
α,α′

def
= ∑

e∈Kn,e∋ij
Me,i|j · Pr

M
[e ∈ G|τ(i) = τ, τ(j) = τ′, c(i) = α, c(j) = α′, yG])

In terms of the matrices {Γτ,τ′
α,α′} we can write for i ̸= j,

RG[i, j] = ∑
τ,τ′∈T

∑
α,α′∈[q]

Γτ,τ′
α,α′ · 1[τ(i) = τ]1[τ(j) = τ′]·

(
1[c(i) = α]1[c(j) = α′]− Pr[c(i) = α|τ(i), yG]Pr[c(j) = α′|τ(j), yG]

)
For every type τ and a color α, let χτ,α, cτ,α, ¯τ,α ∈ Rn be defined as follows:

χτ,α[i] def
= 1[τ(i) = τ] · (1[c(i) = α]− Pr[c(i) = α|τ(i) = τ, yG])

χτ,α[i] def
= 1[τ(i) = τ] · (1[c(i) = α])

¯τ,α[i] def
= 1[τ(i) = τ] · Pr[c(i) = α|τ(i) = τ, yG]
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Hence for i ̸= j we have,

RG[i, j] = ∑
τ,τ′∈T

∑
α,α′∈[q]

Γτ,τ′
α,α′ ·

(
χτ,α[i]χτ′,α′ [j] + χτ,α[i]¯τ′,α′ [j]

)
Define R[i, i] so that we have the equality,

RG = ∑
τ,τ′,α,α′

Γτ,τ′
α,α′ ⊗

(
χτ,α(χτ′,α′)T + χτ,α(¯τ′,α′)T

)
(3.28)

Using (3.28) for the matrix R, we can write,

vT
t

(
A(t)

G − B(t)
G

)
vt =

∑
τ,τ′,α,α′

vT
t

t

∑
s=1

B(s)
G

(
Γτ,τ′

α,α′ ⊗
(

χτ,α(χτ′,α′)T + χτ,α(¯τ′,α′)T
))

A(t−s−1)
G vt + on(1)

The second term corresponding to χτ,α(¯τ′,α′)T is negligible. Specifically, we
will prove the following Lemma.

Lemma 3.8.5. With probability 1− on(1) the following holds, for all τ, α, τ′, α′ For all
1 ⩽ s, t ⩽

√
log n,

∥B(s)
G

(
Γτ,τ′

α,α′ ⊗ χτ,α(¯τ′,α′)T
)

A(t)
G ∥ ⩽

(√
λL

)s+t
·OM(1)

We postpone the proof to later in the section and proceed with the main argu-
ment.

Using Lemma 3.8.5, we can drop all terms arising from χτ,α(¯τ′,α′)T by losing
less than OM(1)∑t−1

s=0
(√

λL
)s. Since λL > (1 + δ)4, for all t larger than a fixed

constant ΘM(1), this sum OM(1)∑t−1
s=0
(√

λL
)s

⩽ 1
10 λt

L. Therefore, we arrive at our
inequality,

∑
τ,τ′,α,α′

vT
t

t−1

∑
s=0

B(s)
G

(
Γτ,τ′

α,α′ ⊗ χτ,α(χτ′,α′)T
)

A(t−s−1)
G vt ⩾ 0.9 ·Λt

t

Let us write the matrix Γτ,τ′
α,α′ = ∑β,β′∈[q] Γτ,τ′

α,α′ [β, β′] · eβ(eβ′)
T where eβ, e′β are stan-

dard basis vectors in Rq. Note that Γτ,τ′
α,α′ has entries that are OM(1)/n. There must

exist some choice of τ, τ′, α, α′, β, β′ such that,
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vT
t

t−1

∑
s=0

B(s)
G

(
eβ ⊗ χτ,α(eβ′ ⊗ χτ′,α′)T

)
A(t−s−1)

G vt ⩾ ΩM(1) ·Λt
t · n

where ΩM(1) hides a constant depending on the model M. Rewriting the above
inequality,

ΩM(1) ·Λt
t · n ⩽

t−1

∑
s=0

〈
vT

t , B(s)
G eβ ⊗ χτ,α

〉 〈
eβ′ ⊗ χτ′,α′ , A(t−s−1)

G vt

〉
⩽

t−1

∑
s=0
∥B(s)

G eβ ⊗ χτ,α∥
∣∣∣〈eβ′ ⊗ χτ′,α′ , A(t−s−1)

G vt

〉∣∣∣
Using Lemma 3.8.8 on the fixed vector eβ ⊗ χτ,α and the planted distribution we
get that with probability 1− on(1),

ΩM(1) ·Λt
t · n ⩽

t−1

∑
s=0

(√
λL

)s
·
√

n
∣∣∣〈eβ′ ⊗ χτ′,α′ , A(t−s−1)

G vt

〉∣∣∣
For notational convenience, let us reparametrize s→ t− s and conclude,

ΩM(1) ·Λt
t ·
√

n ⩽
t

∑
s=1

(√
λL

)t−s ∣∣∣〈eβ′ ⊗ χτ′,α′ , A(s−1)
G vt

〉∣∣∣
With high probability, the maximum degree of a variable is O(log n)≪ o(log2 n),
and therefore ∥A(s)∥ ⩽ o(log n)2s.

Since Λt ⩾ λL ⩾ (1+ δ)
(√

λL
)

we can bound the terms for s = 1, . . . , (log log n)3

as follows,

(log log n)3

∑
s=1

(√
λL

)t−s ∣∣∣〈eβ′ ⊗ χτ′,α′ , A(s−1)
G vt

〉∣∣∣
⩽

(log log n)3

∑
s=1

Λt−s
t

(1 + δ)t−s · o((log n)2s) ·
√

n ⩽ o(1) ·Λt
t ·
√

n

where the last inequality holds for t > (log log n)4. Deleting terms for small s, we
have the correlation inequality,

ΩM(1) ·Λt
t ·
√

n ⩽
t

∑
s=(log log n)3

(√
λL

)t−s ∣∣∣〈eβ′ ⊗ χτ′,α′ , A(s−1)
G vt

〉∣∣∣ (3.29)
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for t > (log log n)4.
For each s, recall that vs is the top eigenvector of A(s)

G , and Λs
s denotes the largest

eigenvalue.

Claim 3.8.6. There exists a m ∈ [(log log n)4.5, (log log n)5] such that, for all s ∈
[(log log n)3, m],

∥A(s)vm∥ ⩽ Λs
m(1 + δ)t−s

Before we see the proof of above claim, let us see how it leads to an algorithm.
Applying (3.29) for this choice of m, we conclude that

√
n ·ΩM(1) ·Λm

m ⩽
m

∑
s=(log log n)3

(√
λL

)m−s ∣∣∣〈eβ′ ⊗ χτ′,α′ , A(s−1)
G vm

〉∣∣∣ (3.30)

In (3.30), we can bound the sum of all terms with s < t∗ − C as follows.

m−C

∑
s=(log log n)3

(√
λL

)m−s ∣∣∣〈eβ′ ⊗ χτ′,α′ , A(s−1)
G vt

〉∣∣∣ (3.31)

⩽
m−C

∑
s=(log log n)3

(√
λL

)m−s
∥eβ′ ⊗ χτ′,α′∥

∥∥∥A(s−1)
G vt

∥∥∥ (3.32)

⩽
m−C

∑
s=(log log n)3

(√
λL

)m−s
Λs−1

m ·
√

n · (1 + δ)m−s+1 (3.33)

⩽ (1 + δ)Λm
m
√

n ·

 m−C

∑
s=(log log n)3

((√
λL
)
(1 + δ)

Λm

)m−s
 (3.34)

= Λm
m ·
√

n ·
(

1
δ(1 + δ)C−2

)
(3.35)

Using (3.30) and (3.35), for sufficiently large C = OM,δ(1), we conclude that

ΩM(1) ·Λm
m ·
√

n ⩽
m−1

∑
s=m−C+1

(√
λL

)m−s ∣∣∣〈eβ′ ⊗ χτ′,α′ , A(s−1)
G vm

〉∣∣∣ (3.36)

Note that there are only C = OM,δ(1) terms in the sum, so one of them is large. In
particular, there exists some ℓ ∈ [m− C, m] such that if we set

wℓ
def
= A(ℓ)

G vm
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then, ∣∣∣〈eβ′ ⊗ χτ′,α′ , wℓ

〉∣∣∣ ⩾ 1

C
(√

λL
)C ·Λ

m
m ·ΩM,δ(1) ·

√
n ,

But note that by the choice of m,

∥wℓ∥ ⩽ Λℓ
m · (1 + δ)m−ℓ ⩽ Λm

m · (1 + δ)C .

So there exists some ℓ ∈ [m− C, m], such that the unit vector wℓ =
wℓ
∥wℓ∥

satisfies,∣∣∣〈eβ′ ⊗ χτ′,α′ , wℓ

〉∣∣∣ ⩾ ΩM,δ(1) ·
√

n .

In other words, for some choice of ℓ ∈ [m− C, m] and β′ ∈ [q], if we construct
u ∈ Rn as,

u[i] = wℓ[i, β′]

then |⟨u, χτ′,α′⟩| ⩾ ΩM,δ(1) ·
√

n. This finishes the proof of Theorem 3.8.1.6

Proof. (Proof of Claim 3.8.6) The idea behind the proof is a descent/bootstrap
argument to get a contradiction. Let us start with t = (log log n)5 as the guess for
m. If current value of t satisfies the condition of the claim, we are done. Otherwise,
there exists s < t such that,

∥A(s)
G vt∥ ⩾ Λs

t(1 + δ)t−s

This implies that,
Λs

s ⩾ Λs
t(1 + δ)t−s

or equivalently,
log Λs ⩾ log Λt + log(1 + δ) · (t− s)/s

Suppose we use s as the new candidate for m and recurse. Let us suppose we
iteratively construct a sequence of t0 = (log log n)5 > . . . > tr in this manner. The
value of log Λti increases along the sequence. By Fact 3.8.7, if we obtain a sequence
of t0 = (log log n)5 > . . . > tr = (log log n)4.5 then we will have,

log Λr ⩾ (log t0 − log tr) log(1 + δ) ⩾ log(1 + δ) ·Ω(log log log n)
6Note that the χτ′ ,α′ here is a bit different from the χτ′ ,α′ defined in the theorem, but by Re-

mark 3.8.2 they are within a multiplicative factor of (1± ϵ) from each other. Thus the inequality
still hold for the χτ′ ,α′ defined in the theorem statement.
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This suggests that ∥A(tr)
G ∥1/tr ⩾ ω(1) for some tr = Ω(log log n)4.5. A contradic-

tion, since with probability 1− on(1), we will have ∥A(tr)
G ∥1/tr = O(1). This follows

from the fact that with probability 1− on(1), degree of every vertex in A(s)
G is at

most O(Ds) for some constant D for all s > (log log n)2. Therefore, the sequence
terminates and we find a tr ∈ [(log log n)4.5, (log log n)5], implying the claim.

Fact 3.8.7. Given a sequence of positive integers, a1 ⩾ a2 ⩾ . . . ar,

r

∑
i=1

ai − ai−1

ai−1
⩾

r

∑
i=1

ai−1

∑
x=ai−1

1
x
=

a1

∑
x=ar

1
x
≈ ln(a1)− ln(ar) (3.37)

Proof. (Proof of Lemma 3.8.4) For s ∈N, letPs be the set of length s non-backtracking
walks in complete graphKn. So α = (α0, α1, . . . , αs) ∈ Ps will be a non-backtracking
path in Kn with vertices α0, . . . , αs.

For ℓ, ℓ′ ∈ [n], we can write

A(s)RB(t)[ℓ, ℓ′] = ∑
α∈Ps,β∈Pt

α0=ℓ,βt=ℓ′

.
s

∏
i=1

Aαi−1αi · Rαs,β0 ·
t

∏
j=1

Bβ j−1β j (3.38)

A(s) ◦ R ◦ B(t)[ℓ, ℓ′] = ∑
α∈Ps,β∈Pt

α0=ℓ,βt=ℓ′

αs ̸=β0,αs−1 ̸=β0,αs ̸=β1

.
s

∏
i=1

Aαi−1αi · Rαs,β0

t

∏
j=1

Bβ j−1β j (3.39)

It is clear that the difference A(s) ◦ R ◦ B(t)− A(s)RB(t) consists of three different
terms.

Term 1: αs = β0 Consider the block-diagonal matrix D1 ∈ Rnq×nq given by,

D1[i, j] = 1[i = j] · Rij.

then we can write this term as A(s)D1B(t). Hence we get the following bound,

∥A(s)D1B(t)∥ ⩽ q∥R∥∞ · ∥A(s)∥ · ∥B(t−s)∥
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Term 2: αs−1 = β0 Consider the block-diagonal matrix D2 ∈ Rnq×nq given by,

D2[i, i] = ∑
j

AijRji.

then we can write this term as A(s−1)D2B(t). We have the upper bound,

∥D2∥ ⩽ q∥R∥∞∥A∥1→1

which implies that

∥A(s−1)D2B(t)∥ ⩽ q∥x∥∞∥y∥∞∥A∥1→1∥A(s−1)∥∥B(t)∥

Term 3: αs = β1 Consider the block-diagonal matrix D3 ∈ Rnq×nq given by,

D3[i, i] = (∑
j

RijBji).

then we can write this term as A(s)D3B(t−1). Analogous to the previous case, we
get an upper bound of,

∥A(s)D3B(t−1)∥ ⩽ q∥R∥∞∥BT∥1→1∥A(s)∥∥B(t−1)∥

Adding the three terms, we have the claim of the lemma.

We will need the following theorem about local statistics on the expectation
and concentration of local statistics in order to complete the proof of Lemma 3.8.5.

Lemma 3.8.8. Fix a vector x ∈ Rnq, such that ∥x∥∞ = O(1). With probability 1− on(1),
for all 1 ⩽ s ⩽

√
log n we have,

∥A(s)
G x∥ ⩽ C

(√
λL

)s
·
√

n (3.40)

for an absolute constant C ⩾ 1.

Proof sketch. This is equivalent to proving ⟨A(s)
G x, A(s)

G x⟩ ⩽ C
(√

λL
)2s n. Indeed,

this quantity can be rewritten as:

⟨
(

A(s)
G

)2
, xx⊤⟩.
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Via similar calculations to the ones done in Section 3.6, we can show that this
quantity is dominated by the contribution of walks that are self-avoiding for the
first s steps, and retrace the same steps taken in the next s steps, which in turn can
be used to show that this quantity concentrates around the expected total weight
of walks in the associated random tree that walk out s steps and walk back s steps,
and hence for large enough s is at most C

(√
λL
)2s n for an absolute constant C.

Proof of Lemma 3.8.5. Let Γτ,τ′
α,α′ = ∑j∈[q] ujvT

j be the singular decomposition of Γτ,τ′
α,α′ .

∥B(s)
G Γτ,τ′

α,α′ ⊗ χτ,α(¯τ′,α′)T A(t)
G ∥ ⩽ ∑

j
∥B(s)

G uj ⊗ χτ,α∥∥vj ⊗ (¯τ′,α′)T A(t)
G ∥ (3.41)

Applying Lemma 3.8.8 to the planted model M with the fixed vector uj ⊗ χτ,α, we
conclude that with probability 1− on(1),

∥B(s)
G uj ⊗ χτ,α∥ ⩽ C

(√
λL

)s
· ∥uj ⊗ χτ,α∥ ⩽

(√
λL

)s
· ∥uj∥ · n1/2 (3.42)

Similarly, applying Lemma 3.8.8 to the null model M× with fixed vector vj ⊗
µτ′,α′ , we conclude that with probability 1− on(1), for all 1 ⩽ t ⩽

√
log n,

∥vj ⊗ (¯τ′,α′)T A(t)
G ∥ ⩽ C

(√
λL

)s
· ∥vj ⊗ (¯τ′,α′)T∥ ⩽

(√
λL

)t
· ∥vj∥ · n1/2 (3.43)

Finally, note that ∑j∥uj∥∥vj∥ = ∥Γτ,τ′
α,α′∥Fr = OM( 1

n ) where OM hides a fixed
constant depending on the model. Using (3.42) and (3.43) in (3.41), we conclude
the proof.

3.9 Belief propagation for M

We briefly describe the belief propagation (BP) algorithm that aims to estimate
the mariginal distribution of c(v), v ∈ [n] under the Boltzmann distribution µ

with Hamiltonian H. Define the messages {mv→e
c }c∈[q] that a variable v passes

to some constraint e ∈ Ei, and the messages {me→u
c }c∈[q] that a constraint e ∈ Ei

passes to a variable u. Intuitively speaking, mv→e
c is an estimate of the marginal

probability that v is assigned the color c when the constraint e is absent, and me→u
c is

an estimate of the marginal probability that u has color c when all other constraints
involving u are absent. Since the distribution of c(v) under µ depends on the
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constraints that contain v, we only focus on the messages mv→e, me→u such that
v ∈ ∂e (i.e. e contains v) and e ∈ ∂u (i.e. e contains u).

mv→e
c [t + 1] =

1
Zv→e Pτ(v)(c) ∏

f∈∂v\e
m f→v

c [t] , (3.44)

where Zv→e = ∑c∈[q] Pτ(v)(c)∏ f∈∂v\e m f→v
c [t] .

For factors e ∈ Ei, the messages are defined as

me→u
c [t + 1] =

1
Ze→u ∑

ce|ce(u)=c
ϕi(ce) ∏

v∈e\u
mv→e

ce(v)[t] , (3.45)

where Ze→u = ∑c∈[q] ∑ce|ce(u)=c ϕi(ce)∏v∈e\u mv→e
ce(v)

[t].
To obtain an estimate of the marginal probability of the assignment to a variable

v, apply the message update rules until reaching some fixed point {m̂v→e
c , m̂e→u

c }c∈[q].
The estimate is called the belief and is given by

bv
c =

1
Zv Pτ(v)(c) ∏

f∈∂v
m̂ f→v

c ,

where Zv = ∑c∈[q] Pτ(v)(c)∏ f∈∂v m̂ f→v
c .

3.10 Proof of Lemma 3.2.5

Recall that:

ϕi = ∑
(c1,...,ca(i))∈[q]a(i)

(
a(i)

∏
k=1

PCl(i)k
(ck)

)
· ϕi(c1, . . . , ca(i)) (3.46)

We first explain how to solve the distinguishing problem and then explain the
recovery algorithm. By definition of the BP update functions Υv→e (equation (3.44))
and Υe→v (equation (3.45)), the set of trivial messages m being a BP fixed point is
equivalent to:

ϕi = ∑
(c1,...,ca(i))∈[q]a(i) :

cj=c

(
∏
k ̸=j

PCl(i)k
(ck)

)
· ϕi(c1, . . . , ca(i)) ∀c ∈ [q] : PCl(i)j

(c) > 0

(3.47)
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If the set of trivial messages is not a fixed point of the belief propagation update
rule: then there exist c ∈ [q], i ∈ [F], and j ∈ [a(i)] with PCl(i)j

(c) > 0 such that

ϕi ̸= ∑
(c1,...,ca(i))∈[q]a(i) :

cj=c

(
∏
k ̸=j

PCl(i)k
(ck)

)
· ϕi(c1, . . . , ca(i)).

Let degi,j(v) be the number of type-i factors with variable v in the j-th position.
Via standard results for Poisson(d) approximating Binom(n, d/n) we have the
following:

• In M×, for any variable v of type Cl(i)j and any constant T,

E degi,j(v)
T = E XT ± on(1)

where X ∼ Poisson(λ) and λ = ϕi.

• On the other hand, in the planted model M:

E degi,j(v)
T = E YT ± on(1)

where Y is distributed as the mixture of Poisson distributions p1Poisson(λ1)+

· · · + psPoisson(λs) where s is the number of colors which vertex v has
nonzero probability of attaining, not all λi are equal, and all pi > 0.

By (3.46) p1λ1 + · · ·+ psλs = λ. We first recall the following well known fact about
Poisson random variables.

Fact 3.10.1. If A ∼ Poisson(µ), then E A2 = µ2 + µ.

As a consequence of Fact 3.10.1: E X2 = λ2 + λ, and E Y2 = p1(λ
2
1 + λ1) + · · ·+

ps(λ2
s + λs).

E Y2 − E X2 = p1 f (λ1) + . . . ps f (λs)− f (λ)
= p1 f (λ1) + . . . ps f (λs)− f (p1λ1 + · · ·+ psλs)

Since not all λi are equal, all pi > 0 and f is strictly convex, E Y2 − E X2 is equal
to a constant δ strictly greater than 0. Suppose ni,j,2(G) := E ∑v∈[n] degi,j(v)

2, then
|EG∼N ni,j,2(G)− EG∼P ni,j,2(G)| ⩾ Ω(n). Since E Y4 and E X4 are constants, the
variance of ni,j,2(G) is O(n) for both G ∼ N and G ∼ P . This informs using the
following polynomial time distinguisher:
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Compute ni,j,2(G) and if |ni,j,2(G) − EG∼N [ni,j,2(G)]| < |ni,j,2(G) −
EG∼P [ni,j,2(G)]| output “null”; otherwise output “planted”.

We now discuss performing recovery. Recall the inner product ⟨·, ·⟩H from
Section 3.5 which is defined as follows: First, we define a nq× nq-dimensional
positive diagonal matrix Hτ where the (v, v) block is equal to:

Hτ,(v,v)[c, c] :=

{
Pτ(v)(c) if Pτ(v)(c) > 0

1 otherwise.

The inner product on Rnq is then:

⟨x, y⟩H := x⊤H−1
τ y.

And let ∥ · ∥ denote the norm induced by the above inner product. Let c be the
hidden coloring. Our goal in recovery is to output a vector v such that ⟨v, c −
E c|τ⟩H ⩾ ε · ∥v∥ · ∥c− E c|τ∥. Let c and c′ be two colors such that:

dc = ∑
(c1,...,ca(i))∈[q]a(i) :

cj=c

(
∏
k ̸=j

PCl(i)k
(ck)

)
· ϕi(c1, . . . , ca(i))

> ∑
(c1,...,ca(i))∈[q]a(i) :

cj=c′

(
∏
k ̸=j

PCl(i)k
(ck)

)
· ϕi(c1, . . . , ca(i)) = dc′

The distribution of the number of type-i factors that a color c vertex is part of
is Poisson(dc) and similarly is Poisson(dc′) for a color c′ vertex. The following
algorithm can then be shown to produce a vector v meeting the aforementioned
goal.

For each vertex u of type T (Cl(i)j), let mu be the number of type-i
factors it is part of in the j-th position. If mu has a higher probability
of being sampled from Poisson(dc) than Poisson(dc′) then assign the
u-th block of vector v to be the indicator of color c. Otherwise assign
the u-th block of vector v to be the indicator of color c′.

Since dc ̸= dc′ there is a constant ε > 0 such that with high probability(
1
2
+ ε

)
PCl(i)j

(c)T (Cl(i)j)n
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variables of color c and type Cl(i)j are assigned the correct color and also(
1
2
+ ε

)
PCl(i)j

(c)T (Cl(i)j)n

variables of color c′ and type Cl(i)j are assigned the correct color. Consequently:

⟨v, c− E c|τ⟩H ⩾ ε′ · ∥v∥ · ∥c− E c|τ∥

for some ε′ > 0.

3.11 The partial derivative matrix

Recall the BP update function Γ defined by equations (3.44) and (3.45).
We observe that by definition

Mθ(ej),i(vj)|i(vj+1)
=

∂Γ(m)vj→ej−1

∂mej→vj m ·
∂Γ(m)ej→vj

∂mvj+1→ej m.

Thus we first compute the two derivative matrices. For any pairs of colors c, d ∈ [q],

∂Γ(m)
vj→ej−1
c

∂m
ej→vj
d

=

1
Zvj→ej−1

Pτ(vj)
(c)

∏
a∈∂vj\{ej−1,ej}

m
a→vj
c · 1d=c −

m
vj→ej−1
c

Zvj→ej−1
·Pτ(vj)

(d) ∏
a∈∂vj\{ej−1,ej}

m
a→vj
d

=
1

m
ej→vj
d

· 1
Zvj→ej−1

Pτ(vj)
(c)

∏
a∈∂vj\ej−1

m
a→vj
c · 1d=c −

m
vj→ej−1
c

m
ej→vj
d

·
Pτ(vj)

(d)

Zvj→ej−1 ∏
a∈∂vj\ej−1

m
a→vj
d

=
m

vj→ej−1
c

m
ej→vj
d

· 1d=c −
m

vj→ej−1
c

m
ej→vj
d

·mvj→ej−1
d
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The last equality is derived from the fixed point identity

mv→e
c =

1
Zv→e Pτ(v)(c) ∏

a∈∂v\e
ma→v

c .

Evaluating the derivative at the factorized fixed point gives the transformation
matrix

∂Γ(m)
vj→ej−1
c

∂m
ej→vj
d

m = support(Pτ(vj)
) ·
(

Pτ(vj)
(c) · 1d=c −Pτ(vj)

(c) ·Pτ(vj)
(d)
)

,

where support(Pτ(vj)
) denote the size of Pτ(vj)

’s support. To write the matrix
compactly we define Dτ := Diag(Pτ), and derive from the above computation

that ∂Γ(m)
vj→ej−1

∂mej→vj m = support(Pτ(vj)
) ·
(

Dτ(vj)
−Pτ(vj)

PT
τ(vj)

)
.

For any edge of the form vj+1
ej−→ vj on this path where θ(ej) = ϕi we have,

∂Γ(m)
ej→vj
c

∂m
vj+1→ej
d

=
1

Zej→vj ∑
cej |cej (vj,vj+1)=(c,d)

ϕi(cej) ∏
w∈ej\{vj,vj+1}

m
w→ej
cej (w)

− m
ej→vj
c

Zej→vj ∑
c′∈C

∑
cej |cej (vj,vj+1)=(c′,d)

ϕi(cej) ∏
w∈ej\{vj,vj+1}

m
w→ej
cej (w)

=
1

Zej→vj
· 1

m
vj+1→ej
d

∑
cej |cej (vj,vj+1)=(c,d)

ϕi(cej) ∏
w∈ej\vj

m
w→ej
cej (w)

− m
ej→vj
c

Zej→vj
· 1

m
vj+1→ej
d

∑
c′∈C

∑
cej |cej (vj,vj+1)=(c′,d)

ϕi(cej) ∏
w∈ej\vj

m
w→ej
cej (w)

Recall we defined a distribution µi over cej and stochastic matrices

Ψθ(ej),i(vj+1)|i(vj)

before.
Evaluating the derivative at the factorized fixed point gives the transformation

matrix

∂Γ(m)ej→vj

∂mvj+1→ej m =
1

Pτ(vj+1)
(d) · support(Pτ(vj)

)

(
Pr

cej∼Dθ

[cej(vj+1) = d | cej(vj) = c]
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− 1
support(Pτ(vj)

) ∑
c′∈C

Pr
cej∼Dθ

[cej(vj+1) = d | cej(vj) = c′]

)
,

Then ∂mej→vj

∂mvj+1→ej (m)fp = 1
support(Pτ(vj)

)

(
I− 1

support(Pτ(vj)
)
11⊤

)
ΨT

θ(ej),i(vj+1)|i(vj)
D†

τ(vj+1)

where the † in the superscript denotes the pseudoinverse of the matrix.

