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ON THE RELATIVE ENERGIES OF SIMPLE METALLIC STRUCTURES 

Charles W. Krause andJ. W. Morris, Jr. 

Department of Materials Science and Engineering, 
University of California and Center for the Design of Alloys, 

Inorganic Materia1s'Research Division, Lawrence B~rke1ey Laboratory, 
Berkeley, California 94720 

ABSTRACT 

The asymptotic form of the two-body interatomic potentials arising 

from pseudopotentia1 theory, V(r) = Vo ,cos(2~r)I(2~r)3, is used to 

discuss the relative cohesive energies of simple metallic structures. 

Use of this potential allows the thermodynamically preferred structure 

of a simple metallic element or solid solution at OOK to be determined 

as a function of valence only. The appropriate lattice sums are 

performed exactly for the fcc, hcp (with ideal axial ratio) and bcc 

structures. In addition, the approximate interp1anar interaction of 

Blandin, Friedel and Saada is summed for po1ytypic structures. Two 

modifications of the potential are also considered. First, a phase 

shift of 20 is used to obtain a potential of the form, V(r) = V o 
3 

cos(2~r+20)1(2kFr) • Secondly, the interp1anar interaction is adjusted 

to reflect conditions that might hold when po1ytypic structures other 

than fcc and hcp occur. Results for the relative energies of the 

structures are presented. These results are compared with the observed 

structures of metallic elements and random solid solutions. 
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I. INTRODUCTION 

Despite its central importance in the science of metallurgy, the 

problem of predicting the preferred structure of a metal alloy remains 

1,2 unsolved. Moreover, the complexity of the problem is such that 

a viable theory of the crystal structure of alloys is unlikely to 

emerge for some time. In the interim the metallurgist will be forced 

to make do with a mixture of rough approximations and semi-empirical 

rules, and the development of approximate techniques in alloy theory 

will continue to be important. 

The pseudopotential theory of simple metals has yielded several 

models which promise to be useful in the prediction of structure. 1,2 

The simplest and most general of these follows from Harrison's 1 

development of Cohen's 3 real space formulation of the pseudopotential 

theory. If a pseudopotential model of a simple metal is developed to 

second order in perturbation theory, that part of the cohesive energy 

which depends 'on the' structure may be treated as if the ~toms interacted 

in pairs according to a central, two-body potential. This two-body 

potential has an asymptotic form which is independent of the precise 
, ' 4 

pseudopotential assumed, and which exhibits the Friedel oscillations. 

Under suitable assumptions, discussed below, one may make a rough 

estimate of the relative energies of candidate structures at OOK by 

simply summing the energy of two-atom interactions according to the 

asymptotic, or Friedel potential. This approach has been taken in 

5-8 several studies of the structure of simple metals and alloys' and 

is followed below, where we supplement prior work with new computations 
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to explore the results'of a simple structural model based on the two-

body Friedel potential. 

While the approximations involved in a structural model based on 

the Friedel potential are drastic, the model has several attractive 

features. It leads to equations which are easy to use and which 

incorporate aspects of the more fundamental theory while avoiding the 

recalcitrant problem of choosing proper pseudopotentials. Moreover, 

the model yields a prediction of alloy structure which is based on 

9 the electron-atom ratio, in the spirit of the Hume-Rothery and 

. 10 
Engel-Brewer correlations, and whtich is in general agreement with 

known structural tendencies in simple metals and alloys. 

The central equations of the structural model used here are 

derived as follows. 

Employing the real space formulation of the pseudopotential theory 

1 3 of a simple metal ' the cohesive energy per atom may be developed in 

the perturbation series: 

(1) 

whose successive terms involve perturbations of increasing order • 

. The zeroth and first order terms in this expansion depend on the 

volume per atom (n), but are independent of structure. The second 

order term, E2 , is the first to show the influence of structure. It 

can be cast in the form 

I 
2N 

, 
~ 
i,j 

(2) 
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. th 
where N is the number of atoms, r ij is the distance ,between the i-

th and j- atom cores, and the prime on the summation indicates that 

terms having i=j are to be omitted. The functionV(rij ) appearing 

in the summation acts as a two-body potential in a restricted sense: 

it governs the change of energy in a relative displacement of atoms 

i and j which leaves the atomic volume, and hence Eo and El , constant. 

If we fix the atomic volume and neglect higher order terms in the 

1 perturbation expansion, the relative .energy of a given structure 

is measured by E2 ; that structure which minimizes E2 will be preferred 

at OOK. 

Computation of the structural energy, E
2

, requires a specific 

expression for the effective interatomic potential, V(r). This potential 

1 2 is sensitive to the details of the pseudopotential used. ' However, 

1 
irrespective of the pseudopotential, V(r) has the asymptotic form 

when (~r) is large, where ~ is the Fermi wave number. The parameter 

V depends on fundamental quantities in a rather complicated way, but 
o 

for our purposes it is sufficient to note that V is independent of 
o 

structure. We may hence define a dimensionless two-body potential 

v(r) = V(r)/V 
o 

which becomes the Friedel potential 
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when kFr is large. If we now uniformly approximate VCr) by its 

asymptotic form, the structural energy, E2 , may be rewritten in a 

dimensionless form which is independent of the pseudopotential: 

t cos(2kFri.1)/(2~rij)3 
i,j 

In fact, the dimensionless energy, £ = £ (7.), is a function of 

(4) 

(5) 

structure and electron-atom ratio (Z)only; since the separation 

distances (r
ij

) in a given structure scale as n1/3 , where n is atomic 

volume, and since the Fermi wave number, k
F

, is kF = (3n2Z/n)1/3, 

the set of values of the quantity (~rij) in a given structure, and 

hence the dimensionless energy of the structure, is determined by Z. 

