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ABSTRACT OF THE DISSERTATION

Physical Layer Security with Full-Duplex Radio in Wireless Networks

by

Qiping Zhu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2019

Dr. Yingbo Hua, Chairperson

Physical layer security (PLS) is an approach that provides secrecy based on information-

theoretic model which does not account for any computation capability assumption or pre-

installed standardized secret key generation algorithm and it is a good additional protection

on the top of the existing security scheme. This work includes four different topics for

improving PLS with full-duplex radio. In the first topic, we develop a fast algorithms

for computing power allocations in subcarriers, subject to power and rate constraints, to

maximize the secrecy capacity of a three-node network consisting of a source, a full-duplex

capable destination and an eavesdropper. The optimal power allocation at the destination

is found to be significant especially when its power budget is high. The second topic is about

the analysis of a two-phase scheme for secret information transmission with the technique

of anti-eavesdropping channel estimation (ANECE) which can degenerate Eve’s channel

estimation with any number of antennas at Eve. The analysis is based on the assumption

that everyone has prior statistical knowledge of its channel state information (CSI) and it

yields lower and upper bounds on secure degrees of freedom as functions of the number
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of antennas on Eve and the size of information packet. For the third topic, we present

optimal designs of the pilots for ANECE based on two criteria. The first is to optimize

the minimum mean square error (MMSE) channel estimation for the users, and the second

is to maximize the mutual information between the pilot-driven signals observed by the

users. Closed-form optimal pilots are shown under both criteria but subject to a symmetric

and isotropic condition. Algorithms for computing the optimal pilots are shown for general

cases. In the fourth topic, we analyze the secure degree of freedom and the asymptotic

expression of the achievable secret key rate from a two-phase key generation scheme which

consists of channel training phase and secure information transmission phase. Based on the

asymptotic secret key rate, we develop an efficient algorithm for coherence time allocation

between the two phases to maximize the achievable secret key rate.
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Chapter 1

Introduction

1.1 Motivations

Security of wireless networks is of paramount importance in today’s world as bil-

lions of people around the globe are dependent upon these networks for a myriad of activities

for their businesses and lives. A secure wireless network should satisfy the requirements of

authenticity, confidentiality, integrity, and availability [1]. Among these issues, confidential-

ity is of particular interest to many researchers in recent years which also is the main focus

in this work. For convenience, we will refer to confidentiality as security and vice versa.

The traditional way to keep information confidential from unauthorized persons

and/or devices is via cryptography at upper layers of the network, which include the

asymmetric-key method (involving a pair of public key and private key) and the symmetric-

key method (involving a secret key shared between two legitimate users). As the comput-

ing capabilities of modern computers (including quantum computers) rapidly improve, the

asymmetric-key method is increasingly vulnerable as this method relies upon computational
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complexity for security. Moreover, for the emerging decentralized networks, i.e. 5G network

and IoT network, devices with different computation capability may randomly connect in

or leave the network at any instance. Therefore, establishing standardized cryptography

key management and distribution become very challenging [2].

Different to the traditional cryptography methods, physical layer security (PLS)

is a technique that does not account for any assumption of computation capability from

the adversary and it is under information-theoretic security model that the information

leakage to eavesdropper can be precisely expressed which is a function of the channel quality.

PLS can provide either secret key establishment or direct secret information transmission

between the users, which make it a good additional protection for the existing security

scheme. There are two complementary approaches in PLS [3]: wiretap channel model and

secret key agreement. The former requires one user to transmit secret information directly

to the other and the performance measurement is called secrecy capacity. The latter requires

users to use their (correlated) observations and public discussion agreement to establish a

secret key and the performance measurement is called secret key capacity.

1.2 Wiretap Channel Model

Wiretap channel model is first introduced by Wyner [4] and it requires the eaves-

dropping channel is noisier or less capable than the channel between the users. Later,

Csiszar and Korner extend the theory to broadcast channel with confidential and common

messages [5]. Particularly, the quantity to measure the secret message is secrecy capacity

and it is defined as
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CWT = max
pVX

(I(V ;Y )− I(V ;Z)) (1.1)

where X is the source codewords, Y is the received codewords at legitimate node, Z is

the received codewords at eavesdropping node and V is the random variable accounts for

randomization in the encoder. Equation (1.1) is based on the Markov chain V → X → Y Z

and CWT is maximization regarding to the joint distribution pV X . If eavesdropping channel

is less capable than the channel between the legitimate nodes, then (1.1) is maximized by

V = X and it can be simplified as

CWT = max
pX

(I(X;Y )− I(X;Z)). (1.2)

1.3 Secret Key Agreement

The theory of physical layer secret key agreement is first established by Maurer [6],

Ahlswede and Csiszar [7, 8]. There two different models for key generation: source model

and channel model. In source model, all the parties observe their individual realizations of

a random source which is assumed to be outside the control of all parties. Denote X, Y , Z

are the observed signals at the two legitimate nodes and eavesdropping node respectively,

then through public discussion the secret key capacity satisfies

I(X;Y )−min{I(X;Z), I(Y ;Z)} ≤ Cskey ≤ max{I(X;Y ), I(X;Y |Z)} (1.3)

which can be recognized as Cskey = I(X;Y ) when Z is independent of (X,Y ).

For the channel model, it can be viewed as wiretap channel model enhanced with

public discussion. Denote X as the transmitted secure codeword, Y , Z as the received

3



codeword at legitimated node and eavesdropping node respectively, then the secret key

capacity for channel model satisfies

max

{
max
pX

(I(X;Y )− I(X;Z)),max
pX

(I(X;Y )− I(Y ;Z))

}
≤ Cckey ≤ max

pX
min{I(X;Y ), I(X;Y |Z)}

(1.4)

1.4 Contributions

In this work, we study four different topics for improving wireless physical layer

security with full-duplex radio. Part of this work has been included in [9, 10, 11, 12, 13]

In chapter 2, we will consider a three-node multi-subcarrier network consisting of a

source (Alice), a destination (Bob) with full-duplex and an eavesdropper (Eve). Bob is able

to receive the signal from Alice and at the same time to transmit a jamming noise against

Eve. Under normal circumstances where for example some public information is shared and

all nodes can communicate friendly with each other and their channel state information be

made available to all, we assume that Alice and Bob know their channel amplitudes with

respect to Eve during secure data transmissions. We will utilize the knowledge of channel

amplitudes in computing power allocations for maximum secrecy capacity and develop fast

algorithms for this purpose. Unlike [14, 15, 16], we take into account the residual self-

interference at Bob which is a more realistic model [17, 18, 19, 20, 21]. Another unique

feature of this part is that we consider both power and rate constraints in maximizing the

secrecy capacity while most of the prior works on physical layer security such as [15, 16,

22, 23, 24, 25, 26, 27, 28, 29, 30] only considered power constraints. In order to transmit a

packet from Alice to Bob, a preselected data rate for the packet should be guaranteed.
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In chapter 3, we analyze a two-phase scheme for secret information transmission

proposed in [31]. In the first phase, an anti-eavesdropping channel estimation (ANECE)

method is applied which allows users to find their channel state information (CSI) but sup-

presses Eve’s ability to obtain its CSI. In the second phase, secret information is transmitted

between Alice and Bob while Eve has little or no knowledge of its CSI. We will assume that

Eve has a prior statistical knowledge of its CSI. With every node knowing its statistical

model of CSI , we use mutual information to analyze the secret rate of the network, from

which lower and upper bounds on the secure degrees of freedom (SDoF) are derived. These

bounds are simple functions of the number of antennas on Eve. In literature, [32] studies

the SDoF with perfect CSI at both receiver and eavesdropper but no CSI in transmitter,

[33] derives the SDoF analysis based on two-phases scheme but no full duplex is involved.

Our result has not been discovered in the literature and it is significant for understanding

the property of ANECE.

In chapter 4, we present optimal designs of the pilot signals subject to ANECE

requirement, which is to suppress Eve’s channel estimation. We will consider two criteria

for optimality: 1) minimizing the sum of mean squared errors (MSE) of the minimum-

mean-squared-error (MMSE) channel estimation at each and every user, and 2) maximizing

the sum of the pair-wise mutual information (MI) between the signals excited by the pilots

and observed by all users. The first criterion is useful since the best channel estimation at

each user allows the best detection of the information symbols transmitted subsequently

following the pilots. The second criterion is also useful since the MI between two signals

observed by two users is the capacity of secret key generation based on the two signals

5



assuming that Eve’s CSI is independent of the (reciprocal) CSI between the two users

[34, 35, 36]. The novelty of our works includes: 1) Closed-form optimal pilots are presented

under a symmetric and isotropic condition where each user has the same number of antennas,

the same noise variance, the same transmit power and the independent and identically

distributed (i.i.d.) channel coefficients; and 2) Algorithms for computing the optimal pilots

for any other choices of the above parameters. The closed-form optimal pilots and the

computed optimal pilots are compared with the previous choice shown in [31]. The algorithm

for optimal MMSE channel estimation is an extension of [37] from two users to more than

two users. The algorithm for maximum MI extends [38] from two users to more than two

users. These extensions are significant contributions while they are subject to the ANECE

requirement.

In chapter 5, we analyze the achievable secret key rate for a two-phase key genera-

tion scheme. In phase one, users will transmit pilot signals and all the nodes can successfully

estimate their CSI. In phase two, users will transmit secret information. With the help of

public discussion, the signal received in users from both phases will be utilized for key gen-

eration. We consider the users are equipped with full-duplex radio and multiple antennas.

Such system model is an extension to the SISO system in [35, 36]. We show that full-duplex

system can achieve higher SDoF compared to half-duplex when Eve’s antenna number is no

larger than the total transmitting antenna number from the users. The asymptotic secret

key rate is derived and an effective algorithm for coherence time allocation between the

two phases that maximizes the secret key rate is given. The simulation results show the

relationship of Eve’s antenna number and the coherence time allocation.
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1.5 Notations

Vectors and matrices are represented by bold lower case and bold upper case

respectively. The n×n identity matrix is In or simply I when its dimension is obvious. The

trace, expectation, differential, natural logarithm, base-2 logarithm, determinant, transpose,

conjugate, conjugated transpose and Kronecker product are respectively Tr, E , ∂, ln, log2,

| · |, T , ∗, H and ⊗. The n×m real field and n×m complex field are Rn×m and Cn×m. All

other notations are defined in the context.

7



Chapter 2

Fast Power Allocation for Secure

Communication with Full-Duplex

Radio

2.1 System Model

A three-node wireless network is shown as Fig. 2.1. This is an ad hoc network

where every node uses the same frequency band to communicate with other nodes. In this

network (or a snapshot of this network), the source (Alice) plans to transmit some sensitive

information to its legitimate destination (Bob) while a potential eavesdropper (Eve) is to

be prevented from “wiretapping” the transmission. We assume that the channel on each

link consists of N orthogonal subcarriers and the fading on each subcarrier is flat. To

actively deteriorate the SINR at Eve, Bob will use its full-duplex capacity to transmit

8



hSD

hDE

hDD

Destination
(Bob)

Source 
(Alice)

Eavesdropper
(Eve)

hSE

Figure 2.1: A three-node wireless network with a full-duplex destination.

interference noise in the same channel where at the same time it receives the signal from

Alice. Potentially, all nodes could work in full duplex. But this would make the network

much more complicated. If all nodes only work in half duplex, then this is a conventional

network for which the conventional methods can be applied. The setting of our problems

is somewhere in between the two extremes.

Let xS(t) ∈ CN×1 be the signal vector of approximately i.i.d. symbols of zero mean

and unit variance) to be transmitted by Alice and xD(t) ∈ CN×1 be the jamming noise vector

of approximately i.i.d. symbols of zero mean and unit variance) to be transmitted by Bob.

Then the signal vectors to be received by Bob and Eve can be respectively expressed as:

yD(t) = hSD ◦
√

pS ◦ xS(t) +
√
ρhDD ◦

√
pD ◦ xD(t) + nD(t),

yE(t) = hSE ◦
√

pS ◦ xS(t) + hDE ◦
√

pD ◦ xD(t) + nE(t),

where hSD ∈ CN×1 is the channel response vector from Alice to Bob, hSE ∈ CN×1 is

that from Alice to Eve, hDE ∈ CN×1 is that from Bob to Eve, and hDD ∈ CN×1 is

the self-interference channel response vector of Bob. pS ∈ RN×1 and pD ∈ RN×1 are the

transmitting power vectors of Alice and Bob respectively;
√

pS and
√

pD denote the element-

9



wise square roots of pS and pD, respectively. Both nD(t) ∈ CN×1 and nE(t) ∈ CN×1

are independent white Gaussian noise of zero mean and unit variance. The symbol ‘◦’

denotes the Hadamard product (i.e., element-wise product). And ρ is the self-interference

attenuation factor.

Let p
(n)
S denote the nth element of pS , and other similar notations are defined

accordingly. The SINRs of the nth subcarrier at Bob and Eve are respectively:

γ
(n)
D =

Anxn
1 +Bnyn

and γ
(n)
E =

Cnxn
1 +Dnyn

, (2.1)

where An = |h(n)
SD|2, Bn = ρ|h(n)

DD|2, Cn = |h(n)
SE |2, Dn = |h(n)

DE |2, xn = p
(n)
S and yn = p

(n)
D .

Note that we will assume that the channel amplitudes An, Bn, Cn and Dn, ∀n

are available for computing power allocations. None of the channel phases is required. In

practice, the amplitudes are much slower in changing and much easier to estimate than the

phases are. Since the channel amplitudes have a large coherence time, any data transmission

from Eve to Alice and bob could allow Alice and Bob to know the required channel amplitude

responses from Alice and Bob to Eve via the reciprocal propositionerty. We also assume

that Alice and Bob are fully cooperative.

Now secrecy capacity of the system in bits per channel use is known as [39]:

C(x,y) =
1

N

N∑
n=1

max{0,∆Rn(xn, yn)}, (2.2)

where ∆Rn(xn, yn) = log(1+γ
(n)
D )−log(1+γ

(n)
E ). The pre-multiplier 1/N in (2.2) should be

removed if the N subcarriers are spatial subcarriers (due to use of multiple antennas) instead

of temporal subcarriers (due to time and/or frequency divisions). This paper is concerned

about maximizing the secrecy capacity C(x,y) through power allocations at both Alice and

Bob. And most of the technical details are aimed to reduce the computational complexity.

10



In relation to C(x,y), we define R̃s(x,y) as:

R̃s(x,y) = max{0,∆R(x,y)}, (2.3)

where ∆R(x,y) = 1
N

∑N
n=1 ∆Rn(xn, yn).

Shown below are three important proposition. proposition 1 will be used to sim-

plify the secrecy capacity as an objective function from a form of “summation of maximums”

to a form of “maximum of sums”. proposition 2 is a precursor of proposition 3, the latter

of which provides a necessary condition to determine whether a subcarrier at Bob needs to

be allocated with nonzero power.

Proposition 1 C(x,y) is no less than R̃s(x,y), and max(C(x,y)) = max(R̃s(x,y)) subject

to
∑N

n=1 xn ≤ PS and
∑N

n=1 yn ≤ PD.

Proposition 2 For any given xn ∈ (0,+∞), there is at most one stationary point for

∆Rn(xn, yn) with regard to yn ∈ (0,+∞).

Proposition 3 For any given xn, ∀n, a necessary condition that the optimal value of yn

is nonzero is that Bn
Dn

< 1 and An
Cn

> Bn
Dn

.

See the proof in [10] for proposition 1 - 3.

2.2 Power allocation under power constraints

In this section, we consider the problem of power allocation for maximization of

secrecy capacity subject to power-only constraints. Specifically, we consider the following

problem:

11



max
x,y

C(x,y) (2.4a)

s.t.

N∑
n=1

xn ≤ PS ,
N∑
n=1

yn ≤ PD,

xn ≥ 0, yn ≥ 0,∀n ∈ N.

(2.4b)

where we assume the power budget PS at source and the power budget PD at destination.

Note that N
.
= {1, ..., N}.

With proposition 1, the power allocation problem (2.4a) can be transformed equiv-

alently to:

max
x,y

∆R(x,y)

s.t. Power constraint (2.4b).

(2.5)

Solving this non-convex optimization problem (2.5) directly is still difficult. We

will treat this problem in two phases: in phase one, we optimally allocate the source power

for a given destination power vector; and in phase two, we optimally allocate the destination

power for a given source power vector. The two phases will be iterated until convergence.

Note that since the two-phase iteration algorithm increases the same (upper bounded)

objective function at each iteration and each phase, this algorithm is guaranteed to be

locally convergent. Such a propositionerty is a special case of one that is discussed in [40].

In the following two subsections, the two phases of the two-phase algorithm are

discussed separately in detail.
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2.2.1 Source power allocation

With a fixed destination power allocation, the source power allocation problem

from (2.5) is:

max
x

1

N

N∑
n=1

log(1 + αnxn)− 1

N

N∑
n=1

log(1 + βnxn)

s.t.

N∑
n=1

xn ≤ PS , xn ≥ 0,∀n ∈ N.

(2.6)

where

αn =
An

1 +Bnyn
and βn =

Cn
1 +Dnyn

. (2.7)

The above problem is still non-convex due to the non-convex cost function. But

we will be able to find the solution to this problem by finding the solution to its KKT

conditions as follows.1 The Lagrangian function of the problem can be written as:

L(x,λ, υ) =− 1

N

N∑
n=1

log

(
1 + αnxn
1 + βnxn

)
− λTx + υ(

N∑
n=1

xn − PS). (2.8)

The solution to the problem (2.6) must satisfy the following KKT conditions [41]:

∂L
∂xn

= −ϕn(xn)− λn + υ = 0,

N∑
n=1

xn ≤ PS , υ ≥ 0, υ(

N∑
n=1

xn − PS) = 0,

xn ≥ 0, λn ≥ 0, λnxn = 0,∀n ∈ N,

(2.9)

where

ϕn(xn) =
1

N

αn
1 + αnxn

− 1

N

βn
1 + βnxn

. (2.10)

1In general, the KKT conditions are necessary conditions for the optimal solution. But for all convex
problems and some non-convex problems, the KKT conditions are both necessary and sufficient conditions
for the optimal solution. When the solution to the KKT conditions is unique, it must be the optimal solution
to the original problem. When KKT conditions (of a non-convex problem) have more than one solutions,
one has to be innovative to exploit other propositionerties associated with the optimal solution to rule out
the non-optimal solutions if possible.
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Before solving these KKT conditions, we introduce the following proposition:

Proposition 4 Let x† be the solution of the source power allocation phase. Then, for any

n, if αn ≤ βn, then x†n = 0. Furthermore, we have either
∑N

n=1 x
†
n = 0 or

∑N
n=1 x

†
n = PS.

See proof in [10] for proposition 4 and follow that we have x†n = 0 for n ∈ {n|αn ≤ βn, n ∈

N}, and for the remaining subcarriers, the power allocation results can be obtained by

solving the following simplified KKT conditions:

∂L
∂xn

= −ϕn(xn)− λn + υ = 0,

xn ≥ 0, λn ≥ 0, λnxn = 0,∀n ∈ Θy,∑
n∈Θy

xn = PS ,Θy
.
= {n|αn > βn, n ∈ N}.

(2.11)

It can be verified that ∂ϕn(xn)
∂xn

< 0,∀n ∈ Θy. From the first equation in (2.11), we know

that υ is a decreasing function of xn,∀n ∈ Θy. Thus, these simplified KKT conditions can

be solved by a bisection search algorithm as shown in the table of Algorithm 12. This

algorithm is similar to a solution in [39].