Then we can write the transformation matrix for the step vj+1
ej−→ ej−1 as

Mθ(ej),i(vj)|i(vj+1)
=(

Dτ(vj)
−Pτ(vj)

P⊤τ(vj)

)
·(

I− 1
support(Pτ(vj)

)
11⊤

)
Ψ⊤θ(ej),i(vj+1)|i(vj)

D†
τ(vj+1)

= Dτ(vj)

(
I− 1P⊤τ(vj)

)(
I− 1

support(Pτ(vj)
)

11⊤
)

Ψ⊤θ(ej),i(vj+1)|i(vj)
D†

τ(vj+1)

= Dτ(vj)

(
I− 1P⊤τ(vj)

)
Ψ⊤θ(ej),i(vj+1)|i(vj)

D†
τ(vj+1)

=
(

I−Pτ(vj)
1⊤
)

Dτ(vj)
Ψ⊤θ(ej),i(vj+1)|i(vj)

D†
τ(vj+1)

=
(

I−Pτ(vj)
1⊤
)

Ψθ(ej),i(vj)|i(vj+1)
.

This establishes the first part of Claim 3.4.1. To establish the second part, consider
the following chain of equalities where the first equality is one we know from the
above chain.

Mθ(ej),i(vj)|i(vj+1)
=
(

I−Pτ(vj)
1⊤
)

Dτ(vj)
ΨT

θ(ej),i(vj+1)|i(vj)
D†

τ(vj+1)

= Dτ(vj)

(
I− 1P⊤τ(vj)

)
Ψ⊤θ(ej),i(vj+1)|i(vj)

D†
τ(vj+1)

= Dτ(vj)

(
Ψθ(ej),i(vj+1)|i(vj)

(
I−Pτ(vj)

1⊤
))⊤

D†
τ(vj+1)

= Dτ(vj)

(
Ψθ(ej),i(vj+1)|i(vj)

−Pτ(vj+1)
1⊤
)⊤

D†
τ(vj+1)

= Dτ(vj)

((
I− Cτ(vj+1)

1⊤
)

Ψθ(ej),i(vj+1)|i(vj)

)⊤
D†

τ(vj+1)

= Dτ(vj)
M⊤θ(ej),i(vj+1)|i(vj)

D†
τ(vj+1)

If Pτ(vj)
(c) = 0, then the c-th column of Mθ(ej),i(vj+1)|i(vj)

and the c-th row of
Mθ(ej),i(vj)|i(vj+1)

are 0, and hence the second part of Claim 3.4.1 follows as well.
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3.12 Random graph lemmas

3.12.1 Proof of Lemma 3.7.8

Let M× be a null model, and let H ∼ M×. We use amax to denote maxi∈[F] a(i) and
ϕmax to denote maxi∈[F] ϕi.

Define the notion of (τ, Cl)-consistent:

Definition 3.12.1. Given τ and Cl, we say a subgraph Γ of a bipartite factor graph
with right vertex set R(Γ) is (τ, Cl)-consistent if every γ = (v1, . . . , va(i)) ∈ R(Γ)
satisfies (τ(v1), . . . , τ(va(i))) = Cl(θ(γ)).

It is easy to see the following.

Observation 3.12.2. Suppose Γ is a subgraph of Bip(Kn). Then the probability that

Γ is a subgraph of H is equal to ∏γ∈R(Γ)
ϕθ(γ)

na(θ(γ))−1 1[Γ is (τ, Cl)-consistent].

Definition 3.12.3 (Partially labeled graph). A partially labeled graph Γ = (L, R, P, p, E)
is given by a left vertex set L, a right vertex set R, a distinguished set of left vertices
P along with an injective labeling of the distinguished vertices p : P → [n], and
edge set E.

Definition 3.12.4 (Occurrence of partially labeled graph). An occurrence of a par-
tially labeled graph Γ = (L, R, P, p, E) in Bip(H) is a pair of injective functions
fL : L → L(H) and fR : R → R(H) such that for all v ∈ P satisfies fL(v) = p(v),
and if {u, v} ∈ E, then { fL(u), fR(v)} ∈ E(Bip(H)).

Given a partially labeled subgraph Γ we are interested in bounding the expected
number of occurrences of Γ in Bip(H).

Lemma 3.12.5. Given partially labeled graph Γ = (L, R, P, p) with no isolated right
vertices, the expected number of occurrences of Γ in Bip(H) is at most

n|L|+|R|−|P|−|E|(Famaxϕmax)
|E|.

Proof. There are at most n|L|−|P| choices for fL. For each potential choice of fR, we
can associate t fR : R → [F] such that t fR(r) is the type of fR(r). There are at most
F|R| possible values for t fR . For each fixed choice of fL and t, we wish to bound the
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expected number of fR such that ( fL, fR) is an occurrence and t fR = t. The number
of such potential fR is bounded by

∏
i∈[R]

a(t(i))degΓ(i)na(t(i))−degΓ(i)

and the probability that ( fL, fR) is a valid occurrence for a given such fR is at most

∏
i∈[R]

ϕi

na(t(i))−1
,

which gives us a bound of

∏
i∈[R]

(
a(t(i))

n

)degΓ(i)

· n · ϕi ⩽
(amax

n

)|E|
n|R|ϕ|R|max.

Combining this with the bound on total number of fL and t fR gives us a bound of:

n|L|−|P|F|R|
(amax

n

)|E|
n|R|ϕ|R|max = n|L|+|R|−|P|−|E|F|R|a|E|maxϕ

|R|
max.

Since there are no isolated vertices, |E| ⩾ |R| and hence the above is at most

n|L|+|R|−|P|−|E|(Famaxϕmax)
|E|.

Definition 3.12.6. For a graph Γ and a subset of its vertices S we use BΓ(S, r) to
denote the radius-r ball around set S within Γ. We also abuse notation and use
BH(S, r) to mean BBip(H)(S, r).

Lemma 3.12.7. Given a set of vertices S in Bip(H), the probability that |E(BH(S, r))| −

|V(BH(S, r))|+ |S| ⩾ t is at most
(

(Famaxϕmax)
2(r+1)(36t3r2)5|S|

n

)t
.

In preparation to prove Lemma 3.12.7 we will need the following statement
about counts of trees with a bounded number of leaves. The statement along with
a proof can be found in [BMR21, Lemma 6.33].

Lemma 3.12.8. The number of nonisomorphic trees on v vertices and L leaves is bounded
by (4Lv)2L+1.
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Proof of Lemma 3.12.7. Let us call a partially labeled subgraph Γ = (L, R, P, p, E) a
candidate witness if

• p(P) = S,

• Γ can be expressed as F∪B where F is a forest and B = {{u1, v1}, . . . , {ut, vt}}
is a set of t additional edges,

• F has |P| connected components where each connected component contains
exactly one v ∈ P and has depth r when rooted at v.

If |E(BH(S, r))| − |V(BH(S, r))| + |S| ⩾ t, then there must be an occurrence of
some candidate witness Γ = (L, R, P, p, E) within H. We will first find a “simple”
subgraph of Γ = F ∪ B, which we call the trim of Γ. First let us augment F to F̃
by adding a single vertex w and connecting it to all vertices in P – note that F̃ is
a tree. Now let Trim(F̃) be the tree obtained by only choosing vertices that lie on
paths from vertices in L := {u1, . . . , ut, v1, . . . , vt} to w. Since the depth of Trim(F̃)
is r + 1 and has at most 2t leaves when rooted at w, the number of vertices in
Trim(F̃) is at most 2tr + 1. Let Trim(Γ) = (L′, R′, P, p, E′) be the graph obtained by
deleting w from Trim(F̃), adding edges {u1, v1}, . . . , {ut, vt}, and adding vertices
in P \V(Trim(F̃)). Since Trim(Γ) is a subgraph of Γ there must be an occurrence
of Trim(Γ) in H.

Trim(Γ) has at most 2tr vertices and

|E(Trim(Γ))| − |L(Trim(Γ))| − |R(Trim(Γ))|+ |P| ⩾ t.

Thus, from Lemma 3.12.5 the probability that Trim(Γ) occurs in H is bounded by(
(Famaxϕmax)

2(r+1)

n

)t
. Thus:

Pr[|E(BH(S, r))| − |V(BH(S, r))|+ |S| ⩾ t] ⩽
Pr[there is a candidate witness Γ in H]

⩽ Pr[there is a trim of a candidate witness Trim(Γ) in H]

⩽ ∑
Γ′ trim of a candidate witness

Pr[Γ′ in H]

⩽ ∑
Γ′ trim of a candidate witness

(
(Famaxϕmax)

2(r+1)

n

)t

. (3.48)
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Next we bound the number of terms in the above summation. Since each Γ′ in
the above sum can be specified by taking a tree on at most 2tr + 1 vertices and at
most 2t + 1 leaves, deleting one vertex, and labeling each neighbor of this deleted
vertex with an element of P, from Lemma 3.12.8 and the fact the maximum degree
in a tree is bounded by the number of leaves the number of terms is at most:

(4(2t + 1)(2tr + 1))4t+3 · (2tr + 1) · |P|2t+1 ⩽ ((36t3r2)5|P|)t.

Plugging this into (3.48) and using |S| = |P| gives:

Pr[|E(BH(S, r))| − |V(BH(S, r))|+ |S| ⩾ t] ⩽

(
(Famaxϕmax)

2(r+1)(36t3r2)5|S|
n

)t

Corollary 3.12.9. With probability 1− on(1), Bip(H) is r-bicycle free for r = log n
log log n .

Proof. This is a simple consequence of Lemma 3.12.7. Indeed, by Lemma 3.12.7 the
probability that the radius-(r + 1) neighborhood of a single vertex v ∈ [n] contains
more than one cycle is at most 1

n2−on(1) , and hence by a union bound over all vertices
the probability of any left vertex containing more than one cycle in its radius-r + 1
neighborhood is bounded by 1

n1−on(1) . Since every right vertex is incident to a left
vertex, the statement we wish to prove follows.

3.12.2 Proof of Lemma 3.12.11

We will need the following combinatorial lemma that appears in [FM17, Lemma
A.2].

Lemma 3.12.10. If e distinct edges of a graph Γ belong to a r-bicycle frame, then Exc(Γ) ⩾
e
r .

Our proof of the statement below follows the same strategy as the proof of a
similar statement appearing in [FM17].

Lemma 3.12.11. Suppose S and L are disjoint sets of right vertices of Kn of size at most
log2 n, 1γ is the indicator random variable for whether γ is in H, µγ is the probability that
γ is in H, and E denotes the event that H is r-bicycle free for r = log n

log log n . Then:∣∣∣∣∣E
[

∏
γ∈S

(1γ − µγ) ∏
γ∈L

1γ1[E ]
]∣∣∣∣∣ ⩽ ∏

γ∈S∪L
µγ · 2|S|

(
1

n.5

) |S|
r −Exc(Clos(S∪L))

.
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Proof.∣∣∣∣∣E
[

∏
γ∈S

(1γ − µγ) ∏
γ∈L

1γ1[E ]
]∣∣∣∣∣ =

∣∣∣∣∣∣∑J⊆S
E

∏
γ∈J

1γ · ∏
γ∈S\J

(−µγ) ·∏
γ∈L

1γ1[E ]

∣∣∣∣∣∣
=

∣∣∣∣∣∣∑J⊆S
(−1)|S|−|J| ∏

γ∈S\J
µγ E

[
∏

γ∈J∪L
1γ1[E ]

]∣∣∣∣∣∣
=

∣∣∣∣∣∑J⊆S
(−1)|J| ∏

γ∈S∪L
µγ Pr [E |γ ∈ H ∀γ ∈ J ∪ L]

∣∣∣∣∣
= ∏

γ∈S∪L
µγ

∣∣∣∣∣∑J⊆S
(−1)|J| Pr [E |γ ∈ H ∀γ ∈ J ∪ L]

∣∣∣∣∣
(3.49)

Now we focus our attention on understanding the quantity∣∣∣∣∣∑J⊆S
(−1)|J| Pr [E |γ ∈ H ∀γ ∈ J ∪ L]

∣∣∣∣∣ .

Let g0 be H \ (S ∪ L).∣∣∣∣∣∑J⊆S
(−1)|J| Pr [E |γ ∈ H ∀γ ∈ J ∪ L]

∣∣∣∣∣ =
∣∣∣∣∣Eg0

∑
J⊆S

(−1)|J| Pr[E |γ ∈ H ∀γ ∈ J ∪ L, g0]

∣∣∣∣∣
(3.50)

For K ⊆ S, define fg0(K) as 1 if Clos(g0 ∪ K ∪ L) has no r-bicycles and 0 otherwise.
Suppose there is s ∈ S that fg0 does not depend on – that is, for any K ⊆ S,
fg0(K) = fg0(K∆{s}), then for every J which contains s:

Pr[E |γ ∈ H ∀γ ∈ J ∪ L, g0] = Pr[E |γ ∈ H ∀γ ∈ J ∪ L \ {s}, g0].

This means (3.50) is equal to:

(3.50) =

∣∣∣∣∣Eg0
1[ fg0 depends on every s ∈ S] ∑

J⊆S
(−1)|J| Pr [E |γ ∈ H ∀γ ∈ J ∪ L, g0]

∣∣∣∣∣
⩽ 2|S| · Pr

g0
[ fg0 depends on every s ∈ S]. (3.51)
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Let ES be the set of all edges incident to S. If fg0 depends on every s ∈ S, then the
function hg0 defined on subsets of ES which is 1 on input K ⊆ ES if Clos(g0 ∪ L)∪K
has no r-bicycles depends on at least |S| edges in ES. That means:

(3.51)

⩽ 2|S| · Pr
g0
[hg0 depends on at least |S| edges in ES]

⩽ 2|S| · Pr
g0
[At least |S| edges in ES part of r-bicycle frame in Clos(g0 ∪ S ∪ L)]

which, via Lemma 3.12.10, can be bounded by

⩽ 2|S| · Pr
g0

[
Exc(BClos(g0∪S∪L)(Clos(S), r)) ⩾

|S|
r

]
⩽ 2|S| · Pr

g0

[
Exc(BClos(g0)(Clos(S ∪ L), r)) ⩾

|S|
r
− Exc(Clos(S ∪ L))

]
⩽ 2|S| · Pr

H

[
Exc(BH(Clos(S ∪ L), r)) ⩾

|S|
r
− Exc(Clos(S ∪ L))

]
By Lemma 3.12.7, the bounds on size of |S| and |L|, and the value of r, we can
conclude that the above is at most:

⩽ 2|S|min


(

1
n.5

) |S|
r −Exc(Clos(S∪L))

, 1


⩽ 2|S|

(
1

n.5

) |S|
r −Exc(Clos(S∪L))

.

Plugging this back into (3.49) gives us the desired statement.

3.12.3 Proof of Claim 3.7.22

Proof. Consider any Sh ∈ Us,x,∆. Recall that S(Sh) is the set of singleton ver-
tices in R(Sh) and D(Sh) the set of duplicative vertices in R(Sh). D∗(Sh) is the
maximum weight subset of D(W) that makes Sh r-bicycle free, and ∆(Sh) =

w(D(Sh)) − w(D∗(Sh)). Thus we deduce that ∆(Sh) ⩾ |D(Sh) \ D∗(Sh)| We
apply the following procedures to the walk Sh.



CHAPTER 3. EFFICIENT ALGORITHMS FROM UNSTABLE BELIEF
PROPAGATION FIXED POINTS 206

1. Break the walk Sh into ⩽ s + ∆ + |D(Sh) \ D∗(Sh)|+ k segments by first re-
moving the vertices S(Sh) and D(Sh) \ D∗(Sh) from Sh and second breaking
the remaining segments at endpoints of the k links in Sh. Denote the new
union of walks Sh1.

2. Since S(Sh) and D(Sh) \ D∗(Sh) are removed from Sh, Sh1 is singleton free,
and the graph on Sh1, denoted by G(Sh1), is r-bicycle free.

3. We contract the graph G(Sh1) by merging all adjacent edges that share a
degree-2 vertex. We denote the resulting graph G(Sh1)c, and we note that
the vertices left in G(Sh1)c are those with degree ⩾ 3 in G(Sh1).

We make the following observations on the size of G(Sh1) and G(Sh1)c.
The number of vertices in G(Sh1) is |V(Sh)| − |S(Sh)| − |D(Sh) \D∗(Sh)|. The

number of edges in G(Sh1) is ⩽ |E(Sh)| − 2|S(Sh)| − 2|D(Sh) \ D∗(Sh)|.
To bound the number of vertices in G(Sh1)c is we apply the following lemma

from [MOP20].

Lemma 3.12.12 (Lemma 6.18 in [MOP20]). Let C be a (k, 2ℓ)-nonbacktracking, inter-
nally 2ℓ-bicycle-free linkage. Assume log kℓ = o(ℓ). Then G(C) has at most O(k log kℓ)
vertices of degree exceeding 2.

Applying the lemma to the walk Sh1, we obtain that the number of degree ⩾ 3
vertice in Sh1 is O(k log kℓ). Thus the number of vertices in G(Sh1)c is O(k log kℓ).
The number of edges in G(Sh1)c is

|E(G(Sh1))| − (|V(G(Sh1))| − |V(G(Sh1)c)|)
⩽ |E(Sh)| − 2|S(Sh)| − 2|D(Sh) \ D∗(Sh)| − |V(Sh)|+ |S(Sh)|+
|D(Sh) \ D∗(Sh)|+ O(k log kℓ)
= (|E(Sh)| − |V(Sh)|)− |S(Sh)| − |D(Sh) \ D∗(Sh)|+ O(k log kℓ)
⩽ x + O(k log kℓ).

Now to count the number of distinct Sh ∈ Us,x,∆, it suffices to count 1. the
number of distinct sets of breaking points (S(Sh), D(Sh) \ D∗(Sh), and k link end-
points), 2. the number of distinct graphs G(Sh1), 3. given the breaking points
and G(Sh1), the number of distinct walk segments in G(Sh1) with those breaking
points. We count each of the three quantities separately and multiply them together
to obtain an upper bound on |Us,x,∆|.
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The number of distinct sets of breaking points: these breaking points breaks Sh
into at most s + 2∆ + k segments. So there are (2kℓ)s+2∆+k ways to choose these
breaking points.

The number of distinct graphs G(Sh1): G(Sh1) can be contracted to a graph
G(Sh1)c on O(k log kℓ) vertices and x + O(k log kℓ) edges. Each edge in G(Sh1)c
represents a length-⩽ 2kℓ simple path in G(Sh1). Thus there are

O(k log kℓ)2(x+O(k log kℓ)) · (2kℓ)x+O(k log kℓ)

distinct graphs G(Sh1).
Given the breaking points and G(Sh1), the number of distinct walk segments

in G(Sh1) with those breaking points: since G(Sh1) is r-bicycle free with r ⩾ 2ℓ
and each segment is of length ⩽ 2ℓ, there are only 2 distinct length ⩽ 2ℓ walk
between any two vertices in G(Sh1). Thus the number of distinct walk segments
are 2s+2∆+k.

Combine the three bound together we obtain that

|Us,x,∆| ⩽ (2kℓ)s+2∆+x+O(k log kℓ)O(k log kℓ)2(x+O(k log kℓ))2s+2∆+k.

From this bound we quickly derive that

∑
Sh∈Us,x,∆

(
βr

n.5

) |S(Sh)|
r
(

β

n.5

)ExcSh
(

β

n

)∆(Sh)

= |Us,x,∆| ·
(

βr

n.5

) s
r
(

β

n.5

)x (β

n

)∆

=

(
βr · (4kℓ)r

n.5

) s
r
(

β · 2kℓ ·O(k log kℓ)2

n.5

)x (4β · (2kℓ)2

n

)∆

·

2k(2kℓ ·O(k log kℓ)2)O(k log kℓ)

⩽
(

βr · (4kℓ)r

n.5

) s
r
(

β · 2(kℓ)3

n.5

)x (4β · (2kℓ)2

n

)∆

(2kℓ)O(k log kℓ)

The last inequality follows since we pick ℓ such that log kℓ = o(ℓ).
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Chapter 4

Explicit near-Ramanujan graphs

This chapter has been adapted from [MOP20], a paper co-authored by the author
of this thesis, Ryan O’Donnell, and Pedro Paredes.

For every constant d ⩾ 3 and ε > 0, we give a deterministic poly(n)-time
algorithm that outputs a d-regular graph on Θ(n) vertices that is ε-near-Ramanujan;
i.e., its eigenvalues are bounded in magnitude by 2

√
d− 1+ ε (excluding the single

trivial eigenvalue of d).

4.1 Introduction

In this work, we obtain explicit d-regular ε-near-Ramanujan graphs for every d ⩾ 3
and every ε > 0. As an example, we give the first explicit family of 7-regular
graphs with λ2(G), |λn(G)| ⩽ 2

√
6 + ε. Our main result is the following:

Theorem 4.1.1. For any d ⩾ 3 and any ε > 0, there is an explicit (deterministic
polynomial-time computable) infinite family of d-regular graphs G with

max{λ2(G), |λn(G)|} ⩽ 2
√

d− 1 + ε.

The key technical result that we prove in service of this is the following:

Theorem 4.1.2. Let G be an arbitrary d-regular n-vertex graph. Assume that the r-
neighborhood of every vertex contains at most one cycle, where r ≫ (log log n)2. Then
a random edge-signing of G has all its eigenvalues bounded in magnitude by 2

√
d− 1 +

on(1), with high probability.
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See Section 4.1.4 for a comparison of Theorem 4.1.2 with a similar theorem of
Bilu and Linial [BL06], which has an alternate hypothesis and a weaker conclusion.

4.1.1 On near-Ramanujan graphs

Let us put our results into context. Loosely speaking, expander graphs are sparse
graphs in which every small set of vertices has many edges on its boundary. For
an early paper working out relationships between various possible definitions, see
Alon [Alo86]. For a thorough reference describing expanders’ myriad applications
and connections to various parts of computer science and mathematics, see the
survey of Hoory, Linial, and Wigderson [HLW06].

A good way to quantify the definition of expansion is through the eigenvalues
of the graph.

Definition 4.1.3 (Graph eigenvalues). Let G be an n-vertex d-regular multigraph.
We write λi = λi(G) for the eigenvalues of its adjacency matrix A, and we always as-
sume they are ordered with λ1 ⩾ λ2 ⩾ · · · ⩾ λn. A basic fact is that λ1 = d always;
this is called the trivial eigenvalue. We also write λ = λ(G) = max{λ2, |λn|}.

The extent to which a d-regular graph G is “expanding” is governed by the
magnitude of its nontrivial eigenvalues; in particular, by λ2 and (to a lesser ex-
tent) |λn|. Together these are captured by the parameter λ(G). The smaller λ(G)/d
is, the better G’s expansion; typically, a graph is called expanding when this ratio
is bounded away from 1.

Definition 4.1.4 (Spectral expanders). An infinite sequence of d-regular graphs
(Gn) is said to be a family of expanders if there is a constant δ > 0 such that λ(Gn) ⩽
(1− δ)d for all n.

Pinsker [Pin73] introduced the English terminology and showed that random
(bipartite) graphs have positive expansion properties with high probability (see
also [BK67, Mar73a]). Indeed, it can be shown [Alo86] that a uniformly random
d-regular graph has λ2(G) < (1− δ)d with high probability, for some universal
δ > 0 (see Theorem 4.1.8 below for a much stronger result). However, for almost all
of the numerous practical applications of expanders in theoretical computer science
(error correcting codes, derandomization, complexity theory, cryptography, metric
embeddings, etc.) it is important for the graphs to be explicit — i.e., constructible



CHAPTER 4. EXPLICIT NEAR-RAMANUJAN GRAPHS 210

by a deterministic polynomial-time algorithm. Indeed, it is even better if they are
strongly explicit, meaning that their adjacency list is computable in poly log n time.

4.1.2 Review of Ramanujan and near-Ramanujan families

Margulis [Mar73b] was the first to provide an explicit expander family; a slight
variant of it, which is 8-regular, was shown [GG81] to have λ ⩽ 5

√
2 ≈ 7.1

(see [HLW06]). A natural question then is to provide explicit d-regular expanders,
for various values of d, with λ as small as possible as a function of d. The well-
known Alon–Boppana bound shows that 2

√
d− 1 is essentially a lower bound:

Theorem 4.1.5. ([Alo86, Nil91, Fri93].) Let G be an n-vertex d-regular multigraph. Then
λ2(G) ⩾ 2

√
d− 1−O(1/ log2 n).

On the other hand, using the resolution of the Ramanujan–Petersson conjectures
in various number-theoretic settings, it is possible to construct d-regular expander
families that meet the bound λ(G) ⩽ 2

√
d− 1 for some values of d. Lubotzky–

Phillips–Sarnak [LPS88] dubbed such graphs Ramanujan.

Definition 4.1.6 (Ramanujan graphs). A d-regular (multi)graph G is called (two-
sided) Ramanujan whenever λ(G) ⩽ 2

√
d− 1. When we merely have λ2(G) ⩽

2
√

d− 1, we call G one-sided Ramanujan; if G is bipartite this implies that |λi| ⩽
2
√

d− 1 for all i ̸= 1, n, with λn(G) = −d being inevitable.

We remark that some expander properties (e.g., edge-expansion for small sets) only
need a one-sided eigenvalue bound, whereas others (e.g., the Expander Mixing
Lemma) need a two-sided bound.

Regarding the explicit construction of d-regular Ramanujan graphs using num-
ber theory, the case when d− 1 is an odd prime is due to Ihara [Iha66] (implicitly)
and to Lubotzky–Phillips–Sarnak [LPS88] and Margulis [Mar88] (independently);
the d− 1 = 2 case is by Chiu [Chi92]; and, the general prime power case men-
tioned below is due to Morgenstern [Mor94]. For extensions to general d where
the eigenvalue bound depends on the number of distinct prime divisors of d− 1,
see [Piz90, Cla06].

