Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Title

Some Excitation Functions of Bismuth

Permalink
https://escholarship.org/uc/item/9cv182mb

Authors

Kelly, E.L.
Segre, E.
Publication Date
2008-06-10

UNIVERSITY OF CALIFORNIA

RadiationSaboratory

IWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

UCRI 206
Mamemarnor Revised
Doctassification Procodure

C

UNIVERSITY OF CALIFORNIA DECLASSIFIED

Contract No. W-7405-eng-48

PARAMAGNETIC SUSCFPTIBILITIES AND ELECTRONIC STRUCTURES OF AQUEOUS CATIONS OF ELEMENTS 92 to 95
Jerome J. HowEand and Melvin Calvin

December 8, 1948

CAUTITON

This document contains information affecting the National Defense of the United States. Its transmission or the disclosure of its contents in any manner to an unauthorized person is prohibited and may result in severe criminal penalties under applicable Federal Laws.

DECLASSIFIED

UCRL 206
Revised
-2-ny The redurghention commate
DECLASSIFICATION PROCEDURE, Oak Ridge. SERIES ACopy Numbers
Declassification Officer 1-4
Publication Officer 5
Patent Dept. 6-7
Area Manager, Berkeley 8
E. O. Lawrence 9
Information Division 10

INFORMATION DIVISION RADIATION LABORATORY Univ. of California Berkeley, California

DECLASSIFIED

UCRL-206
(Revised)
Page 3
December $8,2,1948$

PARAMAGNETIC SUSCEPTIBILITIES AND ELECTRONIC STRUCTURES
of aquejus cations jf elements gi to 95
Jerome J. Howland ${ }^{(1)}$ and Melvin Calvin
Radiation Laboratory and Department of Chemistry University of California, Berkeley, California

ABSTRACT
Manetic susceptibilities per gram atomic weight of elements 92 to 95 in most of their oxidation states were measured at $20^{\circ} \mathrm{C}$. on 0.1 ml of solution which was 0.005 to 0.09 M in heavy element. The values obtained (all narama~netic) in e.m.u. $x 10^{6}$ were: $\mathrm{U}(\mathrm{IV}), 3690 ; \mathrm{Np}(\mathrm{VI}), 2060 ; \mathrm{Np}(\mathrm{V})$, 4120; $\mathrm{Np}(\mathrm{IV}), 4000$; $\mathrm{Pu}(\mathrm{IV}), 1610$; $\mathrm{Pu}(\mathrm{III}), 370$; Am(III), 720.

The results could be interpreted only on the basis of electronic configurations $5 f^{n}$, even though susceptibilities were generally lower than the theoretical values and lower than experimental values for corresponding lanthanide $4 f^{n}$ cations. The lower values should be expected as a result of the Stark effect produced by electric fields of anions and of water dipoles. Failure of the Russell-Saunders approximation to the coupling between electrons may account for some of the error in the theoretical calculations. Wider multiplet splitting in the actinides accounts for the fact that the susceptibilities of $P u(I I I)$ and $A m(I I I)$ are many-fold lower than those of $\mathrm{Sm}($ III) and $\mathrm{Eu}($ III) respectively.
i. . . . MCRL-206
$1: \therefore$ (Hevised)
 OF AQUEJUS CATIONS OF ELEMENTS 92 TO 95

Jerome J. Howland ${ }^{(1)}$ and Melvin Calvin
Radiation Laboratory and Department of Chemistry University of California, Berkeley, California

Chemical and physical properties and theoretical calculations have indicated that elements of about $Z=90$ and hifher constitute a series in which the 5 f orbitals are filled as Z increases. These heavy elements have been called actinides in analopy to the name lanthanides for the rare earth elements ${ }^{(2)}$. It was of interest to determine whether corresponding aqueous cations of actinide and lanthanide elements have the same outer electronic oonfigurations even though the actinide concept might not require that they be identical.

If an atom has its electrons in question (i.e., those in addition to the inert gas structure) in inner orbitals, the electrons may be electrostatically shielded from neiphborinf atoms to the extent that the magnetic susceptibility of a solution of such atoms can be deduced from quantum numbers of the ground state of the electronic configuration. Sometimes the converse, deduction of eround state quantum numbers from the susceptibility, will yield a unique answer. The method was suocessful for the lanthanide tripositive ions which have as outer confimurations $4 f^{1-14} 5 s^{2} 5 p^{6}$.

Susceptibilities of $U(I V)$ and $U(I I I)$ solutions were reported by
\square
Solid uranium compounds have been studied by numerous investipators ${ }^{(4)}$. At room temperature the susceptibility of $U(I V)$ solutions and salts approximates the theoretical value derived from the spin magnetic moment of atoms with two unpaired electrons. Since this type of calculation was successful in accounting for the susceptibility of the first row transi-
tion element ions which have partially filled 3d electron orbitals, the observed susceptibility of $U(I V)$ was usually interpreted as evidence for a $5 d^{2}$ electron configuration. This deduction was inconsistent with the fact that the observed susceptibilities of cations of heavier transition elements (those with partially filled 4 d or 5 d orbitals) are generally many-fold smaller than the "spin only" calculations, and later studies of feneral properties of $U, N p$ and $P u$ made $6 d$ configurations improbable. Hutchison and Elliott ${ }^{(5)}$ have interpreted their recent measurements on uranium(IV) susceptibilities on the basis of a $5 f^{2}$ structure.

Shortly after plutonium became available, the susceptibilities of dilute $\operatorname{Pu}(V I), \operatorname{Pu}(V), \operatorname{Pu}(I V)$, and $P u(I I I)$ solutions were measured ${ }^{(6)}$ with the expectation that they might closely parallel those of $\operatorname{Pr}(I I I)$ through $\operatorname{Sm}(I I I)$ if the actinide element ions also had f^{n} electronic configurations. The measurement of $\mathrm{Pu}(\mathrm{V})$ was very crude because of the instability of that state ${ }^{(7)}$. For the other three plutonium oxidation states there was no close asreement with expectations of particular electronic structures. Nore actinide elements which exist in one or more oxidation states could be used in the present study. Since the alpha activity of the available isotope of curium would rapidly decompose the water of its aqueous solution, experiments with this material were not attempted.

Bxperimental

Magnetic susceptibility measurements were made on 0.1 ml samples which were of the order of 0.01 M in heavy element by use of a bifilar suspension method developed from one described by Theorell (8). A divided flass capillary was suspended as shown in Fif. 1. A solution was in the left compartment; distilled water was in the right. The capillary moved a distance of the order of 0.1 cm when the current through the magnet coils was 40 amps.
(Field strength directly between the pole faces was about 17,000 fauss.) The horizontal force, F, on the capillary very nearly equals wD/L where w is the weight of the capillary, L is the fiber length, and D is the horizontal displacement which was observed in a microscope equipped with a traveling cross hair. One scale division on the knob corresponds to a distance of $8 \times 10^{-5} \mathrm{~cm}$ or to a force of $6 \times 10^{-7} \mathrm{gram}$ if the load is a 0.5 gram capillary.

Each solution was measured several times at magnet coil currents of 20, 30 and 40 amps. in order to establish that susceptibilities were always independent of field strength.

The molar susceptibility, X, of a substance equals I_{m} / H where I_{m} is the mapnetic moment of a gram atomic weicht of the bulk material and H is the mapnetic field strencth. The total force acting on a long oylinder of solution with cross section A and whose axis passes through an inhomogeneous field is

$$
\begin{equation*}
\boldsymbol{\omega D} / L=F=X M A\left(H_{2}^{2}-H_{1}^{2}\right) / 2000 \tag{I}
\end{equation*}
$$

where M is the molar concentration and H_{1} and H_{2} are the field strengths on the ends of the solution.