2For KKT conditions, all the Lagrange multipliers (such as v and λn) associated with the inequalities
must be non-negative. For a given v and λn = 0, the solution to ϕn(x†n) = v may or may not be positive. If
there is a positive solution of xn, the corresponding λn is zero as assumed in the first place. If there is no
positive solution of xn, the corresponding optimal solution of xn is zero and the corresponding λn should be
positive (although its actual value is now useless).Also, ϕn(x†n) = υ is equivalent to an quadratic equation
which has two roots, only one of the two roots can be greater than or equal to 0, which is the valid solution.
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Algorithm 1 Source power allocation algorithm - solution to (2.11):

Input:

An, Bn, Cn, Dn, yn,∀n ∈ N; Source power constraint PS ; Accuracy threshold ε.

Output:

υ+ = max
n∈Θy

{ϕn(0)}; υ− = max
n∈Θy

{ϕn(PS)};

1: Temporary variable µ = 0; x†1 = x†2 =, ...,= x†N = 0.

2: while (|PS − µ| > ε) do

3: υ = υ−+υ+

2 ;

4: for n ∈ Θy do

5: if υ ≥ ϕn(0) then

6: x†n = 0;

7: else

8: Solve ϕn(x†n) = υ (By solving an equivalent quadratic equation. There is only one

positive solution to this equation due to the nature of the function ϕn(xn).) and set

x†n = xn;

9: end if

10: end for

11: µ =
∑
n∈Θy

x†n;

12: if µ > PS then

13: υ− = υ;

14: else

15: υ+ = υ;

16: end if

17: end while

18: return x†1, x
†
2, ..., x

†
N .
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2.2.2 Destination power allocation

With a given source power allocation, the destination power allocation problem

from (2.5) is as follows:

max
y

1

N

N∑
n=1

(
log(1 +

Anxn
1 +Bnyn

)− log(1 +
Cnxn

1 +Dnyn
)

)

s.t.

N∑
n=1

yn ≤ PD, yn ≥ 0,∀n ∈ N.

(2.12)

By proposition 3, the above problem is equivalent to:

max
y

1

N

∑
n∈Φ

(log(1 +
Anxn

1 +Bnyn
)− log(1 +

Cnxn
1 +Dnyn

))

s.t.
∑
n∈Φ

yn ≤ PD, yn ≥ 0,∀n ∈ Φ,

(2.13)

where

Φ
.
= {n|n ∈ N,

Bn
Dn

< 1,
An
Cn

>
Bn
Dn
}, (2.14)

and yn = 0,∀n 6∈ Φ.

The above problem is once again non-convex. To find its solution, we will consider

its KKT conditions. The Lagrangian function of this problem is:

L(y,λ, υ) =

− 1

N

∑
n∈Φ

(log(1 +
Anxn

1 +Bnyn
)− log(1 +

Cnxn
1 +Dnyn

))

− λTy + υ(
∑
n∈Φ

yn − PD).

(2.15)
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The KKT conditions of (2.13) are:

∂L
∂yn

= −ψn(yn)− λn + υ = 0,

∑
n∈Φ

yn ≤ PD, υ ≥ 0, υ(
∑
n∈Φ

yn − PD) = 0,

yn ≥ 0, λn ≥ 0, λnyn = 0, ∀n ∈ Φ,

(2.16)

where

ψn(yn) =
1

N

∂∆Rn
∂yn

=
1

N

(
Bn

1 +Bnyn +Anxn

− Bn
1 +Bnyn

− Dn

1 +Dnyn + Cnxn
+

Dn

1 +Dnyn

)
.

(2.17)

From (2.17), we know that the region of interest for yn is where ψn(yn) > 0. In this region,

ψn(yn) is decreasing with increasing yn:

Proposition 5 ψn(yn) is decreasing with increasing yn as long as ψn(yn) > 0 if An
Bn

> Bn
Dn

and Bn
Dn

< 1.

See [10] for the proof of proposition 5 and follows that the KKT conditions in

(2.16) can be solved with a bisection search of υ as shown in Algorithm 2.
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Algorithm 2 Destination power allocation algorithm - solution to (2.16)

Input:

An, Bn, Cn, Dn, xn,∀n ∈ Φ; Destination power constraint PD; Accuracy threshold ε.

Output:

υ+ = max
n∈Φ
{ψn(0)}; υ− = max{0,max

n∈Φ
{ψn(PD)}};

1: for n ∈ Φ do

2: if ψn(0) ≤ 0 then

3: y†n = 0;

4: else

5: Solve ψn(y†n) = 0 by solving an equivalent 4th-order polynomial which has only one positive

root. The roots of 4th-order polynomial have closed-form expressions.;

6: end if

7: end for

8: if (
∑
y†n > PD or υ− > 0) then

9: Temporary variable µ = 0; y†n = 0,∀n ∈ Φ.

10: Do bisection search of υ and obtain solution y†n,∀n to meet the power constraint |
∑
n∈Φ y

†
n−

PD| ≤ ε. The algorithm is similar to algorithm 1.

11: end if

12: return y†n,∀n ∈ Φ.

2.3 Power allocation under power and rate constraints

In this section, we consider power allocation for maximizing the secrecy capacity

of the three-node network subject to power constraints as well as a source-to-destination

data rate constraint. Namely, we consider the following non-convex problem:
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max
x,y

1

N

∑
n∈Θy

∆Rn(xn, yn)

s.t.
1

N

N∑
n=1

log(1 +
Anxn

1 + ynBn
) ≥ CSD,

Power constraint (2.4b).

(2.18)

where CSD is the required source-to-destination rate. (In the scenario of the key transmis-

sion, this rate should be the rate of the data packet containing the key.) The set Θy is the

same set defined in (2.11), and ∆Rn(xn, yn) < 0,∀n 6∈ Θy. This is why the sum in the

objective function is over n ∈ Θy. However, due to the rate constraint, the optimal xn may

be positive for some n 6∈ Θy. So, the sum in the rate constraint must still be done over all

n ∈ N. The larger is the secrecy capacity (the first line in (2.18)), the more secure is the

data rate from the source to the destination (the second line in (2.18)). The data packet

transmitted from source to destination should be encoded at the source (and decoded at

the destination) jointly across all subcarriers (not separately on each subcarrier).

Although the rate constraint introduces a complex situation where xn,∀n and

yn,∀n now have a shared constraint, the two-phase iteration method is still applicable.

Each of the two phases is discussed next.
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2.3.1 Source power allocation

In this phase, y is fixed and the optimization problem (2.18) reduces to the fol-

lowing convex problem:

max
x

1

N

∑
n∈Θy

[log(1 + αnxn)− log(1 + βnxn)]

s.t.
1

N

N∑
n=1

log(1 + αnxn) ≥ CSD,

N∑
n=1

xn ≤ PS , xn ≥ 0,∀n ∈ N.

(2.19)

where αn and βn are defined in (2.7). The Lagrangian function of this problem is:

L(x, λ,µ, υ) = − 1

N

∑
n∈Θy

(log(1 + αnxn)− log(1 + βnxn))

+ λ(CSD −
1

N

N∑
n=1

log(1 + αnxn))− µTx + υ(

N∑
n=1

xn − PS).

(2.20)

The KKT conditions of (2.19) are

∂L
∂xn

= −ϕ̄n(xn)− λ

N

αn
1 + αnxn

− µn + υ = 0,

λ ≥ 0,
1

N

N∑
n=1

log(1 + αnxn) ≥ CSD,

λ(
1

N

N∑
n=1

log(1 + αnxn)− CSD) = 0,

xn ≥ 0, µn ≥ 0, µnxn = 0,∀n ∈ N,

υ ≥ 0,

N∑
n=1

xn ≤ PS , υ(

N∑
n=1

xn − PS) = 0,

(2.21)

where ϕ̄n(xn) = ϕn(xn) as defined by (2.10) for n ∈ Θy, and ϕ̄n(xn) = 0 for n 6∈ Θy. From

the first equation in (2.21), we see that if λ is fixed, υ is a decreasing function of xn, and if υ

is fixed, λ is an increasing function of xn. Hence, the conditions of (2.21) can be solved by a

two-dimensional bisection search as summarized in the table of Algorithm 3. The bisection

search of υ is to meet the power constraint, and the bisection search of λ is to meet the
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rate constraint. For each given pair of υ and λ, the first equation in (2.21) is equivalent to

a quadratic equation of xn and hence has a closed-form solution for xn.

Algorithm 3 Algorithm to solve the problem (2.19) by solving the KKT conditions (2.21),

which uses 2-D bisection search for υ and λ
Input:

An, Bn, Cn, Dn, yn,∀n ∈ N; Source power constraint PS ; SD capacity constraint CSD; Accuracy

threshold ε, ζ.

Output:

1: Set λ = 0 (i.e., removing the rate constraint), do the search for υ and x (similar to Algorithm

1);

2: Calculate SD capacity C(x);

3: if C(x) > CSD then

4: return x (This means that the rate constraint is satisfied by the solution without the rate

constraint even imposed.);

5: else

6: Two-Dimensional bisection search: Do bisection search for υ > 0 to meet the power

constraint up to the precision ε. For each given υ, do bisection search for λ > 0 to meet the

rate constraint up to the precision ζ. For each given pair of υ and λ, find xn ≥ 0 as the

solution to the first equation in (2.21) for each n ∈ N.

7: return x.

8: end if
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2.3.2 Destination power allocation

In this phase, x is fixed and the problem (2.18) reduces to the following (still

non-convex) problem:

max
y

1

N

∑
n∈Θy

(
log(1 +

Anxn
1 +Bnyn

)− log(1 +
Cnxn

1 +Dnyn
)

)

s.t.
1

N

N∑
n=1

log(1 +
Anxn

1 +Bnyn
) ≥ CSD,

N∑
n=1

yn ≤ PD, yn ≥ 0,∀n ∈ N.

(2.22)

By proposition 3, the problem (2.22) can be rewritten as

max
y

1

N

∑
n∈Ψy

(
log(1 +

Anxn
1 +Bnyn

)− log(1 +
Cnxn

1 +Dnyn
)

)

s.t.
1

N

∑
n∈Ψy

log(1 +
Anxn

1 +Bnyn
) ≥ C̃SD,

∑
n∈Ψy

yn ≤ PD, yn ≥ 0,∀n ∈ Ψy,

(2.23)

where

Ψy = Θy ∩ Φ, (2.24)

C̃SD = CSD −
1

N

∑
n∈Ψ⊥y

log(1 +
Anxn

1 +Bnyn
),

Ψ⊥y = {n|n ∈ N, n 6∈ Ψy},

(2.25)

and yn = 0,∀n ∈ Ψ⊥y .

Because the set Ψy is a function of yn, ∀n, we will use the following approach to

determine Ψy:

We start with the largest possible set of Ψy which is Ψ
(0)
y = Φ. Then, for any

given Ψy = Ψ
(k)
y , solve the problem (2.23), substitute the solution y(k) into the equation

(2.24) to obtain a new Ψ
(k+1)
y . If Ψ

(k)
y = Ψ

(k+1)
y , stop, and y(k) is the solution; otherwise,

let Ψy = Ψ
(k+1)
y , and continue the iteration.
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Now the main challenge is how to solve the problem (2.23) with a given Ψy. Since

solving the exact KKT conditions of (2.23) is very tedious even if feasible, we will now use a

sequential convex programming (SCP) method [42] to relax the nonconvex rate constraint

into a convex one by sequential linearization. Let

F (y) =
1

N

∑
n∈Ψy

log(1 +
Anxn

1 +Bnyn
). (2.26)

By the first order Taylor’s series expansion around y = y(k), F (y) can be approximated as:

FT (y,y(k)) = F (y(k)) + (∇F (y(k)))T (y − y(k))

= F (y(k)) +
1

N

∑
n∈Ψy

φn · (yn − y(k)
n ),

(2.27)

where φn = − Bn

1+Bny
(k)
n

+ Bn

1+Bny
(k)
n +Anxn

.

We compute the updated estimate y(k+1) by the following:

y(k+1) = arg max
y

 1

N

∑
n∈Ψy

(
log(1 +

Anxn
1 +Bnyn

)− log(1 +
Cnxn

1 +Dnyn
)

)
s.t. FT (y,y(k)) ≥ C̃SD,∑

n∈Ψy

yn ≤ PD, yn ≥ 0,∀n ∈ Ψy.

(2.28)

The Lagrangian function of this problem is:

L(y, λ,µ, υ) =− 1

N

∑
n∈Ψy

(log(1 +
Anxn

1 +Bnyn
)− log(1 +

Cnxn
1 +Dnyn

))

− µTy + υ(
∑
n∈Ψy

yn − PD) + λ
(
C̃SD − FT (y,y(k))

)
.

(2.29)
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The KKT conditions of (2.28) are:

∂L
∂yn

= −ψn(yn)− λ

N
φn − µn + υ = 0,

yn ≥ 0, µn ≥ 0, µnyn = 0, ∀n ∈ Ψy,

υ ≥ 0,
∑
n∈Ψy

yn ≤ PD, υ(
∑
n∈Ψy

yn − PD) = 0,

λ ≥ 0, FT (y,y(k))− C̃SD ≥ 0

λ
(
C̃SD − FT (y,y(k))

)
= 0,

(2.30)

where ψn(yn) is defined in Eq. (2.17). From the first condition of (2.30), one can verify

by using propositionosition 5 that λ and υ are each monotonic functions of yn as long as

ψn(yn) > 0. So, the KKT conditions in (2.30) can be solved by a 2-D bisection algorithm

which is similar to algorithm 3 but omitted here. Every new solution of yn,∀n needs to be

used to update the problem (2.28) until convergence.

2.4 Numerical Results

In this section, we present the simulation results based on our proposed algorithms.

In the simulation, all channel magnitudes are Rayleigh distributed with unit mean square,

and the self-interference attenuation factor ρ is set to be 0.5 unless stated otherwise.

2.4.1 With power - only constraints

With N = 8 and PS = PD = P , shown in Fig. 2.2 are four curves of averaged

secrecy capacity versus the power P . The “UB” means “asymptotical limit at high power”,

“JA” means “joint optimal power allocation at both source and destination”, “DA” means

“optimal destination power allocation while uniform source power allocation”, “SA” means
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“optimal source power allocation while uniform destination power allocation”, and “UA”

means “uniform power allocation at both source and destination”. We see that in the

very low power region, “optimal source power allocation” has an advantage over “optimal

destination power allocation”. This is because at low power, the SINR on each subcarrier

(see (2.1)) is dominated by the source power and the destination power has little effect.

While in the high power region, “optimal destination power allocation” is much

more effective than “optimal source power allocation”. This is because at higher power,

the uniform source power allocation approaches its optimal allocation, and hence optimal

destination power allocation subject to uniform source power allocation approaches the

joint optimality at both source and destination. However, the uniform destination power

allocation is generally not optimal at high power. We see indeed that the results for “optimal

destination power allocation” and “joint optimal power allocation” achieve the same upper

bound at high power. The effect of the optimal destination power allocation at high power

is very significant.

Shown in Fig. 2.3 are results for a varying level of self-interference channel mag-

nitude. Clearly, the less the self-interference, the higher secrecy capacity achievable.

The two-phase iterations typically take less than 5 iterations to converge. The

bisection search within each of the two phases converges rapidly (exponentially fast) as

expected.
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Figure 2.2: Secrecy capacity vs. power budget P = PS = PD (ρ = 0.5)
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Figure 2.3: The secrecy capacity vs. self-interference attenuation factor ρ (PS = PD =
30dB)
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2.4.2 With power and rate constraints

Shown in Figs. 2.4 and 2.5 is a comparison of three different cases in terms of the

secrecy capacity against Eve (Figs. 2.4) and the Alice-to-Bob data rate (Fig. 2.5) for a

specific realization of all channels where An < Cn,∀n ∈ N (i.e., Eve has a stronger channel

from Alice than Bob has from Alice for all subcarriers).

In case I, the data rate is maximized subject to power constraints at Alice and

Bob but there is no secrecy capacity constraint. The resulting data rate is denoted by

CSD,I (which is obtained by the standard waterfilling algorithm). And the resulting secrecy

capacity RSE,I is zero for this channel realization as expected.

In case II, the secrecy capacity is maximized subject to power constraints at Alice

and Bob and also a Alice-to-Bob rate constraint. The constrained rate (i.e., the lower bound

on the rate) is set at C†SD = 0.9CSD,I . The corresponding achieved rate is denoted by CSD,II ,

the curve of which is, as expected, indistinguishable from that of C†SD. The resulting secrecy

capacity is denoted by RSE,II , which is large and not far from that of case III.

In case III, the secrecy capacity is maximized with power-only constraints at Alice

and Bob but no rate constraint. The resulting secrecy capacity is denoted by RSE,III and

the resulting data rate is CSD,III .

We see that because of the rate constraint, case II results in a much better tradeoff

between the source-to-destination data rate and the network’s secrecy capacity than the

other two cases.

27



P (dB)
0 10 20 30 40 50

R
S
E

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Case I: (RSE,I)

Case III: (RSE,III)

Case II:
(RSE,II)

Figure 2.4: The achieved secrecy capacity under power and rate constraints (C†SD = 0.9CSD,I
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Figure 2.5: The achieved transmission rate between Alice and Bob when the secrecy rate is
maximized.
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2.5 Conclusion

In this chapter, we have studied fast power allocation algorithms for maximizing

secrecy capacity of a three-node network subject to both power and rate constraints. The

rate constraint along with self-interference of the full-duplex destination makes this study

unique from many previous works.
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Chapter 3

Secure Degree of Freedom Analysis

for MIMOME Network with

Anti-Eavesdropper Channel

Estimation

3.1 Introduction

First we introduce the anti-eavesdropping channel estimation (ANECE) scheme

that proposed by [31]. Consider a wireless network with all the legitimate users equipped

with full duplex radio. In the channel estimation period, all the legitimate users will ex-

change pilot signals (which is known to everyone) concurrently. The pilots are such that

they excite all dimensions of the receive CSI for each user but leave a subspace of Eve’s

30



Eve

Bob

Alice

H

T
H

A

B

Figure 3.1: A three-node system with two legitimate full-duplex transceivers and one passive
eavesdropper.

receive CSI unexcited. In other words, the composite pilot matrix seen by any user in

such that allows consistent estimation of the receive CSI at this user, but the composite

pilot matrix seen by Eve has a rank deficiency that makes a subspace of Eve’s receive CSI

unobservable by Eve. With such pilots, Eve will be unable to correctly estimate its own

channels and therefore can not successfully decode the subsequent information packet.

In this chapter, we will show the analysis of secure degree of freedom of one-way

secure transmission and two-way secure transmission subjected to using the ANECE style

pilots.

3.2 Secure Degree of Freedom Analyses

Consider a block Rayleigh fading channel for which Alice and Bob first conduct

ANECE by transmitting their pilot signals pA(k) and pB(k) concurrently (in full-duplex

mode) where k = 1, · · · ,K1 (K1 is the length of the pilot), and then transmit information
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to each other (over K2 samples). The system is shown in Fig. 3.1. For information trans-

mission, we will consider a one-way transmission and a two-way transmission separately.

3.2.1 Channel estimation

Define Pi = [pi(1), · · · ,pi(K1)] where i = A,B. then the corresponding signals

received by Alice, Bob and Eve can be expressed as

YA = HTPB + NA (3.1a)

YB = HPA + NB (3.1b)

YE = APA + BPB + NE (3.1c)

where H is the reciprocal channel matrix between Alice and Bob, and all the noise matrices

consist of i.i.d. CN (0, 1). Here, the self-interferences at Alice and Bob are assumed to be

negligible.

It is known and easy to show that for the best performance of the maximum

likelihood (ML) estimation (or the MMSE estimation as shown later) of H by Bob, PA

should be such that PAPH
A = K1PA

NA
INA . Similarly, PB should be such that PBPH

B =

K1PB
NB

INB .

