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Abstract

Numerical algebraic geometry for maximum likelihood estimation
by
Jose Israel Rodriguez II1
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Bernd Sturmfels, Chair

Numerical algebraic geometry provides numerical descriptions of solution sets of polyno-
mial systems of equations in several unknown. Such sets are called algebraic varieties. In
algebraic statistics, a statistical model is associated to an algebraic variety to study its geo-
metric structure. This thesis contains my work at UC Berkeley that uses numerical algebraic
geometry for the algebraic statistics problem of maximum likelihood estimation.

In Chapter 2 we study the maximum likelihood estimation problem on manifolds of
matrices with bounded rank. These represent mixtures of distributions of two independent
discrete random variables. We determine the maximum likelihood degree for a range of
determinantal varieties, and we apply numerical algebraic geometry to compute all critical
points of their likelihood functions.

In Chapter 3 we prove a bijection between critical points of the likelihood function on the
complex variety of matrices of rank r and critical points on the complex variety of matrices of
corank r—1. From the perspective of statistics, we show that maximum likelihood estimation
for matrices of rank r is the same problem as minimum likelihood estimation for matrices of
corank r — 1, and vice versa.

In Chapter 4, a description of the maximum likelihood estimation problem in terms of
dual varieties and conormal varieties is given. With this description, we define the dual
likelihood equations. We show how solving these dual likelihood equations give solutions to
the maximum likelihood estimation problem without having the defining equations of the
model itself.

In Chapter 5, discrete algebraic statistical models are considered and solutions to the like-
lihood equations when the data contain zeros are studied. Focusing on sampling and model
zeros, we show that the solutions of the likelihood equations in these cases are contained in
a previously studied variety, the likelihood correspondence. The number of solutions give a
lower bound on the ML degree, and the problem of finding critical points to the likelihood
function can be partitioned into computationally easier problems involving sampling and
model zeros.

In Chapter 6 the Macaulay2 package Bertini.m2 is introduced. Macaulay?2 is a software
system designed to support research in algebraic geometry, and Bertini is a popular software
system for numerical algebraic geometry. The package Bertini.m2 provides an interface to
Bertini via Macaulay2.
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Chapter 1

Introduction

Studying connections between statistics and algebra is at the center of algebraic statistics
[12]. A statistical model M for discrete data is a subset of the positive orthant of R**! where
the coordinates sum to one. In this thesis, we consider only models that are defined by the
vanishing of polynomial equations restricted to the positive orthant. A remarkable fact and
motivation of algebraic statistics is that many interesting statistical models are described in
this fashion. Since an algebraic variety is a solution set of polynomial equations, we can use
computational algebra to study statistical models.

The focus of this thesis is to study the maximum likelihood estimation (MLE) problem.
Given a statistical model M C R"*! the MLE problem is to maximize the likelihood function
on the model for given data v € N*™!. The point that maximizes this function is called the
maximum likelihood estimate (mle). One way to determine this point, is to use local hill
climbing methods. However, if there exist many local maxima, then one cannot guarantee
convergence of these local methods without further analysis.

The approach we take in this thesis is to consider the algebraic variety M that is the
Zariski closure of our statistical model. Next we determine all complex critical points of the
likelihood function restricted to the variety M. Usually there will be finitely many critical
points, and of these points, we will determine the ones with positive coordinates. So instead
of maximizing the likelihood function over M, we maximize over the finitely many positive
critical points of the likelihood function on M. With additional hypotheses these two results
will agree.

To determine the critical points, we solve the system of likelihood equations [9, 23| for
the model M with respect to data u. The method that we use to solve this system involves
numerical algebraic geometry and homotopies [3, 41|. The key idea is that the likelihood
equations are difficult to solve, and for each choice of data u one would have to consider
a new system. But with numerical algebraic geometry, once the likelihood equations have
been solved for a generic choice of data u, one can quickly recover solutions to likelihood
equations for another choice of data using a homotopy. More specifically, the system of
equations and its solutions that have already been found are deformed to a new system and
target solutions using numerical algorithms. In the remainder of this chapter, we will focus
on a specific statistical model to illustrate the key concepts and motivations of this thesis.



CHAPTER 1. INTRODUCTION 2

1.1 Illustrative example

In this section, we introduce an illustrative example involving a weighted coin and weighted
dice. This example is based off the classical example of DiaNA and her dice in [35].

One coin, four dice

Suppose Oscar has a coin that is weighted such that the probability of observing side 1 is ¢;
and the probability of observing side 2 is ¢o. Further suppose Oscar has two pair of four-sided
dice. The first pair of dice consists of a red die R1 and a blue die B1. The probability of
observing one of the four sides of these respective dice is given by the matrices

[Tla Tro, T3, r4]T and [bly b2a b37 b4]T~

Similarly, the second pair consists of a red die R2 and a blue die B2. The probability of
observing one of the four sides of these dice is given by the matrices

[, g, i, )" and [by, b, b, "

Although the weights of each die can be different from the others, the red dice are indistin-
guishable from one another and the blue dice are indistinguishable from one another.

One day Oscar meets his friend Gabriella and asks if she would like to play an estimating
game consisting of 100 rounds. Each round will consist of the following: Hidden from
Gabriella’s view, Oscar will flip the coin. If the coin lands on side 1, Oscar will select the
first pair of dice to roll. If the coin lands on side 2, Oscar will select the second pair of dice
to roll. Gabriella does not get to observe the coin. She only gets to observe the outcome of
the pair of dice. After repeating this process 100 times Gabriella records in a 4 x 4 matrix
u = [u;;], the number of times she observed the pair of dice having the outcome

"red die on side i and a blue die on side j” (1.1)

in the (i, j)-entry of u. For example, if Oscar rolled a 1 with the red die and simultaneously
a 2 with the blue die 14 times among the 100 rolls, then Gabriella would have w1, = 14.
We call the matrix u the data. After providing this data, Oscar will then ask Gabriella to
estimate the true probability of observing the event (1.1). We denote this true probability
distribution as the 4 x 4 matrix [p;;] and denote Gabriella’s estimate as [py].

So what should Gabriella’s estimate be? One guess might be to simply take the data u
that was provided and rescale it so that the entries sum to 1. However, this guess would
almost always be incredibly wrong. We can see this because [p;;] must have rank at most 2
while u will almost always have full rank.

Indeed, we have that [@j] has the following decomposition as a sum of two rank 1 matrices:

P11 D12 D1z D r1 T
- — — — /
P21 D22 P23 Dog ) Ty VAR TARY,
el T Ted =c by, by, b3, ba| + ¢ by, b5, b, byl.
Ps1 Dsg Daz Das 1 rs [17 2, U3, 4] 2 Té [17 27 Y3 4]
Py Pao Pa3 Py T4 Ty
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This decomposition makes sense because the probability of observing, say, a red die on side 3
and a blue die on side 4 would be the probability of observing the coin on side one times r3by
plus the probability of observing the coin on side two times r3b). This means [p;;] has rank
at most 2, and more specifically, nonnegative rank 2. So Gabriella’s estimate [p;;] should be
in the statistical model consisting of nonnegative rank 2 matrices. Now the question is how
to determine the best estimate for [p;;] constrained to this statistical model.

This is done by noticing that the likelihood of observing the data w for the probability
distribution [p;;] is given by the likelihood function

1 wis
tu(p) = mnpz‘j b
Pyt ij

Here we employ the useful notation that
D+ = sz‘j and w44 = Zuu
ij ij

So the best estimate for the true distribution [p,;] is the mazimum likelihood estimate, the
probability distribution that maximizes £,(p) on the statistical model.

Our approach to computing maximum likelihood estimates is to consider a relaxation of
the problem. We will determine every critical point of ¢, (p) restricted to the regular points of
the Zariski closure of a statistical model. The answer Gabriella will give to Oscar is a critical
point of ¢, (p) restricted to set of rank 2 matrices. Gabriella will determine this critical point
by solving a system of polynomials called the likelihood equations. This system has finitely
many solutions, and we maximize ¢,(p) over this finite set of critical point to determine the
maximum likelihood estimate.

Likelihood Equations

The set of nonnegative matrices of rank 2 is semi-algebraic, involving polynomial inequalities.
However, the set of matrices of rank at most 2 is defined by equalities. For Gabriella, this
means she is interested in determining the critical points of £,(p) on the zero set of the 3 x 3
minors of [p;;]. There are 16 such minors fi, fa,..., fi¢ in 16 unknowns p;;. To determine
the critical points of £,(p) we want to determine when the gradient of ¢,(p) is in the row
span of the gradients of the 16 minors evaluated at the point p. Up to scaling, the gradient
of the likelihood function ¢,(p) equals

Yoo Uit . U Uas (1.2)

DPoo P+ Pag P+

To get a system of equations, we augment (1.2) to the top of the matrix

V fi(p)
V fa(p)

Vf 1.6 (p)
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If we take the 5x5 minors of this augmented matrix along with the polynomials fi, fo, ..., fis,
we get a system of equations. However there are two problems. First this is not a system
of polynomial equations. It is a system of rational functions. To get a polynomial system,
we have to subtly and carefully clear the denominators. Second, we are only interested in
regular points, which means we want to avoid degenerate cases where we have a critical point
with rank strictly less than 2. To handle this problem, we must saturate by the singular
locus. After carefully clearing the denominators and handling this saturation process, we
have likelihood equations.

The interesting aspect of these equations is that for almost any data u that Oscar gen-
erates, Gabriella will find that there are 191 complex solutions. That is, Gabriella will find
that the likelihood function has 191 complex critical points with a subset of these points
having positive coordinates that sum to one. The number of complex critical points of the
likelihood function is called the mazimum likelihood degree (ML degree) [9, 23| of the sta-
tistical model. The geometry of these numbers and formulations of systems of polynomial
equations to compute them are at the heart of this thesis.

1.2 Results and contributions

This thesis introduces five main results and a software package that is an interface to solve
systems of polynomial equations. The first main result is Theorem 2.2.1. This theorem is a
new formulation of the likelihood equations that behaves well numerically. The procedure
to determine likelihood equations presented in the introduction is vastly overdetermined and
horrendous for numerical computations. With this new formulation, we solve a square system
of polynomial equations, meaning the number of unknowns in the system equals the number
of equations in the system. In our illustrating example Gabriella would need to only solve
16 equations in 16 unknowns with this new formulation.

The second main result are new computations of ML degrees (in bold below) as seen in
Theorem 2.1.1. In terms of our illustrating example, r is the number of "sides" of the coin
and number of pairs of dice. Also in terms of our illustrating example, m corresponds to the
number of sides on the red dice, while n corresponds to the number of sides of the blue dice.

(m,n)= (3,3) (3,4) (3,5 (4,4) (4,5) (4,6) (5,5)
=1 1 1 1 1 1 1 1

=2 10 26 58 191 843 3119 6776
=3 1 1 1 191 843 3119 61326
=4 1 1 1 6776
=35 1

The 191 complex critical points that Gabriella computes correspond to the r = 2, (m,n) =
(4,4) entry of the table.

From Table (2.4), one would conjecture that the vertical symmetry of a column to hold
in general. Indeed, the third main result of the thesis, Theorem 3.2.4, proves this to be true.
Theorem 3.2.4 also provides an explicit bijection between critical points of the likelihood
function on (m x n) matrices of rank r with critical points of the likelihood function on
(m x n) matrices of corank r — 1. In terms of the illustrating example, there is a bijection
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between critical points of the likelihood function on 4 x 4 matrices of rank 2 and critical
points of the likelihood function on 4 x 4 matrices of rank 3. For a generic choice of u = [u;;],
the bijection between

[pi;] a critical point of £,(p) on 4 x 4 rank 2 matrices, and
[¢ij] a critical point of £,(p) on 4 x 4 rank 3 matrices

is given by the relation below.

b11q11  P12912 P134qi3 P14914 U4+ U111 U1 UTHUI2U42 U4 UIZU43 UL+ UI4U44
D21921  DP22922 P23q23 P24924 | _ L U2+ U1U41 U24U22U42 U4 U23UH3 U2+ U24ULH4
DP31431  P324932 P33933 DP34434 N ui 4+ | Us4UULL  ULUIRUL2  ULUZULZ UL U3LUL4
P41941 P42942 P43943 P44G44 Ug+U41U4] U4+ U42U42 UL+ UAZULZ UL+ U44U 44

In addition, this bijection takes the critical point that maximizes the likelihood on the first
model to the critical point that minimizes the likelihood on the second model.

The fourth main result is Theorem 4.2.5 that recasts maximum likelihood estimation in
terms of conormal varieties. This elegant formulation allows one to define the dual likelihood
equations and makes computing ML degrees of hyperdeterminants tractable.

The fifth main result is Algorithm 5.4.2. This algorithm uses the structure of the Lagrange
Likelihood Equations to give lower bounds to the ML degree of a statistical model. This is
done by considering what happens when zeros are in the presence of data.

The final contribution of the thesis is an introduction to an interface for the numer-
ical algebraic software Bertini through the computational algebraic geometry software
Macaulay2. This interface allows one to use the main tool in numerical algebraic geom-
etry, homotopy continuation, via Bertini to solve system of polynomial equations.

Throughout the thesis various algebraic formulations of the maximum likelihood estima-
tion problem will be given. With different formulations, computational results can be pushed
further or theoretical results can be made clear. However, the key technique throughout the
thesis is

using homotopy continuation to degenerate data.

Solving the likelihood equations for a choice of data is an extremely difficult problem. But if
we can solve the likelihood equations for a generic choice of data ugeneric, then we can solve
the likelihood equations for any other specific choice of data v quickly. Using numerical
algorithms such as Euler’s method and Newton’s method, we degenerate ugeperic to specific
data v thereby degenerating the solutions of the likelihood equations with respect to ugeneric
to solutions of the likelihood equations with respect to v. For more information on numerical
algebraic geometry, the reader can jump straight to Chapter 6 or see [41, 3|.



Chapter 2
Low Rank Matrix Models

The content of this chapter will be published in the Journal of Algebraic Statistics as an
article titled Maximum Likelthood for Matrices with Rank Constraints, with minor changes
throughout for consistency with other chapters. It is joint work with Jonathan Hauenstein
and Bernd Sturmfels.

2.1 Introduction

Maximum likelihood estimation (MLE) is a fundamental computational task in statistics. A
typical problem encountered in its applications is the occurrence of multiple local maxima.
In order to be certain that a global maximum of the likelihood function has been achieved,
one needs to locate all solutions to a system of polynomial equations. In this chapter we
study these equations for two discrete random variables, having m and n states respectively.
A joint probability distribution for two such random variables is written as an m X n-matrix:

P11 P12 - DPin
p p o Pon

p = |7 ™= P (2.1)
Pm1 Pm2 *°° DPmn

The entry p;; represents the probability that the first variable is in state 7 and the second is

in state j. Thus, the entries of P are non-negative and their sum p,, is 1. By a statistical

model, we mean a closed subset M of the probability simplex A,,,_; of all such matrices P.
If i.i.d. samples are drawn from some P then we summarize the data also in a matrix

U3 U2 -+ Uin
U21 Ug2 -+ U2p

U = A |- (2:2)
Uml Um2 *°° Umn

The entries of U are non-negative integers whose sum is v, . As is customary in algebraic
statistics [12, 23, 44|, we write the likelihood function corresponding to the data matrix U as

H?ll H?:l p?jij

14 = — —
v (Zi:l Zj:l Dij ) o

(2.3)
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This formula defines a rational function on the complex projective space P™ ! whose re-
striction to the simplex A,,,_1 is the usual likelihood function divided by a multinomial
coefficient. The MLE problem is to find the global maximum of ¢;; over the model M.

Our model of interest is the set M, of matrices P of rank < r. This is the intersection of
the variety V, C P! defined by the (r+1) x (r+1)-minors of P with A,,,_;. For generic
U, the rational function ¢y has finitely many critical points on the determinantal variety V.
Their number is the ML degree of V,. In this chapter, we formulate a polynomial system
consisting of mn equations in mn variables defining such critical points and compute them
using methods from numerical algebraic geometry. That computation enables us to reliably
find all local maxima of the likelihood function ¢;; among positive points in M,.. Among the
computational results is the determination of the bold face numbers in the following table.

Theorem 2.1.1. The known values for the ML degrees of the determinantal varieties V, are

(m,n) = (3,3) (3,4) (3,5) (4,4) (4,5 (4,6) (5,5)

r=1 1 1 1 1 1 1 1
r=2 10 26 58 191 843 3119 6776 (2.4)
r=3 1 1 1 191 843 3119 61326 '
=4 1 1 1 6776
) 1

The smaller numbers 10 and 26 had already been computed in [23, §5], but the symbolic
computations using Singular that were presented in [23] had failed beyond the size 3 x 4.

In 2005, the third author offered a cash prize of 100 Swiss Francs (cf. [44, §3|) for the
solution of a particular 4 x 4-instance that was described in [35, Example 1.16]. That prize
was won in 2008 by Mingfu Zhu who solved this challenge in [48]. See also [42, Example
5.2] for a solution using Singular, and [13] for a statistical perspective on this problem.
However, none of these papers had found the number 191 of critical points for the 4 x 4
cases.

That the column symmetry among the ML degrees always holds is the topic of the next
chapter. The following is a special case of Theorem 3.1.1.

Theorem 2.1.2. If m < n then the ML degrees for rank r and for rank m —r + 1 coincide.

This chapter might appeal also to those interested in the topology of algebraic varieties.
For a variety V in P!, let V° denote the open subset given by pi1pi2 - - - Ppnpss # 0. Huh
[26] recently proved that if VY is smooth then the ML degree of V is equal to the signed Euler
characteristic of V°. In our case, for r > 2, the open determinantal variety V? is singular
along V?_ |, but a suitably modified statement is expected to be true. It might be speculated
that the results in Theorems 2.1.1 and 2.1.2 will ultimately have a topological explanation.
For more information one can also refer to [27].

The entries “1” of the table in (2.4) have easy explanations. For r = m we have V,, =
P™"~1 and the unique critical point of the likelihood function ¢;; is P = ﬁU . The first row
of (2.4) states that the independence model M; has ML degree 1. This fact is well-known to
statisticians, as the rank 1 matrix with entries (u;1uy;)/u?, is the unique critical point for
ly on VY. We found it instructive to derive this fact from Huh’s result [26, Theorem 1.(iii):
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Example 2.1.3. Let r = 1. The Segre variety V; = P! x P"~! is smooth. Fix coordinates
(ry:---:x,) on P™" 1 and coordinates (y; : -« - : y,) on P71, The open subset VY consists of
all points in P! x P*~1 with x129 - - Zpuy1¥o - Yn(T14+ - - - +20) (Y1 + - - +yn) # 0. Hence

VY = (P! minus m + 1 hyperplanes) x (P"~! minus n + 1 hyperplanes).
Each factor has signed Euler characteristic 1, and hence so does their product. O

This chapter is organized as follows. In Section 2.2, we formulate the constraints that
characterize critical points of ¢ on V, as a square system of polynomial equations. The
specific formulation in Theorem 2.2.1 is one of our key contributions. It is used to derive
upper bounds in terms of m, n, and r. Theorem 2.2.3 extends our results to the case of
symmetric matrices, and hence to mixtures of two identically distributed random variables.

Section 2.3 is devoted to our computations using numerical algebraic geometry. This
furnishes valuable new tools for practitioners of statistics who are interested in exploring
probability one algorithms for computing the global maximum of a given likelihood function.

In Section 2.4, we introduce a refined version of Theorem 2.1.2, proven in Chapter 3,
and we summarize the computational evidence gathered to support it. The Galois group
computations in Proposition 2.4.5 might be of independent interest. In Theorem 2.4.4, we
present a proof of [48, Conjecture 11| by means of certified numerical computations.

Section 2.5 features the statistical view on our approach, and we explain how it differs
from running the EM algorithm for discrete mixture models. The determinantal variety V), is
the Zariski closure of the latent variable model for r-fold mixtures of independent variables.
They are equal in A,,,,_; if and only if » < 2. For r > 3 this takes us to the real algebraic
geometry problem, pioneered in [32], of distinguishing between rank and non-negative rank.

2.2 Equations and bounds

In this section, we present several formulations of the critical equations for the likelihood
function on the determinantal variety V, = {rank(P) < r}. We view V, as an affine variety in
the space of matrices C™*" and we assume m < n. Our main result is Theorem 2.2.1 which
expresses our problem as a square system of mn polynomial equations in mn unknowns.
An m x n-matrix P is a regular point in the determinantal variety V), if and only if
rank(P) = r. If this holds then the tangent space Tp is a linear subspace of dimension
rn +rm —r? in C™" and its orthogonal complement (with respect to the standard inner
product) is a linear subspace T'> of dimension (m — r)(n — r) in C™*™.
Our input is a strictly positive data matrix U. We consider the logarithm of the likelihood
function ¢y as in (2.3). The partial derivatives of the log-likelihood function log({y) are then
Olog(ty) _ uij _ Uss (2.5)
apij Pij  P++
By [23, Proposition 3|, a matrix P of rank r is a critical point for log(¢y) on V, if and only
if the linear subspace T contains the m x n-matrix whose (i, j) entry is (2.5). Hence the
system of equations we seek to solve can be expressed in the following geometric formulation:

rank(P) =r, pir =1, and the matrix (u;;/pij — uss) lies in Th. (2.6)
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This is saying that the gradient of the objective function must be orthogonal to the tangent
space of the variety at a critical point as in the elementary Lagrange multipliers method.
When translating (2.6) into polynomial equations, we need to make sure to exclude matrices
P of rank strictly less than r, as these are singular points in V,. We also need to exclude
matrices P with p;; = 0 for some (7, j). These non-degeneracy conditions require some care.

In [23], the following formulation was used to represent our problem. Let J(P) denote
the Jacobian matrix of the prime ideal defining V,. Since that ideal is minimally generated

by the (TTI) (Til) subdeterminants of format (r+ 1) x (r+ 1), the Jacobian J(P) is a matrix

of format (TT1) (TL) X mn whose entries are homogeneous polynomials of degree r. Let

[U] denote the matrix U when written as a row vector of format 1 x mn, and similarly [P]
is the vectorization of P. We write diag|[P] for the diagonal mn x mn-matrix with entries

P11, P12, - - - s Pmn- Lhe following extended Jacobian has 2 + (TTI) (Tfil) rows and mn columns:
[U]
JP) - [P
J(P) - diag[P]

For a matrix P of rank r, the Jacobian J(P) has rank (m — r)(n — r) = codim(V,). The
third condition in (2.6) translates into the requirement that the span of the first two rows
intersects the rowspace of J(P) - diag[P]. From this we derive the rank formulation

rank(P) <r and rank(J(P))<(m—r)(n—71)+1. (2.7)

This formulation of our problem is elegant and is adapted to projective geometry in P™n~1,
In terms of equations, we simply take the minors of size r+1 of the matrix P, and the minors
of size (m —r)(n —r) + 2 of the matrix J(P). However, this has two serious disadvantages:
first, the number of minors is enormous, and second, we must get rid of extraneous solutions
by saturation. Namely, to get rid of solutions P with rank(P) < r — 1, we need to saturate
by the r x r-minors of P, and to get rid of solutions on the boundary, we need to saturate
by the product of linear forms pi1p12 -« pmnpis. This was done symbolically in [23, §4].
The calculation can be sped up a little bit by taking only (m — r)(n — r) of the rows of
J(P), while also imposing the non-homogeneous equation p,, = 1. Finally, we can replace
the first two rows of J(P) by a single row [U]| — u,[P] and require that the maximal minors
of the resulting ((m — r)(n — r) + 1) X mn-matrix be zero. This leads to improvements but
is still far from sufficient to get to the full range of ML degrees reported in Theorem 2.1.1.
To get to those results, we pursue the following alternatives: first, we introduce new
unknowns which allow us to replace the rank conditions by bilinear equations, and, second,
we represent the subspace T = rowspace(J(P)) using those same new unknowns. Let L
be an (m — r) X m-matrix of unknowns, let R be an n x (n — r)-matrix of unknowns, and
A = (\;j) an (n — ) x (m — r)-matrix of unknowns. Then our general kernel formulation is:

pir=1, L-P=0, P-R=0, and Px(R-A-L)Y +u,, -P=U. (2.8)

Here A x B denotes the Hadamard (entry-wise) product of two matrices of the same format.
If the rows of L are linearly independent and the columns of R are linearly independent,
then either of the conditions L - P =0 and P - R = 0 suffice to imply that rank(P) < r.
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We now explain the last condition in (2.8). The space T is spanned by the rank 1
matrices (p; - £;)7 where p; is the i-th column of R and ¢; is the j-th row of L. Then

n—r m—r

(R-A-L)T = > Njlpi - 43)"

i=1 j=1
is a general matrix in T%. The matrix (u;;/p; — us+) in (2.6) can be written as
PV U —uyy -1 (2.9)

Hence the last condition of (2.6) is equivalent to saying (2.9) equals (R - A - L)T for some A.
We write this as (R-A-L)T +u,, -1 = P %xU. We take the Hadamard product of both
sides with the matrix P to get the last equation in (2.8). This operation is invertible since
all entries of U are non-zero. Indeed, that last equation is Px ((R-A- L) +uyy-1) =U,
and if this holds then all mn entries of the matrix P must be non-zero.

