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" Evaluation of Current Distribution in Electrode Systems o
by High-Speed Digital Computers | '
Jack A. Klingert, Scott Lynn, and Charles W. Tobias
Lawrence Radiation Laboratory
and

Department of Chemical Engineering
University of California, Berkeley, California

ABSTRACT

In the absence of significant concentration gradients, the distribu- .

" tion of potential in electrolytic cells can be satisfactorily described

by the Laplace equation. Because of severe mathematical difficulties, in
the past, analytical solutions have been obtained only for a few, simple
cell configurations. - In other fields of application it is well known
that the finite-difference form of the Laplace equation by iterative pPro-

cedure is ideally suited for numerical solution by digital computers.

- The method is suitable for handling any arbitrary two-dimensional cell

geometry, and allows consideration of realistic overpotenﬁial behavior.
Brief description is given of the elementary mathematical relations

involved, and of the iterative ?rocedure employed in machine computations.

. By use of this technique, the primary and secondary current density dis-

tributions were evaluated for the outside corner of an electrode, a model

representative of cell gecmetries commonly employed in industry. The

. effects of the variations of geometric -and overpotential parameters ore -

demonstrated. The results objtained indicate that the numerical technique
employed ‘is eminently suitable for rapid and accurate evaluation of current

density distributions for realistic models.
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Evaluation of Current Distribution in Electrode Systems
by High-Speed Digital Computers*

Jack A. Klingert, Scott Lynn+, and Charles W. Tobias

¢

" INTRODUCTION

‘ 5 . ‘F, L _ The determination of currént density distribution, and its depen-
‘dence oh cell geometry, on.sdlutign properties, on hydrodynamic condi-
tions, and on the impedances associated with charge-transfer reactions
ha; long been recognized to be of importance in the design and conduct
of metal deposition and dissolution processes. In more recent years, the

; need for more rational procedures for the pre@iction of performance of
industrial electrblytic processes and of various galvanic cell types
has become increasingly evident.

The problem in its most general formulation includes the»considera-
tion of concentration gradients associated with the progress of elec-

~ trode reactio'ns.l However, in ngmerbus applications, the bulk electro-
lyte is well stirred, and its composition may be assumed invafiant. |
Furfher, the concentration gradients near the electrode surfaces may
be small, and thgrefore their inf}uence on the electrode potential
can be considered negligible. Under these céndi#ions, the local elec-

trode potential is dependent only on the activation overpotential

//

' cprresponding/ﬁélthé local current densityag The distribution of po-

tential between the electrodes then can be described by the Laplace
. ’/' .
. equation,

2

veE-=o. | o )

-
/

In 1940, Kasper2’3’h.’5 presented an orderly and lucid exposition
~ of the boundary conditions pertaining to metal deposition and dissolu-

tion processes, neglecting mass transport effects. Methods of obtaining




e (among others) Wagner,é’7 Kronsbein,8 and Drossbach. 9’ Agar anhd HO&¥,

effects at the electrodes. Consideration of linear or logarithmic over- :
| . : , ' 6)7)12313
-~ potential relationships leads to more severe methematical difficulties. ' :

'integral equations to evaluate the local current.densities.

$-2- UCRL-10928

solutions for various types of electrode geometries were described by ,
11

”"‘Wagner,6’7 and Wijsman and Tobiasf12 discussed the significant parameters,. o

" and the criteria of similarity. .

Analytical solutions of the Laplace equation have been obtained for

a number of simple cell geometries. 3’h 5’6 8 Most of these solutions

evaluate only the primary distribution,e'i.ea disregard any overpotential

Instead of solving the Laplace equation, it is possible then to employ

13,1k More

~ complicated electrode geometries required model experiments with the

electric trough, or application of graphical techniques of potential

‘ m,apping.l5 Unfortunately both these techniques are quite inaccurate

“‘ when sharp variations of potential occur over very small distances. Fur-.

ther, neither of these techniques allows the consideration of overpotential

'effects.

Although much progress has been made during the last 20 years in @%'Av

understanding current distribution phenomena, and in obtaining solutions

~to cexrtain simpie problems, there appears to be a definite need for

more convenient methods to solve problems of higher degrees of complexiiy.

