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a b s t r a c t

We study properties of a p-polarized surface plasmon polariton propagating circumferentially around a
portion of a cylindrical interface between a vacuum and a metal, a situation investigated earlier by Berry
(J. Phys. A: Math. Gen. 8 (1975) 1952). When the metal is convex toward the vacuum this mode is
radiative and consequently is attenuated as it propagates on the cylindrical surface. An approximate
analytic solution of the dispersion relation for this wave is obtained by an approach different from the
one used by Berry, and plots of the real and imaginary parts of its wave number are presented. When the
metal is concave to the vacuum, the resulting dispersion relation possesses a multiplicity of solutions that
have the nature of waveguide modes that owe their existence to the curvature of the interface.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The propagation of a p-polarized surface electromagnetic wave
circumferentially around a portion of a cylindrical boundary
between a vacuum and a metal was studied by Berry [1]. Among
the results obtained in this work was the result that when the
metal is convex toward the vacuum the wave is not perfectly
bound to the interface, but is attenuated as it propagates around
it, the lost energy being radiated to infinity in the vacuum.
In contrast, when the metal is concave toward the vacuum, no
attenuation of the wave occurs, and the wave is a true surface
wave bound to the interface.

In this paper we extend Berry's results in two directions. For
the case where the metal is convex to the vacuum, we present an
approximate analytic solution of the corresponding dispersion
relation by a method suggested by Berry. This method of solution
may be of some interest in itself. We also provide plots of the real
and imaginary parts of the wavenumber provided by this solution,
and compare themwith the corresponding functions obtained by a
purely numerical approach. In the case when the metal is concave
to the vacuum, we show that the corresponding dispersion
relation has a multiplicity of solutions that have the nature of
guided waves confined to the vicinity of the interface by its
curvature. Plots of the dispersion curves and magnetic field
profiles of these waves are presented.

2. Dispersion relations and field profiles

In studying the propagation of a p-polarized surface plasmon
polariton circumferentially around a portion of a cylindrical inter-
face of radius R between a vacuum and a metal it is convenient to
work in cylindrical coordinates ðr;θ; zÞ, where the z-axis is along
the axis of the cylinder. The metal is characterized by an isotropic,
frequency-dependent dielectric function εðωÞ. For simplicity we
initially assume that ε(ω) is real, and has the simple free-electron
form

εðωÞ ¼ 1�ω2
p

ω2; ð1Þ

where ωp is the plasma frequency of the electrons in the metal.
The only nonzero components of the magnetic and electric fields
in this system are Hzðr;θjωÞ, Erðr;θjωÞ and Eθðr;θjωÞ, where

Erðr;θjωÞ ¼ i
c
ωε

1
r
∂Hzðr;θjωÞ

∂θ
ð2aÞ

Eθðr;θjωÞ ¼ � i
c
ωε

∂Hzðr;θjωÞ
∂r

; ð2bÞ

and ε is the dielectric function of the medium in which the field is
being calculated. In writing Eqs. (2) we have assumed a time
dependence for the fields given by expð� iωtÞ, but have not
indicated this explicitly.

The Maxwell equation satisfied by Hzðr;θjωÞ is
1
r

∂
∂r

r
∂Hz

∂r

� �
þ 1
r2

∂2Hz

∂θ2 þεðωÞω
2

c2
Hz ¼ 0 ð3aÞ
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inside the metal, and

1
r

∂
∂r

r
∂Hz

∂r

� �
þ 1
r2

∂2Hz

∂θ2 þω2

c2
Hz ¼ 0; ð3bÞ

in the vacuum in contact with it. The boundary conditions satisfied
by Hzðr;θjωÞ at the interface r¼R are

Hzðr;θjωÞjr ¼ R� ¼Hzðr;θjωÞjr ¼ Rþ ð4aÞ

1
ε�

∂
∂r
Hzðr;θjωÞjr ¼ R� ¼ 1

εþ

∂
∂r
Hzðr;θ ωÞ r ¼ Rþ ;

���� ð4bÞ

which express the continuity of the tangential components of the
magnetic and electric fields, respectively, across this interface. The
quantities εþ and ε� are the dielectric functions of the media in
the regions r4R and roR, respectively.