In the following analyses, we assume that H, A and B all consist of i.i.d. zero

mean complex Gaussian elements with variance 1, a and b respectively (from one coherence

block to another). a and b is assumed to be known to everyone.
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Without loss of generality, let NA ≥ NB. Without affecting the channel estimation

performance at Alice and Bob, but maximizing the difficulty of channel estimation for Eve,

we let the row span of PB be part of the row span of PA. More specifically, we can write

PA =
√

K1PA
NA

[INA ,0NA×(K1−NA)]Γ and PB =
√

K1PB
NB

[INB ,0NB×(K1−NB)]Γ where Γ can be

any K1×K1 unitary matrix. In this way, any estimates of A and B by Eve, denoted by Â

and B̂, are ambiguous in that [
√
aÂ,
√
bB̂] can be added to Θ[CA,CB] without affecting

Eve’s observation YE where Θ ∈ CNE×NB is arbitrary and [CA,CB][PT
A,P

T
B]T = 0.

Let h = vec(H), a = vec(A), b = vec(B), yA = vec(YT
A), yB = vec(YB),

nA = vec(NT
A) and nB = vec(NB). Note vec(XYZ) = (ZT ⊗ X)vec(Y). Then (3.1)

becomes

yA = (INA ⊗PT
B)h + nA (3.2a)

yB = (PT
A ⊗ INB )h + nB (3.2b)

yE = (PT
A ⊗ INE )a + (PT

B ⊗ INE )b + nE . (3.2c)

It is known that the minimum-mean-squared-error (MMSE) estimate of a vector x from

another vector y is x̂ = Kx,yK−1
y y with Kx,y = E{xyH} and Ky = E{yyH}. And the

error ∆x = x− x̂ has the covariance matrix K∆x = Kx −Kx,yK−1
y KH

x,y.

Let ĥA be the MMSE estimate of h by Alice, and ∆hA = h − ĥA be its error.

Similar notations are defined for Bob and Eve. It is easy to show that the covariance matrices

of the errors of these estimates are, respectively, K∆hA = σ2
AINANB , K∆hB = σ2

BINANB ,

K∆a = σ2
EAINANE and K∆b = σ2

EBINBNE where σ2
A = 1

1+K1PB/NB
, σ2

B = 1
1+K1PA/NA

,

σ2
EA = bK1PB/NB+1

(aK1PA/NA+bK1PB/NB)+1 and σ2
EB = aK1PA/NA+1

(aK1PA/NA+bK1PB/NB)+1 .
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3.2.2 One-way information transmission

Now assume that following the pilots (over K1 samples) transmitted by Alice

and Bob in full-duplex mode, Alice transmits information (over K2 samples) to Bob in

half-duplex mode. Namely, while the first phase is in full-duplex, the second phase is in

half-duplex. In the second phase, Bob and Eve receive

YB = HSA + NB

YE = ASA + NE

(3.3)

where SA = [sA(1), . . . , sA(K2)]. The corresponding vector forms of the above are

yB = (IK2 ⊗H)s̄A + nB (3.4a)

yE = (IK2 ⊗A)s̄A + nE (3.4b)

where s̄A = vec(SA) (which is assumed to be independent of all channel parameters). Then

an achievable secrecy rate in bits/s/Hz in phase 2 from Alice to Bob (conditional on the

MMSE channel estimation in phase 1) is

Rone =
1

K2

(
I(s̄A; yB|ĥB)− I(s̄A; yE |â)

)+
(3.5)

To analyze Rone, we now assume PA = PB = P (which holds for both phases 1 and

2) and that sA(k) are i.i.d. with CN (0, PANA INA). We also use ĤB = ivec(ĥB) ∈ CNB×NA

(i.e., ĥB = vec(ĤB)).

We will next derive lower and upper bounds on Rone. To do that, we need to

obtain lower and upper bounds on I(s̄A; yB|ĥB) and those on I(s̄A; yE |â).
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First, we have

I(s̄A; yB|ĥB) = h(s̄A|ĥB)− h(s̄A|yB, ĥB)

= h(s̄A)− h(s̄A|yB, ĥB). (3.6)

It is known that h(s̄A) = log
[
(πe)NAK2

∣∣∣ PANA INAK2

∣∣∣]. It is also known [43] that for a random

vector s ∈ Cn×1 and another random vector w, h(s|w) ≤ log
[
(πe)n|Ks|w|

]
where Ks|w =

Ks −Ks,w(Kw)−1Ks,w which is the covariance matrix of the MMSE estimation of s from

w. Note that yB = (IK2 ⊗ ĤB )̄sA + (IK2 ⊗ ∆HB )̄sA + nB. Then conditional on ĤB

(which is independent of s̄A), the covariance matrix of the MMSE estimate of s̄A from yB is

Ks̄A|yB ,ĥB = PA
NA

INAK2−
P 2
A

N2
A

(IK2⊗ĤH
B )( PANA (IK2⊗ĤBĤH

B )+KB+INBK2)−1(IK2⊗ĤB) where

KB = E{(IK2⊗∆HB)s̄As̄HA (I⊗∆HH
B )} = PA

1+K1PA/NA
INBK2 . Using |IrA+AB| = |IrB+BA|

where rA and rB are the numbers of rows of A and B respectively, one can verify that

log |Ks̄A|yB ,ĥB | = NAK2 log PA
NA

+log |KB+INBK2 |−log | PANA (IK2⊗ĤBĤH
B )+KB+INBK2 | =

NAK2 log PA
NA
−K2 log |INB+ PA/NA

1+
PA

1+K1PA/NA

ĤBĤH
B |. Applying the above results to (3.6) yields

I(s̄A; yB|ĥB)

≥ log |PA
NA

INAK2 | − E{log |Ks̄A|yB ,ĥB |}

= K2E{log |INB +
PA/NA

1 + PA
1+K1PA/NA

ĤBĤH
B |}

, R−B.

(3.7)

To derive an upper bound on I(s̄A; yB|ĥB), we now write

I(s̄A; yB|ĥB) = h(yB|ĥB)− h(yB|ĥB, s̄A). (3.8)
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Here, we have

h(yB|ĥB) ≤ E{log[(πe)NBK2 |PA
NA

(IK2 ⊗ ĤBĤH
B ) + KB + INBK2 |]}

= K2E{log[(πe)NB |PA
NA

(ĤBĤH
B ) + (1 +

PA
1 +K1PA/NA

)INB |]} (3.9)

and

h(yB|ĥB, s̄A) = E{log[(πe)NBK2 | 1

1 +K1PA/NA
(STAS∗A ⊗ INB ) + INBK2 |]}

= NBE{log[(πe)K2 | 1

1 +K1PA/NA
(STAS∗A) + IK2 |]}. (3.10)

Note that conditional on ĥB and s̄A the covariance matrix of yB is invariant to ĥB. Now

define

MA =


NA

PA
STAS∗A, K2 < NA

NA

PA
S∗ASTA, K2 ≥ NA

(3.11)

which is a full rank matrix for any NA and K2 and a self-product of
√

NA
PA

SA with i.i.d.

CN (0, 1) entries. Also define tA = min{NA,K2} and rA = max{NA,K2}. It follows that

(as part of h(yB|ĥB, s̄A))

E{log | 1

1 +K1PA/NA
(STAS∗A) + IK2 |}

= E{log | PA/NA

1 +K1PA/NA
MA + ItA |}

≥ tAE{log(1 + | PA/NA

1 +K1PA/NA
MA|

1
tA )} (3.12a)

= tAE
{

log(1 +
PA/NA

1 +K1PA/NA
exp(

1

tA
ln |MA|)

)}
≥ tA log

(
1 +

PA/NA

1 +K1PA/NA
exp(

1

tA
E{ln |MA|})

)
(3.12b)

= tA log
(
1 +

PA/NA

1 +K1PA/NA
exp(

1

tA

tA∑
j=1

rA−j∑
k=1

1

k
− γ)

)
(3.12c)
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where (3.12a) is due to the matrix Minkowski’s inequality |X+Y|1/n ≥ |X|1/n+|Y|1/n where

X and Y are n× n positive definite matrices [44], (3.12b) is due to the Jensen’s inequality

and that log(1 + aex) is a convex function of x when a > 0, and (3.12c) is based on [45,

Th.1] where γ u 0.57721566 is Euler’s constant. Defining eA = exp( 1
tA

∑tA
j=1

∑rA−j
k=1

1
k − γ)

and applying the above results since (3.8), we have from (3.8) that

I(s̄A; yB|ĥB)

≤ K2E{log |INB +
PA/NAĤBĤH

B

1 + PA
1+K1PA/NA

|}+NB log

( (1 + PA
1+K1PA/NA

)K2(
1 + PA/NA

1+K1PA/NA
eA
)tA
)

, R+
B

(3.13)

From (3.7) and (3.13) we see that the difference between the upper and lower bounds on

I(s̄A; yB|ĥB) is the second term in (3.13).

To consider I(s̄A; yE |â) in (3.5), we let Â = ivec(â). Similar to the discussions

leading to (3.7) and (3.13), one can verify that

I(s̄A; yE |â) ≥ K2E{log |INE +
PA/NAÂÂH

1 + PAσ2
EA

|} , R−E (3.14)

and

I(s̄A; yE |â)

≤ R−E +NE log

(
(1 + PAσ

2
EA)K2(

1 + (PAσ2
EA/NA)eA

)tA
)

, R+
E

(3.15)

When PA = PB = P → ∞, we have σ2
EA →

bNA
aNB+bNA

, σ2
B → 0, E{âiâ∗i } →

aNB
aNB+bNA

and E{ĥB,iĥ∗B,i} → 1. From [46, Th.2], we know that E{log |Ir + P
t XXH |} →

min(r, t) logP + o(logP ) as P → ∞ where the entries of X ∈ Cr×t are i.i.d. CN (0, 1).
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Therefore, from (3.7) and (3.13),

lim
P→∞

R−B
logP

= lim
P→∞

R+
B

logP
= K2 min{NA, NB} (3.16)

And from (3.14) and (3.15), we have

lim
P→∞

R−E
logP

= 0 (3.17)

and

lim
P→∞

R+
E

logP
=


0, K2 ≤ NA

NE(K2 −NA), K2 > NA

(3.18)

Combining (3.16), (3.17) and (3.18) and using R+
one ,

1
K2

[R+
B−R

−
E ]+ and R−one , 1

K2
[R−B−

R+
E ]+ (i.e., R−one ≤ Rone ≤ R+

one), we have

lim
P→∞

R−one
logP

=


min{NA, NB}, K2 ≤ NA(

min{NA, NB} −
NE

K2
(K2 −NA)

)+

, K2 > NA

(3.19)

and

lim
P→∞

R+
one

logP
= min{NA, NB}. (3.20)

Note that limP→∞
Rone
logP is called the secure degrees of freedom of the one-way information

transmission. From (3.19) and (3.20), we see that when K2 ≤ NA, we have limP→∞
Rone
logP =

min{NA, NB} which equals the degrees of freedom of the main channel capacity from Alice

to Bob. This supports and complements a conclusion from [31] where the analyses did not

use the complete statistical model of H, A and B. We also see from (3.19) that if K2 > NA,

the above lower bound on secure degrees of freedom decreases linearly as NE increases.
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3.2.3 Two-way information transmission

Now we consider a two-way (full-duplex) communication in the second phase where

the signals received by Alice, Bob and Eve in a coherence period are

YA = HTSB + NA

YB = HSA + NB

YE = ASA + BSB + NE

(3.21)

where SA = [sA(1), . . . , sA(K2)] and sA(t) ∼ CN (0, PANA I). Similarly SB = [sB(1), . . . , sB(K2)]

and sB(t) ∼ CN (0, PBNB I). Note that all information symbols from Alice and Bob are i.i.d..

The vectorized forms of (3.21) are

yA = (IK2 ⊗HT )s̄B + nA

yB = (IK2 ⊗H)s̄A + nB

yE = (IK2 ⊗A)s̄A + (IK2 ⊗B)s̄B + nE

(3.22)

where both s̄A and s̄B are assumed to be independent of all channel parameters. Conditional

on the MMSE channel estimation in phase 1, an achievable secrecy rate in phase 2 by the

two-way wiretap channel is (e.g., see [47]):

Rtwo =
1

K2

(
I(s̄B; yA|ĥA) + I(s̄A; yB|ĥB)

− I(s̄A, s̄B; yE |â, b̂)
)+ (3.23)

The following analyses is similar to the previous section, for which we will only provide the

key steps and results.
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From (3.7) and (3.13), we already know a pair of lower and upper bounds on

I(s̄A; yB|ĥB). To show a similar pair of lower and upper bounds on I(s̄B; yA|ĥA), we let

ĤA = ivec(ĥA). One can verify that

I(s̄B; yA|ĥA) ≥ K2E{log |INA +
PB/NB

1 + σ2PB
1+σ2T1PB/NB

ĤT
AĤ∗A|} , R−A (3.24)

and

I(s̄B; yA|ĥA) ≤ R−A +NA log

( (1 + PB
1+K1PB/NB

)K2(
1 + PB/NB

1+K1PB/NB
eB
)tB
)

, R+
A

(3.25)

where eB = exp( 1
tB

∑tB
j=1

∑rB−j
k=1

1
k − γ), tB = min{NB,K2} and rB = max{NB,K2}.

For I(s̄A, s̄B; yE |â, b̂), we use B̂ = ivec(b̂) (similar to Â). One can verify that

KyE |â,b̂ = PA
NA

(IK2⊗ÂÂH)+ PB
NB

(IK2⊗B̂B̂H)+KEA+KEB+INEK2 where KEA = E{(IK2⊗

∆A)s̄As̄HA (IK2 ⊗∆A)H} = σ2
EAPAINEK2 and KEB = E{(IK2 ⊗∆B)s̄B s̄HB (IK2 ⊗∆B)H} =

σ2
EBPBINEK2 . Also note that yE = (STA ⊗ INE )hEA + (STB ⊗ INE )hEB + nE . Then,

I(s̄A, s̄B; yE |â, b̂)

= h(yE |â, b̂)− h(yE |â, b̂, s̄A, s̄B)

≤ E{log[(πe)K2NE |KyE |â,b̂|]} − h(yE |â, b̂, s̄A, s̄B)

= E{log |KyE |â,b̂|} − E{log |σ2
EA(STAS∗A ⊗ INE )

+ σ2
EB(STBS∗B ⊗ INE ) + INEK2 |}

= K2E{log |PA
NA

ÂÂH +
PB
NB

B̂B̂H + (1 + PAσ
2
EA + PBσ

2
EB)INE |}

−NEE{log |σ2
EASTAS∗A + σ2

EBSTBS∗B + IK2 |}

(3.26)
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Define SAB = [ŠTA, Š
T
B] ∈ CK2×(NA+NB) where SA = PA

NA
ŠA and SB = PB

NB
ŠB.

Define T = diag{σ2
EA

PA
NA

INA , σ
2
EB

PB
NB

INB}. Then we can rewrite the last term from (3.26)

as E{log |σ2
EASTAS∗A + σ2

EBSTBS∗B + IK2 |} = E{log |IK2 + SABTSHAB|}.

For K2 < NA +NB, we have

E{log |IK2 + SABTSHAB|}

≥ K2E{log(1 + |SABTSHAB|
1
K2 )}

= K2E
{

log
(
1 + exp

( 1

K2
ln |SABTSHAB|

))}
≥ K2E

{
log
(
1 + exp

( 1

K2
lnσ2K2

min|SABSHAB|
))}

≥ K2 log
(
1 + σ2

mineE1

)

(3.27)

where eE1 = exp( 1
K2

∑K2
j=1

∑NA+NB−j
k=1

1
k − γ). The second inequality in (3.27) is from the

fact (see [48, Th. 3]) that |SABTSHAB| ≥ σ
2K2
min|SABSHAB| where σ2

min = min{σ2
EA

PA
NA
, σ2

EB
PB
NB
}.

Similarly, for K2 ≥ NA +NB, we have

E{log |I + SABTSHAB|}

= E{log |I + TSHABSAB|}

≥ (NA +NB)E
{

log
(
1 + |T|

1
NA+NB exp

( 1

NA +NB
ln |SHABSAB|

))}
≥ (NA +NB) log

(
1 + |T|

1
NA+NB eE2

)
(3.28)

where eE2 = exp( 1
NA+NB

∑NA+NB
j=1

∑K2−j
k=1

1
k − γ) Therefore, using (3.27) and (3.28), we
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have from (3.26) that

I(s̄A, s̄B; yE |â, b̂)

≤ K2E{log |
PA
NA

ÂÂH + PB
NB

B̂B̂H

1 + PAσ2
EA + PBσ2

EB

+ I|}

+


K2NE log

(
1 + PAσ

2
EA + PBσ

2
EB

1 + σ2
mineE1

)
, K2 ≤ NA +NB

NE log

(
(1 + PAσ

2
EA + PBσ

2
EB)K2(

1 + |T|
1

NA+NB eE2

)NA+NB

)
, K2 > NA +NB

, R+
E,t

(3.29)

One can also verify I(s̄A, s̄B; yE |â, b̂) ≥ K2E{log |
PA
NA

ÂÂH+
PB
NB

B̂B̂H

1+PAσ
2
EA+PBσ

2
EB

+ I|} , R−E,t

which is the first term in (3.29).

When PA = PB = P →∞, we have σ2
EA →

bNA
aNB+bNA

, σ2
EB →

aNB
aNB+bNA

, σ2
A → 0,

σ2
B → 0, E{âiâ∗i } →

aNB
aNB+bNA

, E{b̂ib̂∗i } →
bNA

aNB+bNA
, E{ĥA,iĥ∗A,i} → 1, E{ĥB,iĥ∗B,i} → 1,

σ2
min = P min{σ

2
EA
NA

,
σ2
EB
NB
} and |T|

1
NA+NB = P ((

σ2
EA
NA

)NA(
σ2
EB
NB

)NB )1/(NA+NB).

Then, similar to (3.16), we have

lim
P→∞

R−A
logP

= lim
P→∞

R+
A

logP
= K2 min{NA, NB} (3.30)

One can also verify that

lim
P→∞

R−E,t
logP

= 0 (3.31)

and

lim
P→∞

R+
E,t

logP
=


0, K2 ≤ NA +NB

NE(K2 −NA −NB), K2 > NA +NB

(3.32)

Now applying (3.16), (3.30), (3.31) and (3.32), and using R+
two , 1

K2
[R+

A + R+
B − R

−
E,t]

+
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and R−two , 1
K2

[R−A +R−B −R
+
E,t]

+ as upper and lower bounds on Rtwo, we have

lim
P→∞

R−two
logP

=


2 min{NA, NB}, K2 ≤ NA +NB(

2 min{NA, NB} −
NE

K2
(K2 −NA −NB)

)+

, K2 > NA +NB

(3.33)

and

lim
P→∞

R+
two

logP
= 2 min{NA, NB} (3.34)

We see that if K2 ≤ NA +NB, limP→∞
Rtwo
logP = 2 min{NA, NB} which equals the degrees of

freedom of the full-duplex channel between Alice and Bob. And if K2 > NA+NB, the above

lower bound on limP→∞
Rtwo
logP decreases linearly as NE increases. We see an advantage of

two-way information transmission over one-way information transmission.