Equation (l) would hold only for a homogeneous cylindrical sample; it was used for rourh estimation of the field strencth H_{2} from the displacements of nickel chloride solutions. Susceptibilities of other substances were calculated on the assumption that the displacement was proportional to $X \underline{M}$ if w, A, H_{1} and H_{2} were held constant. The displacement was measured for each actinide element solution in the same compartment and at the same mapnet coil current ($\mathbf{t} 0.2 \mathrm{amps}$.) as was done for a standard nickel chloride solution. Correction for diamagnetism of the solvent and of the anions and for non-uniformity of the capillary was made by subtraction of an
experimentally determined displacement. If the molar susceptibility of nickel chloride at $20^{\circ} \mathrm{C}$ is taken as $4436 \times 10^{-6} \mathrm{c} \cdot \mathrm{g.s}$. .e.m.u. ${ }^{(9)}$, then for any cation

$$
\begin{equation*}
X=4436 \times 10^{-6} \mathrm{D}^{\prime} \underline{M}_{\mathrm{NiCl}_{2}} /\left(\underline{\mathbb{M}} \mathrm{D}^{\prime} \mathrm{NiCl}_{2}\right) \tag{2}
\end{equation*}
$$

where D^{\prime} is the displacement after application of the correction.
The U(IV) solution was prepared by dissolution of weighed, distilled UCl_{4} in oxygen-free hydrochloric acid solution. The last step in the preparation of the neptunium, plutonium, and americium solutions was dissolution of a hydroxide which had been precipitated with ammonium hydroxide. The plutonium concentrations were based on a weighing. The neptunium and americium solutions were assayed by measurement of the rate of alpha particle emission of a small aliquot. The specific activities in counts $/ \mathrm{min} . / \mu \mathrm{g}$. were taken as 790 for $\mathrm{Np}(10)$ and 3.36×10^{6} for $A \mathrm{~m}^{(11)}$ if: a thin sample is mounted on platinum and a counter feometry of " 50% " is used ${ }^{(12)}$. These values are said to be probably better than ${ }^{+} 5 \%$. If better specific activities are reported at a later date, the magnetic susceptibilities should be corrected proportionately. The quantity of neptunium or plutonium which was not in the desired oxidation state was shown to be less than 1% by measurement of the characteristic optical absorption maxima ${ }^{(13)}$ on a Beckman spectrophotometer.

The 0.03920 M nickel chloride solution which served as magnetic standard was prepared by dissolution of 0.2301 g . of nickel rod (Johnson Watthey and Co., $99.97 \% \mathrm{Ni}$) in 5 ml of refluxin 10 M HCl . After the solution had been diluted to 100.0 ml , the excess HCl concentration was found to be 0.360 M . Althourh the measured displacements were reproducible to about one scale division, the uncertainty in the molar susceptibilities is about 2% or 30×10^{-6} units, whichever is larger, because of the inaccuracy in determination of actinide element concentration and because of the presence in
the solutions of an unknown amount of diamagnetic amronium ion. The large neqative displacements listed for some examples of solvent only in the rear compartment are due to non-uniformity of the glass capillary. These large negative subtractions do not increase the percent error if the fross displacement of the actinide solution is positive.

Results and Interpretation
Some trpical data are given in Table I. In Fis. 2 experimental X of the actinide element cations are compared with simple theoretical x_{J} for the assumed ground quantum states of the electronic configurations $5 f^{n}$ and $5 f^{n-1} 6 d$. The experimental X follow the X_{J} for configurations f^{n} to a significant degree, though not as closely as had been found for most of the lanthanide cations (14). The susceptibility of Am(III) is much higher than the theoretical value of zero, but that is also true of the corresponding lanthanide ion, Eu(III). It will be discussed in a later section of this paper. The susceptibilities of the cations are, of course, dependent upon the anion to a secondary degree ${ }^{(3)}$.

The pround states of the cations $N p(V I), N p(V), N p(I V), P u(I V), P u(I I I)$, and Am(III) were concluded to be those on which the the oretical curve B was based, i.e., ${ }^{2}{ }^{F_{5 / 2}},{ }^{3} H_{4},{ }^{4} I_{9 / 2},{ }^{5} I_{4},{ }^{6} H_{5 / 2}$, and ${ }^{7} F_{0}$ respectively as n is 1 throuph 6 .

While the atomic quantum numbers of a state may be those which are expected for a dofinite configuration, f^{n}, the state can belong partly to another configuration of the same parity ${ }^{(16)}$. Susceptibility measurements can show only that the round state has certain L, S, and J quantum numbers; identification of the state with a configuration is a useful approximate concept. To the extent that quantum states of complicated atoms can be attributed to a single electronic configuration, the known aqueous cations of uranium and higher elements must have as the outer part of their ground
conficurations, $5 f^{n} 6 s^{2} 6 p^{6}$ (n $5 f$ clectrons which are more or less inside the confipuration for the inert gas element 86).

Approximate Nature of Theoretical Calculations
The factors which account for the limited accuracy of our theoretical calculations should be mentioned. Quantum statistically the susceptibility is given by the relation

$$
X=\frac{I_{m}}{H}=\frac{N_{0}}{H} \frac{\sum \supset W_{i} / \ni H \exp \left(-W_{i} / k T\right)}{\sum \exp \left(-W_{i} / k T\right)}
$$

where N_{0} is Avogadro's number and the summations are overvall quantum states of energies W_{i}. If the energy levels are simply those resulting from the Zeeman splitting of an isolated (on the energy scale) state of a free atom, their energies mifht be assumed to be

$$
\begin{equation*}
W_{i}-W_{i}^{0}=H_{f} \beta M \tag{4}
\end{equation*}
$$

where $\beta=\mathrm{eh} / 4 \pi \mathrm{mc}$ and $M=\mathrm{J}, \mathrm{J}-1, \ldots-\mathrm{J}$. Since $2 \mathrm{Hg} \beta \mathrm{J} \ll \mathrm{kT}{ }^{(4)}$ equation (3) yields

$$
\begin{equation*}
\gamma_{J}=N g^{2} \beta^{2} J(J+1) / 3 k T^{(17)} \tag{5}
\end{equation*}
$$

If the angular momenta of the several electrons are coupled according to the Russell-Saunders soheme (LS coupling)

$$
\begin{equation*}
g=[3 J(J+1)+S(S+1)-L(L+1)] / 2 J(J+1) \tag{6}
\end{equation*}
$$

Equations (5) and (6) were used to calculate the theoretical points of Fig. 2. The ground state of a configuration was assumed by application of Hund's rules. The limited agreement of theoretical and experimental susceptibilities indicetes that each paramagnetic atom interacts with other surrounding atoms as well as with the external magnetic field. Since most of the surrounding atoms are diamagnetic, the interaction is probably electrostatic in nature.

Penny and Sohlapp attempted to calculate the effect of crystal electric
fields on the magnetic susceptibility of iron group compounds and rare earth salts $(18,19)$. Qualitatively it is a Stark snlitting which is of the order of $k T$ whereas the Zeeman splitting is small compared to $k T$. Althourh the calculations are not perfected ${ }^{(20)}$, it is clear that the summation (3) can be much smaller than its evaluation by equation (5). Similarly in solutions the electric fields of neichbor anions and water dipoles will lower the magnetic susceptibility of an actinide element cation compared to its corresponding lanthanide ion since the $5 \hat{i}$ electrons of the former should be outside the valence shell more often than are the $4 f$ electrons in the latter. Since $N p(V I)$ is essentially a one-electron case, the complications to be mentioned later cannot be important, and the 25% lowerine of the susceptibility from the theoretical X_{J} must be due to the Stark splitting. It may be assumed that the Stark effect is the most important single complication tending to lower the susceptibility of all the actinide element cations.