Equation (5) was drawn from the pseudopotential theory of simple 

metals. It ·may be generalized to estimate the relative energies of 

the structures of uniform random solid solutions of simple metals 

11 
through use of the 'virtual crystal model: the alloy is represented 

as a one-component· simple metal made up of pseudo atoms whose 

properties average those of the atoms actually present. With this 

approximation the dimensionless structural energy of the solid solution 

is determined by its mean electron-atom ratio (Z) through Eq. (5). 

The preferred structure of the solid solution at OaK may then be 

estimated by minimizing £ over the set of candidate structures. The 

result is uniquely determined by Z. 
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The structu:ral model developed above depends on four specific 

assumptions, which we discuss in turn. 

(1) The model ,is drawn from the second-order development of the 

pseudopotential theory, of simple metals. It should hence be kept in 

mind that, in its current state of development, ,the second-order pseudo­

potential theory does not always predict a correct structure for the 

simple metals and is of uncertain value in treating certain of the heavy 

metals, the transition metals, the noble metals, and metals which have 

a strong tendency toward covalent bonding. 

(2) The effective interatomic potential obtained from the second 

order pseudopotential theory is replaced by its asymptotic form, the 

Friedel potential. While it ,has been found 1 that the effective 

interatomic potential actuaily 'converges toward the Friedel potential 

rather quickly, important contributions to the structural energy due 

to near-neighbor interactions may be misestimated. The model is most 

reasonable when applied to close-packed structures having ideal axial 

ratios, since these differ from one another only in the third (or higher) 

coordination shells. The model may not yield a good value for the 

relative energies of structures such as fcc and bcc, which differ in 

the first coordination shell. As we shall show, however, it does provide 

an empirically reasonable estimate of the range of Z values over which­

the bcc structure is preferred to the close-packed structures. 

(3) The variation in equilibrium atomic valume between candidate 

structures is ignored. Since small volume ,changes are observed in 

solid state transformations, and since these changes (at least at OOK) 
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must minimize the total energy of the structure, their neglect will 

necessarily result in an overestimate of the energy advantage enjoyed 

by the preferred structure. On the other hand, since the atomic 

volume is left unknown in the calculation of structural energy, this 

approximation cannot cause an erroneous identification of the preferred 

structure. 

(4) Alloy solid solutions are treated as if they were composed 

of identical pseudoatoms having average properties. While the 

approximations involved in this virtual crystal 11 model are known 

their quantitative consequences are not. The factors neglected include 

the tendency to short-range order,. the contribution to cohesion from 

charge transfer between different species, the decrement to cohesion 

due to local lattice strain caused by size difference between species, 

and possible error from the second order theory if the valences of the 

species differ. Of course, these factors are relevant only insofar 

as they influence the relative energies of candidate structures. The 

probable error should become more important as size or valence differ-

\ 

ences become greater. 

As noted above, the approach to crystal structure employed here has 

been used by a number of previous workers. 6 Shaw applied a method due to 

12 Epstein to show how Eq. (5) may be conveniently set up for direct numer-

ical solution for an arbitrary lattice and computed structural energies 

for the face centered cubic (fcc), hexagonal close-packed (hcp) and body 

centered cubic (bcc) structures as functions of valence. In related 

work, Blandin, Friedel and Saada5 showed that when a structure is 
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close-packed,Eq. (3) maybe recast in the form of a potential approxi-

mating the interaction between close-packed planes. Blandin. Friedel 

and Saada determined the energies of stacking faults in the fcc and 

hcp structures and found the ranges of valence over which these 

structures should be stable with respect to faulting. 
. 7 

Recently, Hodges 

suggested that the interplanar interaction might be used to simplify 

Eq. (5) for an arbitrary close-packed structure. He employed this 

formulation in a semi-:-quantitative discussion of the stability of the 

close-packed polytypic structures occasionally observed in alloy 

8 
systems. Havings, van Vucht and Buschow have also discussed phase 

stability using interplanar interactions of a similar form. These 

results are summarized and supplemented in the following sections. 

In the next section, the relative energies of the simple crystal 

structures are calculated to determine the preferred structure as a 

function of electron-atom ratio. Two techniques are explored. We 

first employ the exact sUDDllation method of Shaw and find the ranges of 

Z over which the fcc, hcpand bcc structures are stable with respect 

to one another. We then develop 
7 

Hodges' suggestion quantitatively 

so that any close-packed polytype may be handled with the interplanar 

interaction. Since this second method is easier to use for polytypes 

and is nearly as accurate as the exact summation method, it is employed 

to estimate the relative energies and ranges of preference of the 

fcc, hcp, and more complex polytypic structures. 
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In the third section, we explore two suggested modifications of 

the simple structural model. First, following several independent 

13 14 suggestions, ' we alter the Friedel potential, Eq. (4), by adding 

ari arbitrary phase shift, which subsequently will be referred to as the 

Friedel shift (20), to the argument of the cosine. This modification 

yields a two parameter.model in which the dimensionless relative energy 

of a.structure, E, depends on the Friedel shift as well as on the 

valence. Second, following a sugges tion by Hodges,1 we adj us t the near 

neighbor terms in Eq. (5) to obtain alternate criteri.a for the appearance 

of complex close-packed polytypes. 