We conclude that (2.8) is a correct formulation of our problem provided we can ensure

rank(L) =m —r, rank(R)=n—r, and rank(P)=r.

We note that (2.8) is highly redundant as far as the number of variables is concerned. There
are several ways to reduce that number. For instance, we can simply set \;; = 1 for all 4, j.
In addition, we can either replace L by a single row or replace R by a single column. Even
after these simplifications, the critical points of ¢ on V), are still represented faithfully.

After some experimentation, we found that the following simplification steps lead to the
best computational results. Recall that m <n. Let P; be an r X r-matrix of unknowns, let
Ry be an r X (n — r)-matrix of unknowns, and let L; be an (m — r) X r-matrix of unknowns.
The matrix A = (\;;) is as before. Using this notation, we take (2.8) with

_ _ _ Pl PlRl - R1
L=(L —In.,), P= (L1P1 L1P1R1) , and R= (—In_r> , (2.10)

where I, and I,,_, are identity matrices. We call (2.8) with (2.10) the local kernel formu-
lation of our problem. Note that the constraints L- P =0, P- R = 0, rank(L) = m —r, and
rank(R) = n — r are automatically satisfied in this formulation. The condition rank(P) = r
is also implied for every solution provided U is generic. Finally, the equation p,, = 1 can
be removed from (2.8) in this formulation since p; = 1 is equivalent to the sum of all mn
equations given by Px(R-A-L)T +u,, - P = U. By counting equations and unknowns, we
now see that our system is a square system consisting of mn equations in mn unknowns.

Theorem 2.2.1. Let U be a generic m x n data matriz with m < n. The polynomial system
Px(R-A-L)Y'+u,, -P =1U (2.11)

consists of mn equations in mn unknowns given by (2.10). It has finitely many complex solu-
tions (Py, L1, Ry, \), and the corresponding m X n-matrices P defined by (2.10) are precisely
the critical points of the likelihood function ly on the determinantal variety V,.



CHAPTER 2. LOW RANK MATRIX MODELS 11

Since the column sums of Px(R-A-L)T are zero, we can further simplify the n equations.
For the first m columns, we replace each entry on the diagonal with the column sum. For
the last n — m columns, we replace the last entry in the column with the column sum.

Example 2.2.2. To illustrate the local kernel formulation (2.11), we consider m = n = 3
with the two subcases » = 1 and » = 2. Both have nine equations in nine unknowns.

Subcase r = 1: The nine unknowns are the entries in the matrices

Ly = (ln) , b= (pn) ;o Ri= (7”11 7“12) , A= (;\\; i;;) )

l21

and the nine equations from (2.11) take the form

pri(l+hy+1l) = (uin + v + ugi)/uqs
p117”11(u++ — A — 121)\12) = U2
p117‘12(u++ — I Ao — 121)\22) = Uis
p11l11(u++ — 1A — 7“12)\21) = U2

purii(l+ b1 +1l1) = (w2 + uge + uga) /ugy
prilinria(Aor +uqy) = ugg
p11121(u++ — T11Ai2 + ?"12)\22) Uus1
pr1lairin (M2 + ugy) U32

purie(l+hy +1l1) = (wig + s + usz) /uqs.

This system has a unique solution which writes the unknowns as rational functions in the u;;.

Subcase r = 2: The nine unknowns are the entries in the matrices

Li=(ln h). Plz(p” p”), Rlz(“l), A= (M),

P21 P22 21

and the nine equations take the form

pri(l4+11) +par(1+la) = (urr + uor + ust)/ugs
pr2(liiraidi +ugpy) = up
(puirin + praran) (U y — lndn) = g
por(ligriiAn +ugq) = ug
P21+ h1) +pa(l+li2) = (w2 + uge + use) /usy
(p217”11 +p227”21)(u++ - l12>\11) = U2
(p11l11 + p21l12)(u++ - 7“11)\11) = U3
(pri2liy + paalio)(uyy —ro1din) = uz
(p11r11 + proror) (14 lin) + (P + paaror) (1 +1i2) = (was + uoz + uss) /uy .

This system has ten complex solutions for a generic data matrix U. In other words, the 9
unknowns [, p..,r.. and Ay are algebraic functions of degree 10 in w1, uq2, . . ., Uss. O

Upper bounds on the ML degree of V' arise from our formulation. The Bézout bound is

or . gn—r, 4n(m—l)'



CHAPTER 2. LOW RANK MATRIX MODELS 12

(m,n,r) (3,3,1) (3,3,2) (3,4,1) (3,4,2) (3,5,1) (3,5,2)
Bézout 73728 49152 3538944 2359296 169869312 113246208
4-hom 270 1350 840 29400 2025 378000

linear product 172 1018 374 20844 650 68586
polyhedral 6 53 10 472 15 2724
ML Degree 1 10 1 26 1 58

(m,n,7) (4,4,1) (442  (4,4,3) (4,5,1) (4,5,2) (4,5,3)
Bézout 905969664 603979776 402653184 173946175488 115964116992 77309411328
4-hom 17600 7276500 580800 63700 323723400 115615500

linear product 5690 4791168 224598 13560 165869606 58335270
polyhedral 20 15280 2847 35 241218 145273
ML Degree 1 191 191 1 843 843

Table 2.1: Comparison of upper bounds for selected (m,n,r)

If we consider (Py, L1, Ry, A) in the product space Cr* x Cr(m=r) x Crn=—r) x Clr=r)m=r) our
system consists of r equations of degree (1,1,0,0), n—r equations of degree (1,1,1,0), and
n(m—1) equations of degree (1,1,1,1). The associated 4-homogeneous Bézout bound is the
coefficient of the monomial w™ - z7m=) . y (=) L (=) (m=7) ip the expression

(w+z) - (wH+z4+y)" " (w+z+y+2)"" D,

A refinement of the 4-homogeneous bound using the fact that each polynomial only
depends upon a subset of the variables yields a linear product bound [47]. Finally, the
polyhedral root count exploits the sparsity of the monomials in our system. We computed the
polyhedral bound for various cases using MixedVol [15] in PHC [46]. All of the aforementioned
bounds are presented in Table 2.1 for selected values of m, n, and r. When solving a
polynomial system using homotopies built from these bounds, one must balance the added
computational cost required for the tighter bound with the computational savings arising
from that bound.

We close this section by discussing rank constraints on symmetric matrices of the form

2p11 P12 P13 P
D12 2P22 P23 0 DPon

P = P13 P23 233 0 Pan | (2.12)
DPin DPon P3n e 2pnn

The case n = 3 was treated in |23, Example 12| where its ML degree was found to be 6. It
is essential that the unknowns p;; on the diagonal are multiplied by 2 before imposing the
rank constraints. The matrices (2.12) of rank one form a Veronese variety in P"+2(n=1/2,
This variety has ML degree 1 and represents the independence model for two identically
distributed random variables on n states. The case n = 2 is the Hardy-Weinberg curve [35,
Figure 3.1]. Larger ranks r correspond to the secant varieties of this Veronese variety.
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Theorem 2.2.3. The known values for the ML degrees of rank r symmetric matrices (2.12) are

n= 3 4 5 6
1 1

r=1 1 1

r=2 6 37 270 2341

r=3 1 37 1394 (2.13)
r=4 1 270

r=>5 1 2341

r=2>5 1

Our input is a strictly positive symmetric n x n-matrix U. The likelihood function equals

by = Lig; P . (2.14)

( ZiSj Pij )Zisg' Ujj

In the statistical context, when the sum of the p;; entries equals 1, we have

8log(€U) uij
Fosltu) _ M N, 2.15
apij Dij ; ! ( )

We compute the critical points on the variety of rank r matrices (2.12) by adapting the
formulation in Theorem 2.2.1. Let P; be a symmetric r» X r-matrix of unknowns where the
diagonal entries are multiplied by 2 similar to (2.12), let L; be an (n — r) X r-matrix of
unknowns, and A be a symmetric (n — r) X (n — r)-matrix. Following (2.10), we define

(2.16)

T
L=(Li —~In-) and P= ( B Rl )

P, LPLT

To account for the p;;’s not being multiplied by 2 in the likelihood function, let D be
the n x n-matrix whose diagonal entries are 2 and off-diagonal entries are 1. The symmetric
local kernel formulation is the square system consisting of the upper triangular part of

Px(L"-A-L)+> u;-P = DxU. (2.17)
i<j

This is a system of n(n+ 1)/2 equations in n(n + 1)/2 unknowns. Similar to the local kernel
formulation, the column sums of Px (LT - A - L) are zero. Hence (2.17) implies > iciPij = 1.
We use this fact to replace the diagonal entries in (2.17) with the corresponding column sum.

Example 2.2.4. We illustrate the symmetric local kernel formulation (2.17) for the two
subcases r = 1,2 when n = 3. Both have 6 equations in 6 unknowns. Here, u,, = Zigj U

Subcase r = 1: The six unknowns arise from the entries in the matrices

o lll - o )\11 )\12
Ll - (121) ) Pl - (2]911) ) A - <)\12 )\22) ’
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and the six equations take the form

2]911(1 -+ 111 + lgl) = (2U11 + U12 + ulg)/U++
2p11l11(u++ — A — 521/\12) = U2
2p11l21(u++ — A2 — 521)\22) = Ui
2p1lin (1 + 1l +lo1) = (w12 + 2ug + ugg) /ugy
2p1ilialor (Mg +ugy) = ugs
2]911[21(1 -+ l11 + 121) = (u13 + U923 + QU33)/U++.

This system has a unique solution which writes the unknowns as rational functions in the u;;.

Subcase r = 2: The six unknowns arise from the entries in the matrices

_ _ (2p11 P12 _
Ll - (lll ll?) ) Pl - (plQ 2p22> 3 A - ()\11) )

and the six equations take the form

= (2U11 + U9 + Ulg)/U++
U12

2p11 (1 + 111) + pra(1 + la)
pr2(linliz A + uyy)
(2]711111 +p12112)(u++ - 111)\11) U3
pr2(1 4+ 111) + 2poa(1 4+ l12) = (w12 + 2uge + uss) /uyt
) =
)

(P12li1 + 2paslio) (ugy — li2A1n Us3
(2p1ilin + prolio) (1 + 1) + (Prolin 4 2pa2lin) (1 +lh2) = (u1g + uss + 2uss) /us 4.

This system has six complex solutions for a general data matrix U. In the other words, the
6 unknowns /.., p.., and A;; are algebraic functions of degree 6 in w1, uqo, . . ., us3. O

Here is the symmetric version of Theorem 2.1.2; as suggested by Theorem 2.2.3:

Theorem 2.2.5. The ML degree for symmetric n x n-matrices (2.12) of rank r is equal to
the ML degree for symmetric n X n-matrices (2.12) of rank n — r + 1.

The proof of this statement is given by Theorem 3.3.4 of the next chapter.

2.3 Solutions using numerical algebraic geometry

Theorems 2.1.1 and 2.2.3 document considerable advances relative to the computational
results found earlier by Hosten, Khetan, and Sturmfels [23, §5|. In this project, we used
numerical algebraic geometry [3| to compute the ML degrees by solving the local kernel
formulation (2.11) which we explain in this section.

The statistical problem addressed here is to find the global maximum of a likelihood
function ¢;; over a matrix model M given by rank constraints. For this class of problems,
the use of numerical algebraic geometry has the following significant advantage over symbolic
computations. After having solved the likelihood equations only once, for one generic data
matrix Uy, all subsequent computations for other data matrices U are much faster. Numerical
homotopy continuation will start from the critical points of ¢, and transform them into the
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(m,n,r) (4,4,2) (4,4,3) (4,5,2) (4,5,3) (5,5,2) (5,5,4)
Preprocessing 257 427 1938 2902 348555 146952
Solving 4 4 20 20 83 83

Table 2.2: Running times for preprocessing and subsequent solving (in seconds)

critical points of £y;. Intuitively speaking, for a fixed model M, the homotopy amounts to
changing the data. We believe that our methodology will be useful for a wider range of
maximum likelihood problems than those treated here, and we decidedly agree with the
statement of Buot and Richards [8, §5| that “.. homotopy continuation algorithms often
provide substantial advantages over iterative methods commonly used in statistics”.

We discuss below two options for the preprocessing stage of solving the local kernel
formulation (2.11) for generic Uy. The first option is to use a single homotopy built from an
upper bound discussed in Section 2.2, most notably a polyhedral homotopy built from the
polyhedral root count. The second option is to use a sequence of homotopies that intersect
the hypersurfaces corresponding to each equation, most notably via regeneration [21].

Parallel computation is an essential feature of numerical algebraic geometry. Both pre-
processing, by solving a generic data set once, and each subsequent solve for given specific
data can be performed in parallel. In our case, we used a 64-bit Linux cluster with 160
processors to perform the computations summarized in Table 2.2 which tracked each path
on a separate processor. For instance, for (m,n,r) = (4,5, 2), there are 843 paths, to be dis-
tributed among the 160 processors. Using adaptive precision [4], this takes 20 seconds while
the same computation performed sequentially takes about 20 minutes on a typical laptop.

Example 2.3.1. The following data matrix is attributed to the fictional character DiaNA
in 35, Example 1.3]. It represents her alignment of two DNA sequences of length u, ; = 40:

DN DN DN W~
DN DN = DN
DN = DN DN
=N NN

According to Table 2.2, it took 257 seconds to solve the first instance for (m,n,r) = (4,4, 2),
but now every subsequent run takes only 4 seconds. In that solving step, the integers wu;;
become parameters over the complex numbers. For DiaNA’s data matrix U, the 191 complex
critical points degenerate to 25 real critical points, each of which is positive, and 166 nonreal
critical points. See Theorem 2.4.4 for additional information regarding the critical points. [l

Three advantages of the local kernel formulation (2.11) are that it is a square system with
polynomials of degree at most 4, it is sparse in terms of the number of monomials appearing,
and it has a natural product structure. These structures are clearly visible from the systems
in Example 2.2.2, and they are used to derive the smaller upper bounds in Table 2.1. In
what follows, we shall describe our preprocessing and how we can use its output to easily
compute all critical points of ¢y for a given data matrix U. We also analyze some specific
examples. An introduction to numerical algebraic geometry and homotopy continuation can
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be found in [41] and more details using Bertini to perform these computations appear in

the book [3] and Chapter 6.

For a square polynomial system F', basic homotopy continuation computes a finite set S of
complex roots of F' which contains all isolated roots. Here, “computes &” means numerically
computing the coordinates of each point in S, and to be able to approximate these to
arbitrary accuracy. Numerical approximations to nonsingular solutions can be certified using
the software alphaCertified [22|. This certification can also determine if the solution
is real or positive. To compute S, we first construct a family of polynomial systems F
containing F' and then compute the isolated roots for a sufficiently general G € F. Finally,
one tracks the solution paths starting with the isolated roots as G deforms to F' inside F.

Fix (m,n,r) and let F := F,, ,,» be the family of polynomial systems (2.11) for U € C™*".
The generic root count on F is the ML degree of V,. In particular, for any generic Uy € C"™*"
the number of roots of the corresponding system Fy, € F is the ML degree of V,. Suppose
further that we know the roots of Fy,. Then, for any matrix U € C™*", we can compute
the isolated roots of the corresponding polynomial system Fp by tracking the ML degree
number of solutions paths starting with the roots of Fy, as Uy and £y, deform to U and Fy.

Since the family F is parameterized by the linear space C™*" = R?™" we can connect
Uy to U along a line segment. If Uj is not in a sufficiently general position with respect to U,
e.g., both real, this segment may contain matrices for which the corresponding system has
a root count that is different from the ML degree. To avoid this, we apply the gamma trick
of [33]. For v € S! C C*, the trick deforms from Uy to U along the arc parameterized by

vt 1—t

— Uy +————-U for tel0,1]. 2.18
T P AT I Wy YT or te01 (2.18)

For all but finitely many values v € S', the root count for the corresponding polynomial
system along this arc, except possibly at U when ¢ = 0, is the ML degree.

We conclude our discussion on deforming from a known set of critical points with a
practical issue. Due to choices of affine patches, the local kernel formulation (2.11), as
written, is not suitable for a nongeneric data matrix U. Once given a data matrix U,
we simply choose random affine patches as in [2]. Let O;,05 € R™", O3 € R™ ™ and
O4 € R™™ be random orthogonal matrices and L, P;, Ry, and A be as before. Then, we
use (2.11) with

L=0, (L —I,)-0F, P:O3-<L]131131 Lf}il%l)-of, and R:O4-<_ilr)-O2T.

The homotopy (2.18) quickly computes the isolated critical points for any given data matrix
U provided that we already know the critical points for a sufficiently general data matrix Uy.

We now discuss the two options for preprocessing mentioned above, namely polyhedral
homotopies and regeneration. A summary of our computations with these two methods,
now using serial processing with double precision, are presented in Table 2.3. The last pair
of entries suggest that the two methods exhibit complementary behavior with respect to
the duality of Theorem 2.1.2. In both cases, 191 roots are found as predicted by Theorem
2.4. These are essentially the same roots, by Theorem 2.4.2 below. For instance, using
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(m,n,r) (3,3,2) (3,4,2) (3,5,2) (4,4,2) (4,4,3)
Polyhedral using PHC 4 120 2017 23843 1869
Regeneration using Bertini 6 61 188 2348 7207

Table 2.3: Running times for preprocessing in serial using double precision (in seconds)

polyhedral homotopy, the rank 2 case can be solved in 1869 seconds and then we may read
off the solutions for rank 3 using (2.19).

The first approach to solve the equations for Uy is to use basic homotopy continuation
in the family P of polynomial systems that arise from some relevant structure. The generic
root count on P constructed from various structures are presented in Table 2.1. After
computing the roots for a general element of P, we return to basic homotopy continuation
for computing the roots of Fy,. Table 2.3 summarizes the results of using a polyhedral
approach implemented in PHC [46] where the family P is constructed based on the Newton
polytopes of the given equations.

The second approach is based on intersecting the given hypersurfaces iteratively. This can
be advantageous when the degree of the intersection is significantly less than the product
of the degrees. To be explicit, if S is a pure k-dimensional variety (k > 0) and H is a
hypersurface, intersection approaches can be advantageous when the degree of the pure
(k — 1)-dimensional part of SN H is less than deg S - deg H. Regeneration is an intersection
approach that builds from a product structure of the given system. We shall now discuss this.

We first consider the classical idea of solving polynomial systems using successive inter-
sections and then discuss how to build from a product structure. Consider N polynomials

fi,-.., fx in N variables, defining hypersurfaces Hy, ..., Hy. One advantage of a square sys-
tem is that the isolated solutions of f; = --- = fy = 0 arise by computing the codimension ¢
components of H; N---NH; sequentially for : = 1,2,..., N. In fact, every codimension 7 + 1

component of Hy N ---NH; NH;,, arises as the intersection of a codimension ¢ component
C of HyN---NH,; and the hypersurface H; 1, where C' is not contained in H;,.

The use of the product structure arises from intersecting an algebraic set of pure codi-
mension ¢ with a linear space of dimension i yielding finitely many points. The first step is a
hypersurface intersected with a line. If £, ..., Ly are general hyperplanes, the hypersurface
‘H, is represented by the isolated points in H; N LoN---N Ly. Such points can be computed
by solving a univariate polynomial, namely f; restricted to the line Lo, N --- N Ly. Let
1 <i < N and C; be the pure one-dimensional component of HiN---NH; N LoN---NLy.
Now, basic regeneration computes C; N H;yq from C; N L; 1 as follows. Let My,..., M,
be hyperplanes defined by sufficiently general linear polynomials ¢, ..., ¢, that represent a
linear product decomposition of f;,;. Let M = U?:l M. Basic homotopy continuation
computes C; N M from C; N L4, for j =1,..., k. Their union is C; N M. Applying basic
homotopy continuation once more yields C; N H; 1 by deforming from C; N M.

For the preprocessing approaches above, we can certify that the set of approximations
obtained correspond to distinct solutions using alphaCertified. At each stage of the
regeneration and at the end of the computation, we can perform one additional test to
confirm that we have obtained all of the solutions: the trace test [39]. During regeneration,
the centroid of the solutions must move linearly as the hyperplane Ly is moved linearly.
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Moreover, the centroid of the critical m x n-matrices must move linearly as the data matrix
U moves linearly. With these tests, we are able to claim, with high probability, that our initial
randomly selected data matrix Uy was sufficiently generic, and Theorems 2.1.1 and 2.2.3 hold.

After computing the positive critical points for a given data matrix U, we identify the
local maximizers by analyzing the Hessian of the corresponding Lagrangian function, namely

L(P,A\) = logly(P) +Z)\igi(P)a

where V), is defined by the vanishing of the polynomials gy,...,gx. If P is a critical point

of rank r, let A € C* be the unique vector such that VL(P,\) = 0. Then, P is a local

maximizer if the matrix N7 - HL(P,)\) - N is negative semidefinite where HL(P,\) is the

Hessian of L and the columns of N form a basis for the tangent space of V, x C¥ at (P, \).
In the remainder of this section we present three concrete numerical examples.

Example 2.3.2. We consider the symmetric matrix model (2.12) for n = 3 with the data
unr =10, w12 =9, uig = 1, ugy = 21, up3 = 3, ugz = 7.
All six critical points of the likelihood function (2.14) are real and positive. They are

P11 P12 P13 P22 P23 P33 log (i (p)
0.1037 0.3623 0.0186 0.3179 0.0607 0.1368 —82.18102
0.1084 0.2092 0.1623 0.3997 0.0503 0.0702 —84.94446
0.0945 0.2554 0.1438 0.3781 0.4712 0.0810 —84.99184
0.1794 0.2152 0.0142 0.3052 0.2333 0.0528 —85.14678
0.1565 0.2627 0.0125 0.2887 0.2186 0.0609 —85.19415
0.1636 0.1517 0.1093 0.3629 0.1811 0.0312 —87.95759

The first three points are local maxima in A5 and the last three points are local minima.
These six points define an extension of degree 6 over Q. For instance, via Macaulay 2 [16],
the minimal polynomial for the last coordinate is

9528773052286944pS, — 4125267629399052p3,+
7134529556566 77p3, — 63349419858182p3,+
3049564842009p32; — 75369770028p33 + 744139872.