Ground quantum states of the $4 f^{n}$ configurations were deduced by Hund (14) from rules which are correct for atoms of small Z in which case it is a good approximation to derive atomic states from the states of individual electrons by means of the LS or Kussell-Saunders coupling model (vanishingly weak spin-orbit interaction). In the spectra of gaseous uranium ${ }^{(21,22)}$ the multiplet splitting is wider than the separation of the centers of eravity of LS states. By definition this is strong spin-orbit interaction. The experimental $\varepsilon^{\prime} s$ of low lying states of the $5 f^{3} 6 \mathrm{~d}^{2}$ configuration of uranium are fairly close to E_{LS}, however.

It is interesting to see what happens to the energy levels as the spin-orbit interaction increases and the interelectronic interaction approaches the limiting case of jj coupling. Column 2 of Table II lists some states which should lie very low in the configurations $5 f^{1-6}$. The
state listed first lies deepest according to Hund's rules. For $5 f^{2}, 5 f^{3}$, and $5 f^{4}$ the stato listed second was selected because it belongs both to the next group according to $L S$ coupling and to the lowest group of $j j$ coupling states. The ground state of $5 f^{5}$ or of $5 f^{6}$ becomes more isclated as jj coupling is approached. In the case of $5 f^{6}$ the two lowest multiplets of ${ }^{7}$ F were selected because the spacing between $J=0$ and $J=1$ would be only $1 / 21$ of the total multiplet splitting according to the Landé intorval rule. The relative importance of the probably second lowest states is not known at the present time except that ${ }^{7} F_{1}$ must be significantly populated in Am (III) at $20^{\circ} \mathrm{C}$.

Theoretical $\mathcal{X}_{J}{ }^{\prime}$ s for each ground state of the $5 f^{n}$ configurations were calculated for both coupling approximations, and the two results diverge as n increases from 2 to 5 . Since the two X_{J} 's differ directly as $\mathrm{g}_{\mathrm{LS}}{ }^{2}$ and $\mathrm{g}_{\mathrm{jj}}{ }^{2}$ differ, the experimental X of $\mathrm{Pu}(I I I)$, the example of $5 f^{5} 6_{H_{5 / 2}}$, shows unambiquously that f is much nearer to $g_{L S}$ than to $g_{j j}$. This is consistent with previously mentioned results for the paseous uranium atom.

Equation (5) depends on the validity of equation (4) for the Zeeman splitting. For each low energy state of Sm (III) and Eu (III) it was nocessary (23) to use a more complete equation for χ_{J} which had been derived by Van Vleck ${ }^{(15)}$ from considerations equivalent to taking the Zeeman splitting to the second order terms in H. He obtained equation (5) with the following added on the right:

$$
\begin{align*}
& \frac{N \beta^{2}}{6(2 J+1)}\left\{\frac{f(J)}{h(J-1: J)}+\frac{f(J+1)}{h_{i}(J+I ; J)}\right\} \tag{5a}\\
& \text { where } f(J)=\left[(S+L+1)^{2}-J^{2}\right]\left[J^{2}-(S-L)^{2}\right] / J
\end{align*}
$$

For sufficiently large hy's this addition is negligible except that when S and L are large and J is small the $f / h z$ terms are/large. In the examples
$\mathrm{Pu}(I I I)$ and $\mathrm{Am}($ III $)$ the susceptibilities are greater than theoretical χ_{J} 's for ${ }^{6} H_{5 / 2}$ and ${ }^{7} \mathrm{~F}_{\mathrm{O}}$ as obtained with equation (5). The f / h r'terms must be significant for low lying states of both cations. While the ${ }^{7} F_{1}$ state must be well populated in Am(III), it is much less so than in Eu(III) where the multiplet splitting is narrower. Thus the same discrepancies with simplest theory that were important in Sm (III) and in Eu (III) can be detected in $\mathrm{Pu}($ III) and Am (III). The analogy is shown clearly in Fig. 3 where experimental susceptibilities of lanthanide and actinide element cations are compared directly.

Acknowledgement

The neptunium and americium were available for this study only throuph the work of T. J. LaChapelle, L. B. Marnusson, L. B. Asprey, and B. B. Cunningham, who had isolated these materials in very pure form. liany others contributed, of course, to the production of these special materials. ${ }^{\text {(24) }}$

This paper is based on work performed under the auspices of the Atomic Energy Commission at the Radiation Laboratory, University of California.

Typical Data; Displacements of Capillary

$$
\text { for } 40 \text { Ampere Magnet Coil Current }
$$

Waterial in Rear Compart.	Displacement		Suscept. $\text { e.m.u. } \times 10^{6}$
0.36 M HCl	-030		
$0.039 \overline{2} \mathrm{M} \mathrm{NiCl} 2$ in 0.36 N HCl	+991	1021	$4436{ }^{\text {a }}$
0.50 M HCl	-030		
$0.060 \overline{0}^{\mathrm{M}} \mathrm{Pu}(\mathrm{III})$ in $0.5 \mathrm{M} \mathrm{Cl}{ }^{-}$	+099	129	370
$0.50 \mathrm{MH}_{2} \mathrm{SO}_{4}$	-089		
$0.0507 \mathrm{M}^{2} \mathrm{Pu}(\mathrm{IV})$ in $0.5 \mathrm{M} \mathrm{HSO}_{4}{ }^{-}$	+389	478	1610

a Magnetic standard, ref. 9 .

Cation in Solution	Anion in Solution	Cation Suscept. e.m.u. $\times 10^{6}$
U(IV)	$0.5 \mathrm{M} \mathrm{Cl}^{-}$	$3690^{\text {a }}$
Np (VI)	$0.5 \mathrm{MHSO}_{4}{ }^{-}$	2060
$\mathrm{Np}(\mathrm{V})$	$0.2 \mathrm{M} \mathrm{Cl}^{-}$	4120°
Np (IV)	$0.2 \mathrm{M} \mathrm{HSO}_{4}{ }^{-}$	$4000^{\text {b }}$
Pu(IV)	$0.5 \mathrm{M} \mathrm{HSO}_{4}{ }^{-}$	1610
$\mathrm{Pu}(\mathrm{III})$	$0.5 \mathrm{M} \mathrm{Cl}^{-}$	370
Am(III)	$0.5 \mathrm{M} \mathrm{NO}_{3}{ }^{-}$	720

${ }^{\text {a For }} \mathrm{Pu}(V I)$ (same number of electrons as U(IV) and $\mathrm{Np}(\mathrm{V})$) susceptibility is 3540×10^{-6}, ref. 6 .
${ }^{\text {b For }}$ U(III) (same number of electrons as $\mathrm{Np}(I V)$), susceptibility is 4340×10^{-6}, ref. 3 .