Theorem 4.1.7. ([Mor94].) For any d ⩾ 3 with d− 1 a prime power, there is a strongly
explicit family of d-regular Ramanujan graphs.
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For all other values of d — e.g., for d = 7 — it is unknown if infinite families of
d-regular Ramanujan graphs exist (but see Theorem 4.1.12 below for the one-sided
bipartite case). However, it is known that near-Ramanujan graph families exist for
every d. Alon [Alo86] conjectured that a random n-vertex d-regular graph G has
λ(G) ⩽ 2

√
d− 1 + on(1) with high probability, and this was proven two decades

later by Friedman [Fri08]. Bordenave [Bor19] has recently given a simpler proof,
and our paper will involve modifying and derandomizing Bordenave’s work.

Theorem 4.1.8. ([Fri08].) Fix any d ⩾ 3 and ε > 0 and let G be a uniformly random
d-regular graph. Then

Pr
[
λ(G) ⩽ 2

√
d− 1 + ε

]
⩾ 1− on(1).

In fact [Bor19], G achieves the subconstant ε = Õ(1/ log2 n) with probability at least
1− 1/n.99.

A natural question then is whether, for every d, one can achieve explicit graph
families that are “ε-near-Ramanujan” as above. In their work introducing the
zig-zag product, Reingold–Vadhan–Wigderson [RVW02] asked whether explicit
families could at least reach a bound of O(

√
d); towards this, their work gave

strongly explicit families with λ(G) ⩽ O(d2/3). By extending their approach,
Ben-Aroya and Ta-Shma reached d1/2+o(1):

Theorem 4.1.9. ([RVW02, BT11].) There are strongly explicit families of d-regular
multigraphs G satisfying the bound λ(G) ⩽

√
d · 2O(

√
log d).

Bilu and Linial [BL06] got even closer to O(
√

d), using a new approach based
on random lifts that will prove important in our paper. Their graph families are not
strongly explicit, although Bilu–Linial point out they are at least “probabilistically
strongly explicit” (q.v. Theorem 4.1.13).

Theorem 4.1.10. ([BL06].) There are explicit families of d-regular multigraphs G satisfy-
ing the bound λ(G) ⩽

√
d ·O(log1.5 d).

Due to their asymptotic-in-d nature, neither of Theorems 4.1.9 and 4.1.10 gives
much help for specific small values of d not covered by Morgenstern, such as
d = 7. In such cases, one can use a simple idea due to Cioabă and Murty [CM08]
(cf. [dlHM06]): take a prime (or prime power) q < d− 1, form a (q + 1)-regular
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Ramanujan graph, and then add in d − q − 1 arbitrary perfect matchings. It is
shown in [CM08] that each perfect matching increases λ(G) by at most 1. Hence:

Theorem 4.1.11. ([CM08].) For any d ⩾ 3, there is a strongly explicit family of d-regular
multigraphs with λ(G) ⩽ 2

√
d− 1 + gap(d), where gap(d) denotes the least value g

such that d − 1 − g is a prime (power). One can bound gap(d) by O(log2 d) under
Cramér’s conjecture, by O(

√
d log d) under the Riemann Hypothesis, or by O(d.525)

unconditionally.

For example, this gives strongly explicit 7-regular multigraphs with λ(G) ⩽ 2
√

5 +
1 < 5.5. For comparison, the Ramanujan bound is 2

√
6 < 4.9.

Finally, Marcus–Spielman–Srivastava [MSS15a, MSS15b] recently introduced
the Interlacing Polynomials Method and used it to show that one-sided bipartite Ra-
manujan graphs exist for all d ⩾ 3 and all even n. Their proof was merely existential,
but Cohen [Coh16] was able to make it explicit (though not strongly so):

Theorem 4.1.12. ([MSS15a, MSS15b, Coh16].) For any d ⩾ 3, there is an explicit family
of one-sided bipartite, d-regular, Ramanujan multigraphs.

As mentioned, this theorem gives an n-vertex graph for every even n, which is
slightly better than all other results mentioned in this section, which merely give
graphs for a dense sequence of n’s (typically, a sequence nj with nj+1 − nj = o(nj)).
Also, as pointed out to us by Nikhil Srivastava, pairing left and right vertices in
the construction from Theorem 4.1.12 and merging them gives “twice-Ramanujan”
graphs of every even degree; i.e., 2d-regular graphs for all d ⩾ 3 with λ(G) ⩽
4
√

d− 1.1 One can then obtain (2d + 1)-regular graphs with λ(G) ⩽ 4
√

d− 1 + 1
by adding an arbitrary perfect matching via the result of [CM08].

Our results. As mentioned, our Theorem 4.1.1 gives poly(n)-time deterministi-
cally computable n-vertex d-regular graphs G with λ(G) ⩽ 2

√
d− 1 + ε, for any

1We include a short proof here: let Ã =

[
0 A

AT 0

]
be the adjacency matrix of a d-regular

bipartite Ramanujan graph. Then A + AT is the adjacency matrix of the merged graph. For any

x orthogonal to 1, (A + AT)x =
[
1 1

]
Ã
[

x
x

]
. Thus

∥∥(A + AT)x
∥∥ ⩽
√

2 ·
∥∥∥∥Ã
[

x
x

]∥∥∥∥. Since
[

x
x

]
is

orthogonal to both
[

1
1

]
and

[
1
−1

]
, we have

∥∥∥∥Ã
[

x
x

]∥∥∥∥ ⩽ 2
√

d− 1
√

2∥x∥. One can then conclude that

∥(A + AT)x∥ ⩽ 4
√

d− 1∥x∥.
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d ⩾ 3 and ε > 0. To be more precise, the running time of our algorithm is n f (d,ε)

where f (d, ε) = O(d1/4 log(d)/
√

ε). Although our graphs are not strongly explicit,
they are “probabilistically poly log n-time computable”, a relaxation of a notion de-
fined by [BL06]. Essentially, this means we show there exist near-Ramanujan graphs
whose adjacency lists are computable in poly log n time, and furthermore there is
a poly log(n)-time randomized algorithm for finding them with high probability.
More precisely, the following statement holds:

Theorem 4.1.13. There is a deterministic polynomial-time algorithm with the following
properties:

• It takes as input N, d ⩾ 3, and ε > 0 written as binary strings.

• It also takes as input a “seed” s ∈ {0, 1}O(log2 N) (the O(·) hides a factor of
O(d1/4 log(d)/

√
ε)).

• It outputs a Boolean circuit C that implements the “adjacency list” of a d-regular
graph G on N′ ∼ N vertices in poly log(N) time. (This means that on input
u ∈ [N′] and i ∈ [d], both expressed in binary, C(u, i) outputs the v ∈ [N′] that is
the ith neighbor of u in G.)

• With high probability over the choice of seed s, the resulting graph G satisfies the
bound λ(G) ⩽ 2

√
d− 1 + ε.

The difference betweeen our notion and that of [BL06] is that we use a seed
of length-O(log2 N), whereas the notion in [BL06] requires the seed length to be
O(log N).

4.1.3 On Bordenave’s theorem with random edge-signs

Since our result may be viewed as a derandomization of the Friedman/Bordenave
theorem (Theorem 4.1.8), let us take some time to describe this result. Friedman’s
original proof is notably quite involved (100 pages). Bordenave’s proof is certainly
simpler (more like 30 pages), although it is by no means easy. However, Borde-
nave’s proof can become still simpler if one is willing consider a variant: when
G is not just a random d-regular graph, but rather a randomly edge-signed random
d-regular graph.
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Let us say a few words about why this makes things simpler. First, it turns out
that in this case one need not worry about the “trivial eigenvalue” of d; it no longer
exists, and the statement to be proven is simply that ρ(G) ⩽ 2

√
d− 1 + ε with high

probability, where ρ(G) is the spectral radius (largest eigenvalue-magnitude) of
the (signed) adjacency matrix of G. Second, with random edge-signs, each entry
of G’s adjacency matrix becomes a symmetric random variable, and it is always
more pleasant in probability theory when one’s random variables naturally have
mean zero.

In fact, there are scenarios in which one might actually want to consider random
edge-signed d-regular graphs. For example when studying the Max-Cut prob-
lem, the setting of sparse random graphs is a very natural and challenging one,
and many algorithms/complexity results depend on eigenvalue bounds for such
graphs. Having random edge-signs simply means studying the equally natural
2XOR (aka 2Lin) problem, one that has a long history in theoretical computer
science as well [Hås84].

Undoubtedly experts would know that including random edge-signs should
make Bordenave’s proof simpler, but it doesn’t appear to have been directly ex-
plored until the recent work of Deshpande et al. [DMO+19]. That paper proved
the analogue of Friedman/Bordenave for random edge-signings of random (c, d)-
biregular graphs. The case when c = d is essentially the same as the d-regular ran-
dom graph case, but the nature of the proof simplification is perhaps obscured, par-
ticularly because [DMO+19] directly cited several lemmas from Bordenave [Bor19].
A similar situation occurred in a subsequent work [MOP19], which has random
edge-signs within an even more complicated random graph model.

In fact, a side motivation we had for this paper was to carefully set out a self-
contained proof — as simple as possible — of “Alon’s Conjecture” for randomly
edge-signed graphs. A reader not interested in derandomization may nevertheless
find our proof of the below theorem of interest, particularly since it contains a
substantial portion of Bordenave’s proof of Friedman’s theorem.

Theorem 4.1.14. Let d ⩾ 3 and ε > 0. If G is a random edge-signed d-regular n-vertex
graph, then

Pr
[
ρ(G) ⩽ 2

√
d− 1 + ε

]
⩾ 1− on(1).

In the course of proving this theorem, we are able to observe that in fact The-
orem 4.1.2 holds. That is, Theorem 4.1.14 does not thoroughly rely on having a
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random edge-signing of a random d-regular graph. Instead, it works for a random
edge-signing of any d-regular graph that has one particular property: namely, every
vertex-neighborhood of radius O((log log n)2) should have at most one cycle. This
property — called tangle-freeness by Bordenave (simplifying Friedman’s notion of
“tangles”) — is a property that random d-regular graphs have with high probability,
even for neighborhoods of the much larger radius Θ(logd−1 n).

With Theorem 4.1.2 in hand, we are in a position rather like that of Bilu–Linial,
who similarly showed [BL06, Cor. 3.1] that a random edge-signing of any suffi-
ciently good small-set expander has spectral radius at most

√
d ·O(log1.5 d) (with

high probability). As in Bilu–Linial, it is also fairly straightforward to see that
Theorem 4.1.2 can be derandomized effectively using almost-k-wise independent
binary random variables.

We next describe how this derandomized result on edge-signings leads to our
main Theorem 4.1.1.

4.1.4 Explicit near-Ramanujan graphs via repeated 2-lifts

Let G = (V, E) be an n-vertex d-regular graph, and let G̃ be the edge-signed
version of it associated to edge-signing w : E → {±1}. As observed by Bilu and
Linial [BL06], this edge-signing is in a sense equivalent to the “2-lift” G2 = (V2, E2)

of G defined by

V2 = V × {±1}, E2 =
{
{(u, σ), (v, σ · w(u, v))} : (u, v) ∈ E

}
.

This G2 is a 2n-vertex d-regular graph, and the equivalence is that G2’s eigenvalues
are precisely the multiset-union of G’s eigenvalues and G̃’s eigenvalues. (The latter
refers to the eigenvalues of G̃’s signed adjacency matrix, whose nonzero entries are
w(u, v) for each {u, v} ∈ E.) In particular, if all the eigenvalues of G and G̃ have
magnitude at most 2

√
d− 1 + ε (excluding G’s trivial eigenvalue of d), then the

same is true of G2 (excluding its trivial eigenvalue). Thus Theorem 4.1.2 can provide
us with a (derandomizable) way of doubling the number of vertices in an ε-near-
Ramanujan graph. It is not hard to see (Theorem 4.2.12) that if G is “r-bicycle-free”
— meaning that every radius-r vertex neighborhood in G has at most one cycle —
then G2 will also be r-bicycle-free. Thus we may repeatedly double the number
of vertices in an ε-near-Ramanujan graph, so long as the parameter r remains
ω((log log |V|)2), where |V| is the “current” number of vertices. (Unfortunately,
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we do not see an obvious way to get the parameter r to increase as we perform 2-
lifts.) This is roughly the same strategy employed in [BL06].

As a consequence, to obtain a final d-regular ε-near-Ramanujan graph with Θ(N)

vertices, all we need to get started is some d-regular ε-near-Ramanujan graph H on
a smaller number of vertices, n, which is O((log log N)2)-bicycle-free. Thanks to
Friedman/Bordenave, we know that a random d-regular n-vertex graph is (with
high probability) near-Ramanujan, and it’s not hard to show it’s Θ(log n)-bicycle-
free. Thus we could get started with H being a random d-regular graph on, say,

n = 2
√

log N vertices, or even something smaller like n = quasipoly(log log N).
Of course, to get a construction which is overall explicit, we need to derandom-

ize the Friedman/Bordenave analysis for this base graph H. The advantage is we
now have poly(N) time to spend on constructing a graph with n ≪ N vertices.
A trivial exponential-time derandomization won’t work, but nor do we need a
polynomial-time derandomization; a quasipolynomial-time derandomization is
more than sufficient. And as we will see in Section 4.4, it is possible to derandomize
Bordenave’s proof in deterministic nO(log n) time using O(log n)-wise uniform per-
mutations. The proof of this is not completely straightforward because Bordenave’s
proof uses a twist on the Trace Method (since the plain Trace Method provably
fails).

4.2 Preliminaries

4.2.1 Standard derandomization tools

Throughout we use boldface to denote random variables.

Definition 4.2.1 ((δ, k)-wise uniform bits). Let δ ∈ [0, 1] and k ∈N+. A sequence
of Boolean random variables y = (y1, . . . , yn) ∈ {±1}n is said to be (δ, k)-wise
uniform2 if, for every S ⊆ [n] with 0 < |S| ⩽ k, it holds that |E[∏i∈S yi]| ⩽ δ. When
δ = 0, we simply say that the sequence is (truly) k-wise uniform; indeed, in this case
the bits are individually uniformly distributed and are k-wise independent.

A classic result of Naor and Naor [NN93] shows that (δ, k)-wise uniform bits
can be constructed efficiently and deterministically from a truly random seed

2Frequently called (δ, k)-wise independent in the literature.
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of length O(log k + log log n + log(1/δ)). Indeed, these bits can be generated
“strongly explicitly” (using [Sho90]; cf. [AGHP92]):

Theorem 4.2.2. ([NN93].) There is a deterministic algorithm that, given δ, k, and
N, runs in time poly(N/δ) and outputs a multiset Y ⊆ {±1}N of cardinality S =

poly(k log(N)/δ) (a power of 2) such that, for y ∼ Y chosen uniformly at random, the
sequence y is (δ, k)-wise uniform. Indeed, if the algorithm is additionally given 1 ⩽ s ⩽ S
and 1 ⩽ i ⩽ N (written in binary), it can output the ith bit of the sth string in Y in
deterministic time poly log(N/δ).

We will make use of the fact that the parameters in this theorem have excellent
dependence on N and k. We now discuss the analogous concept for random
permutations, where it is not known if the parameter dependence can be as strong.

Definition 4.2.3 ((δ, k)-wise uniform permutations). Let δ ∈ [0, 1] and k ∈N+. Let
[n]k denote the set of all sequences of k distinct indices from [n]. A random permuta-
tion π ∈ Sn is said to be (δ, k)-wise uniform if, for every sequence (i1, . . . , ik) ∈ [n]k,
the distribution of (π(i1), . . . , π(ik)) is δ-close in total variation distance from the
uniform distribution on [n]k. When δ = 0, we simply say that the permutation is
(truly) k-wise uniform.

Kassabov [Kas07] and Kaplan–Naor–Reingold [KNR09] independently ob-
tained a deterministic construction of (δ, k)-wise uniform permutations with seed
length O(k log n + log(1/δ)). Again, the construction is even “strongly explicit”:

Theorem 4.2.4. ([KNR09, Kas07].) There is a deterministic algorithm that, given δ, k,
and n, runs in time poly(nk/δ) and outputs a multiset Π ⊆ Sn (closed under inverses)
of cardinality S = poly(nk/δ) (a power of 2) such that, for π ∼ Π chosen uniformly at
random, π is a (δ, k)-wise uniform permutation. Indeed, if the algorithm is additionally
given 1 ⩽ s ⩽ S and 1 ⩽ i ⩽ n (written in binary), it can output πs(i) and π−1

s (i)
(where πs is the sth permutation in Π) in deterministic time poly(k log(n/δ)).

We will also use a convenient theorem of Alon and Lovett [AL13]:

Theorem 4.2.5. ([AL13].) Let π ∈ Sn be a (δ, k)-wise uniform permutation. Then one
can define a (truly) k-wise uniform permutation π′ ∈ Sn such that the total variation
distance between π and π′ is O(δn4k).

Combining the previous two results yields the following:
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Corollary 4.2.6. ([KNR09, Kas07, AL13]) There is a deterministic algorithm that, given k
and n, runs in time poly(nk) and outputs a multiset Π ⊆ Sn (closed under inverses) such
that, when π ∼ Π is chosen uniformly at random, π is n−100k-close in total variation
distance to a (truly) k-wise uniform permutation. (And the final “indeed” statement from
Theorem 4.2.4 also holds.)

4.2.2 Elementary graph theory

4.2.2.1 Random d-regular graphs

We will be concerned with d-regular (multi)graphs. We start by describing the stan-
dard way to generate random d-regular graphs: the configuration model, see [BC78,
Bol80, Bol01].

Definition 4.2.7 (Configuration model). Given integers n > d > 0 with nd even, the
configuration model produces a random n-vertex, d-regular undirected multigraph
(with loops) G. This multigraph is induced by a uniformly random matching M on
the set of “half-edges”, [n]× [d] ∼= [nd] (where (v, i) ∈ [n]× [d] is thought of as half
of the ith edge emanating from vertex v). We identify M with a symmetric matrix
in {0, 1}nd×nd having 1’s precisely in the entries corresponding to matched pairs
{(v, i), (v′, i′)}. We may think of M being generated as follows: First a uniformly
random permutation π ∈ Snd is chosen; then we set Mπ(j),π(j+1) = Mπ(j+1),π(j) =

1 for each odd j ∈ [nd].
Given M, the multigraph G is formed by “attaching” the matched half-edges.

More formally, the (v, v′)-entry of G’s adjacency matrix A is the sum, over all
i, i′ ∈ [d], of M(v,i),(v′,i′). Hence

Av,v′ =

d

∑
i,i′=1

∑
odd

j∈[nd]

(1[π(j) = (v, i)] · 1[π(j + 1) = (v′, i′)]

+ 1[π(j) = (v′, i′)] · 1[π(j + 1) = (v, i)]).

Note that Av,v will always be even; a self-loop is considered to contribute degree 2.

It is well known that a graph G drawn from the configuration model is simple
— i.e., has no cycles of length 1 or 2 — with probability Ωd(1). As it is pleasant to
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work with simple graphs, we will show in Section 4.6 that this continues to hold
for pseudorandom d-regular graphs, when an O(d2)-wise uniform permutation is
used in the configuration model. We also record the well known fact that for G
drawn from the configuration model, when G is conditioned on being simple, its
conditional distribution is uniformly random among all d-regular graphs.

Although the configuration model is the most natural way to generate large
random d-regular graphs, the fact that it does not produce simple graphs with high
probability is mildly annoying. (In particular, this causes a slight technical hitch
for establishing our “probabilistically strongly explicit” construction.) To sidestep
this, we will also consider the random lift model for producing random d-regular
graphs.

Definition 4.2.8 (Lift model). Fix a (simple) base graph G = (V, E) on n vertices.
Then for n ∈N+, an n-lift of G is graph G defined by a collection of permutations
πuv ∈ Sn, one for each edge (u, v) ∈ E, under the constraint that πuv = π−1

vu . The
vertex set of G is V × [n], and the edges of G are given by all pairs (u, i), (v, j)
satisfying (u, v) ∈ E and πuv(i) = j. When the permutations πuv are independent
and uniformly random, we call the associated graph G a (uniformly) random n-lift
of G. Observe that if G is a d-regular graph, then G is always a d-regular (simple)
graph on nn vertices.

Bordenave [Bor19] also confirmed Theorem 4.1.8 (the Alon Conjecture) in the
case that G is a random n-lift of any fixed d-regular Ramanujan base graph G. The
simplest case is G = Kd+1, the complete graph on d + 1 vertices. This gives a way
to randomly construct arbitrarily large d-regular near-Ramanujan graphs that are
always simple. We will also derandomize this result, as it will be convenient for
our “probabilistically strongly explicit” construction to have guaranteed simplicity.

4.2.2.2 Bicycle-freeness

It is well known that a d-regular random graph is likely to have at most one cycle
in any neighborhood of radius c logd−1 n, for a certain universal c > 0. (This holds
in either the configuration or the random lift model.) Let us make some definitions
to codify this.

Definition 4.2.9 (Excess). Given a multigraph H = (V, E), its excess is exc(H) =

|E| − |V|.
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Definition 4.2.10 (A/uni/bi-cyclic). A connected multigraph H with exc(H) = −1,
0, 1 (respectively) is said to be acyclic, unicyclic, bicyclic (respectively). In either of
the first two cases, we call H bicycle-free (or at most unicyclic).

Definition 4.2.11 (Bicycle-free at radius r). We say a multigraph is bicycle-free at
radius r if the distance-r neighborhood of every vertex is bicycle-free. Another way
to say this is that a breadth-first search of depth r, started at any vertex, encounters
at most one “back-edge”. We remark that this notion was termed r-tangle-free by
Bordenave [Bor19].

Proposition 4.2.12. If G is bicycle-free at radius r, and G2 is a 2-lift of G, then G2 is
bicycle-free at radius r.

Proof. Let (v, i) be any vertex in G2. Let H be the distance-r neighborhood of v in G
and let H2 be the subgraph of G2 induced by V(H)× [2]. Observe that the distance-
r neighborhood of (v, i) is contained in H2, and that exc(H2) ⩽ 0 since exc(H) ⩽ 0.
If H2 is disconnected it is isomorphic to a disjoint union of two copies of H and
thus the distance-r neighborhood of (v, i) is then isomorphic to H. Otherwise, if
H2 is connected, exc(H2) ⩽ 0 implies that it has at most one cycle.

It is easy to see that any n-vertex, d-regular graph that is bicycle-free at radius r
must have r ≲ logd−1 n. On the other hand, as mentioned earlier, a random d-
regular graph achieves this bound up to a constant factor, and we will derandomize
the proof of this fact, within the O(log n)-wise uniform configuration/lift model,
in Section 4.4.1.

In a graph that is bicycle-free at radius r, by definition we have exc(H) ⩽ 0
for all subgraphs H contained in a single distance-r neighborhood. In fact, this
property is enough to guarantee that exc(H) is small for any subgraph H with at
most exp(r) vertices, regardless of whether it’s contained in a single distance-r
neighborhood:

Theorem 4.2.13. Let H be a v-vertex graph that is bicycle-free at radius r. Assume
r ⩾ 10 ln v. Then exc(H) ⩽ ln(ev)

r v.

The rest of this subsection is devoted to the proof of the above theorem of elemen-
tary graph theory.
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Definition 4.2.14 (Cycg(G) and girth). Given a graph G, let Cycg(G) denote the
collection of all cycles in G of length at most g. Recall that if Cycg(G) is empty then
G is said to have girth exceeding g.

The following fact is essentially immediate from the definitions:

Fact 4.2.15. Suppose G is bicycle-free at radius r. Then the cycles in Cyc2r(G) are
vertex-disjoint.

Indeed, more generally:

Proposition 4.2.16. Suppose G is bicycle-free at radius r. For each C ∈ Cyc2r(G), let
C+ denote the collection of vertices within distance r − len(C)/2 of C. Then the sets
{C+ : C ∈ Cyc2r(G)} are pairwise disjoint.

Proof. If u ∈ C+
1 ∩ C+

2 , the distance-r neighborhood of u is enough to include both
C1 and C2.

Next, let us now recall the “Moore bound for irregular graphs”. Suppose H
is a graph with v vertices and exc(H) = εv; hence H has average degree 2 + 2ϵ.
If we build a breadth-first search tree from some vertex, then after depth t we
would “expect” to encounter at least (1 + 2ϵ)t vertices. If this exceeds v — roughly,
if t ⩾ (ln v)/(2ϵ) — then the breadth-first search must encounter a cycle. Thus
we have a heuristic argument that girth(H) ≲ (ln v)/ϵ; i.e., ϵ ≲ (ln v)/girth(H).
Indeed, Alon–Hoory–Linial have precisely established this kind of result; we quote
their theorem in a slightly simplified form:

Theorem 4.2.17. ([AHL02].) Let H be a graph with v vertices, exc(H) = εv (for ε ⩾ 0),
and girth g. Then v ⩾ (1 + 2ε)g/2−3/2.

Corollary 4.2.18. Let H be a graph with v ⩾ 3 vertices and girth g ⩾ 20 ln v. Then
exc(H) ⩽ ((2 ln v)/g)v.

We can now prove Theorem 4.2.13, which replaces “girth” with “bicycle-free
radius” in the above with only a small loss in parameters.

Proof of Theorem 4.2.13. We will show the theorem assuming H is connected (the
only case we’ll need). It is an exercise to extend it to the general case by consider-
ing H’s connected components.
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Let c = |Cyc2r(H)|. By deleting at most c edges from H we can obtain a v-vertex
graph H̃ with girth at least (in fact, exceeding) 2r. Applying Theorem 4.2.18 to H̃,
we conclude that exc(H) ⩽ ln v

r v + c. Thus it remains to show c ⩽ v/r. This is
trivial if c = 0, and if c = 1 then it can only fail if r > v — but then H is unicyclic
and hence has excess 0. Assuming then that c ⩾ 2, choose paths in H to minimally
connect the c cycles of Cyc2r(H). Now for each C ∈ Cyc2r(H), if we “charge” to
it the r − len(C)/2 closest path-vertices, then no vertex is charged to multiple
cycles, by virtue of Theorem 4.2.16. If we also charge the vertices of C to itself, then
for each C ∈ Cyc2r(H) we have charged a batch of len(C) + (r− len(C)/2) > r
vertices, and these batches are disjoint. Thus cr ⩽ v, i.e. c ⩽ v/r, as required.

4.2.3 Non-backtracking walks and the Ihara–Bass formula

The Friedman/Bordenave theorem ultimately uses the Trace Method to analyze
the eigenvalues of random d-regular graphs; this involves counting closed walks
in them. As observed in [Fri08, Bor19], it is much easier to count non-backtracking
walks, and luckily the Ihara–Bass formula gives an easy translation between eigen-
values of the adjacency matrix of a graph and the eigenvalues of its non-backtracking
matrix.

