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Inhibitory interneurons regulate the responses of cortical circuits.
In auditory cortical areas, inhibition from these neurons narrows
spectral tuning and shapes response dynamics. Acute disruptions
of inhibition expand spectral receptive fields. However, the effects
of long-term perturbations of inhibitory circuitry on auditory cor-
tical responses are unknown. We ablated ∼30% of dendrite-tar-
geting cortical inhibitory interneurons after the critical period by
studying mice with a conditional deletion of Dlx1. Following the
loss of interneurons, baseline firing rates rose and tone-evoked
responses became less sparse in auditory cortex. However, con-
trary to acute blockades of inhibition, the sizes of spectral recep-
tive fields were reduced, demonstrating both higher thresholds
and narrower bandwidths. Furthermore, long-latency responses
at the edge of the receptive field were absent. On the basis of
changes in response dynamics, the mechanism for the reduction in
receptive field size appears to be a compensatory loss of cortico-
cortically (CC) driven responses. Our findings suggest chronic con-
ditions that feature changes in inhibitory circuitry are not likely to
be well modeled by acute network manipulations, and compensa-
tion may be a critical component of chronic neuronal conditions.

Processing of auditory information in the auditory cortex
underlies the conscious perception of sound and speech

comprehension. Inhibitory interneurons, representing ∼20% of
cortical neurons (1), regulate this processing by shaping the
spectral tuning (2–13), temporal tuning (14–16), and response
dynamics of local excitatory neurons (5–11). Inhibitory inter-
neurons form multiple subtypes on the basis of morphology,
physiology, and biochemistry (1, 17) that likely serve distinct
roles in cortical processing.
Loss of inhibitory interneurons is observed in conditions that

affect cortical processing in humans, and in animal models of
human disorders, including aging (18, 19), autism (20), schizo-
phrenia (21–23), traumatic brain injury (TBI) (24), hearing loss
(25–28), and tinnitus (29). Often, a particular disease is associ-
ated with a specific deficit in a subset of interneurons. For
example, rodent models of autism demonstrate a loss of par-
valbumin positive (PV+) interneurons (20), whereas aging and
TBI models show a greater loss of somatostatin (SST)+ inter-
neurons than other interneuron populations (19, 24). The dis-
ruption of specific interneuron populations may underlie the
particular cognitive defects associated with each condition.
Therefore, it is necessary to understand the effects following
chronic reductions of particular interneuron subtypes.
One mouse model of an adult-onset loss of dendrite-targeting

interneurons (DTIs) is the Dlx1 mutant (30). Dlx1 encodes
a homeobox transcription factor from the Dlx family that regu-
lates the development, migration, and survival of cortical inter-
neurons (30–32). In Dlx1 mutants, the other Dlx family members
compensate for the deficiency and thereby allow interneurons to
migrate into cortex (30). At postnatal day 20 (p20) there is no
observed loss of interneurons in Dlx1 mutants; however by p30,
∼30% of SST+, neuropeptide Y (NPY+), and calretinin positive

(CR+) DTIs undergo apoptosis, whereas soma-targeting, PV+

interneurons are unaffected (30). Following the loss of inter-
neurons, the rate and size of spontaneous and miniature in-
hibitory postsynaptic potentials are reduced (30). Despite the
normally broad expression of Dlx1 in interneurons, there is no
change in the intrinsic properties of the surviving interneurons
after p30 (33). This partial loss of interneurons is similar to
human adult-onset conditions that feature a selective loss of
DTIs, such as aging and TBI, because the critical period for
spectral tuning in auditory cortex ends before p20 in mice (34).
Dlx1 mutants are known to develop seizures, behavioral deficits,
and abnormal visual cortical responses (35–37); however,
changes in auditory processing are unknown.
Previous attempts to study the deficits in auditory cortical

processing in a constitutive Dlx1 knockout (Dlx1−/−) were not
successful because Dlx1 also regulates the development of the
middle ear ossicles (38, 39). The middle ear bones fuse in the
absence of Dlx1 and create a conductive hearing loss that raises
auditory brainstem response (ABR) thresholds in Dlx1−/− mice
by ∼30 dB, precluding a meaningful study of auditory cortical
changes (38, 39). To circumvent this issue, we developed a condi-
tional deletion ofDlx1 restricted to forebrainGABAergic neurons
using a floxed conditional allele of Dlx1 and DlxI12b-Cre (I12b-
Cre). DlxI12b is an enhancer element of Dlx1 (40, 41). By placing
Cre-recombinase under the control of this enhancer, which is not
expressed in the primordia of the middle ear, recombination
occurs in 95% of cortical interneurons (41). We will refer to these
Dlx1−/f;I12b-Cre animals as conditional knockout animals (cKO)
and heterozygous littermates (Dlx1+/f;I12b-Cre) as controls (CT).

