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Department of Mathematical Physics,

National University of Ireland Maynooth, Maynooth, Ireland

Abstract

Recent research has identified three invariants or identities that
appear to hold in people’s probabilistic decision making: the
addition law identity, the Bayes rule identity, and the QQ
identity (Costello and Watts, 2014, Fisher and Wolfe, 2014,
Costello and Watts, 2016b, Wang and Busemeyer, 2013, Wang
et al., 2014). Each of these identities represent specific agree-
ment with the requirements of normative probability theory;
strikingly, these identities seem to hold in people’s probability
judgments despite the presence of strong and systematic bi-
ases against the requirements of normative probability theory
in those very same judgments. We assess the degree to which
two formal models of probabilistic reasoning (the ‘probability
theory plus noise’ model and the ‘quantum probability’ model)
can explain these identities and biases in probabilistic reason-
ing.

Introduction
A fundamental goal of science is to find invariants: constant
relationships that hold between different variables. While
such invariants occur frequently in the ‘hard’ sciences, they
are rare in behavioural science. Recent work, however, has
identified three invariants that appear to hold in people’s prob-
abilistic reasoning: the addition law, Bayes rule and ‘QQ’
(‘Quantum Question’) identities (Costello and Watts, 2014,
Fisher and Wolfe, 2014, Costello and Watts, 2016b, Wang
and Busemeyer, 2013, Wang et al., 2014). Each identity de-
scribes a constant relationship that holds between different
probabilistic judgments, and each represents specific agree-
ment with the requirements of probability theory. Strikingly,
these identities hold in people’s probability judgments despite
the presence of strong biases, or systematic deviations from
probability theory, in those very same judgments. We assess
two formal models of probabilistic reasoning (the probability
theory plus noise model, Costello and Watts, 2016, and the
quantum probability model, Wang et al. 2014) in terms of
their ability to explain these invariant identities and biases.

Identities in probabilistic reasoning
We use the following notation. We take P(A) to represent the
normatively correct probability of event A. We take P∗(A)
to represent a subjective estimate of P(A). The QQ identity
involves the relationship between probability estimates when
questions are presented in specific orders. We take PBA(A)
to represent the subjective estimated probability of A when
questions are presented in the order BA (when people are
asked to estimate P(A) immediately after being asked to es-
timate P(B)) and take PAB(A) to represent the estimate when

questions are in the reverse order. Since a subsequent esti-
mate for P(B) cannot affect the results obtained from a prior
estimate for P(A), P∗(A) = PAB(A) and P∗(B) = PBA(B).

The QQ identity

Consider a situation where people are asked questions in two
alternative orders AB or BA. This situation is commonly seen
in polls; for example, in a Gallup poll conducted in September
1997, half of participants were asked the question “Do you
think Al Gore is honest and trustworthy?” followed immedi-
ately by the question “Do you think Bill Clinton is honest and
trustworthy?”, while the other half of participants were asked
the same questions in the reverse order (Moore, 2002). Peo-
ple’s answers in such situations are often strongly influenced
by the order of question presentation (PAB(A) 6= PBA(A)). In
the Clinton-Gore questions, for example, 76% of participants
answered ‘yes’ to the Gore question when it was asked first
(PAB(A) = 0.76), while 66% answered yes when it was asked
second (PBA(A) = 0.66): the prior presentation of the Clinton
question produced a bias, reducing the likelihood of a ‘yes’
answer to the Gore question. Simultaneously, however, re-
sults (both from experimental studies and from polls) show
that the following identity tends to hold reliably in sequential
question answering:

PAB(A∧B)+PAB(¬A∧¬B)−PBA(A∧B)−PBA(¬A∧¬B)= 0

(where A∧B represents a ‘yes’ answer to both A and B and
¬A∧¬B represents a ‘no’ answer to both questions). This
expression has a value of −0.003 in answers to the Clinton-
Gore questions, for example. This identity holds for ques-
tions across a wide range of different topics in 72 different
national representative surveys in the US, and in laboratory
studies of the effects of order in question answering, even
though these surveys show significant bias due to question or-
der (Wang et al., 2014). This is just as predicted by the quan-
tum probability model, and is seen as providing ‘the strongest
form of support’ for that model (Wang et al., 2014).