Definition 4.2.19 (Non-backtracking matrix [Has89]). Let G = (V, E) be a multi-
graph with adjacency matrix A. Let E denote the (multi)set of all directed edges
formed by replacing each undirected edge in E with two opposing directed edges.
Then G’s non-backtracking matrix B has rows and columns indexed by E, with

B(u1,v1),(u2,v2) =

{
1 if v1 = u2 and v2 ̸= u1,

0 otherwise.

(Note that this matrix is not symmetric in general.) In case G is an edge-signed
graph, the entry 1 above should be replaced by Au2,v2 , the sign of G on edge {u2, v2}.

In a number-theoretic context, Ihara [Iha66] implicitly showed a relationship be-
tween the eigenvalues of A and B when G is regular. Serre [Ser77] and several oth-
ers suggested the translation to graph theory, and Bass [Bas92] (following [Has89])
explicitly established:
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Theorem 4.2.20. (Ihara–Bass formula.) Let G be a d-regular (multi)graph and write
q = d− 1. Then

det(1− zB) = (1− z2)exc(G) det((1 + qz2)1− zA),

where 1 denotes the identity matrix (of appropriate dimension).

This theorem has been given many proofs, and it can be generalized to irregular
graphs, edge-weighted graphs, and infinite graphs. We will use the following
result, which is immediate from the edge-weighted generalization [WF09] when
all weights are ±1:

Theorem 4.2.21. ([WF09].) The Ihara–Bass formula holds as stated above for edge-signed
graphs.

The utility of Ihara–Bass is that it gives a direct correspondence between the
spectra of A and B. To see this, consider the zeroes of the polynomials (in z) on the
left- and right-hand sides. We have that z is a zero of the left-hand side precisely
if z−1 is an eigenvalue of B. On the other hand, z is a zero of the right-hand side
precisely if z−1 = ±1 or if z−1 is such that z−1 + q/z−1 is an eigenvalue of A. Thus
if we want to deduce, say, the eigenvalues of B from the eigenvalues of A, we have
the following:

Proposition 4.2.22. (Consequence of Ihara–Bass.) Let G = (V, E) be a (q + 1)-regular
edge-signed graph with adjacency matrix A and non-backtracking matrix B. Let λ ̸= 0,±1
be a number such that λ + q/λ is an eigenvalue of A. Then λ is an eigenvalue of B.

In fact, Theorem 4.2.22 is the only consequence of Ihara–Bass we will need in
this paper, and for the convenience of the reader we give a self-contained proof
(inspired by [AFH15]):

Proof. Let f : V → C be an eigenvector for A with eigenvalue λ + q/λ. Define
g : E→ C by gvw = Avw fv − λ fw. We claim that Bg = λg. It then follows that λ is
an eigenvalue of B, given that g ̸≡ 0 (a consequence of f ̸≡ 0: choose {v, w} ∈ E
with fv, fw not both 0, and then gvw = 0 = gwv is impossible because λ ̸= ±1). To
verify the claim, for any uv ∈ E we have

(Bg)uv = ∑
w∼v
w ̸=u

Avwgvw
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= ∑
w∼v

Avw(Avw fv − λ fw)− Avu(Avu fv − λ fu)

= −λ ∑
w∼v

Avw fw + q fv + λAvu fu.

But ∑w∼v Avw fw = (A f )v = (λ + q/λ) fv. Thus (Bg)uv = −λ2 fv + λAvu fu = λguv,
as needed.

When G is unsigned, A has a “trivial” eigenvalue of d = q + 1, corresponding
to λ = q; this yields the “trivial” eigenvalue of q = d− 1 for B. For general edge-
signed G, if λ = ±√q = ±

√
d− 1 in Theorem 4.2.22, then λ + q/λ = ±2

√
q =

±2
√

d− 1. Thus the Ramanujan eigenvalue bound of 2
√

d− 1 for A is equivalent
to the bound

√
d− 1 for B. As for the “+ε”, a simple calculation (appearing

in [Bor19]) shows:

Corollary 4.2.23. Let G = (V, E) be a d-regular edge-signed graph (d ⩾ 3) with
adjacency matrix A and non-backtracking matrix B. If A has an eigenvalue of mag-
nitude 2

√
d− 1 + ε (for ε ⩾ 0) then B has an eigenvalue of magnitude

√
d− 1 +√

ε
√√

q + ε/4 + ε/2 (which is
√

d− 1 + Θ(d1/4√ε) for fixed d and ε→ 0).

4.3 On random edge-signings of fixed base graphs

In this section we will prove Theorem 4.1.2. In fact, we will prove the following
refined version:

Theorem 4.3.1. Let G = (V, E) be an arbitrary d-regular n-vertex graph, where d ⩽
poly log n. Assume that G is bicycle-free at radius r ≫ (log log n)2. Then for G a
uniformly random edge-signing of G, except with probability at most n−100 the non-
backtracking matrix B of G satisfies the spectral radius bound

ρ(B) ⩽
√

d− 1 ·
(

1 + O
(
(log log n)2

r

))
,

and hence (by Theorem 4.2.23) the signed adjacency matrix A of G satisfies the bound

ρ(A) ⩽ 2
√

d− 1 ·
(

1 + O
(
(log log n)4

r2

))
.

Furthermore, let C = C(n) satisfy 1 ⩽ C ⩽ poly log n and suppose we merely assume
that the random edge-signs are (δ, k)-wise uniform for δ ⩽ n−O(C log d) and k ⩾ 2C log n.
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Then the above bounds continue hold, with an additional additive O(
√

d/C) in the ρ(B)
bound and O(

√
d/C2) in the ρ(A) bound.

As in [Fri08, Bor19], the proof of Theorem 4.3.1 will use the Trace Method. In
preparation for this, we make some definitions:

Definition 4.3.2 (Hikes). Let G = (V, E) be an undirected graph. For ℓ ∈ N,
we define an ℓ-hike H to be a closed walk in G of exactly 2ℓ steps which is non-
backtracking except possibly between the ℓth and (ℓ+ 1)th step. Given an edge-
signing w : E → {±1} we write w(H) for the product of the edge-signs that H
traverses, counted with multiplicity. Finally, we call a hike even (respectively,
singleton-free) if each undirected edge traversed byH is traversed an even number
of times (respectively, at least twice).

A straightforward use of the Trace Method will now imply:

Proposition 4.3.3. Let ℓ ∈N+ and define T = tr
(

Bℓ(B⊤)ℓ
)

(which is an upper bound
on ρ(B)2ℓ). Then for a uniformly random edge-signing w : E→ {±1},

E[T ] ⩽ d2 · #{even (ℓ− 1)-hikesH in G}
⩽ d2 · #{singleton-free (ℓ− 1)-hikesH in G}.

Furthermore, if w is merely (δ, 2ℓ)-wise uniform, the bound holds up to an additive δnd2ℓ+2.

Proof. We have

T = ∑
e0,e1,...,e2ℓ−1,e2ℓ=e0∈E

Be0,e1 Be1,e2 · · · Beℓ−1,eℓBeℓ+1,eℓBeℓ+2,eℓ+1 · · · Be2ℓ,e2ℓ−1 . (4.1)

Recalling the definition of B, one immediately sees that T is “something like” the
sum of w(H) over all ℓ-hikes in G. But being careful, one sees we precisely have
the following:

T is equal to the sum of w(H) over all “special” (ℓ+ 1)-hikes in G,
where we call an (ℓ+ 1)-hike special if its (ℓ+ 2)th step is the reverse of
its (ℓ+ 1)th step, and the last step is the reverse of the first step.3

Next, we employ the following easy fact:
3The astute reader will note that the sign of the first/last edge in H is never counted in

Equation (4.1); however it is okay to count it twice, as w(H) does, since (±1)2 = 1.
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Fact 4.3.4. If w : E → {±1} is a fully uniformly random edge-signing, then E[w(H)]

will be 1 ifH is an even hike, and will be 0 otherwise.

Thus
E

w:E→{±1}
[T ] = #{even, special (ℓ+ 1)-hikesH in G}. (4.2)

Since an (ℓ+ 1)-hike involves at most 2ℓ undirected edges, a crude upper bound
on the number of all (ℓ+ 1)-hikes in G is nd2ℓ. Thus for an edge-signing w that is
merely (δ, 2ℓ)-wise uniform, Equation (4.2) holds up to an additive δnd2ℓ. Finally,
every even special (ℓ + 1)-hike H can be formed from an even (ℓ − 1)-hike H′
by: (i) attaching a step and its reverse to the beginning/end of H; (ii) attaching
a step and its reverse to the midpoint of H. As there are at most (d− 1)2 ⩽ d2

choices for how to perform (i) and (ii), the inequality in the proposition’s statement
follows.

At this point, edge-signs are out of the way and we are reduced to counting
singleton-free hikes. In aid of this, we borrow some terminology from [MOP19]:

Definition 4.3.5. Given an (ℓ− 1)-hikeH in graph G, we write GH = (VH, EH) for
the subgraph of G formed by the union of the edges visited byH. We think of GH
as being “revealed” as the 2(ℓ− 1) steps ofH are taken in order. We classify each
step of H as either stale, fresh, or boundary. If a step of H traverses a previously-
explored edge in GH (in either direction), we call the step stale; otherwise, if it
steps to a previously-unvisited vertex, we call the step fresh; otherwise, we call
it boundary. For the purposes of this definition, at the beginning of H the initial
vertex is considered to be “previously visited”.

We now put bounds on the different kinds of steps. For the fresh steps, we only
need the singleton-free property:

Proposition 4.3.6. In a singleton-free (ℓ− 1)-hike, at least half of all steps must be stale.
Thus there are fewer than ℓ fresh steps.

For the boundary steps ofH, it is easy to see that there are exactly exc(GH) + 1
of them. Thus we can bound them using only the bicycle-free property. Together
with the simple bound |VH| ⩽ 2ℓ, Theorem 4.2.13 implies

Proposition 4.3.7. IfH is an (ℓ− 1)-hike in a graph G which is bicycle-free at radius r ⩾
10 ln(2ℓ), thenH has at most O(

log ℓ
r ) · ℓ boundary steps.
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Finally, to handle the stale steps we group them into “stretches”.

Proposition 4.3.8. In an (ℓ− 1)-hikeH, the stale steps may be partitioned into at most
O(

log ℓ
r ) · ℓ stretches of consecutive stale steps, each stretch having length at most r, and

none straddling the “turnaround” at step ℓ.

Proof. We begin by partitioning the stale steps into maximal contiguous stretches.
It is easy to see that each of these must be preceded inH by a boundary step (with a
single possible exception of the “turnaround” at step ℓ). Thus Theorem 4.3.7 implies
that there are at most O(

log ℓ
r ) · ℓ maximal stretches of stale steps. If a maximal

stretch straddles the turnaround, we can split it in two. Finally, if necessary we
now subdivide the stretches into length at most r. Since there are fewer than 2ℓ
stale steps, this subdivision can be done without increasing the number of stretches
by more than 2ℓ/r ⩽ O(

log ℓ
r ) · ℓ.

We may now make our final estimate:

Theorem 4.3.9. In a d-regular graph G that is bicycle-free at radius r ⩾ 10 ln(2ℓ), the
number of singleton-free (ℓ− 1)-hikesH is at most O(ℓ3n) · (d− 1)ℓ · (drℓ)O(

log ℓ
r )·ℓ.

Proof. Following [Bor19], we use an encoding argument. To eachH we associate
a string STRUCT(H) over the alphabet {F, B, S}, where we replace each fresh step
with an F, each boundary step with a B, and each stale stretch with an S. Our goal
will be to show:

Claim 4.3.10. For any string σ with c f , cb, cs occurrences of F, B, S (respectively),
there are no more than 2n · (d− 1)c f +cb · (2rℓ)cs singleton-free (ℓ− 1)-hikesH with
STRUCT(H) = σ.

Let us complete the proof of the theorem assuming this claim. By Theorems 4.3.6
to 4.3.8, we have the bounds

c f < ℓ, cb, cs < m := O(
log ℓ

r ) · ℓ.

Crudely, there are at most O(ℓ3) possibilities for the triple (c f , cb, cs). Also, the
following two quantities are increasing in c f , cb, cs:

2n · (d− 1)c f +cb · (2rℓ)cs , Σc f ,cb,cs := # strings of c f F’s, cb B’s, cs S’s.
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Thus we can upper-bound the number of all singleton-free (ℓ− 1)-hikes by

O(ℓ3n) · (d− 1)ℓ+m · (2rℓ)m · Σℓ,m,m ⩽ O(ℓ3n) · (d− 1)ℓ · (drℓ)O(m),

as needed, where we used the simple bound Σℓ,m,m ⩽ ℓO(m).
It remains to prove the claim. Let σ be as given. We may recover all possible

associated H, in a vertex-by-vertex fashion, by first specifying the initial vertex
(n choices) and then proceeding through the symbols of σ in order. If we are at an F

or a B symbol, we can recover the next vertex by specifying one of d− 1 neighbors
of the current vertex; there are only d− 1 possibilities, sinceH is non-backtracking.
(Exception: there are d choices at the very beginning of the hike; we compensated
for this with the factor 2 > d

d−1 .) To complete the proof of the claim, we need to
show that for each stale stretch, there are at most 2rℓ possibilities. Recall that a stale
stretch beginning from a vertex v consists of walking in non-backtracking fashion
for at most r steps over the previously seen portion K of GH. This subgraph K
has at most 2ℓ vertices, and by the bicycle-free property, this walk is confined to
a subgraph of K that is at most unicyclic. It is easy to see this walk is determined
by specifying its final vertex (at most 2ℓ possibilities), the number of times the
cycle in v’s distance-r neighborhood (should it exist) is traversed (fewer than r/2
possibilities), and the direction in which the cycle is traversed (2 possibilities). Thus
indeed each stale stretch can be completely determined by specifying one of at
most 2ℓ · (r/2) · 2 = 2rℓ possibilities.

Combining this with Theorem 4.3.3 now yields:

Corollary 4.3.11. Let G = (V, E) be an arbitrary d-regular n-vertex graph. Assume
that G is bicycle-free at radius r. Let ℓ ∈ N+ and 0 < η < 1 be parameters. Then
for G a uniformly random edge-signing of G, except with probability at most η the non-
backtracking matrix B of G has spectral radius bound

ρ(B) ⩽
√

d− 1 · (1 + O(ε1) + O(ε2)), (4.3)

where
ε1 :=

log(n/η)

ℓ
, ε2 :=

log(dℓ) log(ℓ)
r

,

provided ε1, ε2 ⩽ 1.
Furthermore, if the random edge-signs of G are merely (δ, 2ℓ)-wise uniform, the bound

holds up to an additional additive (δn/η)
1
2ℓ ·O(d).
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Proof. We have obtained that, for a uniformly random edge-signing w : E→ {±1},

E[T ] ⩽ O(d2ℓ3n) · (d− 1)ℓ · (drℓ)O(
log ℓ

r )·ℓ.

Note that r ≲ logd−1 n always holds, and hence we must have ℓ ⩽ n (else ε2 > 1).
Also we must have ℓ ⩾ log n (else ε1 > 1). Thus we may coarsen O(d2ℓ3n) in the
above to O(n5), and coarsen (drℓ)O(·) to (dℓ)O(·). Now since T is a nonnegative
random variable, Markov’s inequality implies that except with probability at
most η,

T ⩽ O(n5/η) · (d− 1)ℓ · (dℓ)O(
log ℓ

r )·ℓ,

and hence
ρ(B) ⩽ T

1
2ℓ ⩽ O(n5/η)

1
2ℓ ·
√

d− 1 · (dℓ)O(
log ℓ

r ),

which directly implies Inequality (4.3).
Finally, in the (δ, 2ℓ)-wise uniform case, we get an additional additive δnd2ℓ+2

in the bound on E[T ]; this gets a factor of 1/η after the application of Markov, and
becomes (δn/η)

1
2ℓ ·O(d) after taking 2ℓth roots.

Finally, the reader may verify that Theorem 4.3.1 follows from Theorem 4.3.11
in the fully uniform case by taking ℓ = Θ(r log(n)/ log log n), and in the deran-
domized case by taking ℓ = Θ(C log(n/η)).

Remark 4.3.12. Alternatively, by taking η = exp(− exp(r.49)) and ℓ = exp(r.49) in
Theorem 4.3.11, we may conclude that ρ(B) ⩽

√
d− 1 · (1 + or(1)) holds in the

fully uniform case except with probability at most exp(− exp(r.49)).

4.4 Weakly derandomizing Bordenave’s theorem

In this section we give a weak derandomization of Bordenave’s proof of Theo-
rem 4.1.8, using “off-the-shelf” tools; the derandomization is “weak” in the sense
that it only yields a quasipoly(n)-time deterministic construction. As discussed in
Section 4.2.2.1, we will derandomize both the configuration model version and the
random lift version. Specifically, we show the conclusion of Theorem 4.1.8 holds
even for the “almost k-wise uniform” versions of these models, k = O(log n).

Definition 4.4.1 ((δ, k)-wise uniform configuration/lift models). When the permu-
tation π ∈ Snd used in the configuration model is not uniformly random but is
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merely (δ, k)-wise uniform, we will say that G is drawn from the (δ, k)-wise uniform
configuration model. Similarly, when the πuv ∈ Sn used in the random lift model
are independent but merely (δ, k)-wise uniform, we will say that G is a (δ, k)-wise
uniform random n-lift of base graph G.

(For simplicity, in the lift model we will henceforth only concern ourselves with
G = Kd+1.)

We will not fully recap Bordenave’s proof of Theorem 4.1.8 in this work, al-
though the reader unfamiliar with it will get some insight knowing that our proof
of Theorem 4.3.1 is modeled on it. Bordenave employs two twists on the Trace
Method to show that a random d-regular graph G has spectral radius at most
2
√

d− 1 + ε (when the trivial eigenvalue of d is ignored). The less important (but
still challenging) twist involves replacing the non-backtracking matrix B by a
centered variant, B, that enables one to ignore the trivial eigenvalue. The more
conceptually important twist comes from the fact, originally recognized by Fried-
man, that even after passing to B, the Trace Method still fails. The reason, in
brief, is as follows: A successful use of the Trace Method would have to consider
walks of length ℓ for ℓ at least a large multiple of log n, in order to overcome the
factor of n arising from the n different walk starting points (cf. the error term ε1
just after Inequality (4.3)). But for walks of this long length, one can show that
the expected trace of Bℓ(B⊤)ℓ is simply too large — much larger than the target
poly(n) · (d− 1)ℓ needed to get the “correct” final bound.

However, as first demonstrated by Friedman, the expectation is too large only
because of certain low-probability events. Bordenave’s way of handling things is to
show that: (i) a random d-regular graph G is, with high probability, bicycle-free at
large radius r; (ii) when G is so bicycle-free, the rth power of its non-backtracking
matrix, Br, coincides with a certain “bicycle-discarding” variant B(r); (iii) the usual
Trace Method can be successfully applied to B(r); i.e., the expected trace of powers
of B(r) is suitably small.

Thus our weak derandomization of Bordenave’s proof has two ingredients,
corresponding to (i) and (iii) above. In Section 4.4.1 we derandomize a standard
proof that a random d-regular graph is bicycle-free at large radius (in either the
configuration model or the random lift model). In Section 4.4.2 we examine the key
probabilistic ingredient in Bordenave’s use of the Trace Method, [Bor19, Prop. 11],
which encapsulates the fact that for a centered version M of the configuration model
matching matrix, the random variables M(v,i),(v′,i′) are close to k-wise independent
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for k≪
√

dn.
(In Section 4.6, we also show a derandomization of the most basic fact about the

configuration model, that G is simple with probability Ωd(1). This is just a “bonus”
for the reader who prefers the configuration model; it will be more convenient
to use the random lift model for our explicit near-Ramanujan graphs, due to its
guaranteed simplicity.)

4.4.1 Bicycle-freeness

The following relatively straightforward fact about d-regular n-vertex graphs is
crucial for Bordenave’s proof: with high probability they are bicycle-free at ra-
dius r, provided r ≲ c logd−1 n for some constant c < 1/4. This fact is proved for
completeness by Bordenave [Bor19, Lem. 9] (and in [Bor19, Lem. 27] for random
lifts); another proof appears earlier in, e.g., [LS10, Lem. 2.1]. We would like a
derandomized version of this fact for the k-wise uniform configuration model,
k = O(r). This motivates looking for a moments-based proof, such as the one
suggested by Wormald [Wor99, Lem. 2.7] and carried out for Erdős–Rényi G(n, m)

graphs in [JŁR00, Thm. 5.5]. The essential point will be that minimal witnesses to
failure have only O(r) edges.

Definition 4.4.2 (Minimal bicycle). We say a connected multigraph is a minimal
bicycle if it is bicyclic but has no proper subgraph that is bicyclic. It is easy to see
(cf. [JŁR00, Proof of Thm. 5.5]) that any minimal bicycle is either a “handcuffs
graph” (two cycles joined by a path), a “figure-eight graph” (two cycles attached at
a vertex), or a “theta graph” (a cycle with a “diagonal”).

We now prove:

Proposition 4.4.3. Fix d ⩾ 3 and k ⩾ 1. Let G be drawn from the d-regular n-vertex
configuration model using a 2k-wise uniform permutation. Then G is bicycle-free at
radius k/4, except with probability at most O(k3(d− 1)k/n).

As a corollary, the failure probability is at most 1/n.99 provided k < c logd−1 n for a
certain universal c > 0. This statement remains true if G is instead a 2k-wise uniform
random n-lift of Kd+1. Finally, by Theorem 4.2.5, these statements remain true in the
(δ, 2k)-wise uniform versions of the models, δ ⩽ 1/n8k+2.

Proof. We first consider the configuration model. Fix a minimal bicycle H with h
vertices and hence h + 1 edges, where h < k. Let the random variable XH denote
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the number of times that H appears in G. This is a polynomial of degree at most
h+ 1 ⩽ k in the entries of G’s adjacency matrix and hence a polynomial of degree at
most 2k in the permutation indicators 1[π(j) = (v, i)]. Thus to compute E[XH] we
may assume G is drawn from the usual configuration model (with a truly random
permutation). In this case, it is elementary to compute an exact formula for E[XH];
as per [Bor16, eqn. (2.4)], it is

E[XH] =
1
bc

n(n− 1)(n− 2) · · · (n− h + 1)
(nd− 1)(nd− 3)(nd− 5) · · · (nd− 2h− 1)

(4.4)

∏
u∈V(H)

d(d− 1) · · · (d− degH(u) + 1), (4.5)

where b (respectively, c) is the number of edge- (respectively, vertex-)isomorphisms
of H. For any minimal bicycle H we have b ⩾ 1, c ⩾ 2, and degH(u) ⩾ 2 for all
u ∈ V(H). The last of these facts implies the product on the right in Equation (4.4)
is at most (d(d− 1))h+1. Also, the large fraction in the middle is asymptotic to
(dh+1n)−1, and it is not hard to check it is always at most twice that. Hence we
conclude E[XH] ⩽ (d− 1)h+1/n ⩽ (d− 1)k/n. Finally, it is easy to see that, up
to isomorphism, the number of minimal bicycles with fewer than k vertices is
at most O(k3). Thus by Markov’s inequality we conclude that the probability of
having any minimal bicycle on fewer than k vertices is at most k3(d− 1)k/n. The
claim about the configuration model now follows because any bicyclic radius-
k/4 vertex neighborhood in G must contain a minimal bicycle with fewer than k
vertices. (The “worst case” is a figure-eight graph.)

As for the model where G is a 2k-wise uniformly random n-lift of Kd+1, the proof
is nearly identical. The only difference arises in the computation of E[XH] — instead
of using an exact closed form expression for the quantity, one can elementarily
upper bound E[XH] by O((d + 1)h/n) (assuming, say, k ⩽

√
n). From this slightly

weaker bound, one can still draw the same conclusion that the failure probability
is at most 1/n.99 for k < c logd−1 n (possibly with slightly smaller c).

4.4.2 Bordenave’s key probabilistic proposition

In this section we examine the last place in Bordenave’s argument that uses ran-
domness of the underlying graph G; namely, [Bor19, Prop. 11] for the configuration
model and [Bor19, Prop. 28] for the random lift model. These nearly-identical
propositions give an upper bound on a certain moment arising in his use of the
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Trace Method. Unfortunately, the propositions are not as self-contained as the
ones covered in Section 4.4.1. Rather than trying to give a complete summary
of how Bordenave’s argument works, we will proceed in a “black-box” fashion,
only giving the bare minimum needed to verify derandomizability. We refer the
reader to [Bor19] for the complete picture. As in [Bor19], we will focus on the
configuration model, and then describe the modifications necessary for the random
lift model.

Here is the key probabilistic proposition (which can be viewed as a far more
sophisticated version of Theorem 4.3.4):

Proposition 4.4.4. ([Bor19, Prop. 11].) Let E = [n]× [d], and let M be a uniformly
random matching on E as in the configuration model Theorem 4.2.7. Also let M be the
matrix obtained from M by subtracting 1

n′ from each entry, where n′ := dn. Then for any
γ ∈ E2k with 1 ⩽ k ⩽

√
m and any 0 ⩽ k0 ⩽ k, we have∣∣∣∣∣E

[
k0

∏
t=1

Mγ2t−1,γ2t

k

∏
t=k0+1

Mγ2t−1,γ2t

]∣∣∣∣∣ ⩽ O
(

2b · ( 1
n′ )

a · ( 3k√
n′
)a1
)

. (4.6)

Here a, b, and a1 on the right-hand side of Inequality (4.6) are certain quantities
relating to the multiplicities of half-edges in γ and to k0. We omit these definitions
here, as they won’t be relevant for us.

Note that when M is formed from a random permutation π on [nd] as in
Theorem 4.2.7, each entry Me, f is a polynomial of degree 2 in the indicators
1[π(j) = (v, i)]. It follows that the quantity inside the expectation in Inequal-
ity (4.6) is a polynomial of degree at most 2k in these indicators. We conclude:

Corollary 4.4.5. Let G be drawn from the d-regular n-vertex configuration model using a
2k-wise uniform permutation, and write M for the matching matrix inducing G. Then
Inequality (4.6) continues to hold.

Bordenave also proved an analogue of Theorem 4.4.4 for the random lift model.
The statement is extremely similar to Theorem 4.4.4, with “n′” being n, and with
the rows/columns of “M” being the potential “half-edges” in the lifted graph; for
the exact statement we refer the reader to [Bor19, Prop. 28]. Further, Theorem 4.4.5
is true when G is drawn from a 2k-wise uniform lift model.