In a final section, the results of these computations are compared 

with the known structures of metals and alloys. 
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II.· CALCULATIONS WITH THE UNMODIFIED FRIEDEL POTENTIAL 

Two methods for performing the sums for the determination of the 

structure-dependent energy are presented in this section. First, the 

exact summation is performed for the fcc, hcp andbcc structures. The 

axial ratio of the hcp structure :i.s assumed ideal. The energies of the 

hcp and bcc phases with respect to the fcc phase, Eh . -E f and Eb -£f ' cp cc cc cc 

are then found by simple subtraction and are plotted as functions of Z. 

Secondly, as mentioned above, the application of the Friedel 

potential is probably most appropriate to the study of the relative 

energies of the close-packed polytypes structures with ideal axial 

ratios. The polytypes are easily and accurately handled through use 

of the interplanar interaction of Blandin, Friedel and Saada. The 

method for the use of the interplanar interaction is developed and the 

relevant sums are performed. This second method gives directly the 

energy of a polytype relative to the energy of the fcc structure, 

E-Ef • Using the sums, the relative energies for a number of polytypes cc 

can be plotted as functions of Z. 

Finally, the relative energies may be used to determine which 

structure is the most stable of those considered. Plots of the regions 

of Z for which the different structures are preferred are presented. 
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A. Exact Summation of the Friedel Potential 

If the atoms of the metal are in crystallographical1y equivalent 

positions, as they are in the fcc, hcp, and bcc structures, one of the 

sumS in Eq'. (5) can be performed to obtain 

e: = 
1 
2 

(6) 

th where r i is the distance between the i- litOm. and a reference atom. 

6 ' 12 
Shaw developed the summation method of Epstein for exact sum-

mation of Eq. (6) and performed the appropriate sums for the fcc, hcp, 

and bcc structures. However, his results were not set in a form which 
, " 

allows a clear delineation of the regions of valence over which these 

structures are preferred. We have, therefore, repeated the computations. 

The method of Epstein is a general technique for summing quantities 

n like exp(ikr)/r over a collection of lattice points. The method 

involves the transformation of the sum into two rapidly converging 

sums~ The sum in direct space remains, but an exponential damping 

factor appears in each term. The residue is Fourier transformed into 

a sum in reciprocal space; each term in this sum includes a damping 

factor also. 3 Shaw obtains, for the sum of cos 2kFr/(2~r) , 



" 

(6) 

_ ~ cos (kr1 ) = 2!:. ~ 
£- L..J 3 n 

1*0 (kr
t

) 

2 . k 
I S(q)1 [(1 +~) E (ex) + (1 - -) E

1
(S)] 

3 'q 1 q k 

8n 2 2 + Qk3 [E1(k /4w) - 2e-k /4w) + ECOS(krt) 
1*0 (kr)3 . 1 

1/2 
[erfc(w . r

1
) 

wr~I/2 -wr~ 4 w3 1/2 
+2(-) e J--(-) 

n 3k3 n 

/ 

.. 

I ..... ..... 
I 



where 

-12-

k = 2kF 

ex = (k+q)2/4w 

13 
2 = (k.;,q) /4w 

El(x) = i(X) dt{exp(-t)/t! ' 

erfc(x) = 1 - erf(x) = 1 2 

liT I
x . 2 

o dt [exp(-t )], 

i labels the lattice points, W is a convergence parameter, n is the 

atomic volume, and Seq) is the structure factor for the lattice in 

question .• 

The parameter w may be chosen arbitrarily. 
. 2 

If w = n/s is chosen, 

where s is the nearest neighbor distance, the sums converge with equal 

rapidity.6,15 In our computations fifty or sixty lattice vectors were used 

for the sums on the right hand side of Eq. (6). Then w was adjusted 

so that the last terms evaluated for the sums were about equal. It 

was found that w differed from n/s2 by a small amount and the last 

-4 terms in the two sums contributed less than 10 to the expression 

being evaluated. -4 An accuracy of 10 is thus claimed for these sums. 

The difference between n/s2 and the final values chosen for w is 

evidently due to the truncation of the sums; the value w = ~/s2 is 

applicable only to a complete suuunation. 

In Fig. 1, the quantities £h -£f and £b -£f ' as determined cp cc cc cc 

from exact suuunation, are plotted as functions of Z. These dimensionless 

-3 energies have a magnitude of 5xlO or less for the range of Z considered. 

·1 
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This range is taken to be from .1.00 to 4.00, the range of valence 

which includes the simple metals to which pseudopotential theory 

should apply. 1 The results, shown in Fig. l,can be used to determine 

which of the three structures has the lowest energy asa function of Z. 

Regions of preference for the different structures are shown in the 

third plot of Fig. 4. 