As we shall see in Proposition 2.4.5, the Galois group of this irreducible polynomial is
solvable. So we can express each of the coordinates in radicals. For example, the last
coordinate, via RadiRoot [10], is

o ( 14779904193 2 14779904193 C) w1w2
o 211433981207339 211433981207339 2
_ 66004846%%4?3

051977 1642 ) 1
Toza1artosse W2 T 22meer T 19(C — ¢F) w2 + gws,

where ( is a primitive third root of unity, w? = 94834811/3, and

W = ( 5092580425361 ~ 5992580425361 C2) n 07163 |
2 150972770845322208 150972770845322208 40083040181952 %1
9 5006721709 212309132509 212309132509 ~2 2409
W3 = Toig260766912 (4242035935404 — 4342035935404 ) W2 — 30272573168 W1W2
_ 158808750548335 2 | ( 17063004150 _ -2 _ __17063004159 ) r 2
76835084075396 2 122867962414678 122867962414678 1Wa-
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We finally note that the six critical points can be matched into three pairs so that (2.19) holds:
the Hadamard product of points 1 and 6 agree with that of points 2 and 5, and that of points
3 and 4. Thus this example illustrates the symmetric matrix version of Theorem 2.4.2. [

Example 2.3.3. Let m = 4,n = 5 and consider the data matrix

2084 1 1 1 4

U - 4 23587 5 3 1
6 3 41224 3 2

4 6 2 8734 4

For r = 2 and r = 3, this instance has the expected number 843 of distinct complex critical
points. In both cases, 555 critical points are real, and 25 of these are positive. Consider
the 25 critical points in Ajg. For r = 2 precisely seven are local maxima, and for r = 3
precisely six are local maxima. We shall list them explicitly in Examples 2.5.3 and 2.5.4
respectively. O

Example 2.3.4. Let m = n = 5, with the non-symmetric model, and consider the data

2864 6 6 3 3
2 75T 2 2 )
4 1 7543 2 4
o 1 2 3809 4
6 2 6 3 5685

For r = 2 and r = 4, this instance has the expected number of 6776 distinct complex critical
points. In both cases, 1774 of these are real and 90 of these are real and positive. This
illustrates the last statement in Theorem 2.4.2. The number of local maxima for » = 2 equals
15, and the number of local maxima for » = 4 equals 6. For » = 3, we have 61326 critical
points, of which 15450 are real. Of these, 362 are positive and 25 are local maxima. O]

2.4 Further results and computations

The numerical algebraic geometry techniques described in Section 2.3 have the advantage
that they permit fast experimentation with non-trivial instances. This led us to a variety
of conjectures, including those concerning ML duality. Before we come to our discussion of
duality, we briefly state a conjecture regarding the ML degree of 3 X n-matrices of rank 2.

Conjecture 2.4.1. For m = 3 and n > 3, the ML degree of the variety Vs equals 2" — 6.

The first three values already appeared in Theorem 2.1.1. We tested this formula by
solving the equations of the local kernel formulation (2.11). This was done independently
in Macaulay?2 and Bertini. With these computations, we verified Conjecture 2.4.1 up to
n = 10. This conjecture, if correct, would furnish a simple and natural sequence of models,
namely 3 X n-matrices of rank 2, whose ML degree grows exponentially in the number of
states. This allows for the possibility of many local maxima.
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We next formulate a refined version of the duality statement in Theorem 2.1.2. Given a
data matrix U of format m x n, we write )y for the m x n-matrix whose (i, j) entry equals

Uij Uit Uy j
(uss)?

Theorem 2.4.2. Fizm < n and U an m X n-matriz with strictly positive integer entries.
There exists a bijection between the complex critical points Py, P, ..., Py of the likelithood
function ly on V. and the complex critical points Q1,Qo, ..., Qs of Ly on V,,_ .11 such that

Pix@Qr = PBxQy = -+ = PxQs = Q. (2.19)
In particular, this bijection preserves reality, positivity, and rationality of the critical points.

The proof of this theorem can be found in the next chapter as Theorem 3.1.1.

From the perspective of statistics, this result implies the following striking statement:
maximum likelihood estimation for matrices of rank r is exactly the same problem as min-
imum likelihood estimation for matrices of corank r — 1, and vice versa. This refined for-
mulation of the duality statement allows us to improve the speed of MLE by passing to the
complementary problem, where it may be easier to solve the likelihood equations. We saw a
first instance of this in Section 2.3 when we discussed the last two columns in Table 2.3: the
two methods give the same set of 191 solutions but the running times are complementary.

Remark 2.4.3. Equation (2.19) is trivially satisfied for r = 1, where the ML degree is
s = 1. Here, Py is the rank one matriz in (2.22), and QQ; = ﬁU. Clearly, we have
P1 * Ql = QU. O

We illustrate Theorem 2.4.2 for a specific case that has already appeared in the literature
[13, 35, 48]. The first assertion in the next theorem resolves [48, Conjecture 11| affirmatively.
In their conjecture, Zhu et al. [48] had identified the matrix P(a,b) below, and they had
asserted that it is the global maximum of the likehood function for the data matrix U(a,b).
Note that, for a = 4 and b = 2, this is the matrix for DiaNA’s data in |35, Example 1.16].

Theorem 2.4.4. Let m=n =4, a > b > 0, and consider the following matrices:

a+b a+b 2b 2b

1 a+b a+b 2b 2b
8(a + 3b) 2b 2b a+b a+b
2b 2b a+b a+b

Ua,b) = and  P(a,b) =

St o o Q
NSt Qo
Qoo
ISERe e e

The distribution P(a,b) mazximizes the likelihood function for the data matriz U(a,b) on M.

Proof. This statement is invariant under scaling the vector (a,b). We normalize by taking
4a + 12b = 16. Then b = (4 — a)/3 and a ranges in the open interval defined by 1 < a < 4.
For each such a, the likelihood function (45 has exactly 25 positive critical points in the
rank 2 model My, with the maximum value occurring at P(a, b). This statement was shown
using the following method and its illustration in Figure 2.1.

First, we selected a = 2 and computed the 191 critical points using Bertini. From
these, alphaCertified proved that exactly 25 are real and, using the computed error
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Figure 2.1: Minimum pairwise distance and lower bound (2.20) as a function of a.

bounds, it verified that all lie in Ay5. We then expressed these real solutions as rational
functions in a and b to show that all 25 real solutions remain positive for all @ > b > 0. The
critical points fall into four symmetry classes of size 6, 12, 4, and 3. Representatives of these
classes are

11 1 1 2a4+4b 2a+4b 2a+4b 2a+4b
oo L1t v 1 2a+4b  6a 6b 6b
YT 1 2 2| 27 32(a+2b) | 2a+4b  6b  3a+3b 3a+3b |’
11 2 2 2a+4b 60  3a+3b 3a+3b
3a  3b 3b 3b
1
X, — 3b a+2b a+2b a+2b and X4 = Pla.b)

12(a+3b) | 3b a+2b a+2b a+2b |’
3b a+2b a+2b a+2b

Using calculus, one can prove that log ¢y(X;) < log y(X,41) for i =1,2,3.

All that remains is to show that the 191 solutions remain distinct on 1 < a < 4 (with some
coalesce at the boundary). The function mapping a to the minimum of the pairwise distances
between the critical points is a piecewise smooth function. It is depicted in Figure 2.1. By
tracking the homotopy paths as a changes from 2 to 1 and from 2 to 4, we are able to
determine that this function is nowhere zero on the open interval (1,4). Additionally, by
analyzing the solutions using [1], a lower bound on this minimum pairwise distance function is

min{ (a—1)Va2F17  at+2—y/(a—1)(a—4) 3(a2—12a—16)+\/6(a—1)(a—4)(a2—16a+96)} (2.20)

12(a+8) 48 16(a+8)(a—10)

which is also depicted in Figure 2.1. The first term of this minimum arises from X, and a
member of the X3 family which is equal to the minimum pairwise distances for values of a
near 1. The second term arises from comparing the (1, 1) entries of critical points. In short,
all of the solutions remain distinct on 1 < a < 4 and this establishes [48, Conjecture 11]. [
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We checked the duality statement in Theorem 2.4.2 by performing the same computation
for m = n = 4 and r = 3. We followed the 191 paths in the deformation from a general
Up to a general U(a,b). Using Bertini, we found that 12 endpoints had rank 2 while the
other 179 had the expected rank of 3. Moving the other 179 solutions to a = 2 produced 179
distinct complex solutions that remain distinct and retain rank 3 on (1,4). Using the same
certification process as above, precisely 25 are positive. These critical points of M3 form
four symmetry classes having the same sizes 6, 12,4, and 3 as above, with representatives:

2% 2b 2 2 3a 3b 3b 3b
) 2 2  2b 2 L 3b a+20 a+2b a+2b
Vi=5arsm) | 95 2 a+b atb |® 27 2@ | 3 a2 (@)  Hlath) |
2b 2b a+b a+b 3b a+2b Qb(;l—:_be) 2“51“:1)%)
a+2b a+2b a+2b a+2b 2a 2b a+b a-+b
Vi 1 a+2b  3a 3b 3b Vi~ 1 2b 2 a+b a+b
37 16(at20) | ¢ +2b  3b 3a 3p |0 T 1@ | a+b a+b 2a  2b
a+2b 3b 3b 3a a+b a+b 2b 2a

The matrices are now sorted by decreasing value of £17(4 ), so the first matrix Y; is the MLE.
Our real positive critical points satisfy the desired duality relation. Namely, we have

XixY) = XoxYy = XasxY; = XyxY, = Ula,b) = Q.

64(a+30b)
We verified the same for the complex solutions.

When Theorem 2.4.2 was still a conjecture, we verified it for randomly selected data
matrices with i.i.d. entries sampled from the uniform distribution on [0, 1]. After generating
a random matrix, we verified equation (2.19) using the critical points computed by homotopy
continuation. For m = n = 3 and r = 2, we verified (2.19) for 50000 instances. Additionally,
form =n =4 and r = 2, we verified (2.19) for 10000 instances. We also did this for a handful
of 4 x 5 instances (such as Example 2.3.3) and 5 x 5 instances (such as Example 2.3.4). The
user can find Macaulay 2 code, which uses the Bertini.m2 package (described in Chapter
6), to perform more numerical experiments at www.math.ncsu.edu/~ jdhauens/MLE.

Theorem 2.4.2 and its analogue for symmetric matrices is particularly interesting in the
special case when m = n = 2r — 1. Here we have an involution on the set of critical points
of £y on V, which has the following property. If Py, Ps, ..., P, are the positive critical points
in the model M,., ordered by increasing value of the log-likelihood function, then

Cy(Pr) + ly(Ps) = by(P) +lu(Pssq) = -+ = Luy(Prsjar) + lu(Plsy2)).

The identity (2.19) implies that Galois group which permutes the set of critical points is
considerably smaller than the full symmetric group on these points. We shall demonstrate
this for n = 3. What follows will explain the solutions in radicals seen in Example 2.3.2.
Let Q(U) denote the field of rational functions in entries of an indeterminate data matrix
U, and let K denote the algebraic extension of Q(U) that is defined by adjoining all solutions
of the likelihood equations. Thus the degree of the extension K/Q(U) is the ML degree.
We are interested in the Galois group G = Gal(K,Q(U)) of this algebraic extension. This
Galois group is a subgroup of the full symmetric group Sy, where M is the ML degree.
The following result was found by explicit computations using maple and Sage [43].


www.math.ncsu.edu/~jdhauens/MLE
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Proposition 2.4.5. The Galois group for MLE on 3x3-matrices (2.1) of rank 2 is a subgroup
of order 1920 in Syg. As an abstract group, it is the semidirect product of S5 and (Zy)*. The
Galois group for MLE on symmetric 3 x 3-matrices (2.12) of rank 2 is a subgroup of order
24 in S5. As an abstract group, it is the symmetric group Sy. So, in the latter case, the siz
critical points of the likelihood function can be written in radicals in Uiy, U2, U13, U2, Uo3, U33-

We close this section with an important observation that is implied by the various poly-
nomial formulations of our problem, but which had not been explicitly stated in Section 2.2.

Remark 2.4.6. Every complex critical point P of the likelihood function £y on V), satisfies

piy = —— fori=1,...,m and pﬂzi for 9=1,....n.
Uyt Uyt
A proof of this remark is given in Lemma 3.2.1. One is tempted to speculate that some
version of Theorems 2.1.2, 2.2.5, and 2.4.2 might be true for other classes of toric models.

2.5 Rank versus non-negative rank

In the previous sections, we developed accurate methods for finding the global maximum
of a likelihood function ¢ over non-negative matrices P of rank r whose entries sum to 1.
Unfortunately, this is not quite the problem most practitioners and users of statistics would
actually be interested in. Rather than restricting the rank of a probability table (2.1), it is
the non-negative rank that is more relevant for applications. In this section we discuss this.
Let Mix, denote the subset of A,,,_1 that comprises all the mixtures of r independent
distributions. In statistics, this is the archetype of a latent variable model, or hidden variable
model. Mathematically, we can define the mizture model Mix, as the set of all matrices

P = A-A-B, (2.21)

where A is a non-negative m X r-matrix whose columns sum to 1, A is an r xr diagonal matrix
whose diagonal entries are non-negative and sum to 1, and B is a non-negative r X n-matrix
whose rows sum to 1. The rank-constrained model M, =V, N A,,,—1 we discussed above is
an algebraic relaxation of the mixture model Mix,. This can be made precise as follows:

Proposition 2.5.1. The rank-constrained model M, is the Zariski closure of the mizture
model Mix,. inside the simplex Ap—1. If ¥ < 2 then Mix, = M,. If r > 3 then Mix, C
Mr-

Proof. See Example 4.1.2, Example 4.1.4 and Proposition 4.1.6 in [12]. That book refers to
secant varieties of Segre varieties, tensors of any format, and joint distributions of any number
of random variables. Here we only need the case of matrices and two random variables. [J

Our model M, is the set of all distributions P of rank at most r, while Mix, is the set
of all distributions P of non-negative rank at most r. Having non-negative rank < r means
that P = A’ - B’ for some non-negative matrices where A’ has r columns and B’ has r rows.
Any such factorization can be transformed into the particular form (2.21) which identifies
the statistical parameters. For further information on these two models see [13, 32, 35].
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Understanding the inclusion of Mix, inside M, becomes crucial when comparing different
methodologies for maximum likelihood estimation. We used Bertini to compute all critical
points of the likelihood function £;; on M,., with the aim of identifying the global maximum
P of ly over M,.. This assumes that Pis strictly positive. This is usually the case when U
is strictly positive. The standard method used by statisticians is to run the EM algorithm in
the space of model parameters (A, A, B). This results in a local maximum (A, A, B) of the
likelihood function expressed in terms of the parameters. The fact that M, is the Zariski
closure of the mixture model Mix, in the simplex A,,,_1 has the following consequence:

Corollarx 2.5.2. Let ﬁl, e ﬁs be the local mazima in M,. of the likelihood function Cy. If
aAmaAtm’xApi has non-negative rank at most r then P; lies n Mix, and matching parameters
(Ai, Ai, B;) can found by solving (2.21). If all matrices P, have non-negative rank strictly
larger than r then {y attains its mazximum over Mix, on the topological boundary OMix,..

Proof. The second sentence holds because every matrix P € A,,,,_1 of non-negative rank < r
admits a factorization of the special form (2.21). Indeed, if P = A’ - B’ is any non-negative
factorization then we first scale the rows of A’ to get a matrix A with row sums equal to
1, and we adjust the second matrix so that P = A - B”. Now let A be the diagonal matrix
whose entries are the column sums of B” and set B = A~'B”. Then P = A-N-B.

For the third sentence, suppose /;; has its maximum over Mix, at a point P in Mix,.\OMix,..
Then P is also a local maximum of ly on M,.. Thus P will be found by solving the critical
equations for £y on V,. The matrix P is an element of { Py, ..., P;}. Hence, this set contains
a matrix of non-negative rank < r. This proves the contrapositive of the assertion. O

We shall now discuss the exact solution of the MLE problem for the mixture model Mix,..
Let us start with the low rank cases. The given input is a data matrix U as in (2.2).

If » = 1 then the likelihood function ¢ has a unique critical point. Let wu,, be the
column vector of row sums of U, and let u,, be the row vector of column sums of U. Then

~ 1
P — (u++)2 . u*+ . /u/+*' (222)
If » > 2 then we compute the set {ﬁl, e ﬁs} of all local maxima of the likelihood function

{yy on the model M,.. This is done using the numerical algebraic geometry methods described
in Section 2.3, by solving the likelihood equations (2.11) for the determinantal variety V.

If r = 2 then every matrix P; has non-negative rank < 2. We therefore select the matrix
whose likelihood value £ (P;) is maximal. Then P, solves the MLE problem for Mix, = M.

Example 2.5.3. We experimented with the EM Algorithm for » = 2, as in 35, §1.3], on the
4 x5 data matrix U discussed in Example 2.3.3. We ran 10000 iterations with starting points
(A, A, B) sampled from the uniform distribution on the 15-dimensional parameter polytope

(Ag X Ag) X Al X (A4 X A4)
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From these 10000 runs of the EM algorithm we obtained the following seven local maxima:

Occurrences Critical point log(4yr)

[ 0.001678 0.01892 0.00001325  0.007008  0.000007227
0.01894 0.2136 0.00006605 0.07912 0.00008149 —105973.49
0.00007930  0.00003964 0.5447 0.00003964 0.00002643 :
L 0.007023 0.07921 0.00002643 0.02933 0.00003021 |
[ 0.001332  0.00001777 0.02627 0.00000792  0.000003827
0.00007696 0.2274 0.00006503 0.08423 0.00004823 —106487.35
0.02628 0.00003913 0.5185 0.00004103 0.00007542 :

1 0.00002871 0.08432 0.00002762 0.03123 0.00001788 |

0.002245 0.02536 0.00001725 0.000006332 0.000005379

2643 occurrences:

2044 occurrences:

) 0.02535 0.2863  0.00006471  0.00004393  0.00006072
1897 occurrences: | 0000818 0.00003807  0.4495 0.09525 0.00006537 | —109697.04
0.00002773  0.00008630  0.09530 0.02020  0.00001388
0.001111  0.00001327  0.02187  0.004634  0.000005304
) 0.00005289  0.3117  0.00006605 0.00003968  0.00001322
1688 occurrences: 0.02191  0.00003963  0.4314 0.09144 0.0001046 —111172.67
0.004647  0.00007931  0.09148 0.01939  0.00002219
[ 0.005321  0.00002006 0.00001106  0.02226  0.000020387]
) 0.00005070  0.1135 0.1983  0.00004009 0.00001444
1106 occurrences: 0.00008126  0.1983 0.3465  0.00003939  0.00002520 —127069.50

L 0.02227 0.00007333  0.00002771 0.09316 0.00008532 |

[0.0008641 0.009735 0.01701 0.00001350  0.000002897
0.009756 0.1099 0.1921 0.00003965 0.00003259
0.01705 0.1921 0.3357 0.00003959  0.00005693 —131013.73
1 0.00005301  0.00007930 0.00002642 0.1154 0.00005294 |

[ 0.02754 0.00001320 0.00001319 0.00001334  0.000053117

529 occurrences:

_ 0.00005280  0.09999 0.1747 0.03704  0.00002957
93 occurrences: 0.00007916  0.1747 0.3053 0.06472  0.00005164 —148501.63
[0.00005339  0.03706 0.06476 0.01373  0.00001102 ]

The first matrix is the global maximum, and it was the output in 2643 of our 10000 runs. Note
that the ordering by objective function value agrees with the ordering by occurrence. We
know from Example 2.3.3 that A9 contains 7 local maxima, and hence our EM experiment
found them all. Each of the 7 matrices above has both rank and non-negative rank r = 2. [

If » > 3 then the situation is more challenging. To begin with, we need a method for
testing whether a matrix has non-negative rank < r. Recent work by Moitra [31] shows that
the computational complexity of this problem is lower than one might fear at first glance.

So, let us assume for now that this problem has been solved and we have an algorithm to
decide quickly whether any of the matrices P; has non-negative rank r. If so, we pick among
them the matrix P; of largest ¢;-value. This matrix is now a candidate for the MLE on Mix,..
But it may not actually be the MLE because the global maximum of the likelihood function
{y may be attained on the boundary dMix,. Furthermore, it is quite possible that none
of the critical points in {Py, ..., P;} lies in Mix,. Then, according to the third sentence of
Corollary 2.5.2, the MLE in the mixture model Mix, necessarily lies in the boundary 0Mix,..

Our discussion implies that, in order to perform exact maximum likelihood estimation for
the mixture model, we need to have an exact algebraic description of OMix,.. Specifically, we
must determine the polynomial equations that cut out the various irreducible components
of the Zariski closure of OMix, as a subvariety of P™" 1. For each of these components, and
the various strata where they intersect, we then need to compute the ML degree. That list
of further MLi degrees, combined with the value for V, in Theorem 2.1.1, describes the true
intrinsic algebraic complexity of the MLE P as a piecewise algebraic function of the data U.
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To be even more ambitious, we could ask for an exact semi-algebraic description of the
set Mix,.. Namely, what we seek is a Boolean combination of polynomial inequalities in the
unknowns p;; that characterize Mix, as a subset of V, N A,,,,_1. Finding such a description
is an open problem in general, but was solved in the rank at most 3 case in [28].

We illustrate the first interesting case (m,n,r) = (4,4, 3) using the techniques developed
by Mond, Smith, and van Straten in [32]. Components of dMixs correspond to different
labelings of the configurations in [32, Figure 9|. Using the translations (seen in [32, §2]|)
between non-negative factorizations (2.21) and nested polygons, one of the labelings of 32,
Figure 9 (a)] corresponds to the factorization

P11 P12 P13 Pua 0 an a 0 bz biz bis
0
P21 P22 P23 P _ @22 93 0 by by |- (2.23)
P31 P32 D33 P34 azi 0 ass byy bsy bgz 0
Pa1 Pa2 D43 Paa as asz 0

This equation parametrizes an irreducible divisor in the 14-dimensional variety Vs C P'.
That divisor is one of the irreducible components of the algebraic boundary of Mjs. The
corresponding prime ideal of height 2 in Q[p11,...,ps4 is obtained by eliminating the 17
unknowns a;; and b;; from the 16 scalar equations in (2.23). We find that this ideal is
generated by the 4 x 4-determinant that defines V3 together with four sextics such as

P11P21P22P32P33P43 — p11p21p2219§3p42 - p11p21p23p§2p43 + P11P21P23P32P33P42 — p11p32p31p33p43
+P11P22P23P31P32P43 + P11P22P23P31P33P42 — p11p§3p31p32p42 + p12p21p22p§3p41 —P12P21P23P32P33P41
—P12P22P23P31P33P41 + p12p§3p31p32p41 + p13p§1])§2p43 - p13p%1p32p33]?42 — 2p13P21P22P31P32P43
+P13D21 D22 P31 D334z + P13P21P23P31D32Pa2 + P13D3aDi31Paz — P13P22P23D31 Paz-

What needs to be studied now is the ML degree of this codimension 2 subvariety of P*?, and
the approach of [26] would lead us to look at the topology of the associated very affine variety.
In Proposition 5.3 of [28], the ML degree was determined to be 633.

