Title
Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC

Permalink
https://escholarship.org/uc/item/9cs4v9h9

Journal
Physics Letters B, 798

ISSN
0370-2693

Authors
Adam, J
Adamczyk, L
Adams, JR
et al.

Publication Date
2019-11-01

DOI
10.1016/j.physletb.2019.134975

Peer reviewed
Charge-dependent pair correlations relative to a third particle in \(p + Au \) and \(d + Au \) collisions at RHIC

STAR Collaboration

J. Adam\(^{m}\), L. Adamczyk\(^{b}\), J.R. Adams\(^{ak}\), J.K. Adkins\(^{ab}\), G. Agakishiev\(^{z}\), M.M. Aggarwal\(^{am}\), Z. Ahammed\(^{bg}\), I. Alekseev\(^{c,ag}\), D.M. Anderson\(^{ba}\), R. Aoyama\(^{bd}\), A. Aparin\(^{z}\), D. Arkhipkin\(^{r}\), E.C. Aschenauer\(^{f}\), M.U. Ashrafi\(^{bc}\), F. Atetalla\(^{aa}\), A. Attri\(^{am}\), G.S. Averichev\(^{z}\), V. Bairathi\(^{ah}\), K. Barish\(^{j}\), A.J. Bassill\(^{j}\), A. Behera\(^{ay}\), R. Bellwied\(^{t}\), A. Bhasin\(^{y}\), A.K. Bhati\(^{am}\), J. Bielcik\(^{n}\), J. Bielcikova\(^{gj}\), L.C. Bland\(^{f}\), I.G. Bordyuzhin\(^{c}\), J.D. Brandenburg\(^{aw,f}\), A.V. Brandin\(^{ag}\), J. Bryslawskyj\(^{j}\), I. Bunzarov\(^{z}\), J. Butterworth\(^{aw}\), H. Caines\(^{bj}\), M. Calderón de la Barca Sánchez\(^{b}\), D. Cebra\(^{h}\), I. Chakabaria\(^{aa,f}\), P. Chaloupka\(^{n}\), B.K. Chan\(^{i}\), F.-H. Chang\(^{ai}\), Z. Chang\(^{a}\), N. Chankova-Bunzarova\(^{z}\), A. Chatterjee\(^{bg}\), S. Chattopadhyay\(^{bg}\), J.H. Chen\(^{i}\), X. Chen\(^{au}\), J. Cheng\(^{bc}\), M. Cherney\(^{m}\), W. Christie\(^{f}\), H.J. Crawford\(^{g}\), M. Csanád\(^{p}\), S. Das\(^{k}\), T.G. Dedovich\(^{z}\), I.M. Deppner\(^{s}\), A.A. Derevschikov\(^{ao}\), L. Deniko\(^{f}\), C. Dilks\(^{an}\), X. Dong\(^{ac}\), J.L. Drachenberg\(^{a}\), J.C. Dunlop\(^{f}\), T. Edmonds\(^{ap}\), N. Elsey\(^{bi}\), J. Engelge\(^{g}\), G. Eppley\(^{ar}\), J.R. Eshy\(^{a}\), S. Esumi\(^{bd}\), O. Evdokimov\(^{j}\), J. Ewigleben\(^{ad}\), O. Eyser\(^{r}\), R. Fatemi\(^{ab}\), S. Fazio\(^{f}\), P. Federici\(^{aj}\), J. Fedorisin\(^{iz}\), Y. Feng\(^{ap}\), P. Filip\(^{f}\), E. Finch\(^{ax}\), Y. Fisyak\(^{j}\), L. Fulek\(^{b}\), C.A. Gagliardi\(^{ba}\), T. Galatyuk\(^{o}\), F. Geurts\(^{ar}\), A. Gibson\(^{bf}\), K. Gopal\(^{v}\), D. Grosnick\(^{bf}\), A. Gupta\(^{y}\), W. Gurny\(^{f}\), A.I. Hamad\(^{aa}\), A. Hamed\(^{e}\), J.W. Harris\(^{bj}\), L. He\(^{ap}\), S. Heppelmann\(^{h}\), S. Heppelmann\(^{an}\), N. Herrmann\(^{s}\), L. Holub\(^{n}\), Y. Hong\(^{ac}\), S. Horvat\(^{bj