B. Summation of the Interplanar Int~raction of 
Blandin, Friedel and Saada 

The computation of the relative energies of the different close-

packed polytypic structures can be done without the exact evaluation 

of Eq. (5). The method for doing this calculation uses an approximate 

interplanar interaction between two parallel, hexagonal close-packed 

5 
planes due to Blandin, Friedel and Saada. IIi particular, 

close-packed polytynic structures can be described as the stAcking of 

hexagonal, close-packed planes of three types, A, B, or C. When these 

planes are considered pairwise, they are in either equivalent (e.g., A-A) 

or inequivalent (e.g., A-B) positions. For example, the stacking 

sequence of the fcc structure is ABCABCj the first and fourth planes 

in the stacking sequence are in equivalent positions, while the first 

and second plaries and the first and third planesare·in inequivalent 

positions. The interplanar interaction of Blandin, Friedel and Saada 

is a rearrangement interaction which gives the. change i~ energy when 

two parallel, hexagonal close-packed planes are shifted from equivalent 

to inequivalent positions~ 
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Blandin, Friedel and Saada actually obtained two expressions for 

the interp1anar interaction. The eXpression to be used depends on 

whether Z is larger or smaller than Z = L 14. This energy (per unit 
c 

area) is given to a good approximation by 

exp-n8' 
. 2 . , 
n 

Z < Z 
c 

where 8' = 5.67 (Z 2/3_z2/3)1/2 d is the interp1anar spacing, and 
c ' 

(7) 

n denotes which near neighbor planes are being considered. Similarly, 

where 

8 = 5.67 (Z2/3 Z 2/3)1/2 
c 

z > z 
c 

(8) 

As is evident, the interaction goes to zero as Z approaches Z. This 
c 

effect will be shown to be spurious below. The region near Z may not 
c 

be treated accurately because of this defect in the interp1anar 

interaction. 

We will want ~o compare the results of the calculation using 

the interp1anar interaction to the results of the exact summation, 

so it is useful to cast the above equations in units of energy per· 

atom. This can be done by noting that 13 s2/2 is the area per atom 

in a hexagonal close-packed plane, where s is the nearest neighbor 

distance. For the energy per atom, where Z <zc ' 



fI<j>BFS(nd) = 
10.44 V 

o 

,""15-

«Z /Z) 2/3 
c .. 

and for Z > Zc' a similar ~xpressionholds. 

exp-ne' 
2 

n 
(9) 

F 11 wi i b H' d 7' h II,+.BFS (nd) d fi d b . 0 0 ng a suggest on y 0 ges, t e U'jI e ne a ove 

can be used to calculate the structure-dependent energy and relative 

stability of any close-packed structure. Let c be the fraction of 
n 

th 
n-- nearest neighbor planes in equivalent positions for some structure. 

For ex~le, c
1 

equals zero for any structure, since nearest neighbor 

planes are always in·inequivalertt positions. The structure-dependent 

energy per atom of some structure with respect to the fcc structure 

is just 

where flc 
n 

€-e: fcc 

fcc . = c - c and c n n' n 

(10) 

is the coefficient of the phase in 

question. Table I shows stacking characteristics and stacking sequences 

for the polytypic structures considered in this paper. 

When Eq. (7) is used in Eq. (10) the sum for €-€f converges 
cc 

rapidly for Z < Z because of the exponentially 'decreasing variation 
c 

of the interplanar interaction with n. Only several terms need be 

kept to obtain the necessary significance for €-£f . cc 

When Eq. (8) is used in Eq. (10) for Z > Z one can obtain a 
c 

simplification by noting that flc is periodic in n. If (1d) is a cotmllon 
n 

repete distance for the structure in question and the fcc structure, 

we can rewrite Eq. (10) as 
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00 
j 

£-£ = L L 6cjn '+k 6~«jn'+k)d) fcc n'=O k=l 

00 t = L 6ck 6~«jn'+k)d) 
(11) 

n'=O k=l 

j 
00 

= L 6ck L 6~«.1n'+k)d) 
k=l n'=O 

For example, it is found that the hcp structure has an energy of 

£ -£ hcp fcc 

00 

= L 6~«6n+3)d) - 6~«6n+2)d) - 6~«6n+4)d) 
n=O 

(12) 

with respect to the fcc structure. The terms ~ 6~«jn'+k)d) in 
n =0 

Eq. (11) can be easily evaluated when Eq. (8) is used. It may be shown 

that 

where 

00 

L 6~BFS«jn+k)d) 
n=O 

j-1 

00 

eeL 
n=O 

sin(jn+k)8 

(jn+k) 2 

= 1 ~ i 21TkR. Q (8 + 21TR.) + 21TkR. (8 + 21TR.) (13) 
j L.J s n -j- I-' 2 j cos j 0.2 j 

.R.=O 

00 

=L 
n=l 

sin n8 
2 n 

8 

2 
{2 

= - 8 £n2lsin % I + J~ 
o 

~d~ 
tan~ 



and 
00 

=L 
n=l 

cos ne 
2 

n 
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= 

The function u 2 was obtained numerically to six digit accuracy using 

polynomial expansions with six terms. This accuracy is needed to assure 

significance in the evaluation of Eq. (13) when used in Eq. '(II). 

Use of Eq. (13) in Eq~, (11) allows a simple calculation of £-££ • cc 

The method does not require the calculation of reciprocal lattice 

vectors as in the exact SUInmation method and is easily visualized. 

The results for £-£f using the interplanarinteraction are shown 
cc 

in Fig. 2 as a function of the valence. The second plot of Fig. 4 

displays the regions of relative stability as a function of Z. 

Results for three polytype structures are also displayed in Fig. 2. 