. Further, it 1s desirable to introduce techniques that do not require

unusual.mathematical skills, excessive time, or eleborate (although not

very accurate) experimental.methods. These criteris appear to be met

by the method of the iterative solution of the difference form of the

- Leplace equation.

G)}
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. ence form of the laplace equation by "iteration" or "relaxation.

o quotients ai‘e

=3~ UCRL-10998

' APPLICATION OF THE DIFFERENCE FORM OF THE LAPLACE EQUATION
TO SOLVING PROBLEMS IN CURRENT DIS![RIBUTION : e

PRt .

Various techniques for the eve.lua.tioﬁ of temperature, stress, and flow

fields by numerical methods have been perfected in the past several decades.

" The most commonly employed method involves the numerical solution of the differ-

n16,17,18 L

the following the basic features of this method are outlined, and the typical

.' boundary cond.itions representative of electrol;rtic cell ﬂystems are introduced.

‘Basic Considerations

By replacing the differential equa:tion

2y dE E N (1)

E = -5 + =
| a2
with the difference equation
aF A - :
2 + 2 = 0, ' , (2)
(&)™ (&) /

we: replace the description of a continuum with a rectangular network (Fig. 1).
_' The meaning of the central difference gquotients in equation (2) may be understood
with reference to Fig. 2. Here the values of the forward and backward difference

X EB-f AnaE E.o-']fg,
5

Ix h h

. respectively. The pecond central difference quotient then is given by

AB AF
0 - m e en

| 3 |
= = —— 3 . 3
- () B n° @
.-By similaxr reasoning . ' :
| | "AE"a i E, =~ 2E_ + E | -
By .27 oA
() B n® '

Addition of equations (3) and (h) results in the remarkably aimple rele.tionahip
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E, +E, +E, +E .~ |
e - TS .
E, = ———7 . . (5)

Thus we obtain a simple formula that relates the potential at each point

of the grid to the potentials at the four nearest neighbors. If ve

satisfy the condition stated in equation (5) simultaneously -at every grid

pomnt wmthln the regime consmdered, we obtain a solution to equation (2),

the difference form of the Laplace equationo*

We will briefly consider now the degree of approximation involved
in substituting the difference equation (equation 2) for the differential
equation (equation 1). With reference to Fig. 2, Taylor'éxpansion of |
the potential function with respect.to both x and y about point O, witﬁ

interval h, results in

2 2 '
AE AE 6
. c 2 + (c )2 = VaE - E-—vh E g""‘v6E 4 cos e (6)
Ly

(ax)
Thus the.error conmitted in setting the left-hand side equal to zero is-
represented by a power series that converges rapldly, and for a small
mesh interval, h, the first term of the series involving h2 is already.

hegligible.lT

Boundary conditions
In additio?/;o/%he formula relating the potential at each point -

of the grid to those at its neighbors, we also have to state the con-

'ditionsfat the boundaries in difference form.

It should be noted that instead of the simplest "square" or "cross
formulae, represented by equation (5), larger "molecules" involving the
nearest eight or nineteen neighbors can be developed. Solutions employ-

' ing these higher-order approximations approach the solution of the
differential equation even more closely than those involving equation (S)
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‘point. For instance, at point B

E,, is related to the potential on the solution §ide; EB, by .
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.a. For conducting boundarieé, in the absence of an overpotential de- ; . -

pendent on current density, we specify the potentiai of the electrode,

.'Ec which is usually uniform. Thus in Fig. 3, if the four sides of the
' quadrangle were eleétrodes at different potentials, we wduld‘write down
" at each boundary point along the four different sides the corresponding._

, values of the potential.

b. For insulating boundaries, the normal flux is zero. .In this case

we construct image points behind the boundary (points 1', 2',3/, v
in Fig. 4), and set the potentials at these points equal to their counter-

parts within the regime‘considered. Thus

‘Ei = E), E,' = E,, etc.

The mesh points on the boundary will then be treated as any intérioi .

5 in Fig. 4, the potential is calculated

by
| . 2E3 + EB2 + EBh

EB.= h’

¢c. The third type of boundary condition describlng electrodes with

current-dependent overpotential concerns the case in which neither the .

potential nor the current is specified at the boundary, only their

' functional relationship. The finite-difference expression will, of
. course, depend on the relation specified between current.and potential

(Fig. 5).