3.3 Conclusion

In this chapter we analyzed the full-duplex MIMOME network subject to the

application of anti-eavesdropping channel estimation (ANECE) in a two-phase scheme. As-

suming that a statistical model of CSI anywhere is known everywhere, we derived lower and

upper bounds on the secure degrees of freedom of the network, which reveal clearly how the

number of antennas on Eve affect these bounds. In particular, for 1 ≤ K2 ≤ NA in one-way

information transmission or 1 ≤ K2 ≤ NA + NB in two-way information transmission, the

lower and upper bounds coincide and equal to those of the channel capacity between Alice

and Bob.
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Chapter 4

Optimal Pilot Design for

Anti-Eavesdropper Channel

Estimation

4.1 Introduction

From chapter 3 we see the advantage of using ANECE. In this chapter, we will try

to investigate the pilot signals design subject to ANECE since only heuristic pilot design

has been proposed from the original work [31]. We will consider two criteria for optimality:

1) minimizing the sum of mean squared errors (MSE) of the minimum-mean-squared-error

(MMSE) channel estimation at each and every user, and 2) maximizing the sum of the

pair-wise mutual information (MI) between the signals excited by the pilots and observed

by all users.
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Eavesdropper

Legitimate user

Figure 4.1: Multiple full-duplex multi-antenna users perform ANECE.

4.2 System Model

As illustrated in Fig 4.1, we consider a wireless network of M legitimate full-duplex

multi-antenna users and a passive multi-antenna eavesdropper (Eve). Let Ni be the number

of antennas on user i, and NE be the number of antennas on Eve. According to ANECE

[31], all users concurrently transmit their pilots pi(k) over a time window k = 1, · · · ,K

with i corresponding to user i. These pilots are designed in such a way (see below) that all

users can reliably estimate their own channel matrices but Eve cannot.
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Specifically, let the signal received by user i over the time window be Yi ∈ CNi×K ,

and the signal received by Eve be YE ∈ CNE×K . It follows that

Yi =

M∑
j 6=i

R
1
2
i Hi,jR

T
2
j Pj + Ni (4.1a)

YE =
M∑
i=1

HE,iPi + NE (4.1b)

where Pi = [pi(1), · · · ,pi(K)] is the pilot matrix sent by user i, R
1
2
i Hi,jR

T
2
j is the overall

channel matrix from user j to user i, and HE,j is the overall channel matrix from user j to

Eve. And ‖HE,iPi‖ for any i is assumed to be not negligible compared to ‖
∑

j 6=i HE,jPj‖.

Here, Ri = R
1
2
i R

H
2
i is the receive/transmit channel correlation matrix of user i (of full rank

and known to all users and Eve). We assume that HE,j for any j is independent of Hi,m for

any i and m. Furthermore, Hi,j consists of independent and identically distributed (i.i.d.)

zero-mean unit-variance complex Gaussian (CN (0, 1)) elements. Finally, Ni includes all

residual self-interference at user i and consists of i.i.d. CN (0, σ2
i ) entries.

Now define NT =
∑M

i=1Ni, P̄ = [PT
1 , · · · ,PT

M ]T , P̄(i) as P̄ without Pi, R̄ =

diag[R1, · · · ,RM ], R̄(i) as R̄ without Ri, H̄(i) as the horizontal stack of Hi,j for all j 6= i,

and H̄E = [HE,1, · · · ,HE,M ]. Then (4.1) can be rewritten as

Yi = R
1
2
i H̄(i)R̄

T
2

(i)P̄(i) + Ni (4.2a)

YE = H̄EP̄ + NE . (4.2b)

For ANECE, we need to choose the (publicly known) pilots such that rank(P̄(i)) =

NT − Ni (i.e., the rows of P̄(i) are independent for every i) and rank(P̄) = r ≤ NT − 1

(i.e., the rows of P̄ are not independent). It is clear from (4.2) that the first rank constraint

allows each user to obtain a consistent estimate of its channel matrix while the second
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rank constraint creates a subspace of Eve’s channel matrix for which there is no consistent

estimation. To explain the latter, we know that there is a (NT − r) × NT matrix C such

that CP̄ = 0 and hence H̄EP̄ = (H̄E + Θ0C)P̄ for any Θ0 ∈ CNE×(NT−r). Because of this,

the subsequent exchange of information between users is better protected than otherwise

[31].

This paper discusses the optimal designs of the pilots subject to the above rank

constraints. We will consider two design criteria: one is based on MMSE channel estimation,

and the other is based on maximal MI between observations. A discussion of maximum

likelihood (ML) channel estimation is included in the end of the next section.

4.3 For Optimal MMSE Channel Estimation

Define Si as the Ni × NT selection matrix such that SiP̄ = Pi, and S̄(i) as the

vertical stack of Sj for all j 6= i. Note that R̄
T
2

(i)P̄(i) = S̄(i)R̄
T
2 P̄. Also using vec(XYZ) =

(ZT ⊗X)vec(Y), (4.2a) becomes

yi = ḠH
i h̄i + ni (4.3)

where yi = vec(Yi), h̄i = vec(H̄(i)), ni = vec(Ni) and Ḡi = (S̄(i)R̄
H
2 P̄∗ ⊗R

H
2
i ).

Let Kx,y = E{xyH} be the correlation matrix between two random vectors x and

y, and Kx = Kx,x. The MMSE estimate of h̄i by user i is

ˆ̄hi = Kh̄i,yi
K−1

yi yi = Ḡi(Ḡ
H
i Ḡi + σ2

i I)−1yi. (4.4)
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Define ∆h̄i = h̄i − ˆ̄hi. Then the MSE of ˆ̄hi is

MSEi = Tr(E{∆h̄i∆h̄Hi }) = Tr(Kh̄i
−Kh̄i,yi

K−1
yi Kyi,h̄i

)

= Tr
(
I− Ḡi(Ḡ

H
i Ḡi + σ2

i I)−1ḠH
i

)
= Tr

((
I +

1

σ2
i

ḠiḠ
H
i

)−1
)

(4.5)

where the last equality is based on the well known matrix inverse lemma.

Now we have the following criterion for pilot design:

min
P̄

JM =

M∑
i=1

MSEi (4.6)

s.t. T r(PiP
H
i ) ≤ KPi, i = 1, . . . ,M,

rank(P̄) ≤ r

where NT −Nmin ≤ r ≤ NT − 1 with Nmin = miniNi.

Since R̄ is known and nonsingular, we can choose

R̄
H
2 P̄∗ = F̄V̄ (4.7)

where V̄ ∈ Cr×K is any semi-unitary matrix satisfying V̄V̄H = Ir, and F̄ ∈ CNT×r is now

what we need to design. Namely,

P̄ = R̄−
T
2 F̄∗V̄∗ (4.8)

which meets the rank constraint. To further simplify (4.6), we use the eigenvalue decom-

position (EVD):

Ri = ŨiΛ̃iŨ
H
i (4.9)

where Λ̃i = diag{λ̃i,1, . . . , λ̃i,Ni} with
∑

l λ̃i,l = Ni. The diagonal elements in Λ̃i are in

descending order. From (4.9), we have R
1
2
i = ŨiΛ̃

1
2
i .
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With (4.7) and (4.9), the cost function in (4.6) becomes

JM =
M∑
i=1

Tr

([
I +

1

σ2
i

(Λ̃i ⊗ S̄(i)F̄F̄H S̄T(i))

]−1
)

(4.10)

where we have used Tr([I + X⊗Y]−1) = Tr([I + Y ⊗X]−1), and hence (4.6) becomes

min
F̄

JM (4.11)

s.t. T r(SiR̄
−H

2 F̄F̄HR̄−
1
2 STi ) ≤ KPi, i = 1, . . . ,M.

This problem is non-convex in general. We will next treat it in three separate

situations. We will first present a general algorithm for M ≥ 2, then a specialized (efficient)

algorithm for M = 2, and finally closed-form solutions of the optimal pilots under the case

of M ≥ 2, Ni = N , Pi = P , σ2
i = σ2 and Ri = IN . The invariance of the above parameters

to i is called a symmetric condition, and Ri = IN is an isotropic condition.

4.3.1 General algorithm for M ≥ 2

To solve the problem (4.11) with M ≥ 2, we can apply the logarithmic barrier

method [41]. With the barrier coefficient t, we define

g1(F̄) = tJM +
M∑
i=1

Bi(F̄) (4.12)

where

Bi(F̄) = − ln(ψi(F̄)) (4.13)

and ψi(F̄) = KPi − Tr(SiR̄−
H
2 F̄F̄HR̄−

1
2 STi ). Then, (4.11) is approximated by

min
F̄

g1(F̄) (4.14)
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The gradient of a real-valued function f(X) with respect to a complex matrix

X is denoted and defined as ∇f(X) = ∂f(X)
∂X = ∂f(X)

∂<(X) + j ∂f(X)
∂=(X) . One can verify that

∇g1(F̄) = t∇JM (F̄) +
∑M

i=1∇Bi(F̄) where

∇JM (F̄) = −2

M∑
i=1

Ni∑
l=1

λ̃i,l
σ2
i

S̄T(i)(I +
λ̃i,l
σ2
i

S̄(i)F̄F̄H S̄T(i))
−2S̄(i)F̄, (4.15)

∇Bi(F̄) = 2

(
R̄−

1
2 STi SiR̄

−H
2 F̄

ψi(F̄)

)
. (4.16)

Algorithm 4 shown in the table solves (4.14) using gradient descent where F̄ is initially set

to be
√

DQt ∈ CNT×r, Qt is the NT ×NT discrete Fourier transform (DFT) matrix without

the last (NT − r) columns and D = diag{d11
T
N1
, . . . , dM1TNM } ∈ RNT×NT is a positive

definite matrix for power controlling. This initialization is based on the pilots proposed in

[31].

4.3.2 Special algorithm for M = 2

When M = 2, we can develop an efficient algorithm with guaranteed global opti-

mality. This algorithm has a simple connection with that in [37] as shown next.

Denote the two users by the indices i = 1 and i = 2. Now the cost function is

J2 given by (4.10) with M = 2. Notice that S̄(1)F̄ = S2F̄ ∈ CN2×r and S̄(2)F̄ = S1F̄ ∈

CN1×r, which do not have any shared entry. Let us now use the following singular value

decompositions (SVDs) to reparameterize F̄:
S̄(2)F̄ = U1Λ1V

H
1 ,

S̄(1)F̄ = U2Λ2V
H
2

(4.17)
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Algorithm 4 Solving (4.14) with increasing t.

Input:

r, R̄, Ni, σi, Pi, T , for i = 1, . . . ,M ;

Accuracy thresholds: ε1, ε2, Np.

Initialization: t > 0, µ > 1, and F̄(0) =
√

DQt.

1: repeat

2: p=0;

3: repeat

4: Compute the derivatives ∂g1(F̄(p))

∂F̄(p) .

5: Choose step size γ(p) via backtracking line search [41].

6: Update F̄(p+1) = F̄(p) − γ(p)∇g1(F̄(p)).

7: p = p+1.

8: until ‖∇g1(F̄(p))−∇g1(F̄(p−1))‖ ≤ ε2 or p ≥ Np

9: F̄(0) = F̄(p), t = µt.

10: until M
t < ε1

11: return F̄(p)

where U1 ∈ CN1×N1 , Λ1 ∈ RN1×r, V1 ∈ Cr×r, U2 ∈ CN2×N2 , Λ2 ∈ RN2×r and V2 ∈

Cr×r. All of these matrices need to be optimized as they all affect the pilots. With r ≥

max{N1, N2}, we denote the singular value matrices in (4.17) as

Λ1 = [diag{λ1,1, . . . , λ1,N1},0N1×(r−N1)] and Λ2 = [diag{λ2,1, . . . , λ2,N2},0N2×(r−N2)] where

the diagonal elements in each matrix are in descending order. Using (4.8) and (4.17), we

have

P̄ = R̄−
T
2 [(U1Λ1V

H
1 )T , (U2Λ2V

H
2 )T ]HV̄∗. (4.18)

Let Λ2
1 = diag{λ2

1,1, . . . , λ
2
1,N1
} and Λ2

2 = diag{λ2
2,1, . . . , λ

2
2,N2
}. Also let C1 = Λ̃

−1
1 Λ2

1 and
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C2 = Λ̃
−1
2 Λ2

2. Then one can verify that J2 becomes

J2 = Tr((I +
1

σ2
1

(Λ̃1 ⊗C2Λ̃2)−1)

+ Tr((I +
1

σ2
2

(Λ̃2 ⊗C1Λ̃1))−1) (4.19)

which is invariant to U1, V1, U2 and V2. Only C1 and C2 remain to be optimized as far

as the cost function is concerned.

For the power constraints, we see that for i = 1, 2,

Tr(PiP
H
i ) = Tr(Λ̃

−1

i UiΛ
2
iU

H
i ) ≥ Tr(Λ̃−1

i Λ2
i ) = Tr(Ci) (4.20)

where the equality in ≥ holds when Ui = INi [49, H.1.h].

Therefore, both the cost and the power constraints are optimized by choosing Ui

and Vi with i = 1, 2 to be the identity matrices. So, (4.11) becomes

min
C1,C2

J2 (4.21)

s.t. T r(C1) ≤ KP1, T r(C2) ≤ KP2.

where J2 is shown in (4.19). Here C1 and C2 are completely decoupled from each other.

Each of the two decoupled problems can be solved by following [37, 50]. It is obvious that

if Λ̃i is proportional to the identity matrix, so is the optimal Ci.

4.3.3 Closed-form solution

For M ≥ 2, we now consider the (previously mentioned) symmetric and isotropic

case, i.e., Ni = N , Pi = P , σ2
i = σ2 and Ri = IN . Furthermore, we consider r = (M − 1)N

which yields the maximal dimensional of the subspace of Eve’s CSI that is not identifiable
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by Eve. Then from (4.10), JM = N
∑M

i=1 Tr
(
(I + 1

σ2 S̄(i)F̄F̄H S̄T(i))
−1
)
. Also the power

constraints become Tr(SiF̄F̄HSTi ) ≤ KP, i = 1, . . . ,M . The corresponding Lagrangian

function is

L = JM +
M∑
i=1

µi(Tr(SiF̄F̄HSTi )−KP ) (4.22)

and the KKT conditions [41] are

∂L
∂F̄

=
∂JM
∂F̄

+ 2
M∑
i=1

µiS
T
i SiF̄ = 0

Tr(SiF̄F̄HSTi ) ≤ KP, i = 1, . . . ,M

µi(Tr(SiF̄F̄HSTi )−KP ) = 0, µi ≥ 0, i = 1, . . . ,M

(4.23)

It is shown below that a set of (equally optimal) solutions to (4.23) are given by the

NM×NM discrete Fourier transform (DFT) matrix Q with any N equally spaced columns

removed.

Theorem 6 Let Q be such that its (l + 1, k + 1)th element is (Q)l+1,k+1 = wlkNM with

wNM = e−j2π
1

MN , 0 ≤ l ≤ NM − 1 and 0 ≤ k ≤ NM − 1. Let Qm consist of N equally

spaced columns of Q as follows:

Qm =

1 1 · · · 1

wmMN wm+M
MN · · · w

m+(N−1)M
MN

...
...

w
m(NM−1)
MN w

(m+M)(NM−1)
MN · · · w

(m+(N−1)M)(NM−1)
MN


. (4.24)

Also let Q̄m be Q without the columns in Qm. Then, a solution to (4.23) is F̄ =
√

KP
N2(M−1)

Q̄m

where m can be any integer in [0,M − 1].
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Proof. See Appendix 4.7.1.

For M = 2, the theorem yields Pi = SiF̄
∗V̄∗ that satisfies PiP

H
i = KP

N IN where

i = 1, 2 (easy to verify). These pilots are known to be globally optimal. For M ≥ 3, our

numerical simulations using the previously developed algorithm did not yield any result

better than that from Theorem 6 subject to the conditions in the theorem.

For optimal ML channel estimation

The ML estimate of h̄i is ˆ̄hi,ML = (ḠiḠ
H
i )−1Ḡiyi and its covariance matrix is

Ci,ML = σ2
i (ḠiḠ

H
i )−1 = σ2

i (S̄(i)F̄F̄H S̄T(i) ⊗R
H
2
i R

1
2
i )−1. We can design the optimal pilots

by minimizing JM,ML =
∑M

i=1 Tr(Ci,ML) subject to the same power constraints as before.

If Ni = N , Pi = P , σ2
i = σ2, Ri = IN and r = (M − 1)N , one can verify

that JM,ML equals JM as σ2 becomes small or equivalently KP becomes large. Hence,

the optimal pilots from Theorem 6 also apply here (which can also be proved directly by

following a similar procedure used for Theorem 6).

4.4 For Maximum Mutual Information

Given Yi at user i for all i as shown in (4.2a), every pair of users can follow a

secret key generation protocol [35, 36] to produce a (shared) secret key. This secret key can

be a useful by-product of ANECE which was originally designed to protect the information

directly transmitted between users [31]. If YE received by Eve as shown in (4.2b) or equiv-

alently the Eve’s channel matrix H̄E is independent of all channel matrices between users,

the capacity of the secret key (in bits per channel coherence period) achievable between
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user i and user j is known [34, Th. 4.1] to be I(Yi; Yj) which is the mutual information

between Yi and Yj . So, it is also meaningful to design the optimal pilots as follows:

max
P̄

IM =
M−1∑
i=1

M∑
j=i+1

I(Yi; Yj) (4.25)

s.t. T r(PiP
H
i ) ≤ KPi, i = 1, . . . ,M

rank(P̄) ≤ r,

which is in contrast to (4.6). The above problem is also non-convex. We will treat it next

in three separate situations as before.

4.4.1 General algorithm for M ≥ 2

From (4.1a), we can write
yi =

M∑
j 6=i

(P̄T R̄
1
2 STj ⊗R

1
2
i )hi,j + ni

yT,j =

M∑
i 6=j

(R
1
2
j ⊗ P̄T R̄

1
2 STi )hi,j + nT,j

(4.26)

where yi = vec(Yi), yT,j = vec(YT
j ), Hi,j = HT

j,i, hi,j = vec(Hi,j), ni = vec(Ni) and

nT,j = vec(NT
j ). Clearly we have I(Yi; Yj) = I(yi; yT,j).

Recall Ḡi = (S̄(i)R̄
H
2 P̄∗ ⊗R

H
2
i ). Also define ḠT,j = (R

H
2
j ⊗ S̄(j)R̄

H
2 P̄∗), Gi,j =

(SjR̄
H
2 P̄∗ ⊗R

H
2
i ) and GT,j,i = (R

H
2
j ⊗ SiR̄

H
2 P̄∗). From (4.26) , one can verify that

Kyi = σ2
i I + ḠH

i Ḡi (4.27)

KyT,j = σ2
j I + ḠH

T,jḠT,j (4.28)

Kyi,yT,j = GH
i,jGT,j,i (4.29)
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KyT,j ,yi = GH
T,j,iGi,j . (4.30)

Also note

I(yi; yT,j) = h(yi) + h(yT,j)− h(yi,yT,j)

= log2 |Kyi |+ log2 |KyT,j | − log2 |K{yi,yT,j}|

= − log2 |I−K−1
yT,j

KyT,j ,yiK
−1
yi Kyi,yT,j | (4.31a)

= − log2 |I− (σ2
j I + ḠH

T,jḠT,j)
−1GH

T,j,iGi,j(σ
2
i I + ḠH

i Ḡi)
−1GH

i,jGT,j,i| (4.31b)

where

K{yi,yT,j} =

 Kyi Kyi,yT,j

KyT,j ,yi KyT,j

 (4.32)

and the last equality in (4.31a) is based on the fact that

∣∣∣∣∣∣∣∣
 X Y

YH Z


∣∣∣∣∣∣∣∣ = |X||Z−YHX−1Y| =

|Z||X−YZ−1YH | with invertible X and Z.

From (4.26), we can express the MMSE estimates of hi,j by users i and j, respec-

tively, as 
ĥij,i = Khi,j ,yiK

−1
yi yi = Gi,j(σ

2
i I + ḠH

i Ḡi)
−1yi

ĥij,j = Khi,j ,yT,jK
−1
yT,j

yT,j = GT,j,i(σ
2
j I + ḠH

T,jḠT,j)
−1yT,j .