With Theorem 4.4.4 in hand, Bordenave does some intricate — but entirely
non-probabilistic — path-counting to complete his use of the Trace Method. (This



CHAPTER 4. EXPLICIT NEAR-RAMANUJAN GRAPHS 234

is like a much more sophisticated version of the part of Section 4.3 beginning with
Theorem 4.3.2.) This part of his proof involves considering paths of length 2ℓm,
where “ℓ” and “m” are parameters he selects (with ℓ being at least the bicycle-free
radius, and m being large enough so that ℓm≫ log n). The crucial observation for
us is that Bordenave only employs Theorem 4.4.4 with its parameter “k” set to 2ℓm
(and the same is true in the random lift model).

Bordenave directly sets ℓ = Θ(logd−1(n)) and m = Θ(log(n)/ log log(n))
to obtain best parameters, but we will work more generally, since we may be
interested in minimizing k = 2ℓm to save on random bits. Carefully examining
[Bor19, Proofs of Prop. 14, 18], one may extract the below proposition. The random
matrices B(ℓ) and R(ℓ)

1 , . . . , R(ℓ)
ℓ mentioned in it are derived from the randomness

of the configuration model; again, see [Bor19] for details.

Proposition 4.4.6. Assuming d, ℓ, m satisfy poly(dℓm)m ≪ n, it holds that

E
[
∥B(ℓ)∥2m

]
⩽ poly(n) · (d− 1)ℓm, E

[
ℓ

∑
i=1
∥R(ℓ)

i ∥
2m

]
⩽ poly(dℓm)m · (d− 1)2ℓm,

Furthermore, this only relies on Inequality (4.6) with k = 2ℓm, and therefore by Theo-
rem 4.4.5 it continues to hold even in the 4ℓm-wise independent configuration model. Thus
in this model, Markov’s inequality implies that except with probability at most n−100,

∥B(ℓ)∥ ⩽ poly(n)
1

2m ·
√

d− 1
ℓ
,

ℓ

∑
i=1
∥R(ℓ)

i ∥ ⩽ poly(n)
1

2m · (d− 1)ℓ.

This proposition holds just the same in the random lift model with base graph
G = Kd+1 (indeed, with any d-regular base graph). One simply has to follow
through the analogous propositions, [Bor19, Proofs of Prop. 29, 33], in the same
way.4

Finally, [Bor19, Prop. 8] is the following:

4Bordenave carries these propositions out for not-necessarily-regular base graphs of maximum
degree d. His computations depend on the base graph through the Perron eigenvalue ρ1 of its
non-backtracking operator B, which in the d-regular case is just d− 1. In [Bor19, (67)] Bordenave
selects ρ > ρ1 and cρ ⩾ 1 such that ∥(B⊤)k1e∥1 ⩽ cρρk holds for all k and all edges in the base graph.
In our d-regular case, we can simply take cρ = 1 and ρ = ρ1 = d− 1 when carrying through his
computations.
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Proposition 4.4.7. Suppose G drawn from the d-regular configuration model is bicycle-
free at radius ℓ. Let n′ = dn. Then the largest magnitude eigenvalue of the associated
non-backtracking matrix B, excluding the trivial eigenvalue of d, is at most(

∥B(ℓ)∥+ 1
n′
·

ℓ

∑
i=1
∥R(ℓ)

i ∥
)1/ℓ

.

Again, Bordenave has a very similar analogue [Bor19, Prop. 26] in the random
lift model, with “n′” equal to n, and with the quantity bounding the largest-in-
magnitude “new” eigenvalue of the lifted graph (which is precisely what one needs
to bound to show the near-Ramanujan property, assuming the base graph is itself
d-regular Ramanujan).

We can now finish the proof as Bordenave does (in either the configuration or
random lift model), combining Theorem 4.2.23, Theorems 4.4.3, 4.4.6 and 4.4.7, and
also Theorem 4.6.1 (if desired). Using the parameter settings ℓ = c logd−1 n and
m = (C/c) log(d− 1)/

√
ε where c is the constant from Theorem 4.4.3 and C is a

large enough universal constant, we get the following:

Theorem 4.4.8. Fix 3 ⩽ d ⩽ C−1
√

log n and let ε ⩽ 1 and k satisfy

ε ⩾ C3 ·
(

log log n
logd−1 n

)2

, k ⩾ C log(n)/
√

ε.

Let G be chosen from the d-regular n-vertex k-wise uniform configuration model, or as a
k-wise uniform random n-lift of Kd+1. Then except with probability at most 1/n.99, the
following hold:

• G is bicycle-free at radius c logd−1 n;

• λ(G) ⩽ 2
√

d− 1 · (1 + ε).

Additionally, in the configuration model case, G is simple with probability at least
e−(d−1)2/4/2. Finally, by Theorem 4.2.5, these statements remains true in the (δ, k)-
wise uniform configuration model, δ ⩽ 1/n8k+1.

4.5 Explicit near-Ramanujan graphs

With the tools developed in Section 4.3 and Section 4.4 we are now ready to
establish our explicit near-Ramanujan graph constructions. For ease of reading, in
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this section we will merely prove Theorem 4.1.1, the deterministic polynomial-time
(“weakly explicit”) construction, with d and ε assumed to be constant. We leave the
slightly more technical proof of the “probabilistically poly log n-time computable”
construction (Theorem 4.1.13), with worked out dependence on d = d(n) and
ε = ε(n), for Section 4.7.

Recall we want to show there is a deterministic algorithm that on input N, d ⩾ 3
and ε > 0, outputs in poly(N)-time a d-regular graph G on N′ ∼ N vertices with
λ(G) ⩽ 2

√
d− 1 + ε.

Before getting into the details, we recap the construction as outlined in Sec-
tion 4.1.4:

1. Using Theorem 4.4.8 we construct a d-regular simple graph G0 on some
“small” number of vertices n0 = n0(N), which is bicycle-free at radius
Ω(log n0) and has λ(G0) ⩽ 2

√
d− 1 + ϵ. The quantity n0 should satisfy

2ω((log log N)2) ⩽ n0 ⩽ 2O(
√

log N),

the left inequality so that G0 is sufficiently bicycle-free for Step 2 below, and
the right inequality so that G0 is constructible in deterministic poly(N) time.
We have a wide range of allowable possibilities here; for concreteness we
will take n0 near the upper limit to allow for slightly better dependence on
non-constant d, ε in Section 4.7.

2. Next we repeatedly use Theorem 4.3.1 (roughly log(N/n0) ∼ log N times)
to double the number of vertices in our construction from Step 1, while
keeping λ ⩽ 2

√
d− 1 + ϵ and also retaining that the graph is bicycle-free

at radius Ω(log n0) (Theorem 4.2.12). Importantly, since Theorem 4.3.1 is a
high-probability result, we will be able to reuse the seed for each of the log N
pseudorandom edge-signings.

Step 1 details. Here the algorithm will select n0 to be an even integer on the order

of 2Θ(
√

log N). Theorem 4.4.8 tells us that for a sufficiently large k = O(log n0) =

O(
√

log N), and for sufficiently small δ = n−Θ(k)
0 = 1/poly(N), a random d-

regular n0-vertex graph G0 chosen from the (δ, k)-wise uniform configuration or
random-lift-of-Kd+1 model will with high probability satisfy:

G0 is bicycle-free at radius Ω(log n0) = Ω(
√

log N); λ(G0) ⩽ 2
√

d− 1 + ε.
(4.7)
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(Recall we are treating d and ε as constant here.) G0 will also be simple with Ω(1)
probability in the configuration model case, and with probability 1 in the random
lift case. In the former case, we need a (δ, k)-wise permutation in Snd; in the
latter case, we need (d+1

2 ) independent (δ, k)-wise permutations in Sn. Either way,
Theorem 4.2.4 tells us that a deterministic algorithm can enumerate all possibilities
for G0 in poly(N) time and pick out any fixed simple one G0 satisfying (4.7).

Step 2 details. Here the algorithm will be applying Theorem 4.3.1 some t ∼
log2 N times, starting with G0, and each time interpreting the edge-signing pro-
duced as a 2-lift as discussed in Section 4.1.4. This produces a sequence of pseu-
dorandom d-regular simple graphs G1, . . . , Gt, where Gi has n02t vertices. The
parameter t is chosen to be least possible such that the final number of vertices,
N′ = n02t, is as at least N. It is not hard to check that by adjusting n0 by a fac-
tor of at most 2, we can ensure that N′/N = 1 + oN(1), where the oN(1) term is

O(1/n0) = 1/2Θ(
√

log N).
For simplicity, we will use the same values for the parameters r, k, and δ in each

application of Theorem 4.3.1; only the value of n will change (ranging from n0 up
to N′). We may take r = Ω(

√
log N), the bicycle-free radius from Equation (4.7)

(observe that the bicycle-free radius cannot decrease for any 2-lift of a graph).

Note that the failure probability of any single 2-lift is at most 1/2Θ(
√

log N), and
hence a union bound tells us that the probability of any of the 2-lifts “failing” is
low, log N

2Θ(
√

log N)
. We take the parameter “k” to be Θ

(
log N√

ε

)
(the hidden constant

sufficiently large depending on d). Finally, we take δ = 1/NΘ(1/
√

ε) (again with the
hidden constant sufficiently large depending on d). By plugging these parameters
into Theorem 4.3.1 we conclude that with high probability, all “new” eigenvalues
arising in the 2-lifted adjacency matrices A1, . . . , At are at most 2

√
d− 1 + ε in

magnitude, and hence Gt is ε-near Ramanujan.
It remains to observe that with these parameter settings, using Theorem 4.2.2,

a deterministic algorithm can in poly(N/δ) = poly(N) time do the following:
First, produce a single (δ, 2ℓ)-wise uniform multiset of strings Y ⊆ {±1}N′d/4;
here N′d/4 bits are sufficient to edge-sign/2-lift any of the graphs Gi. Then, for
i = 1, . . . , t the algorithm can search Y for a “good” string yi ∈ Y, meaning one with
the property that using it to do an edge-signing/2-lift of Gi yields graph Gi+1 which
is ε-near Ramanujan. As argued in the previous paragraph, a 1−O

(
log N

2Θ(
√

log N)

)
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fraction of strings in Y have this property. We can check the goodness of any
string y in poly(N) time using the following fact.

Fact 4.5.1. For any rational approximation ρ of 2
√

d− 1 + ε, one can decide in poly(n)
time whether λ(G) ⩽ ρ.

This concludes the proof of Theorem 4.1.1.

4.6 Simplicity

In the fully uniform configuration model, the probability of G being simple (i.e.,
being an ordinary graph with no self-loops or parallel edges) is known [BC78,
Bol80] to tend to the constant exp(−(d2 − 1)/4), as n→ ∞. We establish that the
O(d2)-wise uniform configuration model suffices for this:

Proposition 4.6.1. Let 3 ⩽ d≪
√

log n and let k ⩾ Cd2, where C is a certain universal
constant. Let G be drawn from the d-regular n-vertex configuration model using a k-wise
uniform permutation. Then

Pr[G is simple] = e−(d
2−1)/4(1± e−100d2

).

By Theorem 4.2.5, this remains true if the permutation is merely (δ, k)-wise uniform,
δ ⩽ n−C′d2

.

The proof is a straightforward derandomization of Bollobás’s original analysis
of simplicity in the configuration model [Bol80]. Unlike several later refinements
that used the Chen–Stein method, Bollobás’s proof uses the method of moments,
making it particularly convenient to derandomize using k-wise uniform permuta-
tions.

Proof of Theorem 4.6.1. Let us recap Bollobás’s proof concerning an n-vertex d-
regular configuration model graph G formed from a truly random permuta-
tion π ∼ Snd. He defines X1 to be the number of self-loops in G (i.e., 1

2 tr(A)), X2

to be the number of 2-cycles (i.e., ∑v<v′ (
Av,v′

2 )), and X = X1 + X2. Note that G is
simple if and only if X = 0. The idea of the proof is that it is nearly the case that
X1, X2 are independent Poisson random variables with respective means

λ1 = λ · nd
nd− 1

= λ · (1±O(1/n))
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λ2 = λ2 · nd · (nd− d)
(nd− 1) · (nd− 3)

= λ2 · (1±O(1/n)),

where λ := (d− 1)/2. Thus X should be nearly Poisson with mean λ1 + λ2 ∼
λ + λ2 = (d2 − 1)/4, and hence we should have Pr[X = 0] ∼ e−(d

2−1)/4.
More precisely, Bollobás first establishes [Bol80, ineq. (11)] the following esti-

mate for all integers 0 ⩽ r ⩽ 8 log n:

Er := E
[(

X
r

)]
satisfies

∣∣∣∣Er −
(λ1 + λ2)

r

r!

∣∣∣∣ ⩽ (λ1 + λ2)
r

r!
·O(r2/n). (4.8)

(Actually, Bollobás has O((log n)2/n) on the right-hand side rather than O(r2/n),
but inspection of his proof confirms the above.) The key point for our proof
of Theorem 4.6.1 is that Inequality (4.8) continues holds when the permutation
π ∈ Snd defining G is merely 4r-wise uniform. This is simply because (X

r ) is a
polynomial of degree at most 4r in the indicators 1[π(j) = (v, i)]. Thus to complete
the proof, it suffices to derive the conclusion

Pr[X = 0] = e−(d
2−1)/4(1± e−100d2

) (4.9)

from the estimates in Inequality (4.8) with r = O(d2). This can be done exactly
as in Bollobás’s work. He uses the following inclusion-exclusion-type inequality,
which holds (for any u ∈N) due to X being N-valued:

2u+1

∑
r=0

(−1)rEr ⩽ Pr[X = 0] ⩽
2u

∑
r=0

(−1)rEr. (4.10)

Notice that Er ≈ (λ1+λ2)
r

r! , and

∞

∑
r=0

(−1)r (λ1 + λ2)
r

r!
= e−(λ1+λ2) = e−(λ+λ2)·(1±O(1/n)) = e−(d

2−1)/4 · (1±O(d2/n));

(4.11)
also, O(d2/n) ≪ e−100d2

since d ≪
√

log n. Thus we can establish Equation (4.9)
by bounding the two errors distinguishing the infinite sum in Equation (4.11) from
the sums on the left- and right-hand side of Inequality (4.10). The two distinctions
are: the error in Er ≈ (λ1+λ2)

r

r! , boundable using Inequality (4.8); and, the tail of
the infinite sum from 2u or 2u + 1 onward. In absolute value, these two errors are
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boundable by:

O(1/n) ·
2u or 2u+1

∑
r=0

(λ1 + λ2)
r

r!
· r2, and

∞

∑
r=2u+1 or 2u+2

(λ1 + λ2)
r

r!
.

The first quantity above can be bounded by O(u2/n) · eλ1+λ2 , and the second
quantity can be bounded by O((λ1 + λ2)

2u+1/(2u + 1)!) provided u ⩾ λ1 + λ2.
Recalling λ1 + λ2 = Θ(d2) and d ≪

√
log n, we see that by taking u = O(d2)

sufficiently large, both errors can be made much smaller than e−100d2
, and we

obtain Equation (4.9) with r = O(d2) as needed.

4.7 The probabilistically poly log n-time computable
construction

We now walk through the steps of Section 4.5 giving precise parameter details along
the way, and extract a probabilistically poly log n-time computable construction of
near-Ramanujan graphs.

Assume we are given N, 3 ⩽ d ⩽ (log N)1/8

C and ϵ≫ (log log N)4

log N ·
√

d where C is
the constant from the statement of Theorem 4.4.8.

Revisiting Step 1. Choose parameters as follows: α = 1/
√
(d+1

2 ); n0 as the

largest multiple of d + 1 smaller than 2α
√

log N ; k = Cα
√

log N · d1/4/
√

ϵ (which is
≈ log n0); and δ = 1/N8k+1. Recall that the key result used in this step is that by
Theorem 4.4.8, G0 drawn from the n0-vertex (δ, k)-wise random-lift-of-Kd+1 model
is a simple graph that with high probability satisfies:

G0 is bicycle-free at radius Ω

(
α
√

log N
log(d− 1)

)
; λ(G0) ⩽ 2

√
d− 1 + ε. (4.12)

As an upshot of Theorem 4.2.4, G0 can be sampled using s, a uniform binary string

of length O
(

log N·d1/4
√

ϵ

)
as a seed. In particular, s is divided into (d+1

2 ) disjoint

substrings se1 , . . . , se
(d+1

2 )
each of length ℓ1 = O

(
α2 log N·d1/4

√
ϵ

)
indexed by edges of

Kd+1; the (δ, k)-wise uniform permutation πuv corresponding to edge (u, v) is taken
to be the suvth permutation in the multiset of permutations Π from the statement
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of Theorem 4.2.4. Additionally, given s and a vertex (u, i) ∈ V(G0), it is possible to

return a list of its neighbors in time T1 = O
(

d · poly
(

α2 log N·d1/4
√

ϵ

))
.

Revisiting Step 2. Let t =
⌈

log
(

N
n0

)⌉
; let β be a large enough constant; let

k = 2βd1/4
√

ϵ
log N; and let δ = N−O(βd1/4 log d/

√
ϵ). The main result used in Step 2 is

that from Theorem 4.3.1 the graphs G1, . . . , Gt where Gi is obtained via a 2-lift of
Gi−1 induced by a (δ, k)-wise uniform signing have their nontrivial eigenvalues
bounded by 2

√
d− 1 + ϵ in magnitude, except with probability O(t/n100

0 ). From
Theorem 4.2.2, a (δ, k)-wise uniform signing of any Gi can be obtained by first

sampling a random binary string s′ of length ℓ2 = O
(

d1/4 log d·log N√
ϵ

)
and choosing

the sth string in the multiset of signings Y from the theorem statement. In fact,
given s′ and edge e ∈ Gi one can also output the sign assigned to edge e in
time T2 = poly

(
βd1/4 log d log N/

√
ϵ
)
. Finally, by the union bound, the bound

of O(t/n100
0 ) on the probability that Gt is not ϵ-near Ramanujan holds if we use

independently chosen seeds s1, . . . , st to perform the 2-lifts. Note that t < log N
and n0 ⩾ 2(log N)1/4

and hence the failure probability is oN(1).

Probabilistically strongly explicit near-Ramanujan graphs. Given a uniform
binary string s of length ℓ1 + t · ℓ2 as a random seed, call the substring given by the
first ℓ1 bits s1 and the substring given by the next t · ℓ2 bits s2. Let G0 be sampled
from s1 as described in Step 1, and let Gt be the “final graph” obtained by the
sequence of 2-lifts in Step 2 from s2. Each vertex in Gi can be naturally identified
with a tuple (v, a, x) ∈ [d]× [n0]× {0, 1}i. Let x be a string in {0, 1}t, let x⩽i denote
its i-bit prefix. Given a vertex (v, a, x) in Gt and seeds s1 and s2, we describe an
algorithm to output a list of its d neighbors in Õ(T1 + dT2)-time where the Õ(·)
hides factors of poly log N. From Step 1, we know that there is an T1-time algorithm
to output a list of d neighbors of (v, a, x⩽0) in G0.

Next, given a list of neighbors of (v, a, x⩽i−1) in Gi−1 it is possible to output a
list of neighbors of (v, a, x⩽i) in Gi in Õ(dT2)-time in the following way. Let (w, b, y)
be a neighbor of (v, a, x⩽i−1). Then exactly one of (w, b, y ∧ 0) and (w, b, y ∧ 1) is a
neighbor of (v, a, x⩽i) where ∧ denotes concatenation. It is possible to obtain the
sign on edge {(v, a, x⩽i−1), (w, b, y)} in the 2-lift from Gi−1 to Gi in T2 time from
s2. If the sign is a −1, then (w, b, y ∧ (1− xi)) is a neighbor of (v, a, x⩽i); otherwise
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(w, b, y ∧ xi) is a neighbor. Thus, in Õ(dT2) time, we can obtain a length-d (and
hence complete) list of neighbors of (v, a, x⩽i).

As a result, after spending T1 time generating a list of neighbors of (v, a, x⩽0),
we can use the above routine t times to obtain a list of neighbors of (v, a, x) in Gt in
T1 + t · Õ(dT2) ⩽ Õ(T1 + dT2). From the upper and lower bounds on d and ϵ, this
quantity is always O(poly log N).

To summarize, we have an algorithm that takes in a random seed of length

O
(

d1/4 log d·log2 N√
ϵ

)
and implements the adjacency matrix of a corresponding ran-

dom graph G such that:

• Given any vertex v of G, its list of neighbors can be generated in O(poly log N)

time.

• G is ϵ-near Ramanujan with probability 1− oN(1).

This yields the conclusion of Theorem 4.1.13.
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Chapter 5

Girth-density tradeoffs in
hypergraphs

This chapter is adapted from [HKM23], co-authored by the author of this thesis,
Jun-Ting (Tim) Hsieh, and Pravesh Kothari.

The hypergraph Moore bound is an elegant statement that characterizes the
extremal trade-off between the girth — the number of hyperedges in the smallest
cycle or even cover (a subhypergraph with all degrees even) and size — the number
of hyperedges in a hypergraph. For graphs (i.e., 2-uniform hypergraphs), a bound
tight up to the leading constant was proven in a classical work of Alon, Hoory
and Linial [AHL02]. For hypergraphs of uniformity k > 2, an appropriate gener-
alization was conjectured by Feige [Fei08]. The conjecture was settled up to an
additional log4k+1 n factor in the size in a recent work of Guruswami, Kothari and
Manohar [GKM21]. Their argument relies on a connection between the existence
of short even covers and the spectrum of a certain randomly signed Kikuchi matrix.
Their analysis, especially for the case of odd k, is significantly complicated.

In this work, we present a substantially simpler and shorter proof of the hyper-
graph Moore bound. Our key idea is the use of a new reweighted Kikuchi matrix
and an edge deletion step that allows us to drop several involved steps in [GKM21]’s
analysis such as combinatorial bucketing of rows of the Kikuchi matrix and the
use of the Schudy–Sviridenko polynomial concentration. Our simpler proof also
obtains tighter parameters: in particular, the argument gives a new proof of the
classical Moore bound of [AHL02] with no loss (the proof in [GKM21] loses a
log3 n factor), and loses only a single logarithmic factor for all k > 2-uniform
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hypergraphs.
As in [GKM21], our ideas naturally extend to yield a simpler proof of the

full trade-off for strongly refuting smoothed instances of constraint satisfaction
problems with similarly improved parameters.

5.1 Introduction

What is the maximum girth of a graph on n vertices and average degree d? For
d-regular graphs, a simple “ball growing” argument shows that the graph must
have a cycle of length at most 2 logd−1 n + 2. This threshold is called the Moore
bound [Wik22] (see Page 180 of [Big93]) and graphs achieving it are called Moore
graphs. In a classical paper that resolved a question of Bollobás [Bol78], Alon,
Hoory and Linial [AHL02] proved that the same upper bound holds even for
irregular graphs. Later on, Hoory [Hoo02] obtained a better bound for bipartite
graphs and Babu and Radhakrishnan [BR14] found an elegant proof based on the
entropy of random walks.

Girth-density trade-offs for hypergraphs. This work is about a natural and well-
studied generalization of the Moore bound to k > 2-uniform hypergraphs. A
cycle1 in a hypergraph, more descriptively called an even cover, is a collection of
hyperedges such that every vertex participates in an even number of them. The
girth of a hypergraph is the smallest size of an even cover in it. When specialized
to graphs, an even cover is simply a union of cycles and thus, this formulation
naturally generalizes the standard notion of girth in graphs.

Analogously to the Moore bound, understanding the maximum number of
hyperedges that one can pack in a hypergraph while avoiding an even cover of
a given length is a basic hypergraph Turán problem. Hypergraph Turán problems
are typically significantly more difficult than their counterparts in graphs. Indeed,
even the original hypergraph Turán conjecture from the 1940s that studies an
appropriate analog of triangle free hypergraphs is still open. We direct the reader
to the recent survey of Keevash [Kee11] for an overview of hypergraph Turán
theory.

1There are several well-studied combinatorial notions of cycles in contrast to the more linear
algebraic notion of even covers.

https://en.wikipedia.org/wiki/Hypergraph#Cycles
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Applications of girth-density trade-offs. Like the graph Moore bound, girth-
density trade-offs for hypergraphs have foundational connections to several re-
search directions in theoretical computer science. One source of such applications
is the observation that for a collection of linear equations in F2 on n variables, if we
associate each equation to the set indicated by its coefficient vector, then the girth
of the resulting hypergraph on [n] is the same as the size of the smallest linearly
dependent subset of equations. As a consequence, rate vs distance trade-offs for
low density parity check (LDPC) codes are equivalent to the girth vs size trade-offs
for k-uniform hypergraphs with hyperedges corresponding to the columns of the
parity check matrix. As a result, there is an extensive line of work that studies the
girth-density trade-offs for hypergraphs (see e.g. [BKHL99, BMS08, AF09]).

Naor and Verstraëte [NV08] started a systematic study of hypergraph girth
density trade-offs. They were explicitly motivated by mapping the rate-distance
trade-offs for LDPC codes and computing product representations of square in-
tegers arises as a step in sub-exponential time algorithms for integer factoring.
In particular, they showed that every k-uniform hypergraph on n vertices and
O(nk/2 log n) hyperedges must have an even cover of size O(log n). Improving
the bounds of [NV08] for k = 3, Feige [Fei08] proved that every 3-uniform hy-
pergraph on n vertices and O(n3/2) log log n hyperedges has an even cover of
length O(log n). Feige’s motivation was a connection, via the connection to lin-
ear equations modulo 2 discussed above, to refuting random 3SAT formulas and
generalizations. In particular, by exploiting this improved bound, Feige derived
a weak refutation algorithm for smoothed 3SAT formulas with O(n1.5 log log n)
constraints.

Hypergraph Moore bound. Feige’s result leaves open the uncharted territory of
hypergraph sizes between m ∼ n and m ∼ nk/2 — a polynomially large multiplica-
tive interval when k > 2. The work of Feige, Kim and Ofek [FKO06] found an
intriguing connection between the girth bounds in this interesting regime and the
foundational average-case problem of refuting random 3SAT formulas [Fei02b].
They observed that random hypergraphs with m ≳ n1.4 hyperedges2 must have
an even cover of length O(n0.2) and used a tour de force argument based on the
second moment method to establish that at the same density, random hypergraphs
should contain n1.4 different almost disjoint even covers of size n0.2. As a conse-

2Throughout this work, we will use the notation f ≳ g to stand for “there exists a constant
C > 0 such that f ⩾ Cg”.
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quence, they obtained their celebrated result on the existence of polynomial size
witnesses of unsatisfiability for random 3SAT formulas with O(n1.4) constraints —
a threshold that is n0.1 factor smaller than the m ≳ n1.5 bound for the best known
efficient refutation algorithms. Motivated both by whether FKO witnesses could
be efficiently constructed (and potentially refute a strong form of Feige’s Random
3SAT hypothesis [Fei02b]) and investigating whether such certificates exist in semi-
random and smoothed 3SAT formulas, Feige [Fei08] conjectured the following
hypergraph Moore bound.

