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..~ ABSTRACT

The asymptotic form of thg two-body interaﬁomic potentials arising
frbm»pseudopoteptial theory, V(r) = vo,COQ(ZkFr)/(ZkFr)3’ is used to
disgusé the relative éohes;ve energies of simple metallic structures. -
Use of this potential allows the thermodynamically preferred strucfure
of a simple metallic element or solid solution at OéK to be determined
as a function ofAQalence only. The aﬁpropriate lattice sums afe

perforﬁed,ekactly for the fcc, hep (with ideal axial ratio) and bec

‘structures. In addition, the apprbximate interplanar interaction of

Bldndin; Friedel and Saada is summed for polytypic structures. Two
modifications of. the potential are also considered. First, a phase’
shift of 28 is used to obtain a potential of the fqrm,'V(r) =V

(o]

cos(ZkFr+26)/(2kFr)3.- Secondly, the interplanar interaction is adjusted

" to reflect conditions that might hold when polyt&ﬁic structures other

than fcc and hcp occur. Results for the relative energies of the

structures are presented. These results are compared‘with the observed

' structures of metallic elements and random solid solutions.



- I, INTRODUCTION"

!Dgspite its cégtral impdrtan;evin the science of.métallurgy,.the
probiem of pfédictiﬁgvthe ﬁréferred'stfﬁcture of a metal alloy remains
unsolved. -ﬁofeovgr,kfhe-complexity of the problem 1,2 is sﬁch that
a Qiable theory of thevcrystél structure of alloyé is unlikély'tob
emerge for-sqme time. In the.intéfim the metéllurgist will be forced
to make do wiﬁh‘a’mixture of rough épproximations and semi—empiricél
ruleé,'and the development of gpproxiﬁate techniqﬁes in alloy theofy
will éontinue to be importaht. |
| The pséudopotential theory of simple métals has yieided several
‘modéls which promise to be useful in'the_predictibn of structuré. ’

The éimplest and most géneral of these follows from Ha;risoh's
develdpment of Cohen's 3 real space.formulation qf,tﬁe pséudopdtential
‘theory. If a pseudopotential model of a simple metal is developed to
second order in perturbation theory, that pért of the cohesive energy
which depends on theﬁétructure may bé treated. as if the atoms interacted
in pairs accor&ing to a central, two-body pqtential. This two-body
 potential Has én asymptotic form which_is iﬁdependent of the precise
pseudopotential asaumgd, énd which éxhibits»the Friédel 4 oscillationé.
Under suitable assumptions, discussed below, one may make a rough ' H
estim#te pf the relative énergies of candidate structures at O°K.by
simply summing the energy of two-atom interactions according to the
“asymptotic, or Friedel potential. This approach héé beeh taken in
sevefal studies of the structure of simple,metalé aﬁd alloys 5-8 “and

is followed below, where we sﬁpplement'prior work with new computations



té‘é#plore the results;of a simple strucfural model based on the two-
'bodvariedel potentiai. |

While the approximations involved in a structural model based on
the Friedel potential are drastic, the model has several attractive
features.- It leads to.equations which are easy‘fo use and which
incérporate aspects of the more fundamental theory while avoiding the
fecalcitrant problem of choosing proper pseudopotentials. MorééVer,
the model yields a prediction of alloy structuré wﬁich is based Qn‘
the electron-atom rétio, in the spirit of the Hume-—R,othery-9 aﬂd
Engel—Bréwer_lo correlations, and which is in gengral agreement with
knbwn structural tendencies in simple metals and:alléys;

The central equations of the structural model used here are
derived as follows..

Employing the real space formulation of the ﬁseudopotential théory

1

of a simple metal >3 the cohesive energy per atom may be developed in

the perturbation series:

E=E0+E1+E2+.-..- (1)

whosé successive terms involve perturbations of increasing order.

. The zerot£ and first order terms in this expansion depend on the
voluﬁe per atom (), but are independent of structure. The seéond
order term, E2, is the first to show the influence of structure. It

can be cast in the form

E, =2—§- Z V(rij) - . (2)



 where N is the number of atoms; r,, is the disténce,between the {1

th
BET) _

and th atom cores, aﬁd the brime on the Summation'indicates that
terms h;viﬁg i=j are to be omitted. The functi&n.v(rij)_éppearing

in the summation aéts as a two-bddy potential in a restricted éense:
it governsvthe'éhénge of enérgy 1n a relative Aisélacemént~of atoms

i and j which leaves thebatbmic‘volume, and hence Eo énd El’ constant.

If we fix the atomic volume and neglect higher order terms in the

perturbation expansion, 1 the relative .energy of a given structure

is measured by'E2; that stfucture which minimizes E2-w111 be preferred
at 0°K.
Computation of‘the structural energy, E2, requires a specific

expression for the effective interatomic potential, V(r). This potential

b

is sengitiﬁe to the details of the pseudopotential used. However,

irrespective of the pseudopotential; V(r) has the dasymptotic form'1
3 iy
Y(r) A cos(2kFr)/(2kF§)b v 3)
when (kFr) is large, where kF is the Fermi wave number. The parameter
Vo depends on fundamental quantities in a rather complicated way, but

for our purposes it is sufficient to note that Vo_iS'independent of

structure. We may hence define a dimensionlessitwo—bddy potential
v(r) = V(r)/V

which becomes the Friedel potential



v(r) = cos(ZkFr)/(ZkFr)3-  - | | (8

when kFr is large. If we now uniformly approximate V(r) by its
asymptotié form,,the structural energy, E2, may be rewritten in a

dimensionless form which is independent of Ehe pseudopotential:

-

. 1 3 |
€ = Ez/V°,= N ;E; cos(szrij)/(ZkFrij) (5)

In fact, the dimensionless energy, € = € (), is a function of
structure and electfon—atom ratio (Z) only; since the sepération