We solve Eqs. (3a) and (3b) by separation of variables, and
write

Hzðr;θjωÞ ¼ RðrÞΘðθÞ: ð5Þ
We find that R(r) and ΘðθÞ satisfy the following equations

d2R

dr2
þ1
r
dR
dr

þ ε
ω2

c2
�ν2

r2

� �
R¼ 0 ð6Þ

d2Θ

dθ2 þν2Θ¼ 0; ð7Þ

respectively, where ε is the dielectric function of the medium in
which the field is being calculated, and ν is the separation
constant. We will choose the solution of Eq. (7) to be expðiνθÞ,
with ν real and positive. It thus describes a wave propagating
circumferentially around the cylinder. The separation constant ν is
not required to be an integer because we are not considering a
complete cylinder, but only a locally cylindrical surface. If we write
expðiνθÞ as exp½iðν=RÞðRθÞ� and recall that Rθ¼ smeasures distance
along the cylindrical surface, we see that ðν=RÞ ¼ k has the physical
significance of a surface wave number.

There are now two cases to consider: (i) the metal is convex
toward the vacuum; and (ii) the metal is concave toward the
vacuum. We consider them in turn.

(i) The metal is convex toward the vacuum: In this case the metal
occupies the region roR, while the vacuum occupies the region
r4R. Eq. (6) takes the following forms in these two regions:

d2Ro

dr2
þ1
r
dRo

dr
þ εðωÞω

2

c2
�ν2

r2

� �
Ro ¼ 0; 0rrrR ð8aÞ

d2R4

dr2
þ1
r
dR4

dr
þ ω2

c2
�ν2

r2

� �
R4 ¼ 0; rZR: ð8bÞ

The solutions of these equations are Bessel functions. We seek a
solution of Eq. (8a) that decays exponentially with increasing
distance from the surface r¼R toward the origin r¼0, as is
required for a surface wave. Such a solution is possible if
εðωÞo0, in which case it is given by Ro ðrÞ ¼ IνðjεðωÞj1=2ðω=cÞrÞ,
where IνðxÞ is the modified Bessel function of the first kind and
order ν. In the case of Eq. (8b) we choose for its solution
R4 ðrÞ ¼Hð1Þ

ν ððω=cÞrÞ where Hð1Þ
ν ðxÞ is the Hankel function of the

first kind and order ν. In choosing this solution we have used the
fact that all solutions of Eq. (8b) are oscillatory functions of r, and
the one we have chosen is the only one that describes an outgoing
wave as r-1. Thus, we find that p-polarized surface electro-
magnetic waves that decay with increasing r cannot exist in the
situation under consideration: they must radiate. The magnetic
field in our system is therefore written as

Hzðr;θjωÞ ¼ AIνðjεðωÞj1=2ðω=cÞrÞexpðiνθÞ; 0rrrR ð9aÞ

¼ BHð1Þ
ν ððω=cÞrÞexpðiνθÞ; rZR: ð9bÞ

Substitution of these expressions into the boundary conditions (4)
yields the solvability condition as

I′νðjεðωÞj1=2ðω=cÞRÞ
IνðjεðωÞj1=2ðω=cÞRÞ ¼ �jεðωÞj1=2H

ð1Þ′
ν ððω=cÞRÞ

Hð1Þ
ν ððω=cÞRÞ

; ð10Þ

where a prime denotes differentiation with respect to argument.
Eq. (10) is the dispersion relation for p-polarized surface plasmon
polaritons in the present case. Its solution gives ν¼ kR as a
function of ω. However, Eq. (10) has no real solution, and the
surface wave number kðωÞ is a complex quantity, kðωÞ ¼ kRðωÞþ
ikIðωÞ. This result expresses the fact that the surface plasmon
polariton is attenuated as it propagates around the cylinder, even
in the absence of ohmic losses in the metal, because it radiates as it
travels along the surface, and energy conservation requires that
the energy radiated must be extracted from the wave itself.

An approximate analytic solution of Eq. (10) was obtained by
Berry [1], by means of a physically based approach. It is given by

kRðωÞ ¼ νRðωÞ
R

¼ω
c

jεðωÞj
jεðωÞj�1

� �1=2
ð11aÞ

kIðωÞ ¼ νIðωÞ
R

¼ω
c

jεðωÞj3=2
ðjεðωÞj�1Þ3=2ðjεðωÞjþ1Þ

�exp � ðω=cÞR
ðjεðωÞj�1Þ1=2

jεðωÞj1=2 lnjεðωÞj1=2þ1
jεðωÞj1=2�1

�2
� �( )

:

ð11bÞ
A derivation of these results by an approach suggested by Berry is
presented in the Appendix. In Fig. 1(a) and (b) we plot kRðωÞR
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Fig. 1. Plots of kRðωÞR (a) and the corresponding kIðωÞR (b) as functions of the frequency ω for a leaky p-polarized surface plasmon polariton propagating circumferentially on
a portion of a cylindrical silver surface that is convex to the vacuum. R¼ 0:5 μm, ωp ¼ 13:12� 1015 s�1.