}\), B. Huang\(^{g}\), H.Z. Huang\(^{j}\), S.L. Huang\(^{ay}\), T. Huang\(^{ai}\), X. Huang\(^{bc}\), T.J. Humanic\(^{ak}\), P. Huo\(^{ay}\), G. Igo\(^{i}\), W.W. Jacobs\(^{w}\), C. Jena\(^{a}\), A. Jentsch\(^{bb}\), Y. Ji\(^{ai}\), J. Jia\(^{ay}\), A. Jia\(^{f}\), F. Ji\(^{ay}\), K. Jiang\(^{au}\), S. Jowzaze\(^{bj}\), X. Ju\(^{au}\), E.G. Judd\(^{g}\), S. Kabana\(^{ad}\), S. Kagamaster\(^{ad}\), D. Kalinkin\(^{w}\), K. Kang\(^{bc}\), D. Kapukchyan\(^{j}\), I. Kauder\(^{f}\), H.W. Ke\(^{f}\), D. Keane\(^{aa}\), A. Kechechyan\(^{z}\), M. Kelsey\(^{ac}\), Y.V. Khyzhniiak\(^{ag}\), D.P. Kikola\(^{bh}\), C. Kim\(^{j}\), T.A. Kinhorn\(^{h}\), I. Kisei\(^{q}\), A. Kiesi\(^{bh}\), M. Kocan\(^{n}\), L. Koczenda\(^{ag}\), L.K. Kosarzewski\(^{n}\), L. Kramarik\(^{lk}\), P. Kravtsov\(^{ag}\), K. Krueger\(^{d}\), N. Kulathunga Mudiyanseilage\(^{t}\), L. Kumar\(^{am}\), R. Kunnawalkam Elayavalli\(^{bi}\), J.H. Kwasizur\(^{w}\), R. Lacey\(^{ay}\), J.M. Landgraf\(^{f}\), J. Lauret\(^{t}\), A. Lebedev\(^{f}\), R. Lednicky\(^{z}\), J.H. Lee\(^{f}\), C. Li\(^{au}\), W. Li\(^{aw}\), W. Li\(^{ar}\), X. Li\(^{au}\), Y. Li\(^{bc}\), Y. Liang\(^{aa}\), R. Licenik\(^{n}\), T. Lin\(^{ba}\), A. Lipiec\(^{bh}\), M.A. Lisa\(^{ak}\), F. Liu\(^{k}\), H. Liu\(^{w}\), P. Liu\(^{ay}\), P. Liu\(^{aw}\), T. Liu\(^{bj}\), X. Liu\(^{ak}\), Y. Liu\(^{ba}\), Z. Liu\(^{au}\), T. Ljubicic\(^{f}\), W.J. Llope\(^{bi}\), M. Lomnitz\(^{ar}\), R.S. Longacre\(^{f}\), S. Luo\(^{j}\), X. Luo\(^{k}\), G.L. Ma\(^{aw}\), L. Ma\(^{r}\), R. Ma\(^{f}\), Y.G. Ma\(^{aw}\), N. Magdy\(^{f}\), R. Majka\(^{bj}\), D. Mallick\(^{ah}\), S. Margetis\(^{aa}\), C. Markert\(^{bb}\), H.S. Matis\(^{ac}\), O. Matonoha\(^{a}\), J.A. Mazzer\(^{as}\), K. Meehan\(^{h}\), J.C. Mei\(^{av}\), N.G. Minaev\(^{ao}\), S. Mioduszewski\(^{ba}\), D. Mishra\(^{ab}\), B. Mohanty\(^{ah}\), M.M. Mondal\(^{x}\), I. Mooney\(^{bi}\), Z. Moravcova\(^{n}\), D.A. Morozov\(^{ao}\), Md. Nasim\(^{i}\), K. Nayak\(^{k}\), J.M. Nelson\(^{g}\), D.B. Nemes\(^{bj}\), M. Nie\(^{av}\), G. Nigmatkulov\(^{ag}\), T. Niida\(^{bl}\), L.V. Nogach\(^{ao}\), T. Nonaka\(^{k}\), G. Odyniec\(^{ac}\), A. Ogawa\(^{j}\), K. Oh\(^{aq}\), S. Oh\(^{bj}\), V.A. Okorokov\(^{ag}\), B.S. Page\(^{f}\), R. Pak\(^{f}\), Y. Panebratsev\(^{z}\), B. Pawlik\(^{al}\), D. Pawlowska\(^{bh}\), H. Pei\(^{k}\), C. Perkins\(^{g}\), R.L. Pintér\(^{p}\), J. Pluta\(^{bh}\), J. Porter\(^{ac}\), M. Posik\(^{az}\), N.K. Pruthi\(^{am}\), M. Przybycien\(^{b}\),