Table III
Theoretical Susceptibilities of Possible Low Energy States of Actinide Ions

As sumed Elect. Config.	Possible Low Zhergy States	$\begin{aligned} & \text { Theor. } \chi^{\prime} \mathrm{J}^{\prime} \text { s } \\ & \text { LS Coupl. } \\ & 20^{\circ} \mathrm{C} \end{aligned}$	Theor. χ_{J} 's jj Coupl. $20^{\circ} \mathrm{C}$
55^{1}	$2_{F_{5 / 2}}$	2730	2730
$5 f^{2}$	$3_{H_{4}} ;{ }^{3} \mathrm{~F}_{2}$	5420; 1130	6210; 1870
$5 f^{3}$	${ }^{4} I_{9 / 2} ;{ }^{4} G_{5 / 2}$	5540; 1210	7680; 2730
$5 f^{4}$	$5_{I_{4}} ;{ }^{5} G_{2}$	3040; 280	6210; 1870
$5 f^{5}$	${ }^{6} \mathrm{H}_{5 / 2}$	300	2730
$5 f^{6}$	${ }^{7} \mathrm{~F}_{0} ;{ }^{7} \mathrm{~F}_{1}$	0; 1900	0; 1900
5f6d	$3_{H_{4}} ;{ }^{3} G_{3}$	5420; 2860	
$5 \mathrm{f}^{2} 6 \mathrm{~d}$	${ }^{4} K_{11 / 2} ;{ }^{4} I_{9 / 2}$	8950; 5540	
$5 \mathrm{f}^{3} 6 \mathrm{~d}$	${ }^{5} L_{6} ;{ }^{5} K_{5}$	9070; 5670	
$5 \mathrm{f}^{4} 6 \mathrm{~d}$	${ }^{6} L_{11 / 2} ;{ }^{6} K_{9 / 2}$	5730; 3130	
$5 \mathrm{f}^{5} 6 \mathrm{~d}$	${ }^{7} \mathrm{~K}_{4} ;{ }^{7} \mathrm{I}_{3}$	1350; 320	

Fig. 1.--Apparatus for measurement of magnetic susceptibility: A, glass fibers, $0.005 \times 140 \mathrm{~cm} ; B$, glass capillary, $0.2 \times 16 \mathrm{~cm} ; C$, magnet pole faces, 2.5 cm diam.; D, mirror and microscope; E, magnet pole pieces, 15 cm diam.

Fif. 2.--Comparison at $20^{\circ} \mathrm{C}$ of magnetic susceptibilities of actinide element cations with theoretical susceptibilities: A, experimental; B, theoretical for ground states of $5 f^{n}$; C, theoretical for ground states of $5 f^{n-1} 6 d$.

Fip. 3.--Comparison of experimental mapnetic susceptibilities of lanthanide and actinide element cations at $20^{\circ} \mathrm{C}$. The values for the lanthanides were calculated from some of the "effective magnetic moments" compiled by Yost, Russell and Garner (The Rare Earth Elements and Their Compounds, Wiley, New York, 1947, p. 14.). The point for 61 (III) is from the theoretical calculation by Van Vleck and Frank (See ref. 23).

References

1. Now at Brookhaven National Laboratory, Upton, L. I., Now York.
2. Some of the properties of the recently discovered heavy transition elements were reviewed and the name actinides was suggested by Seaborg, G. T., Chem. and Eng. News 23, 2190 (1945); Science 104, 379 (1946). Zachariasen, W. H., Phys. Rev. 73, 1104 (1948) used the name actinide for the +3 ions only, thorides for +4 ions, ete., in reportinf his x-ray diffraction studies which showed that the solid compounds have the crystal structures and ionic radii consistent with assumption of $5 f$ electronic configurations. We use Seaborg's nomenclature.
3. Lawrence, R. W., J. Am. Chem. Soc. 56, 776 (1934).
4. See reference 5 for keys to this literature.
5. Hutchison, C. A., Jr., and N. 也lliott, J. Chem. Phys. 16, 920 (1948).
6. Calvin, M., Plutonium Project Report CK-2411 (1944). Calvin, M., M. Kasha and G. Sheline, AECD-2002 (1948).
7. Connick, R. E., M. Kasha, W. H. McVey, and G. Sheline, "The +5 Oxidation State of Plutonium", Plutonium Project Record, Vol. 14B, No. 3.15 (to be published).
8. Theorell, H., hrkiv Kemi, Minerol., Geol. 16A, No. 1 (1943). Our apparatus was essentially the one used but not described by Lewis, G. N., and M. Calvin, J. Am. Chem. Soc. 67, 1232 (1945).
9. Nettleton, H. R., and S. Sugden, Proc. Roy. Soc. (London) Al73, 313 (1939).
10. Magnusson, L. B., and T. J. LaChapelle, "The First Isolation of Element 93 in Pure Compounds and a Determination of the Half-Life of Np237", J. f.m. Chem. Soc. (to be published).
11. Cunningham, B. B., Plutonium Project Report CC-3876, Sect. 2.2 (1948).
12. About 52% of the disinteprations are counted. Cunninfham, B. B., A. Ghiorso, and J. C. Hindman, "Back-Scattering of Pu239 filpha Particles from Platinum", Plutonium Project Record, Vol. 14B, No. 16.3 (to be published).
13. Hindman, J. C., and D. P. Ames, "Absorption Snectra of Ionic Species of Plutonium", Plutonium Project Record, Vol. 14B, No. 4.l; Hindman, J. C., L. B. Mapnusson and T. J. LaChapelle, "Chemistry of Clement 93, III, Absorption Spectrum Studies of Aquecus Ions of Neptunium", Ibid., No. 15.2.
14. Hund, F., Z. Physik 33, 855 (1925).
15. Van Vleck, J. H., Phys. Rev. 31, 587 (1928).
16. Condon, E. U., Ibid. 36, 1121 (1930).
17. The small contribution to susceptibility from the magnetic moment induced by the applied field was nat added to the theoretical χ_{J}^{\prime} s. It would be only about -50×10^{-6} for monatomic ions represented by $\mathrm{Pu}+3$ and Am^{+3} and possibly as much as $+50 \times 10^{-6}$ for molecular types such as NpO_{2}^{+}and $\mathrm{NpO}_{2}{ }^{++}$.
18. Penny, W. G., and R. Schlepp, Phys. Rev. 41, 194 (1932); Schlapp and Penny, Ibid. 42, 667 (1932). These authors pointed out the absence of any fundamental significance of the empirical Weiss-Curie relation, $\chi=C /(T+\Delta)$. Many investigators have calculated "effective atomic magnetic moments" as $\mu_{e f f}=(\mathrm{Ck} / \mathrm{N}) 1 / 2$ and compared this "experimental" moment with $\mu=g \beta[J(J+1)] l / 2$. These $\mu_{0 f f}$ can have no more meaning than C, which sometimes approaches $N \mu^{2} / 3 k$ when Δ is nearly zero. It seems preferable to present all results as susceptibilities and then compare theoretical values with the directly observed quantities even though the discrepancies seem twice as great when the device of square root extraction is not used.
19. Frank, A., Ibid. 48, 765 (1935).
20. For more recent discussions see Penny, W. G., and G. J. Kynch, Proc. Roy. Soc. (London) Al70, 112 (1939) and Broer, L. J. F., Physica 12, 642 (1946).
21. Kiess, C. C., C. J. Humphreys and D. D. Laun, J. Optical Soc. Am. 36, 357 (1946).
22. Schuurmans, Ph., Physica 11, 475 (1946); Schuurmans, Ph., J. C. van den Bosch and N. Dijkwel, Tbid. 13, 117 (1947).
23. Van Vleck, J. H., and A. Frank, Phys. Rev. 34, 1494, 1625 (1929).
24. Seo forthcoming Plutonium Project Record, Volume 144 and $14 B$.