J. Polanco et al. / Optics Communications 316 (2014) 120–126 121



and kIðωÞR, respectively, as functions of ω=ωp for a cylindrical
silver surface. In their calculation we have used the value
ωp ¼ 13:12� 1015 s�1. This value was obtained by fitting Eq. (1)
to the real part of the dielectric constant of silver at a wavelength
λ¼ 612:7 nm, namely εðωÞ ¼ �17:2þ i0:498 [2]. The value of the
radius R assumed in these calculations was R¼ 0:5 μm. It is seen
that νIðωÞ=R is indeed much smaller than νRðωÞ=R, justifying the
perturbative treatment used in the Appendix to obtain νIðωÞ=R.

The approximate analytic results given by Eqs. (11a) and (11b)
have been checked numerically. For a chosen value of ω Eq. (10) is
rewritten as

f ðνÞ ¼ 0; ð12Þ
where

f ðνÞ ¼ I′νðjεðωÞj1=2ðω=cÞRÞ
IνðjεðωÞj1=2ðω=cÞRÞþjεðωÞj1=2H

ð1Þ′
ν ððω=cÞRÞ

Hð1Þ
ν ððω=cÞRÞ

: ð13Þ

We denote by ν0 a complex estimate of the solution of Eq. (12) for
a chosen value of ω. Newton's method [3] tells us that an
improved approximation to the solution is

ν1 ¼ ν0�
f ðν0Þ
f ′ðν0Þ

: ð14Þ

By iterating this approach we have that

νnþ1 ¼ νn� f ðνnÞ
f ′ðνnÞ

; ð15Þ

and the solution we seek is given by ν¼ limn-1νn. A new value of
ω is chosen, and the process is repeated. In this way the functions
νRðωÞ and νIðωÞ are determined as functions of ω.

The ratios Hð1Þ′
ν ððω=cÞRÞ=Hð1Þ

ν ððω=cÞRÞ and I′νðjεðωÞj1=2ðω=cÞRÞ=Iν
ðjεðωÞj1=2 � ðω=cÞRÞ were calculated as functions of ν for a chosen
value of ω from continued fraction representations of them given
by formulas 17.1.51 and 17.2.38 on pages 353 and 363, respectively,
of Ref. [4]. The evaluation of the continued fractions was carried
out by means of the modified Lenz algorithm found on page 185 of
Ref. [5]. The derivative f ðνnÞ entering Eq. (15) was obtained by
numerical differentiation.

The results of these calculations are presented in Fig. 2(a) and (b).
In Fig. 2(a) we plot νRðωÞ ¼ kRðωÞR obtained both numerically (solid
curve) and from Eq. (11a) (dashed curve). On the scale of the figure
the agreement between the two results is seen to be quite good,
especially for ω=ωp40:55 in agreement with Berry's estimate for
the domain of validity of Eq. (11a) (see the Appendix).

In Fig. 2(b) we plot the corresponding results for νIðωÞ ¼ kIðωÞR
obtained both numerically (solid curve) and from Eq. (11b)
(dashed curve). We see that while the two results agree with
respect to the overall magnitude of this function, and the

frequency region within which this function is nonzero, they differ
in shape, with the numerical result larger than the approximate
result at low frequencies. This difference appears to be due to the
Debye formulas used in representing the Hankel function
Hð1Þððω=cÞRÞ in obtaining Eqs. (11) (see the Appendix) being less
accurate at low frequencies than at high frequencies.

Because the surface wave number k is given by ðν=RÞ, the
energy propagation length of the surface wave along the curved
surface is given by ℓcðωÞ ¼ ½2kIðωÞ��1 ¼ R=½2νIðωÞ�. The energy
propagation length of a surface plasmon polariton at a planar
vacuum–metal interface due to ohmic losses in the metal is given
by ℓpðωÞ ¼ ðc=ωÞjε1ðωÞj1=2ðjε1ðωÞj�1Þ3=2=ε2ðωÞ, where ε1ðωÞ and
ε2ðωÞ are the real and imaginary parts of the dielectric function of
the metal, εðωÞ ¼ ε1ðωÞþ iε2ðωÞ. In writing the expression for
ℓpℓðωÞ we have taken into account explicitly that we are working
in a frequency range where ε1ðωÞ is negative. In Fig. 3 we plot both
ℓcðωÞ (——) and ℓpðωÞ (- - - - -) as functions of the dimensionless
frequency ω=ωp. In Fig. 3(a) ℓcðωÞ is calculated on the basis of the
result for kIðωÞ given by Eq. (11b), while in Fig. 3(b) ℓcðωÞ is
calculated on the basis of the numerical result for νIðωÞ plotted
in Fig. 2(b). From these results we see that in the visible region
of the electromagnetic spectrum (λ¼ 612:7 nm corresponds to
ω=ωp ¼ 0:234), where the radius of curvature of the surface is
comparable to the wavelength of the surface wave, ℓcðωÞ is several
orders of magnitude smaller than ℓpðωÞ. Thus the radiative losses
are significantly greater than the ohmic losses. A much larger
value of R or working at higher frequencies is needed for these two
propagation lengths to become comparable.

