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Abstract

Grassland degradation and desertification is a complex process, including 
both state conversion (e.g., grasslands to deserts) and gradual within‐state 
change (e.g., greenness dynamics). Existing studies hardly separated the 
two components and analyzed it as a whole based on time series vegetation 
index data, which cannot provide a clear and comprehensive picture for 
grassland degradation and desertification. Here we propose an integrated 
assessment strategy, by considering both state conversion and within‐state 
change of grasslands, to investigate grassland degradation and 
desertification process in Central Asia. First, annual maps of grasslands and 
sparsely vegetated land were generated to track the state conversions 
between them. The results showed increasing grasslands were converted to 
sparsely vegetated lands from 2000 to 2014, with the desertification region 
concentrating in the latitude range of 43–48° N. A frequency analysis of 
grassland vs. sparsely vegetated land classification in the last 15 yr allowed 
a recognition of persistent desert zone (PDZ), persistent grassland zone 
(PGZ), and transitional zone (TZ). The TZ was identified in southern 
Kazakhstan as one hotspot that was unstable and vulnerable to 
desertification. Furthermore, the trend analysis of Enhanced Vegetation 
Index during thermal growing season (EVITGS) was investigated in individual 
zones using linear regression and Mann‐Kendall approaches. An overall 
degradation across the area was found; moreover, the second desertification
hotspot was identified in northern Kazakhstan with significant decreasing in 
EVITGS, which was located in PGZ. Finally, attribution analyses of grassland 
degradation and desertification were conducted by considering precipitation,
temperature, and three different drought indices. We found persistent 
droughts were the main factor for grassland degradation and desertification 
in Central Asia. Considering both state conversion and gradual within‐state 
change processes, this study provided reference information for 



identification of desertification hotspots to support further grassland 
degradation and desertification treatment, and the method could be useful 
to be extended to other regions.

Key words: Central Asia; drought; Enhanced Vegetation Index; gradual 
change; grassland degradation and desertification; MODIS; remote sensing; 
state conversion.

Introduction

In the context of global climate change, dryland areas are projected to 
increase dramatically to cover one‐half of the global land surface by the end 
of this century, resulting in increased land degradation and desertification 
(Huang et al. 2015, Sternberg et al. 2015). Central Asia is a dryland hotspot 
dominated by moisture‐limited grassland, semi‐desert, and desert 
ecosystems (Loboda et al. 2012). Due to the relatively infertile soil and 
sparse vegetation cover, the grassland in Central Asia is sensitive to climate 
variability and human activities (Lioubimtseva and Henebry 2009, Huang 
et al. 2015, Seddon et al. 2016). Land reclamation during the Soviet era and 
cropland abandonment after the collapse of the Soviet Union have greatly 
affected grassland conditions in Central Asia (Wright et al. 2012). The 
grazing activities and livestock numbers have also greatly impacted 
grasslands since 1990 (Karnieli et al. 2008). Given the predicted population 
growth, the grassland degradation and desertification issue has been an 
important concern for human wellbeing in this region. It has attracted 
increasing attention on grassland degradation and desertification in Central 
Asia along with the enhanced warming and land cover and land use change 
due to human activities in the past several decades (Li et al. 2013, 2015, 
Klein et al. 2014, de Beurs et al. 2015, Xi and Sokolik 2015, Zhou 
et al. 2015).

A comprehensive picture of grassland degradation and desertification in 
Central Asia needs a clear definition. Generally, grassland desertification is 
considered as the loss of the ability of a landscape to provide ecosystem 
services due to a change in soil properties, vegetation, or climate (D'Odorico 
et al. 2013). The process of grassland degradation and desertification is 
complex in view of the diversity of factors influencing grassland degradation 
and desertification, including natural factors (e.g., climate, fire, and species 
invasion) and anthropogenic factors (e.g., overgrazing and reclamation; 
Gong et al. 2015, Lin et al. 2015, Hu et al. 2016, Pereira et al. 2016). It could 
involve a decrease of greenness and productivity, along with biodiversity 
loss; but it also could relate to an increase of greenness due to shrub 
encroachment. In this specific study, we defined the grassland degradation 
and desertification as the process of loss in productivity and greenness. 
Grassland degradation and desertification is linked with a transition between 
two stable states in bi‐stable ecosystem dynamics corresponding to a 
vegetated state and an un‐vegetated state according to desertification 
theories (Appendix S1: Fig. S1) (D'Odorico et al. 2007, 2013). The resilience 



of a bi‐stable system is extremely limited when compared with systems 
having only one stable state (Holling 1973). Thus, if an external disturbance 
(e.g., drought) induces a transition to an unvegetated or desertified state, 
the removal of this perturbation would not necessarily allow the system to 
spontaneously return back to its initial status.