Results
Dlx1−/f;I12b-Cre Mice Lack a Subset of Dendrite-Targeting Interneurons.
We validated the conditional deletion of Dlx1 by confirming that
the loss of dendrite-targeting interneurons (DTIs) in Dlx1−/f;I12b-
Cre (cKO) animals was consistent with the constitutive null
mutants, Dlx1−/−. As in Dlx1−/− mutants, ∼30% of dendrite-tar-
geting, SST+, NPY+, and CR+ interneurons were lost by p45 in
cKO mice, whereas no change in the number of soma-targeting,
PV+ interneurons was observed (means ± STD labeled cells/mm2:
SST, CT 16.2 ± 1.0 and cKO, 10.4 ± 1.6, P < 0.05; NPY, CT 49.5 ±
2.5 and cKO 32.2 ± 3.4, P < 0.05; CR, CT 55.2 ± 1.5 and cKO
44.8 ± 3.0, P < 0.05; PV, CT 134.6 ± 5.6 and cKO 139.5 ± 5.6, P >
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0.05; n = 3 animals each, Fig. 1 A and B). We extended the
previous analysis to include vasoactive intestinal peptide positive
(VIP+) interneurons, which also displayed a 30% reduction in
cKO mutants (mean ± STD labeled cells/mm2: CT 42.2 ± 1.9 and
cKO 29.5 ± 1.1, P < 0.05, n = 3 animals each). Similar to Dlx1−/−

mice, cKO mutants displayed abnormal EEG activity (SI Results
and Fig. S1C). The conditional knockout successfully avoided the
elevated peripheral auditory thresholds of Dlx1−/− mice (38). The
cKO mice, in contrast to Dlx1−/− mice, had normal ABR thresh-
olds (medians: CT = 30 dB, cKO = 25 dB, P = 0.17, n = 4 and 3,
Fig. S1 A and B). In sum, cKO mutants have the same selective
loss of DTIs as the constitutive Dlx1 mutant and develop a neu-
rological condition independent of peripheral changes in the
middle ear. Therefore, we used Dlx1 cKO mutants to characterize
changes in auditory cortex function that arise following the loss
of DTIs.

Dlx1−/f;I12b-Cre Cortical Units Have Restricted Receptive Fields. We
determined the effect of the loss of DTIs on auditory processing
by recording responses to pure tones and constructing frequency
response areas (FRAs, firing rate as a function of tonal fre-
quency and intensity, Fig. 2 A–D). We recorded from single-units
in auditory cortical core areas, the primary auditory field (A1)
and the anterior auditory field (AAF), across all cortical layers of
cKO mutants (n = 58 units, eight animals) and controls (n = 54
units, eight animals) and quantified the size of the response area
(area of FRA above 1/4 peak value), response threshold (lowest
intensity in the response area), and spectral bandwidth (number
of octaves responding at an intensity above threshold). In cKO
cortical units, response area sizes were reduced (medians: CT =
177 dB*octaves, cKO = 144.5 dB*octaves, P < 0.005, Fig. 2E

and Fig. S2D). This was a combined effect of higher thresholds
(medians: CT = 20 dB, cKO = 25 dB, P < 0.001, Fig. 2 C and F
and Fig. S2E) and narrower bandwidths (bandwidth at 20 dB
above threshold: medians: CT = 1.1 octaves, cKO = 1.0 octave,
uncorrected P < 0.05, Fig. 2 D and G, Fig. S2F; see SI Results for
details of ANOVA). Contrary to the effects of acute, pharma-
cological blockades of inhibition, which broaden spectral tuning
(6–12), the chronic loss of DTIs led to narrower spectral tuning,
which is a reduction in receptive field size.
To test whether these changes emerge in cortex or are already

present subcortically, we recorded single units across multiple
divisions in the auditory thalamus (CT: 31 units from two ani-
mals; cKO, 65 units from three animals). In contrast to cortical
FRAs, cKO and control thalamic FRA response areas were not
significantly different (medians: CT = 109 dB*octaves, cKO =
142 dB*octaves, P = 0.06, Fig. 2H and Fig. S3; see SI Results for
further characterization). Thus, the changes observed in cortex
were not present in the thalamus—the preceding subcortical
station—and likely arise in cortex.