‘For linear overpotential relations, the potenmtial in:the electrode,

B='Ec a.. boi‘ .

e
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* Therefore, b-X . . ,
E -« h E ' :
b-X B 1 S
. ~% : :

,iwhere b = slope of 1 vs E line,.rLcm?,-K = conductivity of electrolyte

-.:;g:lcm'l : . ‘ o

°

For a logarithmic relationship between potential and current Qen—‘

sity (Tafel polarization),:the relation of the local density of the

current to the exchange-current density must be taken into consideration:

(B, ~E,) K
- RPN . B L1 8
Ey=E, - B zniO-Ec-B 4n iR ) (8)

- where B = RT_ volts, iO = exchange current and density A/cm 5 and

ankF
o = transfer coefficient. Evaluation of the potential at the solution

4 side of the boundary in this case involves a trial-and-error procedure.

Method of solution

As shown in the preceding section, it is possible to write an
equation for every point of the rectangular grid, including the points

on the boundaries. These equations must be solved simultaneously to

specified limits of accuracy.

The simplest procedure, the method of iteration, involves a pro-

gressive self-correcting solution, starting with the values given at

 'the boundaries and arbitrarily assumed values of the potential in the

e .
e

interior of fﬁe grid. Consider the rectangular regime in Fig. 3. Let

us qssuﬁe that in this problem all values of the potential are specified -

-’

at the boundaries. We shall write in-reasonable values of the potential

at each grid point and then, using equation (5), calculate a new value,.-

E§, for point 8, and using this new value, calculate Eé for point 9, etc.

Using the improved’ values generated, we proceed in an orderly manner

és indicated_in Fig. 3, and, aftét a full sweep through the regime ‘
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considered, we return to point 8, etc. This procedure is continued unt?l ;

‘at each mesh point the basic relationship,'eqnation (S), is approached %"

K

_to within the specified error limit ei

El + E2 f E§7+ Eh

| >0

e.> | E°

The meximum possible error that we can introduce by allowing an error L

smaller than € at each point within a regime bound by a circle of radius r

L)2 16 For example, if r/h = 50, and € = 10‘6 volt, the

' '
maximum possible error at a grid point will be less than 4 x 10”7 volt.

cannot exceed E( )

An appropriate check may be made of the accuracy of the solution if one

refines the grid and compares the values calculated for the finer grid

L . with those obtained earlier.

The calculation procedure for'cases involving insulating boundaries,ﬂv‘>vf 

and electrodes with overpotential condition, becomes necessarily more in-

" volved. However, powerful numerical techniques are available for the

solution of equation (8)20 and the computation will again involve only

routine manipulations.

To obtain sufficiently accurate solutions, a fine grid and low errcr

- limits for the solution of equation (5) must be used. In general, the

grid intervals should be small compared with fhe distances‘o#er which a

significant variation of flux occurs. In practice; we find that grids

containing from a few hundred to a few thousand points are required. The

“

number of sweeps, or passes, will vary according to the geometry of the

'_problem and the overpotential relations employed. In a typical case, from

' several hundred to several thousand passes are required to solve a problem

of average complexity;. Thus scmewhere between 10h and lO7 individual

4'grid-point solutions are required to obtain a single distributione, Althoﬁgh
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these numbers appear formidable, since the calculations outlined above.
. are ideally suited for programming onto hiéh~épeed digital computers,
highly accurate solutions may be obtained quite rapidly. Depending on
thé accurac& desired and the complexity of the problem, the average'time
invoived on an IBM TO90 computer 1s in the range of A few minutes to a
fraction of an hour.
CUBRENT DISTRIBUTION IN AN L~SHAPED REGION

The geometry chosen to illustrate the numEriéal evaluation of current
distribution is shown in Fig. 6. As is demonstrated in Fig. 7, application
of sectioning rules to this basic elem.ent2 allows the.gengratipn of manyw'\
"important practical cell geometries. ¥or a { c<<Kd, and 8 << b; we Ob-
tain the model of a fissurg-type,pore,'of interest in the description of
porous electrodes. v ' . »

