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RESEARCH ARTICLE
10.1002/2015MS000559

An evaluation of the variable-resolution CESM for modeling
California’s climate
Xingying Huang1, Alan M. Rhoades1, Paul A. Ullrich1, and Colin M. Zarzycki2

1Department of Land, Air and Water Resources, University of California, Davis, California, USA, 2National Center for
Atmospheric Research, Boulder, CO

Abstract In this paper, the recently developed variable-resolution option within the Community Earth
System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.258

(�28 km) and 0.1258 (�14 km) horizontal resolutions. The mean climatology of near-surface temperature
and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a tradi-
tional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical met-
rics for model evaluation and tests for differential significance have been extensively applied. With only
prescribed sea surface temperatures, VR-CESM tended to produce a warmer summer (by about 1–38C) and
overestimated overall winter precipitation (about 25%–35%) compared to reference data sets. Increasing
resolution from 0.258 to 0.1258 did not produce a statistically significant improvement in the model results.
By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim
reanalysis) was �1–38C colder than the reference data sets, underestimated precipitation by �20%–30% at
27 km resolution, and overestimated precipitation by �65–85% at 9 km. Overall, VR-CESM produced compa-
rable statistical biases to WRF in key climatological quantities. This assessment highlights the value of
variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projec-
ting future regional climate, and addressing the computational expense of uniform-resolution global cli-
mate models.

1. Introduction

Global climate models (GCMs) have been widely used to simulate both past and future climate. Although
these models have demonstrable success in representing large-scale features of the climate system, they
are usually employed at relatively coarse resolutions (�18), largely as a result of the substantial computa-
tional cost required at higher resolutions. Global climate reanalysis data sets, which assimilate climate obser-
vations using a global model, represent a best estimate of historical weather patterns. However, reanalysis
data sets still cannot fulfill the needs of policymakers, stakeholders, and researchers that require high-
resolution regional climate data (http://reanalyses.org/atmosphere/overview-current-reanalyses). Regional
features such as microclimates, land cover, and topography are not well captured by either GCMs or reanal-
ysis data sets [Leung et al., 2003a]. However, dynamical processes at unrepresented scales are significant
drivers for local climate variability, especially over complex terrain [Soares et al., 2012]. In order to capture
fine-scale dynamical features, high horizontal resolution is needed for a more accurate representation of
small-scale processes and interactions [Rauscher et al., 2010]. With these enhancements, regional climate
data are expected to be more useful for formulating climate adaptation and mitigation strategies locally.

In order to model regional climate at high spatial resolutions over a limited area, downscaling techniques
have been developed, such as statistical and dynamical downscaling. Dynamical downscaling typically uses
nested limited-area models (LAMs) or, more recently, variable-resolution enabled GCMs (VRGCMs) [Laprise,
2008]. In this context, LAMs are typically referred to as regional climate models (RCMs) when used for cli-
mate study. Forced by the output from GCMs or reanalysis data sets, RCMs have been widely used to cap-
ture physically consistent regional and local circulations at the needed spatial and temporal scales
[Christensen et al., 2007; Bukovsky and Karoly, 2009; Mearns et al., 2012]. Recently, there has been a growing
interest in the use of VRGCMs for modeling regional climate. Unlike RCMs, VRGCMs use a relatively coarse
global model with enhanced resolution over a specific region [Staniforth and Mitchell, 1978; Fox-Rabinovitz
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et al., 1997]. Strategies that have been employed for transitioning between coarse and fine-resolution
regions within a VRGCM include grid stretching [Fox-Rabinovitz et al., 1997; McGregor and Dix, 2008] and
grid refinement [Ringler et al., 2008; Skamarock et al., 2012; Zarzycki et al., 2014a]. VRGCMs have demon-
strated utility for regional climate studies and applications at a reduced computational cost compared to
uniform-resolution GCMs [Fox-Rabinovitz et al., 2006; Rauscher et al., 2013; Zarzycki et al., 2015].

Compared with RCMs, a key advantage of VRGCMs is that they use a single, unified modeling framework,
rather than two separate models (GCM and RCM) with potentially disparate dynamics and physics parame-
terizations. RCMs may suffer from potential inconsistencies between the global and regional scales and lack
two-way interactions at the nest boundary [Warner et al., 1997; McDonald, 2003; Laprise et al., 2008; Mesinger
and Veljovic, 2013], which can be mitigated with the use of VRGCMs. VRGCMs also provide a cost-effective
method of reaching high resolutions over a region of interest—the limited-area simulations in this study at
0.258 and 0.1258 resolution represent a reduction in required computation of approximately 10 and 25
times, respectively, compared to analogous globally uniform high-resolution simulations. For the purposes
of this paper, we focus on the recently developed Community Earth System Model with variable-resolution
option (VR-CESM) as our VRGCM of interest. This configuration is driven by the Community Atmosphere
Model’s (CAM’s) Spectral Element (SE) dynamical core, which possesses attractive conservation and parallel
scaling properties [Dennis et al., 2012; Taylor, 2011], as well as recently developed variable-resolution capa-
bilities [Zarzycki et al., 2014a; Zarzycki and Jablonowski, 2015]. This model has been employed by Zarzycki
et al. [2014b] to show that a high-resolution refinement patch in the Atlantic basin for simulating tropical
cyclones represented significant improvements over the unrefined simulation. Zarzycki et al. [2015] also
compared the large-scale climatology of VR-CESM 0.258 and uniform CESM at 18 and found that adding a
refined region over the globe did not noticeably affect the global circulation. Rhoades et al. [2015] have also
assessed the use of VR-CESM for modeling Sierra Nevada mountain snowpack in the western United States.

However, for the purposes of long-term regional climate modeling, particularly in regions where high-
resolution is anticipated to be most beneficial, VR-CESM has yet to be rigorously evaluated. This paper aims
to fill that gap by analyzing the performance of VR-CESM against gridded observational data, reanalysis
product and in comparison to a traditional RCM forced by reanalysis data. Our variable-resolution simula-
tions are implemented with horizontal resolutions of 0.258 and 0.1258, respectively, which are much more
typical for dynamically downscaled studies. This paper focuses on California in the western United States as
the study area. The complex topography and coastlines of California strongly modulate large-scale weather
patterns, creating local climatic features such as coastal fog, sea breeze, mountain-induced precipitation,
and snowpack. An understanding of local climate variability in California is incredibly important for policy-
makers and stakeholders due to its vast agricultural industry, mixed demographics, and vulnerability to
anthropogenically induced climate change [Hayhoe et al., 2004; Cayan et al., 2008]. Consequently, we expect
that California is an excellent test bed for regional climate modeling.

In this study, the Weather Research and Forecasting (WRF) [Skamarock et al., [2005] model has been used for
simulating California’s climatology at 27 and 9 km grid spacing. RCM simulations over California have also been
conducted in previous studies and demonstrated the need for high spatial and temporal resolution to better
address regional climate and extreme events, especially in the vicinity of complex topography where large cli-
matological gradients are present [Leung et al., 2004; Kanamitsu and Kanamaru, 2007; Caldwell et al., 2009; Pan
et al., 2011; Pierce et al., 2013]. In particular, Caldwell et al. [2009] presented results from WRF at 12 km spatial
resolution and showed that, although the RCM was effective at simulating the mean climate when compared
with observations, some clear biases persisted (particularly an overestimation of precipitation).

This study focuses on the models’ ability to represent current climate statistics, particularly those relevant to
heat and precipitation extremes. We anticipate that this work will validate VR-CESM for modeling the mean
regional climatology of California and will further motivate the adoption of variable-resolution modeling to
study other local climatic processes. Our eventual goal is to utilize these models for assessing historical and
future regional climate extremes.