Dlx1−/f;I12b-Cre Cortical Units Respond with Altered Dynamics at the
Edge of the Receptive Field. Cortical FRAs are driven by both
cortico-cortical (CC) connections and thalamo-cortical (TC)
connections. Whereas both TC and CC connections drive the
center of the FRA [frequencies near the characteristic frequency
(CF: frequency driving the response at threshold) and at high
intensity] with short latencies, the edges of the FRA are pri-
marily driven by CC connections with longer latencies (42–45).
These CC inputs arrive later than TC inputs because they must
travel through additional synapses and reflect both ongoing

B

A

Fig. 1. Dendrite-targeting interneurons are reduced in cKO mutants. (A)
Sections of auditory cortex from control and cKO mice labeled for various
interneuron markers (from left to right, top to bottom: parvalbumin, so-
matostatin, neuropeptide Y, calretinin, vasoactive intestinal peptide). (B)
Cell count in control and cKOmice: PV+ (P > 0.05, n = 3 animals), SOM+, NPY+,
CR+, and VIP+ interneurons (P < 0.05, n = 3 animals for each). A B

C D

E F G H

Fig. 2. Cortical spectral tuning area is reduced in cKO mutants. (A and B)
the population mean FRAs aligned by CF for auditory cortical units.
(C) Difference, cKO − control. (D) Difference with units aligned by threshold.
(E–G) Size of responsive area of cortical units (P < 0.01, P < 0.001, and P <
0.05; n = 54 CT and 58 cKO). (H) Size of responsive area of thalamic units (P >
0.05; n = 30 CT and 61 cKO).
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processes and horizontal cortical spread of activity (44, 45).
Therefore, we measured the response dynamics at the center and
edge of the FRA to explore how effectively CC connections drive
activity in cKO mutants.
To quantify the response dynamics, we used peristimulus time

histograms (PSTHs, Fig. 3A–C) for two different intensity regions
near the characteristic frequency (CF ± 0.2 octaves when the de-
scription of CF was moved forward, this became redundant). To
study the combined effect of TC and CC connections, the first
PSTHwas from stimuli in the center of the FRA at high intensities
(60–80 dB, Fig. 3E). To focus on primarily CC-driven activity, the
second PSTH was from the edge of the FRA at low intensities
(threshold± 10 dB, Fig. 3F). As with acute blockades of inhibition
(6–12), baseline firing rates were higher in cKOunits during the 50
ms preceding stimulus presentation and before driven responses
began (medians: CT, 1.11 Hz and cKO, 2.38 Hz, P < 0.005, Fig.
3D). Beyond the change in baseline firing, there were no signifi-
cant differences between cKO and control PSTHs at high in-
tensities where both TC and CC inputs contribute [significance
judged as at least five consecutive rank sum P < 0.05, in which case
all consecutive, significant points are reported; values 0–9 ms
(before the response onset of most units) pass this criterion, Fig.
3E]. In contrast, at low intensities where CC connections domi-
nate, cKO responses begin earlier but are overtaken by control
responses (cKO > CT, 0–16 ms; CT > cKO, 25–34 ms; at least five
consecutive rank sum P< 0.05). In cKOmutants, responses driven
by TC and CC connections appear to be normal in timing and rate,
but baseline firing rates are higher and responses driven primarily
by CC connections are abnormal in timing, magnitude, or both.
We therefore quantified the response timing and response mag-
nitude in greater detail.