In the present exploration of this modei,‘we have ?ggtricte&dfhé
range of geometric parameters as follows: c B

‘ ¢ =2d in all cases, 
-~ b =143 in all cases,
d/h < a < 24; |
h was chosen to be equal to d/20. The number of mesh points involved
varied from 1,300 (for e=d/lh) to 4,800 (for a=2d). The potential applied ;
across the electrodes was 1.0 volt when the primery current distribuéion :
was evaluated.
~ In order to keep the curent density, i, at the right-hand corner

of the anode, the same as in the primary distribution examples, an -

appropriately higher anode potential wes used when the effect of anodic ;

overpotential was evaluated. An error limit of 10"6 volt was applied

4

in the primery distribution coges, and 10" volt for the cases involving
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 overpotential. The number of passes required was between 800 and 3,000.

The distribution near the corner was evaluated both with a sharpf

' point corner, and a rounded-off corner having a radius of d/20. For {his

latter case the grid near the corner was refined to h = d/80 (see sha&§d

region in Fig. 6).

The effect of overpotential at the anode was studied by using a

"single length relation: a = d. In contrast to the case of primary

vdistribution, here the relation of absolute size to conductivity and to

the impedance corresponding to polarization must be considered.
As shown by Agar and Hoarll‘and Wagner,6 in the case of linear over-

potential relation the significant parameter is by = X b/L, where L is

' *
the significant dimension of the regime considered. In evaluating the
effect of linear polarization on current distribution in a given geometry,

- therefore, it is unnecessary to vary all three variables individually;

rather it suffices to obtain solutiops for a range of values of “L° Thié
dimensionless number represents the ratio of the potential drop at the
interface, corresponding to the current-dependent portion of the elec-
trode potential, to the potential drop aecross the significant length of

the system. When My, is small compared with unity, the current distribﬁtion
approaches the primgry distribution; for pL9 1, the impedance corresponding
to the discha;ge reaction dominates, and the distribution approacheé jv'
uniformity. |

Similsr reasoningT leads for the case of logarithmic‘(Tafel)

~overpotential relationship to the similarity criterion _ .

[P

For the range of.geomeﬁric barameters considered here, the choice of

L =4d1is approﬁrigteq
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- KB
o

".where B is the Tafel slope (volts), and i is the average current density

corresponding to the location of L.‘ As shown, in this cese the currentf
distribution depends_on the average current density also. Again, however,"

identical diatribution will be obtained in two geometrically aimilar

,.- systems, if the values of b is the same for both cases.

In our case the distribution at the anode was eva;uaxed with Hy =
0.05, 0.1, 0.5, and 1.0, representative of a practical range of the com-

bination of variables frequently employed in practice. For computational'

. purposes one is free to choose convenient values of the variables involved”

in p and Hape Individusl variables were chosen as shown in Table 1.

Table 1

w B, E LK L(=d) b

L (vglts) (vélte) , (q}} cm 1) cm (Itcm?)
I 0 0 1 1 1 0
II 0.05 0 1.05 1 1 Q.05

- IIT 0.1 0 1.1 1 1 0.1

v 0.5 0 1.5 1 T 0.5
v 1.0 0 2.0 1 1 1.0

For purposes of comparison, the effeét of Tafel polarization was also-

computed; by using conditions identical to those of case V.

i, =10 -2 A/cm was chosen, resulting in & current density of 1.0 A/cm .

in the right-hand corner, and B was set equal to 1.0 volt. -
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RESULTS AND DISCUSSION

In our model the value of b was ‘chosen deliberately so that the

effect of the corner vanished near the insulating boundary (at right,

in Fig. 6), and the potential gradient at this position was constant

between the two electrodes. Thus the current density near this boundary

'cofresponds to the current density one would obtain between two infinite_

parallel electrodes separated by the distance d. The current density,

: ir* at this boundary was chosen as a reference value, and all other

densities are expfessed relative to it.

Figure 8 shows the priméry'current distribution for a = d in the
region near the corner of the anode° Thé dashed,portion of the curve
indicates approximately the way in which the current density would tend
toward infinity if the corner were geometrically square. The solid liné

was calculated with a mesh size of /80 in the small region shown in

Fig. 6 and with & radius of d/20 for the corner. The method of projecting

and subsequently unfolding the anode surface to form the abscissa is

" illustrated in the inset in Fig. 8. This method is also used in Figs.;‘

- 9 through 13.