This paper is organized as follows: section 2 describes the model setup, data sets, and methodology for
evaluation and intercomparison. In section 3, simulation results are provided and discussed, with focuses
on near-surface (2 m) temperature and precipitation. Key results are summarized along with further discus-
sion in section 4.
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2. Models and Methodology

2.1. Simulation Design
In this study, all global simulations use the Atmospheric Model Intercomparison Project (AMIP) experimental
protocols [Gates, 1992]. These protocols are widely used and support climate model diagnosis, validation,
and intercomparison. AMIP experiments are constrained by realistic sea surface temperatures (SSTs) and
sea ice from 1979 to near present without the added complexity of ocean-atmosphere feedbacks in the cli-
mate system. In particular, observed SSTs and sea ice at 18 horizontal resolution are provided and updated
following the procedure described by Hurrell et al. [2008].
2.1.1. VR-CESM
CESM is a state-of-the-art Earth modeling framework managed by the National Center for Atmospheric
Research (NCAR), consisting of coupled atmospheric, oceanic, land, and sea ice models. For decades CESM
(and its predecessor, the Community Climate System Model) has been used for modeling present and
future global climate [Neale et al., 2010a; Hurrell et al., 2013]. The coupling infrastructure in CESM communi-
cates the interfacial states and fluxes between each component model to ensure conservation. Since we fol-
low AMIP protocols, only the atmosphere and land model are integrated dynamically. Here CAM version 5
(CAM5) [Neale et al., 2010b] and the Community Land Model (CLM) version 4.0 [Oleson et al., 2010] are used.
As mentioned earlier, the SE dynamical core is employed along with variable-resolution grid support. The
FAMIPC5 (F AMIP CAM5) component set, which mainly supports atmospheric, oceanic, land, and sea ice
models, is chosen for these simulations. In CAM5, cloud microphysics is parameterized using the two-
moment scheme with ice supersaturation [Morrison and Gettelman, 2008; Gettelman et al., 2008], and the
deep convection process is treated by Zhang and McFarlane (ZM) cumulus scheme [Zhang and McFarlane,
1995]. A more detailed discussion of the CAM5 configuration can be found in Neale et al. [2010a].

For our study, the variable-resolution cubed-sphere grids are generated for use in CAM and CLM with the
open-source software package SQuadGen [Ullrich, 2014; Guba et al., 2014]. The grids used in this study are
depicted in Figure 1. The maximum horizontal resolution on these grids is 0.258 (�28 km) and 0.1258

(�14 km), respectively, with a quasi-uniform 18 mesh over the remainder of the globe. Grids are constructed
using a paving technique with a 2:1 spatial resolution ratio, so two transition layers are required from 18 to
0.258, and one additional transition from 0.258 to 0.1258. In our study, and previous studies [e.g., Zarzycki
et al., 2015], general circulation patterns (e.g., wind, pressure, and precipitation) do not exhibit apparent arti-
facts in the variable-resolution transition region, and the design of the SE dynamical core ensures that dry
air and tracer mass are conserved globally [Taylor and Fournier, 2010]. Simulations are performed over the

Figure 1. The approximate grid spacing in the (a) VR-CESM 0.258 and (b) VR-CESM 0.1258 meshes used in this study. (c) A depiction of the
transition from the global 18 resolution mesh through two layers of refinement to 0.258 and again to 0.1258.
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time period from 1 January 1979 to 31 December 2005 (UTC) and year 1979 is discarded as a spin-up
period. This 26 year time period is chosen to provide an adequate sampling of interannual variability, to
limit computational cost, and to coincide with the satellite era where adequate high-quality gridded and
reanalysis data sets are available.

Variable-resolution topography files were produced by sampling the National Geophysical Data Cen-
ter (NGDC) 2 min (�4 km) Gridded Global Relief Data set (ETOPO2v2), followed by the application of
a differential smoothing technique as described in Zarzycki et al. [2015]. Using this technique, the c
parameter from their equation (1) was adjusted to reduce noise in the vertical pressure velocity field.
The grid-scale topography is depicted in Figure 2, including the topography of uniform CESM at 18

and observed topography from USGS 2 min (3 km) data set. Hypsometric curves, depicting the per-
centage of the California region above a given elevation, are plotted in Figure 2 for models and
observations. It is apparent that higher resolution provides clear improvement in the representation
of regional topography, which is necessary for the correct treatment of fine-scale dynamic processes
strongly influenced by complex terrain. Topography at very coarse resolution (�18) is too smooth to
represent local details like the shape of valleys or mountain peaks, resulting in the loss of regional
climate patterns.

Land surface data sets, including plant functional types, at 0.58 were adopted. Greenhouse gas (GHG) con-
centrations and aerosol forcings are prescribed based on historical observations. CAM and CLM tuning
parameters are not modified from their default configurations.

Figure 2. (top) Topographic heights (from top left to bottom right) for VR-CESM 0.258, VR-CESM 0.1258, uniform CESM 18, WRF 27 km, WRF
9 km, ERA-Interim (Dx � 80 km), and USGS (�3 km). (bottom) Hypsometric curves for the above data sets over California.
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2.1.2. WRF
WRF has been widely used over the past decade for modeling regional climate [Lo et al., 2008; Leung and
Qian, 2009; Soares et al., 2012; Sun et al., 2015]. In our study, the fully compressible nonhydrostatic WRF
model (version 3.5.1) with the Advanced Research WRF (ARW) dynamical core is used. WRF is a limited-area
model that supports nested domains with a typical refinement ratio of 3:1. The simulation domains of WRF
are depicted in Figure 3. Two WRF simulations, representing finest grid resolutions of 27 and 9 km, are con-
ducted. For the WRF 27 km simulation, one domain is used. For the WRF 9 km simulation, two domains are
used, with the outer domain at 27 km (same as the WRF 27 km) and an inner nested domain at 9 km hori-
zontal grid resolution. For both simulations, grids are centered on California and have 120 3 110 and 151 3

172 grid points, respectively. At all lateral boundaries, 10 grid points are used for relaxation to the coarse
solution. In order to reduce the drift between forcing data and modeling output, grid nudging [Stauffer and
Seaman, 1990] is applied to the outer domain every 6 h at all levels except approximate planetary boundary
layers (PBL), as suggested by Lo et al. [2008]. The nudging is applied to the wind, temperature, and water
vapor mixing ratio with default nudging coefficients. Grid nudging is commonly used and maturely sup-
ported in WRF. Although there is evidence spectral nudging may improve the quality of the simulations, an
investigation of these differences is out of scope for this paper [Liu et al., 2012]. This setup uses 41 vertical
levels with model top pressure at 50 hPa.

Additionally, the following physics parameterizations are employed: WSM (WRF Single-Moment) six-class
graupel microphysics scheme [Hong and Lim, 2006], Kain-Fritsch cumulus scheme [Kain, 2004], CAM short-
wave and longwave radiation schemes [Collins et al., 2004]. These settings are chosen by assessing the
results from several common parameterization combinations over a 1 year trial period, which were then
compared to gridded observations. For the boundary layer, the Yonsei University scheme (YSU) [Hong et al.,
2006] is used, and the Noah Land Surface Model [Chen and Dudhia, 2001] is applied. Both are chosen as
they are common for climate applications that balance long-term reliability and computational cost.
Although many other options and parameterization combinations are available for configuring WRF (and
others have tackled a complete assessment of these options for particular problems), our choices are made
simply to represent a typical WRF configuration. We do note that the Kain-Fritsch convective

Figure 3. (left) WRF 27 km (entire plot region) and WRF 9 km (solid black box) simulation domains. (right) Five climate divisions for California. Both plots are overlaid with WRF model
topography.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000559

HUANG ET AL. EVALUATION OF VR-CESM FOR MODELING CALIFORNIA’S CLIMATE 349



parameterization remains active even within
the 9 km inner mesh—although this is con-
sidered to be in the ‘‘gray zone,’’ it had no
appreciable impact on simulation results
since almost all precipitation emerged from
(large-scale) condensation, as discussed in
section 4.