Dlx1−/f;I12b-Cre Cortical Units Lack Long-Latency Responses. To in-
vestigate the differences in temporal response dynamics for in-
dividual units, we quantified the response onset latency (time to
half the peak height from baseline). The response latency of
control units is longer at low intensities near threshold compared
with high intensities (medians: CT-high = 15.5 ms, CT-low = 22
ms, Bonferroni corrected P < 0.001, Fig. 3G) in agreement with
previous results where CC driven responses have longer latencies
(44, 45). However, in cKO units, the response latency at low
intensities occurs significantly earlier than in control units
(medians: CT-low = 22 ms, cKO-low = 16 ms, Bonferroni

corrected P < 0.05, Fig. 3G). Interestingly, Control latencies at
high intensities were not significantly different from either high
or low intensity latencies for cKO units (medians: CT-high =
15.5 ms, cKO-high = 12 ms, Bonferroni corrected P > 0.05;
medians: CT-high = 15.5 ms, cKO-L = 16 ms, uncorrected P =
0.31, Fig. 3G). In other words, the response timing in cKO units
at both high and low intensities was similar to central regions
predominantly driven by TC connections in controls, and neither
was similar to the primarily CC driven edge responses of con-
trols. The response latencies for cKO units at low intensities
were longer than at high intensities (medians: cKO-high = 12,
cKO-low = 16 ms, Bonferroni corrected P < 0.05, Fig. 3G)
presumably because the response latencies of subcortical stations
are also stimulus intensity dependent (46). Therefore, receptive
fields did not simply change shape, but the long-latency
responses at low intensities normally driven by CC connections
appeared to be absent in the cKO population.
To extend analysis of changes in response timing to the entire

FRA, we calculated two short-time FRAs on the basis of 10-ms
windows centered either on the response onset or response
termination (termination: time at half the peak value after the
peak response, Fig. 4 A–C). It has previously been shown (45)
that the central, TC-driven FRA region becomes active first (Fig.
4A) and gives way to activity at the CC-driven edges of the FRA
(Fig. 4B). Therefore, the FRA shapes from the response onset
and termination should be negatively correlated. This correlation
was observed for control units (median: −0.05, signed rank P <
0.05, Fig. 4D), suggesting that inputs at the edges of the FRA
dominate the late portion of the response. In contrast, the onset
and termination responses of cKO units were positively correlated
(median: +0.05, signed rank P < 0.05, Fig. 4D), indicating that
the same FRA regions tend to be active throughout the re-
sponse. The correlations for the two groups are significantly
different (medians: CT = −0.05, cKO = +0.05, rank sum P <
0.01, Fig. 4D). Therefore, cKO units do not appear to develop
responses at the edge of the FRA over time as control units do.
Combined with the decrease in response area and lack of long-
latency responses, this result reinforces the idea that only central,
TC-driven responses remain in the FRAs of cKO units.

Dlx1−/f;I12b-Cre Cortical Responses Are Less Sparse. To explore
changes in firing rate, we determined the response rate as
a function of stimulus intensity for tones near CF (±0.2

A B C

D E F G

Fig. 3. Long latency respon-
ses are absent near threshold
in cKO mice. (A and B) Pop-
ulation mean PSTH near CF at
various intensities for auditory
cortical units. (C) Difference,
cKO − control. (D) Baseline
firing rates (50 ms preceding
the stimulus; medians: CT 1.11
and cKO 2.38, P < 0.005). (E
and F) Population mean PSTH
at high (60–80 dB) and low in-
tensities (threshold ±10 dB)
near CF (±0.2 octaves, dotted
lines are ± SEM). Black brack-
ets, area with five or more
consecutive sampleswith rank
sum P < 0.05. Gray bar, stimu-
lus. (G) Onset latency per unit
at high and low intensities
(*P < 0.05, **P < 0.01, all
Bonferonni corrected, n = 54
control and 58 cKO).
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octaves) also known as the rate-level function (RLF, Fig. 5A).
For individual units, the response magnitudes near CF were not
significantly different between groups (at 80 dB: medians, CT =13
Hz and cKO = 15 Hz, P = 0.40, Fig. 5B, see SI Results for
ANOVA). In contrast, the multiunit responses of cKO mice were
50% stronger (at 80 dB: medians, CT = 48 Hz and cKO = 73 Hz,
P < 0.001, n = 88 and 96, Fig. 5D, see SI Results for ANOVA and
thalamic data). Because the response rates of individual units were
not different but more multiunit events were observed at each site,
it is likely that the number of individual units simultaneously active
in response to tones increased in cKO mice. Therefore, responses
were less sparse following the loss of DTIs.
The decrease in sparseness, abnormal EEG activity, and in-

crease in baseline firing rate are the only data in agreement with
pharmacological blockades of inhibition (6–12). Previous studies

demonstrated that acute reductions of inhibition expand the
breadth of receptive fields and lengthen cortical responses (6–
12). We observed the opposite following the chronic decrease in
inhibition and identified a selective decrease in responses at the
edges of the receptive field. As overactivity is still present, it
suggests that compensation occurs at the FRA edges to weaken
and limit the spread of overactivity.