Described above is the geometry of the MLE problem for the mixture model Mix, re-
garded as a subset of the ambient simplex A,,,,_1. Statisticians, on the other hand, are more
accustomed to working in the space of model parameters, which is the product of simplices

(A1) X Ay % (Any) (2.24)

Here our parameters are (A, A, B). The model Mix, is the image of this parameter space in
A1 under the map (2.21). That parametrization is very far from identifiable. The reason
is that the fibers of (A, A, B) — P are semi-algebraic sets of possibly large dimension. In
fact, the whole point of the paper [32] is to study the topology of these fibers as P varies.
The expectation-maximization (EM) algorithm is the local method of choice for finding
the MLE on the mixture model Mix,. Our readers might enjoy the exposition given in
[35, §1.3]. We emphasize that the EM algorithm operates entirely in the parameter space
(2.24). The likelihood function ¢y pulls back to a function on the interior of (2.24). The
EM algorithm is an iterative method that converges to a critical point of that function, and,
under some mild regularity hypotheses, that critical point (A A B ) is then a local maximum.
The image P of the point in Mix, is then a candidate for the global maximum of ¢;; on Mix,..
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Example 2.5.4. We tried the EM Algorithm also for » = 3 on the 4 x 5 data matrix U
in Examples 2.3.3 and 2.5.3. We ran 10000 iterations with starting points sampled from
the uniform distribution on the 23-dimensional parameter polytope (A3z)® x Ay x (A4)3.
From these 10000 runs of the EM algorithm, 9997 converged to one of eight local maxima.
Three of the runs led to other fixed points. The following six local maxima are precisely
the solutions already found in Example 2.3.3. We note that, in this particular instance, it
happened that all local maxima in the rank model M3 actually lie in Mixs, i.e. they have
non-negative rank 3:

Occurrences Critical point log(¢y)
[ 0.005321  0.00001322 0.00001322  0.02226  0.00002039
0.00005285  0.3117  0.00006607 0.00003964 0.00001321
3521 occurrences: —84649.67679

0.00007929  0.00003964 0.5447 0.00003964  0.00002643
L 0.02227 0.00007927  0.00002642 0.09316 0.00008532 |
[ 0.002244 0.02535 0.00001324 0.00001333  0.0000054 T

0.02535 0.2863 0.00006606 0.00003961  0.00006065

0.00007929  0.00003964 0.5447 0.00003964 0.00002643 —86583.69000

10.00005291  0.00007928  0.00002643 0.1154 0.00005289 |

C0.001332  0.00001326  0.02627  0.00001341  0.0000038 ]

~|0.00005289  0.3117  0.00006607 0.00003964 0.00001322
1678 occurrences: 0.02628  0.00003963 05185  0.00003961 000007538| —O7098.20128
|0.00005296  0.00007928 0.00002642  0.1154  0.00005292 ]

[ 0.02754 0.00001320 0.00001321 0.00001326  0.00005298]
0.00005277 0.2274 0.00006606 0.08423 0.00004806
0.00007928  0.00003964 0.5447 0.00003964 0.00002643 —98171.25551
1 0.00005310 0.08430 0.00002643 0.03122 0.00001788 |

[ 0.02754 0.00001321  0.00001320 0.00001330 0.000053057

2293 occurrences:

1320 occurrences:

~ 0.00005285  0.3117  0.00006605 0.00003968 0.00001322
576 occurrences: 0.00007916  0.00003964  0.4495 009526 000006510 | —102495.4349
[0.00005324 0.00007932  0.09528 0.02019  0.00001389 |
T 0.02754  0.00001322 0.00001321 0.00001321  0.000052857
] 0.00005287  0.1135 0.1983  0.00003968 0.00001444
68 occurrences: 0.00007927  0.1983 03465 000003062 000002520 —121802.8945

10.00005285  0.00007930  0.00002642 0.1154 0.00005285 |

In addition, our runs of the EM algorithm discovered the two local maxima

[ 0.001678 0.01892 0.00001325  0.007008 0.0000072 7
0.01894 0.2136 0.00006605 0.07912 0.00008149

0.00007930  0.00003964 0.5447 0.00003964 0.00002643 —105973.4859

L 0.007023 0.07921 0.00002643 0.02933 0.00003021 |

[ 0.001111 0.00001341 0.02187 0.004634 0.0000053 7]

488 occurrences:

~ |0.00005209  0.3117  0.00006602 0.00003976 0.00001324
53 occurrences: 0.02191  0.00003960  0.4314 0.00144 00001046 | —111172.6663
| 0.004647  0.00007935  0.09148 0.01939  0.00002219 |

These do not satisfy the likelihood equations. They are located on the boundary of Mixs. [J

In the paper [28| the (algebraic) geometry of the EM algorithm is analyzed, with focus
on the small cases of Theorem 2.1.1. Comparison with the methods introduced in this
chapter opens up the possibility of characterizing conditions under which EM finds the
global maximum, as it did in Example 2.5.4.

In this chapter, we have introduced a numerical algebraic geometry approach to maxi-
mum likelihood estimation. This approach led to new computational results and motivated
surprising conjectures.
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Chapter 3

Duality of Matrix Models

The content of this chapter will be published in the International Mathematics Research
Notices as an article titled Mazimum Duality of Determinantal Varieties, with minor changes
throughout for consistency with other chapters. This is joint work with Jan Draisma.

3.1 Introduction and results

For an m x n-data table U = (u;;) € N™*", we define the likelihood function ¢y : T™*" — T,
where T = C* is the complex one-dimensional torus, as (y(Y) = []; yZ] for Y = (yi;)i; €
T™>™. This terminology is motivated by the following observation. If Y is a matrix with
positive real entries adding up to 1, interpreted as the joint probability distribution of two
random variables taking values in [m] := {1,...,m} and [n| := {1,...,n}, respectively, then
up to a multinomial coefficient depending only on U, ¢;(Y) is the probability that when
independently drawing ZZ ; uij pairs from the distribution Y, the number of pairs equal to
(4,7) is w;;. In other words, ¢;(Y) is the likelihood of Y, given observations recorded in the
table U. A standard problem in statistics is to mazimize {y(Y).

Without further constraints on Y this maximization problem is easy: it is uniquely
solved by the matrix Y obtained by scaling U to lie in said probability simplex. But various
meaningful statistical models require Y to lie in some subvariety X of T™*". For instance,
in the model where the first and second random variable are required to be independent, one
takes X equal to the intersection of the variety of matrices of rank 1 with the hyperplane
Zij yi; = 1 supporting the probability simplex. Taking mixtures of this model, one is also
led to intersect said hyperplane with the variety of rank-r matrices.

For general X, the maximum-likelihood estimate is typically much harder to find (though
in the independence model it is still well-understood). One reason for this is that the restric-
tion of £y to X may have many critical points. Under suitable assumptions, this number of
critical points is finite and independent of U (for sufficiently general U), and is called the
maximum likelthood degree or ML degree of X. Finiteness and independence of U holds, for
instance, for smooth closed subvarieties of a torus [26], but also for all varieties X studied in
[20, 23] (which are smooth but not closed, and become closed but singular if one takes the
closure).

We take X to be a smooth, irreducible, locally closed, complex subvariety of a torus.
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Doing so, we tacitly shift attention from the statistical motivation to complex geometry—in
particular, we no longer worry whether the critical points counted by the ML degree lie in
the probability simplex or are even real-valued matrices.

The set of all critical points for varying data matrices U has a beautiful geometric inter-
pretation: Given P € X and a vector V' in the tangent space TpX to X at P, the derivative
of {yy at P in the direction V' equals y(P) - >, %u” This vanishes if and only if U is
perpendicular, in the standard symmetric bilinear form on C™*"™ = C™", to the entry-wise
quotient % of V by P. This leads us to define

TxP
Crit(X) = {(P.U) | =5~ LU} X xC™,
which is called the variety of critical points of X in [26], except that there U varies over
projective space and the closure is taken. By construction, Crit(.X) is smooth and irreducible,
and has dimension mn; indeed, it is a vector bundle over X of rank mn — dim X. The ML
degree of X is well-defined if and only if the projection Crit(X) — C™*" is dominant, in
which case the degree of this rational map is the ML degree of X.

In this chapter, we consider three choices for X, all given by rank constraints: First, in
the rectangular case, we order m,n such that m < n, fix a rank r € [m], and take X equal
to

M, ={PecTm™"| Zpij =1and rk P =r}.
ij

Second, in the symmetric case, we take m = n and take X equal to

2p11 P12 Pim
2
SMT = P = p12 b2 S Tmxm ‘ Zplj =1 and I'k(P) =T
) ) 1<jJ
Pim 2pmm

Third, in the skew-symmetric or alternating case, we take m = n and, for even r € [m], take
X equal to

0 Pi2 - Pim
—P12 0 mxm
AM, = P = . eC | 2P =11k (P) =,
: : and Vi < j:p;; #0
—Pim 0

Minor modifications of the likelihood function are needed in the latter two cases: we define
as ly(P) = [, p?j” in the symmetric case, and as ly(P) = [[,_; p?jj in the alternating
case.

In Chapter 2, using the numerical algebraic geometry software Bertini [5, 3|, the ML
degree of M, is computed for various values of r,m,n with r < m < n. The numbers are
listed in Theorem 2.4. Observe that the numbers for rank » and rank m — r + 1 coincide.
From these computations, the natural conjecture to put forward is that this always holds,
and that there is an explicit bijection between the two sets of critical points. In addition,
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the computational results from in 2.13 motivate similar conjectures regarding symmetric
matrices. In this chapter, we prove these results using the term ML-duality suggested by
Sturmfels.

Theorem 3.1.1 (ML-duality for rectangular matrices). Fiz a rank r € [m| and let U €
N> quith m < n be a sufficiently general data matriz. Then there is an explicit involutive
bijection between the critical points of {y on M, and the critical points of {y on M, _ry1.
In particular, the ML degrees of M, and M,,_,+1 coincide.

Moreover, the product {y(P)ly(Q) is the same for all pairs consisting of a rank-r critical
point P and the corresponding rank-m — r + 1 point Q).

Theorem 3.1.2 (ML-duality for symmetric matrices). Fiz a rankr € [m] and let U € N"™*™
be a sufficiently general symmetric data matriz. Then there is an explicit involutive bijection
between the critical points of ly on SM., and the critical points of by on SMy,_ri1. In
particular, the ML degrees of SM, and SM,,_.+1 coincide.

Moreover, the product {y(P)ly(Q) is the same for all pairs consisting of a rank-r critical
point P and the corresponding rank-m —r + 1 point Q).

In the alternating case, the duality of AM,. turns out not to be some AM, but rather an
affine translate of a determinantal variety defined as follows. Let S be the skew m x m-matrix

o 1 --- 1
-1
S = 0 ,
S
—1 -1 0
and for even s € {0,...,m — 1} consider the variety

AM, .= {P € C™™ | P skew, Vi < j : p;; # 0, and 1k(S — P) = s}.

Note that, unlike in AM,., the upper triangular entries of P € AM. are not required to add
up to 1. For this reason we do not say AM, and AM/, are ML-dual. Instead, we only say
there is a duality between critical points of £y on AM, and critical points of ¢ on AM..
The difference between this notion of duality and ML-duality is explained in Section 4.4.

Theorem 3.1.3 (Duality for skew matrices). Fiz an even rank r € {2,...,m} and let
U € N™™ be a sufficiently general symmetric data matriz with zeroes on the diagonal. Let
s € {0,...,m — 2} be the largest even integer less than or equal to m — r. Then there is an
explicit involutive bijection between the critical points of £y on AM, and the critical points
of ly on AM.,. In particular, the ML degrees of AM, and AM’, coincide.

Moreover, the product {y(P)ly(Q) is the same for all pairs consisting of a rank-r critical
point P on AM, and the corresponding rank-s point Q on AM..

The proof is similar in each of the three cases. First, we determine the tangent space to
X at a critical point P of ¢y for sufficiently general U. It turns out that this space is spanned
by certain rank-one or rank-two matrices. Imposing that P be a critical point, i.e., that the
derivative of ¢y vanishes in each of these low-rank directions leads to the conclusion that a
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certain matrix (), determined from P using some involution involving the fixed matrix U,
has rank at most m —r 41 (or s in the skew case) and is itself a critical point on the variety
of matrices of its rank. Letting & < m—r+1 (respectively, k& < s) be generic rank of s thus
obtained, we reverse the roles of P and () to argue that £ must equal s, thus establishing
the result. In the remainder of this chapter we fill in the details in each of the three cases,
in particular making the involution P — () explicit.

3.2 Maximum likelihood duality in the rectangular case

Let m < n be natural numbers and let M, C T™*™ denote the variety of m x n-matrices of
rank r whose entries sum up to 1. Fix a sufficiently general data matrix U = (u;;);; € N™*",
which gives rise to the likelihood function ¢y : M, — T, (y(P) = H” p;?;?j. Let P € M, be
a critical point for £;;, which means that the derivative of {;; vanishes on the tangent space
TpM, to M, at P. This tangent space equals

TpM, ={X = (2);; € C™" | Xker P Cim P and Y a5 = 0}, (3-1)

ij

Here the first condition ensures that X is tangent at P to the variety of rank-r matrices
(see, e.g., [19, Example 14.6]) and the second condition ensures that X is tangent to the
hyperplane where the sum of all matrix entries is 1.

Given X € TpM,, the derivative of £y in that direction equals {(P) - >, %, which
vanishes if and only if the second factor vanishes. We will now prove that the marginals of
P are proportional to those of U (see also 2.4.6). We write 1 for the all-one vectors in both

C™ and C™, and use self-explanatory notation such as u;, := Ui and ugy = > ;Wi

Lemma 3.2.1. The column vector P1 is a non-zero scalar multiple of U1 and the row vector
17 P is a non-zero scalar multiple of 17U

Proof. We prove the first statement; the second statement is proved similarly. We want to
show that the 2 x 2-minors of the m x 2-matrix [P1|U1] vanish. We give the argument for
the upper minor. Let X = (z;;) be the m x n-matrix whose first row equals po times the
first row of P, whose second row equals —p;, times the second row of P, and all of whose

other rows are zero. Then X € TpM,, so that the derivative Zij Tij ;” is zero. On the
ij

other hand, substituting X into Zij xij% yields u;4poy — usip14, hence this minor is zero
ij

as desired. The scalar multiple in both cases is ‘Zi—i = ﬁ, which is non-zero. O

Define @ = (gij)ij by pij¢ij = wi+u;juy;. This is going to be our dual critical point, up
to a normalization factor that we determine now.

Lemma 3.2.2. The sum ). qi; equals (uy ).

Proof. By Lemma 3.2.1 the rank-one matrix Y defined by v;; = u,;+u; has image contained
in im P. Hence it satisfies the linear condition Y ker P C im P, but not the condition
Zij y;; = 0. Similarly, P itself satisfies Pker P C im P, but not Zij pij = 0. Hence, we can
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decompose Y uniquely as ¢P + X where ¢ € C and where X satisfies X ker P C im P and
Zij z;; = 0, i.e., where X € TpM,. Then we have

S = 35 ey 3T S 0=
— = Dij = — Dij —
i i i 1] v
by criticality of P. The scalar ¢ equals
Zij Yij Zij Uip Uty (s y)?
- - ++/ >
Zij Dij 1

which proves the lemma. O

We will use rank-one matrices in the tangent space TpM,. We equip both C™ and C"
with their standard symmetric bilinear forms.

Lemma 3.2.3. The tangent space TpM, at P is spanned by all rank-one matrices vw?

satisfying the following two conditions:
e veimP orwlkerP; and
e v11 orwll.

In the proof we will need that im P is not contained in the hyperplane 1+ and that,
dually, ker P does not contain 1. These conditions will be satisfied by genericity of U.

Proof. The first condition ensures that the rank-one matrices in the lemma map ker P into
im P, and the second condition ensures that the sum of all entries of those rank-one matrices
is zero, so that they lie in Tp M., see (3.1). To show that these rank-one matrices span the
tangent space TpM,., decompose C™ as A® B ® C where A C =1+ and A® B = im P.
Here we use that im P is not contained in the hyperplane 1-+.

Similarly, decompose C" = A'® B'® C" where A’ @ (" is the hyperplane 1+ and A’® B’ =
(ker P)*; here we use the second genericity assumption on P. These spaces have the following
dimensions:

dmA=r—-1 dmB =1 dimC=m —r
dimA =r—1 dim B =1 dimC’' =n —r.

The space spanned by the rank-one matrices in the lemma has the space (B® B') & (C ® (")
as a vector space complement. The dimension of this complement is 1 + (m — r)(n — ),
which is also the codimension of M,.. O

Let R = diag(u;1); and K = diag(u;); be the diagonal matrices recording the row and
column sums of U on their diagonals. Then, by Lemma 3.2.1, P1 is a scalar multiple of R1
and 17 P is a scalar multiple of 17 K. This implies that, in the decompositions in the proof
of Lemma 3.2.3, we may take B spanned by Ul = R1 and B’ spanned by U1 = K1. Note
that P, Q satisfy P x (Q = RUK, where % denotes the Hadamard product.

Observe also that criticality of P is equivalent to v R™!'QK 'w = 0 for all rank-one
matrices vw’ as in Lemma 3.2.3. This criterion will be used in the proof of our duality
result for M,.
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Theorem 3.2.4 (ML-duality for rectangular matrices). Let U € N™ " be a sufficiently
general data matriz and let P be a critical point of {y on M,. Define QQ = (qij)ij by
GijPij = Uirtijur;. Then Q/(ud.) is a critical point of by on My,_ry1.

Before proceeding with the proof, we point out that the construction of Q' := Q/(u )3
from P is symmetric in P and (). As a consequence, the map P +— @' from critical points
of £y on M, to critical points on M,,_,.; is a bijection. Moreover, it has the property that
ly(P) - ly(Q') depends only on U. In particular, if one lists the critical points P € M,
with positive real entries in order of decreasing log-likelihood, then the corresponding Q' €
M,,_.11 appear in order of increasing log-likelihood, since the sum log ¢ (P) + log {y(Q")
depends only on U.

Proof. Lemma 3.2.2 takes care of the normalization factor, which we therefore ignore during
most of this proof. We first show that () has rank at most m — r + 1. For this we take
arbitrary v in the space A = 1+ Nim P from the proof of Lemma 3.2.3 and arbitrary w € C*,
so that vw? € TpM,. From vT RT1QK 1w = 0 we conclude that R~'im Q C A because v
was arbitrary in A. Equivalently, since R is diagonal and hence symmetric, we conclude that
imQ C (R'A)* = (R7*A)L. The latter space has dimension m — r + 1, which is therefore
an upper bound on the rank of Q.

Similarly, for w € A" and any v € C™, the matrix vw” lies in the tangent space TpM,.,
and we find vT R~1Q K ~'w = 0. Since v was arbitrary, this means that QK ~'w = 0, so ker Q
contains KA’ a space of dimension r — 1. If n > m, however, then by the above the kernel
of @ strictly contains KA’

Next we prove that for any rank-one matrix xy” such that

e xR 1Aor y LKA and

e rlloryll
we have 3 % = 0. Note that the conclusion can be written as 7 R™'PK~'y = 0, and
observe the similarity with the characterization of Tp M, in Lemma 3.2.3 that will give us
conditions of criticality of Q.

Given arbitrary y € C" we can write PK ~'y as v+cR1 withv € A. Thenforx € (R71A)*
perpendicular to 1 we find

t"R'PK Yy =2" R (v+cR1) =0+ ca’1 =0,

as desired. If, on the other hand, x € (R~*A)' is not perpendicular to 1 but y € C" is, then
writing w := K 'y we claim that v := Pw lies in A. For this we compute the dot product

1"Pw =1"Uw =1"Kw =17y = 0,

where the first equality is justified by Lemma 3.2.1. Hence, again, 27 R-!PK 'y = 2T R v =
0. The checks for the case where y LK 1A’ are completely analogous.

Now denote the rank of Q by k, so that &k < m —r + 1. From im@Q C (R7*A)* and
(ker Q)+ C (K7'A)t we conclude that the derivative of £y at @’ in the direction xy”
vanishes, in particular, when zy” lies in the tangent space at Q' to M;. Hence Q' is a
critical point for ¢y on M.
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Finally, we need to show that the generic rank k of @) thus obtained (from a sufficiently
general U and a critical point P € M, of {y) equals m — r + 1, rather than being strictly
smaller. For this, observe that we have constructed, for any r € [m|, a rational map of
irreducible varieties

1 RUK
(ups)? P

where f : [m] — [m]| maps r to the generic rank of the matrix " as (P,U) varies over
Crit(M,). Since v, commutes with the projection on the second factor, its image has
dimension mn, hence 1, is dominant. But it is also injective—in fact, (P, U) can be recovered
from (@', U) with the exact same formula. This shows that ¢, is birational, and that 1,y is
its inverse as a birational map. In particular, f(f(r)) = r, so that f is a bijection. But the
only bijection [m] — [m] with the property that f(r) <m—r+1forall risr—m—r+1.
Indeed, if r were the smallest value for which f(r) # m —r + 1, then m — r + 1 would not
be in the image of f. This concludes the proof of the theorem. O

Py 0 Crit(M,) --» Crit(Myqy), (PU) — ( U)=(Q',U)

Remark 3.2.5. It can happen that the rank of @) is strictly smaller than m — r + 1 but the
proof above shows that for sufficiently general U this does not happen. For example, in the
rectangular case where m = n = 4, if we have that

4 2 2 2 6+2 5—+5 5++5 4—2i

po L2422 o 1 15-V6 6-2 442 5+45
4012 2 4 2 80| 5+v5 442 6—-2i 5—+/5

2 2 2 4 4—2i 545 5—6 642

then there exist ML degree points in Crit(My) with this choice of U. It can be shown
(P,U) € Crit(My) is one such point. Because uy;=1 we have @) = ', and

6—-2 545 5—+b 442
1 [ 545 642 4-2 5-+/5
?= 50 5—v5 4-2 6+2 5++5
442 5—+5 5+5 6—2i

satisfies p;;q;; = . In this case, () has rank 2 instead of rank 3. This is an important

Ui Ut U
u

fact for numerical con;rputations. If we were to use the homotopy methods as in Chapter 2 to

find the critical points of [;; on M3, we would track a path from a generic point of Crit(M3)

to the point (@, U). Since () has rank less than 3, this will correspond to tracking a path to

a singularity leading to numerical difficulties. But by determining all critical points of {;; on

Mo, we avoid these numerical difficulties. To determine the points of Crit(Msj) with U as

above, we use the equation p;;q;; = =+ and determine which (g;;) have rank 3.
T+
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3.3 Maximum likelihood duality in the symmetric case

Let m be a natural number and let SM,. denote the variety of symmetric m x m-matrices
of rank r whose entries sum to 2. A point P of SM, and data matrix U will be denoted by

2p11 P12 Dim 2uip w2 Uiy
D12 2pa2 Uiz 22U

P = ; . and U = .
Pim 2pmm Urim 2umm

We denote the (i, j)-entries of P and U by P,; and U;; to distinguish them from the p;;
and u,;, respectively. Recall that the likelihood function in the symmetric case is defined
as ly(P) =[], p;;", which in terms of the entries of P equals (ILio,; ;7)) - (LL(Pa/2)").
From now on we fix a sufficiently general data matrix U and a critical point P for ¢y on
SM,.. The tangent space TpSM, equals

TpSM, = {X € C™™ symmetric | X ker P C im P and Zwij =0}. (3.2)
]
Given a tangent vector X € TpSM,, the derivative of {; in that direction equals
Xijuij (Xu/2)um . Xijuij
2 h 2T TX R
1<J ) 1<j

(up to a factor irrelevant for its vanishing). We set
U= Y Uy and U, = 350
J i

and similarly for P. The symmetric analogue of Lemma 3.2.1 is the following.
Lemma 3.3.1. The vector P1 is a non-zero scalar multiple of U1.

Proof. We need to prove that the m x 2-matrix (P1|U1) has 2 x 2-minors equal to zero.
We prove this for the minor in the first two rows. Set a := P;; and b := P,,, and define
v1,v9 € C™ by vy = (b,0,0,...,0) vy = (0,a,0,...,0). Let wy,wy be the first and second
column of P, respectively. Then for each i = 1,2 the matrix X® = v;w! + w! lies
in the tangent space at P to the variety of symmetric rank-r matrices, and the difference
X := XM — X has sum of entries equal to 0 and therefore lies in TpSM,. The symmetric
matrix X looks like

-2bP11 (b — (I)Plg bP13 cee ble |
* QCLPQQ —CLP23 tee —anm
* * 0 e 0
* * 0 e 0

The derivative of /;; at P in the direction X equals

Xijui;
1<j
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and this derivative vanishes by criticality of P. The relevant non-zero scalar multiple is

P . .
et — L, which is non-zero. O
Uty Uiy

The analogue of R, K from the rectangular case is R := diag (Uyy,...,Upny) and K :=
diag (Usq,...,Urm). Note R = K because U is symmetric, but we keep this notation to
mirror the rectangular case. As in the rectangular case, define the symmetric matrix @) by
Px(@Q = RUR, ie., P;Q; = U U;;Ujy for i,j € [m]. This will be our dual critical point,
up to a normalizing factor to be determined now.