If the disturbance is beyond a critical threshold (e.g., by reducing vegetation 
cover), these systems move toward the alternative stable state of degraded 
land (D'Odorico et al. 2013). Therefore, grassland degradation and 
desertification is a complex process including both state conversion (e.g., 
conversion from grasslands to deserts) and gradual within‐state change 
(e.g., grassland degradation characterized by greenness decrease). The 
observations of desertification, including both the transition from grasslands 
to deserts and gradual change in greenness, are critical for getting a clear 
picture of grassland degradation and desertification in Central Asia.

Given the harsh environment in dryland areas and their vast geographic 
extent, time‐series data from satellite remote sensing has been widely used 
for detecting large scale grassland degradation and desertification from the 
perspective of vegetation coverage change (Wessels et al. 2012, de Beurs 
et al. 2015). Remotely sensed vegetation indices, as the signal of vegetation 
growth, such as Normalized Difference Vegetation Index (NDVI), Enhanced 
Vegetation Index (EVI), Soil‐Adjusted Vegetation Index (SAVI), and Tasseled 
Cap Greenness (TCG), have been widely used to track changes in the 
vegetated land surface in dryland areas (Tucker et al. 1991, Jeong 
et al. 2011, de Beurs et al. 2015, Eckert et al. 2015, Sternberg et al. 2015, 
Zhou et al. 2015). A recent study using GIMMS3g NDVI time‐series data has 
reported that Central Asia experienced a significantly decreasing trend of 
seasonal NDVI for 1992–2011 due to continued warming and socio‐economic 
conditions (Zhou et al. 2015). de Beurs et al. (2015) found different variables
(e.g., EVI, NDVI, and TCG) can reveal very similar trends for land surface 
dynamics. These remote sensing indicators can reflect the greenness or 
vegetation dynamics; however, the existing studies have not paid enough 
attention to the identification of three states of desertification: unvegetated 
(deserts) state, vegetated (grassland) state, and transitional (conversion 
between grassland and sparsely vegetation on the time scale) state. That is, 
the previous studies paid more attention to the within‐state shifts of 
vegetation coverage, instead of the land cover conversion from grasslands to
deserts.

In addition, the barren or sparsely vegetated regions with significant 
interannual fluctuation of vegetation index were neglected based on the 
conventional trend analysis in previous studies (Wessels et al. 2012, de 
Beurs et al. 2015). One reason is that the vegetation index values in barren 
or sparsely vegetated regions are largely affected by the soil background. 
The barren or sparsely vegetated lands are the transition ecotone from 
grassland (vegetated) to desert (unvegetated), and also are the most 
sensitive, fragile, and unstable region. This transition ecotone greatly 



determines the direction of desertification (turning to vegetated or 
unvegetated state) under external perturbation. In barren or sparse 
vegetated lands, the soil variations would affect the fluctuation of vegetation
index value, which will not well indicate the true trends of vegetation 
change. Some studies just excluded the areas with very low NDVI when 
analyzing vegetation change at the regional scale (Zhou et al. 2001, Piao 
et al. 2011a, Zhang et al. 2013); doing so will miss the variation and trend 
information of grassland desertification. It is critical to understand the 
grassland degradation and desertification process and establish early 
warning signals of conversion from grassland to desert (Alibakhshi 
et al. 2017). Therefore, the classification of the persistent grassland zone 
(PGZ), persistent desert zone (PDZ), and unstable transitional zone (TZ) 
could be an effective approach to retain this important information and exert
a more comprehensive understanding of grassland degradation and 
desertification.

Based on the above concerns and limitations of previous studies, the major 
objective of this study is to provide more robust satellite evidence for the 
grassland degradation and desertification process in Central Asia by 
considering both state conversions and gradual within‐state changes. 
Specifically, we would like to answer three questions: (1) To what extent and 
where did state conversions between grassland and sparsely vegetated land 
take place from 2000 to 2014? (2) What was the gradual within‐state trend 
of vegetation growth in individual zones? (3) What was the main driver for 
the grassland degradation and desertification process in this region? We also
tried to identify the hotspots of grassland desertification in Central Asia that 
would be the first priority for treatment. The results are expected to serve 
decision makers in order to take early action to prevent further 
desertification in Central Asia.