/3

, where ) is atomic

distances (rij) in a given structurevscéle'as Ql
/3
b ]

VOlume, and since the Fermi wave number, kF, is kF = (BﬂZZ/Q)l
Fhe set of values of the quantity (kFrij) in a given structure, and
hence the dimensiOnless energy of the structure, 1s determined by Z.

o - Equation (5) was drawn from the pseudppotential theofy of simple
metals. It may be generalized to estimate the relative energies of
" the étructures of uniform random solid solutions of simple metals
through uée of the 'virtual crystal model:11 the alloy 1is represented
as a one-component- simple metal made up.of pseudoatoms whose
ﬁroperties average thbse of the atoms actually present; With this
approximation the dimensionless structural energy of the solid solufion
is determined by its mean electron-atom ratio (Zj through Eq.’(S),
The preferred strﬁcturé of the solid solution at 0°K may then be
estimated by minimizing € over the set of candidate structures. The

result 1g uniquely determined by Z.



Thévstructufal model develéved.above depéﬁds.dn four,speéificr'
assumptions,.ﬁhich we discﬁss in turn. - |

(1) The mddel,is.drawn from the second-order'dgvelopment of the -
pseudopotential theory,of.simple metgls. It_shbgld hence be kept in
mind that, in its current state of development, the second-order pseudo- -
potential theory does hoﬁ always predict a correct structure for the
simple metals and is éf:uncertain value 1in treating certain df the heavy

metals, the transition metals, the noble metals, and metals which have

" a strong tendency toward covalent bonding.

(2) The effective interatbmic.pptential obtained from the sgcond
ordef pseudopotential theory is replaced by its_as&mptotic form, the
Friedel potential. While it”has been found 1 that the effective
interatomic potential actuaily'conVerges toward tﬁé Friedel potential
rather quickly, impoftant contributions to the strpctural energy due
to near-neighbor interactioﬁs may be misestimated. The model is most
reasonable when applied to close-packed étructures'having ideal axial-
ratios,'since these differ from one another only iﬁ the third (or higher)
coordination.shells. The model may not yield a‘good value for the-

relative energies of structures such as fcc and bec, which differ in

" the first éoordination shell. As we shall show, however, it does provide _

an empiricaily reasonable estimate of the range of Z values over which”
the bce structﬁfe ié preferrea t§ thevclose—packed stfucturés.'f

>(3) The variation in equilibrium atomic vaiume_betweeﬁ candidate
structures is ignored. Since small volﬁme:changeé are dbserved in

solid state transformations, and since these changes (at least at 0°K)



‘must minimize the totalvenergy of the structure, their neglect wili
- neceSSArily result in‘an overestimate of the’enérgy advantage enjoyed
byithe preferped structure. On the other hand, since the atomic
§olume'i$ left unknown in the calculaﬁion of structural energy; this
app;oximafion cannot cause an erroneous idenfification of the preferred
structure. | | |

~(4) Alloy solid solutions are treated as if they were composed
of identiqal pseudoatoms havihg.évérage7pro§erties. While the
approximétions involved in this Avirtual crystal model are known11
their quéntitative consequences are not. The facférs néglected include
_tHe tendency to short-range order, .the contribution to cohesion from
charge tranéfer between different species, the_decrement to cohesion
due to local lattice strain caused by size diffefence between species,
and possible error'from the éecdndgqrdér theory.if the valeﬁces of the.
species differ..'Of cdufse,vthese factors are relevant only insofar
‘as the& influence the relative energies of candidéte struétures._ The
probable error shoul&‘become more important as>Sizé or valence differ-
ences become greater. |

As noted above, thé approach té crystal sfruéture employed he;e has
been use& by a ﬁumber of previous workers. Shaﬁ6 applied a method due to
Epstein12 to show how Eq. (5) may bé conveniently set up for direct nuﬁér—
ical solution for an arbitrary lattice aﬁd computéd structural energies
for the face centered cubic (fcc), hexagonal close-packed (hcp) and body
centered cubic (bcec) structures as functions of valence. 1In related

work, Blandin, Friedel and Saadaskshowed that when.a_structure is



close-packed,”ﬁq. (3) m;y £é recast iﬁ the férm}bfvé,potential_approxi_
mating ;he 1ntéraction‘bétweén cl&se—packed pianés. “Blgndin,'Friedel
and Saada determined the.enérgies 6fbstacking faults in the fcc and

hcp structdreé'and found the ranges of valence over'which these
sfructﬁres should be stable with réspect tobfauiting; Recéntly,'Hodges7
suggested that the interplanar interaction ﬁight be used to simplify.
“Eq. (5) for an arbitrary close-packéd structure. He emﬁloyed this
.formulationvin a éemifquantitétive‘discussion'of the‘stability‘of the
close-packed pblytypié Structures occasionally obser;ed‘in alloy
systems. Havinga, van Vucht and Bus'c_how8 ;hé&e’aiso discussed phase
stability using interplanar interactions of a similar form. These
results are summarized and supplemente& in the folldﬁing sections."

In the next section, the ;elative‘energieé of ;he simplé crystal
structures are calculated to détermine the preferred structure as a
function of electron—atom‘ratio. Two techniques are explofed; We
first employ the exact summation method of Shaw and find the ranges of
YA ovér ﬁhich the fcc, hep and bee structures are stable with respect
to one another. Wé then develop Hodges' 7 sugges;ion quantitatively
so that any closé-packed pqutype may be handled with the interplanar
interagtion. Since this second method 1is easier to use for polytypes
and is nearly as‘accurate as the exact summation’meghod, it ié employed
to estimate the relative energies and ramnges of preférence df the

fcc, hep, and more complex polytypic structures.



.