Conjecture 5.1.1 (Hypergraph Moore Bound (Feige’s conjecture), Conjecture 1.2
of [Fei08]). For every k ∈ N and 1 ⩽ r ⩽ n, every hypergraph with n vertices and
m ≳ n(n

r )
k
2−1 hyperedges has an even cover of size O(r log n).

In addition to a complete rate-distance profile for LDPC codes, Feige’s conjec-
ture implies (see Section 9 in [GKM21] for an exposition) a significantly simpler
and 2nd-moment-method-free proof of the existence of the FKO [FKO06] refutation
witnesses below the spectral threshold for random 3SAT (and other CSPs) that also
generalizes to semirandom and smoothed instances3.

Feige’s conjecture was recently settled by Guruswami, Kothari and Manohar
[GKM21] up to an additional log4k+1 n multiplicative factor in the density m. Their
proof goes via a new connection between the existence of small even covers in k-
uniform hypergraphs and sub-exponential size spectral refutations of semirandom
k-XOR formulas via a certain Kikuchi matrix.

While [GKM21] begins with an elegant and simple observation, their technical
analysis especially for odd k (the “hard” case in all algorithms and certificates
for refutation) is quite complicated and involves manipulating the Kikuchi ma-
trix via “row bucketing” and “row pruning” in various steps and invoking the
Schudy–Sviridenko concentration inequality [SS12] (that extends the breakthrough
work of Kim and Vu [KV00]) for polynomials with combinatorial structure in the
monomials. As a consequence, even for the simplest case of k = 2 (i.e., recovering
the classical Moore bound), their proof incurs an additional log3 n factor.

3A smoothed Boolean CSP instance is obtained by starting from a worst-case instance and
perturbing the literal patterns by independently flipping each with some small constant probability
(with probability 1/2 in the special case of the semirandom model). In particular, in contrast to
random CSPs where the variables in every clause are generated uniformly at random, smoothed
and semirandom CSP instances have a worst-case clause structure.
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5.1.1 Our results

The main result of this work is a simple and short proof of the hypergraph Moore
bound that is almost tight up to a single logarithmic factor.

Theorem 5.1.2. For every k ∈ N and 1 ⩽ r ⩽ n, every hypergraph on n vertices and
m ≳ n log n · (n

r )
k
2−1 hyperedges has an even cover of size O(r log n).

In Section 5.2.1 and Appendix 5.5, as evidence of the power of our proof
strategy, we obtain yet another proof of the classical Moore bound [AHL02] with
the same leading constant. Independently of our work, David Munhá Correia and
Benny Sudakov [CS22] informed us that they have found a simple, combinatorial
argument for analyzing the Kikuchi matrix to prove a hypergraph Moore bound
for even arity k that also loses only a single logarithmic factor.

Our techniques extend to give a simple and tighter proof of a sub-exponential
time strong refutation algorithm for semirandom k-XOR formulas when the num-
ber of constraints is below the “spectral threshold” nk/2, which is spelled out in
Section 5.4. Via the standard XOR trick (see, for example, [AOW15]), this recovers
a tighter trade-off for refuting smoothed Boolean constraint satisfaction problems
as in [GKM21]. Prior to our work, a bound tight up to log n factors was not known
even for the (significantly) easier setting of fully random k-XOR refutation for odd k
(the argument of [WAM19] obtains such a result for even k) where the best known
bound due to [RRS17] loses a log2k n factor.

Theorem 5.1.3 (Informal). Fix k ∈N and r ⩽ n, there is an nO(r)-time algorithm such
that given a semirandom k-XOR instance ψ with n variables and m ≳ n log n · (n

r )
k
2−1

constraints, it certifies that ψ is not (1/2 + 0.01)-satisfiable.

We believe that the last remaining logarithmic factor in the theorems above
is also unnecessary. However, removing it seems related to certain technical
difficulties that arise in beating the logarithmic factor incurred in spectral norm
bounds for the matrix Rademacher series [Tro15]. In particular, the tightest known
proof for the closely related problem of refuting fully random k-XOR formulas
below the spectral threshold also loses a log n factor for even k [WAM19] and a
log2k n-factor for odd k [RRS17]. For some easier settings such as refutation in
the polynomial time regime [dT22] and understanding the SDP value of random
NAE-3SAT and generalizations [FM17, DMO+19, MOP20], recent works manage
to circumvent this difficulty by application of powerful tools such as the Ihara–Bass
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formula and the largest eigenvalue of non-backtracking walk matrices. Our proof
suggests a natural and more elementary route to removing this final logarithmic
factor but requires resolving the count of certain “walks" that arise in our analysis.

Key ideas. The abstract strategy employed by [GKM21] is to construct a so called
Kikuchi matrix AH (first introduced in the work of [WAM19] on Gaussian tensor
PCA) associated with our hypergraphH where:

(i) 1
⊤AH1 is a surrogate for the number of hyperedges inH.

(ii) The lack of short even covers inH can be turned into a certificate that 1⊤AH1
is small, which then translates to a bound on |H|.

The certificate used by [GKM21] is ∥AH∥∞→1, which they control by bucketing
the rows by weight, bounding the spectral norm of each submatrix, and stitching
these norms together.

Our key insight is in the style of certificate we provide — we give a matrix Q
such that Q ⪰ AH. Such a certificate implies a bound of tr(Q) on our surrogate
for |H|. The inequality Q ⪰ AH is equivalent to proving

∥∥Q−1/2AHQ−1/2
∥∥

2 ⩽ 1,
which can be done via the trace moment method with relative ease. Our reweight-
ing strategy is akin to constructing a “diagonal weighted” dual solution for certifying
upper bounds on the value of the basic SDP relaxation for quadratic optimization
problems on the hypercube such as Max-Cut and the Grothendieck problems.
Our reweighting strategy simplifies the analysis, removes the need for the “row
bucketing” step in [GKM21], and lets us obtain a sharper result.

Our proof for odd k requires combining our reweighted Kikuchi matrix with
a new “edge deletion” operation that controls the “heavy rows” in the Kikuchi
matrix. At a high level, our strategy involves deleting an appropriately chosen
set of entries of the Kikuchi matrix in comparison to the “row pruning" strategy
of [GKM21] which involves deleting entire rows (vertices in the Kikuchi graph).
This seemingly technical change leads to a great deal of simplification and in
particular allows replacing the use of the Schudy–Sviridenko inequality [SS12]
and the carefully introduced logarithmic factors in the hypergraph regularity
decomposition in [GKM21].

Organization. The rest of this paper is organized as follows. In Section 5.2, we
give a complete (and sharper) proof of the hypergraph Moore bound for the even
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arity case, starting with a proof of a weak version (that loses additional constant
factors) of the classical Moore bound using our ideas. We will include detailed
commentary for the sake of exposition and a short overview of the additional ideas
(including our new edge deletion trick) to handle the odd arity case. In Section 5.3,
we will give a proof of the hypergraph Moore bound for odd arity. Finally, in
Section 5.4, we will extend our techniques to obtain strong refutation algorithms
for semirandom and smoothed Boolean CSPs.

5.2 Warm-up: hypergraph Moore bound in the even
arity case

In this section, we will give a proof of the Moore bound for hypergraphs of even
arity with the goal of providing an exposition of our main ideas. As an illustration
of the power of our reweighting idea, in Section 5.2.1 we will give a simple proof
of the classical Moore bound [AHL02] that is tight up to an absolute constant
factor (as opposed to the log3 n loss incurred by the strategy of [GKM21]).4 In
Section 5.2.2, we will generalize the reweighting idea to prove hypergraph Moore
bound for all even arities. Finally in Section 5.2.3, we will discuss the key new idea
of edge deletions that is crucial for our simpler and tighter proof for the case of odd
k.

5.2.1 Weak Moore bound for graphs

In this section, we prove a weak Moore bound for graphs to illustrate our reweight-
ing strategy in a simple setting. The resulting bound is weak in the sense that it
incurs a constant factor loss when compared to [AHL02]. In Appendix 5.5, we
implement this strategy (in a way that is less generalizable to hypergraphs) to
recover the tight 2 logd−1 n bound.

We note that [GKM21] also proved a weaker Moore bound (Proposition 2.3 of
[GKM21]) to illustrate their “row bucketing" strategy that partitions the vertices
into O(log n) buckets, each of which has vertices with degrees within a multiplica-
tive constant factor of each other. This strategy splits the adjacency matrix A into

4In Appendix 5.5, we present a proof that uses one additional tool to recover the classical Moore
bound for irregular graphs with the same leading constant.
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O(log2 n) pieces and ends up requiring an average degree d ≳ log3 n in order to
contain a cycle of length O(log n).

This simple exercise will show how our reweighting handles different degrees
automatically, avoiding the lossy row bucketing step completely.

Proposition 5.2.1 (Weak Moore bound for irregular graphs). Every graph with n
vertices and average degree d > 16 has a cycle of length at most 2⌈log(d/16) n⌉.

The core of the proof of Proposition 5.2.1 is the following spectral norm bound
on the reweighted adjacency matrix.

Claim 5.2.2. Let G be a graph with n vertices and average degree d > 1 that has no
cycle of length ⩽ ℓ for some even ℓ ∈ N. Let A be the {0, 1} adjacency matrix of
G, and let Γ = D + d1 be the diagonal matrix such that Duu = du where du is the
degree of vertex u. Then,

∥∥Γ−1/2AΓ−1/2
∥∥

2 < 2n1/ℓ
√

d
.

We now complete the proof of Proposition 5.2.1.

Proof of Proposition 5.2.1 by Claim 5.2.2. Suppose G has no cycle of length ⩽ ℓ, then
Claim 5.2.2 implies that A ≺ 2n1/ℓ

√
d

Γ. Then, the quadratic form 1
⊤A1 < 2n1/ℓ

√
d

tr(Γ)

since 1⊤Γ1 = tr(Γ). By definition, 1⊤A1 = nd and tr(Γ) = ∑n
u=1(du + d) = 2nd.

Thus, n1/ℓ >
√

d/4, and taking logs, we get

1
ℓ

log n >
1
2

log(d/16)⇒ ℓ

2
< logd/16 n .

ℓ is even, so we have ℓ < 2⌈logd/16 n⌉. Thus, by the contrapositive, G must contain
a cycle of length 2⌈logd/16 n⌉. This completes the proof.

We now prove Claim 5.2.2 using the well-known trace moment method, which
reduces to counting weighted closed walks in the graph. In the analysis, we will
see exactly how the choice of the reweighting matrix Γ accounts for different vertex
degrees.

Proof of Claim 5.2.2. Let Ã = Γ−1/2AΓ−1/2. For even ℓ ∈ N, the trace moment
method states that ∥Ã∥ℓ2 ⩽ tr(Ãℓ) = tr((Γ−1A)ℓ), which is a summation of all
(weighted) closed walks of length ℓ in G. Since there is no cycle of length ⩽ ℓ, the
only closed walks are the ones that backtrack to the original vertex, meaning that
there can be at most ℓ/2 “new” edges and at least ℓ/2 “old” edges in the walk. We
encode each closed walk u1 → u2 → · · · → uℓ → u1 as follows,
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• Choose a starting vertex u1 ∈ [n].

• One bit bi ∈ {0, 1} at each step i to encode whether this step uses a new edge
or an old one.

– If bi = 0 (new edge), select one of ui’s neighbors as ui+1.

– If bi = 1 (old edge), we must backtrack to the previous vertex ui−1.

For b ∈ {0, 1} and u ∈ [n], let Nb(u) ⊆ [n] be the possible next steps in the walk
from u. Then, simply expanding tr((Γ−1A)ℓ), we get

tr((Γ−1A)ℓ) =

∑
b∈{0,1}ℓ

∑
u1∈[n]

∑
u2∈Nb1

(u1)

Γ−1
u1u1 ∑

u3∈Nb2
(u2)

Γ−1
u2u2
· · · ∑

uℓ+1∈Nbℓ
(uℓ)

Γ−1
uℓuℓ
· 1(uℓ+1 = u1) .

As we can see, each step ui → ui+1 gets a factor Γ−1
uiui

= 1
dui+d . We can now bound

the above by observing that if bi = 0 (new edge), then |N0(ui)| ⩽ dui and

∑
ui+1∈N0(ui)

Γ−1
uiui

⩽
dui

dui + d
< 1 ,

and if bi = 0 (old edge), then |N1(ui)| = 1 (the previous step) and

∑
ui+1∈N1(ui)

Γ−1
uiui

⩽
1

dui + d
<

1
d

.

Finally, considering b ∈ {0, 1}ℓ, u1 ∈ [n], and there are at least ℓ/2 old edges, we
have

tr((Γ−1A)ℓ) < 2ℓn
(

1
d

)ℓ/2

,

and taking the ℓ-th root completes the proof.

5.2.2 The case of even arity hypergraphs

In this section, we prove the existence of small even covers in even arity hyper-
graphs.
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Theorem 5.2.3 (Theorem 5.1.2, even k). For even k ∈ N and any r ∈ N with k ⩽
r ⩽ n/8, any k-uniform hypergraph H with n vertices and m ⩾ 128n log n · (n

r )
k/2−1

hyperedges has an even cover of size at most ⌈r log2 n⌉+ 1.

The proof is simple and almost identical to the proof of the weak Moore bound
(Proposition 5.2.1) but with A being the adjacency matrix of the Kikuchi graph which
we define below.

Definition 5.2.4 (Kikuchi graph). LetH be a k-uniform hypergraph on vertex set
[n] for even k. For an integer parameter r, define the Kikuchi graph Kr associated to
H is a graph on vertex set ([n]r ) such that a pair of vertices S, T ∈ ([n]r ) have an edge
between them if the symmetric difference S⊕ T ∈ H. For such an edge, we write

S C←→ T and think of the edge as “colored” by C ∈ H where C = S⊕ T. We call the
adjacency matrix A of Kr the Kikuchi matrix.

The key insight of [GKM21] (and also our starting point) is relating even covers
in H to cycles in the associated Kikuchi graph. For sets R1, R2, . . . , Rℓ ⊆ [n] let
⊕i⩽ℓRi denote the set of elements of [n] that appear in an odd number of Ris (i.e.,
the sum modulo 2 of the indicator vectors of Ris).

Observation 5.2.5 (Closed walks in the Kikuchi graph). Let H be a k-uniform
hypergraph on [n] for even k and let S1 → S2 → · · · Sℓ → S1 be a closed walk

on vertices in Kr such that for every i ⩽ ℓ, Si
Ci←→ Si+1 for C1, C2, . . . , Cℓ ∈ H

(denoting Sℓ+1 = S1). Then, ⊕i⩽ℓCi = 0. Further, ifH has no even cover of length
ℓ, then every hyperedge in H appears an even number of times in the multiset
{C1, C2, . . . , Cℓ}. We will call such walks in Kr trivial.

Proof. Note that Si ⊕ Si+1 = Ci for every i ⩽ ℓ. If we add both sides of all ℓ such
equalities then each Si occurs in exactly two of the equations so the LHS must be 0.
Thus, ⊕i⩽ℓCi = 0.

Next, we repeatedly remove hyperedges that occur an even number of times
in the multiset {C1, C2, . . . , Cℓ} to obtain a collection of ℓ′ ⩽ ℓ distinct hyperedges
of H. The sum (modulo 2) of the remaining hyperedge should still be 0 as we
removed hyperedges in pairs. The resulting ℓ′ must be 0 as otherwise the remaining
hyperedges form an even cover of length ℓ′ ⩽ ℓ.

Consider a hypergraphH with n vertices and m hyperedges, and its associated
Kikuchi graph (V, E) with parameter r. Each C ∈ H introduces 1

2(
k

k/2)(
n−k

r−k/2) edges
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in the Kikuchi graph (select k/2 vertices from C and select r− k/2 vertices from
[n] \ C to complete S), thus the total edges |E| = 1

2(
k

k/2)(
n−k

r−k/2) ·m. Let dS be the
degree of S ∈ V, and let d denote the average degree, then simple calculations
show that

d =
( k

k/2)(
n−k

r−k/2)m
(n

r)
⩾
( r

n

)k/2
m ·
(

k
k/2

)(
1− 2r

n

)k/2(
1− k

2r

)k/2

⩾
1
2

( r
n

)k/2
m

(5.1)
when k ⩽ r ⩽ n/8.

We will follow the reweighting strategy with Γ = D + d1 to bound the spectral
norm of the reweighted Kikuchi matrix. The following lemma is analogous to
Claim 5.2.2.

Lemma 5.2.6. Let k, r, n ∈ N such that k ⩽ r ⩽ n, and let ℓ ∈ N be even. Let A be
the Kikuchi matrix with parameter r of a k-uniform hypergraphH on n vertices, and let
Γ = D + d1 where D is the degree matrix and d is the average degree of the Kikuchi graph.
Suppose there is no even cover of size at most ℓ inH, then

∥∥∥Γ−1/2AΓ−1/2
∥∥∥

2
< 2nr/ℓ

√
ℓ

d
.

We can immediately complete the proof of Theorem 5.2.3.

Proof of Theorem 5.2.3 by Lemma 5.2.6. Suppose that there is no even cover of size
⩽ ℓ := ⌈r log2 n⌉ (assume this is even, otherwise add 1). Then, nr/ℓ ⩽ 2 and
Lemma 5.2.6 states that the Kikuchi graph (V, E) satisfies A ≺ 4

√
ℓ/d · Γ where

Γ = D + d1. Then,

1
⊤A1 < 4

√
ℓ

d
· tr(Γ) = 4

√
ℓ

d
· ∑

S∈V
(dS + d) = 8

√
ℓ

d
· |V|d .

On the other hand, 1⊤A1 = 2|E| = |V|d. Thus, we have d < 64ℓ. By (5.1) we have
d ⩾ 1

2(
r
n )

k/2m when k ⩽ r ⩽ n/8. Thus, if there is no even cover of size ⩽ ℓ, then
m < 128n log n · (n

r )
k/2−1, completing the proof.

Now, we prove Lemma 5.2.6 by counting weighted closed walks in the Kikuchi
graph, essentially the same way we prove Claim 5.2.2.
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Proof of Lemma 5.2.6. Let Ã = Γ−1/2AΓ−1/2. We use the trace power method:

∥Ã∥ℓ2 ⩽ tr(Ãℓ) = tr((Γ−1A)ℓ) .

We upper bound tr((Γ−1A)ℓ) by counting (weighted) closed walks of length ℓ in
the Kikuchi graph. Note that each edge (S, T) of the Kikuchi graph corresponds to
a hyperedge S⊕ T ∈ H. Since there is no even covers of size at most ℓ, any closed
walk must contain an even number of each hyperedge inH.

We can encode a closed walk S1 → S2 → · · · → Sℓ → S1 as follows:

• Choose a starting vertex S1 ∈ V.

• One bit bi ∈ {0, 1} at each step i to encode whether this step uses a new
hyperedge or an old one.

– If bi = 0 (new hyperedge), select one of Si’s neighbors as Si+1.

– If bi = 1 (old hyperedge), select an old hyperedge C from the previous
steps, and set Si+1 = Si ⊕ C.

Note that there are at most ℓ/2 new hyperedges and at least ℓ/2 old hyperedges
since each hyperedge must occur an even number of times. For b ∈ {0, 1} and
S ∈ V, let Nb(S) ⊆ V be the possible next steps in the walk from S (according to b).
Each step Si → Si+1 gets a factor (Γ−1A)Si,Si+1 = Γ−1

Si,Si
= 1

dSi
+d . Thus,

tr((Γ−1A)ℓ) =

∑
b∈{0,1}ℓ

∑
S1∈V

∑
S2∈Nb1

(S1)

1
dS1 + d ∑

S3∈Nb2
(S2)

1
dS2 + d

· · · ∑
Sℓ+1∈Nbℓ

(Sℓ)

1(Sℓ+1 = S1)

dSℓ + d
.

We can upper bound the above as follows. If b = 0, then |N0(Si)| ⩽ dSi and

∑Si+1∈N0(Si)
Γ−1

SiSi
⩽

dSi
dSi

+d < 1. If b = 1, then |N1(Si)| ⩽ ℓ as there are only ℓ

options to choose one of the previous steps, and ∑Si+1∈N1(Si)
Γ−1

SiSi
⩽ ℓ

dSi
+d < ℓ

d .

Furthermore, we can assume that ℓ ⩽ d, otherwise we can simply treat all steps as
new hyperedges.

Finally, b ∈ {0, 1}ℓ, there are |V| = (n
r) choices for the starting vertex S1, and

there are at least ℓ/2 old hyperedges. Thus, we have

tr((Γ−1A)ℓ) < 2ℓ
(

n
r

)(
ℓ

d

)ℓ/2

⩽ 2ℓnr
(
ℓ

d

)ℓ/2

.
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Taking the ℓ-th root completes the proof.

Summary. As the above short and simple arguments illustrate, reweighted
Kikuchi matrix appears to be a clean and simple way to handle irregularities
in the degree of graphs (Kikuchi or otherwise) in spectral double counting. For
k > 2, we suspect that the extra log n factor incurred in our analysis can likely be
removed by a better counting of the weighted closed walks.

5.2.3 Overview of the odd arity case

As in many previous works on refuting constraint satisfaction problems, the odd
arity case requires significantly more work. Indeed, even the definition of the
Kikuchi graph (Definition 5.2.4) only makes sense when k is even. We present the
proof of the odd arity case in Section 5.3, and here we outline some of our key
ideas.

Bipartite hypergraph. The main insight is to transform the hypergraph H to a
“bipartite” hypergraph (this abstraction is closely related to the Cauchy-Schwarz
trick in the context of odd-arity CSP refutation). First, we partition the hyperedges
ofH intoH1, . . . ,Hp such that for eachHi, all hyperedges inHi contains a “center”
vertex ui ∈ [n]. We denote H̃i to be {C \ {ui} : C ∈ Hi}, i.e. removing the
center vertex, and denote C̃ := C \ {ui}. Then, we construct a 2(k− 1)-uniform
hypergraph as follows: for each i ∈ [p] and each distinct pair C, C′ ∈ Hi, we add a
hyperedge C̃⊕ C̃′ (let’s assume C̃, C̃′ are disjoint for now).

Let’s make some quick calculations. Suppose that H has m hyperedges, and
suppose that there are roughly p ≈ n partitions and each partition size is ≈ m/n.
Then, the new 2(k− 1)-uniform hypergraphs will contain roughly n · (m/n)2 = m2

n
hyperedges. Now, since 2(k− 1) is even, we can apply our bound for the even
case: there is an even cover of size r log n when m2

n ⩾ Õ(n)(n
r )

(k−1)−1, meaning
m ⩾ Õ(n)(n

r )
k
2−1, the correct bound!

The issue is that this new hypergraph has small even covers for trivial reasons:
any 3 pairs (C1, C2), (C2, C3) and (C3, C1) from Hi form an even cover of size 3.
Nevertheless, we can proceed to analyze the Kikuchi matrix of the new hypergraph
(Definition 5.3.6), assuming that there is no small even cover in the original hyper-
graph. Note that now an edge (S, T) is associated with 2 hyperedges C, C′ from the
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same Hi, which we denote as S C,C′←−→ T. Assuming that there is no even cover of
size ⩽ 2ℓ, we bound the number of “trivial” closed walks where each hyperedge is
used an even number of times.

Encoding a closed walk. The standard technique of bounding counts of closed
walks in the trace moment method is to give a small encoding of a walk. In our case,
in a length-ℓ closed walk of the Kikuchi graph, each step is associated with two
hyperedges, and we have two types of steps:

1. a step using 2 new hyperedges, and

2. a step using at least 1 old hyperedge.

The first type is bounded exactly the same way as the even arity case by our weight
matrix Γ, the trouble is the second type: while we can easily encode one edge in
the step, we need too many bits to encode the other edge.

Deleting bad edges of the Kikuchi graph. The main insight is that in the end,
we only care about bounding 1

⊤A1. Again, let d be the average degree of the
Kikuchi graph, A ∈ RN×N be the Kikuchi matrix, and Γ = D + d1 be our diagonal
weight matrix. If we delete (say) half of the edges of the Kikuchi graph such that
we have ∥Γ−1/2A′Γ−1/2∥2 ⩽ λ(d), where A′ is the modified Kikuchi matrix, for
some “good enough” λ(d), then we will have Nd

2 ⩽ 1
⊤A′1 ⩽ λ tr(Γ) = λ · 2Nd,

essentially only losing a constant factor in the density.
We define an appropriate edge deletion process, prove that the fraction of

edges removed is small (Claim 5.3.10), and show that the resulting subgraph has
combinatorial properties that let us encode steps of the second type efficiently
(Lemma 5.3.9).

Improving the row pruning step of [GKM21]. The analysis of [GKM21] also
requires reducing the Kikuchi graph to obtain certain combinatorial properties.
However, instead of deleting “bad” edges, they delete “bad” vertices, which they
defined as vertices that are bad for some i in the bipartite hypergraph (they call this
row pruning as each row of the Kikuchi matrix corresponds to a vertex). Crucially,
doing so requires a union bound over i, hence they need a strong bound on
fraction of bad vertices for each i. Furthermore, they proved their bound using tail
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inequalities for low-degree polynomials by Schudy and Sviridenko [SS12], which
is a powerful black-box concentration inequality but loses log factors and requires
involved analysis. All this combined with the row bucketing step introduces
several log factors.

Hyperedges with large intersections. It turns out that the fraction of bad edges
highly depends on large intersections of hyperedges inH. To bound the fraction of
edges deleted, we require our hypergraph to be somewhat “regular” – that is, no
small subset appears in more than an appropriately chosen threshold of hyperedges
inH. To this end, we invoke the hypergraph regularity decomposition of [GKM21]
(with more transparently chosen thresholds that do not involve carefully chosen
logarithmic factors) to decompose the hypergraph into at most k subhypergraphs
such that each piece satisfies the required regularity conditions (see Algorithm 5.3.2
and Observation 5.3.4 & 5.3.3). Then, there must be one subhypergraphH(i) with
at least m/k hyperedges, and we will show that there exists an even cover within
H(i).

5.3 Hypergraph Moore bound for odd arity
hypergraphs

In this section we prove the hypergraph Moore bound for k-uniform hypergraphs
when k is odd.