ECMWF Reanalysis (ERA-Interim) data at
both the surface and multiple pressure lev-

els provides initial and lateral conditions for the domains. The lateral conditions and SSTs are updated every
6 h. ERA-Interim reanalysis (�80 km) has been widely used and validated for its reliability as forcing data
[Dee et al., 2011]. WRF simulations are conducted over the same time period as VR-CESM (i.e., 1 January
1979 through 31 December 2005 UTC). Again, the year 1979 is used as a spin-up period and is discarded for
purposes of analysis. Notably, the �9 km resolution employed in the innermost domain is finer than most
previous studies for long-term climate.

The topography employed for the 27 and 9 km simulations is interpolated from USGS (United States Geo-
logical Survey) elevation data with 10 min (�20 km) and 2 min (�4 km) resolution, respectively. The post-
processed grid-scale topography is contrasted in Figure 2. Elevation differences between VR-CESM and WRF
are irregular and relatively small, except over the Central Valley where VR-CESM has consistently higher val-
ues than WRF. This indicates a different methodology for preparation of the topography data set and may
also be partly due to the use of the USGS elevation instead of NGDC elevation data sets.

2.2. Gridded and Reanalysis Data Sets
Reanalysis and gridded observational data sets of the highest available quality are employed (see Table 1).
Differences between gridded observations can be due to the choice of meteorological stations, interpola-
tion techniques, elevation models, and processing algorithms. Consequently, the use of multiple reference
data sets is necessary to understand the underlying uncertainty in the observational data. Detailed descrip-
tions of these data sets are as follows.

NARR. The North American Regional Reanalysis (NARR) is the NCEP (National Centers for Environmental Pre-
diction) high-resolution reanalysis product that provides dynamically downscaled data over North America
at �32 km resolution and 3-hourly intervals from 1979 through present [Mesinger et al., 2006]. We note that
some inaccuracies have also been identified in NARR, particularly in precipitation fields [Bukovsky and Kar-
oly, 2007].

NCEP CPC. This data set provides gauge-based analysis of daily precipitation from the National Oceanic and
Atmospheric Administration (NOAA) Climate Prediction Center (CPC). It is a suite of unified precipitation
products obtained by combining all information available at CPC via the optimal interpolation objective
analysis technique. The gauge analysis covers the Conterminous United States with a fine resolution at
0.258 from 1 January 1948 to 31 December 2006.

PRISM. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) [Daly et al., 2008] sup-
ports a 4 km gridded data set obtained by taking point measurements and applying a weighted regression
scheme that accounts for many factors affecting the local climatology. The data sets include total precipita-
tion and minimum/maximum, (derived) mean temperatures, and dew points. Monthly climatological varia-
bles are available for 1895–2014 from the PRISM Climate Group (Oregon State University, http://prism.
oregonstate.edu, created 4 February 2004). Notably, PRISM is the United States Department of Agriculture’s
official climatological data set. PRISM is used as our primary reference data set for model performance
evaluation.

UW. The UW daily gridded meteorological data are obtained from the Surface Water Modeling group at the
University of Washington [Maurer et al., 2002; Hamlet and Lettenmaier, 2005]. UW incorporates topographic
corrections by forcing the long-term average precipitation to match that of the PRISM data set. The temper-
ature data set is produced in a similar fashion as precipitation, but uses a simple 6.1 K/km lapse rate for
topographic effect. The data set is provided at 0.1258 horizontal resolution covering the period 1949–2010.

Table 1. Reanalysis and Gridded Observational Data Sets
Used in This Study

Data Source
Variables

Used
Spatial

Resolution
Temporal

Resolution

NARR Pr, Ts 32 km Daily, 3-hourly
NCEP CPC Pr �28 km (0.258) Daily
UW Pr, Tmin, Tmax �14 km (0.1258) Daily
PRISM Pr, Tmin, Tmax, Tavg 4 km Monthly
Daymet Pr, Tmin, Tmax 1 km Daily
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Daymet. Daymet is an extremely high-resolution (1 km) gridded data set with daily outputs of total precipi-
tation, humidity, and minimum/maximum temperature covering 1980–2013 [Thornton et al., 1997, 2014].
The data set is produced using an algorithmic technique that ingests point station measurements in con-
junction with a truncated Gaussian weighting filter. Some adjustments are made to account for topography.
Daymet is available through the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL
DAAC).

2.3. Methodology
Near-surface temperature and precipitation have been analyzed over California to assess the performance
of VR-CESM in representing the mean climatology. Specifically, our evaluation focuses on daily maximum,
minimum, and average near-surface temperatures (Tmax, Tmin, and Tavg) and daily precipitation (Pr). These
variables are key in a baseline climate assessment due to their close relationship with water resources, agri-
culture, and health. In this context, the biggest impact of weather on California is through heat and precipi-
tation extremes. Since heat extremes dominate during the summer season, we focus on June, July, and
August (JJA) for assessment of temperature. On the other hand, since the vast majority of precipitation in
California occurs in the winter season, December–January–February (DJF) is emphasized.

In order to adequately account for natural variability of the mean climate, the simulation period must be
chosen appropriately [Solomon, 2007]. However, the number of simulated years required for adequate cli-
mate statistics depends greatly on the regional climate variability and spatial scale. Past studies have used
average weather conditions over a 30 year period to ensure sufficient statistics and to avoid imprinting
from annual variability [Dinse, 2009]. To check that our 26 year simulation period is sufficient, we have
examined the interannual variability of mean temperature and precipitation in all simulations and observa-
tions over 5, 10, 20, and 25 seasons or years (depicted in the supporting information). We observe that for
climatological mean temperature and precipitation, the relevant statistics are effectively converged for a 20
year sample, suggesting that our simulation period is sufficient to adequately capture the interannual vari-
ability of these quantities.

The results in section 4 are obtained from simulated and observed data over the period 1980–2005. All data
sets have been linearly detrended at each grid point so as to facilitate averaging of all simulation years. It is
found that, for annual and JJA near-surface temperature (Tmax, Tmin, and Tavg), a statistically significant trend
is present under the two-tailed t statistic with a significance level of 0.05. For Tmin, the average warming in
26 years is �0.6–1 K for observations, �0.5 K for VR-CESMs and WRF 27 km, and �1.5 K for WRF 9 km. For
Tmax, the average warming is �0.3–0.5 K for observations, �0.5–0.8 K for VR-CESMs and WRFs. No statisti-
cally significant trend has been detected for precipitation.

California consists of a diverse variety of climate regions as a consequence of its rugged topography and
large latitudinal extent. The distinct character of these regions is poorly captured in typical coarse global cli-
mate simulations [Abatzoglou et al., 2009; Caldwell et al., 2009]. In order to assess the performance of VR-
CESM within each region, the state has been divided into five climate divisions, including the Central Valley
(CV), Mountain Region (MR), North Coast (NC), South Coast (SC), and Desert Region (DR). The spatial extent
of these divisions is depicted in Figure 3. These five divisions are determined loosely based on the results of
Abatzoglou et al. [2009] and the climate divisions used by the California Energy Commission. To restrict the
analysis in each division, simulations and data sets have been masked to restrict climate variables to each
division.