The Addition Law and Bayes Rule identities

A number of identities must hold in standard probability the-
ory. One such identity is the addition law, which requires that

P(A)+P(B)−P(A∧B)−P(A∨B) = 0 (1)
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must hold for all events A and B. Two other ‘expansion’ iden-
tities require that

P(A∧B)+P(A∧¬B)−P(A) = 0 (2)

P(A∧B)+P(¬A∧B)−P(B) = 0 (3)

must hold for all events A and B. Consider experiments where
we ask people to estimate various probabilities P(A), P(B),
P(A∧B), P(A∨B), P(A∧¬B), P(B∧¬A) (not in any fixed
ordering), and combine those estimates as in the various iden-
tities. Results show that, when we combine people’s proba-
bility estimates for a given pair of events A,B as in the addi-
tion law identity, the average value obtained is equal to prob-
ability theory’s required value of 0. When we combine the
same estimates for the same events A,B as in the two expan-
sion identities, the average value is not equal to 0; instead,
the average value is positive (typically around 0.25) and is
similar for both of these expansion identities. In other words,
people’s probability estimates reliably agree with probability
theory for the addition law identity, but deviate from proba-
bility theory for the two expansion identities.

The addition law identity applies to direct or marginal
probabilities. Similar results hold for identities that involve
conditional probabilities. One such identity is the additive
form of Bayes rule, which requires that

P(B|A)P(A)−P(A|B)P(B) = 0 (4)

must hold for all events A and B. Two parallel ‘Bayes expan-
sion’ identities require that

P(A∧B)−P(A|B)P(B) = 0 (5)

P(A∧B)−P(B|A)P(A) = 0 (6)

must hold for all events A and B. Experimental results for
these identities follow those seen above: for the Bayes Iden-
tity the average value in people’s estimates is equal to 0, while
for the two Bayes expansion identities, the average value is
positive (typically around 0.12, half the value seen for expan-
sion identities in Equations 2 and 3) and is similar for both
of these expansion identities (see Table 1). Results for these
identities don’t just hold when averaging across events: they
also hold separately for each individual pair of events A and
B, and they hold for estimates about familiar everyday events,
medical diagnoses, future political or economic outcomes, or
personality-description scenarios (Costello and Watts, 2014,
Fisher and Wolfe, 2014, Costello and Watts, 2016b).

These patterns of agreement with the addition law and
Bayes rule identity and simultaneous violation of the expan-
sion identities (with approximately the same positive value
for Equations 2 and 3 and approximately half that value for
Equations 5 and 6), are predicted by the probability the-
ory plus noise model. Confirmation of these predictions has
been taken as evidence that the probability theory plus noise

model ‘may provide a fully general account of the mecha-
nisms by which people estimate probabilities’ (Costello and
Watts, 2016b).

The quantum probability model, then, accounts for the QQ
identity and for biases due to order effects, while the noise
model accounts for the addition law and Bayes rule identities
and for biases in the expansion identities. Can either model
explain all three sets of results? In the next section we show
that the quantum model is in principle unable to explain the
addition law and Bayes rule results. We then show that the
noise model gives a natural account for all these results.

The quantum probability model
The quantum probability model (Wang and Busemeyer, 2013,
Wang et al., 2014) assumes that people’s probabilistic rea-
soning follows the mathematical rules used to calculate event
probability in quantum theory. A fundamental aspect of quan-
tum theory is that the probability of two quantum events can
depend on the order in which those events are measured. This
order dependence allows the quantum probability model to
address various order effects seen in people’s sequential in-
ference and judgment.

Probability has a geometric interpretation in quantum the-
ory, based on the projection of vectors. We avoid this geomet-
ric interpretation here and instead focus on explaining how
quantum probability agrees with, and deviates from, standard
probability theory. In quantum probability, an observable de-
fines the set of all possible distinct outcomes for a given mea-
surement: the set of possible answers to the question rep-
resented by that measurement. The primary theoretical dis-
tinction between quantum and standard probability lies in the
idea of ‘compatible’ or ‘incompatible’ observables. Two ob-
servables are compatible if both observables can be measured
simultaneously. If two observables are compatible, quan-
tum probability theory reduces exactly to standard probabil-
ity theory in all cases. This means that if two observables
are compatible then all the probability theory identities de-
scribed above have a value of 0, and there are no order effects
in judgment.

Incompatible observables, by contrast, cannot be measured
simultaneously, and measurement outcomes depend on the
order of measurement. If all probabilities are measured with
the same ordering then again quantum probability theory re-
duces exactly to standard probability theory (if all probabili-
ties are of the form PAB()̇, for example, then all relationships
between those probabilities match the requirements of stan-
dard probability theory and all probability theory identities
hold). If probabilities are measured with different orderings,
however, then quantum probability deviates from standard
probability, producing biases in judgment and order effects
in sequential question answering such as PAB(A) 6= PBA(A)
and PAB(A∧B) 6= PBA(A∧B).