Iﬁ the third seétiop, we explore two‘suggeste& @odifications of.
thé simpie strﬁctural model. First, following séVefal_in&épehdent
> '»suggestions,l3?l4 we’altef the'Friedel.poteﬁtial, Eq. (4), by adding

an arbitrary_phaée Shift, which subsequently'vili»Bé féferred to as‘the '
'FriedeIZShift (26);~t¢ thé érgﬁment'of_the Epsiﬁe.>VThis'modifi¢atioﬁ
yields aftﬁo péfaﬁétérfmodél 1n'which fhé-dimengioﬁlésé relative energy
fof'a.étrhéﬁﬁte; €, dépéndsron.the Friedgl shift éé-well asioh the

valence. Secand,ffqllowing a suggestioh“by HodgeS,77we-adjﬁst'thé-near

v neighbor;tefms'in.Eq, (5) te obtain alterhateICrite:ia‘fprlthe.éppearaﬁce '

of complex close-packed polytypes.
In a final section, the results of these computations are compared

with the known structures of metals and alloys.




“II.. CALCULATIONS WITH THE UNMODIFIED FRIEDEL POTENTIAL

Two methods for performing thé:sums'fof thevdetermiﬂation of thé
étrgcture-&ependent energy are presehted in this section. First; the
exact summation is perfofmed for the -fcc, hcp and bec structurés. fhe
axial ratio ;f the hcp éttucture is assumed ideal.. +he energies of the
.hcp and bcc phases with réspect to the fee phase; Ehép-efcc and Ebcc_éfcc’
are then found by simple subtxaétionTand are plotted as functions of Z.

Secondly, as mentioned above, the aﬁplication oé thé Friedél
potential.is probably mdst=appropr1ate to the study df the relative
ene;gies of the close-packed polytypes structures with ideal axial
ratios. The polytypgs aré éasily aﬂd.accurately handled through use
of the intérﬁlgnar interaction of Blandin, Friedel and.Saada. The
method for the use of the ihterplanar interactiéniis developed and the
relevant sums are performed. This second method gives directly the
energy of a polytype relative to the energy of the fcc strﬁcture,

E~€¢ c” 'ﬁsing the sﬁms, thé relative energles for a number of polytypeé
can be plotted as functions of Z.

Finallj, the relative energies may be used to determine which

structure is the most staﬁle of those considered. Plots of.the regions-

of Z for which the different structures are preferred are presented.
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A. Exact Summation of the Friedel Potential

1f the atoms of the metal are in crystallographically equivalent
positions, as they are in the fcc, hcp; and bcc structures, one of the
sums in Eq. (5) can be performed to obtain

' cos 2k.r , |
c - % :E:  Zhgry | (6)

i¥o (ZkFri)3

where r, is the distance between the iEE atom and a reference atom.

i
Shaw6 developed the summation method of E_psfein12 for exact sum-
vmétion of Eq. (6) and performed the appropriate sﬁms for the fcc, hcp,
and bcce étructures. However, his results werefnoﬁ set in a form'which
allows a clear delineation of the.regionsnof valence over which these
structures are preferred; We have, therefore, repeated the computations.
The method of Epstein is a general technique for sdmming quantities
like éxﬁ(ikr)/rniover a collectioﬁ of lattice points. The method
involves the transformation of the‘sum into two fapidly converging
sums. The sum in‘direct spacé remains, Sut an eipoqehtial damping
factﬁr appears in each term, The residue is Fo#rier transformed into

a sum In reciprocal space; each term in this sum includes a damping

factor also. Shaw obtains, for the sum of cos 2kFr/(2kFr)3,




€

v‘+

cos(kri)

i¥o (kri)3
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where

ko= 2k,

(k+q) 2 /b0

o

8

(k-‘-q)2/4w B
| El(x) =,J;: .'dt{ex,p(-t’)/t} N

erfe(x) = 1 ~ eff(x) =1 - 2 fx dt [e#p(—tz)] .
o ik |
i labels the lattice points;_w'is a cohvergence parameter, {2 is the
atomic volume, and S(q) is the structure factor fér_the lattice in
question. |
| The pafameter w may be chosen arbitrarily.‘ If_w'=vn/sz_is chésen,
where 8 is the neareét neighbdr'distance, fﬁe sums converge with equal

»15

rapidity. In our ccmputétions‘fifty or sixty lattice vectors were used
for the sums on the right.hand side of Eq. (6). Then w was adqutéd

- 50 that the last terms evaluated fdr the sums were about eqﬁal. It

was fdﬁnd that w”differed from Tr/s2 by a small amount and the last

terms in the two sums céntributed less thap 10-4 to the expression

being evaluated. An accuracy of 10_4 is thus claimed for these sums.

Tﬂe difference between 1T/s2 and the final values chosen for w ié |
evidéntly due to the truncation of the suﬁs; the Valﬁe w = Tr/s2 is
applicable only to a complete summation.

In Fig. 1, the quantities € and €, -€ , as determined

hcp—efcc ‘ bee “fcc

from exact summation, are plotted as functions of Z. These dimensionléss

energieé have a magnitude of 5><10--3 or less for the range of Z considered.
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This rénge is taken to be<from.i.00 to 4.00, fhélrahge'éf valence -
whichvinéludes,the.simple metals to which pseudoﬁotentialktﬁeory'

should apply. 1 The_results, shown in Fig. 1, éan ﬁe used to determiﬁe_
which_of'fhe thfee sfructures has the iowest energy as a function of Z.
Regions of preference for the different stfuctures are shdwp in the

third plot'of Fig. 4.