Standard statistical measures have been used to quantify the model performance in comparison with the
reference data sets. These include the root-mean-square deviation (RMSD), mean signed difference (MSD),
mean relative absolute difference (MRD), and sample standard deviation (s). Further, spatial correlation is
assessed by computing Pearson product-moment coefficient of linear correlation between climatological
means from models and reference data sets. Mathematically, these quantities are written as

RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i51

ðvi2v̂ iÞ2
vuut MSD5

1
N

XN

i51

ðvi2v̂ iÞ (1)
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=
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where vi and v̂ i are values from the simulation output and reference data set, respectively; i is the grid point
index and N is the total number of grid points over specific regions; j is the simulation year index, M is the
total number of simulated years, and �v is the mean value over all years. Grid point differences are calculated
by remapping the reference data sets to the model’s output grid using bilinear interpolation. Remapping
using patch-based interpolation has also been tested and nearly identical results have been observed.
When necessary, the statistical quantities are further averaged over each division.

Throughout the remainder of this paper, Student’s t test has been used to test whether two sets of annual,
seasonal, or monthly averaged data are the same. F test is applied to test whether the sample variances are
equal. These tests are used only when the sample population can be described adequately by a normal dis-
tribution, where normality is assessed under the Anderson-Darling test. When the sample populations do
not approximately follow a normal distribution, Mann-Whitney-Wilcoxon (MWW) test and Levene’s test are
employed in lieu of the t test and F test, respectively. All statistical tests are evaluated at the p 5 0.05 signifi-
cance level.

Complementary results to this study are provided in the supporting information, including the original grid-
refined mesh files, the sensitivity of climatological statistics to choice of time period, the observed time
trend, and other seasons not addressed in this paper and corresponding statistics metric tables. Results are
also provided with comparison of VR-CESM to the output from a globally uniform CESM run at 0.258 spatial
resolution with the finite volume (FV) dynamical core [Wehner et al., 2014].

2.4. Uncertainty in Reference Products
To assess uncertainty in the observational and reanalysis products, we have calculated the MSD values
among PRISM, UW, and Daymet for seasonally averaged JJA Tmax, Tmin, and DJF Pr over the five divisions
and tabulated these results in Table 2. Student’s t test is employed to determine significances of differences.
For Tmax and Tmin, gridded observational data sets are different from each other over some divisions. The
most pronounced divergences occur in the NC region, with MSD values reaching up to �48C, although dif-
ferences are also apparent for MR Tmin. Clearly, UW and Daymet have a colder climatology than PRISM.
NARR, as a reanalysis data set, is different from the others over most divisions, with overall larger Tmin and
smaller Tmax. For precipitation, essentially no significant differences are present, especially among PRISM,
UW, and Daymet. NARR and CPC (not shown) seem to have slightly lower precipitation values than others.

3. Results

A detailed analysis of temperature and precipitation results from WRF and VR-CESM is provided in this sec-
tion. A concise summary of key points follows in section 4.

Table 2. MSD (Left Column Minus Top Row) of JJA Temperature (8C) and DJF Precipitation (mm/d) Between All Reference Data Setsa

PRISM UW Daymet

MR CV DR SC NC MR CV DR SC NC MR CV DR SC NC

JJA Tmin

UW 22.0 20.5 20.3 20.4 22.3
Daymet 21.8 0.2 20.2 20.3 24.6 0.2 0.8 0.1 0.1 22.3
NARR 2.5 2.5 3.1 20.2 2.0 4.5 3.1 3.4 0.2 4.2 4.3 2.3 3.2 0.1 6.5

JJA Tmax

UW 0.3 20.1 20.2 20.7 22.4
Daymet 20.3 0.4 20.2 0.2 23.7 20.6 0.5 0.1 0.9 21.3
NARR 21.3 1.2 20.1 20.6 23.7 21.7 1.2 0.1 0.1 21.3 21.1 0.7 0.1 20.7 0.0

DJF Pr
UW 20.2 0.1 0.0 20.2 20.2
Daymet 20.1 20.4 20.0 0.2 0.5 0.1 20.5 20.0 0.3 0.8
NARR 20.5 20.4 20.1 20.1 21.3 20.3 20.5 20.1 0.1 21.1 20.4 20.0 20.1 20.3 21.8
CPC 20.8 0.0 0.0 20.1 21.1 20.5 20.1 0.0 0.1 20.9 20.6 0.4 0.0 20.3 21.7

aStatistically significant differences are emphasized in bold (95% confidence level).
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Figure 4. JJA averaged daily Tmax, Tmin, and Tavg from models and reference data sets, and differences (sharing the same legend) between model results and PRISM.
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3.1. Temperature
The mean JJA Tmax, Tmin, and Tavg climatology over the simulation period, together with PRISM and NARR
reference data, are plotted in Figure 4. UW and Daymet have not been plotted here since they are visually
indistinguishable to PRISM everywhere except for NC, where UW and Daymet exhibit lower temperatures
(see Table 2). Statistical measures over California are tabulated in Table 3. In general, all simulations have
captured the spatial climate patterns exhibited by PRISM, with high spatial correlations (>0.95), especially
for Tmax and Tavg. Nonetheless, several clear biases (relative to PRISM) are present in these simulations, as
discussed below.

1. Tmax: When compared with the reference data sets, VR-CESM showed a warm bias of about 2–38C in Tmax

over much of the inland domain (CV and MR) and a 2–38C cool bias along the coast, although the coastal
bias is reduced by �0.58C at 0.1258 resolution. This is in contrast with WRF, which produced an overall
colder climate everywhere except the CV. This bias is especially pronounced for the WRF 9 km simulation,
which was approximately 38C cooler than PRISM. Tmax within the CV has been overestimated by all the
simulations. This likely represents a systematic issue with high-resolution models with respect to Califor-
nia. Possible reasons for this overestimation are discussed at the end of this section.

2. Tmin: VR-CESM showed a strong warm bias in Tmin (�2–48C), with a particularly large overestimation over
Nevada (>58C). WRF also exhibited a warm bias, but of a much smaller magnitude (�2–38C). However,
the pattern of Tmin presented in Figure 4 in both WRF simulations suggests a cooler interior to the CV
and warmer perimeter, which is not supported by observations.

3. Tavg: The warm bias of Tmin and Tmax by VR-CESM resulted in a similar overestimation of Tavg. For WRF,
underestimation of Tmax and overestimation of Tmin led to an overall closer match to Tavg over most of
the domain but is indicative of a suppressed diurnal cycle.

Compared with the reference data sets over California, VR-CESM 0.1258 produced the lowest RMSD values
for Tmax, whereas WRF had smallest RMSD for Tmin. However, in both cases, the RMSD was around 28C. Nota-
bly, Tmin from VR-CESM matched much more closely with NARR, although this is likely indicative of a related
warm bias in NARR. In fact, closer examination of the differences among VR-CESM, WRF, and NARR marine
near-surface temperature patterns indicated that CESM and NARR have Tmin values that are approximately
28C larger than WRF. Since coastal near-surface temperature is strongly influenced by ocean SSTs, this differ-
ence is likely a key driver of the warm bias in CESM. The Delta breeze effect, which is associated with a sea
breeze circulation that brings relatively cool and humid marine air into the interior CV from the San Fran-
cisco Bay area, was apparent in all runs. It is especially encouraging that VR-CESM generally performed as
well as WRF, in comparison with reference data sets, even though VR-CESM was not constrained or nudged
at the lateral boundaries of the high-resolution domain.