Addition law and Bayes rule identities
The addition law and Bayes rule identities apply in cases
where questions are not presented in some specific order AB
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Table 1: Predicted values of the noise model and the quantum model for a series of probability theory identities. Standard
probability theory requires these identities to have a value of 0. Observed average values for these identities are from Costello
and Watts (2016b), Experiment 1. Similar average values hold for each individual pair A,B in that experiment and in a range of
other experiments.

identity noise model quantum model observed
compatible incompatible: incompatible:

order AB order BA
(1) P(A)+P(B)−P(A∧B)−P(A∨B) 0 0 δA δB 0.01
(2) P(A∧B)+P(A∧¬B)−P(A) d 0 −δA 0 0.26
(3) P(A∧B)+P(¬A∧B)−P(B) d 0 0 −δB 0.23
(4) P(B|A)P(A)−P(A|B)P(B) 0 0 ∆AB ∆AB 0.006
(5) P(A∧B)−P(A|B)P(B) d/2 0 ∆AB 0 0.12
(6) P(A∧B)−P(B|A)P(A) d/2 0 0 −∆AB 0.12

or BA, but instead are order independent. In this situation
there are no order effects for simple probabilities (the proba-
bility of A is P∗(A)=PAB(A) and that of B is P∗(B)=PBA(B)).
Order effects for incompatible observables still apply when
people are asked to estimate conjunctive or disjunctive prob-
abilities such as P(A∧B), P(A∧¬B) or P(A∨B). For such
conjunctions or disjunctions the quantum probability model
assumes a particular characteristic ordering for observables
that depends on the causal link between those observables.
Complex probabilities such as P(A∧B) are estimated using
this characteristic ordering. This means that the relationship
between a simple probability P∗(A) and the conjunctive prob-
abilities P(A∧B) and P(A∧¬B) will depend on this charac-
teristic ordering. In particular, when the characteristic order-
ing of observables for conjunctions is AB we have

P∗(A) = PAB(A) = PAB(A∧B)+PAB(A∧¬B) (7)

as in standard probability theory (since the ordering of ob-
servables is the same for all three probabilities in this expres-
sion, quantum probability reduces to standard probability in
this case). When the characteristic order of observables for
conjunctions is BA, however, we have

P∗(A) = PAB(A) = PBA(A∧B)+PBA(A∧¬B)+δA (8)

where δA is a ‘quantum interference’ term for observable A.
This quantum interference term represents deviation from the
requirements of probability theory in the estimate P∗(A), and
arises from the difference between probabilities measured in
the orders AB and BA. Note that quantum interference is not
an error term here: it is a constant that specifies the relation-
ship between P∗(A) and PBA(A∧B)+PBA(A∧¬B) for a given
participant and a given pair of events AB. Parallel results arise
for the probability of B, where with the characteric ordering
BA we have

P∗(B) = PBA(B) = PBA(A∧B)+PBA(¬A∧B) (9)

as in probability theory, while with the ordering AB we have

P∗(B) = PBA(B) = PAB(A∧B)+PAB(¬A∧B)+δB (10)

where δB is the interference term for the estimate P∗(B).

From these expressions for P∗(A) and P∗(B) we derive the
quantum probability model’s predictions for values of the ad-
dition law and the two expansion identities (Equations 1, 2
and 3) in three separate situations: where observables are
compatible, where the ordering of observables is AB, and
where the ordering is BA. The first three lines of Table 1
shows these predictions. From Table 1 we see that, if ob-
servables are compatible, all three identities have a predicted
value of 0 (contrary to experimental results). If observables
are measured in the order AB or BA, however, one expansion
identity has a predicted value of 0 and the addition law and the
other expansion identity have values that deviate from 0 by
exactly the same magnitude but with opposite signs (contrary
to experimental results). The quantum probability model’s
predictions are inconsistent with the experimental results in
all three situations.