a Abilene Christian University, Abilene, TX 79699
b AGH University of Science and Technology, Krakow, 30-059, Poland
c Alkhanov Institute for Theoretical and Experimental Physics, Moscow 117218, Russia
d Argonne National Laboratory, Argonne, IL 60439
e American University of Cairo, Cairo, Egypt
f Brookhaven National Laboratory, Upton, NY 11973
g University of California, Berkeley, CA 94720
h University of California, Davis, CA 95616
i University of California, Los Angeles, CA 90095
j University of California, Riverside, CA 92521
k Central China Normal University, Wuhan, Hubei 430079
l University of Illinois at Chicago, Chicago, IL 60607
m Creighton University, Omaha, NE 68178
n Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic
o Technische Universit"at Darmstadt, Darmstadt 64289, Germany
p E"otv"os Lor"and University, Budapest, H-1117, Hungary
q Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany
r Fudan University, Shanghai, 200433
s University of Heidelberg, Heidelberg 69120, Germany
t University of Houston, Houston, TX 77204
u Huzhou University, Huzhou, Zhejiang 313000
v Indian Institute of Science Education and Research, Tirupati 517507, India
w Indiana University, Bloomington, IN 47408
x Institute of Physics, Bhubaneswar 751005, India
y University of Jammu, Jammu 180001, India
z Joint Institute for Nuclear Research, Dubna 141 980, Russia
aa Kent State University, Kent, OH 44242
ab University of Kentucky, Lexington, KY 40506-0055
ac Lawrence Berkeley National Laboratory, Berkeley, CA 94720
ad Lehigh University, Bethlehem, PA 18015
ae Max-Planck-Institut für Physik, Munich 80805, Germany
af Michigan State University, East Lansing, MI 48824
ag National Research Nuclear University MEPhI, Moscow 115409, Russia
ah National Institute of Science Education and Research, HBNI, Jatni 752050, India
ai National Cheng Kung University, Tainan 70101
aj Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic
ak Ohio State University, Columbus, OH 43210
al Institute of Nuclear Physics PAN, Cracow 31-342, Poland
am Punjab University, Chandigarh 160014, India
an Pennsylvania State University, University Park, PA 16802
ao NRC “Kurchatov Institute”, Institute of High Energy Physics, Protvino 142281, Russia
ap Purdue University, West Lafayette, IN 47907
aq Pusan National University, Pusan 46241, Republic of Korea
ar Rice University, Houston, TX 77251
as Rutgers University, Piscataway, NJ 08854
at Universidade de São Paulo, São Paulo, 05314-970, Brazil
au University of Science and Technology of China, Hefei, Anhui 230026
av Shandong University, Qingdao, Shandong 266237
1. Introduction

In quantum chromodynamics, interactions of massless quarks with fluctuating topological gluon fields are predicted to induce chirality imbalance and parity violation in a local domain [1–3]. This chirality imbalance can lead to an electric charge separation in the presence of a strong magnetic field (\vec{B}), a phenomenon known as the chiral magnetic effect (CME) [4–9]. Such a strong \vec{B}-field may be available in relativistic heavy-ion collisions, generated by the incoming protons at early times [8,10]. Extensive theoretical and experimental efforts have been devoted to the search for the CME-induced charge separation along \vec{B} in heavy-ion collisions [11–14].