B. Summation of the Interplanar Interaction'of
Blandin, Friedel and Saada '

" The computation of the‘relative energies of the different close-
packed polytypic structures can be done without the exact ev#lhation
of Eq. (5). The method for doing this calculation uses an approximate
interplanar interaction bet&eén two parallel, hexégonal'cloge—ﬁacked
plgnes due tb Blandin,rFriedel and Saada;5 Iﬂ'particular,'

close-packed polytypic structures can be described as the stacking of

,hexagonal,.close—packed planes of three types, A, B, or C. When these

planes are considered pairwise, they are in either equivalent (e.g., A-A)
or inequivalent (e.g., A-B) positions. For example, the stacking
sequence of the fcc structure is ABCABC; the first and fourth planes

in the stacking sequence are in equivalent positions, while the first:

. and second planes and thevfirst and third planes are in inequivalent

positions. The interplanar interaction of Blandiﬁ,_Friedel and Saada-
is a rearfangement interaction which gives the change in energy when
two parallel, hexagonal close-packed planeé_are shiftednfrbm equivalent

to inequivalent positions.



~14-

Blandin, Friedel and Saada actuélly obtained two expressions for
the interplanar interaction. The expression to be used depends on
whether Z is larger or Smaller than Zc = 1.14. This energy (per unit -

area) is given to a good approximation by

BFS ((Z /2)2/3 D /2"exp-ne'
Ap™ " (nd) = : 75— Z<Z, 7
(2my32° n '
: whefe‘e' = 5.67 (Zc2/3—22/3)1/2, d is the interplanar spacing, and

n denotes which near neighbor planes are being'cOﬁsidered. Similarly,

: 2 2/3.1/2
: (1 - (2 /2)°"7) . _ .
A¢BFS(nd) - O . 3c2 . sin2n6 L z> ZC ] (8)
: (2m) Zv n ‘
where
6 = 5.67 (22/3 _ Zc2/3)1_/2_

As ls‘evident, the lnteraction goes to zero as Z approaches Zc.- This
effect will be shown to be spurious below. The reglon near Zc may not
be treated eccurately because of this defect in”the interplanar
interaction. |

We will want to ooﬁpare'the results of the calculation using
the ioterplanar ioteraction to the resolts of fhe exact summation,
so it is useful eo cast the above equations in units‘of.energy per-'
atom. This can be done by noting that V3 52/2 is the area per atom
in a hexagonal close-packed plane, where s is the'nearest.neighbor

distance. For the energy per atom, where Z <'Z¢ ,
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1/2 .
D e )
324/3 2 ’

3203
Py« 2T (0
: (2m)~z

n

(2m)

and for Z > Z , a similar expression ‘holds.
. ‘ c v ‘
. 7 . .

Following a suggestion by Hodges, the A¢Brs(nd) defined above
can be used to calculate the structure-dependent energy and relative
stability of any closé—packed structure. Let <, be the fraction of
nEh nearest neighbor planes in equivalent positions-for some structure.
For example, ¢y

planes are always in'inéquivalent positions. The structure-dependent

equals zero for any structure, since nearest neighbor

energy per atom of some structure with respect to the fcc structure

is just

. o .
€=€c . = § : Acn Ap(nd) . (10)
n=1 » . ‘
where Acn = cnfcc - cos and chlis the coefficient of fhe phase in

question. Table I shows stacking characteristics.and stacking sequences
for the polytypic structures considered in this paper.

When Eq. (7) is used in Eq. (10) the sum for €-¢ converges.

fce
rapidly for z < Zc because of the exponentially decreasing variation
. of the ihterplanaf'interaction with n. Only several terms need be
kept tb obtain the necessary sigﬁificance for g-efcc' |

| When Eq. (8) is used in Eq. (10) for z > Z_ ome can obtain a
simplificgtion by noting that Acn is periodic in n. If (4d) is a common

repete distance for the structure in question and the fcc structure,

we can rewrite Eq. (10) as
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"~e-efcc =»n'=0 Ly chn,+k A¢((jn'+k)d)
n'—O k=1
j o
= Z Be, Z Ad((In'+k)d)

=1 n'=0

- For exampl_e,v.it is found that the hcp structure has an energy of

00

= Z Ap((6n+3)d) - A¢((6n+2)d) - Ad((6n+4)d) (12)

€, _-€
hcp "fce =0

with respect to the fcc structure. The terms 2 Ap((jn'+k)d) in

Eq. (11) can be easily evaluated when Eq. (8) is used. It may be shown

that |
Z BFS((jn+k)d) « Z MJ_HL%e
n=0 n=0  (jn+k)
o 3-1 | |
- 1 E sin 2TKL B, (e+2_"&) + cos 2L o 4 21% .
3 2=0 h 3 “’“j 2 7
where
6

: » : 3
_ sin n6 _ _ . 8 ¢do
a,(6) = 2 : 5 6 2n2|§1n 5 | + Zfo tand
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and
= 2 )
- cosnb _ 6 mo  m
B,(0) = ; 7 i "2t

The function o, was obtéiﬁed numeritally to six digit accuracy using

2
polynomial exﬁansiohs with éix_terms. This accuracy is needed to assure
significance in the evaluation of'Eq. (13) when used in Eq. (11).

' Use of Eq. (13) in'Eq:.(ll) allows a éimple calculation of €—€fc;.
The method does not require thevcalculatiqn of reciprocal latticé
vectors as in thé exact summation method and is easiiy visualized.

The results for €-€ ‘using the interplanar interaction are shown

fee
in Fig. 2 as a function of the valence. Thé.second plot ofIFig.yé
displays the‘regions'of relative stability aé a function of Z.