Lemma 3.3.2. The sum Zij Qij equals Us+)

Proof. By Lemma 3.3.1 the rank-one matrix Y with entries Y;; = U, U4 has image contained
in im P, and so does P. So we can decompose Y = ¢P + X with ¢ € C and X € TpSM,,
and we find

Yi;Uij Xi;Uij
ZQij: ] d ZCU”—FZ / J—cU++—|—O_cU+Jr
ij ij Py
Moreover, the scalar ¢ equals % = (U+2+ which shows that @, = (U++)3. O

As in the rectangular case, we will make use of low-rank elements in TpSM,., where now
“low rank” means rank two.

Lemma 3.3.3. The tangent space TpSM,. is spanned by all matrices of the form vw® +wTv
with v € im(P) and w € C™, with the additional constraint that the sum of all entries is
zero, i.€., that one of v and w s perpendicular to 1.

In the proof we will implicitly use that im P is not contained in 1+, which is true by
genericity of U.

Proof. The proof is similar to that of Lemma 3.2.3. First, the matrices in the lemma satisfy
the conditions characterizing TpSM,; see (3.2). Second, to show that they span that tangent
space, split C™ as A @® B® C with A® B = imP and A® C = 1+, so that the second
symmetric power S2C™ equals

S2A) @ S*(B) e S* () (AB) @ (A®C)® (B 0).

The matrices in the lemma span S?(A) + A® B + (A @ B) ® C. This space has dimension
(1) + (r = 1)+ r(n—r), which equals ("}') +r(n—r) — 1 = dim SM,. =

Xz]uzg

By Lemma 3.3.3, it suffices to understand the derivative ., =%

for X equal to

Pij

vw! + wo”, in which case it equals
2unn w2, Um
P13 Pia Pim,
Xiiu u o 2um
ij Wij ij P, P:
= E (viw; + wyv;) =L = v’ oo w.
— Py oy Py :
(] (]
Ulm 2Uumm
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The right-hand side can be concisely written as UT(%)w, where % is the Hadamard (element-
wise) quotient of U by P. So criticality of P is equivalent to the statement that ’UT(%)U}
vanishes for all v,w as in Lemma 3.3.3. This, in turn, is equivalent to the condition that
vVIRTIQR 1w = 0 for all v, w as in Lemma 3.3.3. We now state and prove our duality result

in the symmetric case.

Theorem 3.3.4 (ML-duality for symmetric matrices). Let U € N™ ™ be a sufficiently
general symmetric data matriz, and let P be a critical point of {y on SM,. Define the
matriz Q by P,;Qi; = Uiy UijUjy. Then 4Q /(Ui )? is a critical point of ly on SMoy_ry1.

As in the rectangular case, the map P — Q' := 4Q/(U,,)? is a bijection by virtue of
the symmetry in P and (), and the same conclusions for the cricital points with positive real
entries can be drawn as in the rectangular case.

Proof. The normalizing factor was dealt with in Lemma 3.3.2 and will be largely ignored in
what follows. As in the proof of Lemma 3.3.3, decompose C™ as A B®C with A@B = im P
and A@C = 1+. So A has dimension r — 1, C has dimension m —r, and B has dimension 1.
We take B to be spanned by P1, which is a non-zero scalar multiple of R1 by Lemma 3.3.3.

First we bound the rank of ). To do so we prove that the image of () is contained in
a space of dimension m — r + 1. Indeed, by criticality of P we have v R™'QK 'w = 0 for
w € C™ v €im P such that v L 1 or w L 1. Taking w arbitrary and v in A, we find that
im@Q C (R~'A)*, which has dimension m —r + 1.

Next we show that

t'RT'PK'y =0

for any x € (R7'A)t and y € C™ with 2 L 1 or y L 1. First, suppose 1. Since PK 'y
may be written as a + cR1 with a € A and scalar ¢, we find

TRIPK Yy =a"R'a+cx"RT'R1=2"R'a+0=0.
Otherwise, we have y 11 and we may assume x = cR1 with ¢ a scalar. In this case, we have
tTRPK Yy =cl’"PK 'y =cl" KK 'y = 1y = 0,

where we use Lemma 3.3.1.

Let k be the rank of Q. Since im@Q C (R7'A)* we conclude that 2T R"!PK~1y = 0
holds, in particular, for all matrices xy” +yz’ spanning the tangent space to SM, at @', so
that Q' is critical. By reversing the roles of P and () and using the involution argument at
the end of the proof of Theorem 3.2.4, we conclude that for generic U the value of k equals
m — r + 1 (rather than being strictly smaller). This proves the theorem. O

3.4 Duality in the skew-symmetric case

The skew-symmetric case, while perhaps not of direct relevance to statistics, is of considerable
algebro-geometric interest [23], since the variety AM,., consisting of skew-symmetric matrices
of even rank r whose upper-triangular entries are non-zero and add up to 1, is (an open subset
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of a hyperplane section of the affine cone over) a secant variety of the Grassmannian of 2-
spaces in C™. Recall that we want to prove a bijection between critical points of ¢;; on (the
intersection of a determinantal variety with an affine hyperplane) AM, and critical points
of ¢y on the affine translate AM., of a determinantal variety.

A point P of AM, and data matrix U will be denoted by

0 P12 ' Pim 0 w2 -+ iy
— 0 U 0
P= ],)12 ) and U = ,12
—Pim O Um1 O

Note that U is symmetric rather than alternating. We fix a sufficiently general data matrix
U and a critical point P for {;; on AM,.. The tangent space Tp AM, equals

TpAM, = {X € C™™ skew | X ker P C im P and inj = 0}. (3.3)

1<j

The derivative of £y at P in the direction X equals ), i xg“” , up to a factor irrelevant for
ij

its vanishing. The following lemma is the skew analogue of Lemmas 3.2.1 and 3.3.1.
Lemma 3.4.1. The vector a = (3_;_; Pji + >_j5; Pij)i 1S a scalar multiple of UL.

Proof. We need to show that 2 x 2-minors of the matrix (a|U1) are zero, and do so for the first
minor. Let vy, vy be the first and second column of P, respectively, and set w; := (a»,0,...,0)
and wy := (0, —ay,0,...,0). Then each of the matrices v;w! — w;v! is tangent at P to the
variety of skew-symmetric rank-r matrices, and their sum

0 (a2 —a1)pia  asp1z -+ AoPim
—(ay — a1)p12 0 —a1p23 cc+ —Q1P2m
X = —aoP13 a1p23 0 e 0
—Aa2P1m a1P2m 0 s 0 ]

has upper-triangular entries adding up to 0, so that X is tangent at P to AM,. The
derivative of ¢y at P in the direction X, which is zero by criticality of P, equals

(ag — ar)uiz + asuys + ... + Aoliy — Q1o — ... — 1P2y = Apl14 — G1Ua,
which is the minor whose vanishing was required. O

Next we determine rank-two elements spanning 7Tp.AM,.. For this we introduce the skew
bilinear form (.,.) on C™ defined by (v,w) = v"Sw = Y,_.(v;w; — v;w;), where S is the
skew-symmetric matrix

i<j
o 1 --- 1
-1 0
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from the introduction. By elementary linear algebra, this form is non-degenerate if m is even
and has a one-dimensional kernel spanned by (1,—1,1,—1,...,1) € C™ if m is odd.

In what follows, it will be convenient to think of skew-symmetric matrices also as elements
of A>C™ or as alternating tensors.

Lemma 3.4.2. The tangent space TpAM, is spanned by skew-symmetric matrices of the
form vw®” — woT with v € im P and (v, w) = 0.

In the proof we will use that im P is non-degenerate with respect to (.,.). This condition
will be satisfied for general U.

Proof. The proof is similar to the symmetric case and the rectangular case: a skew-symmetric
matrix X lies in the tangent space if and only if X ker P C im P and ZK]. x;; = 0. The
condition v € im P ensures the first property and the condition that (v, w) = 0 ensures the
second property.

To complete the proof, decompose C™ as A & C with A = im P and (A,C) = 0, so
that A*C™ decomposes as A\ A @ (A® C) @ A>C. Taking the vector w in vTw — wo”
from C we see that A ® C is contained in the span of the matrices in the lemma. Next we
argue that a codimension-one subspace of /\2 A is also contained in their span. Indeed, the
(non-zero) tensors vTw —wvT € \® A with v,w € A perpendicular with respect to (.,.) form
a single orbit under the symplectic group Sp(A) = Sp, (recall that r is even, so that this is a
reductive group), and hence their span is an Sp(A)-submodule of A*> A. But A A splits as
a direct sum of only two irreducible modules under Sp(A): a one-dimensional trivial module
corresponding to (the restriction of) (.,.) and a codimension-one module. Hence the tensors
vTw — wv® must span that codimension-one module.

Summarizing, we find that the matrices in the lemma span a space of dimension r(n —
r) + (;) — 1, which equals dim AM,.. ]

Recall that in the alternating case the likelihood function is given by fy;(P) =[], i p?j” .

The derivative of this expression in the direction of a skew-symmetric matrix X of the form

vw? — wvT equals (up to a factor irrelevant for its vanishing)

0
p12 Pim
_ ui2 0 . .
U4 U5 T —= . :
E Ty—L = g — (vjw; — vjw;) = v iz w.
= Dij . Pij : T . Um—1,m
1<J J 1<J J . : : Dm—1,m
_Wm ., _UYmolm 0
Pim Pm—1,m

Define the skew matrix Q by P * Q = U. Then criticality of P translates into v7Qw = 0 for
all v € im P and w € C™ with (v, w) = 0.

Theorem 3.4.3 (Duality for skew matrices). Let U = (u;;)i; be a sufficiently general sym-
metric data matriz with zeroes on the diagonal, and let P be a critical point of £y on AM,.,
where r € {2,...,m} is even. Let s € {0,...,m — 2} be the largest even integer less than or
equal to m — r. Define the matriz QQ by P x Q) = U. Then the skew matriz Q' := 2Q /U, +
is a critical point of Ly on the translated determinantal variety AM.. Moreover, the map
P — @' is a bijection between the critical points of {y on AM, and those AM.,.
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As in the rectangular and symmetric cases, the bijection P — Q' maps real, positive
critical points to real, positive critical points in such a way that the sum of the log-likelihoods
of P and ()’ is constant.

Proof. By construction of ) we have vTQw = 0 for all v € im P and w € C™ with v Sw = 0.
This means that the quadratic form (v,w) — v7Qw on im P x C™ is a scalar multiple of
the quadratic form (v, w) — vTSw, denoted (.,.) earlier, on that same space. The scalar is
computed by computing

(07 R ZSPIEREE _plm)Q(1,07 s aO)T = Ul+

and
(07 —Pi12y---, _plm)S(l, O, cee ,O)T = P1+ =a,

where a is the vector of Lemma 3.4.1. Using that lemma and the fact that >, a; = 2 we ﬁnd
that a; = 2U;, /U, .. We conclude that the skew bilinear form associated to B := S — m

is identically zero on im P x C™, hence ker B contains im P and im B = (ker B)* (where L
refers to the standard bilinear form on C™) is contained in ker P = (im P)*. In particular,
B has rank at most s; let £ < s denote the actual rank of B.

Next we argue that Q' := ﬁ@ is critical for ¢y on AM). By arguments similar to

(but easier than) those in Lemma 3.4.2 the tangent space T AM;, is spanned by rank-two
matrices vw? — wv? with v € im B and w € C™ arbitrary. Thus proving that @’ is critical
boils down to proving that vI' Pw = 0 for all v € im B and w € C™. But this is immediate
from im B C ker P. Thus )’ is critical.

Furthermore, we need to show that (for generic U) the rank k of B =S — @)’ is equal to
s rather than strictly smaller, and that the map P — @Q’, which is clearly injective, is also
surjective on the set of critical points for ¢;; on AM’. For these purposes we reverse the
arguments above: assume that Q' is a critical point on AM;), where k is an even integer
in the range {0,...,m — 2}. Define @ := %Q’ and define P by P x Q) = U. Also, define

= S — @Q'. Then criticality of @' implies that vZ Pw = 0 for all v € im B and w € C™,
and this implies that ker P O im B. Thus [ := rk P is at most m — k.

Moreover, B itself lies in the tangent space T AM;), and criticality of @' implies that

Yoic ;i Bij Q” = (. Substituting the expression for B into this we find that

2
0= Z( QU)Q” Z(Pw - a) = (Z sz) -1,

i<j 1<j

i.e., the upper-triangular entries of P add up to one. We conclude that P lies in AM,. Next,
we argue that P is critical. Indeed, for v € im P and w € C™ such that (v, w) = (v Sw =)0
we find I
v Qu = v ( ;r
where we have used that im P C ker B.
Summarizing, we have found rational maps

(S — B))w = %(ﬂsw —v"Bw)=04+0=0,

2 U

Y, Crit(AM,.) --» Crit(A,/\/l}(T)), (P,U) (E 5

U)=(Q',U) and
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2 U
Upr Q'

for some map f mapping even integers r € {2,...,m} to even integers k € {0,...,m — 2},
and some map ¢ in the opposite direction. By the argument in the proof of Theorem 3.2.4,
both 1, and 9, are birational and ¢g(f(r)) = r. Hence f is a bijection, and by the above it
satisfies f(r) < m — r. The only such bijection is the one that maps r to the largest even
integer less than or equal to m — r. This concludes the proof of the theorem. O

Yy, « Crit(AM)) -=» Crit(AM ), (Q,U) — ( U)

Example 3.4.4. Now we give an explicit example illustrating dual solutions in the alter-
nating case. When m = 4 the ML degree of AM is 4 [23]. When

0 2 3 5 0 0.0386  0.0978 0.1075
U:i 2 0 7 11 ond P — —0.0386 0 0.1563  0.2929
4113 7 0 13 —0.0978 —0.1563 0 0.3069 |’
5 11 13 0 —0.1075 -0.2929 -0.3069 0

we have P is a critical point of Iy on AMy and U, = 2. Having ) defined as PxQ = U, we
find that Q(= Q') has full rank. But in the alternating case, we consider the affine translate
of a determinantal variety. We find that B = S — ) equals

0 —0.2638 0.2518 —0.1344
B 0.2638 0 —0.0924 0.0841
—0.2518  0.0924 0 —0.0332 |’
0.1344 —0.0841 0.0332 0

and indeed B has rank 4 — 2 = 2. We can actually compute the ML degree of AM,
symbolically to be 4 (even with the u;; treated as symbols). For the data matrix U above, the
minimal polynomial for g3, equals 434217q3, — 13357673, + 153671743, — 764049¢s4 + 127426.

3.5 Conclusion

We have proved that a number of natural determinantal varieties of matrices are ML-dual
to other such varieties living in the same ambient spaces. However, we have done so without
formalizing what exactly we mean by ML-duality. In Chapter 4 we will give a precise
definition of ML-duality. In addition a generalization of Theorem 3.4.3 will be provided by
Corollary 4.2.7.



42

Chapter 4

Maximum Likelihood for Dual Varieties

The content of this chapter has been submitted to the Symbolic-Numeric Computation con-
ference to be held July 28-31, 2014 at the East China Normal University in Shanghai, China
under the same title with some minor modifications for consistency with other chapters.

4.1 Introduction

Maximum likelihood estimation (MLE) is a fundamental problem in statistics that has been
extensively studied from an algebraic viewpoint [9, 11, 12, 20, 23, 26]. We continue to follow
an algebraic approach to MLE in this chapter, considering statistical models for discrete
data in the probability simplex as irreducible varieties X in projective space P".

An algebraic statistical model X in P will be defined by the vanishing of homogeneous
polynomials in the unknowns pg, p1, ..., p,. We assume that X is an irreducible generically
reduced variety. When the coordinates pg, p1, ..., pn of a point p in X are positive and sum
to one, we interpret p as a probability distribution, where the probability of observing event
iis p;. We let u = (ug,uq,...,u,) € (C*)"! be a vector of length n + 1. This represents
our data. When each entry u; of the data vector is a positive integer, we interpret u; as the
number of observations of event i. We use the notation

Uy ' =ug+---+u, and py :=py+ -+ + pn,

always assuming u, # 0.
The likelihood function for « is defined as

Cu(p) = PP oy /P
When v and p are interpreted as data and a probability distribution respectively, the like-
lihood of observing u with respect to the distribution p is ¢,(p) divided by a multinomial
coefficient depending only on w.

For fixed data u, to determine local maxima of ¢,(p) on a statistical model and give a
solution to the MLE problem, we determine all complex critical points of £,(p) restricted to
X. Of these critical points, we find the one with positive coordinates and greatest likelihood
to determine the maximum likelihood estimate p. The (algebraic) mazimum likelihood es-

timation problem is solved by determining all critical points of ¢,(p) on X and maximizing
¢,,(p) on this set.
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To find the complex critical points, we determine when the gradient of £, (p) is orthogonal
to the tangent space of X at p. So the set of critical points is

{p € X,¢y such that VI, (p) L T,X}.

Because the gradient of the likelihood function (up to a scalar) equals

Vi, (p) =

[uo Uy up Uy U, u+]
po P+ P Py Pa Pyl

critical points of ¢,(p) are p € X such that

Ug Uy Uy Uy Up, Uy

|:___7___7"'7___:|J—TP(X)7
Po P+ N P+ Dn b+

implicitly forcing the condition pop; - -« pn(po + - -+ + pn) # 0.

Definition 4.1.1. Given an algebraic statistical model X in P", the mazimum likelihood
degree (ML degree) of X is the number of critical points of ¢, (p) restricted to X for generic
choices of data wu,

MLdegree(X) =#{p e X : V{,(p) L T,(X)}.

The main result of this chapter is to give a formulation that relates maximum likelihood
estimation to a conormal variety derived from X |[Theorem 4.2.5|. With this perspective,
we use the dual likelihood equations [Theorem 4.3.2] to solve the MLE problem for X when
only given the defining equations of its dual variety X™*.

The computations in this chapter were done using Bertini [5| and Macaulay2 [16].

4.2 MLE and conormal varieties

In this section, we consider an algebraic statistical model X in P™ and will define X’ to
be an embedding of X in P**. We will present our first result in Theorem 4.2.5. It gives
a formulation of the MLE problem in terms of conormal varieties and dual varieties. In
Corollary 4.2.7 we present a bijection between critical points of the likelihood function on
two different varieties. In Corollary 4.2.9 we furnish equations to solve the MLE problem
when the defining equations of a conormal variety are known. We will also recall how to
compute conormal varieties and dual varieties of X and X’.

Let X C P" be a codimension c¢ algebraic statistical model defined by homogenous
polynomials f1, fa, ..., fr. We let Jac(X) denote the k x (n+ 1) matrix of partial derivatives
of fi,..., fr with respect to po, ..., p,. We say this is the Jacobian of X.

To keep track of the sum of the coordinates pg, p1, ..., p, we introduce the coordinate p;
and a hyperplane of P"*! defined by the vanishing of the polynomial

If X is defined by f1,..., fx, then X’ in the coordinates pg, p1, ..., Pn, Ps is defined by the
vanishing of fi,..., fr and H. With this definition, we have the following proposition.
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Proposition 4.2.1. Suppose X is defined by the homogeneous polynomials f1, fa, ..., fx.
Then, the Jacobian of X' is the (k+ 1) x (n + 2)-matriz

1 -1 - -1 1
, 0
Jac(X') = Jac (X) :
0

The important fact about the construction of X’ is that there is a bijection between the
critical points of the function ¢,(p) on X and the critical points of the Laurent monomial

E;(p) = pgopﬁ“ .. .pznps_uJr on X'

given by Lemma 4.2.2.
By a slight abuse of notation, the “p” in £,(p) and the “p” in £, (p) represent two different
things. The first p represents a point [pg : p1 : -+ : p,] € X, while the second represents a

point [po:p1 -+ pn:ps) € X

Lemma 4.2.2. There is a bijection between the critical points of the function £,(p) on X
and the critical points of ! (p) on X'. Under this bijection, [py : p1 : -+ : p,] € P" is a
critical point of £,(p) on X if and only if [po : p1: -+ : pn : ps] € P is a critical point of
C.(p) on X'.

Proof. To prove this we need to show that

[po : -+ pn : 0] € X, satisfies VO, (p) L T, X’
if and only if
[Po i -+ pn] € Xyey satisties VI, (p) L T,X.
By Proposition 4.2.1, it follows that [po : -+ : p, : ps] € X[, if and only if [pg : -+ : p,] €

Xyeg- So it remains to show that V¢ (p) L T,X’ if and only if V¢, (p) L T,X. To do so,
we prove that V. (p) is in the row space of Jac(X’) implies V/,(p) is in the row space of
Jac(X) and vica versa. To see this, observe

1
{ Ve, (p) } _
Jac (X') 1 n
1 1 1
[ wo _ Y+ w1 U4 Un _ Ut vy ]
Ppo Ps p1 Ps Pn Ps Ps
0 0 1
0
Jac (X) :
- O -

Since ps = p, we have completed the proof because the top row in the matrix above is
Veu(p), 2] O

P+ |’
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The conormal variety of X is defined to be the Zariski closure in P™ x P™ of the set

Nx :={(p,q) : ¢ L T,X}.

To determine the defining equations of Nx, we let M denote a (k4 1) x (n+ 1) that is an
extended Jacobian whose top row is [qo, q1, - - -, ¢,] and whose bottom rows are Jac(X). The
defining equations of the conormal variety can be computed by taking the ideal generated
by fi,..., fr and the (¢ 4+ 1) x (¢ + 1)-minors of M and saturating by the ¢ X c-minors of
Jac(X).

The dual variety X* is the projection of the conormal variety Ny to the dual projective
space P™ associated to the g-coordinates. To compute the equations of the dual variety,
one eliminates the unknowns pg, p1, ..., p, from the equations defining Nx. For additional
information on computing conormal varieties and dual varieties see [38].

Since X’ is contained in a hyperplane defined by H, the dual variety of X’ is known to
be a cone of X* over the point h:=[-1:—1:---:—1:1]. The dual of X’ in P"™! is given
by

X" ={lgo=bs:qu—=Dbs:-+-:qu—0s:bs]:[qo:-:qn) € X}

It is easy to go between the coordinates of X and coordinates of X’ because there is
a birational map between these two varieties. But there does not have to be a birational
map between X* and X as in [Example 4.2.4]. Indeed, the dimension of X* and X’* are
not necessarily equal. For this reason, the coordinates of the former are in qq,...,q,, and
the coordinates of the latter are in bg,...,b,,bs. Our notation is to let ¢ denote a point
[q0:q1:-+: ¢y € X* and let b denote a point [by : by : -+ : b, : bs] € X" .
The next proposition shows that if given the defining equations of X* in the unknowns
qo, - - -, Gn, then we can determine the defining equations of X’* in the unknowns by, .. ., b,, b,
using the relations
q0:b0+b5,q1:b1+bs,...,qn:bn+bs. (4.2)

Specifically, if g(qo, 1, - - ., qn) vanishes on X*, then g(by + bs, by + bs, ..., b, + bs) vanishes
on X"*. Moreover, if given the Jacobian of X*, we can easily determine the Jacobian of X"
as well using the relations in (4.2).

Proposition 4.2.3. If g1(q),...,q(q) are defining equations for the variety X* C P" in
coordinates qo,qi, ..., qn, then the defining equations of X'* in coordinates by, by, ..., by, bs

are
gl(b0+bs7bl+bs,...,bn+bs) =0

gi(bo + bs, by + b, ..., b, +bs) =0.