Theorem 5.3.1 (Theorem 5.1.2, odd k). There is a universal constant B such that for
any odd k ∈ N, and any r ∈ N satisfying 2k ⩽ r ⩽ n

Bk , any k-uniform hypergraph H
with n vertices and m ⩾ Bkn log n ·

(n
r
)k/2−1 hyperedges has an even cover of size at most

r log2 n.

Our proof strategy broadly involves the following steps.

• Hypergraph decomposition. We partitionH into subhypergraphsH(0), . . . ,
H(k−1) with the property that every size-(i + 1) set in H(i) is contained in
only a small number of clauses, and every clause in H(i) intersects many
other clauses at a size-i set. One of theH(i) must contain at least m/k clauses,
and we find an even cover in thatH(i).
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• Large i. When i ⩾ k+1
2 , we give a direct reduction to the hypergraph Moore

bound for even arity hypergraphs and apply Theorem 5.2.3.

• Kikuchi graph. To handle the remaining values of i, we show the existence
of an even cover by proving the contrapositive — a hypergraph with no
small even covers has a bounded number of hyperedges. To achieve this, we
appropriately define the Kikuchi graph for odd arity hypergraphs, and show
that the adjacency matrix Â of some suitably chosen subgraph (via the “edge
deletion process” described below) satisfies Â ⪯ Q for some diagonal matrix
Q. Then the resulting inequality 1

⊤ Â1 ⩽ tr(Q) can be rearranged to bound
the number of hyperedges.

• Trace method. The way we prove Â ⪯ Q is by using the trace moment
method to show

∥∥∥Q−1/2ÂQ−1/2
∥∥∥

2
⩽ 1. Bounding a high trace power of

Q−1/2ÂQ−1/2 corresponds to bounding the total weight of closed walks that
use every hyperedge an even number of times in the Kikuchi graph.

• Edge deletion process. We delete a small fraction of the edges in Kr with
the guarantee that in the resulting subgraph any clause participates in only a
small number of incident edges to every vertex.

Hypergraph decomposition. We describe our algorithm to partition our hyper-
graph.

Algorithm 5.3.2. We partitionH into hypergraphsH(0), . . . ,H(k−1) via the follow-
ing algorithm.

1. Set t = k− 1 andHcurrent := H.

2. Set counter s = 1. While there is U ⊆ [n] such that |U| = t and

|{C ∈ Hcurrent : U ⊆ C}| ⩾ max

{
2,
(n

r

) k
2−t
}

:

a) Choose U satisfying the condition and let H(t)
s be a subset of {C ∈

Hcurrent : U ⊆ C} of size max
{

2,
(n

r
) k

2−t
}

.

b) Add all clauses inH(t)
s toH(t).
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c) Delete all clauses inH(t)
s toHcurrent.

d) Increment s by 1.

3. Decrement t by 1. If t > 0, go back to step 2; otherwise take the remaining
clauses inHcurrent and add them toH(0).

First, observe that the largest subhypergraphH(i) in the partition produced by
our algorithm must have at least m

k hyperedges. Next, observe that i ̸= 0 because if

|H(0)| ⩾ m/k, then there must be a j ∈ [n] such that
∣∣∣{C ∈ H(0) : j ∈ C}

∣∣∣ ⩾ m
nk ≫

(n
r )

k/2−1, which would have been added toH(1). Our goal in the rest of the proof
is to find a small even cover in H(i). The following observations articulate the
properties ofH(i) we need that are guaranteed by the algorithm.

Observation 5.3.3. H(i) can be partitioned intoH(i)
1 , . . . ,H(i)

p where for each j ∈ [p],

there is a set Uj of size i such that every C ∈ H(i)
j contains Uj, and |H(i)

j | ⩾
(n

r
) k

2−i

and p ⩽ m ·
( r

n
) k

2−i.

Observation 5.3.4. For s ⩾ 1 and any U ⊆ [n] such that |U| = i + s, the number

of hyperedges inH(i) containing U is at most max
{

1,
(n

r
) k

2−s−i
}

, otherwise they

would have been added toH(i+s).

Reduction to even arity case when i ⩾ k+1
2 . In this case, by Observation 5.3.4,

each pair C ̸= C′ in any H(i)
j must satisfy C ∩ C′ = Uj. The following makes the

reduction from finding even covers inH(i) if i ⩾ k+1
2 to the even arity case concrete.

Lemma 5.3.5. LetH be a k-uniform hypergraph on n vertices with no even cover of size
r log2 n. Fix 1 ⩽ i ⩽ k− 1. Suppose H1, . . . ,Hp are disjoint subsets of H such that for
each j ∈ [p], |Hj| ⩾ 2 and all pairs of hyperedges C ̸= C′ ∈ Hj satisfy C ∩ C′ = Uj for
some Uj ⊆ [n] of size i. Then,

p

∑
j=1
|Hj| ⩽ O(n log n)

(
2n
r

)k−i−1

.

In particular, when i ⩾ k+1
2 the above is at most O(n log n) ·

(n
r
)k/2−1.
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Proof. Given such disjoint subsetsH1, . . . ,Hp, we can construct a 2(k− i)-uniform
hypergraph Ĥ by the following: for each j ∈ [p], arbitrarily order the edges: Hj =

(C1, . . . , C|Hj|). Then, add the hyperedge Cs ⊕ Cs+1 to Ĥ for s = 1, . . . , |Hj| − 1. By

assumption |Cs ∩ Cs+1| = |Uj| = i, thus |Cs ⊕ Cs+1| = 2(k− i). The resulting Ĥ
has

|Ĥ| =
p

∑
j=1
|Hj| − 1 ⩾

1
2

p

∑
j=1
|Hj|

hyperedges, since |Hj| ⩾ 2 for all j ∈ [p].
We claim that Ĥ cannot have an even cover of size at most r

2 log2 n. First, if
Ĥ has repeated hyperedges, then there must exist j ̸= j′ ∈ [p] and C1, C2 ∈ Hj,
C′1, C′2 ∈ Hj′ such that C1 ⊕ C2 = C′1 ⊕ C′2, but then {C1, C2, C′1, C′2} would be an
even cover of size 4 inH. Now, suppose Ĥ has no repeated edges but has an even
cover of size ℓ. Then, for any Ĉ in the even cover, we can uniquely identify j ∈ [p]
and s ⩽ |Hj| − 1 such that Cs, Cs+1 ∈ Hj and Ĉ = Cs ⊕ Cs+1. Furthermore, by
construction there must be at least two Cs, Cs′ ∈ Hj that each occurs only once.
Therefore, these edges must form an even cover of size at most 2ℓ inH.

Since 2(k− i) is even and Ĥ has no even cover of size r
2 log2 n, we can apply

Theorem 5.2.3 to show that

|Ĥ| ⩽ O(n log n)
(

2n
r

)k−i−1

.

This completes the proof.

Henceforth, we assume i ⩽ k−1
2 , which is the case we need an appropriate

Kikuchi graph for odd arity hypergraphs.

Kikuchi matrix for odd arity hypergraphs. The following is the same Kikuchi
graph defined in [GKM21, Definition 6.2].

Definition 5.3.6 (Colored Kikuchi graphs and subgraphs). Fix r ∈ N and t ∈
{1, . . . , k− 1} such that 2k ⩽ r ⩽ n. LetH1, . . . ,Hp be p disjoint sets of hyperedges
such that for each i ∈ [p], all hyperedges in Hi have a common subset Ui ⊂ [n]
where |Ui| = t. For each C ∈ Hi, denote C̃ := C \Ui, and denote H̃i := {C̃ : C ∈
Hi} which can be viewed as a (k− t)-uniform hypergraph. We define the colored
Kikuchi graph Kr as follows.
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The vertex set V(Kr) consists of subsets of [n]× [2] of size r, where S ∈ V is
viewed as (S(1), S(2)) where S(1), S(2) ⊆ [n] are colored green and blue respectively.
For each i ∈ [p] and each C ̸= C′ ∈ Hi, let C̃(1) be C̃ colored green and C̃′(2) be

C̃′ colored blue, and we add an edge between S, T ∈ V, denoted S C,C′←−→ T, if
S⊕ T = C̃(1) ⊕ C̃′(2) and if one of the following holds,

• |C̃ ∩ S(1)| = |C̃′ ∩ T(2)| =
⌈

k−t
2

⌉
and |C̃′ ∩ S(2)| = |C̃ ∩ T(1)| =

⌊
k−t

2

⌋
, or

• |C̃ ∩ S(1)| = |C̃′ ∩ T(2)| =
⌊

k−t
2

⌋
and |C̃′ ∩ S(2)| = |C̃ ∩ T(1)| =

⌈
k−t

2

⌉
, or

Figure 5.1 shows an example of two edges C, C′ ∈ Hi forming an edge (S, T) in the
Kikuchi graph.

We say that the edge (S, T) is type-i, and for S ∈ V, we define the type-i degree
as

dS,i :=
∣∣∣∣{ C ∈ Hi :

∣∣∣∣ C̃ ∩ S(1)| or |C̃ ∩ S(2)| ∈
{ ⌈

k− t
2

⌉
,
⌊

k− t
2

⌋ } }∣∣∣∣ .

We call any subgraph of the colored Kikuchi graph as a colored Kikuchi subgraph.

1 2

3
4

5

6
7

8

C

C’

3

4

6

6

9

S

C, C’

5

6

7

8

9

T

Figure 5.1: An example of Definition 5.3.6 with k = 5 and t = 2. On the left
are two 5-uniform hyperedges in Hi with common intersection Ui = {1, 2} and
C̃ = {3, 4, 5}, C̃′ = {6, 7, 8}. On the right, S and T are vertices in the Kikuchi
graph where S(1) = {3, 4, 6}, T(1) = {5, 6} are colored green, and S(2) = {6, 9},
T(2) = {7, 8, 9} are colored blue. C and C′ form an edge between S, T because
|C̃ ∩ S(1)| = 2, |C̃ ∩ T(1)| = 1, |C̃′ ∩ S(2)| = 1, and |C̃′ ∩ T(2)| = 2.

Remark 5.3.7 (Purpose of coloring). The coloring in Definition 5.3.6 is needed
because C ̸= C′ ∈ Hi may have intersection larger than t, meaning |C ⊕ C′| =
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|C̃⊕ C̃′| < 2(k− t), making the analysis complicated. Coloring C̃, C̃′ with different
colors automatically makes C̃(1), C̃′(2) disjoint, i.e. |S⊕ T| = |C̃(1) ⊕ C̃′(2)| = 2(k−
t). Note also that a vertex S ⊆ [n]× [2] may contain two copies of some element in
[n] with different colors, as shown in Figure 5.1.

Observation 5.3.8 (Parameters of the Kikuchi graph). The Kikuchi graph (V, E)
defined in Definition 5.3.6 has |V| = (2n

r ), and each distinct pair C, C′ ∈ Hi
contributes a collection of edges EC,C′ in E, where

|EC,C′ | = αt :=
(

k− t
⌊ k−t

2 ⌋

)(
k− t
⌈ k−t

2 ⌉

)(
2n− 2(k− t)

r− (k− t)

)
· 21(k− t is odd)

by first choosing C̃ ∩ S(1), C̃′ ∩ S(2) (or C̃ ∩ S(2), C̃′ ∩ S(1)) and completing S’s re-
maining r− (k− t) elements. Thus, |E| = ∑

p
i=1 (

|Hi|
2 ) · αt, and standard calculations

show that when 2k ⩽ r ⩽ n/8, the average degree d = 2|E|
|V| satisfies

( r
2n

)k−t p

∑
i=1

(
|Hi|

2

)
⩽ d ⩽ 22k

( r
2n

)k−t p

∑
i=1

(
|Hi|

2

)
.

Our ideal hope is that the adjacency matrix A of the Kikuchi graph, constructed
from H(i) = (H(i)

1 , . . . ,H(i)
p ), is bounded in the PSD order by some low-trace

diagonal matrix Q. To achieve this, we prove the following lemma analogous to
Lemma 5.2.6, but with the additional requirement that dS,i is small for all S ∈ V(Kr)

and i ∈ [p]. The proof is almost identical to the proof of Lemma 5.2.6 but the
encoding for an “old hyperedge” step is different.

Lemma 5.3.9. Let r ⩾ 2k. Given disjoint hyperedgesH1, . . . ,Hp, let Â be the adjacency
matrix of any colored Kikuchi subgraph K̂r as defined in Definition 5.3.6, and let Γ =

D + d1 where D is the degree matrix and d is the average degree of G. Fix η ∈ R and let
ℓ ∈N be even. Suppose there is no even cover of size at most ℓ, and suppose dS,i ⩽ η for
all S ∈ V and i ∈ [p]. Then,∥∥∥Γ−1/2ÂΓ−1/2

∥∥∥
2
⩽ 2nr/ℓ

√
2ηℓ

d
.

Proof. Let Ã = Γ−1/2ÂΓ−1/2. We again use the trace power method:∥∥Ã
∥∥ℓ

2 ⩽ tr(Ãℓ) = tr((Γ−1A)ℓ) .
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Note that each edge (S, T) in Â corresponds to two hyperedges of the same type
(both from someHi), one green and one blue, and since there is no even covers of
size at most ℓ, any closed walk must contain an even number of each hyperedge.

We encode a closed walk S1 → S2 → · · · → Sℓ → S1 as follows:

• Starting vertex S1 ∈ V.

• One bit bi ∈ {0, 1} at step i to encode whether this step uses two new hyper-
edges or one (or more) old hyperedge.

– If bi = 0 (two new hyperedges), select one of Si’s neighbors as Si+1.

– If bi = 1 (old hyperedge), select an old green (or blue) hyperedge C from
the previous steps, and select a blue (or green) hyperedge C′ incident to
Si.

Recall that for b ∈ {0, 1}, we write Nb(S) as the possible next steps in the walk
from S. Using the same analysis as the proof of Lemma 5.2.6, for b = 0,

∑
Si+1∈N0(Si)

1
dSi + d

⩽ 1 ,

and for b = 1, suppose the old edge is of type j ∈ [p], then |N1(Si)| ⩽ 2ℓdSi,j (one
previous step, 2 colors), thus

∑
Si+1∈Nb(Si)

1
dSi + d

⩽
2ℓdSi,j

dSi + d
⩽

2ηℓ

d
.

We can assume that 2ηℓ ⩽ d, otherwise we can simply treat all steps as new
hyperedges.

There are (2n
r ) ⩽ (2en

r )r ⩽ nr (since r ⩾ 2k and k ⩾ 3) choices to pick the
starting vertex S1. Furthermore, there can be at most ℓ/2 steps that use two new
hyperedges, i.e. |b| ⩾ ℓ/2, thus

tr((Γ−1Â)ℓ) ⩽ nr ∑
b∈{0,1}ℓ

(
2ηℓ

d

)|b|
⩽ 2ℓnr

(
2ηℓ

d

)ℓ/2

.

Taking the ℓ-th root completes the proof.
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Construction of colored Kikuchi subgraph. Unfortunately, the requirement for
all dS,i to be bounded by a small η prohibits us from obtaining a good bound on
the adjacency matrix of the full colored Kikuchi graph Kr using Lemma 5.3.9. This
motivates dropping a small number of edges from Kr, and bounding the adjacency
matrix Â of the resulting subgraph K̂r instead. Thus, we proceed with identifying
a suitable colored Kikuchi subgraph K̂r of H(i) with adjacency matrix Â via the
following edge deletion process:

Start with the colored Kikuchi graph Kr, and delete every edge {S, T}
caused by a pair of clauses C, C′ such that S or T has strictly more than
1 edge that C or C′ participates in.

To obtain a handle on the average degree of K̂r, we first show that the number of
edges of Kr we delete to obtain K̂r is only a small fraction of the total number of
edges, and then the desired lower bound follows from a lower bound on |E(Kr)|.

Analyzing the edge deletion process. We find it convenient to think of the
fraction of deleted edges as the probability that a uniformly random edge in Kr is
absent in K̂r. With this probabilistic interpretation in hand, observe that a uniformly
random edge in Kr is the same as choosing a uniformly random pair of clauses
(C, C′) such that C and C′ both belong to the sameH(i)

j and then choosing a random
edge {S, T} in EC,C′ , the collection of edges adorned by (C, C′). We will use the
notation C′′ →C S to mean |C̃′′ ∩ S| = |C̃∩ S|, where we recall from Definition 5.3.6
that C̃ := C \Uj with Uj being the size-i common intersection of H(i)

j . We then
show the following.

Claim 5.3.10 (Deletion probability). For every pair of clauses (C, C′) such that C
and C′ belong to the sameH(i)

j for some j ∈ [p],

Pr
{S,T}∼EC,C′

[{S, T} deleted] ⩽ k · 4k+1
√

r
n

.

Proof. Recall that we defined C̃ = C \Uj and C̃′ = C′ \Uj. The distribution of
S = (S(1), S(2)) (the green and blue vertices) is uniform on all sets such that:

• |C̃ ∩ S(1)| =
⌈

k−i
2

⌉
, |C̃′ ∩ S(2)| =

⌊
k−i

2

⌋
, or
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• |C̃ ∩ S(1)| =
⌈

k−i
2

⌉
, |C̃′ ∩ S(2)| =

⌊
k−i

2

⌋
.

Then, by union bound,

Pr
{S,T}∼EC,C′

[{S, T} deleted] ⩽ Pr
{S,T}∼EC,C′

[
∃C′′ →C S(1) : C′′ ∈ H(i)

j , C′′ ̸= C
]
+

Pr
{S,T}∼EC,C′

[
∃C′′ →C′ S(2) : C′′ ∈ H(i)

j , C′′ ̸= C′
]
+

Pr
{S,T}∼EC,C′

[
∃C′′ →C T(1) : C′′ ∈ H(i)

j , C′′ ̸= C
]
+

Pr
{S,T}∼EC,C′

[
∃C′′ →C′ T(2) : C′′ ∈ H(i)

j , C′′ ̸= C′
]

= 4 Pr
{S,T}∼EC,C′

[
∃C′′ →C S(1) : C′′ ∈ H(i)

j , C′′ ̸= C
]

then by Markov’s inequality,

⩽ 4 E
{S,T}∼EC,C′

∣∣∣C′′ : C′′ →C S(1), C′′ ∈ H(i)
j , C′′ ̸= C

∣∣∣
= 4 ∑

C′′ :C′′∈H(i)
j

C′′ ̸=C

Pr
{S,T}∼EC,C′

[
C′′ →C S(1)

]
(5.2)

Once the intersection of S with C̃ and C̃′ is chosen, the remaining elements are
selected uniformly at random without replacement. For fixed C′′ ̸= C ∈ H(i)

j ,

since they contain Uj of size i, |C̃′′ ∩ C̃| = |C′′ ∩ C| − i, and S must include ⌊ k−i
2 ⌋ −

(|C′′ ∩ C| − i) additional elements from C̃′′ \ C̃ for C′′ →C S(1) to hold. Thus,

Pr
{S,T}∼EC,C′

[
C′′ →C S(1)

]
⩽ 2k

( r
n

)⌊ k−i
2 ⌋−|C′′∩C|+i

.

Thus, we can prove:

(5.2) ⩽ 4 · 2k
k−1

∑
s=i

∑
U⊆C
|U|=s

∑
C′′ :C′′∈H(i)

j
C′′ ̸=C

C′′∩C=U

( r
n

)⌊ k−i
2 ⌋−s+i

(5.3)
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By Observation 5.3.4, we can bound the above as

⩽ 4 · 2k
k−1

∑
s=i

∑
U⊆C
|U|=s

(n
r

) k
2−s( r

n

) k−i
2 −

1[k−i odd]
2 −s+i

⩽ k · 4k+1
√

r
n

,

as i
2 −

1[k−i odd]
2 ⩾ 1

2 for all i ⩾ 1 when k is odd.

Lower bound on average degree in A. By choosing B large enough, the upper
bound on r, and Claim 5.3.10, the fraction of edges we delete from the original
colored Kikuchi graph Kr to obtain K̂r is at most .5 and hence d(K̂r) ⩾ .5d(Kr)

where d(Kr) and d(K̂r) are the average degrees in Kr and K̂r respectively. Thus, we
know:

d(Kr) ⩾
( r

2n

)k−i p

∑
j=1

(|H(i)
j |

2

)
⩾
( r

2n

)k−i
· p ·

(
m/kp

2

)
⩾
( r

2n

)k−i
· m2

4k2p

where the first inequality uses Observation 5.3.8, and the second inequality is due
to Jensen’s inequality.

By the upper bound p ⩽ m ·
( r

n
) k

2−i as noted in Observation 5.3.3:

d(Kr) ⩾
1

4k22k ·
( r

n

)k−i
·
(n

r

) k
2−i
·m =

1
4k22k ·

( r
n

) k
2 ·m.

As an upshot, we know:

Claim 5.3.11. d(K̂r) ⩾
1

8k22k ·
( r

n

)k/2
·m.

Spectral double counting. With a lower bound on d(K̂r) in hand, we are now
ready to perform our weighted spectral double counting argument to complete the
proof of Theorem 5.3.1.

Proof of Theorem 5.3.1. Recall that our goal is to prove that there is a small even
cover in H(i), the largest piece obtained from the decomposition, and also recall
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that if i ⩾ k+1
2 , then we are done by Lemma 5.3.5. Hence, we assume i ⩽ k−1

2 for
the rest of the proof.

Suppose there are no even covers in H of size ℓ = r log n, then there are also
none inH(i) from Lemma 5.3.9 we get:

∥∥∥Γ−1/2ÂΓ−1/2
∥∥∥

2
⩽ 4

√
2ℓ

d(K̂r)
.

Thus, Â ⪯ 4
√

2ℓ
d(K̂r)

Γ, and by taking the quadratic form with the all-ones vector, we
get:

2|E(K̂r)| = 1
⊤ Â1 ⩽ 4

√
2ℓ

d(K̂r)
· tr(Γ) = 16

√
2ℓ

d(K̂r)
· |E(K̂r)|,

which implies
d(K̂r) ⩽ 128ℓ,

and by our lower bound on d(K̂r) from Claim 5.3.11, we get

1
8k22k ·

( r
n

) k
2 ·m ⩽ 128r log n,

which we can rearrange as

m ⩽ Bkn log n ·
(n

r

)k/2−1
.

for some large enough constant B. Thus, if m is lower bounded as in the theorem
statement, there must be an even cover of size ℓ log n.

5.4 Strong refutation of semirandom k-XOR

In this section, we show that our reweighted Kikuchi matrix and edge deletion
process yield a significantly simpler analysis of strong refutation algorithms for
semirandom k-XOR formulas and lose only a single log n factor in the density.
Combined with Feige’s “XOR principle” [Fei02b, AOW15], we also obtain refuta-
tion algorithms for all smoothed Boolean CSPs. We will omit such reduction in this
work and direct the reader to [GKM21] for a detailed exposition.
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Theorem 5.4.1 (Semirandom k-XOR refutation). Fix k ∈ N. There is an algorithm
with parameter r ∈N, 2k ⩽ r ⩽ n/8 that takes as input a semirandom k-XOR instance

ψ(x) =
1
m ∑

C∈H
bCxC

whereH is a k-uniform hypergraph with n vertices and m hyperedges, and each bC ∈ {±1}
is chosen uniformly at random. The algorithm has the following guarantee: there is a
universal constant C such that if m ⩾ Ckn log n · (n

r )
k
2−1ε−4 for ε ∈ (0, 1/2), then with

probability over 1− 1
poly(n) over {bC}C∈H, the algorithm runs in time nO(r) and certifies

that ψ(x) ⩽ ε.

Remark 5.4.2 (Refutation strength: dependence on ε). For the even arity case,
we actually obtain a stronger guarantee (weaker requirement) of m ⩾ O(n log n) ·
(n

r )
k
2−1ε−2. For the odd arity case however, our analysis incurs a (likely suboptimal)

dependence of 1/ε4 on the refutation strength (i.e., the upper bound on the value
of the input k-XOR instance), though improving the 1/ε5 dependence of [GKM21,
Theorem 5.1]. In contrast, a 1/ε2 dependence is known to hold for fully random
k-XOR instances [RRS17]. Apart from a somewhat unsatisfying deficiency, this
suboptimality turns out to be consequential – in particular, it changes the threshold
at which efficient FKO refutation witnesses exist for semirandom k-SAT (and other
CSPs) by a polynomial factor in n. Finding the “right” dependence of 1/ε2 (for the
odd case) is an interesting open problem.

Our refutation algorithm will utilize the same Kikuchi graphs from Defini-
tion 5.2.4 and Definition 5.3.6 but with signs added to the edges in the natural
way.

Definition 5.4.3 (Signed Kikuchi graph). Let H be a k-uniform hypergraph as-
sociated with {±1} signs {bC}C∈H. For the even arity case, let Ab be the signed
adjacency matrix of the Kikuchi graph from Definition 5.2.4 where each edge

S C←→ T has a sign bC. For the odd arity case, let Ab be the signed adjacency matrix

of the Kikuchi graph from Definition 5.3.6 where each edge S C,C′←−→ T has a sign
bCbC′ .
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5.4.1 Refuting semirandom even arity XOR

In this section, we prove Theorem 5.4.1 when k is even. As we will see in the
short proof, our idea of the reweighted Kikuchi matrix from the hypergraph Moore
bound naturally applies here, and in fact, we obtain the “right” 1/ε2 dependence
in this case, i.e., we can certify that ψ(x) ⩽ ε when m ⩾ O(n log n) · (n

r )
k
2−1ε−2.

Recall that in the Kikuchi graph (V, E), each C ∈ H contributes α := 1
2(

k
k/2)(

n−k
r−k/2)

edges in E, hence |E| = 1
2 |V|d = mα. Thus, it is clear that

ψ(x) =
1
m
· 1

α ∑
(S,T)∈E

bS⊕TxS⊕T =
1

(n
r)d

(x⊙r)⊤Abx⊙r (5.4)

where x⊙r ∈ {±1}(n
r) and the S-entry of x⊙r is xS for S ⊆ [n], |S| = r.

We now follow the same reweighting strategy: with Γ = D + d1, we bound the
spectral norm of the reweighted Kikuchi matrix

∥∥Γ−1/2AbΓ−1/2
∥∥

2 with an almost
identical proof as Lemma 5.2.6.

Lemma 5.4.4. Let k be even and r ∈N. Let Ab be the signed Kikuchi graph with random
{±1} coefficients {bC}C∈H, and let Γ = D + d1 where D is the degree matrix and d is
the average degree of the Kikuchi graph. Then, with probability at least 1− 1

poly(n) over
the randomness of {bC}C∈H,∥∥∥Γ−1/2AbΓ−1/2

∥∥∥
2
⩽ O

(√
r log n

d

)
.