Results for three polytype structures are aléo displayed in Fig. 2.
Two of these, the double hexagonal (dhcp) and samarium (Sm) structures,
are occasionally observed experimentally. In terms of_Pauling's h-k
notati§n (Table I) these structures héve one half and two thirds hexagonal
character, respectively. The final structure, designated the A structure,
has one third héxagonal character and is included for completeness.
These complex polytypes might be considered as compromise structures
that occur when the fcc and hcp structures have nearly the same energiésg

Table I summarizes the stacking characteristics of these complex

polytypes.
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The odd behavior of the interplanar interaction near Z = 1.14
shows up clearly in Fig. 2. Using the results from the exact summation,
the values of € -'€ from the two methods can be comparéd and

hep fce .

are pl_otted in Fig 3. . The exact summation yields ehcp > 0 .

fee
at Z = 1.14. This result implies that there should be non-zero terms
in Eq. (10), i.e., the interplanar interaction is not always zero at

Z = 1.14. Evidently, the approximate interplanar interaction breaks

‘downAnea: this value of Z.
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' III. MODIFICATIONS OF THE FRIEDEL POTENTIAL

Up to this ﬁoiﬁt; fhe relativevstability of:different structures.
has been coﬂéidé:ed to be aetermined by'one variable, tﬁe électrén-atom
.ratio Z. The actual structures‘e#hibitéd by the siﬁple metals indicate
that Z is npt»tﬁe only determinant pf strﬁcturé.‘ In an atfémpt to -
ciréumvent thiS'defegt of the model, two modificatiqns_éf'the Friedel
pofential are considered in this section. o o

The first mbdifiéation is the intrbduction qf a néﬁ pafameter
ihfo fhevFriedel potential. Tﬁié p;;émeter is a Friedel shift of 28
in the argument of the cosine of the Friedel potenfiai. The resultingv;
potential is‘ﬁfvfhe fqrm |
COS(ZkFrZZG)"';, | (14)

(ZkFr) : -

vi(r) =

When Eq. (14) is uséd in Eq. (5), the dimensionless structure depénden;
- energy dépends on.both the eléctrbn-atom ratio Z and. the Friedel shift
28. The stability of the simple crystal structurés has been determined
as a func;ioh of Z and 26-by modifying both the exaéf summation method
and the method déveloped'in thé previous séctioh for'summing the
interpianar interaction. . |

The.sécbnd modificatibn considered in this section pertaiﬁs only
to the application of the interplanar interactidﬁ.to_the stability -
of close-packed polytypeé. Instead of‘simply usihg the intefplanar
interacfiéﬁ in Eq. (10), A4(2d) is adjusted té reflect conditions ﬁhaﬁ

might hold when the dhcp, Sm, and A polytypes océur; The regibns of Z
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for which the complex polytypes might appear are determined under

these conditions.

“A. Inclusion of a Phase Factor in the Friedel Potential

ThevFriedel.oscillationa‘were originally:derived as oscillations

. in the charge density-aurropndingvan ion in an‘electroh gas_.4 A Friedel
shift appears in the.result for the‘charge'density, as in Eq.b(14). |
HoweVer,_asvusually'derived-from,pseudopotential theOry carried to
secohd order in perturbation theory,1 neither the charge density

_ oscillations nor the: Friedel potential contain a Friedel shift. Oﬁly in
higher orders of perturbation theory does the Friedel_shift occur, .
:Friedel 13.Seeger,ll’ Heine and Weaire,2 and Harrisonls‘haVe also
discussed the significance of the Friedel shift » Although it is not
yet clear what role the Friedel shift plays in interionic potentials,
the present formulation allows the Friedel shift to he incorporated
into the determination of structure is a simple way, and this_is done
below. To sum the potential,‘Eq;.(l4), over thevlattice as in Eq. (5),
we note that Eq. (l4) can be-decomposed.into‘the'forh | |

cos_ZkFr

, sin ZkFr ' ’
v(r) = cos 2§ ————— - sin 26 ‘ (15)
(ZkFr) , (ZkFr)
Now just as Eq. (5) could be summed using Shaw's development of
Epstein s method, the term sin (ZkFr)/(Qk r) can be summed using a '

formulaTSimilar to Eq. (6). -
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The term sin (2kFr)/(2kFr) can -also be cast into‘the form of an
interplanar interaction, just as was done by Blandin, Friedel and Saada
for.the term'cos(ZkFr)/(ZkFr) - Instead of a singularity of the type
(k-ZkF) 2n |k—2kF|, a form like lk-ZkFl appears.:’ The fieal result -
is to simply addve Friedel shift to the interplanar interaétioh:v
v,0 _‘(z/z.)2/3)1/2»731n (nb + 28)

Ab(nd) = 10.44 ~2— - (16)
' B (27r)3 4/3 o a? B .

Expreseiohe (14) end (16) can now be useddin'Eqs,v(s) and (10) to
determine the etable strueture just as before, except that this
structure will be a function of both Z and 26, ‘This informatien can
then be ueed te determine which structure, of thoee:considered, is
most stable as a functioﬂ:of the two variables'. Fighres 5 andv6 show
the structures found to be preferred when a Friedel shift is included
in the Friedel potential. Figure 5 is the result of the exact summation
téchnidue. Only the fcc; hcp and bee structures eere considered in
this determination. _Figure'S shows whieh of thedetructures; fce, hep,
dhcp, Sm, or A, are preferred as a function of Z and 28 asddeterminedb
by Egs. (14) and (16).