(4.33)

The following lemma is a generalization of a SISO result shown in [51]. It also complements

the fact that I(yi; yT,j) equals to the mutual information between the ML estimates of hi,j

by users i and j [35].

Lemma 7 For each pair of i and j, if SjR̄
H
2 P̄∗, SiR̄

H
2 P̄∗, Ri, Rj have all full row ranks

(which requires K ≥ max{Ni, Nj}), then we have I(yi; yT,j) = I(ĥij,i; ĥij,j).
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Proof. With the stated conditions, we have Kĥij,i
= Gi,j(σ

2
i I + ḠH

i Ḡi)
−1GH

i,j , Kĥij,j
=

GT,j,i(σ
2
j I + ḠH

T,jḠT,j)
−1GH

T,j,i, and Kĥij,i,ĥij,j
= Gi,j(σ

2
i I + ḠH

i Ḡi)
−1GH

i,jGT,j,i(σ
2
j I +

ḠH
T,jḠT,j)

−1GH
T,j,i. Also, Kĥij,i,ĥij,j

= Kĥij,i
Kĥij,j

. Then,

I(ĥij,i; ĥij,j)

= − log2 |I−K−1

ĥij,j
Kĥij,j ,ĥij,i

K−1

ĥij,i
Kĥij,i,ĥij,j

|

= − log2 |I−Kĥij,i
Kĥij,j

|

= − log2 |I−Gi,j(σ
2
i I + ḠH

i Ḡi)
−1GH

i,jGT,j,i(σ
2
j I + ḠH

T,jḠT,j)
−1GH

T,j,i| = I(yi; yT,j)

(4.34)

where the last equation follows from (4.31b) using log2 |I−XY| = log2 |I−YX|.

Define Γi,j = Gi,j(σ
2
i I+ḠH

i Ḡi)
−1GH

i,j and ΓT,j,i = GT,j,i(σ
2
j I+ḠH

T,jḠT,j)
−1GH

T,j,i.

Also using (4.7) and (4.9), one can verify that

Γi,j =(SjF̄⊗ Λ̃
1
2
i )(σ2

i I + F̄H S̄T(i)S̄(i)F̄⊗ Λ̃i)
−1(F̄HSTj ⊗ Λ̃

1
2
i ) (4.35)

ΓT,j,i =(Λ̃
1
2
j ⊗ SiF̄)(σ2

j I + Λ̃j ⊗ F̄H S̄T(j)S̄(j)F̄)−1(Λ̃
1
2
j ⊗ F̄HSTi ). (4.36)

The rank constraint on P̄ is satisfied by using F̄ defined in (4.7). With (4.35) and

(4.36), we have

IM = −
M−1∑
i=1

M∑
j=i+1

log2 |I− Γi,jΓT,j,i| (4.37)

and (4.25) becomes

max
F̄

IM (4.38)

s.t. T r(SiR̄
−H

2 F̄F̄HR̄−
1
2 STi ) ≤ KPi, i = 1, . . . ,M.
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To solve (4.38) by using the logarithmic barrier method, we let

g2(F̄) = tIM +
M∑
i=1

Bi(F̄) (4.39)

where t is the barrier coefficient and Bi(F̄) is shown in (4.13). Then we can solve (4.38) by

solving the following (with an increasing t):

max
F̄

g2(F̄). (4.40)

The algorithm to solve (4.40) is similar to Algorithm 4 and hence omitted here. The way

to find the gradient of g2(F̄) is shown in Appendix 4.7.2.

4.4.2 Special algorithm for M = 2

For M = 2, the problem is similar to one addressed in [38] where an algorithm

was developed and its local optimality is stated there. In this following, we effectively

readdress the same problem but show some new insights. One of them is the establishment

of optimality of two matrices heuristically chosen in [38]. Furthermore, we will present an

asymptotical analyses to show the globally optimal solution in high or low power region.

For M = 2, we know S̄(1) = S2 and S̄(2) = S1. Using (4.17), (4.35) and (4.36), we

have

Γ1,2

= (S2F̄⊗ Λ̃
1
2
1 )(σ2

1I + F̄H S̄T(1)S̄(1)F̄⊗ Λ̃1)−1(F̄HST2 ⊗ Λ̃
1
2
1 )

= (U2 ⊗ I)(Λ2 ⊗ Λ̃
1
2
1 )(σ2

1I + Λ2
2 ⊗ Λ̃1)−1(ΛT

2 ⊗ Λ̃
1
2
1 )(UH

2 ⊗ I) (4.41)
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ΓT,2,1

= (Λ̃
1
2
2 ⊗ S1F̄)(σ2

2I + Λ̃2 ⊗ F̄H S̄T(2)S̄(2)F̄)−1(Λ̃
1
2
2 ⊗ F̄HST1 )

= (I⊗U1)(Λ̃
1
2
2 ⊗Λ1)(σ2

2I + Λ̃2 ⊗ΛT
1 Λ1)−1(Λ̃

1
2
2 ⊗ΛT

1 )(I⊗UH
1 ). (4.42)

It is obvious that both I2 = I(y1; yT,2) = − log2 |I−Γ1,2ΓT,2,1| and Tr(PiP
H
i ) are invariant

to Vi in (4.17) where i = 1, 2. We can set Vi = Ir. Now (4.38) becomes

max
U1,U2,Λ1,Λ2

I2 (4.43)

s.t. T r(Λ̃
−1
1 U1Λ

2
1U

H
1 ) ≤ KP1, T r(Λ̃

−1
2 U2Λ

2
2U

H
2 ) ≤ KP2

Λ1 � 0, Λ2 � 0.

Here we have added the positive definite constraints on Λ1 and Λ2 are mild constraints and

it leads to the optimal U1 and U2 being the identity matrices as shown next.

With Λ1 � 0 and Λ2 � 0, (4.42) and (4.41) become Γ1,2 = (I + σ2
1(U2Λ

2
2U

H
2 ⊗

Λ̃1)−1)−1 and ΓT,2,1 = (I + σ2
2(Λ̃2 ⊗U1Λ

2
1U

H
1 )−1)−1, and then the cost function in (4.43)

becomes
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I2 = log2

∣∣I + σ2
2(Λ̃2 ⊗ Ũ1Λ

2
1Ũ

H
1 )−1

∣∣+ log2

∣∣I + σ2
1(U2Λ

2
2U

H
2 ⊗ Λ̃1)−1

∣∣
− log2

∣∣(I + σ2
2(Λ̃2 ⊗ Ũ1Λ

2
1Ũ

H
1 )−1)(I + σ2

1(U2Λ
2
2U

H
2 ⊗ Λ̃1)−1)− I

∣∣ (4.44a)

= log2 |σ2
2I + Λ̃2 ⊗Λ2

1|+ log2 |σ2
1I + Λ2

2 ⊗ Λ̃1|

− log2 |σ
2
1σ

2
2I + σ2

1Λ̃2 ⊗ Ũ1Λ2
1ŨH

1 + σ2
2U2Λ2

2UH
2 ⊗ Λ̃1| (4.44b)

= log2 |σ2
2I + Λ̃2 ⊗Λ2

1|+ log2 |σ2
1I + Λ2

2 ⊗ Λ̃1|

− log2 |σ2
1σ

2
2I + σ2

1Λ̃2 ⊗Λ2
1 + σ2

2U(Λ2
2 ⊗ Λ̃1)UH | (4.44c)

where U , U2 ⊗ ŨH
1 . Here, (4.44a) is due to − log2 |I−A−1B−1| = log2 |A|+ log2 |B| −

log2 |AB−I|, and (4.44b) is due to log2 |I+A−1| = log2 |I+A|− log2 |A|. Then the optimal

U1 and U2 that maximize (4.44) are given by

{U1,opt,U2,opt}

= arg min
U1,U2

log2 |σ
2
1σ

2
2I + σ2

1Λ̃2 ⊗Λ2
1 + σ2

2U(Λ2
2 ⊗ Λ̃1)UH |

(4.45)

According to [52], we have:

Lemma 8 Given Hermitian matrices A,C ∈ Cn×n and B,D ∈ Cm×m with the corre-

sponding diagonal eigenvalue matrices Λa, Λc, Λb, Λd where the diagonal elements in each

diagonal matrix are in descending order. Then

|A⊗B + C⊗D| ≥ min
P1,P2

|Λa ⊗Λb + Λc,P1 ⊗Λd,P2 | (4.46a)

|A⊗B + C⊗D| ≤ max
P1,P2

|Λa ⊗Λb + Λc,P1 ⊗Λd,P2 | (4.46b)

where the minimum or maximum are taken over all possible (diagonal-wise) permutations

{P1, P2}.
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From Lemma 8, we have:

Lemma 9 Let A,B,C,D be positive semi-definite Hermitian matrices with the correspond-

ing eigenvalue matrices Λa, Λb, Λc, Λd each of descending diagonal elements. Then

|A⊗B + C⊗D| ≥ |Λa ⊗Λb + Λc ⊗Λd| (4.47a)

|A⊗B + C⊗D| ≤ |Λa ⊗Λb + Λ̄c ⊗ Λ̄d| (4.47b)

where Λ̄c and Λ̄d are respectively Λc and Λd but with reversed order of diagonal elements.

Proof. See Appendix 4.7.3

Applying (4.47a) to (4.45) and from (4.20), we have:

Theorem 10 For M = 2, U1,opt = I and U2,opt = I are respectively the globally optimal

solutions of U1 and U2 (defined in (4.17)) to the MI based problem (4.43).

The above choices of U1 and U2 were also used in [38] but they could not establish

their optimality. Also note that the optimality of the above choice of U1 and U2 was rather

obvious (see the discussions of (4.19) and (4.20)) for the MSE based problem (4.6).
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Let C1 = Λ̃
−1
1 Λ2

1 and C2 = Λ̃
−1
2 Λ2

2 with their diagonal elements denoted by

c1,l = λ2
1,l/λ̃1,l and c2,k = λ2

2,k/λ̃2,k. Then (4.44c) becomes

I2

= log2 |σ2
2I + Λ̃2 ⊗C1Λ̃1|+ log2 |σ2

1I + C2Λ̃2 ⊗ Λ̃1|

− log2 |σ2
1σ

2
2I + σ2

1Λ̃2 ⊗C1Λ̃1 + σ2
2C2Λ̃2 ⊗ Λ̃1|

=

N2∑
k=1

N1∑
l=1

log2

(
(σ2

2 + λ̃1,lλ̃2,kc1,l)(σ
2
1 + λ̃1,lλ̃2,kc2,k)

σ2
1σ

2
2 + σ2

1λ̃1,lλ̃2,kc1,l + σ2
2λ̃1,lλ̃2,kc2,k

)

,
N2∑
k=1

N1∑
l=1

fl,k(c1,l, c2,k)

(4.48)

Let c1 and c2 be the vectors of the diagonal elements from C1 and C2 respectively. Then

(4.43) is transformed to

max
c1>0,c2>0

N2∑
k=1

N1∑
l=1

fl,k(c1,l, c2,k) (4.49)

s.t.

N1∑
l=1

c1,l ≤ KP1,

N2∑
k=1

c2,k ≤ KP2

It is easy to verify that f(c1,l, c2,k) is a monotonically increasing function of c1,l and c2,k

respectively. So, the optimal solutions must satisfy
∑N1

l=1 c1,l = KP1 and
∑N2

k=1 c2,k = KP2.

However, −fl,k(c1,l, c2,k) is not always convex of c1,l and c2,k. The Hessian matrix

of −fl,k(c1,l, c2,k) is 
λ̃21,lλ̃

2
2,k(ϑl,k−σ4

1θ1,l,k)

θ1,l,kϑl,k
−σ2

1σ
2
2 λ̃

2
1,lλ̃

2
2,k

ϑl,k

−σ2
1σ

2
2 λ̃

2
1,lλ̃

2
2,k

ϑl,k

λ̃21,lλ̃
2
2,k(ϑl,k−σ4

2θ2,l,k)

θ2,l,kϑl,k

 (4.50)

where θ1,l,k = (σ2
2+λ̃1,lλ̃2,kc1,l)

2, θ2,l,k = (σ2
1+λ̃1,lλ̃2,kc2,k)

2 and ϑl,k = (σ2
1σ

2
2+σ2

1λ̃1,lλ̃2,kc1,l+

σ2
2λ̃1,lλ̃2,kc2,k)

2. This matrix is positive semidefinite if and only if c1,lc2,k ≥
σ2
1σ

2
2

2λ̃21,lλ̃
2
2,k

. This

means that when KP1 and KP2 are large, the Hessian matrix of −fl,k(c1,l, c2,k) is typi-

cally positive definite and hence −fl,k(c1,l, c2,k) is typically convex. In this high power case,
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the problem (4.49) is convex and the globally optimal solution is available. In general,

−fl,k(c1,l, c2,k) is a convex function with respect to c1,l and c2,k individually. To obtain

locally optimal solution to (4.49), we can apply a two-phase iteration method, i.e., opti-

mizing c1 and c2 alternately until convergence. The discussion of the following two-phase

algorithm is similar to that in [38].

In phase one, the Lagrangian function with respect to c1,l is

L =

N2∑
k=1

N1∑
l=1

fl,k(c1,l, c2,k)− µ
( N1∑
l=1

c1,l −KP1

)
+ αT c1 (4.51)

And the corresponding KKT conditions are

∂L
∂c1,l

=
1

ln 2

N2∑
k=1

f ′l,k(c1,l, c2,k)− µ = 0

N1∑
l=1

c1,l ≤ KP1, µ(

N1∑
l=1

c1,l −KP1) = 0, µ ≥ 0

c1 > 0, αT c1 = 0, α ≥ 0

(4.52)

where

f ′l,k(x, y)

=
σ2

2λ̃
2
1,lλ̃

2
2,ky

(σ2
2 + λ̃1,lλ̃2,kx)(σ2

1σ
2
2 + σ2

1λ̃1,lλ̃2,kx+ σ2
2λ̃1,lλ̃2,ky)

(4.53)

In phase two, similar KKT conditions can be found. From (4.52), we see that µ is a

monotonically decreasing function of c1,l. Therefore, we can use a bisection search to solve

(4.52). An efficient algorithm to solve (4.49) is shown in Algorithm 5. From (4.53), we

know that f ′l,k(c1,l, c2,k) is an increasing function of λ̃1,l and a decreasing function of c1,l.

Given any c2, the solution from (4.52) is c∗1, which must satisfy
∑N2

k=1 f
′
l,k(c

∗
1,l, c2,k) = µ ln 2.

Hence, one can verify that c∗1,l ≥ c∗1,l+1. (If c∗1,l < c∗1,l+1 then µ ln 2 =
∑N2

k=1 f
′
l,k(c

∗
1,l, c2,k) >∑N2

k=1 f
′
l,k(c

∗
1,l+1, c2,k) ≥

∑N2
k=1 f

′
l+1,k(c

∗
1,l+1, c2,k) = µ ln 2, which is not possible.) Similarly,
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Algorithm 5 Bisection section search to solve (4.52)

Input:

Λ̃1, Λ̃2, P1, P2, K;

Accuracy threshold ε1, ε2.

Initialization p = 0, c
(p)
1 = KP1

N1
1N1

, c
(p)
2 = KP2

N2
1N2

.

1: repeat

2: Given c
(p)
2 , do bisection search of µ and obtain solution c

(p+1)
1 to meet the power constraint

|
∑N1

l=1 c1,l −KP1| ≤ ε1; Given c
(p+1)
1 , do bisection search of ν and obtain solution c

(p+1)
2 to

meet the power constraint |
∑N2

k=1 c2,k −KP2| ≤ ε1.

3: p = p+ 1.

4: until ‖[c(p)
1 , c

(p)
2 ]− [c

(p−1)
1 , c

(p−1)
2 ]‖ ≤ ε2

5: return {c(p)
1 , c

(p)
2 }

c∗2,k ≥ c∗2,k+1. Therefore, the diagonal elements of the optimal solutions of Λ2
1 and Λ2

2 are

also in descending order respectively.

Asymptotic Analysis

The following theorem shows the globally optimal solution to (4.25) in high or low

power region. These solutions are also given by Algorithm 5.

Theorem 11 Let P1 = P2 = P . If P is arbitrarily large, the globally optimal c1,l and

c2,k (defined before (4.48)) are invariant to l and k (which will be called “uniform power”

allocation), and a less correlated channel yields a higher secret key rate. If P is arbitrarily

small, the globally optimal c1,l and c2,k are all arbitrarily small except for l = k = 1, and a

higher correlated channel yields a higher secret key rate.

Proof. See Appendix 4.7.4.
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4.4.3 Closed-form solution

For M ≥ 2, we now consider the same symmetric and isotropic case considered

before. Without loss of generality, also let σ = 1. Then applying the matrix inverse lemma

to (4.35) and (4.36), we have

Γi,j = (SjF̄F̄HSTj ⊗ I)−
(
(SjF̄F̄H S̄T(i))(I + S̄(i)F̄F̄H S̄T(i))

−1(S̄(i)F̄F̄HSTj )
)
⊗ I (4.54)

ΓT,j,i = (I⊗ SiF̄F̄HSTi )− I⊗
(
(SiF̄F̄H S̄T(j))(I + S̄(j)F̄F̄H S̄T(j))

−1(S̄(j)F̄F̄HSTi )
)

(4.55)

Note that I(yi; yT,j) = − log2 |I−Γi,jΓT,j,i|, IM =
∑M−1

i=1

∑M
j=i+1 I(yi; yT,j) and the power

and rank constraints in (4.25) become Tr(SiF̄F̄HSTi ) ≤ KP, i = 1, . . . ,M . Then the

Lagrangian function is now

L = IM −
M∑
i=1

µi(Tr(SiF̄F̄HSTi )−KP ) (4.56)

and the KKT conditions are

∂L
∂F̄

=
∂IM
∂F̄
−

M∑
i=1

2µiS
T
i SiF̄ = 0

Tr(SiF̄F̄HSTi ) ≤ KP, i = 1, . . . ,M

µi(Tr(SiF̄F̄HSTi )−KP ) = 0, µi ≥ 0, i = 1, . . . ,M

(4.57)

Theorem 12 The solutions to (4.23) as shown in Theorem 6 are also solutions to (4.57).

Proof. See Appendix 4.7.5.

For M = 2, the pilots from this theorem satisfy PiP
H
i = KP

N IN where i = 1, 2, and

these pilots are known to be globally optimal for maximal MI [53] under the symmetric and

isotropic condition. Also note that for M ≥ 3, our numerical simulations did not yield any

result better than that from Theorem 12 subject to the symmetric and isotropic condition.
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4.5 Simulation results

To show some simulation results, we let Pi = P , σ2
i = 1, Ni = 4, Ri = R,

r = (M − 1)N and K ≥ r. We choose the channel correlation matrix to be such that

(R)l,k = R|l−k| where R ∈ [0, 1] is the correlation coefficient.

We first use the normalized (i.e., per element of each channel matrix) MSE:

JM =
JM

M(M − 1)N2
(4.58)

to compare three different choices of pilots. Since JM depends on R, we will also write JM =

JM (R). More specifically, we use JM,opt(R) for the optimal pilot computed from algorithm

4, JM,c−opt(R) for the conditionally optimal pilot from Theorem 6, and JM,first(R) for the

pilot proposed in [31] (which coincides with that from Theorem 6 if Ni = N = 1).