Materials and Methods

Study area

Central Asia, the core region of the Asian continent, consists of Kazakhstan, 
Uzbekistan, Turkmenistan, Kyrgyzstan, and Tajikistan (Fig. 1a). The total 
area of Central Asia is about 4 million square kilometers. The total population
is about 66 million in 2013–2014, the density of population is low, and the 
spatial distribution of population varies widely in this region. The terrain of 
Central Asia is high in the east but low in the west, mainly dominated by 
plains and hills. Central Asia includes a range of landscapes with a transition 
from steppes in the north to semi‐deserts and deserts in the south (Gessner 
et al. 2013), and is dominated by grasslands. Central Asia is characterized by
dry and continental climate, scarce precipitation, intensive evaporation, and 
large diurnal and annual fluctuation of temperatures. Temperatures and 
precipitation depend on the latitude and elevation in this region. Mean 
summer temperature is around 20°C in the north of Central Asia, and more 
than 30°C in the south of Central Asia. In winter, the mean temperatures are 



below zero all over Central Asia. Mean annual precipitation is approximately 
400 mm in the lowlands of the north part of Central Asia (mainly north of 
Kazakhstan), and <100 mm in parts of Central Asia (mainly Uzbekistan and 
Turkmenistan) (Gessner et al. 2013). Average monthly precipitation is very 
low in summer and early autumn from July to September, increases in 
October and November, and is highest in spring (March or April), followed by 
swift drying in May and June.

Materials

Remote sensing data

The moderate‐resolution imaging spectroradiometer (MODIS) collection 
products of surface reflectance (MOD09A1), land surface temperature (LST, 
from MOD11A2), and land cover data (MCD12Q1) were used in this study 
(Table 1), which were obtained from the USGS EROS Data Center, including 
the eight tiles (H21/22/23V03, H21/22/23V04, and H22/23V05) covering 
Central Asia (available online).1



Time series vegetation index data

The vegetation indices were calculated using the 8‐d composite Surface 
Reflectance Product (MOD09A1; Vermote and Vermeulen 1999, Zhou 
et al. 2015) from 2000 to 2014, including (1) EVI, which is considered to have
higher robustness to atmospheric conditions and soil background relative to 
NDVI (Huete et al. 1997, 2002, Xiao et al. 2003), (2) land surface water index
(LSWI), which is sensitive to equivalent water thickness (Xiao et al. 2002, 
Maki et al. 2004) because the imbedded SWIR band is sensitive to leaf water 
and soil moisture, and (3) normalized difference snow index (NDSI), which 
was used to identify snow pixels (Hall et al. 2002).

(1)

(2)

(3)

where ρblue, ρgreen, ρred, ρnir, and ρswir are the surface reflectance for the blue, 
green, red, near‐infrared, and shortwave‐infrared bands, respectively.

The bad observations, including clouds, cloud shadows, and snow, were 
excluded to form a long‐term time series vegetation index data set by using 
a two‐step strategy. First, we used the data quality information from the 
quality control flag layer to extract the clouds and cloud shadows from each 
image. Second, we applied an additional restriction in which the pixels with a
blue reflectance of ≥0.2 were also labeled as cloudy (Xiao et al. 2005) 
(Appendix S1: Fig. S2). The snow cover pixels were also excluded using the 
NDSI and the near‐infrared (NIR) band (Hall et al. 2002), specifically 
NDSI > 0.40 and NIR > 0.11 (Xiao et al. 2005). All the pixels identified as 
cloud, cloud shadow, or snow covers were excluded. The gaps in time series 
vegetation index data due to bad quality observations were gap filled using 
the linear interpolation approach. When the continuous gaps contained no 
more than three consecutive points, the linear interpolation approach was 
used to gap fill the time series data. More than three consecutive missing 
observations were limited in our study area (temperate zone) as the effects 
of clouds and clouds shadows in the growing season are much less than in 
tropical regions (Zhang et al. 2015).