.B. Alternate Criteria for the Occurrence of
Complex Close-Packed Polytypes:

In this section,’the model presented above ié modified in avsecond
way to obtain values of Z for which complex polytypes might be'found, In

particular, the interplanar interaction, with adjustment of Ad (2d),

" 18 used to obtain the regions of Z where the polytytes_dhcp; Sm; and



A might occur. What is recognized is that, since the interplanér o . Y
interaction of Blandin, Friedel aﬁd Saada may be in error for small
separ#tioné, A¢BFS(2d)'may not necessarilyvbe a good approximation
to the actual'interplaﬁar interaction for second ﬁearest neighbor
planes. Ad(2d) is hence adjustedvto meet other requirements,

The dﬁcp, Sm and A structurgs (Table I) may be cbnsidered to be
compromise‘structures oécurring when the fcc aﬁd hcp structures have .
nearly the same energy. ‘This COﬁdition can be simulated by either

setting A¢(2d) = 0, as was done by Hodges, 7 or by requiring that

efcc = EthAand adjusting A¢(2d) accordingly. ‘These two criteria for

. 'the éppearance of the complex polytypes are inﬁestigated below. ' ' : '
The condition that Hodges»7, used for the appearance of complex

close-packed polytypes is of the form

Adp(2d) = O an

Ab(nd) = OGBS

(nd) n =3

This condition assumes that the interplanar interaction shows no
preference for équivalent or inequivalent planes at the second nearest o
neighbor plane positibn. If equivalent planeé are preferred at the
second neareét‘neighbor position (A¢(2d) > 0), the hcp structure ié
favored by A¢(2d), and ifvinequivalent planes are preferre& (Ap(2d) <0),  . .
fhe fcc structure is favored. Equation (17) expresses the condition :
that neither type of plane is favored, so that complex polytypes,

which have both types of planes at the second'neareét neighbor plane

position, may appear.
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The values of A@(nd)_f;om Eq. (17) are fo'befinéefted in Eq. (10)
to determine the pfeferred’éffuc;ure and, in particular,.to determine
= | if a comp;ex polytyﬁevis preferred. vHodges 7 did not evaluate the
complete sums, Eq. (10),‘and therefore could not make'definite conclusions
about the relative énergy.of the samarium structure; he did not consider
the A structufe. The complete sums have been done and the results
afe inéluded in Fig. 4. It is found that the energies of the dhcp and
Sm structures are dsually vefy cioée to’' one another,_so that care must
be taken in evaluating the sums.

The value of A¢(2d) can be adjusted in another way. Rather than
setting A¢(2d) = 0, one can set Ehcp'= Efcc'in Eq. (10) by adjusting
Ap(2d). The other terms, Ad(nd), are then taken from Eq. (9). ' This
procedure has the advantage that the.condition for the appéafance of
complex polytypes is simply stated as a condition on the relative‘energies
of the fcc and hcp structures. However, the term A$(2d) must still be

singled out for special treatment. We take
¢(2d) = A°(2d) | (18)

A¢(nd) = A¢BFS(nd) for n=> 3 |

where A¢ (2d) ig adjusted in Eq. (10) so that Ehcp = €eiet This

A

condition with Eq. (10) can be recast in the form

BFS BFS BFS  _BFS PRV
- +
)+ (e - e ) , ‘(19)
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_where the polytype with the minimum value of € is preferred. Since

Ac hep

2 = - 1, € = € , as promised.

hcp__ fce

Equation (19) can be interpreted in the followihg way. We expect
the compromise polytype structures, dhcp, Sm énd A to appeér when
€. ®~e¢. . One can then find what value A¢(2d) assumes in this case.
hep fcc , _
For some values of Z, polytypes will intrude whenvﬁhis value of Ad(2d)

is used. For other values of Z, the other interéctions, A¢BFS

(nd)
with n 2 3, stabilize both the fcé.and.hcp strucﬁureé_with respect to
the polytypes. | |

In the fourth and fifth plots of Fig. 4 we have shown the reglons
of Z in which the polytypes might be found according-to.the tw§
conditions on A¢$(2d) above. Of course, complex polytypes occur less
frequently thaﬁ the corrésponding ranges of Z indicaﬁe. The plots
should be interpreted,és indicating what polytype would occur if the
conditioﬁs for polytype formation are at all favofabie. Whgn Eq. (19)
is used, the energies of the fcc and hep strﬁctufes are.equai for all

values of Z. This is reflected in the last plot of Fig. 4 where mutual

hcp-fcc zones are indicated.
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IV. DISCUSSION

“The coﬁputafioﬁsvdiééu3sedvabove héve allbWed several determinations
.of s;ructure. The results>aré summarized in Fig. 4 along with results
obtained'by Blaﬁdin, Ffiedel and Saada.s The'most étaﬁle structﬁre of
thése consi&ered is blotted as a functioﬁ of Z. This‘data is élso |
presented in Table II. 1In this section we comparefthese.results with
the actual structures.founa ;mong the.elemeqts and in alloy syétems. |

The first plot in Fig. 4 represents the fesults of Blandin, et,al.5

- Using thé.real spacevforﬁulation of pseudop&tentia1>fheory;.they
discusséa the stability regions for the fcc an&lhcp structures.
.Specificallf,'they determinéd the regions of Z for &hich the fcc and
hcp strucfures are_stable'against the formatiqh of stacking faults,
-using the unmodified iﬁterplanar interaction. This criterion for
stability is not strictly the same a;’that used in this paﬁer; we are
here concerned with the relative stability»of spe;ific alternate
structures.

Thebresults théh follow from the fo;mulae of Section iI are shown .
in the second and third plots of Fig. 4. These results complement
those of Blandin, Friédel ané Saada, és can be seen by comparing.the
first and second plots of Fig. 4. Over the range 2.10 < 2 < 2.20 the
fce ﬁhase is étébie‘égaiﬁst faulting for.the ﬁﬁdél coﬁsidered‘hére,
but is metasfable{wifh resﬁecf fo fﬁe hep phase. Similarly, the hcp
phase is stable égainst fauiting from‘Z = 2.20 to 2;29, but is
metastabie with respect to the fcc struéture.. Oﬁ the other hand,

over the range 1.27 < Z < 1.30 the model predicts”that hep is
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stable relative to the fcc structure, but unstable to faulting, while
for 1.30 < 2 < 1.36 the fcc structure is preferred to hcp, though‘
both arg‘ﬁnstable with respéct to formétion of é fault. Since the
close~packed polytypés may be derived from the simple fcc or hep
structure through periodic faulting, polytype 1ntfusion is likely
near Z = 1.36, as discussed below. At Z = 1.66 and.3;53 the fcc=~hep
phase boundaries coincide with the 1limits of staBility with respect
to faulting.. | |