Two of these, the double hexagonal (dhcp) and samarium (Sm) structures, 

are occasionally observed experimentally. In terms of Pauling's h-k 

notation (Table I) these structures have one half ann two thirds hexagonal 

character, respectively. The final structure, designated the A structure, 

has one third hexagonal character and is included for completeness. 

These complex polytypes might be considered as compromise structures 

that occur when the fcc and hcp structures have nearly the same energies. 

Table I summarizes the stacking characteristics of these complex 

polytypes. 
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The odd behavior of the interp1anar interaction near Z = 1.14 

shows up clearly in Fig. 2. tTsing the results from the exact summation, 

the values of £h - £f from the two methods can be compared and cp cc 

are plotted in Fig. 3. The exact summation yields ~ - £ * 0 hcp fcc 

at Z = 1.14. This result implies that there should be non-zero terms 

in Eq. (10), i.e., the iriterp1anar interaction is not always zero at 

Z ... 1.14. Evidently, the approximate interp1anar interaction breaks 

down near this value of Z. 
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III. MODIFICATIONS OF THE FRIEDEL POTENTIAL 

Up to. this point, the relative stability of different structures 

has been considered to be determined by one variable, the electron-atom 

ratio Z. The actual structures exhibited by the simple metals indicate 

that Z is not the only determinant of structure. In an attempt to 

circumvent this defect of the model, two modifications of the Friedel 

potential are considered in this section. 

The first modification is the introduction of a new parameter 

into the Friedel potential. This parameter is a Friedel shift of 20 

in the argument of the cosine of the Friedel potential. The resulting 

potential i80f the form 

v' (r) 
cos(2~r+20) 

= 
(2~r)3 

(14) 

When Eq. (14) is used in Eq. (5), the dimensionless structure dependent 

energy depends on both the electron-atom ratio Z and the Friedel shift 

20. The stability of the simple crystal structures has been determined 

as a function of Z and 20 by modifying both the exact summation method 

and the method developed in the previous section for summing the 

interplanar int·eraction. 

The second modification considered in this section pertains only 
0' 

to the application of the interplanar interaction to the stability 

of close-packed polytypes. Instead of simply using the interplanar 

interaction in Eq. (10), flcf>(2d) is adjusted to reflect conditions that 

might hold when the dhcp, Sm, and A polytypes occur. The regions of Z 
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for which the complexpolytypes might appear are determined under 

these conditions. 

A. Inclusion of a Phase Factor in the Friedel Potential 

The Friedel oscillations were originally derived as oscillations 

in the charge densitysurtounding an ion in an eleCtron gas. 4 A Friedel 

shift appears in the result for the charge density, as in Eq. (14). 

However, as usually derivedfrompseudopotential theory carried to 

1 second order in perturbation theory, neither the charge density 

oscillations nor the Friedel potential contain a ,Friedel shift. Only in 

higher orders of perturbation theory does the Friedel shift occur. 

. 1 13 14 2 15 Friede, Seeger, Heine and Weaire, and Harrison have also 

discussed the significance of the Friedel shift. Although it is not 

yet cleat-what role the Friedel shift plays in interionic potentials, 

the present formulation allows the Friedel shift to be incorporated 

into the determination of structure is a simple way, and this is done 

below. To sum the potential, Eq. (14), over the lattice as in Eq. (5), 

we note that Eq. (14) can be decomposed into the form 

vCr) = cos 26 - sin 26 (15) 

Now just as Eq. (5) could be summed 'using Shaw's development of 

3 Epstein's method, the term sin (2~r)/(2kFr) can be summed using a 

formula similar to Eq. (6). 
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The term sin (2k.pr)/(2~r)3 can 'also be cast into the form of an 

interplanar interaction, just as was done by Blandin, Friedel and Saada 
. 3 

for the termcos(2~r)r(2~r). Instead of a singularity of the type 

(k-2~) tn Ik-2~1, a form like Ik-2~1 appears.' The final result 

is to simply add a Friedel shift to the interp1anar interaction: 

ll<P(nd) = 
sin (ne + 20) 

2 
n 

Expressions (14) and (16) can now be used in Eqs. (5) and (10) to 

determine the stable structure just as before, excep~ that this 

structure will be a function of both Z and 20. This information can 

then be used to determine which structure, of those .considered, is 

(16) 

most stable as a function of the two variables '. Figures 5 and 6 show 

the structures found to be preferred when a Friedel Shift is included 

in the Friedel pdtentia1. Figure 5 is the result of.the exact summation 

technique. Only the fcc, hcp and bcc structures were considered in 

this determination. FigureS shows which of the structures, fcc, hcp, 

dhcp, Sm, or A, are preferred as a function of Z and 20 as determined 

by Eqs. (14) and (16) • 

. B. Alternate Cri.teria for the Occurrence of 
Complex Close-Packed Polytypes 

In this section, the model presented above is modified in a second 

way to obtain values of Z for which complex po1y,types might be found. In 

part~cular, theinterplanar interaction, with adjustment of ll<P(2d) , 

is used to obtain the regions of Z where the po1ytypes dhcp, Sm, and 
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A might occur. What is recognized is that, since the interplanar 

interaction of Blandin, Friedel and Saada may be in error for small 

BFS . 
separations, ~¢ (2d) may not necessarily be a good approximation 

to the actual interplanar interaction for second nearest neighbor 

planes. ~¢(2d) is hence adjusted to meet other requirements. 