In quantum probability theory a conditional probability
P(A|B) is necessarily measured in the order BA (with the
given event occurring first and the conditional event occur-
ring after). This means that the relationships

PBA(A∧B) = P(A|B)PBA(B) = P(A|B)P∗(B) (11)

PAB(A∧B) = P(B|A)PAB(A) = P(B|A)P∗(A) (12)

necessarily hold in quantum probability (since the probabili-
ties in these expressions are all measured in the same order,
and so follow the requirements of probability theory). We
define

∆AB = PAB(A∧B)−PBA(A∧B)

to represent the effect of order on conjunctive probability
judgments PAB(A∧B) and PBA(A∧B). Then substituting from
Equations 11 and 12 into the Bayes rule and ‘Bayes expan-
sion’ identities (Equations 4, 5 and 6), we derive predictions
in three separate situations, as before (see Table 1). Here
we see that, if observables are compatible, all three identities
have a predicted value of 0 (contrary to experimental results).
If observables are measured in the order AB, one expansion
identity has a predicted value of 0 and the Bayes rule and the
other expansion identity have the same values, deviating from
zero by ∆AB (contrary to experimental results). If observables
are measured in the order BA, one expansion identity has a
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predicted value of 0 and the Bayes rule and the other expan-
sion identity have values that deviate from zero by exactly
the same magnitude of ∆B but with opposite signs (again,
contrary to experimental results). The quantum probability
model’s predictions are inconsistent with the experimental re-
sults in all three situations.

The QQ identity
Consider our definition of ∆AB to represent order effects
for the conjunctive probability judgments PAB(A ∧ B) and
PBA(A∧B). A necessary mathematical consequence of quan-
tum probability is that exactly the same order effects apply to
conjunctive probabilities PBA(¬A∧¬B) and PAB(¬A∧¬B),
and so we have

PAB(A∧B)−PBA(A∧B)=∆AB =PBA(¬A∧¬B)−PAB(¬A∧¬B)

and therefore the QQ identity holds for events A and B in the
quantum probability model. Wang et al. (2014) estimate the
size of the order effect in each of their 72 different polls or
experimental studies via the related measure

Z = max


|PBA(A∧B)−PAB(A∧B)|+
|PBA(¬A∧¬B)−PAB(¬A∧¬B)|

|PBA(A∧¬B)−PAB(A∧¬B)|+
|PBA(¬A∧B)−PAB(¬A∧B)|

(so that the overall order effect is equal to the summed ab-
solute values of the order effects for A∧B and ¬A∧¬B, or
for A∧¬B and ¬A∧B, whichever is greater). The greater
the value of this measure, the larger the order effect. They
find statistically significant order effects in most of these polls
or studies, but reliable agreement with the QQ identity. The
fact that this QQ identity appears to hold simultaneously with
such order effects has been taken as clear evidence that ‘hu-
man judgments follow quantum rules’ (Wang et al., 2014).

The probability theory plus noise model
The probability theory plus noise model assumes that people
estimate probabilities via a mechanism that is fundamentally
rational (following standard frequentist probability theory),
but is perturbed in various ways by the systematic effects or
biases caused by purely random noise or error. This approach
follows a line of research leading back at least to Thurstone
(1927) and continued by various more recent researchers (see,
e.g. Dougherty et al., 1999, Erev et al., 1994, Hilbert, 2012).
This model explains a wide range of results on bias in peo-
ple’s direct and conditional probability judgments across a
range of event types, and identifies various probabilistic ex-
pressions in which this bias is ‘cancelled out’ and for which
people’s probability judgments agree with the requirements
of standard probability theory (see Costello and Watts, 2014,
Costello and Mathison, 2014, Costello and Watts, 2016a,b,c).

In standard probability theory the probability of some event
A is estimated by drawing a random sample of events, count-
ing the number of those events that are instances of A, and

dividing by the sample size. The expected value of these esti-
mates is P(A), the probability of A; individual estimates will
vary with an approximately normal distribution around this
expected value. The probability theory plus noise model as-
sumes that people estimate the probability of some event A
in exactly the same way: by randomly sampling items from
their memory, counting the number that are instances of A,
and dividing by the sample size. Since memory is subject to
various forms of random error, the model assumes that items
have some probability d < 0.5 of being counted incorrectly.
Given this error, a randomly sampled item can be counted as
A in two mutually exclusive ways: either the item truly is an
instance of A and is counted correctly (this occurs with prob-
ability P(A)(1−d), since P(A) items are truly instances of A,
and items have a (1− d) chance of being read correctly), or
else the item truly is not an instance of A and is counted in-
correctly as A (this occurs with probability (1−P(A))d, since
(1−P(A)) items are truly not instances of A, and items have
a d chance of being read incorrectly). The expected value for
a noisy estimate for the probability of A is thus

P∗(A) = P(A)(1−d)+(1−P(A))d = (1−2d)P(A)+d (13)

and we expect individual estimates p∗(A) to vary indepen-
dently around this expected value. This equation represents a
pattern of regressive bias moving probability estimates P∗(A)
away from the true, objectively correct probability P(A).
Reasoning just as above, the model similarly predicts an ex-
pected value for the conditional probability P(A|B) of

P∗(A|B) =
(1−2d)2P(A∧B)+d(1−2d) [P(A)+P(B)]+d2

(1−2d)P(B)+d
(14)

These expressions account for various observed patterns of
bias in people’s direct and conditional probability judgment
(see Costello and Watts, 2014, 2016b).