Table 3. RMSD (8C), MSD (8C), and Spatial Correlation (Corr) for Seasonally Averaged Daily JJA Temperatures Over California

UW PRISM Daymet

Tmax Tmin Tmax Tmin Tavg Tmax Tmin

RMSD
VR-CESM 0.258 2.32 3.75 2.92 3.12 2.60 2.81 3.93
VR-CESM 0.1258 1.90 3.63 2.45 2.94 2.18 2.48 3.70
WRF 27 km 2.31 2.74 2.93 2.25 2.17 2.51 2.99
WRF 9 km 3.32 2.94 3.49 1.84 1.77 3.20 2.94
Uniform CESM 18 3.06 4.59 3.62 3.43 3.16 3.58 5.07

MSD
VR-CESM 0.258 0.98 2.91 0.61 1.73 0.82 1.18 2.88
VR-CESM 0.1258 0.65 2.85 0.20 1.66 0.58 0.82 2.74
WRF 27 km 20.58 0.82 20.95 20.36 20.77 20.39 0.79
WRF 9 km 22.28 1.86 22.72 0.67 21.14 22.10 1.76
Uniform CESM 18 0.82 3.03 0.60 1.76 1.08 1.24 3.38

Corr
VR-CESM 0.258 0.99 0.98 0.99 0.98 0.99 0.99 0.97
VR-CESM 0.1258 0.99 0.98 0.99 0.98 0.99 0.99 0.98
WRF 27 km 0.99 0.98 0.99 0.98 0.99 0.99 0.97
WRF 9 km 0.99 0.98 0.99 0.99 0.99 0.99 0.98
Uniform CESM 18 0.99 0.96 0.99 0.97 0.99 0.99 0.95
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The spatial standard deviation of JJA Tmax, Tmin, and Tavg from models and PRISM is presented in Figure 5. In
PRISM, the CV had smaller variability than surrounding regions, although the difference is small (�0.28C).
Further, areas with rougher topography did exhibit somewhat higher variability than smoother locations.
Interestingly, the higher-resolution (0.1258) VR-CESM simulation also matched the spatial pattern and mag-
nitude of standard deviation observed in PRISM, especially for Tmin and Tavg. However, in WRF and VR-CESM
0.258, the variability is largely consistent across different divisions, and the values are around 0.5–1.58C for
all of the data sets, except for the high Sierras in the WRF 9 km simulation which showed enhanced variabil-
ity (�28C). Compared with reference data sets, the RMSD values of VR-CESM and WRF 27 km are �0.1–
0.28C, and �0.2–0.38C for WRF 9 km.

The seasonal cycle of monthly mean Tavg in each division is shown in Figure 6 for simulations and for refer-
ence data from PRISM and NARR along with the associated 95% confidence interval. PRISM and NARR
match closely almost everywhere except in the summer season of NC, SC, and CV, indicative of underlying
observational uncertainty. This difference is likely due to the discrepancy in assimilating the coastal cooling
effect. In general, model results match closely with reference data with no larger than a 28C absolute differ-
ence, with the largest errors occurring in the summer and winter seasons. Compared with PRISM, VR-CESM
overpredicts summer Tavg in all divisions except NC and SC and underpredicts winter Tavg in all divisions.
This corresponds to a larger annual temperature range. WRF has better performance in preserving the
monthly cycle when compared with VR-CESM, with about 18C underestimation over all seasons. There is no
clear improvement in the seasonal cycle across resolutions.

Variability in monthly averaged Tavg is expressed by the interannual standard deviation of monthly Tavg

over the 26 year period and is plotted in Figure 7 for the whole California region (results are similar for sub-
regions when renormalized by the mean Tavg). The 95% confidence interval obtained from the chi-square
test is also depicted for PRISM so as to identify statistically significant differences. RMSD values for monthly
standard deviations between models and PRISM are also computed over each climate division (see Table 4).
Generally, standard deviation is between 1 and 28C. Among all models, WRF 27 km is closest to PRISM with
RMSD values around 0.1–0.28C. WRF 9 km is also relatively close to PRISM but exhibits an unusual �18C
increase in variability in January and February (statistically significant at the 0.05 level), leading to a

Figure 5. Sample standard deviation of JJA average daily Tmax, Tmin, and Tavg from model results and PRISM.
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relatively high RMSD (�0.58C). VR-CESM exhibits a weaker correlation with PRISM in all divisions with
enhanced variability in DJF and weakened variability in April and May at both resolutions, and in the fall
season in the 0.1258 simulation, with RMSD around 0.2–0.48C. This may be indicative of an issue in capturing
the seasonality of large-scale Pacific meteorology in CESM and merits further investigation.

Due to the impact of summer heat waves, we now focus on Tmax over JJA. In Figure 8, the frequency distri-
bution of Tmax using all JJA daily values at each grid point over 26 years is depicted for models and refer-
ence data from UW and Daymet. PRISM is not included since it only deviates from UW and Daymet in the
coastal divisions (NC and SC). In these divisions, PRISM is similar in character to UW but shifted several
degrees toward warmer temperatures. Properties of the frequency distribution, including average, variabili-
ty, skewness, and Kurtosis are tabulated in Table 5. As exemplified by the similarity in the moments of the
distribution, VR-CESM clearly captures the general distribution of Tmax. Outside the CV, skewness and

Figure 6. Seasonal cycle of monthly average Tavg for each climate division. The shading corresponds to the 95% confidence interval
of PRISM and NARR.
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kurtosis measures match closely
between VR-CESM and the UW
data set. In the NC and SC, Day-
met overestimates the fre-
quency of very cold days
leading to deviation in the
moments from UW. Consistent
with the observations in Figure
4, outside the CV, WRF tends to
be cooler in general and VR-
CESM tends to be warmer. In
NC and SC, all models more
accurately capture the fre-
quency of high Tmax days than
low Tmax days. Enhanced fre-
quency of cool Tmax values
appears to be the primary driver
in overestimation of sample var-
iance in these divisions. For
both VR-CESM and WRF, there is
no apparent improvement in
statistics at higher resolutions.

In the CV, models show a clear
warm bias and underestimated
skewness, associated with a
long forward tail and tempera-
tures approaching near 508C. As
discussed earlier, all models
overestimate Tmax over CV. In

order to further assess the accuracy of the gridded observations, we examine the Tmax data directly from
recorded weather station measurements over the CV (obtained from Global Historical Climate Network, pro-
vided by the NOAA/NCDC, http://www.ncdc.noaa.gov/). The results validate that Tmax values above 458C are
rare (although station observations suggest these days may be slightly more frequent than suggested by
UW and Daymet). The warm bias associated with the aforementioned extreme hot days in both VR-CESM
and WRF is likely correlated with overly dry summertime soil moisture, as discussed in Caldwell et al. [2009].
This could be caused by the lack of accurate land surface treatment in climate models—for example, Bonfils
and Lobell [2007] found that irrigation over CV has decreased summertime maximum temperature by �2–
3 K in heavily irrigated areas compared with nearby nonirrigated areas, based on long-term temperature
records. Other studies have also found the cooling effects of irrigation over CV based on model simulations.
Kueppers et al. [2007], using RegCM3 (the third generation of the Regional Climate Model), found that irri-
gated areas has been cooled by �3.7 K in August over the CV.

Figure 7. Standard deviation values of monthly average Tavg and Pr averaged over Califor-
nia. The shading refers to the 95% confidence interval of PRISM.

Table 4. RMSD for the Standard Deviation Values of Monthly Averaged Tavg/Pr Between Models and PRISM in Each Climate Division

MR CV DR SC NC

Tavg

VR-CESM 0.258 0.393 0.304 0.231 0.253 0.286
VR-CESM 0.1258 0.468 0.355 0.359 0.275 0.334
WRF 27 km 0.101 0.199 0.129 0.231 0.141
WRF 9 km 0.438 0.561 0.454 0.476 0.536

Pr
VR-CESM 0.258 0.449 0.976 0.228 0.517 0.670
VR-CESM 0.1258 0.315 0.848 0.237 0.532 0.499
WRF 27 km 0.193 0.126 0.246 0.494 0.724
WRF 9 km 1.700 1.057 0.425 0.817 0.958
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3.2. Precipitation
California’s Mediterranean climate is associated with heavy precipitation in winter months and drier condi-
tions in summertime. Agricultural and urban water use in California thus depends on accumulation of win-
tertime precipitation, which accounts for approximately half of total annual average precipitation as we
calculated.