Moreover, the Jacobian of X' is given by

Jac (X™) = Jac (X7) |(b0+bs,...,bn+bs)
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Proof. The first part of proposition follows immediately from the relations in (4.2). By

Jac (X) 440, bt
we mean evaluate the Jacobian of X™* at (by + bs, ..., b, + bs). Since the defining equations
of X’ are found by evaluating each g¢;(q) at (by + bs, ..., b, + bs), it follows by the chain rule
that Jac(X") equals the desired matrix product. O

Example 4.2.4. Consider X in P? that is defined by

f = 2pop1pa + Pipe + p1P5 — Pap12 + P1Pap12-

The Jacobian of X and the defining polynomial ¢(q) of the dual variety X* are

Jac(X) = [2p1pa — 2pop12, P2(2p0 + 2p1 + P2 + P12), P1(2p0 + P1 + 2p2 + P12), —Pp + P1pa]

and

9(q) = ¢¢ — 8¢2q1q2 + 164262 — 822 + 16¢2q1q12 + 16¢2 0212 — 3200q1 42412

The variety X' is defined by the two equations in P4,

f(p) =0 and p; = po + p1 + p2 + P12,
but the dual variety X'* is defined by one equation

g(bO + bsa bl + bsy bQ + bsa b12 + bs) =
(bO + bs)4 - 8(60 + bs)Q(bl + bs)(bQ + bs)+
16(by + bs)%(ba + bs)* — 8(bg + bs)?(b1a + by )+
16(bo + bs)?(b1 + bs)(b12 + bs)+
16(bo + bs)?(bg + bs) (b2 + bs)
—32(bg + bs) (b1 + bs)(bg + bs) (b1a + bs).

The Jacobian of X™* is

4q3 — 16g0q12 — 32q12(348 — qotr — Qo2 + q142)
Jac(X*) = —8¢5q2 + 32q145 + 16¢5¢12 — 32q0g2¢12
—8Q§Q1 + 32q%q2 + 16(](2)6]12 — 32909112
—8¢3 + 16q2q1 + 16¢2¢5 — 32401

The Jacobian of X" is found by evaluating Jac(X™) at (by + bs, ..., b, + bs) and multiplying
the result on the right by the matrix

—_
—_ = = =

Now we are ready to state our first result.
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Theorem 4.2.5. Fix an algebraic statistical model X. A point

([pozplz---:pn:ps],[bozbl:---:bn:bs]) € Nx/
satisfies the relation
[Dobo : p1by = -+ ppby s psbs] = Jug T ug e Uy T —uy ]
if and only if [po : p1 i+ Pn: Ds] 1S a critical point of £ (p) = pa°pyt -+ plrps Ut on X

Proof. To determine critical points of £, (p) on X’ we find when
Ve, (p) = [0L./0po - - : DI, /0p,

is orthogonal to the tangent space of X’ at the point p. This is the same as determining
when

([po S SRR N Vf;(p)) € Ny

As a point in projective space, we have that whenever pop; - - - ps # 0 that

Ug U, Uy

Ve,(p) = 2 .
Po Dn Ds

So we immediately have that a critical point of ¢ (p) satisfies the desired relations when we
take the coordinate-wise product of [pg : py : -+ - : ps] and VZ,(p). O

In summary, Theorem 4.2.5, together with Lemma 4.2.2, says if [p,b] € Nx/ and the
coordinate-wise product of p and b is

[Pobo -+ prbn i psbs] = ug -+t uy s —ug ], (4.3)
then [po : -+ : p,] is a critical point of ,(p) on X.

Definition 4.2.6. The extended likelihood locus of X for the data u is defined as the set of
points in Ny satisfying the relations in (4.3), notated Ex(u). We define P, and B, to be

Pu:=A{p:(p,b) € Ex(u)} and B, :={b: (p,b) € Ex(u)}.

For additional clarification, note that points in Ex(u) are contained in the conormal
variety Nyx» C P**! x P**!. These points are expressed as

(p,b) = ([po tpr i ps)y [bo by e bs]) € Ex(u).
In regards to ML degree, we have for generic choices of u
MLdegree(X) = #Ex(u) = #P, = #B..

There are two corollaries to Theorem 4.2.5. The first corollary gives a bijection between
critical points of ¢, (p) on X’ and critical points of ¢, (b) on X™. The second corollary gives
equations to determine critical points of ¢, (p) on X'.
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Corollay 4.2.7. There is a bijection between critical points of £, (p) on X' and critical
points of £, (b) on X" given by (4.3). Moreover, the product €, (p)l,(b) remains constant
over Ex(u).

Proof. The first part follows by noticing that the relation forces us to have

[Do:p1:-:ps) = [uo/bo :ur /by -+ —uy/bs]
which is also the gradient of ¢ (b). The second part follows as on Ex(u) we have

£,(p) 0, (b) = ug’ui - - upn (—uy) ™"

n

]

When uy, . . . , u, are positive integers, the bijection in Corollary 4.2.7 pairs positive critical
points of ¢ (p) ordered by increasing likelihood with positive critical points of ¢, (b) ordered
by decreasing likelihood!

Example 4.2.8. We will compute the ML degree of X in Example 4.2.4 to be 3. We fix the
data vector (ug, ui, ug, u1g) = 4—10 (2,13,5,20), and determine the points of Ex(u) as follows:

Po D1 D2 P12 Ds
.167493 242186  .0532836 537037 1

—.485608  .632011  .35886 494736 1

—2.58189  5.56009 6.19312 —8.17133 1
bo by by bia bs
.29852 1.34194  2.34594 931035 -1
—.102964 514232 348325 1.01064 -1
—.0193657 .0584523 .0201837 —.0611895 —1.

The eliminants for pg, p1, p2, and pio are

(100p3 + 290p2 + T4py — 21),
(62700p3 — 403430p3 + 314358p; — 53361),
(1900p3 — 12550p3 + 4886p, — 225),
(62700p3, + 447650p2, — 511962p1 + 136125).

The eliminants for by, by, by, b1 of Ex(u) are

(168063 — 296b2 — 58by — 1),
(3415104003 — 6538646462 + 27271868b; — 1377519),
(2880063 — 78176b2 + 25100by — 475),
(27225063, — 511962b2, + 223825b15 + 15675).

Note that we are not saying the ML degree of X equals the ML degree of X*. In general,

MLdegree(X) # MLdegree(X™).
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The reason why equality fails is because
bo + by + -+ by, — b

does not vanish on X"*. So there is no analog of Lemma 4.2.2 involving X’* and X*. In
terms of the previous chapters, one should think of Corollary 4.2.7 as a generalization of
Theorem 3.4.3 and not as a generalization of Theorem 4.2.5.

Corollay 4.2.9. Fiz a point [p,b] of Nx: such that psbs # 0. The following are equivalent:
1. The point [p,b] is in Ex(u).
2. The point [p,b] satisfies
uipshs = —uypib; fori=0,1,2,...,n
3. There exists [qo : -+ : q,) € X* such that
uipshs = —uypi(q; — bs) fori=0,1,...,n

Proof. 1t is immediate that part 1 and part 2 are equivalent. To see part 2 and part 3 are
equivalent, recall ¢; = b; + b, for i = 0,1, ..., n, from the definition of X"*. n

A consequence of these equations is that it removes the need for saturation by pop1 - - - pn
with Grobner basis computations that involve the likelihood equations whenever the wu; are
nonzero. In addition, if we restrict to the affine charts defined by p, = 1 and by = —u,, then
the condition psbs # 0 is immediately satisfied.

4.3 Dual likelihood equations

In this section we will define a system of equations whose solutions are precisely

B,=1{b:(p,b) € Ex(u)}.

Once we know the set B,, we determine the critical points of £, (p) = pg° - - p/py" on X
using Lemma 4.2.2 and Corollary 4.2.9. For this reason we have the following definition.

Definition 4.3.1. The dual maximum likelihood estimation problem for the algebraic sta-
tistical model X and data u is to determine B,, the set of critical points of ¢ (b) on X'*.

By Corollary 4.2.7, we find the critical points of £, (b) = bg°b}" - - - birb "+ on X™ to
determine the set B,. That is, we determine the points b € X’ such that the gradient
Ug Uy Up —Uy

Ve, (b) = b—O:b—lh'-:a: b,

is orthogonal to the tangent space of X' at b.
If X* in P" has codimension ¢, which means X’* in P"*! has codimension ¢, then the
dual likelihood equations are obtained by taking the sum of ideals generated by
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e the polynomials defining X’*, and

e the (c+ 1) X (¢ + 1) minors of an extended Jacobian multiplied by a diagonal matrix
with entries by, by, ..., by, b,

)| »

and saturating by the product of two ideals,
e the principal ideal generated by byb; - - - b, bs, and
o the ideal generated by the ¢ x c-minors of Jac(X").

This gives us a formulation of the dual likelihood equations. Now we make some simplifica-
tions to these equations to get Theorem 4.3.2.

By Euler’s relations for partial derivatives, the columns of the matrix product in (4.4)
are linearly dependent. Indeed the columns sum to zero, so we may drop the last column of
the product without effecting the rank.

By Proposition 4.2.3, if ¢1(q), ..., g/(q) define the variety X*, then the defining equations

of X™* are
gl(b0+b5,b1—|—b5,...,bn+b3) =0

gi(bo + bs, by + bs, ..., b, +bs) =0.
and the Jacobian of X’* is

Jac (X™) = Jac (X7)]

(bo+bs,....bn+bs)

Since the last column of Jac(X"*) is the sum of the first columns, it follows the dual likelihood
equations can be calculated by the next theorem.

Theorem 4.3.2. Let g1(q),...,q(q) define X* C P" with codimension c. Then the dual
likelihood equations of X are calculated by taking the sum of the ideals generated by

e gi(bo+bsy...,bp+bs),...,q1(bo+ bs,...,b, + bs) and
e the (c+1) x (¢ + 1) minors of

ug W Un—1  un b
bo b  Bug ba 0
)
*
Jac (X )|(b0+bs ..... br+bs) by,

and saturating by the product of two ideals,
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e the principal ideal generated by boby - - - bybs, and

e the ideal of c x c-minors of Jac (X™)| 4100 btbe) -

The point of Theorem 4.3.2; is that the dual likelihood equations define a homogenous
ideal in the polynomial ring C[bg, by, . . ., b,, bs] whose variety is B,,, the set of critical points
of £, (b) on X",

Example 4.3.3. Let X be defined by f(p) = 4pop2 — p? in P2. Then X* is defined by
9(q) = qog2 — ¢} in P2 So

2p0 M o ¢
f(p) =de { o 2p2] and g(q) = de [ql QQ}

The dual likelihood equations are computed by taking the ideal generated by
o g(by + bs, by + bs, by + bs) = (b + bs) (b2 + bs) — (b1 + bs)?, and
e 2 X 2 minors of

bo

uo uy uz
bo

b1 bo b
(by +bs) —2(by +by) (b + bs) !

ba

and saturating by the product of two ideals
e the principal ideal (byb1bobs) and

e the 1 x 1 minors of
[ (ba+bs) —2(by+bs) (bo+0bs) |-

We find that there is a unique critical point of ¢ (b) on X" whose coordinates are derived
from the matrix equality

dupu duiu
l |: bO by 1 _ [ (2u03—u-§)2 2(u1+2ug1)(;uo+u1) ] .
2(

b b dujuq duguq
bs 1 2 w1 +2u2)(2uo+u1) (2u2tu1)?

So by Corollary 4.2.9, the coordinates of the critical point of ¢,(p) on X are derived from
the matrix equality

1 {zpo m } 1 [(2u0+u1)} [(2uo+u1)}T

ps | 1 202 | 202 | (w1 + 2up) (u1 + 2ug)

To calculate ML degrees when X* is not a complete intersection [Computation 4.3.5],
we will work with an adjusted formulation of the dual likelihood equation. This formula-
tion introduces codimension X* auxiliary unknowns (Lagrange multipliers). Also, instead
of working with every generator of the ideal of X*, we work with codimension X* genera-
tors. These generators should be chosen so that they define a reducible variety whose only
irreducible component not contained in the coordinate hyperplanes is X*.
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Example 4.3.4. Consider 2 x 2 x 2-tensors of the form [p;;;] with 4, j, k, € {0,1}. If X is the
hyperdeterminant of these tensors, then X* is defined by the 2 x 2 minors of all flattenings of
the tensor [g;jx]. The codimension of X* is 4. The 4 minors below define X* after saturating
by qi11.

231 (Q) = {o114101 — qoo19111 92 (Q) = {go119110 — qo109111

g3 (Q) = {qoo19110 — qoooq111 G4 (Q) = {qo1149101 — qoo19111
So by introducing auxiliary unknowns \g, A1, A3, Ay we create a square system of 12 equations
in the homogeneous variable groups (bga, - - -, b111, bs) and (Ao, ..., Ag):

g1 = (bo11 + bs)(b1o1 + bs) — (boor + bs)(b111 + bs)
g2 = (bo11 + bs)(b110 + bs) — (boro + bs)(b111 + bs)
g3 = (boo1 + bs)(b110 + bs) — (booo + bs)(b111 + bs)
ga = (bo11 + bs)(b1o1 + bs) — (boor + bs)(b111 + bs)
b
Ve (b) ] 000 L

[)‘07 )‘17 /\27 ey )\4] { Jac(g)

b1
The solutions with \gbs # 0 give the critical points. We find that there are 13 critical points
of £,(b) on X*. For more details on the statistical model X we refer to [12], Example 2.2.10.

The next example is a new computational result to determine the ML degree of a hyper-
determinant.

Computation 4.3.5. Let X denote the hyperdeterminant of 2 x 2 x 3 tensors of the form
[piji] for i € {0,1}, j € {0,1}, k € {0,1,2}. Then the ML degree of X is 71.

Proof. The variety X is dual to the variety X* defined by the 2 x 2-minors of the flattenings
of the 2 x 2 x 3 tensor [g;;x] with i € {0,1}, j € {0,1}, k € {0,1,2}. The variety X* has
codimension 7, degree 12, and 24 generators. We consider 7 of the 24 generators,

g1 (Q) = (1029111 — G1019112

g2 (Q) = (1029110 — 41009112
93(q) = qoo2qi11 — Qoo1q112
94(q) = qo12q102 — Qo02q112
gs (CI) = Qo129111 — qo114112
96 (q) qo129110 — do104112
gr (Q) = (oo29110 — 40009112

such that when saturated by ¢112 we recover the dual variety X*. We solve the following
square system of equations: the seven equations

g1(bo + bs, ..., b1ia+bs) = -+ = g7(bo + b, ..., b112 + bs) =0
and the 12 equations

blOl
[1,)\1,)\2,...,)\7]M =0,
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with M in (4.5) for a choice of u consisting of random complex numbers to determine the

ML degree of X is 71.

(4.5)
[ Y101 U011 u100 U010 001 2000 Q02 ug12 v102 U110 U111 u112 7]
bio1 bo11 b100 bo10 boo1 booo boo2 bo12 b1o2 bi10 bi11 bi12
—q112 0 0 0 0 0 0 0 q111 0 qi02  —qi01
—q112 0 0 0 0 0 qi11 0 0 goi2  —goi1
—q112 0 0 0 0 0 qi10  qi02 0 —q100
—q112 0 0 0 q110 0 qo12 0 —qo10
—q112 0 qi11 0 0 0 qoo2  —Qqoo1
—qi12  q110 0 0 g002 0 —q000
—qi12  q102  qo12 0 0 =a002 1|y, +bs,... b112-4bs)
O

4.4 The dual MLE problem and ML duality

In this section we introduce two examples and show how the results presented in this chapter
fit in context with Chapter 3.

Definition 4.4.1. A pair of algebraic statistical models X and Y in P" are said to be ML-
dual if for generic u there is a involutive bijection between points of Ey(u) and points of
Ey(u). Moreover, this bijection pairs points of Ey(u) with points of Ey(u) such that the
coordinate-wise product of each pair can be expressed terms of the data u alone.

Example 4.4.2. Suppose r < m < n, and let V,, , , denote the Zariski closure in Ppmn—l of
rank r matrices of the form

P1un P2 Pin
P21 P22
Pm1 Pmn
Then Vj; . . is known to be the Zariski closure in P""~! of rank m — r matrices of the form

q11 412 din
21 Q22
dm1 dmn

Fix a choice of m,n,r. If we take X =V, ,, then points in X’ will be represented as
[pij = ps] € X' C P

and points in X"* will be represented as
bij 1 bs) € X C P™.

With Corollary 4.2.7, it follows that there is a bijection between P, and B, for X =V, ,, .
On the other hand, we know that V,,,, and V,,, n—, are ML-dual by Theorem 3.1.1.
This means, if we take Y to be V;, ,, m—» there is a involutive bijection between critical points
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Ex(u) and Ey(u) for generic choices of u. In particular, the bijection is such that the
coordinate-wise product of the paired points is

<[ui+u+juij . 1:| |:uiju++ . 1:|) € pmn x pmn
—_— , | —— .
uly Uit Ut

Here uyy =37, wij, wig := 3wy, and uyj := >, uyj, and likewise for pyy, pis, pij.

In the next example will provide a another pair of varieties that are ML-dual. Afterwards
we generalize the example to provide a family of statistical models for which we can find
ML-duals.

Example 4.4.3. Let X in P? be defined by

filp) = (3p% + 22pop1 + 3p? — 6popz — 6p1p2 + 23p3
—22pops — 22p1ps — 34paps + 39}7%)

and fix
(U07U17U27U37US) = (17 ]-7 17 174) and <u07u17u27u3> = (2757977)

Then, the variety X’ is a cone over the point
v=[vg:vy vy V3 Vg,
and also contained in the hyperplane defined by
Po + P1+ P2+ P3 — Ps.
The defining equations of X" are

g1(0) = (bo + by + by + bs + 4b,)
gg(b) = —152b% — 15261(?2 + b% — 152()163 — 4252b3+ (46)
—15b2 — 608b1b, — 192bob, — 224b3b, — 5122

Note that X" is contained in the hyperplane defined by
gl(b) = Ugbo + U1b1 + U2b2 + U3b3 -+ Usbs.

This is because X' is a cone over the point v. In addition, since X’ is contained in a
hyperplane then X" is a cone as well. In this case X" is a cone over the point

1,1,1,1 —1J.
Now, let Y be defined the polynomial
32p2 — 88pop1 + 32p% + 16pgps + 16p1p2 — 17p2 + 8pops + Sp1ps + 2paps — Ip2. (4.7)

Doing so, it follows that Y” is a linear change of coordinates of X"*. If we replace by, b1, by, b3, b,
with po, p1, pe, p3, _Tlps respectively in (4.6), then we have the defining equations of Y

po + p1 + p2 + p3 — ps and
32p3 — 88pop1 + 32p? + 16pops + 16p1p2 — 17p3 + 8pops + 8p1ps + 2paps — Ip3.
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Eliminating the unknown p, from Y” yields the relation (4.7) defining Y.

The varieties X and Y in P" are ML-dual, meaning there is a bijection between the points
of Ex(u) and Ey(u). The bijection pairs a point of Fx(u) with a point of Fy(u) such that
the coordinate-wise product of these two points is

Ug Us —Uy Ug us — U4
— il — y | T - T - T .
Vo U3 Vs vyt vyt vyt

For the fixed choice of u = (2,5,9,7) we find that there are 12 points in EFx(u) and 12 points
in By (u).

Theorem 4.4.4. Fiz an algebraic statistical model X . Suppose X' is a cone over the point
v=1[vg:vy: 10, :vs] € (C*)"T2. Then, there exists an algebraic statistical model Y that
is ML dual to X. Explicitly, if the defining equations of X' are

91<b07 b17 o 7bn7bs)7
g2<b07 b17 s 7bn7b8)7

gk(b()abla s 7bn7bs)7

then the defining equations of Y are

Po p1 Pn Ps
g1 vol v’ T on ) vs ) 0
Po P1 Pn Ps
g2 vol w1’ T wn ) ws )0
Po P1 Pn Ps
9k <v07U17"'7vn7v5)'

To determine Y, eliminate p, from the equations defining Y'. Moreover, there is a bijection
between Ex(u) and Ey(u). This bijection pairs a critical point of Ex(u) with a critical point
of Ey(u) such that coordinate-wise product of the pair is given by the relation

Ug Uy Up —Uy U (751 Un — U4
— i il — sy |~/ g i Tt — .
vy U1 Uy, Us vyt ot (Unb N

It is too strong of a hypothesis to expect a statistical model to be a cone over a point.
But the following example shows why Theorem 4.4.4 is still of great interest. It shows that
the critical points of the likelihood function over common statistical models can be found by
determining critical points of the likelihood function over cone.

Example 4.4.5. Fix u to be the data
(U117U127U13,U22,U23,U33) = (10,97 1,21,3, 7)- (4-8)
Let X' be defined by ps = p11 + p12 + p13 + P22 + pas + p33 and

filp) = (—pi2 + 3p13 — 2p2 + 2paz + 6ps3)

fo(p) = (6p11 + Tp13 — 6paz + pas + 8pss)

f3(p) = (6p13paz — 18p13pas + 6paopas — Pis+
54p13p33 — H6paap3z + 18pazpas + 108p3,).
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Here, X’ is a cone over the point v = [v17 : V1 : V13 : Ugg : Vg3 : V33 : U] such that

v = (2ui1 + wiz + ui3)?

V12 = 2(U12 + 2u22 + U23)(2U11 + U12 + U13)
vz = 2(uiz + ugs + 2us3) (2ur1 + U1z + ui3)
vae = (u1z + 2ugg + ug3)?

Vog = 2(uz + Uz + 2usz)(Ui2 + 2ug + us3)
vzs = (w13 + U2z + 2us3)?

vs = —4(urr + uig + w1z + ugn + usz + uss)”.

The dual variety X' is defined by the polynomials

91(b) = vi1bi1 + v12b12 + Vigbis + Vasbag + vasbaz + Ushs
G2(b) = 2(b12b13 — bisbagy — b1y + bigbas + bi3bas — biabss)
—bi5 + bi1bag — by + bog — b5 + bi1bss + baobss.

If we take Y’ to be as in Theorem 4.4.4, then Y is ML dual to X. We determine there are
15 points in Ex(u) and 15 points in Ey (u).

Six of these 15 points are even more interesting when we consider the algebraic statistical
model Z defined by the determinant of

2p11 P12 P13
2p12 2paa P23
2p13 D2z 2ps3

So Z consists of symmetric matrices of rank at most 2. The extended likelihood locus Ez(u)
for the prescribed data (4.8) consists of six points

Ez(U) = {Zl, 29y e 7Z6}-
The surprising result is that the set Ez(u) is a subset of Fx(u).

From this final example we saw that we can determine critical points of standard algebraic
statistical models by considering critical points of varieties which are cones.

4.5 Conclusion

In this chapter, we have given an elegant formulation of the MLE problem involving conormal
varieties. This formulation allows one to forgo the expensive computation of saturation by
a product of unknowns. We also define the dual likelihood equations that allows one to
compute critical points on X even if the defining equations of X are not known using a dual
variety. We showed that if we solve the dual likelihood equations equations, we recover the
critical points on X by Theorem 4.2.5. More broadly, we showed that if there is a bijection
between critical points of a function restricted to a variety and critical points of a Laurent
monomial restricted to a different variety, then we can formulate a new set of equations to
determine these points.
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Chapter 5

Maximum likelihood geometry in the
presence of data zeros

The content of this chapter has been submitted to the International Symposium on Symbolic
and Algebraic Computation to be held July 23-25, 2014 at Kobe University, Japan under
the same title. This is joint work with Elizabeth Gross with some minor modifications for
consistency with other chapters.

5.1 Introduction

The method of maximum likelihood estimation for a statistical model M and an observed
data vector u € R"™! involves maximizing the likelihood function I, over all distributions
in M. This involves understanding the zero-set of a system of equations, and, thus, when
the models of interest are algebraic, the process lends itself to investigation using algebraic
geometry. In fact, likelihood geometry has been studied in a series of papers in the field
of algebraic statistics beginning with [9] and [23]. Subsequent papers include |7, 25, 17, 20,
45, 26| covering both discrete and continuous models. In this chapter, we look at discrete
models and the case where the observed data vector contains zero entries.