Addition law and Bayes rule identities
This model makes predictions about the values of various
probability theory identities. If we substitute Equation 13 into
the addition law identity, for example, we get an expected
value of

P∗(A)+P∗(B)−P∗(A∧B)−P∗(A∨B) = 0

and so this model predicts that this expression should have a
value of 0, and just as seen in experimental results (Costello
and Watts, 2014, 2016b, Fisher and Wolfe, 2014). Similarly,
if we substitute Equation 13 and Equation 14 into the Bayes
rule identity, we get an expected value of

P∗(B|A)P∗(A)−P∗(A|B)P∗(B) = 0

and again the model predicts a value of 0, just as just as seen
in experimental results.

Agreement with probability theory for the addition law and
the Bayes rule identity arises, in this model, despite signifi-
cant regressive bias due to random noise in individual proba-
bility estimates making up these expressions. This is because
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in these identities the various biases due to random noise in
those individual probability estimates all cancel out. For other
probability theory identities, however, this model predicts no
cancellation of regressive effects. For example, substituting
the expression from Equation 13 into the two ‘expansion’
identities (Equation 2 and 3), we get

P∗(A∧B)+P∗(A∧¬B)−P∗(A) = d

P∗(A∧B)+P∗(¬A∧B)−P∗(B) = d

and the model predicts the same positive value for both iden-
tities, again just as observed in experimental results (Costello
and Watts, 2016b, Fisher and Wolfe, 2014).

For the two ‘Bayes expansion’ identities (Equation 5 and
6) we get

P∗(A∧B)−P∗(A|B)P∗(B)
= d(1−d)−d(1−2d) [P(A)+P(B)−2P(A∧B)]

P∗(A∧B)−P∗(B|A)P∗(A)
= d(1−d)−d(1−2d) [P(A)+P(B)−2P(A∧B)]

Since probability theory requires that 0 ≤ P(A) + P(B)−
2P(A∧B)≤ 1 for all A and B, and since d < 0.5 by assump-
tion, we see that

d2≤ d(1−d)−d(1−2d) [P(A)+P(B)−2P(A∧B)]≤ d(1−d)

and values for both these identities will be distributed be-
tween d2 and d(1− d) in a way that depends on P(A) +
P(B)− 2P(A ∧ B). The average value for P(A) + P(B)−
2P(A∧B) (across uniformly distributed probabilities that are
constrained to be consistent with probability theory) is 0.5,
and so the average value for this expression is equal to d/2,
the centerpoint of this range. The model thus predicts the
same average positive value for these identities; a value half
that for the first two expansion identities. Again, this is just
as seen in experimental results (Costello and Watts, 2016b).

The QQ identity and order effects
The probability theory plus noise model, as presented above,
assumes that when P(B) and P(A) are estimated sequentially,
the value given for P(A) is not influenced by the prior value
given for P(B). This is because the model assumes that peo-
ple estimate some probability P(A) by drawing a sample of
items at random from memory, and counting the proportion
that are A. To allow sequential effects in the noise model, we
can relax this assumption, and say that the chance of a given
item being sampled from memory is influenced by the degree
to which that item is already active or ‘primed’. Since the
estimation of probability P(B) involves drawing a sample of
items and counting the proportion that are B, those items that
were counted as B are more active (are primed), and so are
more likely to be included in the ‘random’ sample of items
drawn when estimating P(A), causing an order effect.