In Fig. 9 the current distribution for the entire anode is shown

- on a smaller scale. An abbreviated listing of i/ir values 1s given in

Table 1. The current flowing into the normal branch of the anode is

‘shown here to depend strongly on a/d. The current distribution along

the cathode is remarkably uniform. Integration of the current densities -
along each electrode yielded values within 1% of each other.
As is shown in Fig. 8, the actual maximum in the current density‘_”

at the corner ddes-hof ocecur at poiﬁt 0 but is somewhat displaced toward

the lower side of the anode. It was also found, by using the smaller mesh

EACR NP
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- to improve the precision of the calculaiion, that the current distribution :

- around the corner itself is smooth and well-behaved. Using the Smalleffi-'

mesh size did not produce‘an apﬁreciable shift in the distribution of

' the current relative to that obtained previously, which indicates tha_s't‘:f;
%i . - vthe pfecision obtained with the larger mesh was satisfactory. On'the 3
él_k 'f 4v ‘basis of these considerations the curves for the cases showing the effect
of geometry (discussed above) and polarization (discussed belpw) were
”: simply drawn in smoothly in the region bounded by one mesh unit on eithei‘_
side of zero in Figs. 9, 10 end 11. The curveé 50 obtained are for an N
electrode with a corner having a radius of one mesh unit (d/20). The - :
caSe.of an electrode with a geometrically sharpvcorner ié actually of
. no practical importancef
The effect of linear polarization on tﬁe distribution at the anode )
is shown in Fig. 10 and in Table 1. Théleffect of incressing influence
‘of anodic overpotential is apparent; aé My, is increased from zero to i;O{
_the current flowing into the vertical branch of the anode is much in-
creased. The sharpness of the peak of current density (which approaches.
infinity for Hr, = 0) at the corner is reduced, and'for u=l.0, there is
- no longer a maximum current densitypax this point. Figures 11 end 12
show the position of streamlines fo? Ky, ; 0 and Wy = 1. It shoﬁld,bé
notéd that the same amdunt of current flows between any tﬁo ad jacent
~streamlines.
A comparison between linear and logarithmic overpotential relation-
ship is made in Fig. 13 at poui;;.o. Tt is apparent that the lineaw ex-
: preééion yields a much less evening effect on the distribution than does
:ithe logarithmic one.. ;t shouid be hoted, however, that the two cases

" were calculated with such & choice of b that the current densities at the



the anode, the linear expression would have given a more even distribution

"tion of a given problem can be further reduced.

v
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right-hand corner were equal in the two cases. If we had chosen to match

the current densities in the upper corner along the vertical branch of 5

i

than the logarithmic one. It is evident that the linear polarization

§

expression is inadequate to represent overvoltage behavior when a sub-

- stantial rénge of current densities occurs within a given distribution

problem.

In the foregoing sections we have attempted to show the principles
underlying thé iterative solution of the finite~difference form of the
Laplace equation, and illustrated the method by computing the distribution

in a realistic geometric model, using both linear and Tafel overpotential

- relationships.

We have not attempted to cover in the frame of this paper various

computational techniques by which the time required for the accurate evalua-
It is advisable to solve

a problem initially with a large mesh interval, hl’ and then, using the

- potential values obtained in this manner, refine the mesh to h2=hl/2. If
- necessary the new potential values can again -be used to initiate still

~ another solution, using now h3:h2/2 Intervals. The total number of passes

required when this successive mesh refinement is employed is far smaller
than if the problem is solved with the finest mesh right away. One should
also conslder the application'of different mesh densities over différent
segments of the domain éonsidered, according to the more or less irregular

variation of potential in these segments. It is not necessary, for instance,

to use a fine mesh when the potential varies in a linear ﬁanner in a segment.