The long-term average climatology of DJF and annual daily Pr over 26 years from simulations and reference
data sets (including PRISM and NARR) is depicted in Figure 9. Other reference data sets match closely with
PRISM. Statistical quantities for precipitation over California are given in Table 6. We can see that

Figure 8. Frequency distribution of JJA daily Tmax over the simulation period 1980–2005.
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precipitation is heavily influenced by orography, leading to most accumulation occurring along the NC and
MR. As with temperature, the model results match the spatial patterns of the PRISM, with high spatial corre-
lation coefficients (>0.94).

For DJF Pr, especially along the western edge of the Sierra Nevada and into the CV, VR-CESM overestimates
total precipitation (�25%–35%) relative to PRISM (see MRD in Table 6), particularly for the coarser resolution
(0.258) simulation. This difference is statistically significant over the western edge of the Sierra Nevada com-
pared to PRISM at the 95% level for VR-CESM 0.258. VR-CESM 0.1258 performs better and produces far more
realistic (and less scale sensitive) precipitation over the Sierra Nevada with improved treatment of oro-
graphic effects. On the other hand, precipitation is slightly underestimated relative to PRISM along the NC
(with a statistically significant difference), particularly near the Oregon border. There are also notable differ-
ences between WRF 27 km and WRF 9 km. For DJF Pr, WRF 27 km underestimates precipitation along the
NC (by about 20%–30%) but fairly accurately captures precipitation in the CV; whereas WRF 9 km greatly
overestimates precipitation (by about 65%–85%) along the NC and MR (see MRD in Table 6). Using Table 6
as a guide, VR-CESM 0.1258 performs better than VR-CESM 0.258 and WRF 27 km with RMSD values around
1.2 mm/d over DJF. Since we expect most of this improvement is due to a better representation of topogra-
phy at 0.1258, this result suggests that the default physical parameterization suite in CESM is fairly resolution
insensitive. WRF 9 km is significantly different from PRISM over the MR and part of NC, and the potential
reasons are discussed at the end of this section. The differences between WRF simulations suggest a strong
resolution dependence in the underlying microphysics, likely in part since WSM6 has been observed to pro-
duce excess graupel [Jankov et al., 2009]. However, the resolution dependence could also manifest in the
boundary layer and convection schemes, which remains a topic for future investigation.

Interannual variability of precipitation was calculated for the models and PRISM using the standard devia-
tion of annual and DJF precipitation and depicted in Figure 10. In general, precipitation variability exhibits a
similar pattern to the precipitation intensity. The spatial pattern of variability agrees well between models
and PRISM, with the closest match provided by VR-CESM 0.1258 and WRF 27 km. Standard deviation is
�50% higher for WRF 9 km, consistent with overestimated precipitation intensity. VR-CESM 0.258 also tends
to overestimate variability in the southern Sierra Nevada, likely due to over enhanced orographic uplift
from the relatively coarse topography (relative to 0.1258). Comparing with all the gridded observations,
RMSD values are �0.7–0.9 mm/d for VR-CESM, �0.5–0.7 mm/d for WRF 27 km, and �1.7–2.0 mm/d for WRF
9 km.

The annual cycle of precipitation averaged over each month and region for the models and reference data
sets (taking PRISM and NARR as representative of all data sets) is presented in Figure 11. The 95% confi-
dence intervals of UW and PRISM are also depicted; differences between models and reference data sets

Table 5. The First Four Moments of the JJA Tmax Frequency in Each Climate Divisiona

CV MR

Avg Var Skew Kurt Avg Var Skew Kurt

UW 32.6 24.8 20.8 0.9 26.7 33.2 20.4 0.3
Daymet 32.7 23.5 20.9 1.5 25.9 39.3 20.5 0.5
VR-CESM 0.258 34.1 26.2 20.4 0.2 28.1 27.6 20.4 0.3
VR-CESM 0.1258 34.3 28.5 20.5 0.4 27.2 30.0 20.4 0.3
WRF 27 km 33.9 34.8 20.5 0.2 24.9 34.8 20.3 0.0
WRF 9 km 32.4 33.1 20.7 0.6 22.4 38.5 20.5 0.6

NC SC DR

Avg Var Skew Kurt Avg Var Skew Kurt Avg Var Skew Kurt

UW 25.9 30.4 0.1 20.5 25.9 30.4 0.1 20.5 37.0 22.9 20.6 0.7
Daymet 26.5 30.1 20.3 0.4 26.5 30.1 20.3 0.4 37.0 24.3 20.6 0.6
VR-CESM 0.258 26.4 37.4 0.1 20.7 26.4 37.4 0.1 20.7 37.6 19.0 20.5 0.8
VR-CESM 0.1258 26.3 37.4 0.1 20.6 26.3 37.4 0.1 20.6 37.3 21.3 20.5 0.4
WRF 27 km 26.0 36.7 20.1 20.5 26.0 36.7 20.1 20.5 36.5 22.6 20.6 0.5
WRF 9 km 24.9 32.6 0.0 20.6 24.9 32.6 0.0 20.6 34.4 24.4 20.5 0.4

aColumn titles refer to the Average (Avg), Variance (Var), Skewness (Skew), and Kurtosis (Kurt). Notes: If skew> 0 [skew< 0], the distri-
bution trails off to the right [left]. If kurtosis> 0 [<0], a sharper [flatter] peak compared to a normal distribution (leptokurtic and platy-
kurtic, respectively) is expected.
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Figure 9. Annual and DJF precipitation from model results and reference data sets, absolute/relative differences between model results and PRISM.
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are statistically significant when simulation results appear outside the highlighted region. In general, the
overall monthly climatology is consistent between models and reference data sets, with highest precipita-
tion values occurring over winter and lowest values over summer. Nonetheless, the largest deviations occur
during the winter season. WRF 27 km is drier than PRISM and UW with relative differences ranging from
�10% to 40%, whereas WRF 9 km is far wetter with relative differences reaching up to 40%–80% over these
five divisions. VR-CESM tracks well with observed precipitation with �10%–20% relative difference every-
where except in the CV, where precipitation is overestimated in the rainy seasons by about 70%–80%. From
the MWW test, VR-CESM and WRF 27 km are not significantly different from reference data sets in most divi-
sions, except over the CV in late winter to spring for VR-CESM 0.258, and the NC winter and spring, and DR’s
winter for WRF 27 km. The magnitude of precipitation in WRF 9 km is significantly different from the refer-
ence data sets over most divisions, except DR and SC’s winter and spring. Nonetheless, the strong seasonal
dependence on precipitation is apparent with extremely dry conditions during summer months. A slight
increase in summertime precipitation is apparent in the DR, indicating the North American monsoon. We
also observe that the peak month for precipitation tends to occur earlier in VR-CESM, particularly at 0.1258,
compared with the reference. VR-CESM also exhibits some unexpected jaggedness (particularly December
for VR-CESM 0.258 and February for VR-CESM 0.1258), likely due to an issue with capturing the seasonality of
moisture transport over the Pacific. This issue being driven by variability outside the high-resolution domain
seems corroborated by the observation that WRF correlates strongly with the reference data sets (even
though the reported magnitude is incorrect).