" The resulté obtained from the exact summatioé of the Friedel
potential are given in the third plot of Fig.vd, which includes the
predicted range~of'the body centered cubic structure. |

The results shown in the first three ploté'of Fig. 4 are

complementary, and express structural tendencies which are at least’
roughly refleéted in the periodic table for Z in the range 1 to 3.
The model.prefers the hcp structure when Z = 1, as do the simplest
monovalent metals; lithium and sodium, in their low temperature form53
At Z=2 the model shéws.a very slight preference for the bce étrUCture
over an'hcp structure with ideal axial ratio; the possibility of a

non-ideal axial ratio was not considered. The hcp structure is clearly

preferred to fcc. Empirically, the divalent metalé beryllium, magnesium,

zinc, and cadmium are hcp; all except magnesium have axial ratios which .

are far from ideal. At Z=3 the model prefers the fcc structure. Among
the trivalent elements, aluminum is fcc and_indium-isvnearl§ fce.

Gallium has a distorted structure which was not considered.
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.Thglapplication of the resuits.summarized in:Fig;:4 appears fo
be suéceésful in a11oy.sys£ems for at leaét One'§élﬁé‘of.z.  At Z = 2.20,
therevis Q'bbundary between the fcc and hcp.stability regions.
Corresponding to this valﬁé of Z,utheré are sévéréllsystemS'with 
large,soiid‘éolubilities that also assume a phaée‘boﬁndary‘at or neaf
| th;S:Value of Z.v The féé phasé df-aluminum is Sfablé Vith_up to
66.5 a/o ad&itions of zinc, énd simil#riy the fcc‘phase of indiuﬁ is

stable with additions of up.to 77 alo hagnesium.l7

J‘Also, results from o
splaffcoéling experiinehtsl8 indiCéﬁe that fcc or fccflike phases
are obsérvedvdoﬁn to:Z ? 2.20 in a number of Systeﬁs. These gxperi-
mental re3u1fs for elements and all&ys,a;e in agréeménf with fhe
determinatiQn of the relativevétability of the féciand»Hcp structures
with the Friedel potentiai, eépécially in the.regioﬁ_of;z = 2 to 3.

_ " The region of Z for which the béc structure_is;preferred_is
l.48< 2 < 2.035 This range includes thé electrbh—;fom ratios of the
beﬁa brasses,.fﬁe bece-1ike Hume—.Rothery.alloys.9

Besides the fcc, hcp and bee structhres, sevéfal polytypic

structures were considefed’in Section Ii; In paffiCulaf, reéults frbmv
the use of the unmodified interplanar interaction tQ détermine'the
stability of the>fcc, hcp, dhcp, Sm and A structﬁfeé against the
formation of the other structures ére_shown in.thé second piotrbf'
Fig. 4. There is a polytype intrusionjneax 2 = 1;30.? In'fact,-there
. 1s strpng_evidencelg’20 thatvaf least the dhcp phase:is'found ip this
region of valence. At Z = 2.20 the Friedel pbtgntiéi yields a'transifion

between'the fce andhhcp’structures with no polytype intrusion. Ih‘fact,-:
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Vcomplex polytypes do not seem to intrude at or near'thishvalue of Z
in alloy_systems: | |
| The considerations above relate to a model in which the valence
'is the only determinant of structure. Since simple metals from a |
particular group of the periodic chart i.e., with a particular value
of Z,,display different structures, this type of determination is .
bound to fail. The flexibility necessary to allow several structures
to be stable at a particular value of Z is obtained by the introduction
of a Friedel.shift'of 28 into the Friedel potential, ancan be seen
from Fi‘gs.ASand 6. L
To draw clear conclusions_from the modified.model‘we would require
a method:for:selecting an appropriate Friedel dﬁft for a.given material,
One available quantitative'suggestion,ls’21 thatﬂthelFriedel shift
be computed frOm the_phase shifts onxscattering_fron.the pseudOpotential,‘
has.been criticized'on'theoretical grounds'by Heine.and Weaire.23d'We
conputed Friedel shifts.from.the'phase shitts-oniscattering from several
suggested model potentials andvfound, in»agreement _w’ith'Seeger_;14 |
that the resulting values of 2§ are‘soularge that.they destroy‘the
reasonable aéreement between the simpleAstructural model and empirical
trends in structure. Reasonable agreement can only be maintained if
one accepts. the conclusion of Beine and Weairez.3 that 28 1is small.
Leaving aside the computation of the Friedelshifts the accuracy
of the model may be improved if 26 is allowed to assume values of |
magnitude T/4 or less. Reference to Fig. 5 shows that at Z=3 this
range of_2§ permits the fcc and hep struCtures, which'are enpirically

obgerved, but does not permit the bcc structure,_uhich is not observed.
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At.Z=2 all three structures, hcp, bee, and fec, . occur over a small
range of 26 all are, in fact found in the divalent metals. At z=1
the hep and bce structures occur with a moderate Friedel shift these
are the structures found in the monovalent alkali metals. Reference

to Fig. 6 shows that polytypic phases may be stabilized by a small
Friedel shift when 1.25 <z<1. 60 and when 3.00 < Z 3.60. These are |

the ranges of electron—atom ratio over which the close-packed polytypes'

are commpnly,found_.8

The second modification to the Friedel pbtential that we consider

is actually a class.of mndifications to‘thezinterplanar interaction.
' The value of A$(2d) is adjusted to find ranges of Z where the complex
‘polytypes, dhcp, Sm and A, night occur in the case that A¢(2d)”is not

. glven correctly by the'expression of Blandin, Friedel and Saada,

¢BFS(2d) More distant interactions are still assnmed_tovbe given

by Eq. (9).
The last two plots in Fig. 4 show the regiens.where the complex

polytypes might oecurdaccording'to the modifications discussed in

Section 111,'_1ﬁ both of these plots,‘pdlytype intrusions occur at

Z =‘l.30,vas was the case for the results from theAunmodified_interplanar
interaction. It ls*interesting_to-npte that'the'A structurerappears
in the last plot_nnly and thete the A structure is stahle only'in‘
relatively small regions of Z._vEnperimentally, the_A'structure is

rarely found.