For M = 3, Fig. 4.2 shows the normalized MSE vs 0dB ≤ KP ≤ 70dB. We

see that for high KP all curves of the normalized MSE in log-scale vs KP in dB become

parallel straight lines. This is expected since for large enough KP the MSE is proportional

to 1
KP . It is also expected that JM,opt(0) = JM,c−opt(0). But we also see that JM,opt(R)

and JM,c−opt(R) are still rather close to each other even for R = 0.8, and they both are

substantially better than JM,first(R) especially at high KP .
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Using the pilots from Theorem 6, we know that JM,opt(0) = N
∑M

i=1 Tr
(
(I +

KP
N2(M−1)

S̄(i)Q̄mQ̄H
mS̄T(i))

−1
)
, and hence one can verify that

lim
KP→∞

JM,opt(0) = 2N(1− 1

M
)

1

KP
(4.59)

which is invariant to large M . But this limit increases linearly as N increases (because the

per-antenna power is P
N ).

Fig. 4.3 shows
JM,opt(0.8)
JM,opt(0) vs M and N where KP = 60dB. Note that

JM,opt(0.8)
JM,opt(0)

is invariant to large KP . From this and other similar plots that we have obtained but not

shown here, we see that JM,opt(R) is also invariant to large M but increases as N increases.

Furthermore, JM,opt(R) increases as R increases within [0, 1) in the high power region.

0 10 20 30 40 50 60 70

10-6

10-4

10-2

100

Figure 4.2: Normalized MSE vs 0dB ≤ KP ≤ 70dB where M = 3.
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Figure 4.3:
JM,opt(0.8)
JM,opt(0) vs M and N with KP = 60dB.

We now use the normalized (per pair and per degree-of-freedom) MI:

IM =
IM

M(M−1)N2

2

(4.60)

to compare three different choices of pilots. We also write IM = IM (R). We use IM,opt(R)

for the pilots from (4.25), IM,c−opt(R) for the pilots from Theorem 12, and IM,first(R) for

the pilots initially suggested in [31].

For M = 3, Fig. 4.4 shows IM (R) vs 0dB ≤ KP ≤ 70dB. Since IM (R) is a

constant plus log2(KP ) at high KP , we see that all curves here become parallel straight

lines when KP is large. Like the MSE case, we also see here that IM,opt(R) and IM,c−opt(R)

are significantly better than IM,first(R).
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One can verify by using (4.86) and IM (0) = −N2 log2(1− Γ2) that

lim
KP→∞

IM,opt(0) = log2(
1

4N
(1 +

1

M − 1
)) + log2(KP ) (4.61)

which is invariant to large M but decreases as N increases.

Fig. 4.5 shows IM,opt(0.8)− IM,opt(0) vs M and N where KP = 60dB. Note that

IM,opt(0.8)−IM,opt(0) is invariant to large KP . From this and other similar plots not shown

here, we see that IM,opt(R) is also invariant to large M but decreases as N increases. And

IM,opt(R) decreases as R increases within [0, 1) in the high power region.
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Figure 4.4: Normalized MI 0dB ≤ KP ≤ 70dB with M = 3.
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Figure 4.5: IM,opt(0.8)− IM,opt(0) vs M and N with KP = 60dB.

Finally, let us consider I2 = I2
N2 = I(y1;y2)

N2 for two users (M = 2) based on three

choices of pilots, i.e., 1) I2,opt(R) based on (4.49) which maximizes the mutual information;

2) I2,MSE(R) based on two-use MMSE channel estimation as in [37]; and 3) I2,u(R) based

on “uniform power” allocation, i.e., c1 = c2 = KP
N 1.

Fig. 4.6 shows I2,opt(R) (in bits per realization of H1,2) vs KP where R = 0 and

R = 0.8. As expected from the analyses, we see that in the low power region, a higher

correlation yields a higher secret key rate, but in the high power region, the opposite is

true.

Fig. 4.7 shows
I2,MSE(R)
I2,opt(R) and

I2,u(R)
I2,opt(R) vs KP where R = 0.8. As expected from

theorem 11, we see that as power increases, the uniform power pilots become closer to the

optimal, i.e.
I2,u(R)
I2,opt(R) increases to one. We also see that the pilots based on MMSE channel
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estimation are nearly optimal in the low power case. This is because when the power

becomes low the MMSE based pilot design also allocates all the power to the strongest

stream. But the MMSE based pilot design does not lead to uniform power allocation in the

high power case [37], which explains the gap at high power. The curve of
I2,MSE(R)
I2,opt(R) shown

here is supported by Theorem 11 but differs from Fig. 7 in [38], the latter of which appears

to have an error.
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Figure 4.6: Normalized MI with M = 2
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Figure 4.7: Normalized MI ratio with M = 2 and correlation R = 0.8

4.6 Conclusion

In this chapter, we have developed algorithms for computing the optimal pilots

used for ANECE under optimal MMSE channel estimation and maximum MI criteria.

Each channel matrix is modelled by a known correlation matrix and a matrix of i.i.d.

complex Gaussian entries. While the logarithmic barrier gradient method was used to

develop algorithms for more than two users, more efficient algorithms were developed for two

users. Under the symmetric and isotropic condition, closed-form expression of the optimal

pilots was shown (in Theorems 6 and 12) under both optimal MMSE channel estimation

and maximum MI criteria. While this closed-form expression coincides with that proposed

in [31] for three or more single-antenna users, it is a significant discovery for three or more
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multi-antenna users. The general algorithms developed for three or more multi-antenna

users are also significant contributions beyond the prior works shown in [37] and [38]. We

should note however that although the optimal pilots developed in this paper meet the

KKT conditions of non-convex problems and there is no other known design that performs

better, the global optimality of the optimal pilots from this work is not yet established for

most situations such as three or more users. One strategy to prove the global optimality (if

true) of the solutions in Theorems 6 and 12 is to find all solutions to the KKT conditions of

the non-convex problems and rule out the possibility of better solutions. This is a challenge

not yet won.

4.7 Proof of Lemma and Theorem

4.7.1 Proof of Theorem 6

From (4.24), the (l + 1, k + 1)th element of QmQH
m is

(QmQH
m)l+1,k+1 =

N−1∑
n=0

e−j2π
(l−k)(m+nM)

NM

= e−j2π
(l−k)m
NM

N−1∑
n=0

e−j2π
(l−k)n
N

=


0, |l − k| 6= vN

Ne−j2π
(l−k)m
NM , |l − k| = vN

(4.62)

where v is an integer satisfying 0 ≤ v ≤ M − 1. From (4.62), we know that there

are only M non-zero elements on each column or row of QmQH
m. More specifically, using

wM = e−j2π
1
M , we have
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QmQH
m

= N



1 w−mM · · · w
−(M−1)m
M

wmM 1 · · · w
−(M−2)m
M

...
...

. . .
...

w
(M−1)m
M w

(M−2)m
M · · · 1


⊗ IN (4.63)

= NqmqHm ⊗ IN (4.64)

where qm = [1, wmM , . . . , w
(M−1)m
M ]T . Since QH

mQ̄m = 0, we have (qmqHm ⊗ IN )Q̄m = 0.

For Ni = N , we have S̄(i) = IM,i ⊗ IN where IM,i is IM without its ith row, and

Si = eTi ⊗ IN , i = 1, . . . ,M where ei is the M × 1 vector with its ith element equal to

one. Now assume F̄ =
√
αdQ̄m. Then F̄F̄H = αdQ̄mQ̄H

m = αd(MNIMN − QmQH
m) =

αd(MNIMN −NqmqHm ⊗ IN ) = αd(MNIM −NqmqHm)⊗ IN , and

(I(M−1)N + S̄(i)F̄F̄H S̄T(i))
−1

= [I(M−1)N + αd(IM,i ⊗ IN )(NMI−NqmqHm ⊗ IN )(ITM,i ⊗ IN )]−1

= ((1 +NMαd)I(M−1)N −Nαd
(
IM,iqmqHmITM,i

)
⊗ IN )−1

=

(
IM−1 − Nαd

1+NMαd
IM,iqmqHmITM,i

)−1 ⊗ IN

1 +NMαd

=

(
IM−1 + Nαd

1+Nαd
IM,iqmqHmITM,i

)
⊗ IN

1 +NMαd

(4.65)

where the last equality in (4.65) is based on (I+xyH)−1 = I− 1
1+yHx

xy and qHmITM,iIM,iqm =

M − 1.
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Without loss of generality, we now set σ2 = 1 since P can be any positive number.

Then from (4.15) and the conditions of the theorem, we have

∂JM
∂F̄

= −2N
M∑
i=1

S̄T(i)
(
I + S̄(i)F̄F̄H S̄T(i)

)−2
S̄(i)F̄ (4.66)

where, using (4.65), we have

M∑
i=1

S̄T(i)
(
I(M−1)N + S̄(i)F̄F̄H S̄T(i)

)−2
S̄(i)

=

∑M
i=1 S̄T(i)

(
(IM−1 + Nαd

1+Nαd
IM,iqmqHmITM,i)

2 ⊗ I
)
S̄(i)

(1 +NMαd)2

=

∑M
i=1 S̄T(i)

(
(IM−1 + βIM,iqmqHmITM,i)⊗ IN

)
S̄(i)

(1 +NMαd)2

=

∑M
i=1

(
ITM,iIM,i + βITM,iIM,iqmqHmITM,iIM,i

)
⊗ IN

(1 +NMαd)2

=

(
(M − 1 + β)IM + β(M − 2)qmqHm

)
⊗ IN

(1 +NMαd)2

(4.67)

where β =
2Nαd(1+Nαd)+N2α2

d(M−1)

(1+Nαd)2
> 0. The last equality in (4.67) has used

∑M
i=1 ITM,iIM,i =

(M − 1)IM and

M∑
i=1

ITM,iIM,iqmqHmITM,iIM,i = IM + (M − 2)qmqHm. (4.68)

Using (qmqHm ⊗ IN )F̄ = QH
mQ̄m = 0, (4.66) and (4.67) yield

∇JM = −2N
(M − 1 + β)

(1 +NMαd)2
F̄ (4.69)

Also note that
∑M

i=1 STi Si = (
∑M

i=1 eie
T
i )⊗IN = IM ⊗IN = IMN . Therefore, the first KKT

condition in (4.23) is satisfied by µi = N(M−1+β)
(1+NMαd)2

> 0, and all the other KKT conditions

are satisfied by αd = KP
N2(M−1)

. Therefore, F̄ =
√

KP
N2(M−1)

Q̄m is a solution to (4.23).
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4.7.2 The gradient of g2(F̄) in (4.39)

It follows from (4.39) that ∇g2(F̄) = −t
∑M−1

i=1

∑M
j=i+1∇ log2 |I − Γi,jΓT,j,i| +∑M

i=1∇Bi(F̄). Here, ∇Bi(F̄) is given by (4.16). To show ∇ log2 |I − Γi,jΓT,j,i|, we first

consider

∇ log2 |I− Γi,jΓT,j,i|

=
1

ln 2∂F̄
Tr
(
ΓT,j,i(I− Γi,jΓT,j,i)

−1∂Γi,j
)

+
1

ln 2∂F̄
Tr
(
(I− Γi,jΓT,j,i)

−1Γi,j∂ΓT,j,i
)

(4.70)

where we have applied ∂ ln |X| = Tr(X−1∂X), ∂(XY) = ∂X ·Y + X · ∂Y and Tr(XY) =

Tr(YX).

Using the matrix inverse lemma, (4.35) can be rewritten as

Γi,j =
1

σ2
i

(SjF̄F̄HSTj )⊗ Λ̃i −
1

σ4
i

((SjF̄F̄H S̄T(i))⊗ Λ̃i)

· (I +
1

σ2
i

S̄(i)F̄F̄H S̄T(i) ⊗ Λ̃i)
−1((S̄(i)F̄F̄HSTj )⊗ Λ̃i) (4.71)

where each factor or term is a function of F̄F̄H , which is useful to simplify the gradient

expressions. For example, with respect to the complex matrix X,∇Tr(AXXHB) = 2BAX.

Let Ti,j be such a permutation matrix that TT
i,j [(SjF̄F̄HSTj )⊗ Λ̃i]Ti,j = Λ̃i⊗ (SjF̄F̄HSTj ).

Also define Γ̃i,j = TT
i,jΓT,j,i(I − Γi,jΓT,j,i)

−1Ti,j . Then, one can verify (after a slightly

tedious process) that the first term in (4.70) can be written as (without the coefficient

1/ ln 2):
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1

∂F̄
Tr
(
Ti,jΓ̃i,jT

T
i,j∂Γi,j

)
= 2
(
Γ

(0)
i,j − Γ

(1)
i,j + Γ

(2)
i,j − Γ

(3)
i,j

)
F̄ (4.72)

where

Γ
(0)
i,j =

Ni∑
l=1

λ̃i,l
σ2
i

STj (Γ̃i,j)lSj (4.73)

Γ
(1)
i,j =

Ni∑
l=1

λ̃2
i,l

σ4
i

S̄T(i)(I +
λ̃i,l
σ2
i

S̄(i)F̄F̄H S̄T(i))
−1S̄(i)F̄F̄HSTj (Γ̃i,j)lSj (4.74)

Γ
(2)
i,j =

Ni∑
l=1

λ̃3
i,l

σ6
i

S̄T(i)(I +
λ̃i,l
σ2
i

S̄(i)F̄F̄H S̄T(i))
−1S̄(i)F̄F̄HSTj

· (Γ̃i,j)lSjF̄F̄H S̄T(i)(I +
λ̃i,l
σ2
i

S̄(i)F̄F̄H S̄T(i))
−1S̄(i) (4.75)

Γ
(3)
i,j =

Ni∑
l=1

λ̃2
i,l

σ4
i

STj (Γ̃i,j)lSjF̄F̄H S̄T(i)(I +
λ̃i,l
σ2
i

S̄(i)F̄F̄H S̄T(i))
−1S̄(i) (4.76)

and (Γ̃i,j)l is the lth Nj ×Nj diagonal block of Γ̃i,j .

A similar procedure can be applied to obtain the corresponding (explicit) expres-

sion of the second term in (4.70). The details are omitted here.

4.7.3 Proof of Lemma 9

To prove (4.47a), we start with (4.46a) which can rewritten as

|A⊗B + C⊗D| ≥ min
P1,P2

m∏
k=1

n∏
l=1

(λa,lλb,k + λc,P1,lλd,P2,k) (4.77)

where λa,l is the lth diagonal element of Λa, and λb,k, λc,P1,l and λd,P2,k are defined similarly.

Every permutation of the diagonal elements of a diagonal matrix can be represented by

a sequence of pair-wise permutations (each involving two diagonal elements). To prove
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(4.47a), we only need to prove that (1) for every pair of diagonal elements of Λa (which

are descending) the corresponding pair of diagonal elements of Λc,P1 must be descending to

minimize the right side of (4.77), and (2) for every pair of Λb (which are descending) the

corresponding pair of diagonal elements of Λd,P2 must be descending to minimize the right

side of (4.77). The proofs of the above two statements are virtually the same. So, we only

need to prove the first.

Let λc,P1,s and λc,P1,l be two diagonal elements in Λc,P1 where s < l and λc,P1,s ≥

λc,P1,l (descending). Let P ′1 be another permutation that differs from P1 only for these two

elements, i.e., λc,P ′1,s ≤ λc,P ′1,l (ascending), λc,P1,s = λc,P ′1,l and λc,P1,l = λc,P ′1,s. To compare

the two permutations P1 and P ′1, we only need to compare the two factors in (4.77) that

are affected from P1 to P ′1. The difference between the products of the two factors is

(λa,sλb,k + λc,P1,sλd,P2,k)(λa,lλb,k + λc,P1,lλd,P2,k)

− (λa,sλb,k + λc,P ′1,sλd,P2,k)(λa,lλb,k + λc,P ′1,lλd,P2,k)

= λa,sλb,kλc,P1,lλd,P2,k + λc,P1,sλd,P2,kλa,lλb,k

− λa,sλb,kλc,P ′1,lλd,P2,k − λc,P ′1,sλd,P2,kλa,lλb,k

= λd,P2,kλb,k(λa,s − λa,l)(λc,P1,l − λc,P1,s) ≤ 0.

(4.78)

This proves the first statement. The second statement can be proved similarly. Hence

(4.47a) is proven. The proof of (4.47b) can be done in a similar manner.
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4.7.4 Proof of Theorem 11

Define č1,l =
c1,l
KP and č2,k =

c2,k
KP . Then, the power constraints become

∑N1
l=1 č1,l =

1 and
∑N2

k=1 č2,k = 1. And (4.48) now becomes

I2 =

N2∑
k=1

N1∑
l=1

log2

(
(σ2

2 +KPλ̃1,lλ̃2,k č1,l)(σ
2
1 +KPλ̃1,lλ̃2,k č2,k)

σ2
1σ

2
2 +KPσ2

1λ̃1,lλ̃2,k č1,l +KPσ2
2λ̃1,lλ̃2,k č2,k

) (4.79)

High Power Case For large P , (4.79) can be approximated as

I2

≈
N2∑
k=1

N1∑
l=1

log2(
KPλ̃1,lλ̃2,k č1,lč2,k

σ2
1 č1,l + σ2

2 č2,k
)

=

N2∑
k=1

N1∑
l=1

log2(
č1,lč2,k

σ2
1 č1,l + σ2

2 č2,k
) +

N2∑
k=1

N1∑
l=1

log2(KPλ̃1,lλ̃2,k)

, φ1(č1, č2, λ̃1, λ̃2)

(4.80)

From (4.80), we know that the degrees of freedom per channel realization is

limP→∞
φ1(č1,č2,λ̃1,λ̃2)

log2 P
= N1N2.

Also, −∂2φ1
∂č21,l

= −
∑

j(
σ4
1

(σ2
1 č1,l+σ

2
2 č2,k)2

− 1
č21,l

) ≥ 0, which means that −φ1 is a convex

function of č1. Meanwhile, −φ1 is a symmetric function of č1. Therefore, φ1 is a Schur-

concave function [49] of č1, and then we have φ1(1N1 , č2, λ̃1, λ̃2) ≥ φ1(č1, č2, λ̃1, λ̃2) with

any č1 of descending elements. Similar idea can be applied to show that (4.80) is also a

Schur-concave function of č2. Therefore, the optimal power allocation in the high power

case is such that č1 = 1
N1

1N1 and č2 = 1
N2

1N2 .

Also, by applying the same argument, one can easily prove that (4.80) is also a

Schur-concave function of λ̃1 and λ̃2 respectively. Therefore, when λ̃1 = 1N1 and λ̃2 = 1N2 ,
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(4.80) is maximized. In other words, in the high power case, less correlated channel yields

a higher secret key rate.

Low Power Case For small P , we can approximate (4.79) by its second-order Taylor

series expansion at point P = 0:

I2 = I2|P=0 +∇I2|P=0P +
1

2
∇2I2|P=0P

2 + o(P 2) (4.81)

where ∇I2 and ∇2I2 are the first and second order derivatives of (4.79) with respect to P .

It can be easily proved that ∇I2|P=0 = 0 and

∇2I2|P=0

=
2

ln 2

N1∑
l=1

N2∑
k=1

λ̃2
1,lλ̃

2
2,kK

2č1,lč2,k , φ2(č1, č2, λ̃1, λ̃2)

(4.82)

To maximize (4.81), we just need to maximize the term (4.82). Based on (4.82) we

have ∂φ2
∂č1,l

= K2λ̃2
1,l

∑N2
j=1 λ̃

2
2,k č2,k. Since {λ̃1,l} is in descending order, we know that

φ2(č1, č2, λ̃1, λ̃2) is a Schur-convex function of č1 with descending entries, which means

it is maximized by putting almost all of the power to č1,1. The reason that “almost all”

instead of “all” is used here is to ensure the positive condition on ca. The same conclusion

can be drawn about č2,1 for maximizing φ2(č1, č2, λ̃1, λ̃2). That is, in the low power case,

almost all of the power should be allocated to the strongest stream.