FIG:

UNIVERSITY OF

 CALIFORNIARadiation

BERKELEY, CALIFORNIA

Special Review of Declassified Reports

Authorized by USDOE JK Bratton
Unclassified TWX P182206Z May 79
LCEL-207 194

REPORT PROPERLY DECLASSIFIED

Authórized Derivatiye Classifier
4. Date

UNIVERSITY OF CALIFORNIA

Radiation Laboratory

Contract No. W-7405-eng-48

SOLE EXCITATION FUICTIONS OF BISMUTH
E. L. Kelly and E. Segrè

UNCLASSIFIED

Berkeley, California
Argonne National Laboratory 1-8
Armed Forces Special Weapons Project 9
Atomic Energy Commission, Washington $10 \infty 11$
Battelle Memorial Institute 12
Brookhaven National Laboratory 13-20
Bureau of Ships 210
Carbido \& Carbon Chemicals Corpo (K-25 Plant) 22-25
Carbide \& Carbon Chemicals Corp。 (Y-12 Plant) 26-29
Columbia University (Dunning) 30
General Electric Company, Richlond 31-34
Hanford Operations Office 35
Iowa State College 36
Knclls Atomic Power Laboratory 37~40
Los Alamos 41-43
Mound Laboratory 44-45
National Bureau of Standards $46-47$
Naval Radiological Defense Laboratory 48
NEPA Project 49
New York Operations Office 50-51
North American Aviation. Inc. 52
Oak Ridge National Laboratory 53-60
Patent Advisor Washington 61
Sandia Base 62.63
Technicai Information Division $0 R O O$ 64×78
UCLA Medieai Research Laboratory (Warren) 79
University of California Radiation Laboratory $80 \propto 84$
University of Rochester 85-86
Declassification Procedure
Declassification Officer 87×90
Publication afficer 91
Patent Department 92-93
E. Oo Lawrence 94
Area Manager 95
Information Division 96
Total 96

Information Division
Radiation Laboratory
University of California
Berkeley, California

November 10, 1948

Bismuth has long been a favorite element for excitation function work. This is due in part to the fact that bismuth has a single stable isotope, is abundant, and is easily evaporated to form thin uniform films. Also many of the products of bismuth bombarded with deuterons or alphas are alpha-active which is convenient for determination of absolute counting rates. Early investigators $(1)(2)(3)$ in this field had available deuterons up to 9 Mev energy. In later work deuterons up to $14 \mathrm{Mev}(4)$ and alphas up to 28 Mev energy ${ }^{(5)}$ were used. In spite of the excellence of the work that already had been done in bismuth the availability of the 19 Mev deuteron beam and the 38 Mev alpha bean of the $60^{\prime \prime}$ Crocker Radiation Laboratory cyclotron made further work seem worth while。 The method used in the present work is the well known stacked foil technique with some improvement in the definition of the energy and the measurement of the beam currento a stack of aluminum foils, each having a thin film of evaporated bismuth on one side was exposed to the collimated beam of the Crocker $60^{\prime \prime}$ cyolotron. The stack was not thick enough to stop the beam which was caught in a Faraday cup, amplified, and fed into a recording milliameter. The mean range of the cyclotron bean was found by determining the amount of aluminua absorber required to reduce the beam intensity to one halfo The activity induced in the bismuth films was counted by means of a parallel plate ionization chamber. Fige 1 gives a schematic diagram of the apparatus used for the bombardments. Tables I
 processos as a function of the energ of the bombarding douteron or alphaparticle。

Experimental Details

The aluminun foil used as backing for the evaporated bismuth and for the onergur determination absorbers, was punched on a die whose ares was acourately measured. The dimensions of several foils were also measured with a traveling mionosoope. The areas of the various fojls agreed to better than 3 parts in a thousande Each backing foil. Which was 0.001 inches thick, wa thoroughly cleaned in CCl_{4} and absolute alcohol, and weighed on an assay balance to the closest 0.01 mg . Next, the foils were placed in a high vacuim chamber and bismuth evaporated onto them to the desired thjoknosso (Most runs were made with 1 to $1.5 \mathrm{mg} / \mathrm{cm}^{-2}$ of bismuth). The foils wore then rewoighed and the thickness of bismuth determined with an estimated accuracy of 1 part in 200 or better. The raw beam of the $60^{\prime \prime}$ Crocker cyclotron had enouph inhomogenity in energy so that a better definition of the energy was required . This was obtained with a collimation system which consisted of the deflector channel of the cyolotron and the $1 / 8$ inch slit shom in Fige lo Due to the macnetic field of the cyclotron this collimation system served as a velocity selector producing a beam of very homogeneous energy Tests of energy versus deflector voltage showed a dependence of 0.04 Mev per kilovolt on the deflector. In practice the deflector voltage was held constant to 2 kilovolts for the entire run Since this collimation reduced the primary beam intensity by a factor of sporoximately one hundred (n om $10^{-5}-10^{-6}$ to $10^{-7}-10^{-3} \mathrm{amp}$) a sensitive bean current integrator was necessary. The current to the Faraday oup of Fico $1\left(10^{-7}\right.$ to $\left.10^{-8} \mathrm{amp}\right)$ was amplified to I milliampere by a motified version of tho current anplifier desoribed by vance (6) and rocorded on in Esterline Angus recording milliameter. The integrated bean current was found by planimetering the aree under the trace。 The trace of ench rum was planimetered by tro people and the oreonent was 1 part in 200 or bettur. Aljowance was made for the peouliar forn of the Esterline Angas trace。

The range of the coliinated bearn was deteminod in a noner similar to that described by Wison (7). The roil wheol shown in Fig. 1 conteined aluminum absorvers differing in thicknoss by whacimatoly $1 \mathrm{mg} \mathrm{cm}^{-2}$. Each of these absorbers in turn was
piaced in the path of the beam while the amount of beam current stopped and the amount transmitted were detomined simultaneously by current amplifiers ${ }^{(6)}$. This gave the fraction of the total beam current transmitted for various thickessss of aluminum absorbe er. From this data the mean beam range was at once determinedo The position of the foil wheel could be changed by remote control and since the stacked bismuth foils were contain ed in the wheel it was possible to determine the bean range bombard the stacked bismuth foils, and redetermine the beam range without turning off the cyelotrono The range data for a typical run are plotted in Fig. 2。 It will be noted that there was little change in the beam range during the run. The straggling of 1.1 percent compares favorably with the the oretical minimum of 0.9 percent given by Livingston and Betie (8) o The range in aiuminum was converted to energy using the table of Smith (9).

The activity induced in the bismuth films was followed by counting each sample in a parallel plate ionization chamber having a depth of 105 omo and filled with argon at a pressure of 1.7 atmospheres. The pulses from electron collection in the ohamber were fed into a prewamplifier and then into an amplifier whose time of rise was 0.2 microseconds. The amplified pulses were discriminated and counted on a 256 scaling cirouit and mechanical register. The counter was checked against a standard alphamartiale source (a thin uranim um sample electro deposited on platinum) at the beginning and end of each counting period, and was found to remain constant to one percent over the entire period of 2 years during which these studies were made. The background was 1 to 2 counts per minute the counting rate of the uranium alpha standard as a function of discriminator bias is shown in Fig. 3 . The counting efficiency at the operating bias of 14 has been taken to be 0.50. This round number takes into account the absorption in the sample itself and the back scatter ing from support。

The possibility of error in the beam current measurements due to gas ionization or secondary electron emmission was investigated. The space around the Faraday oup and the foil wheel was connected to the cyclotron tank during normal operation as shown in

Fig. 1. Since the pumping speed of the opening of the defining slits was smalle a leak in this region could cause a substantial increase in pressure with a resulting increase in gas ionization along the path of the beam between the slits and the Faraday cup. Any selective collection of these gas ions would of course introduce an error. To test this effect, the pressure in the region of the Faraday cup was gradually inereased until the cyclotron tank pressure showed a 50 percent increase. At this juncture the pressure in the region of the Faraday cup was approximately 10 microns of mercury but no evidence of gas ionization was observed on the beam current meters. Since in normal operation no observable change in cyclotron tank pressure was produced by our apparatus this source of error must be ruled out. The effect of possible secondary emission of electrons is also ruled out. The fringing magnetic field of the cyclotron is 2500 gauss in the region where the Faraday cup was located. The resulting curvature in the path of any secondary electron formed by the beam striking the bottom of the Faraday cup would be more then sufficient to prevent the escape of the electron.