_30;

!

The last plot in Fig. 6 which shows where polytypes might occur
“if efcc;= Ehcp’ gives results close to those listed by Havinga, et al.
who used a criterion even more‘general than the'criteria described
~ above to discuss polytypes. ‘These. authors did not use complete

summations, Eq. (10) in their determination of polytype stability,

but inserted a factor whichvdamped the interplanar interaction at

large distances. In contrast, the technique used inrthis paper treats -

the  long range part of'the Friedel potential explicitly. However, .
we note that there are experimentally observed polytypes'listed by
Havinga, et.al. which fall. outside the stability zones found in their
paper and in Fig. Af
The size of the'relatiVe energies of the candidate structures can
be estimated from Eq. (5) and the computations discussed above.- The
. . . i

, etc, have a magnitude of 2X10

dimensionless energieé:vehcp _iEfCC,

for the monoyalent metals'and-5X10-3.or less for_the*polyvalent.metals.

Typical values of',Vo of lOband SO,eleCtron volts’for monovalent andv
'polyvalentvmetals yield relative‘energies of 0.00Ziand 0;25 electron
volts per atom, respectiyely. As expected, energy differences of
" these magnitudes are also obtained with the'vmoreICOmplete computations

- of pseudopotential theory.

1,2
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Table I. Stécking Characteristics of Polytypes

34—

Stacking

. Structure .Symmetry
fec ABCABC | k_kkk 3R
hep ABABAB ~ hhhh 2H
dhep - ABACABAC . hkhk 4H
Sm ABABCBCAC hhkhhk 9R
A ABCBAC Kkhkkh 6H
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f Table II. The-regions‘df Z for which stfﬁctures.aré stable agéinét
% i the formation of ;héAother structures“considgred.
g ' Exact-Sumhatiéni f: '   ' S Interplénar Interaction:
? fcc, hep and bec - » . ... fcc, hep, dhep, Sm and A
o oz " Structure I A . Structure
| © 1.00-1.28 " hep 7 1.00-1.24 ' hep
; ©1.28-1.48 - fee 1.24-1.26 - Sm
1 1.48-2.03 © bee 1.26-1.34 dhep
§ - 2.03-2.21° : . hep , 1.34-1.66 . . fee
: 12.21-3.53 fee . 1.66-2.20 . hep -
3.53-4.00- \ hep. : 2.20-3.53 - fee
3.53-4.00 hep
Ap(2d) = O: ' o €fcc = Chep!
fce, hep, dhcp, Sm and A ‘fcc, hep, dhcp, Sm and A
} ,
% z Structure "z ' Structure
ﬁ . |
¥
§ 1.00-1.21 fce 1.00-1.17 fce-hep
§ 1.21-1.26 Sm | 1.17-1.20 Sm
’ 1.26-1.35 dhep 1.20-1.23 A
1.35-1.37 hep . .. - 1.23-1.25 Sm
1.37-1.66 fcc 1.25-1.36 . dhcp
. 1.66-1.84 " hep 1.35-1.53 " fee-hep
1.84-1.87 - dhep : 1.53-1.66 - " Sm
. ~1.87-2.08 L Sm 1.66-1.95 - dhep
2.08-2.56 ) fee 1.95-2.11 _ Sm
2.56-2.68 - dhep 2.11-2.52 fcc-hep
2.68-2.95 .~ hep’ B 2.52-2.92 dhep
2.95-3.53 sm. 2.92-2.96 . . A
3.53-3.67 hep 2.96-3.53 _ Sm
3.67-4.00 .. . fec 3.53-4.00 - fcc-hep
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FIGURE CAPTIONS

1. Results for the dimensionless relative energies, €
_ chp fec

'and € -€ , as determined by exact summation of'the reduced

hep fce

.Friedel potential as a function of Z.\

2. Results for the dimensionless energies of the polytypic

structure hcp,.dhcp,_Sm and A reletive_to the fcc structure as

Fig.

Fig.

- Fig.

3. Comparison of the dimensionless energy difference £

determined from the BFS interplanar interaction as a function

‘of Z. See Table I for the description of the packing of these

structures. The region Z < 1.14 has been omitted for clarity.
hcp-efcc

ss determined with the exact summetion'andrthe BFS interplanar
interaction as of function of'Z; "~ The results from the BFS
interplansr interaction are a goqd’apprqximstion to those from

the exact summation, excebt near Z = 1.14.

4, 'Vslues of Z for which various structures are stable: A)
stability_against faulting of fcc and hep after Blandin, Friedel,
and Saada, B) relative:stability of polytypes from interpianar
interaction, C) relative stability of fcc, hcp and bee from exact
summation, D and E) polytype stability using the modified interplanar
interactions given in Eq. (17) and (19), respectively. i

5. Results from the determination_of the most stable structure . -
among fcc, hep and bee from the exact summation of the Friedel
potential as a function of Z and a phase faetor, 26. Legend for

identification of structures as in Fig. 4.



-37-
Fig. 6. Results from the determination of the most stable structure
'f:omlamong fce, hep, dhep,..Sm apd-A,using thezintérplanér _
W , +interaction as a function of -Z and" 26. pegendgfor'1dent1ficétion
of.polytypié structures as in Fig. 4. _
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States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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