Suppose that the chance of an already primed item being
sampled is s. Also suppose that P(B) has just been estimated

in a previous sample: P∗(B) then represents the proportion of
items in that previous sample that were read as B. A sample
is now drawn to estimate P(A). Each item drawn to make
up that new sample has a probability sP∗(B) of coming from
the primed set of items that were already read as B, and a
probability 1− sP∗(B) of being drawn randomly from the set
of all items in memory. For the sP∗(B) items in our sample
that were previously read as B, the probability of one of those
items being read as A is P∗(A|B); this is the conditional prob-
ability of an item being read as A, given that it was read as
B. For the remaining items that were just sampled randomly
from memory, the probability of one of those items being read
as A is simply P∗(A). Given that we have just given an esti-
mate for the probability P(B), then, the expected value for an
immediately following estimate for P(A) will be

PBA(A) = sP∗(B)P∗(A|B)+(1− sP∗(B))P∗(A)

and, substituting from Equations 13 and 14 and simplifying
we get

PBA(A) = P∗(A)+ s(1−2d)2[P(A∧B)−P(A)P(B)] (15)

From Equation 15 we see that PBA(A) 6= P∗(A) and so
PBA(A) 6= PAB(A) will hold in this model in general, with the
probability of a ‘yes’ answer to question A when that question
comes first being different from the probability of a ‘yes’ an-
swer when question A immediately follows question B. This
model thus produces order effects in question answering, just
as seen in experimental data.

Despite these order effects, the QQ identity also holds in
this model. To see this, consider that, since P∗(B) is the prob-
ability of answering ‘yes’ to a question B and PBA(A) is the
probability of answering ‘yes’ to a question A that immedi-
ately follows a question B, the probability of answering ‘yes’
to both questions when presented in the order BA is

PBA(A∧B) = P∗(B)PBA(A)

= P∗(B)P∗(A)+P∗(B)s(1−2d)2[P(A∧B)−P(B)P(A)]

and the probability of answering ‘yes’ to both questions in the
order AB is

PAB(S∧B) = P∗(A)PAB(B)

= P∗(A)P∗(B)+P∗(A)s(1−2d)2[P(A∧B)−P(B)P(A)]

and so

PBA(A∧B)−PAB(A∧B)

= s(1−2d)2[P(A∧B)−P(B)P(A)][P∗(B)−P∗(A)]
(16)

Using the same line of reasoning for the probability of an-
swering ‘no’ to both questions, we get

PAB(¬B∧¬A)−PBA(¬B∧¬A)

= s(1−2d)2[P(¬B∧¬A)−P(¬B)P(¬A)][P∗(¬A)−P∗(¬B)]

Substituting from Equation 13 and rearranging we have
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P∗(¬A)−P∗(¬B) = (1−2d)[1−P(A)]+d− (1−2d)[1−P(B)]−d

= P∗(B)−P∗(A)

and from standard probability theory we have

P(¬A∧¬B)−P(¬A)P(¬B) = P(A∧B)−P(B)P(A)

and so

PAB(¬A∧¬B)−PBA(¬A∧¬B)

= s(1−2d)2[P(B∧A)−P(B)P(A)][P∗(B)−P∗(A)]
(17)

giving

PAB(A∧B)+PAB(¬A∧¬B)−PBA(A∧B)−PBA(¬A∧¬B)= 0

and this model satisfies the QQ identity.

Conclusions
Much research on people’s probabilistic reasoning over the
last 50 years has focused on the various significant biases
seen in probability estimation and judgment. Invariants such
as the addition law, the Bayes rule identity, and the QQ iden-
tity, which hold simultaneously with these biases, reveal an
important fact: they show us that these biases are systemat-
ically and quantatitively related and can be explained math-
ematically. We can see this in the case of the QQ identity,
where there are reliable order effects (biases) in responses
which nonetheless cancel out when responses are combined
in the identity. We also see this in the addition law and Bayes
rule identities, where there are reliable biases in probability
estimates which again, cancel out when those estimates are
combined in those identities.

In this paper we’ve shown that, unlike the quantum proba-
bility model, the probability theory plus noise model is able
explain the satisfaction of three invariants in people’s proba-
bilistic judgment (the addition law, Bayes rule and QQ iden-
tities) alongside the occurence of various forms of systematic
bias in those same judgments. These results support the the-
oretical proposal in that account, which is that human proba-
bilistic judgment is based on a rational process (one that fol-
lows frequentist probability theory) that is subject to random
noise. It is important to stress that we are not suggesting that
people’s probability estimates are themselves rational. This is
clearly not the case: there is very extensive evidence demon-
strating that people’s probability estimates are systematically
biased away from the requirements of probability theory. We
argue that these biases are a consequence of the influence
of random noise on the probability estimates generated by
an underlying rational process. While this noise is random,
it has systematic, directional effects (our noisy model’s ex-
pected averages for probability estimates are systematically
biased away from the ‘true’ probability values, in a way that
seems to match the biases seen in people’s estimates) which
are cancelled out in these three identities. This model gives a
new and useful perspective on the various systematic biases
seen in people’s probabilistic reasoning.
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