The commonly used observable to search for charge separation in heavy-ion collisions is the three-point azimuthal correlator [15],

$$\gamma = \cos(\phi_\alpha + \phi_\beta - 2\psi), \quad (1)$$

where ϕ_α and ϕ_β are the azimuthal angles of particles α and β, respectively. In Eq. (1), ψ is the azimuthal angle of the impact parameter vector. In heavy-ion collisions, it is called the reaction plane (spanned by the impact parameter direction and the beam). It is often approximated by the second order harmonic participant plane (ψ_2) [16,17], constructed experimentally by the event plane measured from final state particle azimuthal distribution. To measure the γ, instead of using the event plane, the three-particle correlator method is often used [15,18,19]:

$$\gamma = (\cos(\phi_\alpha + \phi_\beta - 2\phi_\gamma))/v_{2,c}, \quad (2)$$

where ϕ_γ is the azimuthal angle of a third, charge-inclusive particle c which serves as a measure of the ψ. The imprecision in determining the ψ by a single particle is corrected by a resolution factor, equal to the second-order Fourier coefficient of particle c’s azimuthal distribution, $v_{2,c}$, also known as the elliptic flow [20]. In order to remove the charge independent background [18,19], such as that due to momentum conservation, the correlation difference variable is used,

$$\Delta \gamma \equiv \gamma_{OS} - \gamma_{SS}. \quad (3)$$

where γ_{OS} stands for the correlation of opposite-sign (OS) pairs (α and β have opposite-sign electric charges) and γ_{SS} for that of the same-sign (SS) pairs (α and β have same-sign electric charge).

Significant $\Delta \gamma$ is indeed observed in heavy-ion collisions at RHIC [18,19,21,22], and at LHC [23–26]. However, a decisive answer regarding the existence, or not, of the CME is still under debate. The main difficulty in interpreting the $\Delta \gamma$ observable as originated from the CME is the possibility of significant charge-dependent background contributions, such as those from resonance decays [15,27–31]. This is because the $\Delta \gamma$ variable is ambiguous between an OS pair from the CME back-to-back perpendicular to ψ_2 (charge separation) and an OS pair from a resonance decay along ψ_2 (charge conservation). There are more particles/resonances along the ψ_2 (or the particle c direction) than perpendicular to it, an effect quantified by the elliptical anisotropy parameter $v_{2,\text{res}}$. Equation (2) is valid and $\Delta \gamma$ would be a good measure of the CME only under the assumption that all particles (including the CME-related particles) are correlated to a global plane ψ_2, but intrinsically uncorrelated among themselves. When α and β are intrinsically correlated, then $\Delta \gamma$ would contain a background ($\Delta \gamma_{\text{bkgd}}$), arising from the coupling of this elliptical anisotropy and the intrinsic decay correlation and is expected to take the following form [15,27,31]:

$$\Delta \gamma_{\text{bkgd}} \propto (\cos(\phi_\alpha + \phi_\beta - 2\phi_\gamma))/v_{2,\text{res}}. \quad (4)$$

Other possible backgrounds include three-particle nonflow correlations, where the correlation of particle α, β with particle c is also of nonflow nature. Moreover, the estimate of $v_{2,c}$ via two-particle correlations may also be affected by short-range nonflow correlations. These effects are likely dominant for very low multiplicity events because they are not sufficiently diluted by multiplicity.
combinatorics. Nevertheless, the factorization relation in Eq. (2) is still expected to approximately hold, regardless of the nature of the background correlations [32].

In non-central heavy-ion collisions, the participant plane, although fluctuating [17], is generally aligned with the reaction plane, thus generally perpendicular to \hat{b}. In proton-nucleus collisions, however, the participant plane is determined purely by geometry fluctuations, and thus is essentially uncorrelated with the impact parameter or the \hat{b} direction [25,33,34]. A recent study, considering the fluctuating size of the proton, suggests a small but non-zero correlation [34]. Therefore, CME-induced $\Delta\gamma$ with respect to the η_2 is significantly suppressed in proton-nucleus collisions compared to possible signals from heavy-ion collisions [34]. Background correlations, on the other hand, are expected to be present in proton-nucleus collisions. These correlations are propagated to the three-particle correlator via correlations with respect to particle c, not directly to the impact parameter or the \hat{b} direction. Thus, the backgrounds in proton-nucleus collisions contribute in a similar fashion as those in heavy-ion collisions. Indeed, a large $\Delta\gamma$ signal was observed in $p + Pb$ collisions at the LHC, similar to that in $Pb + Pb$ collisions. This challenged the CME interpretation of the heavy-ion data [25].

It is possible that the CME would decrease as collision energy increases, due to the more rapidly decaying \hat{b} at higher energies [8,35]. Hence, the similarity between $p + Pb$ and Pb + Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV at the LHC may be expected, and the situation at RHIC could be different [11]. Here we report $\Delta\gamma$ measurements by the STAR experiment at RHIC in small-system $p + Au$ and $d + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV.