- The reader 1s referred to specialized texts on field computations for still

other powerful methods by which convergence cen be accelerated.l9
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"~ relationships. '

other powerful methods by whieh eonvergence can ba agcelerated.
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.'-}"right-hand corner were equal in the two cases. If we had chosen to match .

the current densities in the upper corner along the vertical branch of E

55fthe'anode, ﬁhé,linear expression would have given a more even distribuﬁiém R

i

expression is inadequate to represent overvoltage behavior when a sub-
stantial rénge of current densities occurs within a given distribution

problem.

In the foregoing sections we have attempted to show the principles
underlying the iterative solution of the finite-difference form of the
Leplace equation, and illustrated the method by computing the distribution
in a realistic geometric model, using both linear and Tafel overpotential
We have not attempted to cover in the frame of this paper various

computational techniques by which the time required for the accurate evalua-

‘tion of a given problem can be further reduced. It is adviseble to solve

a problem initielly with a large mesh interval, h,, and then, using the

' potential values obteined in this manner, refine the mesh to hgshL/e. Ir

necessary the new potential values can again be used to initiate still

another solution, using now hsshg/z intervals. The total number, of passes

"v required when this successive mesh refinement is employed is far smaller

then 1if the problem is solved with the finest mesh right awey. One should

‘elso consider the epplication'of different mesh densities over différent

- -sggmentg of the domain considered, esccording to the more or less irregular

veriation of potentisl in theése segments. It ié not necessary, for instance,

to use a fine m@sh vhen the P@teﬁtial'varigg in & linear manner in'a segment.

.>The-rgaier is referred to specialized texts on field computations for still

19
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Lright~hand corner uere eoual in the two cases.. If we had chosen to match
ithe current densities in the upper corner along the vertical branch of A
ithe anode, the linear expression would have given L more even distribution
“than’ the logarithmic one.7 It is evident that the linear polarization
iexpression is inadequate to represent overvoltage behavior when a aub-:
Fstantial range of current densities occurs within a given distribution |

zproblem.

‘ In the foregoing sections we have attempted to show the Principles,‘f“ e
i underlying the iterative solution of the finite-difference form of the
EiLaplace equation, and illustrated the method by computing the distribution '_1‘3
,fin a realistic geometric model, using both linear and’ Tafel overpotential
relationships. - :

" We have not attempted to cover in the frame of this paper various

?;computational techniques by which the time required for the accurate evaluae:riﬁf':
_;tion of a given problem can be further reduced. It is advisable to solve -‘IM

:{;'a problem initially with a large mesh interval, hl’ N
;tpotential values obtained in this manner, refine the mesh to h2—hl/2. If- fﬂ;fﬁ;"'

and then, using the

ﬁlnecessary the new potential values can again be used to initiate still

f'another solution, using now h —h2/2 intervals. The total number of passes"ﬂ j” -

” required when this successive mesh refinement is employed is_far smaller ,\lr

”‘thanrif the problem is solvedeith the fineSt mesh right away. One should;Vga*‘v?f:
also consider the application of different mesh den51ties over different RN

'fsegments of the domain considered, according to the more or less irregular

;variation’of potential in these segments. It is not necessary, for instance,ft“ffi
(;to use -a fine mesh when the potential varies in a linear manner in a segmentﬁf:-f"
73,;;.The reeder is. referred to specialized texts on field computations for still

“:l{{;other powerful methods by which convergence can be accelerated.ls.,l-"
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.5. ;fij'. " Numerical solutions in general require a large number of indiviiuali_'

‘”E.sblutions, varying each paremeter, while the others are;kebt«conSténti?.,
" to yield the equivalent information that is contained in an analytical

ﬁsolution..vGeneration of such a set of solutions, however, does not in

{';'ﬂ;:_“f most cases require excessive computer time, particularly if programs areeo'
:g : :ie; written Judiciously.‘ At the same time one should consider that only in'wf:
v*“a few trivial cases can one obtain analytical solutions in closed forms.e
:'In most cases, an analytical solutions is either impossible or involves
. & number of approximations,‘and, in any oase, yields results that still’b’”
require numerical evaluation'(such as complicated integrels, or slowl& '”
converging 1nfio1te series).
The numerical solution’ scheme presented here allows the use of
any arbitrary overpotential relationship. The effect of mass-transfer
f: polarization on'current distribution can also be included. Finally;
electrode resistance effects (terminal effect) can also be taken into
'acoount.
» There can be no doubt about the advantages of this technique for
‘:obtaining current density distributioﬁs in any arbitrary two—dimensionai -
B cell geometry. Use of this method does not require highly specialized