Time series land surface temperature (LST) data

The Land Surface Temperature and Emissivity 8‐D L3 Global 1 km product 
(MOD11A2) from 2000 to 2014 was used to calculate the nighttime LST‐
based thermal growing season in this study. The retrieval of LST has been 
improved by correcting noises from cloud contamination, zenith angle 
changes, and topographic differences; it agreed well with in situ‐based LST, 
and the absolute bias of LST is <1 K (Wan 2008). The digital number values 



(DN) from MOD11A2 were converted to LST with centigrade unit values 
based on the following formula: LST (°C) = DN × 0.02–273.15 (Wan 2008). 
The gaps in time series LST data were filled by using linear interpolation.

Annual land cover data

The MODIS Land Cover Type Yearly L3 Global 500 m SIN Grid product 
(MCD12Q1) was used to identify the targeted area. This data set provides 
five global land cover classifications schemes from 2001 to 2012. The 
International Geosphere‐Biosphere Programme (IGBP)‐based global 
vegetation classification scheme was used in this study, which identifies 17 
land cover classes globally (Friedl et al. 2010). According to the land cover 
data in 2010, Central Asia primarily consists of five land cover classes: 
grasslands (64%), barren (15%), shrublands (10%), croplands (7%), and 
water (2%).

Climate data

The air temperature and precipitation data were obtained from the 
University of East Anglia Climatic Research Unit (CRU) Time Series 3.2 data 
set (Harris et al. 2014). The CRU data set is derived from archives of climate 
station records, available at the British Atmospheric Data Centre 
website.2 This data set is monthly climate observations at 0.5° × 0.5° spatial 
resolution, covering the period from 1901 to 2013.

Three drought indices data sets were used to illustrate the drying trend and 
relationship with grassland degradation and desertification in this study 
region, including MODIS‐based Drought Severity Index (DSI, 2000–2011; Mu 
et al. 2013), the meteorological‐based Standardized Precipitation Index (SPI, 
2000–2012; McKee et al. 1993, O'Loughlin et al. 2012), and the Palmer 
Drought Severity Index (PDSI, 2000–2012; Palmer 1965, Dai et al. 2004, 
Dai 2011). The DSI data product is a remotely sensed index using MODIS 
terrestrial evapotranspiration (ET)/potential ET and MODIS NDVI data as 
primary inputs (Mu et al. 2013). This data set covers all vegetated land areas
with 1‐km spatial resolution at 8‐d, monthly, and annual intervals over the 
period from 2000 to 2011. Annual DSI was used in this study, obtained from 
the Numerical Terra dynamic Simulation Group, University of Montana (Mu 
et al. 2013; data available online).3 The SPI data is commonly used to 
monitor drought and anomalous wet period, and is calculated based only on 
the long‐term precipitation record for a desired period (McKee et al. 1993). 
This data set includes the SPI at 3 months, half‐year, and annual scales for 
global land surface from 1949 to 2012 with 1° × 1° grids, obtained from 
Climate Data Guide (O'Loughlin et al. 2012; data available online).4 PDSI is 
the other reasonable index at quantifying long‐term drought for global land 
surface from 1850 to 2012 with 2.5° × 2.5° grids, which was also obtained 
from Climate Data Guide (Dai et al. 2004, Dai 2011; data available 
online).5 Monthly PDSI is estimated by readily available temperature and 
precipitation data (Palmer 1965).



Methods

In order to understand and detect the trend and process of grassland 
degradation and desertification in Central Asia, we developed a method that 
observes both state conversion (e.g., between grasslands and sparsely 
vegetated land) and gradual within‐state change (e.g., greenness dynamics),
thereby creating a desertification zone classification‐based grassland 
degradation strategy. Fig. 2 provides a flow chart illustrating the 
methodology and workflow used in this study.



Determination of targeted area by excluding croplands and forests

The evident human‐induced land use changes (e.g., agricultural 
abandonment, urbanization) in this region would affect the analysis of 
grassland degradation and desertification based on vegetation index. The 
spatial distribution of IGBP‐based land cover types in Central Asia from 2001 
to 2012 (Appendix S1: Fig. S3) showed the large variation in spatial 
distribution of croplands. So a targeted area, only including grassland, barren
or sparsely vegetated, and desert regions, will be helpful to exclude the 
disturbance from them. It was clearly defined by the combination of land 
cover data and additional masks. Specifically, three steps were conducted to 
identify the spatially explicit extent of targeted area. First, annual 
information of grasslands or barren or sparsely vegetated lands, based on 
the IGBP classification scheme from MCD12Q1 data, was extracted for each 
year. Second, we applied additional masks (including a water bodies mask 
and an integrated mask of croplands, forests, and wetlands) to eliminate 
potential errors in the classification process of MCD12Q1 (Klein et al. 2012) 
and disturbances from other land cover types. A detailed description about 
the generation of masks is in Supplemental Materials. After applying these 
masks, annual refined grassland and sparsely vegetated land maps from 
2001 to 2012 were generated. Last, the specific targeted area was 
ascertained by intersection of annual maps from 2001 to 2012 (Fig. 1b), 
most located in Kazakhstan.