(ii) The metal is concave toward the vacuum: In this case the
metal occupies the region r4R, while the vacuum occupies the
region 0oroR. Eq. (6) takes the following forms in these regions

d2Ro

dr2
þ1
r
dRo

dr
þ ω2

c2
�ν2

r2

� �
Ro ¼ 0; 0rrrR ð16aÞ

d2R4

dr2
þ1
r
dR4

dr
þ εðωÞω

2

c2
�ν2

r2

� �
R4 ¼ 0; rZR: ð16bÞ

The solutions of these equations are Bessel functions. For the
solution of Eq. (16a) we choose Jνððω=cÞrÞ. This choice is dictated
by the following consideration. The Bessel function JνðxÞ for a fixed
value of real nonzero ν increases exponentially with increasing x
until a value x¼ ν is reached, at which it acquires an oscillatory
dependence that continues for x4ν. Such an oscillatory depen-
dence of Jνððω=cÞrÞ for r� R makes it possible to satisfy the
boundary conditions at r¼R. As we seek a solution for r in the
range 0rrrR that is localized for r in the vicinity of R, i.e. is small
as r-0, Jνððω=cÞrÞ has this behavior provided that ν is of the order
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Fig. 2. Plots of kRðωÞR (a) and the corresponding kIðωÞR (b) as functions of the frequency ω for a leaky p-polarized surface plasmon polariton propagating circumferentially on
a portion of a cylindrical silver surface that is convex to the vacuum. Numerical solution (——); approximate solution given by Eqs. (11) (- - - - -). R¼ 0:5 μm,
ωp ¼ 13:12� 1015 s�1.
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of ðω=cÞR. For r in the region rZRwe seek a solution that decays to
zero exponentially as r tends to infinity. It is necessary, therefore,
to work in a frequency region in which εðωÞ is negative. The
solution of Eq. (16b) in this frequency range that we choose is
KνðjεðωÞj1=2ðω=cÞrÞ, where KνðxÞ is the modified Bessel function of
the second kind and of order ν. The magnetic field in our system
can then be written as

Hzðr;θjωÞ ¼ AJνððω=cÞrÞexpðiνθÞ; 0rrrR ð17aÞ

¼ BKνðjεðωÞj1=2ðω=cÞrÞexpðiνθÞ; rZR: ð17bÞ
Substitution of these expressions into the boundary conditions (4)
yields the dispersion relation for p-polarized surface plasmon
polaritons in this case in the form

K ′
νðjεðωÞj1=2ðω=cÞRÞ

KνðjεðωÞj1=2ðω=cÞRÞ ¼ �jεðωÞj1=2J
′
νððω=cÞRÞ
Jνððω=cÞRÞ: ð18Þ

For real values of the order and arguments Eq. (18) is a real
equation with real solutions. To solve it we rewrite it in the form
DνðωÞ ¼ 0, where

DνðωÞ ¼ 1þjεðωÞj1=2KνðjεðωÞj1=2ðω=cÞRÞJ′νðvω=cÞRÞ
K ′
νðjεðωÞj1=2ðω=cÞRÞJνððω=cÞRÞ : ð19Þ

For a fixed real positive value of ν, DνðωÞ is calculated for values of
ω increasing in a stepwise fashion in the interval 0rωrωp, and
changes in its sign are sought. The values of ω at which this occurs
are labeled by the index s in the order of their increasing
magnitude. These calculations are repeated for a series of values
of ν, and on the basis of their results the dispersion curves
ωsðν¼ kRÞ are constructed.

In Fig. 4 the results of such calculations are presented for the
same values of the parameters R and ωp that were used in

obtaining Figs. 1–3. It is seen from these results that the dispersion
curve consists of many branches. We can label these branches in
the order of increasing frequency, as the 0, 1, 2, …, branches, with
the lowest frequency branch labeled the 0 branch. The lowest
frequency branch is the one that goes into the dispersion curve of
the surface plasmon polariton at a planar vacuum–metal interface
in the limit as R-1.