2. Experiment and data analysis

The data reported here were taken by the STAR experiment in 2003 ($d + Au$) and 2015 ($p + Au$). The STAR experiment apparatus is described elsewhere [36]. Minimum bias (MB) triggers were used for both data taking periods. For $d + Au$ [37], the MB trigger required at least one beam-rapidity neutron in the Zero Degree Calorimeter (ZDC) [38] in the Au beam direction. For $p + Au$, the MB trigger data used in this analysis was defined as a coincidence between the two Vertex Position Detectors (VPDs) [39].

The detectors relevant to this analysis are the cylindrical Time Projection Chamber (TPC) [40,41] residing inside an approximately uniform magnetic field of 0.5 Tesla along the beam direction (z). Charged particles traversing the chamber ionize the TPC gas. The ionization electrons drift towards the TPC endcaps in a uniform electric field, provided by the high voltage on the TPC central membrane. The avalanche electrons are collected by the pad planes, and together with the drift time information, provide three-dimensional space points of the ionization called “hits”.

Trajectories are reconstructed from those hits; at least 10 hits are required for a valid track. The interaction’s primary vertex is reconstructed from charged particle tracks. Tracks with the distance of closest approach (DCA) to the primary vertex within 3 cm are considered primary tracks. The data are reported as a function of the efficiency corrected charged particle multiplicity density $dN_{ch}/d\eta$ at mid-rapidity [42]. The efficiency is estimated via the STAR standard embedding procedure, which is $\sim 93\%$ in $p + Au$ and $d + Au$ collisions.

In this analysis, events with primary vertices within 30 cm in $p + Au$ (50 cm in $d + Au$) longitudinally and 2 cm in $p + Au$ (3.5 cm in $d + Au$) transversely from the geometrical center of the TPC are used. To ensure high quality of primary particles, further selections are applied to require tracks with at least 20 hits and DCA less than 2 cm. Split tracks are removed by requiring the number of hits over the maximum number of possible hits to be greater than 0.52 [43]. In the $p + Au$ analysis, where VPD detectors and Time-of-Flight (TOF) detector [44] are available, the primary vertex is required to match with the VPD’s measured vertex within 6 cm, and primary tracks are required to match with the TOF detector in order to reduce the pile-up tracks.

Tracks in the full TPC acceptance (|η| < 1, reducing to |η| < 0.9 in case of TOF matched tracks in $p + Au$) with transverse momentum p_T from 0.2 to 2.0 GeV/c are used for all three particles in the three-particle correlator of Eq. (2). The cumulant method is used to compute γ, where the calculation loops over the α and β particles, and the particle c is handled by the cumulant of the remaining particles except α and β. No η gap is applied between any pair among the three particles as in Refs. [18,19]. The v_{2c} is obtained by the two-particle cumulant [45]. To gauge the non-flow effects, various η gaps of 0, 0.5, 1.0 and 1.4 are applied. The p_T-dependent TPC tracking efficiency is not corrected for the γ correlator as in Refs. [18,19], and this effect is included in the systematic uncertainties. The detector non-uniform azimuthal acceptance effect is corrected by the recentering method as a function of p_T [46,47].

3. Systematic uncertainties

The systematic uncertainties are estimated as follows. The required minimum number of hits is varied from 20 to 25. The DCA of tracks is varied from 2 cm to 1 and 3 cm. The p_T range of the particle c is varied from 0.2-2 GeV/c to 0.2-5 GeV/c. The difference between the results from events with positive and negative reconstructed z coordinate of primary vertex is $\sim 2\%$. The p_T-dependent TPC tracking efficiency correction introduces $\sim 1\%$ difference. The systematic uncertainty due to the recentering correction for azimuthal non-uniformity is estimated to be $\sim 5\%$ by using a p_T-independent correction instead of the default p_T-dependent one. The TOF detector acceptance is limited to |η| < 0.9, and this causes a $\sim -6\%$ (single sided) effect in $p + Au$. The systematic uncertainties obtained by various cuts and sources are added in quadrature. These are plotted in the figures as brackets. The horizontal brackets indicate the systematic uncertainty of the $dN_{ch}/d\eta$. The vertical brackets indicate the systematic uncertainty of the correlator. Total systematic uncertainty of the $\Delta\gamma$ is $\sim 5\%$ in $p + Au$ and $d + Au$ (Table 1). Total systematic uncertainty of the $dN_{ch}/d\eta$ is $\sim 15\%$ in $p + Au$ and is $\sim 7\%$ in $d + Au$.