Separation of grasslands and sparsely vegetated land

The conversions between grasslands and sparsely vegetated land were 
analyzed to determine the state conversions from 2000 to 2014. Clear 
distinction between grassland and sparsely vegetated land is essential for 
understanding how grassland degrades and converts into sparsely vegetated
land from a land cover change perspective. Generally, from the view of 
vegetation coverage, grasslands have higher greenness than deserts, at the 
same time, the seasonal variation of EVI in deserts is smaller and more 
stable than that in grasslands (Appendix S1: Fig. S2).

Before analyzing vegetation variation and trend for the targeted area of 
Central Asia, we defined the LST‐based thermal growing season first for 
calculation of the mean EVI during the thermal growing season. Plants 
generally begin to grow when a stable temperature threshold is reached, in 
order to avoid damage from cold temperatures. By comparing the 
observational vegetation phenology data and the temporal profile of 
nighttime LST (Appendix S1: Fig. S2), we calculated the start and end dates 
of thermal growing season with nighttime LST above 0°C (LST0) in 
continuous three 8‐d intervals for each year from 2000 to 2014 
(Appendix S1: Fig. S4). The resultant maps of the start and end dates of LST0
were resampled to 500 m using the nearest neighbor interpolation method to
be spatially consistent with the vegetation index maps from MOD09A1.



In this study, standard deviation (SD) of EVI during the LST0‐based thermal 
growing season (SDEVITGS) was used as an indicator to identify grassland and 
sparsely vegetated land. Comparing the EVI curves of grassland and sparsely
vegetated land in Central Asia, the fluctuation in EVI curve of sparsely 
vegetated land was less than that of grassland (Appendix S1 Fig. S2d‐f). In 
other words, fluctuation in EVI curve decreased with the drop in vegetation 
coverage. Taking the year of 2010 as an example, we summarized the 
distributions of SDEVITGS from random 10,000 pixels in 2010 for each IGBP‐
based vegetation type in Central Asia. Among all the vegetation types, 
barren or sparsely vegetated had the lowest SDEVITGS (Appendix S1: Fig. S5). 
From Appendix S1: Fig. S5, the value of SDEVITGS equal to 0.02 could help to 
separate Barren or sparsely vegetated from all the vegetation types, so we 
used 0.02 as the SDEVITGS threshold to distinguish grasslands and sparsely 
vegetated lands in the study area (Appendix S1: Figs. S5, 3).



Recognition of three desertification zones

To evaluate state conversions, we explored the dynamics of classified 
vegetation types over time. Following the desertification theory (D'Odorico 
et al. 2013), three zones were identified: persistent grassland zone (PGZ), 
persistent desert zone (PDZ), and transitional zone (TZ). These zones were 
defined by the frequency of grassland vs. sparsely vegetated land 
classification at each pixel based on SDEVITGS from 2000 to 2014 
(Appendix S1: Fig. S6), with PGZ, PDZ, and TZ corresponding to classification
as sparsely vegetated land 0–1 yr (never or rarely), 14–15 yr (always or 
usually), and 2–13 yr (sometimes), respectively.

Vegetation variation and trend analysis within individual desertification 
zones

To evaluate gradual vegetation change, we explored greenness trends over 
the time period. Within each desertification zone, we extracted the mean EVI
during the LST0‐based thermal growing season (EVITGS) for each year from 
2000 to 2014. Two approaches, the linear regression and Mann‐Kendall test, 
were used for the statistical analysis. The linear regression calculated the 
slope of the linear least squares regression line fit to the inter‐annual 
variation of the EVITGS values. The statistical significance of EVITGS change was
mapped and assessed based on the two‐tailed significance tests (Zhang 
et al. 2013). Mann–Kendall trend test is a nonparametric test used to identify
a trend in EVITGS, even if there is a seasonal component in the series 
(Fensholt et al. 2012, Zhang et al. 2016).