The dhcp, Sm and A structures (Table 1) may be considered to be 

compromise structures occurring when the fcc and hcp structures have 

nearly the same energy. This condition can ·be simulated by either 

setting ~¢(2d) = 0, as was done by Hodges, 7 or by requiring that 

e:f = e:h· . and adjusting 6cj>{2d) accordingly. These two criteria for cc cpo 

the appearance of the complex polytypes are investigated below. 

The condition that Hodges 7. used for· the appearance of complex 

close-packed polytypes is of the form 

~<j>{2d) 

~<p{nd) 

= 

= n ~ 3 

This condition assumes that the interplanar interaction shows no 

(17) 

preference for equivalent or inequivalent planes at the second nearest 

neighbor plane position. If equivalent planes are preferred at the 

second nearest neighbor position (~¢{2d) > 0), the hcp structure is 

favored by ~¢(2d), and if inequivalent planes are preferred (~<P{2d) < 0), 

the fcc structure is favored. Equation (17) expresses the condition 

that neither type of plane is favored, so that complex polytypes, 

which have both types of planes at the second nearest neighbor plane 

position, may appear. 
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The values of 6<p (nd) from Eq. (17) are tOQe in~erted in Eq. (10) 

to determine the preferred structure and, in particular, to determine 

if a complex polytypeis preferred. 7 Hodges did not evaluate the 

complete sums, Eq. (10), and therefore could not make definite conclusions 

about the relative energy of the samarium structure; he did not consider 

the A structure. The complete sums have been done and the results 

are included in Fig. 4. It is found that the energies of the dhcp and 

Sm structures are usually very close toone another, so that care must 

be taken in evaluating the sums. 

The value of 6<P(2d) can be adjusted in another way. Rather than 

setting 6<P(2d) = 0, one can set £ = £ in Eq. (10) by adjusting hcp fcc 

6<P(2d). The other terms, 6<p(nd), are then taken from Eq. (9). This 

procedure has the advantage that the condition for the appearance of 

complex polytypes is simply stated as a condition on the relative energies 

of the fcc and hcp structures. However, the term 6<P(2d) must still be 

singled out for special treatment. We take 

6<p(nd) = 6<pBFS (nd) for n ~ 3 

o . . 
where 6<p (2d) is adjusted in Eq. (10) so that £hcp = £fcc. This 

condition with Eq. (10) can be recast in the form 

£-£ fcc 

(18) 

(19) 
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where the polytype with the minimum value of £ is preferred. Since 

AC hcp = _ 1 ~ mi d 
u 2 '~h = £f ,as pro se. . cp cc 

Equation (19) can be interpreted .in the following way. We expect 

the compromise polytype structures, dhcp, Sm and A to appear when 

£h· ~ £f • One can then find what valueM)(2d) assumes in this case. cp cc 

For some values of Z, polytypes will intrude when this value of !1¢(2d) 

is used. BFS For other values ofZ, the other interactions,!1¢ (nd) 

with n ~ 3, stabilize both the fcc and hcp structures with respect to 

the polytypes. 

In the fourth and fifth plots of Fig. 4 we have shoWn the regions 

of Z in which the polytypes might be found according to the two 

conditions 6n !1¢(2d) above. Of course,complexpo1ytypes occur less 

frequently than the corresponding ranges of Z indicate. The plots 

should be interpreted as indicating what polytype would occur if the 

conditions for polytype formation are at all favorable. When Eq. (19) 

is used, the energies of the fcc and hcp structures are equal for all 

values of Z. This is reflected in the last plot of Fig. 4 where mutual 

hcp-fcc zones are indicated. 
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IV. DISCUSSION 

The computations discussed above have allowed several determinations 

of structure. The results are summarized in Fig. 4 along with results 

obtained by Blandin, Friedel and Saada. 5 The most stable structure of 

those considered is plotted as a function of Z. This data is also 

presented in Table II. In this section we compare -these results with 

the actual structures found among the elemeI.1ts and in alloy systems. 

The first plot in Fig. 4 represents the results of Blandin, et.a!. 

Using the real space formulation of pseudopotential theory, they 

discussed the stability regions for the fcc and hcp structures. 

Specifically, they determined the regions of Z for which the fcc and 

hcp structures are stable against the formation of stacking faults, 

using the unmodified interp1anar interaction. This criterion for 

stability is not strictly the same as that used in this paper; we are 

here concerned with the relative stability of specific alternate 

structures. 

The results which follow from the formulae of Section II are shown 

in the second and third plots of Fig. 4. These results complement 

those of Blandin, Friedel and Saada, as can be seen by comparing the 

first and second plots of Fig. 4. Over the range 2.10 < Z < 2.20 the 

fcc phase is stahle against faulting for the model considered here, 

hut is metastable with respect to the hcp phase. Similarly, the hcp 

phase is stahle against faulting from Z = 2.20 to 2.29, hut is 

metastable with respect to the fcc structure. On the other hand, 

over the range 1.27 < Z < 1.30 the model predicts that hcp is 

5 
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stable relative to the fcc structure, but unstable to faulting, while 

for 1.30 < Z < 1.36 the fcc structure is preferred to hcp, thou~h 

both are unstable with respect to formation of a fault. Since the 

close-packed polytypes may be derived from the simple 'fcc or hcp 

structure through periodic faulting, polytype intrusion is likely 

near Z "" 1. 30, as discussed below. At, Z = 1. 66 and 3.53 the fcc.;...hcp 

phase boundaries coincide with the limits of stability with respect 

to faulting. 
I 

The results obtained from the exact summation of the Friedel 

potential are given in the third plot of Fig. 4, which includes the 

predicted range 'of the body centered cubic structure. 