It is also clear that φ2(č1, č2, λ̃1, λ̃2) is a Schur-convex function of λ̃1 and λ̃2

individually. Therefore, in low power region, a higher channel correlation leads to a higher

secret key rate.
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4.7.5 Proof of Theorem 12

Refer to Appendix 4.7.1. Assume F̄ =
√
αdQ̄m. With (4.64), the first term of Γi,j

in (4.54) can be written as

SjF̄F̄HSTj ⊗ IN

= αd(e
T
j (MNIM −NqmqHm)ej)⊗ IN2

= αd(M − 1)NIN2 (4.83)

With (4.65), the second term of Γi,j in (4.54) becomes

(
(SjF̄F̄H S̄T(i))(I(M−1)N + S̄(i)F̄F̄H S̄T(i))

−1(S̄(i)F̄F̄HSTj )
)
⊗ IN

= α2
d

((
(eTj (MNIM −NqmqHm)S̄T(i))⊗ IN

)
·
((IM−1 + Nαd

1+Nαd
IM,iqmqHmITM,i

)
(1 +NMαd)

⊗ IN
)

·
(
(S̄(i)(MNIM −NqmqHm)ej)⊗ IN

))
⊗ IN

=
α2
d(MNeTj −Nw

(j−1)m
M qHm)Θi(MNej −Nw−(j−1)m

M qm)

1 +NMαd
IN2

(4.84)

where Θi , ITM,iIM,i + Nαd
1+Nαd

ITM,iIM,iqmqHmITM,iIM,i. Note that ITM,iIM,i is the identity

matrix IM with its ith diagonal element set to zero, and ITM,iIM,iqm is qm with its ith

element set to zero. Also eTj Θiej = 1 + Nαd
1+Nαd

, eTj Θiqm = w
(j−1)m
M (1 + Nαd

1+Nαd
(M − 1)),

qHmΘiej = w
−(j−1)m
M (1+ Nαd

1+Nαd
(M−1)) and qHmΘiqm = (M−1)(1+ Nαd

1+Nαd
(M−1)). Then,

(4.84) becomes

α2
dN

2

1 +NMαd

(
M2eTj Θiej −Mw

−(j−1)m
M eTj Θiqm −Mw

(j−1)m
M qHmΘiej + qHmΘiqm

)
IN2

=
α2
dN

2( Nαd

1+Nαd
+M2 −M − 1)

1 +NMαd
IN2 (4.85)

Using (4.83), (4.84) and (4.85), Γi,j becomes

Γi,j =
αdMN −Nαd/(1 +Nαd)

1 +MNαd
IN2 , ΓIN2 (4.86)
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where 0 < Γ < 1 which is invariant to i, j,m. Similarly, one can verify that ΓT,j,i = ΓIN2 .

Then we have (I− Γi,jΓT,j,i)
−1 = (1− Γ2)−1IN2 .

Using the above results in (4.70), we have

∂I(yi; yT,j)

∂F̄

=
1

ln 2∂F̄

(
Tr(

Γ

1− Γ2
∂Γi,j) + Tr(

Γ

1− Γ2
∂ΓT,j,i)

) (4.87)

Similar to (4.72), the first term in (4.87) (except for a constant factor) can be expressed as

1

∂F̄
Tr (∂Γi,j) = 2

(
Γ

(0)
i,j − Γ

(1)
i,j + Γ

(2)
i,j − Γ

(3)
i,j

)
F̄ (4.88)

where Γ
(0)
i,j = Neje

T
j ⊗ IN ,

Γ
(1)
i,j = N S̄T(i)(I + S̄(i)F̄F̄H S̄T(i))

−1(S̄(i)F̄F̄HSTj )Sj (4.89)

Γ
(2)
i,j =N S̄T(i)(I + S̄(i)F̄F̄H S̄T(i))

−1(S̄(i)F̄F̄HSTj )

· (SjF̄F̄H S̄T(i))(I + S̄(i)F̄F̄H S̄T(i))
−1S̄(i) (4.90)

and Γ
(3)
i,j = (Γ

(1)
i,j )T . Furthermore, using ITM,iIM,ieje

T
j = eje

T
j for i 6= j and the previous

results under F̄ =
√
αdQ̄m, we have

Γ
(1)
i,j

=
Nαd

(
Θi(MNI−NqmqHm)eje

T
j

)
⊗ IN

1 +NMαd

=
Nαd

(
MNeje

T
j − N

1+Nαd
ITM,iIM,iqmqHmeje

T
j

)
⊗ IN

1 +NMαd

(4.91)

Γ
(2)
i,j

=
Nα2

d

(
Θi(MNI−NqmqHm)eje

T
j (MNI−NqmqHm)Θi

)
⊗ IN

(1 +NMαd)2

=
α2
dN

3

(1 +NMαd)2

(
M2eje

T
j +

1

(1 +Nαd)2
ITM,iIM,iqmqHmITM,iIM,i

− M

1 +Nαd
eje

T
j qmqHmITM,iIM,i −

M

1 +Nαd
ITM,iIM,iqmqHmeje

T
j

)
⊗ IN .

(4.92)
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Some details for the derivation of the second equality in (4.92) are shown later in Appendix

4.7.5.

Similarly, one can verify that
∂Tr(∂ΓT,j,i)

∂F̄
= 2(Γ

(0)
j,i − Γ

(1)
j,i + Γ

(2)
j,i − (Γ

(1)
j,i )T )F̄.

Note that

M−1∑
i=1

M∑
j=i+1

(
eje

T
j + eie

T
i

)
⊗ IN = (M − 1)IMN (4.93)

M−1∑
i=1

M∑
j=i+1

(ITM,iIM,iqmqHmeje
T
j + ITM,jIM,jqmqHmeie

T
i )

= (M − 2)qmqHm + IM

(4.94)

M−1∑
i=1

M∑
j=i+1

(ITM,iIM,iqmqHmITM,iIM,i + ITM,jIM,jqmqHmITM,jIM,j) (4.95)

= (M − 1)qmqHm + 2IM (4.96)

Then, with some further manipulations, we obtain

∂IM
∂F̄

=

M−1∑
i=1

M∑
j=i+1

∂I(yi; yT,j)

∂F̄

=
2NΓ

(1− Γ2) ln 2

( M − 1

(1 +MNαd)2
+

2Nαd(1 + 2Nαd)

(1 +MNαd)2(1 +Nαd)2

)
F̄. (4.97)

Then one can verify that the first condition in (4.57) is satisfied by (4.97) and

µi = NΓ
(1−Γ2) ln 2

( M−1
(1+MNαd)2

+ 2Nαd(1+2Nαd)
(1+MNαd)2(1+Nαd)2

) > 0, and all other conditions in (4.57) are

satisfied by further choosing αd = KP
N2(M−1)

. Therefore, F̄ =
√

KP
N2(M−1)

Q̄m is a solution to

(4.57).
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Derivation of (4.92)

From the first equality in (4.92), we have

Θi

(
M2eje

T
j −MqmqHmeje

T
j −Meje

T
j qmqHm + qmqHm

)
Θi

= M2Θieje
T
j Θi −MΘieje

T
j qmqHmΘi

−MΘiqmqHmeje
T
j Θi + ΘiqmqHmΘi (4.98)

Let η = Nαd
1+Nαd

. Each of the four terms in (4.98) can be simplified as follows:

M2Θieje
T
j Θi = M2

(
eje

T
j + ηeje

T
j qmqHmITM,iIM,i + ηITM,iIM,iqmqHmeje

T
j

+ η2ITM,iIM,iqmqHmITM,iIM,i

)
(4.99)

MΘieje
T
j qmqHmΘi = M

(
(η(M − 1) + 1)eje

T
j qmqHmITM,iIM,i (4.100)

+ (η2(M − 1) + η)ITM,iIM,iqmqHmITM,iIM,i

)
(4.101)

MΘiqmqHmeje
T
j Θi = M

(
(η(M − 1)+)ITM,iIM,iqmqHmeje

T
j

+ (η2(M − 1) + η)ITM,iIM,iqmqHmITM,iIM,i

)
(4.102)

ΘiqmqHmΘi = (η(M − 1) + 1)2ITM,iIM,iqmqHmITM,iIM,i (4.103)

Applying (4.98) - (4.103), the second equality of (4.92) follows.
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Chapter 5

Two-Phase Secret Key Generation

with Full-Duplex Radio

5.1 Introduction

Two-phase secret key generation scheme for three-node system has been proposed

in [35, 36, 54]. In the first phase, two users will transmit pilot signals and a common secret

key can be distilled from those received correlated signals. The corresponding pilot-based

secret key rate analysis has been derived in chapter 4. In the second phase, the users will

continue to transmit secret message for the rest coherence time and a additional key will

be generated. In [35], it applies wiretap channel model for the second phase and [54, 36]

use so-called ”source emulation” secret key transmission for the second phase, which is

essentially the wiretap channel model with public discussions.
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In this chapter, we study the achievable secret key rate of two-phase scheme based

on three-node MIMO system with full-duplex users. Such model is an extension of the SISO

system in [35, 36].

5.2 System Model

Now we consider uncorrelated channel model and assume reciprocal channel be-

tween Alice and Bob. During the coherence block, we assume Eve’s channels are indepen-

dent to the channel between Alice and Bob. Since the key generation from the first phase

has been studied in chapter 4, in the following we will only focus on the key generation in

the second phase. In the second phase, the received signals at Alice, Bob and Eve can be

expressed as

yA(t) = HABxB(t) + nA(t)

yB(t) = HT
ABxA(t) + nB(t)

yE(t) = HEAxA(t) + HEBxB(t) + nE(t)

(5.1)

where xA(t) ∈ CNA×1, xB(t) ∈ CNB×1 are the transmitted signals in the second phases and

they are independent Gaussian signal vectors with fixed distribution over the coherence

block, i.e. xA(t) ∼ CN (0,QA), xB(t) ∼ CN (0,QB) and Tr(QA) ≤ PA and Tr(QB) ≤ PB.

We assume the entries of HAB, HEA and HEB are i.i.d zero mean complex Gaussian with

variance σ2, σ2
AE and σ2

BE respectively. The entries in nE(t), nA(t) and nB(t) are i.i.d zero

mean unit variance complex Gaussian. Here we assume the every node knows the statistic

of all the channels.
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Define Kc as the coherence period and define K1 = αKc, α ∈ [max{NA,NB}
Kc

, 1] as

the channel training period. Then (1 − α)Kc will be the period for the second phase key

generation. In [36], a achievable secret key rate of SISO system is given and we extend it

to MIMO case as following

Rkey =
1

Kc
I(ĥA; ĥB) + (1− α)(RA,s −RA,p +RB,s −RB,p) (5.2)

where RA,s = E
(

log2 |I + HABQBHH
AB − HABQBHH

EB(HEAQAHH
EA + HEBQBHH

EB +

I)−1HEBQBHH
AB|
)

, RB,s = E
(

log2 |I + HT
ABQAH∗AB − HT

ABQAHH
EA(HEAQAHH

EA +

HEBQBHH
EB + I)−1HEAQAH∗AB|

)
, RA,p = NA log2(1 + σ2PB

1+σ2αKcPB/NB
)

and RB,p = NB log2(1 + σ2PA
1+σ2αKcPA/NA

). The term I(ĥA; ĥB) has been study in chapter

4. The derivation of (5.2) is shown in section 5.7. (5.2) holds when both QA and QB are

independent to the channel estimations at Alice and Bob. In other words, xA(t) and xB(t)

only depend on the statistic information of the channel HAB.

5.3 Secure Degree of Freedom

From [55, Lemma 2] we know that RA,s is concave function to QB. And because

−X−1 is a concave matrix function of X, so log2(Y −X−1) is also a concave function in

terms of X when Y − X−1 � 0. Therefore, RA,s is a convex function of QA. Similarly,

one can prove that RB,s is a concave function to QA and QB respectively. Because the

unitary matrix will not change the statistic, define ΣA and ΣB are the diagonal matrices
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with eigenvalues of QA and QB respectively. Then RA,s , RB,s can be expressed as

RA,s = E
(

log2 |I + HABΣBHH
AB

−HABΣBHH
EB(HEAΣAHH

EA + HEBΣBHH
EB + I)−1HEBΣBHH

AB|
)

(5.3)

RB,s = E
(

log2 |I + HT
ABΣAH∗AB

−HT
ABΣAHH

EA(HEAΣAHH
EA + HEBΣBHH

EB + I)−1HEAΣAH∗AB|
)

(5.4)

From (5.3)(5.4) we know RA,s and RB,s are symmetric function of both ΣA and ΣB,

therefore RA,s and RB,s are Schur-concave function to ΣA and ΣB. The optimal power

distribution to maximize both RA,s and RB,s are ΣA = PA
NA

INA and ΣB = PB
NB

INB .

RA,s = E
{

log2

∣∣I +
PB
NB

HEBHH
EB +

PA
NA

HEAHH
EA

−
P 2
B

N2
B

HEBHH
AB(I +

PB
NB

HABHH
AB)−1HABHH

EB

∣∣}
+ E

{
log2 |I +

PB
NB

HABHH
AB|
}
− E

{
log2 |I +

PB
NB

HEBHH
EB +

PA
NA

HEAHH
EA|
}

(5.5a)

= E
{

log2

∣∣I +
PA
NA

HEAHH
EA +

PB
NB

HEB(I +
PB
NB

HH
ABHAB)−1HH

EB

∣∣}
+ E

{
log2 |I +

PB
NB

HABHH
AB|
}
− E

{
log2 |I +

PB
NB

HEBHH
EB +

PA
NA

HEAHH
EA|
}

(5.5b)

where (5.5a) are based on matrix determinant of Schur-complement and (5.5b) is based on

matrix inverse lemma. RB,s has similar structure to (5.5) an it is omit here. Based on (5.5)

we have the following proposition

Proposition 13 Given the secret key rate from the second phase RII = α(RA,s −RA,p +

RB,s−RB,p) in (5.5), when PA = PB = P →∞, we have secrecy degree of freedom (SDoF)
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as

d(RII) =



2 min{NA, NB}, max{NA, NB} ≥ NE

2(NA +NB −NE), NA +NB ≥ NE > max{NA, NB}

0, NE > NA +NB

(5.6)

Proof. By applying SVD we have HH
ABHAB = UABdiag(ΛAB,0)UH

AB where UAB ∈

CNB×NB and ΛAB is diagonal matrix with dimension of min{NA, NB}. Define UAB =

[U1,U2] where U1 ∈ CNB×min{NB ,NA} and U2 ∈ CNB×(NB−NA)+ . Then the SDoF of the

first term of RA,s in (5.5b) is

lim
P→∞

1

logP
E
{

log2

∣∣I +
P

NA
HEAHH

EA +
P

NB
HEB(I +

P

NB
HH
ABHAB)−1HH

EB

∣∣}
= lim

P→∞

1

logP
E
{

log2

∣∣I +
P

NA
HEAHH

EA +
P

NB
HEBU1(I +

P

NB
ΛAB)−1UH

1 HH
EB

+
P

NB
HEBU2U

H
2 HH

EB

∣∣}
= rank(

P

NA
HEAHH

EA +
P

NB
HEBU2U

H
2 HH

EB)

= min{NE , NA + (NB −NA)+}

(5.7)

where the last equation in (5.7) is based on [46, Th.2]. Similarly, the SDoF of the sec-

ond term and the third term of RA,s in (5.5b) are min{NA, NB} and min{NE , NA + NB}

respectively. In terms of RA,p we have limP→∞
RA,p
log2 P

=
NA log2(1+

NB
αKc

)

log2 P
= 0. Therefore

that SDoF of RA,s − RA,p is d(RA,s) = min{NE , NA + (NB − NA)+} + min{NA, NB} −

min{NE , NA + NB} and similarly we can have d(RB,s) = min{NE , NB + (NA −NB)+} +

min{NA, NB} − min{NE , NA + NB}. Together we have d(RII) = min{NE , NA + (NB −

NA)+}+ min{NE , NB + (NA −NB)+}+ 2 min{NA, NB} − 2 min{NE , NA +NB}.

From [54] we know that under half-duplex, the SDoF of second phase secret key

generation will become zero in when NE ≥ max{NA, NB}.
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5.4 Asymptotic Forms

In the following we will use random matrix theory to obtain the asymptotic form

of RA,s in (5.5). First we can rewrite it as

RA,s = E
{

log2

∣∣I + HET1H
H
E

∣∣}− E{ log2 |I + HET0H
H
E |
}

+ E
{

log2 |I +
PB
NB

HH
ABHAB|

}
(5.8)

where we define HE = [ 1√
NEσ

2
AE

HEA,
1√

NEσ
2
BE

HEB], T0 = diag(
σ2
AEPANE
NA

1TNA ,
σ2
BEPBNE
NB

1TNB )

and

K1 =


σ2
AEPANE
NA

INA

σ2
BEPBNE
NB

(I + PB
NB

HH
ABHAB)−1

 (5.9)

Similarly, in terms of RB,s in (5.2),we can reorganize it as

RB,s = E
{

log2

∣∣I + HET2H
H
E

∣∣}− E{ log2 |I + HET0H
H
E |
}

+ E
{

log2 |I +
PA
NA

H∗ABHT
AB|
}

(5.10)

where

K2 =


σ2
AEPANE
NA

(I + PA
NA

H∗ABHT
AB)−1

σ2
BEPBNE
NB

INB

 (5.11)

Some prerequisite of random matrix theory is shown in section 5.8. We will derive

the asymptotic form of RA,s in the following and RB,s will have the similar counterpart.