4. Results and discussions

Fig. 1 shows the γ_{2S} and γ_{0S} results as functions of multiplicity in $p + Au$ and $d + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV. For comparison, the corresponding $Au + Au$ results [18,19,21] are also shown. The dashed lines represent the results with v_{2c}, using different η gaps of 0, 0.5 and 1.4 in $p + Au$ and $d + Au$ collisions. The results with v_{2c} using η gaps of 1.0 in $p + Au$ and $d + Au$ collisions are plotted as solid lines. The results show that the variation from different η gaps is large but tends to converge towards high multiplicity.

<table>
<thead>
<tr>
<th>Source</th>
<th>$p + Au$</th>
<th>$d + Au$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dca & n\text{hits}$</td>
<td>$\pm 5%$</td>
<td>$\pm 8%$</td>
</tr>
<tr>
<td>$p_T(c)$</td>
<td>$\pm 0%$</td>
<td>$\pm 1%$</td>
</tr>
<tr>
<td>v_2</td>
<td>$\pm 2%$</td>
<td>$\pm 2%$</td>
</tr>
<tr>
<td>p_T-dependent efficiency</td>
<td>$\pm 1%$</td>
<td>$\pm 1%$</td>
</tr>
<tr>
<td>p_T-independent non-uniformity</td>
<td>$\pm 5%$</td>
<td>$\pm 4%$</td>
</tr>
<tr>
<td>TOF acceptance</td>
<td>$-6%$</td>
<td>$-%$</td>
</tr>
<tr>
<td>Total</td>
<td>$\pm 7%$</td>
<td>$\pm 9%$</td>
</tr>
</tbody>
</table>
The γSS and γ0S results seem to follow a decreasing trend with increasing multiplicity in all systems.

Fig. 2 shows Δγ as a function of multiplicity in p + Au and d + Au collisions, and, for comparison, in Au + Au collisions [18, 19, 21]. The Δγ decreases with increasing multiplicity in both systems. Large Δγ values are observed in p + Au and d + Au collisions, comparable to the peripheral Au + Au collision data at similar multiplicities. Our new p + Au and d + Au measurements demonstrate that background contributions could produce magnitudes of the Δγ correlator comparable to what has been observed in Au + Au data, and thus offer a possible alternative explanation of the Δγ measurements in Au + Au collisions without invoking CME interpretation.

If indeed dominated by background contributions, the Δγ may be proportional to the average v2 of the background sources, as represented by Eq. (4). The v2 of the background sources likely scale with the v2 of the final-state particles that are measured. The background should also be proportional to the number of background sources, and because Δγ is a pair-wise average, the background is also inversely proportional to the total number of pairs.

As the number of background sources likely scales with dNch/dη, thus Δγ approximately scales with v2/dNch/dη. To gain more insight, a scaled Δγ observable is introduced:

$$\Delta\gamma_{\text{scaled}} = \Delta\gamma \times \frac{dN_{\text{ch}}/d\eta}{v_2}.$$ (5)

Since in our analysis there is no distinction between particles α, β and c except the electric charge, the v2 in Eq. (5) is the same as v2c. Fig. 3 shows the measured v2 by the two-particle cumulant method with various η gaps as a function of multiplicity in p + Au, d + Au collisions, together with results from Au + Au [18, 19] collisions. The results show that v2[2] is large in p + Au and d + Au collisions, and comparable to Au + Au results. HIJING [48] simulation studies of p + Au and d + Au collisions suggest significant contribution of nonflow correlations to v2 at very low multiplicities. Evidence of contribution to v2 from collective flow has also been observed at RHIC and the LHC from long-range particle correlations in small systems, especially at higher multiplicity [49–53].

Fig. 4 shows the scaled observable Δγscaled as a function of multiplicity in p + Au and d + Au collisions, and compares to that in Au + Au collisions. Results with different η gaps for v2c are also shown. The Δγscaled in p + Au and d + Au collisions are similar to that in Au + Au collisions. For both small-system and heavy-ion collisions, the Δγscaled is approximately constant over dNch/dη, although within large systematic uncertainties. Since p + Au and
References