In [23], Hosten, Khetan, and Sturmfels introduce the likelihood locus and its associated
incidence variety for discrete statistical models. In [27|, Huh and Sturmfels study this in-
cidence variety further under the name of the likelithood correspondence. Given a discrete
algebraic statistical model with sample space of size n + 1 and Zariski closure X, the like-
lihood correspondence Lx is a closed algebraic subset of P* x P*. We view P" x P" as
the product of the probability space P with homogeneous coordinates po, p1, . . ., p, and the
data space P}, with homogeneous coordinates g, u1, . .., u,. In this chapter, we are concerned
with special fibers of the projections pry : Lx — P} and pry : Lx — P}, Specifically, we set
out to understand pr; *(u) when u contains zero entries and show how our understanding of
pry H(u) yields information about generic fibers of pry. In particular, we want to understand
the degree of a generic fiber of pro. That quantity is the ML degree (maximum likelihood
degree) of X as discussed in previous chapters.
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A statistical model M is a subset of the probability simplex

An:{(po,pl,...,pn)eR”H ]Zpizlandpiz()fori:(),l,...n}.

=0

Given positive integer data u € Z%{', the mazimum likelihood estimation problem is to

determine p € M that maximizes the likelihood function
lu = po"pr" - oy

restricted to M. The point p € M is called the maximum likelthood estimate, or mle. The
family of models we are interested in are algebraic statistical models, which are defined by
the vanishing of polynomial equations restricted to the probability simplex.

To use algebraic methods, we consider points of M C R""! as representatives of points in
P" and study the Zariski closure M = X C P*. This makes the problem easier by relaxing
the nonnegative and real constraints, which allows us to obtain an understanding about the
number of possible modes of the likelihood surface. There are subtleties when performing
this relaxation as mentioned for example in Section 2.5 of Chapter 2 regarding rank and
non-negative rank.

Let py :=po+p1 + -+ p, and H,, be the set of points where p.pgp: - - - p, equals zero.
With algebraic methods, our goal is to determine all complex critical points of £, (p) := 1,,/p’*
when restricted to X,.,\H, C P", where X,, is the set of regular points of X. We work
with ¢, (p) since it is a rational function of degree zero and thus a function on P™ (see [12,
§2.2]).

A point p € X, is said to be a critical point if the gradient of ¢,(p) is orthogonal to the
tangent space of X at p, that is

Vi (p) L T,X.

If the maximum likelihood estimate p for the data vector w is in the interior of M, then p
will be a critical point of £,(p) over X. By determining the critical points of £, (p) on X, we
find all local maxima of [,, on M.

If the data vector u contains zero entries, in the statistics literature each zero entry is
called either a sampling zero or a structural zero. Considering u as a flattened contingency
table, a sampling zero at u; occurs when no observations fall into cell ¢ even though p; is
nonzero. A structural zero occurs at u; when the probability of an observation falling into
cell ¢ is zero. Structural and sampling zeros occur commonly in practice, for example, in
large sparse data sets (for more on sampling and structural zeros see |6, §5.1.1]).

The terms “sampling zero” and “structural zero” are denotationally about contingency
tables, but they also carry implications about X as well. For example, the term “structural
zero” connotes that maximum likelihood estimation should proceed over a projection of X
(see [36]). Due to this secondary definition imparted to the term “structural zero," and in
view of the fact that this chapter is concerned with the intersection of X with the hyperplane
p; = 0 as opposed to the projection of X, we introduce the definition of a model zero.

Definition 5.1.1 (Model zeros). Given a model M with M = X C P" and data vector
u with u; = 0, a model zero at cell ¢ is a zero such that the maximum likelihood estimate p
for w is a critical point of £,(p) over X N {p;, = 0}.
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Remark 5.1.2. From the remainder of the chapter, we will use “structural zero" to mean a
zero at cell ¢ such that 1) p; = 0, and 2) maximum likelihood estimation proceeds over the
projection of X onto all coordinates except the i¢th coordinate.

In this chapter we explore in depth the algebraic considerations of maximum likelihood
estimation when the data contains sampling zeros or model zeros. The main theorem of
Section 5.2, Theorem 5.3.6, shows how solutions to the maximum likelihood estimation
problem for data with zeros on X are contained in the likelihood correspondence of X. This
result gives statistical meaning to the likelihood correspondence when wu; is equal to zero
and has interesting theoretical and computational implications. On the theoretical side, we
can use Theorem 5.3.6 to compute a lower bound on the ML degree of a variety X. On the
computational side, Theorem 5.3.6 can be applied using coefficient-parameter homotopies to
quickly find critical points of ¢,(p) over X (Algorithm 5.4.2) and can make the problem of
computing the ML degree for multi-way tables tractable (Section 5.4).

This chapter is organized as follows. In Section 5.2, we give preliminary definitions and
introduce a square parameterized system called the Lagrange likelihood equations. Proposi-
tion 5.2.2 describes the properties of the Lagrange likelihood equations that will be referenced
in later sections. We also describe how the variety of the Lagrange likelihood equations is
related to the likelihood correspondence of Huh and Sturmfels [27].

In Section 5.2, we discuss how sampling and model zeros change the maximum likelihood
problem. Theorem 5.3.6 describes the special fiber pry'(u) when u contains zero entries.
We use this theorem to give a lower bound on the ML degree of X. The section continues
with exploring how solutions to the Lagrange likelihood equations partition into solutions
for different maximum likelihood estimation problems for sampling and model zeros; these
partitions are captured in the ML tables introduced in this section. We end this section by
fully characterizing the ML degree for different sampling and model zero configurations of a
generic hypersurface of degree d in P".

We conclude with Section 5.3, which illustrates several computational advantages that
can be achieved in ML degree computation by first considering data vectors with zeros.
Algorithm 5.4.2 gives a method to find critical points of £,(p) over X by computing the
critical points of ¢,(p) when u contains model zeros; these solutions are significantly easier
to compute. We continue the section by looking at Grassmannian and tensor examples. We
conclude by extending maximum likelihood duality to u with zero entries and showing how
ML duality offers further computational benefits.

5.2 Likelihood equations and ML degree

The mazimum likelihood degree (ML degree) of a variety X C P" is defined as the number
of critical points of the likelihood function /,(p) on X,., \ #H, for generic data u. The
ML degree of X quantifies the algebraic complexity of the maximum likelihood estimation
problem over the model M, indicating how feasible symbolic algebraic methods are for
finding the maximum likelihood estimate. The ML degree has an explicit interpretation in
numerical algebraic geometry as well. Assuming that the ab initio stage of a coefficient-
parameter homotopy has been run [41, §7] the ML degree is the number of paths that need
to be followed for every subsequent run.
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For each u, all critical points of £, (p) over X form a variety. Thus, by varying u over P
we obtain a family of projective varieties with base PP,. In algebraic geometry, the natural
way to view this family of parameterized varieties is as a subvariety Lx of the product
variety P} x P} where the elements of the family are the fibers of the canonical projection
pro @ Pp x P — P} over the points w in ;. The subvariety Lx is called the likelihood
correspondence [27], which is the closure in P} x P} of

{(p,u) : p € Xyeq \ Hn and dlog(¢,(p)) vanishes at p}.

Just as we can talk about a parameterized family of varieties, we can also talk about a
parameterized system of polynomial equations. For us, a parameterized polynomial system is
a family F of polynomial equations in the variables py, ..., p, and the parameters ug, . . ., u,.
A member of the family is chosen by assigning a complex number to each parameter u;. If
u is a generic vector in P”, we call the resulting system generic. A system of equations is
said to be square if the number of unknowns (variables) equals the number of equations of
the system. Algebraic homotopies are an effective way to solve many members of a family
F. By solving a generic member of the family, we determine the solutions to another system
of the family using a coefficient-parameter homotopy (see [34]), thus, this viewpoint can be
computationally advantageous.

Now we define a parameterized square system of polynomial equations called the Lagrange
likelihood equations. The Lagrange likelihood equations for a variety X C P™ of codimension
¢ consists of n 4+ 1+ ¢ equations. The n+ 1+ ¢ unknowns are pg, p1, . ..Pn, A1, - .., Ac and the
parameters are uo, ..., u,. The advantage of the Lagrange likelihood equations, in addition
to being a parameterized square system, is that properties of a point (p, «) in the likelihood
correspondence become apparent. These properties are summarized in Proposition 5.2.2.

Definition 5.2.1 (Lagrange likelihood equations). Let X be a codimension ¢ irreducible
variety. If X is an irreducible component of the variety of hy, hs, ..., h., then the Lagrange
likelihood equations of X denoted by LL(X, u) are

hi=hy=---=h.=0 (5.1)

(ugpi — u;) = pi (AOihy + A20ihg + - - 4+ AOihe) for i =0,...,n (5.2)

If X is a complete intersection, then hy,...,h. are the minimal generators of I(X).
Otherwise, in order to satisfy the conditions imposed on X, one can choose hq,...,h. to be

c random linear combinations of the minimal generators of I(X).

Proposition 5.2.2. The Lagrange likelihood equations have the following properties.
1. If (p,\) is a solution of LL (X, u) and uy # 0, then > p; = 1.
2. If p; =0, then u; = 0.

3. If the point p is a critical point of {,(p) restricted to X,eq\Hn, then there exists an
unique A such that (p,\) is a solution to LL (X, u).

4. If p € X,y and (p, \) is a regular isolated solution to LL (X, u), then p is a critical
point of £, (p) on Xyeg\Hn.-
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5. For generic choices of u, the number of solutions of LL (X, u) with p € X,¢s\H, equals
the MLdegree of X.

Proof. To arrive at property (1), we sum the equations of (5.2) to get

n

Z(UH% —u; — pi(MOihy + - - - + A\ 0ihe)) = ZPﬂM — Uy = U+(ZP¢ —1).
i=0 i=0

1=0

The first equality above follows by Euler’s relation of homogeneous polynomials.

The implication stated in property (2) is clearly seen by setting p; equal to zero in the
ith equation of Equations (5.2).

For properties (3) and (4), we note that, as discussed in Chapter 4, p € X,¢,\H, is a
critical point of £,(p) on X if and only if the linear subspace Tpl contains the point

(uo uy Uy u+)

Po P+ Pn P+

When X is of codimension c¢, this is equivalent to saying that p € X,.,\'H,, is a critical point
for £,(p) on X if and only if there exist Ay, ..., A\, € C such that for all 0 <7 <mn,

%_u_—‘r:)\l-aihl—i_...—i_)\c'aihC'
Pi D+

The Langrange likelihood equations are a restatement of this condition with the denomina-

tors cleared. Property (5) follows from (3) and (4). O

If we homogenenize the Lagrange likelihood equations using p, and w, so that each
equation is homogeneous in both the coordinates py, ..., p, and the coordinates uo, ..., u,
AL, -+, A, the Lagrange likelihood equations define a variety Lx in the product space P x

IPZKC. The variety Ly is related to the likelihood correspondence as follows. Let

7 P" x PP P ox P
((po:-ipn),(ug:o ity Ao X)) = ((poseeeipn), (o s oon uy)).
Then by Proposition 5.2.2, the morphism 7m maps a dense open set of Lx to a dense open

set of £(X), thus, )
L(X)=n(Lx).

The implication of this equality is that by studying the Lagrange likelihood equations, we
are in fact studying fibers of the projection pry : P x Py — Py,

We conclude this section with an example that shows how the Lagrange likelihood equa-
tions are used to find critical points of £,(p).

Example 5.2.3. Let X = Gryg C P™ be the variety defined by

DiiPki — PikDji + PijPik, 1 <i<j<k<l<6.
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The Grassmannian Gry ¢ parameterizes lines in the projective space P°. It has codimension
6 and is not a complete intersection. However, the 6 equations

hi = psePas — P3sPas + P3aPse, ha = PasPas — Paspas + P2aPse,
ho = pasp3s — Paap3s + Paspas, hs = DiePas — DisPas + D1aDs6s
hs = pispsa — P1apss + P13Pas, Ne = P1aP23 — P13P24 + P12Psa

define a reducible variety that has Gryg as an irreducible component (the other compo-
nents live in the coordinate hyperplanes). The system of equations LL (X, u) consists of 21

equations: the equations hy = --- = hg = 0 and the 15 below
Uig —uyprz = prafAr- 3—’?2+...+A6~ éﬂé)
uiz —uypis = pis(Ar- W}g+'--+)\6' Whg)
Use — UiPss = Pse(A1 - (‘%216 +...+ Xs e %)-

Solving LL (X, u), we find there are 156 regular isolated solutions (p, A) with p € X, thus,
by Proposition 5.2.2 the ML degree of X is 156.

5.3 Sampling and model zeros

In this section, we determine what happens when the data vector u contains zero entries. By
understanding the maximum likelihood estimation problems for sampling and model zeros
we gain insight into the ML degree of a variety X.

For a subset S C {0,1,...,n}, we define

Us :={ueP"|u; =0if i € S and nonzero otherwise}.

The set Ug specifies which entries of the data vector are zero. A partial order on the set
of all {Ug : S C {0,1,...,n}} is induced by inclusion and we notice Ug C Ug if and only
if S C S. For ease of notation, we define U := Uy. When u € Ug, every u; with i € S is
considered a sampling zero or a model zero.

A sampling zero at cell i changes the likelihood function since the monomial p;" no longer
appears in [,. In the case of a model zero at cell i, the model zero is not considered as part
of the data, and thus, the likelihood function is changed as well: p;" no longer appears in the
function and p; is set to zero in p,. Below, we make precise how the maximum likelihood
estimation problem changes in the presence of model zeros and sampling zeros and describe
the maximum likelihood estimation problem on X for data u € Ug with model zeros R.

Let S C€{0,1,...,n} and R C S and consider the following modified likelihood function

Cus =[] ot /0t
igS
The set Xg := XN{p € P"|p; =0 for all i € R} will be called the model zero variety for X
and R. We consider Xy as a projective variety in P~ 1#l and define Hp as the set of points

in P18l where (Hz€ R pi) - po vanishes. The model zero variety Xpg is called proper if the

codimension of Xz C Pl equals the codimension of X C P".
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Definition 5.3.1. The mazximum likelihood estimation problem on X for data uw € Us with
model zeros R, denoted M Ly g, is to determine the critical points of £, s on Xp \ Hpr. The
MLdegree (Xg, S) is defined to be the number of critical points of £, s on X\ Hr for generic
u € Ug when Xy is proper and zero otherwise.

In terms of the likelihood correspondence, the MLdegree(Xg,S) is the cardinality of
the subset of points (p,u) of pry'(u) such that p; = 0 for all i € R for generic u € Us.
Whenever R = S, then MLdegree(Xg, S) simply equals MLdegree(Xgz € P*1#). In terms
of optimization, the MLdegree (Xg, S) gives an upper bound on the local maxima of [, g :=
[Tigspi" on M {p; =0 for all i € R}.

Next, we take the time to explain the subtleties of sampling zeros, model zeros, and
structural zeros. When given a model M with closure X and structural zeros R, common
practice is to optimize [, r restricted to mg(X), the closure of the projection of X onto all
coordinates not indexed by R [6][36]. In contrast, given a model M with closure X and
model zeros R, the goal is to optimize [, g restricted to Xg. In general, mp(X) # Xg, and
so, the number of critical points will differ. The reason this occurs is because projections
of intersections is not the same as intersecting projections. We illustrate the differences
between model zeros, sampling zeros, and structural zeros in the next three examples.

Notation 5.3.2. We use S to denote the indices of the data zeros in v and R C S to denote
the indices of the model zeros. While we defined S C {0,1,...,n}, in some examples, it
is more natural to index the entries of u by ordered pairs. In this case, S will be a set of
ordered pairs indicating the positions of the data zeros and R will be a set of ordered pairs
indicating the positions of the model zeros.

Example 5.3.3 (Model, sampling, and structural zeros). Let X denote the set of
3 x 3 matrices of rank 2 in P®. The variety X is a hypersurface defined by the polynomial
J = p11P22p33 — P11P23P32 — P12P21P33 + P12P23P31 + P13P21Ps2 — P13Pa2ps1- LThe ML degree of
X is 10.

When we have data v as a 3 x 3 table and the upper left entry u;; is a model zero,
then optimization proceeds over Xz = X{(1,1);. The model zero variety X is defined by the
polynomial —piap21ps3 + Prape3ps1 + P13P21Ps2 — P13P22p3i, obtained by setting p;; = 0 in f.
In this case, there are 5 complex critical points, that is, MLdegree(Xg) = 5.

When wuq; is a sampling zero, optimization proceeds over X and critical points on the
coordinate hyperplanes are ignored. In this case, there are 5 complex critical points whose
coordinates are all non-zero, i.e., MLdegree(X, {(1,1)}) = 5.

When uy; is a structural zero, optimization proceeds over mr(X) = P7. The projection
is onto since X is a hypersurface. In this case, there is one complex critical point.

Example 5.3.4. Let X denote the set of 3 x 4 matrices of rank 2 in P!!. The defining ideal
of X is generated by the four 3 x 3 minors of p,

I (X ) = <P11p22p33 — P11P23P32 — P12P21P33 + P12P23P31 + P13P21P32 — P13P22D31,
P11P22P34 — P11P24P32 — P12P21P34 + D12P24P31 + P14P21DP32 — P14P22D31,
P11DP23P34 — P11P24P33 — P13P21P34 + D13P24P31 + P14P21DP33 — P14P23D31,



CHAPTER 5. MAXIMUM LIKELIHOOD GEOMETRY IN THE PRESENCE OF DATA
ZEROS 64

P12P23P34 — P12P24P33 — P13P22P34 + P13P24P32 + P14P22P33 — p14p23p32>-

The ML degree of X is 26.
Now let u;; be a model zero in the contingency table uw. In this case, R = {(1,1)} and
the defining ideal of Xy is

[<XR) = <p12p21p33 + P12P23P31 + P13P21P32 — P13P22P31;
D12DP21P34 + P12P24P31 + P14aP21P32 — P14P22D31,
D13P21P34 + P13P24P31 + P14P21P33 — P14P23P31,
P12P23P34 — P12P24P33 — P13P22P34 + P13P2aP32 + P14P22P33 — PraP23Psz)-

The MLdegree(Xp) = 13.
When w;; is a structural zero, we follow [36] and eliminate p;; from the ideal 1(X) to
obtain the defining ideal of m(X),

I(mr(X)) = (p12P23P34 — P12D24P33 — D13P22P34 + D13P2aD32 + P14P22P33 — P1aDa3Ps2)-

Optimizing over mz(X), yields 10 complex critical points. Coincidently, 10 is also the ML
degree for 3 x 3 rank 2 matrices.

Example 5.3.5. Let X be the set of 3 x 3 matrices of rank 1 in P%. It is well known that the
ML degree of X equals 1 and that the corresponding critical point of ¢,(p) is u% (Wit ]
T+

for generic choices of data. Now consider the case when

0 w2 w3
u= | uy 0
usz;r uszx 0

The zeros of u are indexed by S = {(1,1),(2,2),(3,3)}.
If all zeros of u are sampling zeros, then we ask how many critical points of £,y =

U1, U12 U+

pIipia? - py3 /pitt restricted to X C P® there are. We find the unique critical point is
again ﬁ (Wi j].

If the zeros of u are model zeros, then we let R = S and we ask how many critical points
of by r = PIyPI Py Py Pyt pss? /il restricted to X N{p11 = pao = ps3 = 0} \ Hg C P°
there are. We find there are no such critical points. This is because X N {p1; = poo = p33 =
0} C Hr.

If the zeros of u are structural zeros, then the model under consideration is a quasi-
independence model; such models have been well-studied. The projection m(X) is defined
by one equation piapasps1 — pi3pe1ps2, and we find the ML degree of mg(X) is 3.

We now come to the description of the special fiber pry'(u) when u is a generic data
vector in Ug. This connects the material in this chapter with previous work on the likelihood
correspondence [27].

Theorem 5.3.6. Let u be a generic data vector in Ug for some S C{0,...,n}. Let X CP"
be a codimension c irreducible component of a projective variety defined by homogeneous
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polynomials hy, ..., h.. Let Xr be a proper model zero variety for all R C S. Then, the
special fiber pry*(u) contains the critical points of the problem M Lgg for all R C S.

Moreover, if (p,u) € pry'(u) with p € (Xg \ HR)reg then p is a critical point of the
problem M Lp g for some R C S.

Proof. Most of the work of this proof comes from the formulation of the Lagrange likelihood
equations. First, note that for a variety Y C P and u € U§ for S” C {0, 1,...,n}, the point
p € Yoy \ H is a critical point on Y for [, ¢ if and only if the linear subspace TpL contains
the point v € P*~ 1% where
Ui:{]%—;j—i ifigs,
- ifieS.

This condition results in the same equations as in LL(Y,u) when u; = 0 for all i € S and p;
is assumed not to be zero when ¢ ¢ S.

Second, note that when we substitute p; = 0 into LL(X,u), we get the equations for
LL(Xg,u). Thus, by substituting p; = 0 for ¢ € R and w; = 0 for i € S into LL(X,u), we
get a system of equations whose solutions are the critical points of ¢, ¢ on Xp.

This implies that if Xz is a proper model zero variety then p is a critical point on Xp
for ¢, s if and only if there exists A such that (p, A) is an isolated solution to LL(X,u), or
equivalently, the point (p,u) € Lx.

From Proposition 5.2.2, we know u; # 0 implies p; # 0, thus, we can account for all
solutions to LL(X, u) since we consider every subset R C S. O

In the proof of Theorem 5.3.6, we also proved the following statement (Proposition 5.3.7).
We state Proposition 5.3.7 separately in order to highlight the equations for M Lg g.

Proposition 5.3.7. Fix u € Ug and X C P" with codimension c that is an irreducible
component of the projective variety defined by homogeneous polynomials hy, ..., h.. Whenever
Xpg 1s proper, the critical points of ¢, s restricted to Xr are reqular isolated solutions of the
equations:

hlzhgz---:hc:O
p; =0 forie R, and (5.3)
Uy = (Aldhl + XoOjhg + -+ + Ac&hc) fOT’i €S \ R (5 4)

(uyp; — pyuwi)) = pi(MOihy + XoO;ho + + -+ + A\O;he)  fori & S
Moreover, the solutions to (5.3) and (5.4) for all R C S account for all the solutions to
LL (X, u).

An important consequence of Theorem 5.3.6 is that we can use a parameter homotopy
to take the solutions of LL(X,u) for u € U to the solutions of LL(X,v) for v € Ug. Such
methods are discussed in [41] and can be implemented in Bertini [3] or PHCpack [46]. Doing
so, we solve 219! different optimization problems corresponding to the 2!5 subsets of S. In
the case | S |= 1, we get the following corollary.

Corollary 5.3.8 (ML degree bound). Suppose S = {n} and X C P" is an irreducible
projective variety. Then for generic u € Ug, we have

MLdegree(X) > MLdegree(Xs) + MLdegree(.X, S)



CHAPTER 5. MAXIMUM LIKELIHOOD GEOMETRY IN THE PRESENCE OF DATA
ZEROS 66

Moreover, when X 1is a generic complete intersection, the inequality becomes an equality.

Proof. This follows from Theorem 5.3.6 and the fact that the number of solutions to a
parameterized family of polynomial systems for a generic choice of parameters can only
decrease on nested parameter spaces |34|. Equality holds when u remains off an exceptional
subset & C U which is defined by an algebraic relation among the p coordinates and u
coordinates [41]. Since X is a generic intersection, we have Uy is not strictly contained in &,
and the equality holds. O

As we can see from Corollary 5.3.8, solutions to LL(X,u) with v € Ug get partitioned
into sampling zero and model zero solutions, in fact, we see this same behavior even as we
increase the size of S. We encode MLdegree (Xg, S) for all possible choices of (R,S) in a
table called the ML table of X whose rows are indexed by R C {0,1,...,n} and whose
columns are indexed by S C {0,1,...,n}. Due to space considerations, in our examples, we
often only print partial ML tables, i.e. that is subtables of the complete ML table.