Based on lemma 16 in section 5.8, regarding to the first term in (5.8), asNE , (NA+NB)→∞

with NA+NB
NE

→ β0, we have the following asymptotic expressions converge almost surely

E
{ 1

NE
log2

∣∣I + HET1H
H
E

∣∣} = β0VT1(η1)− log2 η1 + (η1 − 1) log2 e (5.12)

and the corresponding η-transform as

1− η1 = β0(1− ηT1(η1)) (5.13)
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In terms of VT1 , based on the definition of Shannon transform, as NA +NB →∞, we have

VT1(η1) = ET1{log2(1 + η1λ(T1))}

=
1

NA +NB

(
NA log2(1 + η1σ̃

2
AEPA) + log2 |I + η1σ̃

2
BEPB(I +

PB
NB

HH
ABHAB)−1|

)
=

1

NA +NB

(
NA log2(1 + η1σ̃

2
AEPA) + log2 |(η1σ̃

2
BEPB + 1)I +

PB
NB

HH
ABHAB|

− log2 |I +
PB
NB

HH
ABHAB|

)
(5.14)

where σ̃2
AE =

σ2
AENE
NA

and σ̃2
BE =

σ2
BENE
NB

. Particularly, when NA, NB → ∞ and NA
NB
→ β1

then we have the second term in (5.14) converges almost surely as

1

NB
log2 |(η1σ̃

2
BEPB + 1)I +

PB
NB

HH
ABHAB|

= log2(η1σ̃
2
BEPB + 1) +

1

NB
log2 |I +

1

NBσ2
HH
ABT̄1HAB|

= log2(η1σ̃
2
BEPB + 1) + β1VT̄1

(η̄1)− log2 η̄1 + (η̄1 − 1) log2 e

(5.15)

where T̄1 = diag( σ2PB
1+η1σ̃2

BEPB
1TNA), VT̄1

(η̄1) = log2(1 + η̄1
σ2PB

1+η1σ̃2
BEPB

), ηT̄1
= 1

1+η̄1
σ2PB

1+η1σ̃
2
BE

PB

and 1 − η̄1 = β1(1 − ηT̄1
). For the last term in (5.12), as NA, NB → ∞ and NA

NB
→ β1, it

will converge to E{log2 |I + PB
NB

HH
ABHAB|} which if we plug it into (5.8), it will be canceled

with the last term in (5.8). Regarding to ηT1(η1), as NA +NB →∞ we have

ηT1(η1) = E{ 1

1 + η1λ(T1)
}

=
1

NA +NB

(
NA

1 + η1σ̃2
AEPA

+ Tr
(
(I + η1σ̃

2
BEPB(I +

PB
NB

HH
ABHAB)−1)−1

))
(5.16)
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According to [56, p. 11], when NA, NB → ∞ and NA
NB
→ β1 then we have the

following converges almost surely

1

NB
Tr
(
(I + η1σ̃

2
BEPB(I +

PB
NB

HH
ABHAB)−1)−1

)
=

∫ ∞
0

1

1 +
η1σ̃2

BEPB
1+σ2PBx

dFNB1
σ2NB

HH
ABHAB

(x)

=

∫ ∞
0

1−
η1σ̃

2
BEPB

1 + σ2PBx+ η1σ̃2
BEPB

dFNB1
σ2NB

HH
ABHAB

(x)

= 1−
η1σ̃

2
BEPB

1 + η1σ̃2
BEPB

∫ ∞
0

1

1 + σ2PB
η1σ̃2

BEPB+1
x
dFNB1

σ2NB
HH
ABHAB

(x)

= 1−
η1σ̃

2
BEPB

1 + η1σ̃2
BEPB

(1−
F( σ2PB

η1σ̃2
BEPB+1

, β1)

4β1
σ2PB

η1σ̃2
BEPB+1

)

(5.17)

where

F(x, β) =

(√
x(1 +

√
β)2 + 1−

√
x(1−

√
β)2 + 1

)2

. (5.18)

Now with (5.13)(5.16)(5.17)(5.18) we can compute η1. In terms of the term E
{

log2 |I +

HET0H
H
E |
}

in (5.5), as NE , (NA +NB) → ∞ with NA+NB
NE

→ β0, we have the asymptotic

form

E
{ 1

NE
log2 |I + HET0H

H
E |
} m.s.→ β0VT0(η0)− log2 η0 + (η0 − 1) log2 e (5.19)

where VT0(η0) = 1
NA+NB

(
NA log2(1 + η0σ̃

2
AEPA) +NB log2(1 + η0σ̃

2
BEPB)

)
,

ηT0 = 1
NA+NB

(
NA

1+η0σ̃2
AEPA

+ NB
1+η0σ̃2

BEPB

)
and 1− η0 = β0(1− ηT0).

Combined with (5.5)(5.12)(5.14)(5.19), as NE , NA, NB → ∞ with NA+NB
NE

→ β0

and NA
NB
→ β1, we have the asymptotic form of (5.8) as

ΘA = NA log2(
1 + η1σ̃

2
AEPA

1 + η0σ̃2
AEPA

) +NB log2(
1 + η1σ̃

2
BEPB

1 + η0σ̃2
BEPB

) +NA log2(1 +
η̄1σ

2PB
1 + η1σ̃2

BEPB
)

−NB(log2 η̄1 − (η̄1 − 1) log2 e) +NE(log2

η0

η1
+ (η1 − η0) log2 e)

(5.20)
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Regarding to RB,s, under same conditions, it has the asymptotic form as

ΘB = NA log2(
1 + η2σ̃

2
AEPA

1 + η0σ̃2
AEPA

) +NB log2(
1 + η2σ̃

2
BEPB

1 + η0σ̃2
BEPB

) +NB log2(1 +
η̄2σ

2PA
1 + η2σ̃2

AEPA
)

−NA(log2 η̄2 − (η̄2 − 1) log2 e) +NE(log2

η0

η2
+ (η2 − η0) log2 e)

(5.21)

where {η2, η̄2} are defined similar to {η1, η̄1} up to some changes. In Fig. 5.1 we show that

the asymptotic form converges fast even when the antenna number is small.
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Figure 5.1: Comparison between ΘA and simulation of RA,s in small antenna number

Then combined with (5.2)(5.20)(5.21), we have the following optimization problem

max
α∈[

max{NA,NB}
Kc

,1]

Rkey,asym =
1

Kc
I(ĥA; ĥB) + (1− α)(ΘA + ΘB) (5.22)

where optimal α can be obtained by linear search.

Based on (5.20)(5.21), assuming PA = PB = P and recall σ̃2
AE =

σ2
AENE
NA

, σ̃2
BE =

σ2
BENE
NB

, we have the following propositions:
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Proposition 14 When NE � NA + NB, NE � 1
Pσ2

i
, i = {AE,BE}, we have ΘA = 0,

ΘB = 0.

Proof. When NE � NA + NB, we have β0 � 1. From the definition we know that the

η-transform is between the range of [0, 1]. Then based on (5.13) correspondingly we have

η1 = 1 and based on 1 − η0 = β0(1 − ηT0) we also have η0 = 1. From (5.15) we have

ηT̄1
= 1

1+η̄1
σ2P

1+η1σ̃
2
BE

P

and the stated conditions and η1 = 1 we have ηT̄1
= 1. Then based on

1− η̄1 = β1(1− ηT̄1
) we have η̄1 → 1. Since all {η0, η1, η̄1} are tends to 1, we have ΘA = 0.

Same proof can be applied to ΘB.

From proposition 14 we know that when Eve’s antenna number is large that NE �

NA +NB and NE � 1
Pσ2

i
, which means NE receiving antenna gain can compensate the low

power, than the secret key rate from the second phase in (5.2) will be zero. Correspondingly,

all the coherence time should be allocated to channel estimation.

5.5 Numerical Results

In this section, we show that simulation results of total achievable secret key rate

Rkey,asym with different α: (1) αopt is the solution from (5.22); (2) αfix = max{NA,NB}
Kc

is

setting the channel training time to the max antenna number which is the minimum number

to estimate all degree of the channel and (3) αtrain−only = 1 means channel training only

and no phase two for secret key generation. We set NA = NB = 10, σ2 = σ2
AE = σ2

BE = 1

and PA = PB = P . In Fig. 5.2 we show Rkey,asym with NE = 10, αopt performs similar

to αfix which means phase two is more important for secret key generation compared the

phase one as coherence time increases. In Fig. 5.3, we show Rkey with NE = 20 and the
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results show that αopt has better performance than the other trivial choices. In Fig. 5.4,

we show Rkey,asym with NE = 50 and the results show that αopt overlaps with αtrain−only

which is expected from proposition 14.
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Figure 5.2: Rkey,asym with NE = 10
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Figure 5.3: Rkey,asym with NE = 20

95



10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Figure 5.4: Rkey,asym with NE = 50

5.6 Conclusion

In this chapter we study the achievable secret key rate of the two-phase scheme.

The results of secure degree of freedom of the secret key rate generated from the second

phase show the advantage of using full-duplex transceivers compared to half-duplex. From

the coherence time allocation we can know that when Eve’s antennas are much more than

the transmitting antennas from the users, allocating most of the coherence time for channel

training is optimum for secret key generation.

5.7 Derivation of the Achievable Secret Key Rate

Assuming the secret key information generation process will engage K coher-

ence blocks. Before agreeing on the key, Alice and Bob have signals {ĥKA ,X K
A ,Y K

A }

96



and {ĥKB ,X K
B ,Y K

B }, where ĥKA = {ĥ(1)
A , . . . , ĥ

(K)
A }, X K

A = {X (1)
A , . . . ,X

(K)
A }, Y K

A =

{Y (1)
A , . . . ,Y

(K)
A }, X

(i)
A = [(x

(i)
A (1))T , . . . , (x

(i)
A (K2))T ]T and Y

(i)
A = [(y

(i)
A (1))T , . . . , (y

(i)
A (K2))T ]T .

{ĥKB ,X K
B ,Y K

B } is defined in a same manner. In order to use coding theorem, we need to

first discretize the signals and the techniques we adapt is similar to [43, 3.4.1][36, V]

1. From the channel estimation, define I1 = {−j∆1,−(j−1)∆1, . . . , (j−1)∆1, j∆1}, ∆1 =

1√
j

and find out the elements in I1 that is closest to the real and imaginary part of

the element in ĥ
(i)
A respectively. We denote the discrete vector as [ĥ

(i)
A ]j and [ĥ

(i)
B ]j is

defined in a same manner.

2. Define I2 = {−k∆2,−(k − 1)∆2, . . . , (k − 1)∆2, k∆2}, ∆2 = 1√
k

and find the ele-

ments in I2 that is closest to the real and imaginary part of element in x
(i)
A (t) respec-

tively. Denote the discrete vector as [x
(i)
A (t)]k and its element as [x

(i)
A,n(t)]k, then the

quantization should satisfy |[x(i)
A,n(t)]k| ≤ |x

(i)
A,n(t)| and Tr

(
E
(
[x

(i)
A (t)]k[x

(i)
A (t)]Hk

))
≤

Tr

(
E
(
x

(i)
A (t)(x

(i)
A (t))H

))
≤ PA(t). Define [x

(i)
B (t)]k in a similar manner.

3. Let y
(i)
A,k(t) = H

(i)
AB[x

(i)
A (t)]k+n

(i)
A (t) be the output corresponding to the input [x

(i)
A (t)]k.

Define I3 = {−l∆3,−(l − 1)∆3, . . . , (l − 1)∆3, l∆3}, ∆3 = 1√
l

and find the elements

in I3 that is closest to the real and imaginary part of element in y
(i)
A,k(t) respectively.

Denote the discrete vector as [y
(i)
A,k(t)]l and define [y

(i)
B,k(t)]l in a similar way respect

to [x
(i)
B (t)]k.

Also we define the output y
(i)
E,k(t) = H

(i)
EA[x

(i)
A (t)]k(t) + H

(i)
EB[x

(i)
B (t)]k + n

(i)
E (t)

and Y
(i)
E,k = [(y

(i)
E,k(1))T , . . . , (y

(i)
E,k(K2))T ]T . With the signal over K coherence block, define

[ĥKA ]j = {[ĥ(1)
A ]j , . . . , [ĥ

(K)
A ]j}, [ĥKB ]j = {[ĥ(1)

B ]j , . . . , [ĥ
(K)
B ]j}, [X K

A ]k = {[X (1)
A ]k, . . . , [X

(K)
A ]k},
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[X K
B ]k = {[X (1)

B ]k, . . . , [X
(K)
B ]k}, [Y K

A,k]l = {[Y (1)
A,k ]l, . . . , [Y

(K)
A,k ]l}, [Y K

B,k]l = {[Y (1)
B,k ]l, . . . , [Y

(K)
B,k ]l}

and Y K
E,k = {Y (1)

E,k , . . . ,Y
(K)
E,k }

With above discrete signals, with large number of coherence blocks, a achievable

rate given by [36, Proposition 1] is

Rkey,∆ =
1

Kc
I([ĥA]j ; [ĥB]j) +

K2

Kc
(RA,∆ +RB,∆) (5.23)

where

RA,∆ = I([yA,k]l; [xB]k, [ĥA]j)− I([yA,k]l; yE,k,hAE ,hBE ,h) (5.24a)

RB,∆ = I([yB,k]l; [xA]k, [ĥB]j)− I([yB,k]l; yE,k,hAE ,hBE ,h) (5.24b)

From [43, p. 23] we know

lim
j→∞

I([ĥA]j ; [ĥB]j) = I(ĥA; ĥB) (5.25)

lim
j,l→∞

I([yA,k]l; [xB]k, [ĥA]j) = I(yA,k; [xB]k, ĥA) (5.26)

lim
j,l→∞

I([yB,k]l; [xA]k, [ĥB]j) = I(yB,k; [xA]k, ĥB) (5.27)

lim
l→∞

I([yA,k]l; yE,k,hAE ,hBE ,h) = I(yA,k; yE,k,hAE ,hBE ,h) (5.28)

lim
l→∞

I([yB,k]l; yE,k,hAE ,hBE ,h) = I(yB,k; yE,k,hAE ,hBE ,h) (5.29)

Now consider

I(yA,k; [xB]k, ĥA)− I(yA,k; yE,k,hAE ,hBE ,h)

= h(yA,k|yE,k,hAE ,hBE ,h)− h(yA,k|[xB]k, ĥA)

(5.30)

From chapter 4 we know that when the channels are spatially uncorrelated, the optimal pilot

becomes PA = [
√

αKcPA
NA

I,0]V and PB = [
√

αKcPB
NB

I,0]V. Decompose the channel as h =

ĥ+h̃ while ĥ is LMMSE channel estimation and h̃ is the channel estimation error. Since h ∼
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CN (0, σ2I), then we have h̃A ∼ CN (0, σ2

1+σ2αKcPB/NB
I) and h̃B ∼ CN (0, σ2

1+σ2αKcPA/NA
I).

Therefore, because y = Hx + n = (xT ⊗ I)vec(H) + n, we can bound h(yA,k|[xB]k, ĥA) as

h(yA,k|[xB]k, ĥA) = h(([xB]Tk ⊗ I)h + nA|ĥA, [xB]k)

= h(([xB]Tk ⊗ I)h̃A + nA|[xB]k)

= E[xB ]k

(
log2(πe)NA |( σ2‖[xB]k‖2

1 + σ2αKcPB/NB
+ 1)I|

)
≤ NA log2(πe)(1 +

σ2PB
1 + σ2αKcPB/NB

)

(5.31)

The last inequality in (5.31) is based on Jasen inequity and the last upper bound is based

on E(‖[xB]k‖2) ≤ PB. In terms of h(yA,k|yBE,k,hBE ,h), we have

lim
k→∞

h(yA,k|yE,k,hAE ,hBE ,h)

= lim
k→∞

h(yA,k,yE,k|hAE ,hBE ,h)− lim
k→∞

h(yE,k|hAE ,hBE)

(5.32)

For the first term in (5.32), based on [43, p. 77] we have

lim
k→∞

inf h(yA,k,yE,k|hAE ,hBE ,h) ≥ h(yA,yE |hAE ,hBE ,h) (5.33)

Define covariance matrix QA,k = E
(
[xA]k[xA]Hk

)
and QB,k = E

(
[xB]k[xB]Hk

)
. Define a

perturbation matrices PA and PB such that QA,k = Q̃A+PA and QB,k = QB +PB. Then

the second term in (5.32) can be written as
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lim
k→∞

h(yE,k|hAE ,hBE)

≤ lim
k→∞

E
(

log2(πe)NE |HEAQA,kH
H
EA + HEBQB,kH

H
EB + I|

)
= lim

k→∞
E
(

log2(πe)NE |HEA(QA + PA)HH
EA + HEB(QB + PB)HH

EB + I|
)

= E
(

log2(πe)NE |HEAQAHH
EA + HEBQBHH

EB + I|
)

(5.34)

where the first inequality is based on Gaussian distribution maximize the differential entropy

and the last equality is because limk→∞PA = 0 and limk→∞PB = 0.

Combine (5.28)(5.30) - (5.34), with fine quantization we can lower bound (5.24a)

as

lim
k→∞

I([yA,k]l; [xB]k, [ĥA]j)− I([yA,k]l; yE,k,hAE ,hBE ,h)

≥ h(yA,yE |hAE ,hBE ,h)− E
(

log2(πe)NE |HEAQAHH
EA + HEBQBHH

EB +NAI|
)

−NA log2(πe)(1 +
σ2PB

1 + σ2αKcPB/NB
)

= E
(

log2 |I + HABQBHH
AB

−HABQBHH
EB(HEAQAHH

EA + HEBQBHH
EB + I)−1HEBQBHH

AB|
)

−NA log2(1 +
σ2PB

1 + σ2αKcPB/NB
)

∆
= RA,s −RA,p

(5.35)

where the equality in (5.35) is based on Schur-complement. Define RA,s = E
(

log2 |I +

HABQBHH
AB−HABQBHH

EB(HEAQAHH
EA+HEBQBHH

EB+I)−1HEBQBHH
AB|
)

andRA,p =

NA log2(1 + σ2PB
1+σ2αKcPB/NB

). Similarly with fine quantization we can have the lower bound

(5.24b) as

lim
k→∞

I([yB,k]l; [xA]k, [ĥB]j)− I([yB,k]l; yE,k,hAE ,hBE ,h) ≥ RB,s −RB,p (5.36)
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where RB,s = E
(

log2 |I + HT
ABQAH∗AB − HT

ABQAHH
EA(HEAQAHH

EA + HEBQBHH
EB +

I)−1HEAQAH∗AB|
)

and RB,p = NB log2(1 + σ2PA
1+σ2αKcPA/NA

).

5.8 Random Matrix Asymptotic Property

Definition 15 The η-transform of X with parameter z is defined as

ηX(z) = EX{
1

1 + zX
} (5.37)

The Shannon transform of X with parameter z is defined as

VX(z) = EX{log2(1 + zX)} (5.38)

z is a non-negative real number. If X refer to a symmetric matrix, we have ηX(z) = ηλ(X)(z)

and VX(z) = Vλ(X)(z) where λ is the eigenvalue of X.

Then we have the following lemma:

Lemma 16 [56] Let H be an N×K matrix whose entries are i.i.d complex random variables

with variance 1
N . Let T be a K × K Hermitian non-negative random matrix which is

independent of H, whose empirical eigenvalue distribution converges almost surely to a

nonrandom limit. Then the empirical eigenvalue distribution of HTHH converges almost

surely, as K, N → ∞ with K
N → β, to a distribution whose η−transform (denoted as η)

with parameter z satisfies

1− η = β(1− ηT(zη)) (5.39)
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The corresponding Shannon transform satisfies

VHTHH (z) = βVT(zη)− log2 η + (η − 1) log2 e (5.40)

where z is a non-negative real number.
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Chapter 6

Conclusions

In this work, we investigate the techniques that improve physical layer security

in wireless networks. We show that using full-duplex radio can enhance both secure data

transmission and secret key generation.

In chapter 2, we develop a fast power allocation algorithm for a three-node multi-

subcarrier network. With considering residual self-interference, our model is more practical

than the prior works which consider perfect self-interference cancellation. Another unique

feature of our work is that we consider both power and rate constraints in maximizing the

secrecy capacity.

In chapter 3, we provide lower and upper bounds on the secure degrees of freedom

(SDoF) of one-way and two-way wiretap channel model subject to ANECE requirements.

Those bounds show that when the channel use for transmitting information symbol is less

than the transmitting antenna number, using ANECE can provide the SDoF which equals

to the DoF of channel capacity between the users. Such result has not been discovered in
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the literature and it is significant for understanding the property of ANECE.

In chapter 4, we present optimal designs of the pilot signals subject to ANECE

requirement based on two criteria for optimality: 1) minimizing the sum of mean squared

errors (MSE) of the minimum-mean-squared-error (MMSE) channel estimation at each and

every user, and 2) maximizing the sum of the pair-wise mutual information (MI) between the

signals excited by the pilots and observed by all users. The novelty of our works includes: 1)

Closed-form optimal pilots are presented under a symmetric and isotropic condition; and 2)

Algorithms for computing the optimal pilots for any other choices of the above parameters.

The algorithm for optimal MMSE channel estimation is an extension of [37] from two users

to more than two users. The algorithm for maximum MI extends [38] from two users to

more than two users. These extensions are significant contributions while they are subject

to the ANECE requirement.

In chapter 5, we analyze the achievable secret key rate for a two-phase key gen-

eration scheme. We consider a full-duplex MIMO system which is an extension to SISO

system from the prior works. Through the SDoF analysis we show the advantage of using

full-duplex and by having the expression of asymptotic secret key rate we derive an efficient

algorithm for coherence time allocation between the two phases to maximize the secret key

rate.

For the future study, other sophisticated math tools, i.e. [57], can be utilized to

develop tighter bounds on SDoF of the system with ANECE (compared to the bounds

in chapter 3, 5). New secret key generation scheme based on [58] and extending [58] to

millimeter-wave system will also be interesting research topics.
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