As the radius R is increased the separation in frequency
between consecutive branches of the dispersion curve decreases.
Thus more branches crowd into the frequency range 0oωoωp.

The magnetic field Hzðr;θjωÞ can now be written as

Hzðr;θjωÞ ¼ AeiνθJνððω=cÞrÞ; 0rrrR ð20aÞ

¼ Aeiνθ
Jνððω=cÞRÞ

KνðjεðωÞj1=2ðω=cÞRÞKνðjεðωÞj1=2ðω=cÞrÞ; rZR: ð20bÞ

The radial dependence of this field

RpðrÞ ¼ Jνððω=cÞrÞ; 0rrrR ð21aÞ

¼ Jνððω=cÞRÞ
KνðjεðωÞj1=2ðω=cÞRÞKνðjεðωÞj1=2ðω=cÞrÞ; rZR ð21bÞ

corresponding to the points ðkR¼ 10;ω=ωp ¼ 0:4274; kR¼ 10;
ω=ωp ¼ 0:6955, and kR¼ 10;ω=ωp ¼ 0:8611) marked by open
circles on the three lowest frequency branches of the dispersion
curve plotted in Fig. 4 is plotted as a function of r=R in Fig. 5. It is
seen that these fields are localized to the surface in the sense that
they decrease to zero exponentially with increasing distance into
each medium from the interface. However, they have an oscilla-
tory dependence on r=R in the immediate vicinity of the interface.
In this region the field has nodes whose number equals the branch
number. Thus the set of modes resembles the waveguide modes
supported by a planar waveguide, with the mode that becomes the
surface plasmon polariton in the limit R-1 playing the role of the
fundamental mode.

To explore how the preceding results are affected when the
dielectric function of the metal is complex, εðωÞ ¼ ε1ðωÞþ iε2ðωÞ,
we replace Eq. (1) by the expression

εðωÞ ¼ 1� ω2
p

ωðωþ iγÞ; ð22Þ

so that

ε1ðωÞ ¼ 1� ω2
p

ω2þγ2
ð23aÞ

ε2ðωÞ ¼ γ
ω

ω2
p

ω2þγ2
: ð23bÞ
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Fig. 4. The dispersion curves of the p-polarized surface plasmon polaritons
propagating circumferentially on a portion of a cylindrical silver surface that is
concave to the vacuum. R¼ 0:5 μm, ωp ¼ 13:12� 1015 s�1.
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Fig. 3. Plots of the surface plasmon polariton propagation lengths due to radiative losses, ℓcðωÞ (——), and to ohmic losses, ℓpðωÞ (- - - - -), as functions of the dimensionless
frequency ω=ωp (a) ℓcðωÞ calculated on the basis of Eq. (11b); (b) ℓcðωÞ calculated on the basis of a numerical solution of Eq. (10). R¼ 0:5 μm, ωp ¼ 13:12� 1015 s�1.
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By fitting Eqs. (23a) and (23b) to the values of ε1ðωÞ and ε2ðωÞ for
silver at a wavelength λ¼ 612:7 nm, namely ε1ðωÞ ¼ �17:2 and
ε2ðωÞ ¼ 0:498, we find that ωp ¼ 13:12� 1015 s�1 and γ ¼
0:8412� 1014 s�1.

In solving the dispersion relation (18) the function jεðωÞj must
now be understood to be given by

εðωÞ
�� ��¼ �εðωÞ ¼ ω2

p

ω2þγ2
�1

 !
� i

γ
ω

ω2
p

ω2þγ2
: ð24Þ

It is convenient to write jεðωÞj1=2 in the form

jεðωÞj1=2 ¼ a1ðωÞ� ia2ðωÞ; ð25Þ

where a1ðωÞ and a2ðωÞ are positive functions of ω.
In the visible region, e.g. at λ¼ 612:7 nm, a2ðωÞ=a1ðωÞffi1=60.
Thus, to solve Eq. (18), we substitute Eq. (25) into Eq. (19), and

use the approximations

Kνððω=cÞRða1� ia2ÞÞffiKνððω=cÞRa1Þ� iðω=cÞRa2K′νððω=cÞRa1Þ

K ′
νððω=cÞRða1� ia2ÞÞffiK ′

νððω=cÞRa1Þ� iðω=cÞRa2K″
νððω=cÞRa1Þ;

to separate DνðωÞ into its real and imaginary parts, assuming ν to
be real. The function jDνðωÞj�2 is then plotted as a function of real
νfor a fixed value of ω. Peaks of this function occur at the values
(s) of νRðωÞ corresponding to that value of ω. The width of each
peak at half maximum is the corresponding value 2νIðωÞ.
By varying ω in a systematic fashion curves of νRðωÞ and νIðωÞ
were obtained.