Discussion
We used Dlx1−/f;I12b-Cre mutants (cKO) to study the effects of
a partial loss of DTIs on auditory cortical processing. These
animals have normal peripheral hearing but an ∼30% reduction
in SOM+, NPY+, CR+, and VIP+ interneurons that develops
after the end of the critical period in auditory cortex (Fig. 1). As
SST and VIP are believed to be mutually exclusive interneuron
markers in mouse cortex (1, 17) and derive from the medial and
caudal ganglionic eminence progenitor populations, respectively
(47–52), this demonstrates that interneurons from distinct pro-
genitor pools are affected by the Dlx1 mutation.

Loss of Functional Cortical–Cortical Connectivity in Dxl1−/f;I12b-Cre
Mice. After the loss of DTIs, we found that receptive field sizes
were reduced in single units from core areas of auditory cortex in
cKO mutants due to higher thresholds and narrower bandwidths
(Fig. 2). We obtained evidence that this reduction does not occur
in the thalamus and therefore emerges in cortex (Fig. S3). As
descending cortical fibers can modulate subcortical function, it is
possible that a more detailed investigation of subcortical activity
may identify differences in Dlx1 mutants; however, the differ-
ences we observed in cortex do not appear to result directly from
changes in thalamic processing. This cortical receptive field
phenotype is in agreement with observations from the visual
system of Dlx1−/− mice where the range of stimuli that drive
responses is also reduced in most V1 cortical neurons and tha-
lamic circuitry remains intact (36). This commonality suggests
that the reduction in cortical receptive field size may be a general
response to the loss of dendrite-targeting inhibition. In auditory
cortex of cKO mice, the edges of the FRAs, which normally have
long-latency responses, were absent (Figs. 2–4). Instead, the
edges of cKO FRAs have response latencies comparable to
short-latency, central responses of control units (Fig. 3). Fur-
thermore, Control responses progress from the center to the
edge in a patterned fashion; however, in cKO responses the
central region is active at both the response onset and termina-
tion as if the longer-latency edge responses were absent (Fig. 4).
The absent FRA edges are usually driven primarily by CC con-
nectivity (42–44). Therefore, we propose that the decrease in
receptive field size may be a change related to a decreased ability
of CC connections to drive responses.
There are several possiblemechanisms for this change, including

decreased CC synaptic strength, different cell intrinsic properties
of excitatory neurons, and compensatory changes in inhibitory
circuitry. Weakened excitatory inputs have been observed in the
hippocampus of Dlx1−/− mutants (33). The amplitude of inputs
from excitatory neurons onto inhibitory interneurons decreases,
but the rate of excitatory synaptic activity and intrinsic properties
of the surviving interneurons were not affected by the loss of Dlx1
(33). This result has two implications for the current work. First,
the intrinsic electrical properties of the surviving interneuron
populations appear to be unaffected by the loss of Dlx1. Second,
Dlx1 mutants compensate for the loss of inhibition by decreasing
excitatory drive. If the amplitude of excitatory connections onto
excitatory neurons in auditory cortex decreases in this manner, the
expected outcome would be the reduction in CC-driven responses
that we observed in cKO mutants. Another possibility is that the
intrinsic properties of excitatory neurons could change to reduce
the effectiveness of inputs, such as a decrease in the input re-
sistance of dendrites. Alternatively, the remaining inhibitory

A B

C D

Fig. 4. Early and late responses are similar in cKO but not in control mice. (A
and B) Onset FRA (A) and termination FRA (B) from a control unit (correla-
tion = −0.37). White lines, size of the entire response FRA. (C) PSTH of the
unit in A and B. Light gray bars, early and late response windows, re-
spectively. Dark gray bar, stimulus. (D) Correlations of early and late
responses (medians: CT = −0.05 and cKO = 0.05, P < 0.005, n = 54 and 58).