The monthly cycle of sample standard deviation is depicted in Figure 7 for California (results are similar for
subregions when renormalized by the mean precipitation). Again, the 95% confidence interval from the chi-
square test is depicted from PRISM to identify statistically significant differences (although this test should
not be employed for nonnormal samples, such as monthly average precipitation, we have confirmed similar

Table 6. RMSD (mm/d), MSD (mm/d), MRD, Spatial Correlation (Corr) for Averaged Precipitation Over California

Annual

CPC UW

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.258 0.61 0.39 0.30 0.98 0.62 0.29 0.29 0.96
VR-CESM 0.1258 0.47 0.21 0.24 0.98 0.53 0.12 0.24 0.97
WRF 27 km 0.42 20.21 0.21 0.97 0.58 20.31 0.24 0.97
WRF 9 km 2.23 1.49 0.97 0.95 2.05 1.39 0.85 0.96
Uniform CESM 18 1.97 21.57 0.99 0.94 2.31 21.70 0.99 0.91

PRISM Daymet

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.258 0.72 0.20 0.31 0.95 0.57 0.19 0.25 0.97
VR-CESM 0.1258 0.62 0.05 0.26 0.96 0.50 0.03 0.22 0.97
WRF 27 km 0.77 20.40 0.27 0.96 0.65 20.41 0.27 0.97
WRF 9 km 1.89 1.32 0.78 0.97 2.01 1.31 0.76 0.96
Uniform CESM 18 2.53 21.83 0.99 0.90 2.31 21.80 0.99 0.93

DJF

CPC UW

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.258 1.49 0.99 0.36 0.97 1.45 0.67 0.33 0.95
VR-CESM 0.1258 1.19 0.64 0.29 0.97 1.23 0.35 0.27 0.96
WRF 27 km 0.89 20.38 0.21 0.97 1.29 20.69 0.26 0.96
WRF 9 km 4.26 2.61 0.86 0.95 3.84 2.32 0.70 0.95
Uniform CESM 18 3.97 23.12 0.99 0.93 4.80 23.50 0.99 0.90

PRISM Daymet

RMSD MSD MRD Corr RMSD MSD MRD Corr

VR-CESM 0.258 1.65 0.58 0.35 0.94 1.35 0.51 0.28 0.96
VR-CESM 0.1258 1.40 0.29 0.29 0.95 1.17 0.21 0.25 0.96
WRF 27 km 1.55 20.79 0.28 0.96 1.35 20.85 0.28 0.96
WRF 9 km 3.57 2.26 0.66 0.96 3.80 2.18 0.65 0.95
Uniform CESM 18 5.07 23.65 0.99 0.90 4.69 23.65 0.99 0.93
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results under Levene’s test). The variability in observations has a similar monthly trend as precipitation rate,
with overall values from 0 to 4 mm/d. Generally, higher interannual variability occurs over locations with
higher mean precipitation (see Figure 11), also observed by previous studies [for example, Duffy et al.,
2006]. Compared with observations, VR-CESM exhibited �1 mm/d larger variability in the rainy season with
RMSDs ranging from �0.2 to 0.9 mm/d (see Table 4). WRF 9 km also showed enhanced variability, especially
during the wintertime (�1.5 mm/d more), with significant difference from references. WRF 27 km captured
the interannual variability quite well with only minor underestimation except the coastal regions, with
RMSDs around 0.1–0.7 mm/d. The primary driver for the interannual variability of precipitation over Califor-
nia is the El Ni~no-Southern Oscillation (ENSO), which impacts the moisture flux transport to this region
[Cayan et al., 1998, 1999; Leung et al., 2003b].

The frequency distribution of DJF Pr has been constructed from rainy days (Pr� 0.1 mm/d) for simulations
and reference data sets and is depicted in Figure 12. Since the frequency of precipitation is very similar
across all reference data sets, only UW and CPC are included. Generally, VR-CESM matches closely with
observations everywhere except in the CV. In the CV, WRF 27 km appears to better capture high-intensity
precipitation events but performs poorly on low-intensity events (Pr< 20 mm/d). The underestimation of
rainfall frequency in WRF 27 km appears consistent across divisions. WRF 9 km produces a significantly bet-
ter treatment of low-intensity events but greatly overestimates the frequency of high-intensity events
(Pr> 20 mm/d). For strong precipitation events, VR-CESM matches closely to observations everywhere
except the CV.

The overestimation of precipitation for WRF at high resolution has also been found in previous studies.
Although not as pronounced as WRF 9 km here, Caldwell et al. [2009] demonstrated that WRF at 12 km
largely overestimated the precipitation over California’s mountainous regions (however, this paper did
employ a different set of parameterizations and had a different spatial extent of mountain region). Fur-
ther discussion can be found in former studies that employ different microphysics schemes (and so pro-
duce a wide range of precipitation magnitudes) [Jankov et al., 2005; Chin et al., 2010; Caldwell, 2010].
However, Caldwell et al. [2009] also argued that the bias comes from a variety of sources, rather than sim-
ply different choices of subgrid-scale parameterizations. The exact cause of this overprediction has yet to
be identified in the literature and a comprehensive analysis of the cause of these errors is beyond the
scope of this paper.

Figure 10. Sample standard deviation of annual and DJF precipitation from models and PRISM.
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3.3. Overall Performance and Extreme Events
A simple schematic summary is given in Table 7 indicating observed biases from VR-CESM and WRF by region
relative to PRISM. As mentioned earlier, over the coastal regions (especially NC) the observational data sets
show significant uncertainty (see Table 2) that must be taken into account. In general, both VR-CESM and
WRF correlate well with observations. WRF is better at capturing Tmin, but VR-CESM provides a better estimate
of Tmax. WRF 9 km grossly overestimate DJF precipitation, with values nearly 2 times larger than observations.
Overall, these observations indicate VR-CESM provides a competitive representation of the regional climatol-
ogy over California with simulation biases that are comparable to WRF. Across resolutions, there is a small but
clear improvement in using VR-CESM 0.1258 compared to 0.258 for simulating Tmax and Pr.

We now briefly address the behavior of VR-CESM 0.1258 and WRF 9 km for simulating climatological
extremes. Figure 13 depicts the spatial distribution of average number of days per year where Tmax exceeds
358, referred to as extreme heat days, and the average number of days per year where Pr> 20 mm/d,
referred to as extreme precipitation days. The spatial patterns associated with these extremes match closely
with simulated Tmax from Figure 4, for extreme heat days, and simulated DJF precipitation from Figure 9, for
extreme precipitation days. Consequently, we anticipate that improvements in the model’s treatment of
Tmax and Pr will directly impact the capability of these models to simulate corresponding extremes.

Figure 11. As Figure 6, but for monthly average total precipitation. The shading refers to the 95% confidence interval of PRISM and UW.
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4. Discussion and Summary

The need for high-resolution model data to address regional climate change and extreme events has moti-
vated the development of new modeling tools. To support this work, this study investigated the variable-
resolution Community Earth System Model (VR-CESM) for two-way dynamically downscaled climate model-
ing. VR-CESM was evaluated for modeling California’s unique regional climate and compared against
gridded observational data sets, reanalysis data, and the WRF model (forced with ERA-Interim data at lateral
boundaries).

Based on 26 years of high-resolution historical climate simulations (1980–2005), we analyzed the mean clima-
tology of California across its climate divisions in terms of both near-surface temperature and precipitation.
Generally, when compared with gridded observational data sets, both VR-CESM and WRF adequately repre-
sented regional climatological patterns with high spatial correlations (>0.94). Uncertainty between reference
data sets is apparent and is statistically significant over some climate divisions, making it necessary to utilize

Figure 12. As Figure 8, but for DJF rainy days (Pr� 0.1 mm/d) (note that the vertical scale is logarithmic).
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more than one high-quality observational product in the model evaluation. Overall, we found that VR-CESM
showed comparable performance to WRF for regional climate modeling at spatial resolutions of 10–30 km.