In Fig. 6(a) we present results for ω=ωp as a function of kR for
the branches of the dispersion curve plotted in Fig. 4. The solid
curves are the results obtained with the use of a complex dielectric
function, the dashed curves are the results obtained for a real
dielectric function. These sets of curves are virtually indistinguish-
able on the scale of the figure. The use of a real dielectric function
in these calculations is justified.

In Fig. 6(b) we present plots of the propagation distance of the
surface wave corresponding to the lowest frequency branch of the
dispersion curve in Fig. 4. The solid curve is the result obtained
with a complex εðωÞ. It reflects the attenuation of this wave in the
presence of both radiative and ohmic losses. The dashed curve is
the result obtained for the wave on the planar surface of a lossy
metal surface. It reflects the attenuation of this wave due only to
ohmic losses. It is seen that the radiative losses introduced by the
curvature of the surface reduce the propagation distance resulting
from ohmic losses alone. These results indicate that in calculations
of the damping of a surface electromagnetic wave on a cylindrical
surface it is important to include the imaginary part of the metal's
dielectric function, especially in the low frequency limit.

3. Discussion and conclusions

In this paper we have shown that the p-polarized surface-
localized electromagnetic waves propagating circumferentially
around a portion of a circularly cylindrical metal surface in contact
with a vacuum that is either convex toward the vacuum or
concave toward the vacuum have a complex structure. In the
former case it consists of a leaky wave that is bound to the
interface in the metal but radiates into the vacuum. In the latter
case it consists of a discrete sequence of waves that are bound to
the interface in both the metal and the vacuum, but have an
oscillatory or standing wave form in the vicinity of the interface
similar to the structure of the waves in a planar dielectric
waveguide.
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Fig. 5. The radial dependencies of the magnetic field Hzðr; θjωÞ are plotted as functions of r=R for the values of ω=ωp and kR indicated by the open circles on the three lowest
frequency branches of the dispersion curve presented in Fig. 4.
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Fig. 6. (a) The dispersion curves of p-polarized surface plasmon polaritons
propagating circumferentially on a portion of a cylindrical silver surface that is
concave to the vacuum, calculated with a complex dielectric function defined by
ωp ¼ 13:12� 1015 s�1, γ ¼ 0:4812� 1014 s�1, R¼ 0:5 μm (——); calculated with a
real dielectric function defined by ωp ¼ 13:12� 1015 s�1, R¼ 0:5 μm (- - - - -).
(b) The propagation distance of the surface plasmon polariton corresponding to the
lowest frequency branch of the dispersion curve depicted in (a), calculated with the
same complex dielectric function on a silver surface concave to the vacuum (——),
R¼ 0:5 μm, and on a planar lossy silver surface (- - - - -).
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An understanding of the origin of the latter waves can be
gained in the following way. We carry out the coordinate trans-
formation z¼ R lnðr=RÞ, and define R≷ðrÞ ¼ f ≷ðzÞ ¼ f ≷ðR lnðr=RÞÞ. The
region z40 corresponds to the region r4R, i.e. to the region of
the metal, while the region zo0 corresponds to the region
0oroR, i.e. to the vacuum region. Eqs. (16) are then transformed
into

d2

dz2
�k2þω2

c2
n4 ðzÞ2

" #
f 4 ðzÞ ¼ 0; zZ0 ð26aÞ

d2

dz2
�k2þω2

c2
no ðzÞ2

" #
f o ðzÞ ¼ 0; zr0; ð26bÞ

where k¼ ν=R, and

n4 ðzÞ2 ¼ εðωÞ expð2z=RÞ ð27aÞ

no ðzÞ2 ¼ expð2z=RÞ ð27bÞ
are z-dependent refractive indices in the regions z40 and zo0,
respectively.

The boundary conditions satisfied by f ≷ðzÞ become

f 4 ðzÞjz ¼ 0 ¼ f o ðzÞjz ¼ 0 ð28aÞ

1
εðωÞ

df 4 ðzÞ
dz

����
z ¼ 0

¼ df o ðzÞ
dz

����
z ¼ 0

: ð28bÞ

In the immediate vicinity of the interface, where jzj=R is small,
Eqs. (26) take the forms