The results shown in the first three plots of Fig. 4 are 

complementary, and express structural tendencies which are at least' 

roughly reflected in the periodic table for Z in the range 1 to 3. 

The model prefers the hcpstructure when Z = 1, as do the simplest 

monovalent metals, lithium and sodium, in their low temperature forms. 

At Z-2 the model shows a very slight preference for the bcc structure 

over an hcp structure with ideal axial ratio; the possibility of a 

non-ideal axial ratio was not considered. The hcp structure is clearly 

preferred to fcc. Empirically, the divalent metals beryllium, magnesium, 

zinc, and cadmium are hcp; all except magnesium have axial ratios which 

are far from ideal. At Z=3 the model prefers the fcc structure. Among 

the trivalent elements, aluminum is fcc and indium is nearly fcc. 

Gallium has a distorted structure which was not considered. 
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, The application of the results ,summarized in Fig. 4 appears to 

be successful in alloy systems for at least one value ofZ. At Z = 2.20, 

there is a boundary between the fcc and hcpstabil:ity regions. 

Corresponding to this value of Z, there are several systems with 

large solid solubilities that also assume a phase boundary at or near 

thisva1tie of Z. The fcc phase of· aluminum is stable with up to 

66.5 a/o additions of zinc, and similarly the fcc phase of indium is 

stable with additions of up to 77a/o magnesium.17 , Also, results from 

splat-cooling experiments 18 indicate that fcc or fcc-like phases 

are observed down to Z = 2.20 in a number of systems. These experi-

mental results for elements and alloys are in agreement with the 

determination of the relative stability of the fcc and hcp structures 

with the Friedel potential, especially in the region ofZ = 2 to 3. 

The region of Z,for which the bcc structure is preferred is 

1.48 < Z ~ 2.03. This range includes the electron-atom ratios of the 

9 beta brasses, the bcc-like Hume-Rothery alloys. 

Besides the fcc, hcp andbcc structures, several polytypic 

structures were considered in Section II. In particular, results from 

the use of the unmodified interp1anar interaction to. determine the 

stability of the fcc, hcp, dhcp, Sm and A structures against the 

formation of the other ,structures are shown in the second plot of ' 

Fig. 4. There is a po1ytype intrusion,near Z = 1.30. In fact, there 

19 20 is strong evidence I that at leas~ the dhcp phase'is found in this 

region of valence. At Z ... 2.20 the Friedel potential yields a transition 

between the fcc and hcp structures with no po1ytype intrusion. In fact, 
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complex po~ytypes do not seem to intrude at or near this value of Z 

in alloy systems. 

The considerations above relate to a model in which the valence 

is the only determinant of structure. Since simple metals from a 

particular group of the periodic chart, Le., with a particular value 

of Z,display different structures, this type of determination is 

bound to fail. The flexibility necessary to allow several structures 

to be stable at a particular valtieof Z is obtained by the introduction 

of a Friedelsh:iftof 25 into the Friedel potential, as can be seen 

from Figs. 5 and 6. 
. . 

To draw clear conclusions from the modified model we would require 

a method for selecting an appropriate Friedel shift for a given material. 

15 21 One available quantitative suggestion, ' that the Friedel shift 

be computed from the phase shifts on scattering from the pseudopotential, 

has been criticized on theoretical grounds by Heine and Weaire. 23 We 

computed ~riedel shifts from the phase shifts on scattering from several 

14 suggested model potentials and found, in agreement with Seeger, 

that the resulting values of 25 are so largetha:t they destroy the 

reasonable agreement between the simple structural model and empirical 

trends in structure. Reasonable agreement can only be maintained if 
23 . . 

one accepts the conclusion of Heine and Weaire that 25 is small. 

Leaving aside the computation of the Friedel Slifts the accuracy 

of the model may be improved if 25 is allowed to assume values of 

magnitude ~/4 or less. Reference to Fig. 5 shows that at Z=3 this 

range of 25 permits the fcc and hcp structures, which are empirically 

observed, but does not permit the bcc structure,which is not observed. 
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At Z=2all three str.uctures, hcp, bcc,and fcc, occur over a small 

range of 20; all are, in fact, t:oundin the divalent metals. At Z=l 

the hcp and bcc structures occur with ~ moderate Friedel shift; these 

are the structures found in the monovalent alkali metals. Reference 

to Fig. ·6 shows that polytypic phases may be stabilized by a small 

Friedel shift when 1. 25 <; Z <;. 1. 60 and when 3.00 <;Z ~ 1. (;0. These are 
. . 

the ranges of electron-atom ratio over which the close-packed polytypes 

are commonly found. 8 

The second modification to the Friedel potential that we consider 

is acttiallya class of modifications to the interplanar interaction. 

The value of 1l<fJ(2d) is adjusted to find ranges of Z where the complex 

polytypes, dhcp, Sm and A, might occur in the case that 1l<fJ(2d)is not 

given correctly by the expression of Blandin, Friedel and Saada, 

ll<t>BFS (2d). More distant interactions are still assumed to be given 

by Eq. (9). 