Bi ($a_{2} 2 n$) and Bi ($a_{2} 3 n$) Excitation Functions

At bombardine alpha energies below 29 Mev the only alphanparticle activity observed in the bombarded bismuth was that of At ${ }^{211}$, which has a half-life of 705 hr . At higher bombarding alpha energies another alphamativity was observed after the 705 hr activity had died out. This was found to be due to Po ${ }^{210}$. No other alpha-activity was detected. This made the separation of activities extremely simple。 An alpha count 5 or 6 days after bombardment gave only the Po ${ }^{210}$ activity; correcting this for decay and subtracting from a count made soon after bombardment we obtained the activity due to At 211, which could then easily be extrapolated back to the time of the end of bombardment. This method of separating the activities was quick and accurate*。 The question immediately arose, however, as to the origin of the Po ${ }^{210}$. Careful investigationg which will be discussed in detail later, showed that the $P_{0} 210$ came from the $B i\left(a_{9} 3 n\right)$ reaction producing This method neglects the 8.3 hr half-life for formation of the Po^{210} mentioned below but the resulting error introduced was found to be negligible in all cases.
which in turn decays to $P_{0} 210$ by orbital electron capture，with a half life of 8．3 hro Thus the At ${ }^{210}$ which had no alpha－activity decayed to an alpha emitter which was readily counted on an absolute scale．The results of three auns were analyzed in this way and reduced to absolute cross section versus energy of the bombarding alphaso One run was made with bismuth films of $0.3 \mathrm{mg} \mathrm{cm}{ }^{\infty}$ ，one with $1.5 \mathrm{mg} \mathrm{cm}{ }^{\infty}$ ，and one with 2.0 mg cm ${ }^{-2}$ 。 When the results of these runs were first compared to a dispersion of a few percent was found，which was felt to be outside the experimental error．After thorough checking，this dispersion was tentatively laid to the inaccuracy in the stopping power ratio of bismuth to aluminum，which had been extrapolated from the value for gold given by Bethe（8）．A subsequent experimental determination of this stopping power ratio re－ moved the apparent dispersion．The results of the three runs are shown in figo 4 and Tablo I。

Bi（ $\left.d_{9} p\right)_{9}$ Bi（d，n）and Bi（ $d_{9} 3 n$ ）Excitation Functions

The activities resulting from deuterons on bismuth are more difficult to separate than those from alphas on bismuth。 Early work has established the production of RaE and Pc^{210} from the $\mathrm{Bi}(\mathrm{d}, \mathrm{p})$ and $\mathrm{Bi}(\mathrm{d}, \mathrm{n})$ reactions Recent work ${ }^{(10)}$ shows rather conclusively that the $B 1\left(d_{0} 2 n\right)$ reaction is not observed and that the only alohacactivity at these energies，other then that due to the $B i(d, n)$ and $B i(d, p)$ reactions is due to the $B i$ （ $0,3 n$ ）reaction which results in Po 208 with a half－life of about 3 yearse This is in agreement with the results of two deuteron on bismuth runs made by the authorso

For the separation of the Po 210 with a 140 day half－1ife，the Po ${ }^{208}$ with a 3 year halfwlife，and the $\mathrm{RaE}^{\text {，}}$ which goes by 5 －day－β－decey to Po^{210} ，the following procedure was adopted＊．Each sample was alpha－counted as soon as possible after bombardment and daily for a week；each sample was counted again after 2 months when all of the 5 day ReE hed deaayed into Po 210 ，and thereafter once every 3 months for a yearo In order to determine the po 208 half－life，ten semples were analyzed by trial and error into 140 day Tt is not practical to use the difference in energy between the alphas of Po 208 and po 210 to distinguish between the two because the difference is too small（50298w5014 Mev）。

Po 210 and P_{0}^{208} s such that when the $P_{0}{ }^{210}$ activity was subtracted, the resulting activity fell on a straight line on semilog papex. The slope of this line gave the por haifwife. The result mas $3.0 * 0.2$ years where the error given is based on internal consjatency onlyo Each bombarded smals was then enalyzed by the seme mothot oxeept that the resulting activity after folo suitaution was required to fit a straint lino with a slope butrosmondius to a halt-1ifo of 30 vears. This yielded the poto activityo which was ectrapolated back to che time ot tho end of bombardment, and the total pozlo activity whoh was also extrapheted sed to the time of the ond of bonbardmento Subtracting the Getrapoletat P^{203} from the activity messured immediately after bombardment gave the po 210 due to tho Bi $\left(d_{g} n\right)$ roactiono From tho extrapolated total po 210 ectivity and the po 210 activity due to the Ei ($d_{g} n$) reaction, the amount of RaE was found. The amount of RaE was also found by the growth of the totel alpha-activity in the first week after bombarde Mento These two detwaintions of Ros agreod within one percente The results of two runs of deutorons on bismuth reduced to absolute cross section versus energy of the bom barding deutorons are shom in Piee 5 and Table II。

Astatine ${ }^{210}$

smuth bontarded with elrha particles of 37 Mev energy yields the 705 hr alphaactivity of Atzil, and tho 140 day alphametivity of porio, es wis montioned above; in adationg thate is an ensily aistinpuishable gammemay activisyo The po ${ }^{2} 10$ alphamactivity Was found to decroese with decrgasing energy of the bombarding alphas, disappearing with
 bontarding alpha onex ios below 99 Novo Tho gemmametiviby was found to follow tho hell

 astivity could bo obsivod arter the rolatively shom lived ftell adnawativity had dem
 isotore of setatine, wrobably by capture of an orbital electron of At 10 which had been fomed by an $\left(\alpha_{3}, 3 n\right)$ recution on bismutho

In order to etuat the fometion of tho po 210 more carcinlly a Gom counter was oondrueted having an optimm X-ray counting efficioncy in the region of the $K X$-rays of polonimo This counter was a Chioare type, having a oylindrical aluminum wall 0.25 mm thick linga with tin pil 0ob wa thiok. The counter was filled with areon plus 10 percent of alcohol to a pressurg of 10 on of mercury.

Ho sumples of astetie ware studied with this Gw counter and with the olpham contero Sample A wa propared Dy bonbarding thin bismuth with aphas of 25 liev energy mad then extraoting tho astatine by vacuum distillation over to a cold platinum plates sample B vea propared in the sano way oxcopt thet the bontarding alphas had an energy of 37 Why rether than 25 Novo Absorption in load indicated thet ammeray of 20 Wev Gnergy was present in ample B hat wos not present in sample A_{g} as is shom in Figo. 60 This emma-rey was found to decay with a half-life of Bab hourso Absorption in aluminum shoned thet sone 0.0 es electrons aocompanied the gammangys; these were in all probchila ty conversion electrons of the 100 MeV gamamays Absorption in platinum and tungster rovealed thet both samples emittod X ravs showine the absorption propeties to be expectod For the h lise of polonium The ratio of the K X-ray counting ote to the alphe courting rato was 10 to 14 times as 1 re in sample B as in sample Ao In samle A the halfolife

 contaned a new isotope of sotebjne, most if not all of whioh deocyed into poze when the

 thus eotabishod, the quabion axises as to whether all the po 210 found in our alpha

 0 so onsistod in ainoipho in aridine a thin bonbardud bianth frol into two egual

ing each samplo．If all the Po 210 formed is a daughter of At 210 the unextracted sample and the extracted astatine sample must each have the same activity on the other hand If some of the $\mathrm{P}_{\mathrm{o}} 210$ is formed directly at bombardment then the unextracted sample must have a greater activity thas the extracted astatine sample。