Simulated temperature was assessed in terms of the mean climatology of Tmin, Tmax, and Tavg and interan-
nual monthly averaged variability of Tavg. Deviations between the models and the reference data sets were

Table 7. A Summary of the Biases in VR-CESMs and WRF, Compared to PRISM, for JJA Tmax, JJA Tmin, and DJF Pr in Each Regiona

VR-CESM 0.258b VR-CESM 0.1258b

Tmax (8C) Tmin (8C) Pr (%) Tmax (8C) Tmin (8C) Pr (%)

CV 2–3 2–3 70–100 2–3 2–3 30–60
MR 2–3 2–4 2 2–3
SC 2 2–3 2 2–3
NC 2–3 2–3
DR 2–4 60 2–4 30

WRF 27 kmc WRF 9 kmc

Tmax (8C) Tmin (8C) Pr (%) Tmax (8C) Tmin (8C) Pr (%)

CV 2–3 1 1–2 50–70
MR 2 2 3–4 2 70–100
SC 2 1 20–30 2 1 30
NC 2–4 20 2–4 1 30–60
DR 20–40 2–3 2

aItalic (bold) entries indicate positive (negative) bias. Underlined entries indicate the most significant differences. Empty cells indicate
no statistically significant difference.

bNotes: Over California, VR-CESM correctly captures the spatial interannual standard deviation of seasonal temperature and precipita-
tion and interannual variability in monthly average Tavg and Pr (in both cases finer resolution performs better). In VR-CESM, the peak
month for precipitation tends to occur earlier than in observations.

cNotes: Over California, WRF 27 km correctly captures the spatial interannual standard deviation of temperature and precipitation.
WRF 27 km can also reproduce the monthly cycle of Tavg, and interannual variability of Tavg and Pr (better than VR-CESM).

Figure 13. Number of days per year with (top) Tmax> 358C and (bottom) Pr> 20 mm/d in VR-CESM 0.1258, WRF 9 km and UW over the
simulation period 1980–2005.
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apparent, but their character differed between VR-CESM and WRF. During the summer period, VR-CESM pro-
duced a 2–38C warmer climate than observations, especially in the CV. On the other hand, WRF exhibited a
colder (�28C) Tmax over most divisions (except the CV) but was only a little warmer in Tmin. Overall, VR-CESM
was more accurate in reproducing mean climatology of Tmax, whereas WRF was better at modeling Tmin and
Tavg. WRF modeled the annual cycle of Tavg better than VR-CESM with about a 18C overall underestimation.
VR-CESM overestimated Tavg by 28C over the summer season and underestimated Tavg by 28C over the win-
ter season, indicating a larger annual temperature range over most divisions. Higher-resolution (0.1258) VR-
CESM captures the spatial pattern of annual variability for near-surface temperature pattern shown in
PRISM. Both WRF and VR-CESM well represent variability in monthly average Tavg over each climate division,
except for the WRF 9 km in January and February where variability was greatly overestimated.

Temperatures were further investigated in terms of the climatology of JJA Tmax, due to its relevance to sum-
mertime heat waves. Both models successfully simulated the spatial character of JJA Tmax, although both
also had an apparent warm bias over the CV. The failure to correctly capture CV Tmax is likely caused in part
by the lack of irrigation cooling over this division in both models. Future work will address this issue by
applying irrigation model to VR-CESM so as to figure out the role irrigation plays in regulating Tmax and its
frequency distribution.

Precipitation was assessed in terms of mean climatology, interannual monthly averaged variability and fre-
quency of precipitation intensity. In general, VR-CESM matched closely with PRISM everywhere except for
an overestimation of DJF Pr (about 25%–35%) along the western flank of the Sierra Nevada and into the CV.
Increasing the spatial resolution to 0.1258 produced some reduction in this overestimation (about 10%)
likely due to improved treatment of orographic effects. WRF 27 km underestimated DJF precipitation (by
about 20%–30%) along the NC and MR (where almost all the precipitation appears), whereas WRF 9 km
showed a large overestimation (about 65%–85%). The standard deviation of precipitation ranged from 0 to
6 mm/d, with generally higher interannual variability over locations of higher mean precipitation. When
assessing the frequency of strong precipitation events, VR-CESM matched closely to the UW data set every-
where except the CV.

Higher-resolution (0.1258) VR-CESM did produce better results when assessing JJA Tmax and precipitation
(along with their variability), compared with the coarser resolution run. However, the improvements were
not statistically significant over most of the study area. The largest improvement at higher resolution was in
the spatial character of precipitation, driven primarily with a better representation of the underlying topog-
raphy. Notably, this result highlights the relative insensitivity to resolution in VR-CESM’s physical parameter-
izations. This may be an advantageous result for multiscale modelers interested in climate applications.
Correctly simulating precipitation is vital to properly representing snowpack, which is of critical importance
to water availability in the western United States [Bales et al., 2006; Wise, 2012; Rhoades et al., 2015].
Decreased scale sensitivity implies the result will be more independent of the choice of grid resolution.
However, since the range of scales in this investigation is small (�28 km to �14 km), we do not discount
sensitivity over a wider range of scales [Wehner et al., 2010; Rauscher et al., 2010]. Notably, for both regional
and global models, resolution effects do not typically have a linear dependency [e.g., Hughes et al., 2014;
Wehner et al., 2014].

For WRF, when resolution is increased to 9 km, the model produces vastly overestimated precipitation, as
previous studies have also found when using RCMs for fine-scale regional simulations. Although the convec-
tive parameterization was not disabled (as is suggested for some models below 10 km resolution), the effect
of this change is minor since almost all of the precipitation comes from resolved (large-scale) condensation
(not shown). In this sense, precipitation modeling bias of WRF is more strongly related with resolved-scale
processes and the choice of microphysics scheme plays a major role, motivating the need for more work on
scale-aware parameterizations [O’Brien et al., 2013].

Regarding computational cost, we note that a direct comparison between VR-CESM and WRF is somewhat
misleading, due to widely disparate configurations of each model (for instance, differences in dynamical
core, parameterization suite, optimization strategy, and output variables). Nonetheless, for our simulations,
we report core hours per grid point, where the total number of grid points is equal to the number of atmos-
pheric columns multiplied by number of model levels. VR-CESM was configured with 30 model levels and
75,062 (101,954) columns on the 0.258 (0.1258) mesh, whereas WRF was configured with 41 model levels
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and 13,200 (39,172) columns for the 27 km (9 km) simulations. The high-resolution region represented
approximately 1/3 and 1/2 of all grid points in VR-CESM at 0.258 and 0.1258, respectively. On the Yellow-
stone cluster, we observed that VR-CESM simulations at 0.258 (0.1258) required 0.0043 (0.0037) core hours
per grid point per simulated year, compared with 0.0011 (0.0027) core hours of that with WRF 27 km (WRF
9 km). In our experiments, VR-CESM demonstrated effectively linear scalability in the number of elements
simulated.

In summary, VR-CESM demonstrated competitive utility for studying high-resolution regional climatology
when compared to a regional climate model (WRF). Compared to regional models, variable-resolution mod-
els are more suitable for regional climate studies where nonlocal processes are a major influence, including
two-way interactions at the nest boundary and potential upstream impacts [Sakaguchi et al., 2015].
Variable-resolution models are also useful for assessing and tuning resolution dependence of physical
parameterizations in global models and are also valuable for short-term weather prediction [Zarzycki and
Jablonowski, 2015]. On the other hand, RCMs tend to have more subgrid parameterization choices that can
be tailored for particular studies [e.g., Cassano et al., 2011] and tend to be more efficient, as computational
expense can be precisely targeted. Deviations exhibited within these models are not indicative of deep
underlying problems with the model formulation, but one should nonetheless be aware of these biases
when using these models for climate studies. This study suggests that VRGCMs are, in general, useful tools
for assessing climate change over the coming century. As the need for assessments of regional climate
change increases, alternative modeling strategies, including VRGCMs will be needed to improve our under-
standing of the effects of fine-scale processes representation in regional climate regulation. Future work will
focus on the capability of the variable-resolution system to correctly capture the features of discrete,
extreme heat and precipitation events.
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