A B

DC

Fig. 5. Cortical responses of cKO mice are less sparse. (A) Mean RLFs for
single cortical units (dotted lines, ±SEM). (B) Response magnitude of single
units for 80-dB stimuli (P = 0.37, n = 54 control and 58 cKO). (C) Mean RLFs
for cortical multiunits (dotted lines, ±SEM). (D) Response magnitude of
multiunits for 80-dB stimuli (P < 0.001, n = 88 control and 96 cKO).

13832 | www.pnas.org/cgi/doi/10.1073/pnas.1205909109 Seybold et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205909109/-/DCSupplemental/pnas.201205909SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205909109/-/DCSupplemental/pnas.201205909SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205909109/-/DCSupplemental/pnas.201205909SI.pdf?targetid=nameddest=SF3
www.pnas.org/cgi/doi/10.1073/pnas.1205909109


interneurons could increase the strength of their responses and
overcompensate for the loss of DTIs, thereby suppressing normal
CC activity. Computational modeling in V1 of Dlx1mice suggests
this alternative (36). Regardless of the mechanism, the observed
changes in cortical receptive fields will limit the complexity of
network processing.
The reduction in edge responses may reflect compensation to

reduce overactivity observed in cKO mice (Fig. 5 and Fig. S1).
Whereas the number of single-unit spikes remained constant in
auditory cortex in response to tones, the number of multiunit
spikes increased by 50%, indicating that overactivity to normal
stimuli develops following the loss of DTIs and responses become
less sparse. Combined with the increase in baseline firing rates
and seizure-like activity, these are the only results in agreement
with acute, pharmacological disruptions of inhibition. Pharma-
cological blockades of inhibition have been shown to broaden
spectral tuning, including lowering thresholds and revealing lon-
ger latency responses (6–12). However, the opposite results were
observed in our study following the chronic disruption of den-
drite-targeting inhibition and are likely to reflect compensation.
Therefore, approaches that examine only the acute effects of
reducing interneuron function are likely to be incomplete models
of chronic human neurological conditions but remain valuable for
determining the functional role of these circuit elements. If
compensation in Dlx1 mutants works to oppose acute changes,
one could predict that acute inactivation of DTIs will selectively
enhance the spectral edges of the receptive field driven by CC
connections. The opposite, acute activation, would then be pre-
dicted to selectively suppress the spectral edges of the receptive
field. Further studies are needed to test these hypotheses.

Role of Dendrite-Targeting Interneurons in Health and Disease. Re-
duction of inhibition is a component of many neurological con-
ditions, including hearing loss, aging, TBI, and neuropsychiatric
diseases (19–29). Following hearing loss, cortical response
thresholds are higher at the affected frequencies and a sub-
sequent loss of inhibition follows (25). This weakened inhibition
has been linked with the perception of tinnitus (29). Tinnitus may
develop as excitation and inhibition find a new balance following
the reduction of inhibition. Dendrite-targeting interneurons are
also lost selectively after TBI (24). Both TBI patients and Dlx1
mutant mice display an increased susceptibility to seizures (24,
30). The cognitive symptoms in TBI patients may also be driven
by the loss of DTIs. DTIs are also lost during aging, which may
lead to progressive deficits in speech comprehension (19). Re-
sponsiveness to one component of speech, FM sweeps, relies on
asymmetric CC connectivity and the response dynamics of both
excitatory and inhibitory interneurons (14, 18, 53–55). The aging-
induced loss of interneurons followed by a compensatory loss of
excitatory CC inputs may contribute to deficits in speech com-
prehension. Compensatory mechanisms may account for many
symptoms of complex neurological conditions.
The described long-term changes may reveal some of the

normal function of DTIs. As DTIs are recruited by CC activity,
they are well suited to mitigate overactivity (56). Also, DTIs
target dendrites, where excitatory CC connections dominate (57–
64) and respond to stimuli with similar timing as excitatory
cortical neurons (65). Under healthy conditions, activity propa-
gated by CC connectivity will elicit a sufficient inhibitory re-
sponse to shape cortical responses and maintain a safe balance of
excitation and inhibition. After the loss of DTIs, excitatory CC
connections will be uninhibited but may subsequently weaken
to normalize the overall level of excitation. This compensation
would replicate a state of tonic DTI inhibition. Fitting with this
hypothesis, responses normally driven by CC connections are
lost in cKO mutants but signs of overactivity remain. When
faced with overactivity, the nervous system may sacrifice con-
nectivity and computational power for stability. Deficits in

neurological conditions with reduced inhibition may reflect
compensatory changes as well as the direct effects of interneuron
losses. It is therefore necessary to study long-term compensatory
mechanisms following the loss of specific interneuron pop-
ulations to better understand human neurological conditions.