- ‘preparation in applied mathematies.
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TABLE 2

Ratios of local local current densities on the anode, i, to the
uniform current density near the right-hand corner, ir

Dist. p.=0 o 0 0 0.05 0.1 1.0 po=1.0
L : T .
from :
- corner 1 1 _ -
(x d) %eE 5 1 2. 1 1 11
4.0 0.000 0.000 0.010 0.038 0.026. 0.038 0.050 0,162
-3.0 ~ 0:000 0.000 0.014 0.054 0.030 0.0kk 0.068 0.17h
-2.0 © 0.000 0.002 0.038 0.108 0.054 0.070 0.140 0.222
-1.0 ~ 0.002. 0.032 0.1k4 0.260 0.158 0.1Tk 0.328  0.3kk
-0.9 - 0.002 0.0k 0.170 0.288 0.180 0.198 0.358 0.364
-0.8 0.006 0.060 0.198 0.320 0.208 0.226 0.392 0.338
-0.7 = 0.010 0.082 0.23% 0.358  0.242 0.260 0.430 0.k16
-0.6 ~0.018 - 0.112 0.278 o.kok 0.284 0.296  0.470 0.L4S
-0.5 0.03% 0.154  0.344  0.460 0.336 0.350 0.516 0.480
-0.k  0.064k 0.21% 0.406 0.534 0.406 O.k12 = 0.568 0.520
-0.3 0.120 0.306 0.508 0.636 0.500 0.500  0:628 0.570
-0.2 0.232 0.452 0.668 0.796 0.640 0.62% 0.702  0.630
-0.1 0.484 o0.746 0.986 1.124 0.892 0.834 0.790 . 0.708

-0.05 0.760 1.060 1.330 1.486 1.132 1.016 0.846 - 0.760
+0.05 1.352 1.524 1.686 1.776 1.484 1.350 0.986 0.922
+0.1 1l.126 1.312 1.420 1.482 1.328 1.254 0.990 0.936 -
+0.2  1.088  1.150 1.210 1.2k 1,182 - 1.152 0.996  0.954 . -

' ?»-+0.3 1.048 1,086 '1.126 1.148 1.116 1.102 - 0.998 . o.960""

L 1.028 1,056 1.082 1.096 1.078 1.068 0.998 0.972°
5 1.020 - 1.036 1.054 1.066 1.054 1.048 1.000 0.978
6 1,01k 1.026 1.038 1.046 1.038 1.03% - 1.000 0.984
+0.7 1.010  1.018 1.026 1.032 1.028 1.028 1.000 0.988"°
8 1.006 1.012 1.020 1.022 1.018 1.018 1.000  0.990
9 1.004 1.008 1.014 1.016 1.014 1.014 1.000 0.992
0 1.00k 1.006 1.010 1.012 1.010 1.012 1.000 0.99k
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000° 0.998

Positive multiples of d refer to distance from the outside corner
along the surface parallel'tb the cathode, negative ones to the
distahce along the surface perpendicular to it.
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FIGURE CAPTIONS .~ -~ . a0

- Replacement of the continuum'with & rectangular network.

n'Netwofk element.

Typlcal iteration sequence.

Insulatlng boundary.

Conduecting boundary.

' Geometry of the model. Element covered with lattice shows region

near corner, in which the potential was evaluated using a refined
mesh (h = 4/80). For the rest of the enclosure h = d/QOAwas used.
Typical two dimensional multiple electrode arrangements generated
from the basic model in Fig. 6 using symmetry considerations.2 The

dashed lines may be substituted by insulators, the dotted ones

’representing equipotential surfaces by electrodes.

The relative current density, i/1 at the outside corner on the anode.
The effect of varying the ratio a/d on the current distribution.
The effect of linear polarization on current distribution.

Potential-flux map showing the primary distribution (u=0).

vPotentlal-flux map showing the secondary distribution for pT = 1.0.

Comparison of the effect of linear- and Tafel polarization.

- .
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor..
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