Climate change effects on grassland degradation and desertification

To explore main driving factors for grassland degradation and desertification 
in this region, we performed correlation analysis between SDEVITGS and 
different climate variables (precipitation and temperature) as well as drought
indices (DSI, PDSI, and SPI). The relationships of spatially averaged 
SDEVITGS and climate factors were analyzed. The spatial distribution of 
correlations between SDEVITGS and climate factors were also considered.

Results

Increasing conversion from grasslands to sparsely vegetated land from 2000 
to 2014

Central Asia is primarily covered by grassland, mostly distributed in central 
Kazakhstan and adjacent with the sparsely vegetated land zone in the 
southern Kazakhstan (Fig. 3). The changes in SDEVITGS‐indicated grassland 
area of Central Asia over the period 2000–2014 showed an evident decrease 
with a rate of −0.14 × 105 km2/yr (P = 0.08; Fig. 4c). Grassland decreased by
12.5% from 2000 to 2014. Specially, the area of grassland in 2002 was the 
largest, followed by 2007 and 2009, while that in 2008 was the lowest.



The statistics in SDEVITGS‐indicated grassland and sparsely vegetated land 
areas by latitude (Fig. 4b) showed that the grassland area evidently 
decreased in Central Asia in the past 15 yr, especially within a latitude range 
of 43–48° N. In addition, the first year with sparsely vegetated land 
occurrence over the period 2000–2014 gradually occurred from south to 
north in Central Asia (Fig. 4a), indicating the northward extension of 
desertification zone, which led to the large decrease in grasslands.

From the desertification zone classification, this region was mainly 
dominated by PGZ, accounted for 46%; followed by TZ with 37%; and the 
area of PDZ was the smallest, only 17% (Fig. 5). PGZ, TZ, and PDZ were 
distributed in Central Asia from north to south, which showed the gradually 
decreased vegetation cover from north to south (Fig. 5). This spatial pattern 
was consistent with that of the multi‐year averaged EVITGS in study area 
(Appendix S1: Fig. S7), with higher EVITGS values observed in PGZ (dense 
vegetated) and lower EVITGS values observed in PDZ (sparse vegetated). The 
distribution of PGZ and TZ presented continuous strips from west to east. 
Fig. 4b show that there was evident decreases in grasslands in the TZ. 
Therefore, the TZ, the fragile and sensitive ecotone, was identified as one 
important hotspot in Central Asia that was vulnerable for desertification and 
determined the direction of desertification.



Gradual within‐state changes in different zones

We conducted a trend analysis by fitting a linear trend of the average annual
EVITGS in the whole study area and different zones mentioned above (Fig. 6). 
The EVITGS of study area over the period 2000–2014 showed an evident 
decreasing trend at a rate of −0.0014 (R2 = 0.45, P = 0.006, n = 15). In 
terms of the three zones, there were consistent trends of EVITGS between in 
PGZ and TZ (R = 0.85, P < 0.001), which showed significant decreases in the
order of −0.0021 (R2 = 0.49, P = 0.004, n = 15) and −0.001 
(R2 = 0.34, P = 0.02, n = 15), respectively. The EVITGS in PDZ showed an 
insignificant and fluctuating change (R2 = 0.12, P = 0.20, n = 15).



Both the linear regression and Mann‐Kendall methods revealed similar 
spatial patterns of EVITGS trends in the study area (Fig. 7). The linear 
regression analysis showed a decreasing trend of EVITGS in almost all parts of 
the targeted area (90%), and the decreasing trend was significant in 25% 
(36%) of the targeted area with a significance level of P < 0.05 (P < 0.1; 
Fig. 7a, Table 2). The majority of significant decreases in EVITGS mainly 
occurred in the northern part of Kazakhstan with large swaths, which was the
mainly region of PGZ, with 67% (64%) of significant decreases at significance
level of P < 0.05 (P < 0.1) distributed in PGZ (Fig. 7a, Table 2). The area with
an increasing trend of EVITGS was very limited, only 10% of the targeted area 
(Table 2), mainly distributed in the eastern part of Central Asia; and the 
increasing trend with a significance level of P < 0.1 was <1% (Table 2) of the
targeted area. The Mann‐Kendall‐based trend analysis also showed a similar 
spatial pattern of EVITGS change in this region (Fig. 7b, Table 2). The area with
significant decreasing in EVITGS within PGZ means that this region 



experienced gradual grassland degradation and in risk for desertification, 
which was the second hotspot identified in Central Asia in this study.