Methods
Experiments were performed on Dlx1−/f;I12b-Cre and Dlx+/f;I12b-Cre mice
using procedures approved by the University of California San Francisco In-
stitutional Animal Care and Use Committee and in accordance with National
Institutes of Health guidelines. For details of the generation of these mice
and histological verification see SI Methods.

Electrophysiology. EEG observations were made by using a time-locked video
EEGmonitoring system (Pinnacle Technology). For EEG recordings, mice were
surgically implanted in the left and right frontal and parietal cortices with
electrodes. Each mouse was anesthetized with isofluorane to an areflexive
state. Head mounts were attached with conductive stainless steel screws to
act as recording electrodes. Dental cement was used to secure the head
mount, and animals were allowed to recover for 3–5 d before recording
sessions were initiated. Differential EEGs were collected from 2-mo-old
animals over 8-h recording sessions.

Auditory brainstem responses were assessed under ketamine and xylazine
anesthesia. Silver wires were inserted through the skin on either side of the
brainstem and the forehead. Event-related potential evoked by clicks at various
intensities were recorded (TDT Sys3 with BioSigRP; Tucker Davis Technologies).

To collect extracellular recordings, male and female animals aged between
p33 and p65 were anesthetized to areflexia with a mixture of ketamine and
xylazine. A small craniotomy was then performed over auditory cortex.
Primary auditory cortical areas were identified by a multiunit response la-
tency of ∼10 ms (TDT Sys3 with Brainware; Tucker Davis Technologies).
A frequency gradient reversal between A1 and AAF was not consistently
observed in all control and mutant mice; therefore, a sampling was taken
from midlow frequencies and short latency (<15 ms) areas. Auditory thala-
mus was identified as the auditory responsive region with latencies around
8 ms near the stereotactic coordinates 3.2 mm posterior, 1.9 mm lateral, and
3.0 mm ventral of Bregma. Extracellular recording traces were collected with
16-channel probes (NeuroNexus) on a 32-channel recording system (Neu-
ralynx). Threshold crossings at 4 SD were collected as multiunit spikes and
these were sorted offline using KlustaKwik (written by Ken Harris) followed
by manual supervision to identify single-unit responses. Only single units and
multiunit sites that contained more than 500 events and doubled their av-
erage firing rate in response to tones were analyzed.

Stimuli and Analysis. Tones spanning 4 octaves (4–32 kHz, 0.1 octave spacing)
and 70 dB (10–80 dB, 5-dB spacing) lasting 50 ms were presented every
750 ms. In some experiments, tones were followed 70 ms later by a soft burst
of white noise for purposes not discussed here. No significant differences in
tone responses for the two conditions were observed and the data were
pooled. However, we limited all analysis to action potentials that occurred
less than 70 ms after tone onset. The FRA was determined as the areas above
1/4 peak response after subtracting the baseline. Threshold was determined
as the lowest intensity bin in the FRA, and CF was the middle frequency bin
at that intensity. Multiple intensity regions were selected over multiple
spectral regions for the PSTH because the spectral edges of the tuning curve
were sometimes at the edge of the frequency sampling space we tested and
could not always be reconstructed with confidence. Response onset was
estimated as the time to reach 1/2 of the peak response of the PSTH at that
intensity. Response termination was the time point to fall to 1/2 of the peak
value after the peak of the PTSH. When correlating the onset FRA and the
termination FRA, 10-ms windows centered on both times were used and the
original FRA was applied as a mask before the correlation was calculated.

Data analysis was performed in Matlab (MathWorks) using custom soft-
ware. Unless otherwise noted, all statistical tests are nonparametric,Wilcoxon
rank-sum tests. Therefore, data median data values are given in the text
rather than means. However, for the purpose of display, the data are plotted
as mean ± SEM. All units were used in each analysis (cKO: 58 cortical,
65 thalamic; CT: 54 cortical, 31 thalamic).
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