d2

dz2
�k2þεðωÞω

2

c2
þ2εðωÞω

2

c2
z
R

" #
f 4 ðzÞ ¼ 0; z40 ð29aÞ

d2

dz2
�k2þω2

c2
þ2

ω2

c2
z
R

" #
f o ðzÞ ¼ 0; zo0: ð29bÞ

If we recall that εðωÞ is negative, the solutions of these equations
are

f 4 ðzÞ ¼ AAi
Rc2

2jεðωÞjω2

 !2=3
0
@ � k2þjεðωÞjω

2

c2
þ2jεðωÞjω

2

c2
z
R

� ��
; z40

ð30aÞ

f o ðzÞ ¼ BAi
Rc2

2ω2

 !2=3

k2�ω2

c2
�2

ω2

c2
z
R

� �0
@

1
A; zo0; ð30bÞ

where AiðzÞ is an Airy function. It is an exponentially decreasing
function of z for z40, and an oscillatory function of z for zo0.
Thus we see from Eqs. (30) that for sufficiently large jzj both f 4 ðzÞ

and f o ðzÞ decrease exponentially with increasing distance from
the interface z¼0. The dispersion relation obtained from the
boundary conditions (28) is

Ai
Rc2

2ω2

 !2=3

k2�ω2

c2

� �0
@

1
A

Ai′
Rc2

2ω2

 !2=3

k2�ω2

c2

� �0
@

1
A

¼ jεðωÞj2=3
Ai

Rc2

2jεðωÞjω2

 !2=3

k2þjεðωÞjω
2

c2

� �0
@

1
A

Ai′
Rc2

2jεðωÞjω2

 !2=3

k2þjεðωÞjω
2

c2

� �0
@

1
A
; ð31Þ

where the prime denotes differentiation with respect to argument.
Eq. (31) has been solved numerically, and the resulting dispersion
curve is plotted in Fig. 7 for the same values of the parameters
used in obtaining Fig. 4. It is seen to consist of a multiplicity of
branches like the dispersion curve plotted in Fig. 4. The quantita-
tive differences between the two dispersion curves appear to be
due to the approximations made in obtaining Eqs. (30).

Nevertheless this simple calculation suffices to show that a
cylindrical vacuum–metal interface, with the metal concave to the
vacuum, is equivalent to a planar interface between two graded
index media that form a “potential well” in its vicinity that can
bind one or more modes to it, depending on the frequency.

It has been shown in an earlier work [7] that a cylindrical
vacuum–metal interface supports a series of guided wave-like
modes of s polarization when the metal is concave toward the
vacuum. In Fig. 8 we plot the dispersion curves of the s-polarized
waveguide plasmon polaritons studied in Ref. [7] (solid curves)
together with the dispersion curves of the p-polarized waveguide
plasmon polaritons presented in Fig. 4 of the present paper
(dashed curves). Both sets of curves have been calculated for the
same values of ωp and R. It is seen that for a given value of the
surface wavenumber k the modes of the two polarizations occur in
non-overlapping frequency regions. In fact, their dispersion curves
interleave each other. Therefore, one and the same surface of this
kind supports guided waves of both p and s polarizations, some-
thing that a planar vacuum–metal interface cannot do.
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Appendix A

In this Appendix we obtain an approximate analytic solution of
Eq. (10) by an approach that differs from the one used by Berry for
this purpose in Ref. [1], but which was suggested by him in that
reference.

It is expected that if the surface is gently curved kRðωÞ=R will be
very close to the value kRðωÞ ¼ ðω=cÞ½jεðωÞj=ðjεðωÞj�1Þ�1=2 it has for
a planar surface. We will see below that this is indeed the case. This
means that kRðωÞ4 ðω=cÞ. For a gently curved surface both the order
kRðωÞR and the argument ðω=cÞR of the Hankel functions in Eq. (10)
are large, but since kRðωÞ4 ðω=cÞ we have the case of “argument
smaller than order, order large”. Thus we have to use expressions for
the Hankel functions appropriate to this situation. Since Hð1Þ

ν ðzÞ ¼
JνðzÞþ iYνðzÞ, these expressions are given by the Debye formulas
given by Eqs. (9.3.7) and (9.3.11) of Abramowitz and Stegun [6],

Jνðν sech αÞ � e�νðα� tanh αÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πνtanh α

p ðA:1aÞ

J′νðν sech αÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh α cosh α

p
ffiffiffiffiffiffiffiffiffi
2πν

p e�νðα� tanh αÞ; ðA:1bÞ

respectively, and by Eqs. (9.3.8) and (9.3.12) of Ref. [6]