Effects of droughts on grassland degradation and desertification

Despite different data sources and spatial resolutions, the three drought 
indices (PDSI, SPI, and DSI) were highly correlated (correlation coefficients 
between each other were larger than 0.73, and all of P < 0.05), and showed 
similar decreasing trends over the targeted area of Central Asia since 2000 
(Fig. 8). There were significant decreases in PDSI and DSI with rates of −0.10
(P = 0.04) and −0.13 (P = 0.009), respectively, while the decreasing trend of
SPI was not significant (Fig. 8f–h). Although both precipitation and 
temperature showed decreasing trends over the same period (precipitation, 
slope = −2.86 mm/yr, P = 0.16; temperature, slope = −0.06 °C/yr, P = 0.17; 
Fig. 8i, j), the precipitation was the main driver inducing drought 
intensification in Central Asia according to the correlation between different 
drought indices and precipitation and temperature (Appendix S1: Table S1). 
It is noteworthy that the mean temperature anomaly during 1997–2012 was 
evidently larger than that during 1950–1996, showing the recent 16 years 
from 1997 to 2012 was the warmest period in the last 60 years (Fig. 8j). At 
the spatial scale, the drying trends from three drought indices were 
widespread across this region, northern region showing a significant 
negative trend (P < 0.05; Fig. 8a–c). Precipitation also showed similar 
decreasing trend with these drought indices at spatial pattern (Fig. 8d), while
temperature showed an insignificant increase in the northwestern part and 
decease in the eastern part, which was evidently different with the spatial 
patterns of the drought indices trends (Fig. 8e). It showed that precipitation 
was the key factor for controlling the drought in this region.



The relationships of EVITGS and three drought indices (DSI, PDSI, and SPI) as 
well as two climate variables (annual precipitation and mean temperature) 
were examined using correlation analysis. From the inter‐annual variations, 
there were strong relationships between EVITGS and the three drought indices
with P < 0.01 (Fig. 9a). Although EVITGS was significantly related with annual 
precipitation (P = 0.01), the significance level was smaller than those with 
three drought indices (Fig. 9b). Whereas, the EVITGS was not significantly 
related to annual mean temperature (P = 0.42; Fig. 9c). The spatial 
correlations between EVITGS and drought indices, precipitation, and 
temperature showed the pattern of spatial correlations between EVITGS and 
SPI agreed well with that between EVITGS and PDSI, as well as precipitation 
(Fig. 10a–c); while the pattern of spatial correlations between EVITGS and 
temperature was different (Fig. 10d). The spatial correlations with a 



significance level of P < 0.05 between EVITGS and two drought indices as well 
as precipitation were generally located in northwestern and southern parts of
targeted area (Fig. 10a–c). The area with significant spatial correlation 
between EVITGS and temperature was limited in the northeastern part 
(Fig. 10d).

Discussion

On the whole, this study provided observational evidence for a widespread 
grassland degradation and desertification over the past 15 years in Central 
Asia through the examination of two processes (state conversion and gradual
vegetation change). Specifically, the traditional methods based on trend 
analysis of vegetation indices alone could have overlooked the sparsely 
vegetation regions, which determined the direction of grassland 



desertification (Appendix S1: Fig. S1). The transitional ecotone, dominated 
by barren or sparsely vegetated land, was the unstable region between 
grasslands and deserts under the effects of external disturbance (D'Odorico 
et al. 2013). The area of SDEVITGS‐based sparsely vegetated land evidently 
increased in TZ of Central Asia in last 15 years, showing increasing unstable 
area and risks to desertification. The identification of the TZ in this study 
could help to guide the potential ecological restoration projects. The second 
hotspot identified in this study was located in the north of Kazakhstan in 
PGZ, which experienced an evident browning trend and agreed with previous
studies (Mohammat et al. 2013, de Beurs et al. 2015, Zhou et al. 2015). The 
statistical analyses using both linear regression and the Mann‐Kendall test 
guaranteed the reliability of the trend analyses in individual desertification 
zones.