In practice this procedure requires enough time so that an extrapolation must be made back to the time of the middle of the bombardmento In order to make this extram polation the procedure was repeated allowing various time intervals between the bombard－ ment and the astatine extraction．To eliminate the effect of unequal division of the bombarded bismuth foil and variation of the extraction yield the amount of At 211 alpha－ activity in each sample was used for nomalizationo The ratio of the Po 210 resulting from the decay of the extracted astatino to the total po ${ }^{210}$ formed plotted as a function of extraction time is shown in Figo 7。 The decay is seen to agree quite well with the 8.3 hour half－life foand for the gammareys．The zero time intercept（the time of the middle of the bombardment）shows that within the experimental error all the Po 210 was formed by the decay of the at ${ }^{210}$ ．

Clearly the results shown in Fig。 7 are valid only if the astatine extractions are free from polonium contamination。 For this reason the extraction process（11）employed here will ho described briefly．When an alpha bombarded sample of bismuth on aluminum is heated in the prosence of silver in an evacuated glass vessel the astatine vapor is selectively adsorbed by the silver．Careful tests have shown that after 10 minutes at $310^{\circ} \mathrm{C}$ ．more than 85 percent of the astatine alpha activity was colleoted on the silver foil．Under the same conditions，using a bombarded bismuth sample from which all the astatine had docayed out，only 0.07 percent of the polonium alphamactivity present in the bismuth appeared on the silver foil．For this astatine separation method neither the temperature nor the heating time was very critical；however the bismuth had to be molted（ $273^{\circ} \mathrm{Co}$ or moro），and the poloniwn contaminetion increased slowly with increasing temporature。

If there were any appreciable alpha－branching in the desay of At 2,0 as there
is in At ${ }^{2 l l}$ one should see evidence of this alphamactivity and evidence of the decay product, which would be Bi 206 with a 6.4 day hadfelife。 Examination of extracted astatine in the 48 channel pulse analvser(12) showed no alphamactivity other than that of at 212 and $90^{2}{ }^{20}$. If the branching ratio had been 1 part in 100 or more the resulting alphaw activity could have been observed. Examination of the astatine extracted from a thick bismuth target bombarded with 200 microanpere hours of alpha particles having an energy of 37 Mev showed no evidence of 6.4 day activity. If 1 part in 10^{5} of the At 210 had de= cayed by alpha-emission the 6.4 day $B i 206$ would have been observable.

Conclusions

The (d, p) and (d, n) reactions have recently been treated in a paper by Peaslee。 In this paper he interprets our experimental material and we refer to if for details (13). The main qualitative conclusions are that the stripping processes of the deuteron as opposed to the formation of a compound nucleus in which the whole deuteron is absorbed are mainly responsible for the observed cross sections In the ($d_{\theta} p$) oase the stripping process is the well known Oppenheimer Philips reactiong in the $\left(d_{Q} n\right)$ case it is an analogous reactiono

- The interpretation of the $\left(a_{2} 2 n\right)$ and the $\left(a_{2} 3 n\right)$ reactions can be made in a very simple semiempirical way as follows.

Consider first the cross section σ_{α} for formation of the compound nucleus. This cross section has been calculated in some typical examples by V_{0} Fo Weisskopfo In Fig. 8 the solid lines give Weisskopfs values for $80^{H g^{201}}$ for two values of the barrier heights 25.93 Mev and 22.47 Mev corresponding to $r_{0}=1.3 \times 10^{\infty} 13 \mathrm{~cm}$ and $105 \times 10^{-13} \mathrm{~cm}$; the values are also given for $90^{T h} 232$ for a barrier height of 28.00 Mev corresponding to $r_{0}=1.3 \times 10^{-13} \mathrm{~cm}$.

If we sum our $\left(\alpha_{2} 2 n\right)$ and $\left(\alpha_{2} 3 n\right)$ cross seotions we find passable agreement with Weisskopfis curve See Figo 8. This we interpret as meaning that all other competing reactions $-\left(\alpha_{0} p\right)_{\rho}\left(\alpha_{,}, p n\right)\left(\alpha_{2} \gamma\right),\left(\alpha_{,}, \alpha\right)$, etco have small cross sections compared with $\left(\alpha_{0} 2 n\right)$ and $\left(\alpha_{0} 3 n\right)$ in the enorgy region considered. Exception to this is the ($\alpha_{0} n$) reaction
which in the energy rogion around 20 Mev may have a cross section which．although small on an absolute scale exceeds appreciably the（ $\alpha, 2 n$ ）cross seotion Hence until experim ments on this point are completed it will be impossibie properly to fit the theoretical curve for the compound nucleus formation to our experimental data in the region near the threshold．An investigation of the $\left(\alpha_{s} n\right)$ cross section is in progresso

It is interesting to consider the excitation energy of the compound nucleus above its ground state。 The compound nucleus At 213 in its fundamental state would certainm ly be alpha radioactive．By comparison with neighboring known nuclei at All，AcCl。 At 212 eto．one would make a fair guess of a half－life of about $5 \times 10^{\circ} 3$ soco and an alpha－energy of 7.5 Mov．Hence the excitation energy of the compound nucleus is approxiw mately equal to the energy of the impinging alpha particle minus 705 Mev Thus to release 2 neutrons it takes at least 21.5 Mev and to remove a 3 rd neutron an additional 805 Mev or at least 30 Mev to remove 3 neutrons．

RIID／hvi

11－10 48

References
（1）Do Go Hurst，RoLantham，and Wo Bo Lewis，Proco Royo Soco 174， 126 （1940）。
（2）Jo No Cork，Jo Malpern，and Ho Tatel Phy。Revo 57，348（1940）57s 371（1940）。
（3）RoSoKrishnan and E．A．Nahum，Proco Royo Soo．A180，321（1942）。
（4）J。M。Cork，Phys．Rev。 70， 563 （1946）。
（5）Do Ro Corson，Ko Ro Mackenzios and Eo Segrés Phyo Revo 58，672（1940）。
（6）A。W。Vances Revo Scio Inst． I_{3} ， 489 （1936）。
（7）RoRo Wilson，Phyo Revo 60， 749 （1941）。
（8）Mo Stanley Livingston and $H_{0} A_{0}$ Bethe Revo Modo Phyo 9， 285 （1937）o
（9）Jo Ho Smith，Fhyo Revo 71， 32 （1947）。
（10）Do Ho Templeton，Jo Jo Howland，and Io Perlman，Phyo Revo 72,758 （1947）。
（11）For the separation methods see Johnson，Leininger，and Segre Chemical Properties of Astatine Io Journal of Chemical Physics，in press．
（12）A。Ghiorso，A。Ho Jaffey，H。P。Robinson and Bo Weissbourd，An Alpha Pulse Analyser Apparatus（Plutonium Project Record，Volo 14B，17．3（1946）．（To be issued）。
（13）D。CoPeasloe，Phyo Rev。74， 1001 （1948）。

Figure Captions

Fig. Io_{0} Schematic diagram of the collinating tube foil holder, and current amplifierso This apparatus connects directly to the cyclotron tank and becomes therefore on integral part of the cyclotron vacuum system, obviating the need for any windows or separate pumps.

Fig. 2. The percent of the abeam transmitted by the Al absorber plotted as a function of the absorber thickness. The three sets of points represent data taken before bombardment, at the middle of bombardment, and after bombardment of the bismuth foils. The straggling, given by the difference between the extrapolated range and the mean range divided by the mean range $i s 1.1 \%$.