The last two plots in Fig. 4 show the regions where the complex 

polytypesmight occur according to the modifications discussed in 

Section III. In both of these plots, polytype intrusions occur at 

Z - 1.30, a.s was the case for the results from the unmodified interplanar 

interaction. It is interesting to note that the A structure appears 

in the last plot only and there the A structure is stable only in 

relatively small regions of Z. Experimentally, the A structure is 

rarely found. 
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The last plot in Fig. 6, which shows where polytypes might occui 

if Efcc .,. Ehcp ' gives results close to those listed by Havinga, et.a1. 8 

who used a criterion even more general than the criteria described 

above to discuss polytypes. These authors did not use complete 

summations, Eq. (10), in their determination of polytype stability, 

but inserted a fa.ctor which damped the interplanar "interaction at 

large distances. In contrast, the technique used in this paper treats 

the long range part of the Friedel potential explicitly. However, 

we note that there are experimentally observed polytypes listed by 

Ravinga, et.a1. which fall outside the stability zones found in their 

paper and in Fig. 4. 

The size of the relative energies of the ca.ndidate structures can 

be estimated from Eq. (5) and the computations discussed above. The 
, - " -4 

dimensionless energies, Eh - Ef ,etc, have a magnitude of 2xlO cp ,cc 

for the monovalent metals and5X lO-3 or less. for the polyvalent metals • 

Typical values of V of 10 and 50, electron volts for monovalent and 
o 

polyvalent metals yield relative energies of 0.002 and 0.25 electron 

volts per atom, respectively. As expected, energy differences of 

these magnitudes are also obtained with the 

of pseudopotential theory.; 

1 2 more complete computations ' 
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Table I. Stacking Characteristics of Polytypes 

Structure 

fcc 

hcp 

dhcp 

Sm 

A. 

Stacking 

ABCABC 

ABABAB 

ABACABAC· 

ABABCBCAC 

ABCBAC 

Synunetry 
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Table II. The regions of Z for which structures are stable against 

the formation of the other structures considered • 

Exact· Sununation: 
fcc, hcpand bce 

Z Structure 

1.00-1.28 hcp 

1.28-1.48 fcc 

1.48-2.03 bcc 

2.03-2.21' hcp 

2.21-3.53 fcc 

3.53-4.00 hcp 

~<P(2d) = 0: 
fcc, hcp, dhcp, Sm and A 

Z Structure 
-----------------------------
1.00-1. 21 fcc 

1.21-1.26 Sm 

1.26-1. 35 dhcp 

1. 35-1. 37 hcp 

1. 37-1.66 fcc 

1.66-1.84 hcp 

1.84-1. 87 dhcp 

1.87-2.08 Sm 

2.08-2.56 fcc 

2.56-2.68 dhcp 

2.68-2.95 'hcp· 

2.95-3.53 Sm 

3.53-3.67 hcp 

3.67-4.00 fcc . .;;," 

Interp1anar Interaction: 
fcc, hcp, dhcp, Sm and A 

Z Structure 

1.00-1.24 hcp 

1.24-1.26 Sm 

1.26-1. 34 dhcp 

1. 34-1.66 fcc 

1. 66-2.20 hcp 

2.20-3.53 fcc 

3.53-4.00 hcp 

Efcc = Ehcp: 
'fcc, hcp, dhcp, Sm and A 

z Structure 
-----------------------------
1.00-1.17 fcc-hcp 

1.17-1. 20 Sm 

1. 20-1.23 A 

1.23-1. 25 Sm 

1.25-1.36 dhcp 

1.3tS-i. 53 fcc-hcp 

1.53-1.66 Sm 

1.66-1. 95 dhcp 

1.95-2.11 Sm 

2.11-2.52 fcc-hcp 

2.52-2.92 dhcp 

2.92-2.96 A 

2.96-3.53 Sm 

3.53-4.00 fcc-hcp 



-36-

FIGuRE CAPTIONS 

Fig. 1. Results for the dimensionless relative energies, € h -€f 
. C P cc 

and €h· -€f ' as determined by exact summation of the reduced cp cc 

Friedel potential as a function of Z. 

Fig. 2. Results for the dimensionless energies of th~ polytypi,c 

structure hcp, dhcp, Sm and A relative to the fcc structure as 

determined from the BFS interplanarinteraction as a function 

of z. See Table I for the description of the packing of these 

structures. The region Z < 1.14 has been omitted for clarity. 

Fig. 3. Comparison of the dimensionless energy difference € -€ hcp fcc 

as determined with the· exact summationand·the BFS interp1anar 

interaction as of function of Z. The results from the BFS 

interp1anar interaction are a good approximation to those from 

the exact summation, except near Z = 1.14. 

Fig. 4 •. Values of Z for.which various structures are stable: A) 

stability against faulting of fcc and hcp after Blandin, Friedel, 

and Saada, B) relative stability of polytypes from interplanar 

interaction, C) relative stability of fcc, hcp and bcc from exact 

summation, D and E) polytype stability using the modified interplanar 

interactions given in Eq. (17) and (19), respectively. 

Fig. 5. Results from the determination of the most stable structure 

among fcc, hcp and bee from the exaet summation of the Friedel 

potential as a function of Z and a phase factor, 20. Legend for 

identification of structures as in Fig. 4. 

>, 
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