Yνðν sech αÞ � � 2eνðα� tanh αÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πν tanh α

p ðA:2aÞ

Y ′
νðν sech αÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh α cosh α

p
ffiffiffiffiffiffiffiffiffi
2πν

p eνðα� tanh αÞ; ðA:2bÞ

respectively, where

sech α¼ωR
cν

: ðA:3Þ

It follows that

sinh α¼ ½ðcν=ωRÞ2�1�1=2 ðA:4aÞ

cosh α¼ ðcν=ωRÞ ðA:4bÞ

tanh α¼ ½ðcν=ωRÞ2�1�
ðcν=ωRÞ

1=2

ðA:4cÞ

α¼ 1
2
ln
ðcν=ωRÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcν=ωRÞ2�1

q
ðcν=ωRÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcν=ωRÞ2�1

q : ðA:4dÞ

We also assume that ν is in the region ν4 jεðωÞj1=2ðωR=cÞ. The
asymptotic formulas for IνðzÞ and I′νðzÞ for the case ν4z are given
by Eqs. (9.7.7) and (9.7.9) of Abramowitz and Stegun [6],

IνðνβÞ �
1ffiffiffiffiffiffiffiffiffi
2πν

p eνη

ð1þβ2Þ1=4
ðA:5aÞ

I′νðνβÞ �
1ffiffiffiffiffiffiffiffiffi
2πν

p ð1þβ2Þ1=4eνη
β

; ðA:5bÞ

respectively, where

β¼ jεðωÞj1=2ðωR=cνÞ ðA:6Þ
and

η¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þβ2

q
þ ln

β

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þβ2

q : ðA:7Þ

With the use of these results we now rewrite Eq. (10) in the form

ð1þβ2Þ1=2
β

¼ jεðωÞj1=2 sinh α
1� i

2
e�2νðα� tanh αÞ

1þ i
2
e�2νðα� tanh αÞ

: ðA:8Þ

If we neglect the exponentially small terms on the right-hand
side of this equation, which is equivalent to approximating Hð1Þ

ν ðzÞ
by iY ; ðzÞ, Eq. (A.8) becomes

½jεðωÞjþðcν=ωRÞ2�1=2 ¼ jεðωÞj½ðcν=ωRÞ2�1�1=2; ðA:9Þ

whose solution is

νRðωÞ
R

¼ω
c

jεðωÞj
jεðωÞj�1

� �1=2
; ðA:10Þ

without any imaginary part νIðωÞ=R. This is why we have denoted
this solution as νRðωÞ=R.

We now return to Eq. (A.8), which we rewrite as

½jεðωÞjþðcν=ωRÞ2�1=2
jεðωÞj½ðcν=ωRÞ2�1�1=2

¼ 1� ix
1þ ix

ðA:11Þ

where, to simplify the notation, we have introduced the variable x
defined by

x¼ 1
2 exp½�2νðα�tanh αÞ�: ðA:12Þ

On the left-hand side of Eq. (A.11) we replace ν by νRþ iνI . With
this substitution Eq. (A.11) becomes

½jεðωÞjþðcνR=ωRÞ2�1=2
jεðωÞj½ðcνR=ωRÞ2�1�1=2

1þ2i
ðcνR=ωRÞ2

jεðωÞjþðcνR=ωRÞ2
νI
νR

" #1=2

1þ2i
ðcνR=ωRÞ2

ðcνR=ωRÞ2�1
νI
νR

" #1=2 ¼ 1� ix
1þ ix

:

ðA:13Þ

The first factor on the left-hand side of this equation is equal to
unity in view of Eq. (A.10). The equation for νI=νR then becomes

ðcνR=ωRÞ2
ðcνR=ωRÞ2�1

� ðcνR=ωRÞ2
ðcνR=ωRÞ2þjεðωÞj

" #
νI
νR

¼ 2x; ðA:14Þ

which with the use of Eqs. (A.4c), (A.4d) and (A.10) becomes

νIðωÞ
R

¼ νRðωÞ
R

jεðωÞj
ðjεðωÞj�1ÞðjεðωÞjþ1Þ � exp �2R

νRðωÞ
R

½α�tanh α�
� 	

ðA:15aÞ

¼ω
c

jεðωÞj3=2
ðjεðωÞj�1Þ3=2ðjεðωÞjþ1Þ

�exp � ðω=cÞR
ðjεðωÞj�1Þ1=2

jεðωÞj1=2 lnjεðωÞj1=2þ1
jεðωÞj1=2�1

�2
� �( )

: ðA:15bÞ

This is the result obtained by Berry by the use of a physically based
approach. Berry has shown that the use of the Debye approxima-
tion for HνR ððω=cÞRÞ, which requires that νR4 ðω=cÞR, is valid for
the case where εðωÞ has the simple free electron form, Eq. (1),
provided that jεðωÞj⪡ðωR=2cÞ2=3,which is equivalent to ω4
ωpð2c=ωRÞ1=3.
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