Fig. 3. Counts per minute of the thin U a-standard plotted as a function of the pulse discriminator bias voltage。 The operating bias was kept constant to within 2 units.

Fig. 4o Absolute cross section for the $B i\left(a_{2} 2 n\right)$ reaction and the $B i\left(a_{s} 3 n\right)$ reaction ploted as a function of the energy of the bombarding alphas.

Fig。5, Absolute cross sections for the $B i\left(d_{9} p\right), B i\left(d_{9} n\right)$ and the $B i\left(d_{g}\right.$ Zn) reastions plotted as a function of the energy of the bombarding deuteronso

Fig. 6. The counting rate on a G-M counter of astatine samples plotted as a function of the thickness of lead absorber. Sample A consisted of the At extracted from a foil of Bi bombarded with alphas of 25 Mev energy; sample B consisted of the At extracted from a foil of Bi bombarded with alphas of 37 Mevo As a cheak of the geometry the mass absorption coefficient of a co60 $\boldsymbol{\gamma}_{\mathrm{m}}$ standard was mes asured and found to be $.055 \mathrm{~cm}^{2} \mathrm{gm}^{-1}$ in Pb .

Fige 7. The amount of po 210 formed by the decay of the extracted At 210 , expressed as percent of the total Po ${ }^{210}$ formed, plotted as a function of the time from the midale of bombardment until the at extraction.

Fig. 8. The cross section of the compound nucleus (At ${ }^{213}$) as a function of the energy of the bombarding nucleus. The solid lines represent the computod data of Weisskopfo The scattered points are experimental values of the sum of of for $\mathrm{Bi}\left(a_{2} 2 n\right)$ and σ for $\mathrm{Bi}\left(\alpha_{0} 3 n\right)$.

Table I。
Experimental Values of the Cross-Section for the Bi $\left(a_{2} 2 n\right) A t^{211}$ and the Bi $(\alpha, 3 n) A t^{210}$ Reactions at Various Energies of the Bombarding Alpha Particles

$\begin{gathered} \alpha-\text { Energy } \\ \text { Mey } \end{gathered}$	Run I berns	$\sigma_{\hat{A t} 211}$ Run II barns	Run III barns	Run I barns	$\sigma_{\mathrm{At}} 210$ Run II barns	Run III barns
18.8		0.000				
19.9	0.000					
20.0			0.000			
20.2		0.001				
21.3	0.01					
21.6		0.01	0.03			
22.4	0.10					
23.0		0.11				
23.1			0.10			
23.5	0.25					
24.2		0.29				
24.6	0.10		0.35			
25.4		0.45				
25.7	0.55					
80.1			0.57			
26.5		0.53				
26.7	. 67					
27.4			0.71			0.000
27.6		0.69			0.000	
27.7	0.75			0.000		
28.6	0.83		0.81	0.004		0.004
28.7		0.78			0.003	
29.6	0.90			0.013		
29.7		0.85			0.007	
29.9			0.90			0.015
30.5	0.89			0.06		
30.7		0.89			0.05	
31.0			0.91			0.10
31.4	0.86			0.17		
31.7		0.85			0.16	
32.2			0.81			0.28
32.3	0.75			0.35		
32.6		$\cdot 0.75$			0.37	
33.1	0.62			0.53		
33.3			0.63			0.53
33.6		0.51			0.61	
34.0	0.48			0.73		
34.5			0.46			0.75
34.6		0.47			0.82	
34.8	0.39			0.93		
36.5		0.37			2.01	
35.6	0.30		0.33	1.03		0.94
36.4	0.24	0.29		1.14	1.16	
35.7			0.25			1.11
37.2	0.20	0.23		1.20	1.21	
38.0	0.17			1.24		
38.8	0.15			1.27		

Table II.

Experimental Values of the Cross-Section for the $\mathrm{Bi}(\mathrm{d}, \mathrm{p}) \mathrm{RaE}$, the $\mathrm{Bi}(\mathrm{d}, \mathrm{n}) \mathrm{PO}_{\mathrm{o}}{ }^{210}$, and the $B i(d, 3 n) P_{0}{ }^{208}$ Reactions at Various Energies of the Bombarding Deuterons.

$\left\|\begin{array}{c} \mathrm{d}-\text { Energy } \\ \text { Mev } \end{array}\right\|$	$\begin{gathered} \sigma_{\text {RaE }} \\ \text { Run I Run II } \\ \text { barns barns } \end{gathered}$	$\sigma_{\mathrm{PO}_{0}} 210$ Run I Run II barns barns	$\sigma_{\mathrm{Po}_{\mathrm{o}}} 208$ Run I Run II barns barns	$\begin{gathered} \mathrm{d}-\text { Energy } \\ \text { Mev } \end{gathered}$	$\left\|\begin{array}{lll} \sigma_{\text {RaE }} & \\ \text { Run I Run II } \\ \text { barns } & \text { barns } \end{array}\right\|$	$\sigma_{\mathrm{Po}^{2}} 210$ Run I Run II barns barns	$\sigma_{\mathrm{P}} 208$ Run I Run II barns barns
5.3	0.0002			13.7	0.110	0.033	0.02
5.9	0.001			13.8	0.102	0.031	0.03
6.5	0.002	0.0003		14.0	0.109	0.032	0.03
7.1	0.005	0.001		14.1	0.102	0.030	$0: 04$
7.6	0.009	0.002		14.3	0.106	0.030	0.04
8.1	0.016	0.004		14.5	0.1040 .098	0.0310 .030	0.050 .05
8.6	0.026	0.007		14.8	0.1010 .095	0.0310 .031	0.070 .07
8.7	0.030	0.006		15.1	0.0960 .093	0.0320 .031	0.100 .10
9.0	0.0400 .037	0.0090 .010		15.3	0.097	0.030	0.12
9.4	0.0510 .051	0.0110 .013		15.4	0.088	0.030	0.14
9.7	0.062	0.014		15.55	0.094	0.032	0.15
9.8	0.064	0.017		15.7	0.086	0.031	0.17
10.1	0.073	0.016		15.8	0.091	0.030	0.19
10.2	0.076	0.020		16.0	0.082	0.029	0.23
10.4	0.082	0.019		16.05	0.089	0.030	0.24
10.6	0.084	0.023		16.3	0.0840 .081	0.0300 .030	0.270 .27
10.7	0.091	0.023		16.5	0.084	0.031	0.31
12.0	0.0990 .095	0.0260 .026		16.6	0.078	0.030	0.33
11.3	0.104	0.028		16.75	0.084	0.031	0.36
11.4	0.100	0.028		16.9	0.077	0.030	0.38
11.6	0.108	0.029		17.0	0.082	0.031	0.41
11.8	0.105	0.029		17.1	0.073	0.032	0.43
11.9	0.111	0.030		17.2	0.079	0.031	0.46
12.2	0.1120 .107	0.0300 .031		17.4	0.0740 .071	0.0310 .031	0.510 .50
12.5	0.1140 .109	0.0300 .031	0.01	17.7	0.0750 .070	0.0300 .032	0.550 .53
12.8	0.114	0.031		17.9	0.074	0.032	0.59
12.9	0.108	0.029	0.02	18.0	0.067	0.032	0.59
13.1	0.113	0.030	0.01	18.1	0.072	0.030	0.64
13.2	0.108	0.031	0.02	18.3	0.0730 .067	0.0320 .029	0.660 .66
13.3	0.113	0.030	0.02	18.5	0.0700 .066	0.0320 .031	0.71 0.69
13.5	0.1120 .107	0.0310 .031	$0.02 \quad 0.02$	18.7	0.068	0.030	0.75

$$
F_{14} 2
$$

- Fig. 9