Another advance in technical perspective of this study was definition of EVI 
during thermal growing season. Annual or seasonal vegetation index was 
generally used in previous studies for vegetation change analysis in Central 
Asia (Piao et al. 2011b, Mohammat et al. 2013, Zhou et al. 2015). However, 
the study region is across a large latitudinal range from 35° to 57° N, 
displaying a transition from cold temperate zone, temperate zone to 
subtropical zone. Large differences in vegetation growth phases exist from 
north to south. Therefore, it is unsuitable to define vegetation growing 
season with same period for the whole region, such as from April to October 
(Mohammat et al. 2013, Zhou et al. 2015). If the invariable length of growing
season is considered in this region, such as April as starting point of 
vegetation growth, the early and short‐lived vegetation would be neglected 
(Appendix S1 Fig. S2e). Therefore, identification of vegetation growing 
season in Central Asia needs be more careful. In this study, a thermal 
growing season defined by using daily surface temperature (Zhang 
et al. 2015) provided a better option for tracking vegetation dynamics in a 
spatially and temporally consistent way, and this method could be extended 
to other studies about regional vegetation changes.

In addition, the targeted area (only including grasslands, barren or sparsely 
vegetated, and deserts) for the grassland degradation and desertification 
observations was identified in this study to avoid disturbance from drastic 
land use changes (e.g., agricultural cultivation, urbanization). For example, 
the reasons for vegetation browning in the northwest of Kazakhstan were 
complex. Zhou et al. (2015) demonstrated that vegetation growth was 
significantly affected by precipitation in this region; while de Beurs et al. 
(2015) attributed the browning to a combination of drought and increasing 
fallow periods (or ongoing agricultural abandonment). One important reason 
for difficulty in attribution analysis of grassland degradation and 
desertification could be from the mixture of landscape changes in the region.
Specifically, previous studies analyzed changes in vegetation greenness and 
their trends in the entire Central Asia, and did not separate effects of human‐
induced land cover conversions (e.g., abandonment, urbanization) or simply 



used static land cover information in a given period (Gessner et al. 2013, 
Mohammat et al. 2013, de Beurs et al. 2015, Zhou et al. 2015). In fact, 
vegetation browning caused by land cover changes (e.g., cropland 
abandonment, fallows, urbanization) would induce a feint of land 
degradation and desertification. Therefore, exclusion of land use change 
effects is of importance to better understand the process and drivers of 
grassland degradation and desertification in Central Asia; otherwise, the 
phenomenon of grassland degradation and desertification would be 
a mixture with land cover and land use change information.

Based on the refined targeted area in this study, we found observed 
EVITGS change was principally attributable to persistent drought (P < 0.01, 
Fig. 9a), comparing to influences of temperature. The high desertification in 
2008 (Fig. 4) was consistent with the trough in drought index (Fig. 8f–h), 
which also indicated the sensitivity of grassland degradation to droughts. 
While this study focused on process of grassland degradation and 
desertification and its attribution to climate factors, the effects of 
socioeconomic factors, e.g., livestock density, land use change, were not 
considered in this study (Wright et al. 2012); which could need to be 
investigated in the future, in order to improve the understanding on process 
and drivers of grassland degradation and desertification in the region.

Conclusions

Knowledge of process of grassland degradation and desertification against 
the background of global climate change is essential for taking early action 
to prevent the increase in desertification in Central Asia. In this study, we 
carried out satellite data based analysis and provided a comprehensive 
picture for grassland degradation and desertification in Central Asia from 
2000 to 2014, considering both state conversion and within‐state gradual 
change. This new analyses on the grassland degradation and desertification 
also contributed to improved understanding of its drivers.

Our analysis provided three key insights into grassland degradation and 
desertification in Central Asia. First, the state conversion analysis showed 
that grassland degradation increased from 2000 to 2014, and desertification 
was gradually expanding northward. Secondly, our results clearly identified 
sensitive and fragile regions, one was the region in the TZ with higher 
sparsely vegetated land frequency in southern Kazakhstan, and the other 
was the significant browning region within the PGZ in northern Kazakhstan. 
The identification of these hotspots in this study can help decision makers to 
effectively mitigate desertification in Central Asia; for example, it can guide 
grazing activities, water extraction, and other anthropogenic activities. The 
desertification zone classification‐based grassland degradation strategy, by 
integrating abrupt state conversion information and gradual within‐state 
dynamics, can also be used to detect grassland degradation and 
desertification in the other dryland regions. Last but not least, grassland 
degradation and desertification was largely linked with persistent droughts in



Central Asia. Given the projected increase in drought and warming (Huang 
et al. 2015), grassland degradation and desertification is expected to 
exacerbate in Central Asia in the future. Therefore, the treatment of the 
desertification hotspots should be paid more attention to avoid potential 
aggravation of desertification.
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