Proof. Let Ãb = Γ−1/2AbΓ−1/2. We again use the trace power method ∥Ãb∥ℓ2 ⩽
tr((Γ−1Ab)

ℓ) where we choose an even ℓ = 2⌈r log2 n⌉. Observe that in expectation,
Eb tr((Γ−1Ab)

ℓ) counts the closed walks that use each hyperedge an even number
of times. This is exactly the same as Lemma 5.2.6 where we count closed walks
in an unsigned Kikuchi graph assuming there is no even cover of size ⩽ ℓ. Thus,
Lemma 5.2.6 shows that

E
b

tr((Γ−1Ab)
ℓ) ⩽ 2ℓnr

(
ℓ

d

)ℓ/2

⩽ O
(
ℓ

d

)ℓ/2

when ℓ ⩾ r log2 n. Then, by Markov’s inequality, for any λ > 0,

Pr
b

[
∥Ãb∥2 ⩾ λ

]
= Pr

b

[
∥Ãb∥ℓ2 ⩾ λℓ

]
⩽ λ−ℓ · E

b
tr((Γ−1Ab)

ℓ) ⩽ O
(

ℓ

λ2d

)ℓ/2
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Choosing λ = O(
√
ℓ/d) completes the proof.

We can complete the proof of Theorem 5.4.1 for even k.

Proof of Theorem 5.4.1 for even k. Let Ab be the signed Kikuchi graph with signs
{bC}C∈H, let Γ = D + d1 where D is the degree matrix and d is the average
degree of the Kikuchi graph, and let Ãb = Γ−1/2AbΓ−1/2. The certification algo-
rithm is simply to compute ∥Ãb∥2. Since Ab ⪯ ∥Ãb∥2 · Γ, and tr(Γ) = 2(n

r)d, by
Lemma 5.4.4,

ψ(x) = (5.4) ⩽
1

(n
r)d
∥Ãb∥2 · tr(Γ) ⩽ O

(√
r log n

d

)

using the fact that x⊙r ∈ {±1}(n
r) and (x⊙r)⊤Γx⊙r = tr(Γ). There is some constant

C such that when m ⩾ Cn log n · (n
r )

k
2−1ε−2, by (5.1) the average degree d ⩾

1
2(

r
n )

k/2m = C
2 r log n · ε−2, thus giving us ψ(x) ⩽ ε. This completes the proof.

5.4.2 Refuting semirandom odd arity XOR

Our proof of Theorem 5.4.1 for the odd arity case closely mimics the steps taken in
proving the hypergraph Moore bound for odd arity hypergraphs (Theorem 5.3.1).
Given a semirandom k-XOR instance ψ on hypergraph H with random signs
{bC}C∈H, we first apply the following hypergraph decomposition algorithm (a
variant of Algorithm 5.3.2) to decompose the hypergraph into subhypergraphs
H(1), . . . ,H(k−1). The main difference compared to Algorithm 5.3.2 is that in the
final step, we add the “leftover” hyperedges toH(1) instead of an extraH(0).

Algorithm 5.4.5 (Hypergraph decomposition). Given a k-uniform hypergraphH
on n vertices and m hyperedges, and thresholds τ1, . . . , τk−1 ⩾ 2, we partition H
into hypergraphsH(1), . . . ,H(k−1) via the following algorithm.

1. Set t = k− 1 andHcurrent := H.

2. Set counter s = 1. While there is T ⊆ [n] such that |T| = t and

|{C ∈ Hcurrent : T ⊆ C}| ⩾ τt :

a) Choose T satisfying the condition and let H(t)
s be a subset of {C ∈

Hcurrent : T ⊆ C} of size τt.
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b) Add all clauses inH(t)
s toH(t).

c) Delete all clauses inH(t)
s toHcurrent.

d) Increment s by 1.

3. Decrement t by 1. If t > 0, go back to step 2; otherwise take the remaining
clauses inHcurrent and partition them into n parts F1, . . . , Fn where each clause
C goes to some Fi such that i ∈ C. Add F1, . . . , Fn toH(1) and terminate.

Notations and parameters. Throughout this section we will use the following
notations.

• In Algorithm 5.4.5, we set thresholds τt = max
{

1,
(n

r
) k

2−t
}
· 4kε−2.

• In the decomposition, each H(t) contains pt groups H(t)
1 , . . . ,H(t)

pt where

group H(t)
i has a center T(t)

i of size t, and for each C ∈ H(t)
i , we write

C̃ = C \ T(t)
i .

• Each |H(t)
i | = τt, with the exception that |H(1)

i | ⩽ τ1 may have different sizes

(the leftover hyperedges in Algorithm 5.4.5). Let mt := ∑
pt
i=1 |H

(t)
i | be the

total number of hyperedges inH(t).

• When t = 1 and m ⩾ Ckn log n · (n
r )

k
2−1ε−4 for a large enough constant C, we

have m ⩾ nτ1, hence p1 ⩽ m
τ1
+ n ⩽ 2m

τ1
. Thus, we will use ptτt ⩽ 2m for all

t ∈ [k− 1].

• For each t ∈ [k− 1], the colored Kikuchi graph (V, E) obtained fromH(t) =

(H(t)
1 , . . . ,H(t)

pt ) (from Definition 5.3.6) has edges |E| = αt ∑
pt
i=1 (

|H(t)
i |
2 ) ⩽

1
2 αtmtτt, where αt ≈ (2n

r )
r−(k−t) is the number of edges contributed by each

distinct pair C, C′ ∈ Hi (see Observation 5.3.8).

With these notations and parameters in mind, we can write ψ(x) as

ψ(x) =
1
m

k−1

∑
t=1

∑
C∈H(t)

bCxC =
1
k

k−1

∑
t=1

ψt(x)
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where ψt(x) :=
k
m

pt

∑
i=1

∑
C∈H(t)

i

bCxC =
k
m

pt

∑
i=1

xTi ∑
C∈H(t)

i

bCxC̃ . (5.5)

Essentially, each ψt is the sub-instance of ψ restricted to the partitionH(t). Recall
that for the purpose of showing existence of even covers, we only need to focus
on one H(t). For refutation however, we need to certify a bound on ψt(x) for all
t ∈ [k− 1].

Lemma 5.4.6 (Refuting each ψt). Fix an odd k ∈N, t ∈ [k− 1], and let 2k ⩽ r ⩽ n/8.
There is a constant C such that given a semirandom k-XOR instance ψ with n variables
and m ⩾ Ckn log n(n

r )
k
2−1ε−4 clauses for ε ∈ (0, 1/2), and suppose ψt is the subinstance

from (5.5) obtained by the hypergraph decomposition algorithm (Algorithm 5.4.5), then
with probability 1− 1

poly(n) over the random signs, we can certify that ψt(x) ⩽ ε in nO(r)

time.

Lemma 5.4.6 immediately completes the proof of Theorem 5.4.1 for odd k.

Proof of Theorem 5.4.1 by Lemma 5.4.6. Given the hypergraph H, we apply the hy-
pergraph decomposition algorithm (Algorithm 5.4.5) with thresholds τ1, . . . , τk−1
and obtain subinstances ψ1, . . . , ψk−1 as in (5.5). For each t ∈ [k− 1], we can certify
that ψt(x) ⩽ ε by Lemma 5.4.6 with high probability, which immediately implies
the desired bound ψ(x) ⩽ ε.

Edge deletion process. The proof of Lemma 5.4.6 requires deleting the “bad”
edges from the signed Kikuchi matrix A(t)

b via a similar deletion process as the one
used in the proof of Theorem 5.3.1, but with some parameter η > 1 instead of 1
and an additional equalizing step:

Start with the colored Kikuchi graph, and delete every edge {S, T}
caused by a pair of clauses C, C′ ∈ H(t)

i such that S or T has more than
η edges that C or C′ participates in.

Suppose ρ < 1 is the maximum fraction of edges deleted among all pairs
of clauses. Then, for every i ∈ [pt] and every distinct pair C, C′ ∈ H(t)

i ,
we delete (additional) edges caused by C, C′ arbitrarily such that exactly
ρ fraction of edges are deleted.
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Observation 5.4.7 (Uniform deletion). The final step in the above edge deletion
process ensures that every pair C, C′ contributes the same number of edges ((1−
ρ)αt to be exact) in the Kikuchi graph.

Mirroring the proof of Claim 5.3.10 yields the following generalization.

Lemma 5.4.8 (Deletion rate). Suppose a subhypergraphH(i) satisfies that for any s ⩾ i
and any T ⊆ [n] with |T| = s, the number of hyperedges inH(i) containing T is at most
τs, then the deletion process with parameter η ⩾ 1 satisfies

Pr
{S,T}∼EC,C′

[{S, T} deleted] ⩽
4k

η
·
⌊ k+i

2 ⌋

∑
s=i

τs

( r
n

)⌊ k+i
2 ⌋−s

.

Proof. The proof is identical to the proof of Claim 5.3.10. Eq. (5.2) holds with
an additional 1/η factor due to Markov’s inequality. The lemma statement then
follows immediately from (5.3).

Proof of Lemma 5.4.6 via the Cauchy-Schwarz trick and the deletion process.

Proof of Lemma 5.4.6. We apply the Cauchy-Schwarz trick to ψt from (5.5):

ψt(x)2 ⩽
k

m2

pt

∑
i=1

x2
Ti
·

pt

∑
i=1

 ∑
C∈H(t)

i

bCxC̃


2

⩽
kpt

m2

pt

∑
i=1

∑
C,C′∈H(t)

i

bCbC′xC̃xC̃′

⩽
kptmt

m2 +
kpt

m2

pt

∑
i=1

∑
C ̸=C′∈H(t)

i

bCbC′xC⊕C′ (5.6)

since x ∈ {±1}n, bC ∈ {±1} and ∑
pt
i=1 |H

(t)
i | = mt. For the first term, since for all

t ∈ [k− 1], we set τt ⩾ 4kε−2 and pt ⩽ 2m/τt ⩽ mε2

2k , thus

kptmt

m2 ⩽
ε2

2
. (5.7)

We can now focus our attention on the second term in (5.6).
GivenH(t) and its partitionsH(t)

1 , . . . ,H(t)
pt of size τt, and signs {bC}C∈H(t) , let

A(t)
b be the signed Kikuchi matrix defined in Definition 5.4.3, which is the signed

version of the colored Kikuchi graph (V, E) from Definition 5.3.6. Recall from
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Observation 5.3.8 that each distinct pair C, C′ ∈ H(t)
i contributes αt ≈ (2n

r )
r−(k−t)

edges in the graph. Thus, similar to (5.4) in the even case, we can write the second
term of (5.6) as a quadratic form:

ft(x) :=
kpt

m2

pt

∑
i=1

∑
C ̸=C′∈H(t)

i

bCbC′xC⊕C′ =
kpt

2αtm2 (x⊙r)⊤A(t)
b x⊙r (5.8)

where x⊙r ∈ {±1}(2n
r ) such that for S ∈ [n]× [2] with S = (S(1), S(2)) (green and

blue elements), the S-entry of x⊙r is xS(1)⊕S(2) .
We proceed to certify an upper bound on ft(x). Given the signed Kikuchi

matrix A(t)
b , we first apply the deletion process with parameter η = Bkε−2 for some

large enough constant B. With the chosen thresholds τs, Lemma 5.4.8 states that
the deletion probability ρ is at most

ρ ⩽
4k

η
·
⌊ k+t

2 ⌋

∑
s=t

4kε−2 ·max

{
1,
(n

r

) k
2−s
}
·
( r

n

)⌊ k+t
2 ⌋−s

⩽
1
2

,

since s ⩽ ⌊ k+t
2 ⌋ in the summation and ⌊ k+t

2 ⌋ ⩾
k+1

2 for all t ⩾ 1.

Let Â(t)
b be the Kikuchi matrix after the deletion process. By Observation 5.4.7,

each distinct pair C, C′ ∈ H(t)
i contributes exactly (1− ρ) fraction of the original

edges. Thus, we have

(x⊙r)⊤ Â(t)
b x⊙r = (1− ρ) · (x⊙r)⊤A(t)

b x⊙r . (5.9)

Next, we follow the same argument as the proof of Lemma 5.4.4 to analyze
Â(t)

b , using the norm bound of Lemma 5.3.9. Let Γ = D + d1 where D is the degree

matrix and d is the average degree, and let Ãb = Γ−1/2Â(t)
b Γ−1/2. To bound ∥Ãb∥2,

we again use the trace power method ∥Ãb∥ℓ2 ⩽ tr((Γ−1Â(t)
b )ℓ) where we choose

an even ℓ = 2⌈r log2 n⌉. Observe that in expectation, Eb tr((Γ−1Ab)
ℓ) counts the

closed walks that use each hyperedge an even number of times. This is exactly the
same as Lemma 5.3.9 where we count closed walks in an unsigned Kikuchi graph
assuming there is no even cover of size ⩽ ℓ. Furthermore, dS,i ⩽ η is automatically
satisfied after the deletion process. Thus, we can directly apply Lemma 5.3.9 and
show that

E
b

tr
(
(Γ−1Â(t)

b )ℓ
)
⩽ 2ℓnr

(
2ηℓ

d

)ℓ/2

⩽ O
(

ηℓ

d

)ℓ/2
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when ℓ ⩾ r log2 n. Then, by Markov’s inequality, we have that

Pr
b

[
∥Ãb∥2 ⩾ O

(√
ηℓ

d

)]
⩽

1
poly(n)

.

Thus, with high probability we have Â(t)
b ⪯ O

(√
ηℓ
d

)
· Γ, then since tr(Γ) =

4|E|,

(x⊙r)⊤ Â(t)
b x⊙r ⩽ O

(√
ηℓ

d

)
· tr(Γ) = O

(√
ηℓ

d

)
· |E| .

Next, let f̂t(x) = kpt
2αtm2 (x⊙r)⊤ Â(t)

b x⊙r. By Observation 5.3.8, we have d ⩾

( r
2n )

k−t ∑
pt
i=1 (

|H(t)
i |
2 ) when 2k ⩽ r ⩽ n/8. Plugging in parameters

|E| = αt

pt

∑
i=1

(
|H(t)

i |
2

)
,

ptτt ⩽ 2m, η = Bkε−2, and ℓ = 2⌈r log2 n⌉, standard calculations show that

f̂t(x) ⩽ O(1)
kpt

αtm2

√
ηℓ

d
|E|

⩽ O(1)
kpt

m2

√√√√ηℓ

(
2n
r

)k−t pt

∑
i=1

(
|H(t)

i
2

)

⩽ O(1)

√
ηr log n

mτt

(
2n
r

)k−t
.

Suppose m ⩾ Ckn log n · (n
r )

k
2−1ε−4 for some large enough constant C. We split

into cases:

1. For t ⩽ k−1
2 , we set τt = (n

r )
k
2−t · 4kε−2, thus f̂t(x) ⩽ ε2

4 .

2. For t ⩾ k+1
2 , we set τt = 4kε−2, thus f̂t(x) ⩽ ε2

4 (
n
r )

k
4−

t
2 < ε2

4 .

Therefore, by calculating ∥Ãb∥2, which can be done in nO(r) time, we can certify
that f̂t(x) ⩽ ε2

4 . Combined with (5.9) and the bound of ρ ⩽ 1/2, we can certify that

ft(x) ⩽
1

1− ρ
· f̂t(x) ⩽

ε2

2
,
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and with (5.7), we can certify an upper bound on (5.6):

ψt(x)2 ⩽ (5.7) + (5.8) ⩽
ε2

2
+ ft(x) ⩽ ε2 ,

completing the proof.

5.5 Alternative proof of the Moore bound for irregular
graphs

We proved the weak Moore bound (Proposition 5.2.1) by showing that if there
is no cycle of length ⩽ ℓ, then A ≺ 2n1/ℓ

√
d
(D + d1) (Claim 5.2.2) where D is the

diagonal degree matrix and d is the average degree, which then gives us a bound of
2⌈logd/16 n⌉. In this section, we prove that using a more carefully chosen diagonal
matrix Γ′, such a strategy can recover the exact Moore bound 2 logd−1 n. This
provides an alternative proof of the Moore bound in addition to the existing proofs
by [AHL02] and [BR14]5.

Theorem 5.5.1 (Moore bound for irregular graphs). Suppose G is a graph on n vertices
with average degree d > 2. Then G has a cycle of length 2(⌊logd−1 n⌋+ 1).

The following lemma shows what the “correct” diagonal matrix should be to
recover the exact Moore bound.

Lemma 5.5.2. Let G be a graph with n vertices and degree matrix D that has no cycle of
length ⩽ ℓ for some even ℓ ∈N. Then, the adjacency matrix A satisfies

A ⪯ n2/ℓ
1+ n−2/ℓ(D− 1) .

Proof of Theorem 5.5.1 by Lemma 5.5.2. Assuming there is no cycle of length ⩽ ℓ,
Lemma 5.5.2 implies that

1⊤A1 = nd ⩽ n · (n2/ℓ + n−2/ℓ(d− 1)) .

Let x = n2/ℓ, then we have x2 − dx + (d− 1) ⩾ 0, which implies that x ⩾ d− 1 (as
x ⩽ 1 is not valid). Taking logs, we get

2
ℓ

log n ⩾ log(d− 1) =⇒ ℓ ⩽ 2 logd−1 n .
5[AHL02] and [BR14] actually obtained a slightly more precise bound depending on whether

the girth of the graph is odd or even.
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ℓ is even, so ℓ < 2(⌊logd−1 n⌋+ 1). This completes the proof.

The proof of Lemma 5.5.2 is based on non-backtracking walks, which are walks
such that no edge is the inverse of its preceding edge. We note that both proofs
of [AHL02] and [BR14] also analyze non-backtracking walks. For a graph G on n
vertices with adjacency matrix A, we define A(s) to be the n× n matrix whose (u, v)
entry counts the number of length-s non-backtracking walks between vertices u
and v in G. The following is a standard fact.

Fact 5.5.3 (Recurrence and generating function of A(s)). The non-backtracking matrices
A(s) satisfy the following recurrence:

A(0) = 1 ,

A(1) = A ,

A(2) = A2 − D ,

A(s) = A(s−1)A− A(s−2)(D− 1) , s > 2 .

The recurrences imply that these matrices have a generating function:

J(t) :=
∞

∑
s=0

A(s)ts = (1− t2) · H(t)−1 , where H(t) := 1− At + (D− 1)t2

for t ∈ [0, 1) whenever the series converges.

We first prove the following lemma,

Lemma 5.5.4. Let s, k ∈N, s ⩾ k, and let q, r be the quotient and remainder of s divided
by k, i.e. s = qk + r. Then,

tr(A(s)) ⩽
√

n · ∥A(k)∥q
2 · ∥A(r)∥F.

Proof. tr(A(s)) counts the number of closed non-backtracking walks of length s in
the graph. Now, consider the set of closed walks of length s = qk + r such that
after every k non-backtracking steps, we can “forget the previous step”, i.e. we are
allowed to backtrack at step ik for every i = 0, . . . , q. The number of such walks is
tr((A(k))q A(r)). The set of closed non-backtracking walk is clearly a subset of such
walks, thus we have

tr(A(s)) ⩽ tr((A(k))q A(r)) ⩽
∥∥∥(A(k))q

∥∥∥
F
·
∥∥∥A(r)

∥∥∥
F

.
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Let λ1, . . . , λn be the eigenvalues of A(k) and λmax = ∥A(k)∥2. Then,∥∥∥(A(k))q
∥∥∥

F
=

√
n

∑
i=1

λ
2q
i ⩽

√
n(λmax)

q.

This completes the proof.

With Fact 5.5.3 and Lemma 5.5.4, we now prove Lemma 5.5.2 by analyzing the
convergence of J(t) as t increases from 0.

Proof of Lemma 5.5.2. Let A be the adjacency matrix of G with average degree d > 2,
and let D be the diagonal degree matrix G. Recall the definitions J(t) = ∑∞

s=0 A(s)ts

and H(t) = 1− At + (D− 1)t2 from Fact 5.5.3. We will analyze the convergence
of tr(J(t)) as t increase from 0.

Observe that J(0) = H(0) = 1, and since J(t) and H(t) are both symmetric
matrices, their eigenvalues move continuously on the real line as t increases from
0. Thus, suppose there is some t∗ ∈ (0, 1) such that tr(J(t)) < ∞ for all t ∈ [0, t∗),
then H(t) ≻ 0 for all t ∈ [0, t∗). This is easy to see because if not, then there must
be some t′ ∈ [0, t∗) such that H(t′) ⪰ 0 but has a zero eigenvalue, and tr(J(t′)) will
not converge.

We next show that we can take t∗ = n−2/ℓ assuming that G has no cycle of
length ⩽ ℓ = 2k. First, observe that every entry of A(k) must be either 0 or 1,
otherwise if A(k)[i, j] > 1 then there are two distinct length-k paths from i to j,
meaning there is a cycle of length at most 2k = ℓ, a contradiction. Therefore, the L1
norm of each row of A(k) is at most n, hence ∥A(k)∥2 ⩽ n. Next, observe that for
each s ∈N we can write s = qk + r, and

J(t) =
∞

∑
s=0

A(s)ts ⩽
k−1

∑
r=0

∞

∑
q=0

A(qk+r)tqk+r.

By Lemma 5.5.4, we have

tr(J(t)) ⩽
k−1

∑
r=0

tr√n∥A(r)∥F

∞

∑
q=0
∥A(k)∥q

2 · t
qk ⩽

k−1

∑
r=0

tr√n∥A(r)∥F

∞

∑
q=0

(ntk)q.

Thus, if t < n−1/k < 1, then tr(J(t)) < ∞. Therefore, we have H(t) ≻ 0 for all
t ∈ [0, n−1/k), and by continuity H(n−1/k) ⪰ 0, which means that

1− n−1/k A + n−2/k(D− 1) ⪰ 0 =⇒ A ⪯ n2/ℓ
1+ n−2/ℓ(D− 1)

as ℓ = 2k. This completes the proof.
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[BK67] Jānis Bārzdin, š and Andrey Kolmogorov. On the realization of net-
works in three-dimensional space. Problemy Kibernetiki, 19:261–268,
1967. 209

[BKHL99] Claudia Bertram-Kretzberg, Thomas Hofmeister, and Hanno Lef-
mann. Sparse 0- 1 matrices and forbidden hypergraphs. Combina-
torics, Probability and Computing, 8(5):417–427, 1999. 245

[BKM+19] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and
Lenka Zdeborová. Optimal errors and phase transitions in high-
dimensional generalized linear models. Proceedings of the National
Academy of Sciences, 116(12):5451–5460, 2019. 24

[BKW19] Afonso S Bandeira, Dmitriy Kunisky, and Alexander S Wein. Com-
putational hardness of certifying bounds on constrained pca prob-
lems. arXiv preprint arXiv:1902.07324, 2019. 89

[BL06] Yonatan Bilu and Nathan Linial. Lifts, discrepancy and nearly
optimal spectral gap. Combinatorica, 26(5):495–519, 2006. 209, 211,
213, 215, 216

[BLM15] Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-
backtracking spectrum of random graphs: community detection
and non-regular Ramanujan graphs. In 2015 IEEE 56th Annual Sym-
posium on Foundations of Computer Science, pages 1347–1357. IEEE,
2015. 14, 15, 16, 114, 117, 118, 120, 121, 122, 125, 136, 146, 167

[BMR21] Jess Banks, Sidhanth Mohanty, and Prasad Raghavendra. Local
statistics, semidefinite programming, and community detection.
pages 1298–1316, 2021. 13, 127, 146, 171, 175, 201



BIBLIOGRAPHY 283

[BMS08] Louay Bazzi, Mohammad Mahdian, and Daniel A Spielman. The
minimum distance of turbo-like codes. IEEE Transactions on Informa-
tion Theory, 55(1):6–15, 2008. 245

[Bol78] Béla Bollobás. Extremal graph theory, volume 11 of London Mathe-
matical Society Monographs. Academic Press, Inc. [Harcourt Brace
Jovanovich, Publishers], London-New York, 1978. 244

[Bol80] Béla Bollobás. A probabilistic proof of an asymptotic formula for the
number of labelled regular graphs. European Journal of Combinatorics,
1(4):311–316, 1980. 218, 238, 239

[Bol01] Béla Bollobás. Random Graphs. Cambridge University Press, second
edition edition, 2001. 218

[Bor16] Charles Bordenave. Lecture notes on random graphs and proba-
bilistic combinatorial optimization. Retrieved from https://www.
math.univ-toulouse.fr/~bordenave/coursRG.pdf, 2016. 232

[Bor19] Charles Bordenave. A new proof of Friedman’s second eigenvalue
Theorem and its extension to random lifts. In Annales scientifiques de
l’Ecole normale supérieure, 2019. 11, 147, 167, 211, 214, 219, 220, 222,
224, 225, 227, 230, 231, 232, 233, 234, 235

[BR14] S Ajesh Babu and Jaikumar Radhakrishnan. An entropy-based
proof for the Moore bound for irregular graphs. In Perspectives in
Computational Complexity, pages 173–181. Springer, 2014. 244, 276,
277

[BS95] Avrim Blum and Joel Spencer. Coloring random and semi-random
k-colorable graphs. Journal of Algorithms, 19(2):204–234, 1995. 19

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are nar-
row—resolution made simple. Journal of the ACM (JACM), 48(2):149–
169, 2001. 15

[BT11] Avraham Ben-Aroya and Amnon Ta-Shma. A combinatorial con-
struction of almost-Ramanujan graphs using the zig-zag product.
SIAM Journal on Computing, 40(2):267–290, 2011. 211

https://www.math.univ-toulouse.fr/~bordenave/coursRG.pdf
https://www.math.univ-toulouse.fr/~bordenave/coursRG.pdf


BIBLIOGRAPHY 284

[Cas06] Chad Casarotto. Graph theory and Cayley’s formula. 2006. 69

[Chi92] Patrick Chiu. Cubic Ramanujan graphs. Combinatorica, 12(3):275–
285, 1992. 210

[CJSX14] Yudong Chen, Ali Jalali, Sujay Sanghavi, and Huan Xu. Clustering
partially observed graphs via convex optimization. The Journal of
Machine Learning Research, 15(1):2213–2238, 2014. 19

[CL+15] T Tony Cai, Xiaodong Li, et al. Robust and computationally feasible
community detection in the presence of arbitrary outlier nodes. The
Annals of Statistics, 43(3):1027–1059, 2015. 20

[Cla06] Pete Clark. Ramanujan graphs and Shimura curves. Retrieved from
http://alpha.math.uga.edu/~pete/ramanujanrevisited.pdf,
2006. 210
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