Example 5.3.9. The ML table of a generic curve of degree d in P? is below. The top left
entry of the table is the ML degree of a generic curve of degree d in P2

R\S {+ {0} {1} {2}
O d+d@® & & &
{0} d 0 0
(1} d 0
(2} d

Example 5.3.10. Let X C P® be the projectivization of all 3 x 3 matrices of rank 2. A
partial ML table of X is below.

R\S {} {11} {12} {11,12}

{4 10 5 5 1
{11} 5 - 4
{12} 5 4

{11,12} 1

In Example 5.3.9 and Example 5.3.10 above, each of the columns of the MLtable(X) sum
to MLdegree(X). This does not happen for all varieties, but, in general, the column sums
are lower bounds of the ML degree of X.

Corollary 5.3.11. The column sums of the ML table of X are less than or equal to MLdegree(X),
meaning MLdegree(X) > 35 s MLdegree(Xg, S). Moreover, when X is a generic complete
intersection, the inequality becomes an equality.

The inequality in Corollary 5.3.11 above can be strict as the next example shows.

Example 5.3.12. Let f = p} + p} + p3 + p3 define a hypersurface X C P3. Some of the
entries of the MLtable of X are below. We have MLdegree(X) = 30 but for S = {0,1}, we
have }p- g MLdegree(Xg, 5) = 28.
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r\S {} {0} {0,1}
{} 30 21 12

{0} 9 7
{1} 7
{0,1} 2

Remark 5.3.13. Our definition for the entries of the ML table ignores multiplicities and
singularities of the variety. We only take account regular isolated solutions. An interesting
research direction would be to take into account multiplicities to obtain an equality in the
statement of Corollary 5.3.8.

We conclude this section with a full description of the ML table for a generic hypersurface
of degree d in P".

Theorem 5.3.14. Suppose X is a generic hypersurface of degree d in P™ and let s =| S |
andr =| R|. Then

A@oy) s
MLdegree (Xg, S) = < d" 5 (d — 1)S_T_1 , S>T
0 otherwise.

Proof. Since the entries of the ML table of generic degree d hypersurfaces X C P" depend
only on d,n, and the size of R and S, we ease notation and let MLdegree (X, C P, s) :=
MLdegree (Xg C P, S). By Proposition 5.3.7, it follows

MLdegree (X, C P"*' s) = MLdegree (X,_; C P",s — 1) forr,s > 1 (5.5)

because a section of a generic hypersurface projected into a smaller projective space is again
generic degree d hypersurface. We will use (5.5) to induct on n.

Recall by [23] the ML degree of a generic degree d hypersurface in P" is -4 (d" — 1). So
when s = r, we have MLdegree (Xg, S) = 74 (" — 1) as desired. So for n = 2 we have

MLdegree (Xg, #) = MLdegree (Xg, {0}) + MLdegree (X{o}, {0}) .

Simple algebra reveals MLdegree (Xy C P? {0}) = d?. With this we have shown the theorem
holds when n = 2. To complete the proof by induction, we need only show
MLdegree (X, C P"t! s) equals d"*t! (d — 1)*" ", when r = 0 and < 5. To show this we
recall
MLdegree(X C P"') = " MLdegree (X C P**' S) . (5.6)
RCS

The right hand side of (5.6) becomes

MLdegree (Xg C P"*',s) + Z (S) MLdegree (X,_1 C P", s —1).
r

r=1
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Letting D = MLdegree (Xy C P"*! s) we have that (5.6) simplifies to

d

d
n+1 n— s+2 s—r—1 n—s+1
——(d D+§:()d — )T (d 1).

With the binomial formula it follows D = d"~**2 (d — 1)*~" finishing the proof. O

Example 5.3.15. By Theorem 5.3.14 we have the following MLtable of a generic degree d
hypersurface X C P™.

R\S {} {0} {0,1} {0,1,2}

0 L@-1) d@d-1)°" dv'd-1) d2(d-1)
{0} A dt—1) dvt(d-1)" a7 ?(d-1)!
{0,1} (@2 —1) a2 (d-1)°
{0,1,2} L (d8 -1

5.4 Applications and further directions

In this section we illustrate the computational gains acquired by working with model zero
varieties. This section has four brief subsections focused on different applications: ML table
homotopies, ML duality, tensors (multi-way tables), and Grassmannians.

ML table homotopy

Let X C P" be a generic complete intersection of codimension ¢ defined by homogeneous
polynomials hq, ..., h.. Let u be generic data vector in U, and let us be a generic data vector
in Ug with S C {0,1,...,n}. Our first application of Corollary 5.3.8 is the construction of
a homotopy to determine critical points of £,(p) on X. We determine the critical points of
ly, s on X NHp for each subset R of S. So rather than doing a single expensive computation
to determine the critical points of £,(p) on X, we perform several easier computations to
determine critical points of ¢, s. Doing so allows us to use Proposition 5.3.7 to get the
critical points of ¢, (p) using a coefficient-parameter homotopy. The homotopy requires two
steps. Step 1 determines the start points by solving multiple systems of equations. Step 2
constructs the coefficient-parameter homotopy (see [41, §7]) that will do the path tracking.

Example 5.4.1. Let X C P? be defined by f = 2p3 — 3p? + 5p3 — Tp3. We note that
MLdegree(X) = 39 and the ML table of X is:

R\S {} {0} {1} {0 1}

{} 39 27 27
{0} 12 - 9
{1} 12 9

{0,1} 3
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Let S = {0,1} and let ug be a generic vector in Us. For Step 1 of the algorithm, we solve
four systems of equations. Each system of equations corresponds to a choice of R from
R :={0,{0},{1},{0,1}}. For example, when R = {0, 1}, we solve the following system

=0
po =20
p1 =0

(u+p2 - p+u2) = poA1 - Oaf
(uyps — prus) = psAy - Osf

and find 3 solutions. In general, we solve the equations in Proposition 5.3.7. So when
R =10,{0},{1},{0,1} we determine there are 18,9, 9,3 solutions for the respective systems
for a total of 39 solutions. For Step 2, by Proposition 5.3.7, the computed 39 solutions are
solutions to the Lagrange likelihood equations LL (X, us). By using the coefficient-parameter
homotopy LL(X, us — u), we can go from data with zeros u, to generic data w.

Algorithm 5.4.2.

e Input: us € Ug and homogeneous polynomials hy, ho, ..., h. defining X with codimen-
sion c.

e (Step 1) Solve LL(Xg, uy) for each R C S to determine the start points of the homotopy.
e (Step 2) Construct and solve the coefficient-parameter homotopy LL(X, us — u).
e Output solutions to LL(X, u) yielding the critical points of £, (p) on X.

The immediate advantage of this homotopy is that we can get several critical points of
l,(p) quickly. Thus, we get some insight if the ML degree of X is small. Moreover, one
can use monodromy methods [39] to attempt to recover additional solutions. One drawback
is that by increasing the size of S we also increase the number of subproblems we need to
solve, a second drawback is that we may not know a priori that ), MLdegree(Xg, S)
equals the ML degree. To address the first drawback, one can take advantage of the structure
of the problem to lessen the number of subproblems. For example, in the case when X is
a generic hypersurface, we know that the ML degree of X depends only on the size of R
and S. Taking advantage of this structure and pairing change of variables with parameter
homotopies, we preprocess much fewer subproblems—namely |S| subproblems versus 2151,
While we do not have equality in Corollary 5.3.8 in general, equality does occur in some
examples (see Theorem 5.3.14).

Maximum Likelihood Duality

In this section, we extend ML duality for matrix models when u contains zero entries. We
let X C P™"~! be the variety of m x n matrices of rank less than or equal to r and we let
Y c P™~! be the variety of m x n matrices of rank less than or equal to m — r + 1 where
m < n. In Chapter 3, it is shown that MLdegree X = MLdegreeY by considering critical
points of [, on subvarieties of the algebraic torus; a bijection between said critical points is
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also given. Translating these results into the language of determining critical points of ¢,(p)
on subvarieties of projective space, we are able to talk about sampling zeros and model zeros.
As a consequence, we can use maximum likelihood duality to gain computational advantages
by exploiting that sampling zeros are dual to model zeros.

Proposition 5.4.3. Let X and Y be defined as above so that they are ML dual varieties.
Let S C [n] and u € Ug. If P € C™ is a solution to LL(X,u), then there exists a Q) € C™"
such that Q) is a solution to LL(Y,u) and

PxQ =y (5.7)

where Qy = { 4 ] * [uiguﬂ] (5.8)
Ui+ Uyt

Proof. Let D C Prm~1 x Prm=1x Prm=1 he the set of all points (p, ¢, u) such that (p,u) € Lx,

(q,u) € Ly and

uieriqu-j — Dyt Uipuut+g =0for 0 <¢e <m, 0 <i<n.
The set D is a projective variety, thus, if we consider the projection

¢:P"xP" xP"— P" xP"
(p,q,u) = (p, u),

the image of D under ¢ is a variety. By 3.2.4, we know that a dense open subset of Lx is
contained in ¢(D), therefore, Lx C ¢(D) and the statement of the theorem follows. O

Theorem 5.4.4. Let X and Y be defined as in Lemma 5.4.3. Fix S C [m] X [n] and generic
u € Ug. Then a solution to the mazimum likelihood estimation problem M Ly s(u) is dual to
a solution to the maximum likelihood estimation problem M Lp s(u), with (S\ R) C R'.

When | S |= 1, the theorem says that a sampling zero critical point is dual to a model
zero critical point. We also believe that the converse, model zero critical points are dual
to sampling zero critical points is true, and that in general, (S \ R) C R is actually an
equality in the theorem. Nonetheless, because computing model zeros is heuristically easier
than computing sampling zeros, we make computational gains with Theorem 5.4.4.

In Example 5.3.10, we see that a column of the ML table is symmetric. This is because
the variety of 3 x 3 matrices of rank 2 is ML self dual. Other examples of varieties that
are ML self dual include m x n matrices of rank mT“ with m being odd. We conclude this
subsection with an ML table of 4 x 4 matrices of rank 2 and 3 respectively. An ongoing
project is to give a recursive formula for the ML table of m x n matrices of rank r similar

to what was done in Theorem 5.3.14.
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Example 5.4.5. ML table of 4 x 4 rank 2 matrices:

R\S {} {11} {11,44} {11,22,44} {11,22,33,44}

{} 191 118 76 51 35

{11} 73 42 25 16

{22} - 25 16

{33} - - 16

{44} 42 25 16
{11,22} - 17 9
{11, 33} - - 9
{11,44} 31 17 9
{22, 33} - 9
{22, 44} 17 9
(33,44} - 9
{11,22,33} - 8
{11,22, 44} 14 8
{11,33,44} 8
{22,33,44} 8
{11,22,33,44} 6

ML table of 4 x 4 rank 3 matrices:

R\S {} {11} {11,44} {11,22,44} {11,22,33,44}

{} 191 73 31 14 6

{11} 118 42 17 8

22} - 17 8

{33} - - 8

{44} 42 17 8
{11,22} - 25 9
{11,33} - - 9
{11, 44} 76 25 9
{22, 33} - 9
{22, 44} 25 9
{33, 44} - 9
{11,22,33} - 16
{11,22,44} 51 16
{11,33,44} 16
{22, 33,44} 16
(11,22, 33,44} 35

Tensors

Let T be the set of 2 x 2 x 2 x 2 tensors with border rank < 2. The ML degree of this
variety is unknown. The variety is defined by the 3 x 3 minors of all possible flattenings.
This is an overdetermined system of equations with codimension 6. We choose 6 of the
equations to be hq, ..., hg for the Lagrange likelihood equations. For the model zero variety
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with p1111 = pages = 0 we find 3 solutions for a generic u € Ug with S = {1111,2222}. When
we solve the Lagrange likelihood equations for R = {1111}, we find 52 solutions with p € X.

Theorem 5.4.6. Let T be the set of 2 x 2 x 2 x 2 tensors with border rank < 2.
MLdegree(T") > 52

In this example, we also see that when we have data with zeros the number of critical
points can drop significantly as we introduce more model zeros.

Grassmannians

Let the ideal I, be generated by the quadrics
DijPkl — DikPjt + Papje, 1 <i<j<k<l<n.

Then the variety of I, is the Grassmannian Gry, C p(:)-1, The Grassmannian Gry,,
parameterizes lines in the projective space P"~!. Below we have a table of computations.
The top line of numbers are ML degrees of Grassmannians while the next line are ML degrees
of a model zero variety for Grassmannians. The bottom line has ML degrees of sampling
ZEros.

Gr1"2,4 Gl“2,5 Gf2,6

MLdegree X 4 22 156

MLdegree (Xq25, {12}) 1 4 22
MLdegree (X, {12}) 3 18 134

These computations were performed by choosing ¢ = codim X generators of Iy, tobe hy ... I,
for LL(X,u). We used the numerical software bertini and symbolic packages available in
Macauay?2 [16]. From this data we make the following conjecture to motivate the pursuit of
a recursive formula for ML degrees of Grassmannians.

Conjecture 5.4.7. For n > 4 we conjecture

MLdegree Gra , = MLdegree(Gra ,,+1 N{p12 = 0}).

5.5 Conclusion

Understanding model and sampling zeros gives us insights into the maximum likelihood
degree for a given model. When the data vector contains a zero entry, we see that critical
points to the likelihood function partition into two groups: critical points for the sampling
zero problem and critical points for the model zero problem. This split can help us obtain
bounds for the ML degree and provides interesting directions for further research within
the study of likelihood geometry, for example, determining which varieties yield an equality
in Corollary 5.3.8. Furthermore, model zeros can help with the computational problem of
finding all the solutions to a set of likelihood equations. This chapter illustrates some of the
advantages of working with model zeros, as seen by the lower bound obtained on the set of
2 x 2 x 2 x 2 tensors of border rank < 2.
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Chapter 6

Bertini for Macaulay?2

The content of this chapter has been submitted to the Journal of Software for Algebra and
Geometry as an article of the same title with minor changes throughout for consistency with
other chapters. It is joint work with Daniel J. Bates, Elizabeth Gross, and Anton Leykin.

6.1 Numerical algebraic geometry

Numerical algebraic geometry (numerical AG) refers to a set of methods for finding and
manipulating the solution sets of systems of polynomial equations. Said differently, given
f : CYN — Cn", numerical algebraic geometry provides facilities for computing numerical
approximations to isolated solutions of V(f) = {z € CV|f(z) = 0}, as well as numerical ap-
proximations to generic points on positive-dimensional components. The book [41] provides
a good introduction to the field, while the newer book [3] provides a simpler introduction as
well as a complete manual for the software package Bertini [5].

Bertini is a free, open source software package for computations in numerical algebraic
geometry. The purpose of this chapter is to present a Macaulay?2 package Bertini that pro-
vides an interface to Bertini. This package uses basic datatypes and service routines for
computations in numerical AG provided by the package NAGtypes. It also fits the framework
of NumericalAlgebraicGeometry package [30], a native Macaulay2 implementation of a collec-
tion of numerical AG algorithms: most of the core functions of NumericalAlgebraic Geometry
have an option of using Bertini instead of the native solver.

In the remainder of this section, we very briefly describe a few fundamental concepts of
the field. In the subsequent sections, we describe the various run modes of Bertini that
have been implemented in this interface. We conclude with Section 5, which describes how
to use Bertini within NumericalAlgebraic Geometry.

Finding isolated solutions

The core computational engine within Bertini is homotopy continuation. This is a three-
stage process for finding a superset of all isolated solutions in V'(f). Given a polynomial
system f(z), the three steps are as follows:
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1. Choose an easily-solved polynomial system ¢(z) that reflects the structure of f(z), and
solve it. Call this set of solutions S.

2. Form the homotopy
H(z,t) = (1 —t)f(2) +tg(2),

with v € C a random complex number. Notice that H(z,1) = vg(z), the solutions of
which are known, and H(z,0) = f(z), for which we seek the solutions.

3. There is a real curve extending from each solution z € S. Use predictor-corrector
methods, adaptive precision, and endgames to track along all of these paths as t goes
from 1 to 0.

Assuming ¢(z) is constructed in one of several canonical ways [41], there is a probability one
guarantee that this procedure will result in a superset of all isolated solutions of f(z) = 0.

There are many variations of this general technique, and there are many minor issues to
consider when implementing this method. However, due to space limitations, we leave the
reader to explore the references for more information on this powerful method.

Finding irreducible components

Given an irreducible algebraic set X of dimension k, it is well known that X will intersect
almost any linear space of codimension k in a finite set of points. In fact, there is a Zariski
open subset of the set of all linear spaces of codimension k for which intersection with X
yields some fixed number of points, called the degree of X, deg X.

This fundamental fact underlies the computation of positive-dimensional irreducible com-
ponents in numerical algebraic geometry. Suppose algebraic set Z decomposes into irre-
ducible components Z; ;,

Z = Ut % Ujen, Zij,

where ¢ is the dimension of Z; ; and j is just the index of component Z;; in dimension ¢,
stored in finite indexing set A;.

In numerical algebraic geometry, the representation W of an algebraic set Z consists of
representations W; ; for each irreducible component Z; ; of Z. In particular, witness set W, ;
is a triple (f, L; ;, /MZJ), consisting of polynomial system f, linear functions L; ; corresponding
to a linear space of codimension 4, and witness point set 171/\” = Z;; NV (L; ;).

There are a variety of ways to compute W, many of which are described in detail in [3].
Most of these methods can be accessed through the package Bertini by using optional inputs
to specify the desired algorithm.

6.2 Solving zero-dimensional systems

In the following sections we outline and give examples of the different Bertini run modes
implemented in the interface package Bertini.
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Finding solutions to zero-dimenstional systems

The method bertiniZeroDimSolve calls Bertini to solve a polynomial system and returns
solutions as a list of Points using the data types from NAGtypes. Diagnostic information,
such as the residuals and the condition number, are stored with the coordinates of the
solution and can be viewed using peek.

il : R=CC[x,y];

i2 £ = {x"2+y~2-1,(x-1)"2+y~2-1};

i3 : solutions=bertiniZeroDimSolve (f)

03 = {{.5, .866025}, {.5, -.866025}}

i4 : peek solutions_0

04 = Point{ConditionNumber => 88.2015 }
Coordinates => {.5, .866025}
CycleNumber => 1
FunctionResidual => 3.66205e-15
LastT => .000390625
MaximumPrecision => 52
NewtonResidual => 4.27908e-15
SolutionNumber => 3

Users can specify to use regeneration, an equation-by-equation solving method, by setting
the option USEREGENERATION to 1.

i5 : solutions=bertiniZeroDimSolve(f, USEREGENERATION=>1);

In common applications, one would like to classify solutions, e.g. separate real solutions
from non-real solutions, and, thus, recomputing solutions to a higher accuracy becomes
important. The method bertiniRefineSols calls the sharpening module of Bertini and
sharpens a list of solutions to a desired number of digits using Newton’s method.

i6 : refinedSols=bertiniRefineSols(f, solutions, 20);
i6 : (coordinates refinedSols_0)_1
o6 = .86602540378443859659+3.5796948761134507351e-83%1i1i

Parameter homotopies

Many fields, such as statistics, physics, chemical biology, and engineering contain applications
that require solving a large number of systems from a parameterized family of polynomial
systems. In such situations, computational time can be decreased by using parameter ho-
motopies. For an example illustrating how parameter homotopies can be used in statistics
see [20].

The method bertiniParameterHomotopy calls Bertini to run both stages of a parame-
ter homotopy. First, Bertini assigns a random complex number to each specified parameter
and solves the resulting system, then, after this initial phase, Bertini computes solutions
for every given choice of parameters using a number of paths equal to the exact root count.
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i7: 168 : R=CCl[a,b,c] [x,y];

i8 : f={axx"2+b*y~2-c, y};

i9 : bertiniParameterHomotopy(f,{a,b,c},{{1,1,1},{2,3,4}})
09 = {{{-1, 0}, {1, 0}}, {{-1.41421, 0}, {1.41421, 0}}}

User-defined homotopies

A user may define their own homotopy to solve a square system of polynomial equations. If
the homotopy H consists of n polynomials in n unknowns and the path variable ¢, then the
method bertiniTrackHomotopy calls Bertini to compute solutions to H when ¢t = 0. But
to do so, the user must also input start points of the homotopy, which are solutions to the
system H when t = 1.

110 : R=CC_200[x,y,t]

i1l : H = { (x72-y~2)*t +(2%x~2-3*%x*xy-5xy~2)*(1-t), (y-1)*t+(x+2*xy-3)*x(1-t)}
i12 : soll= point{{1,1}}, sol2= point{{ -1,1}}

i13 : S0={soll,so0l2}

i14 : Sil=bertiniTrackHomotopy( H,t,S0)

ol4 : {{1.66667, .666667F, {-3, 3}}

6.3 Solving positive-dimensional systems

Given a positive-dimensional system f, the method bertiniPosDimSolve calls Bertini
to compute a numerical irreducible decomposition, this decomposition is assigned the type
NumericalVariety in Macaulay2. In the default settings, Bertini uses a classical cascade
homotopy to find witness supersets in each dimension, removes extra points using a mem-
bership test or local dimension test, deflates singular witness points, then factors using a
combination of monodromy and a linear trace test.

i10 : R = CC[x,y,z];
i1t f = {(y~2+x~2+2"2-1)*x, (y~2+x"2+z"2-1)*y};
i12 NV = bertiniPosDimSolve f

012 = A variety of dimension 2 with components in
dim 1: [dim=1,deg=1]
dim 2: [dim=2,deg=2].

012 : NumericalVariety

Once the solution set to a system, i.e. the variety V', is computed and stored as a
NumericalVariety,
bertiniComponentMemberTest can be used to test numerically whether a set of points p
lie on the variety V. For every point in p, bertiniComponentMemberTest returns the com-
ponents to which that point belongs. As for sampling, bertiniSample will sample from a
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witness set W. These methods call the membership testing and sampling options in Bertini
respectively.

i13 : p={{0,0,0}};
i14 : bertiniComponentMemberTest (NV, p)
014 = {{[dim=1,deg=1]11}}

115 : component=NV#1_0
i16 : bertiniSample(component,1)
016 = {{0, -8.49385e-20+7.48874e-20%ii, -.148227-.269849%ii}t}

6.4 Solving homogeneous systems

The package Bertini includes functionality to solve a homogenous system that defines a
projective variety. In Bertini, the numerical computations are performed on a generic affine
chart to compute representatives of projective points. To solve homogeneous equations, set
the option ISPROJECTIVE to 1. If the user inputs a square system of n homogeneous
equations in n + 1 unknowns, then the method bertiniZeroDimSolve outputs a list of
projective points.

i35 : R = CC[x,y,z];

i36 : f = {y~2-4%z"2,16%x"2-y"2};

i37 : bertiniZeroDimSolve(f,ISPROJECTIVE=>1);

037 = {{.251411+.456072*%ii, 1.00564+1.82429*ii, .502821+.912143%ii},
{.106019+.160896*ii, .424078+.643585*%ii, -.212039-.321792*ii},
{-.15916-.12286*ii, .636639+.49144*ii, -.318319-.24572%ii},
{-.48005-.092532*%ii, 1.9202+.370128%ii, .960101+.185064*ii}}

If f is a positive-dimensional homogeneous system of equations, then the method
bertiniPosDimSolve calls Bertini to compute a numerical irreducible decomposition of
the projective variety defined by f.

i48 : R = CC[x,y,z];

i49 : f = {(x"2+y~2-2"2)*(z-x) , (x~2+y~2-2"2) % (z+y) };

i50 : NV = bertiniPosDimSolve(f,ISPROJECTIVE=>1)

050 : = A projective variety with components in projective dimension:
dim 0: [dim=0,deg=1]
dim 1: [dim=1,deg=2]

6.5 Algebraic Statistics Example

In this section, we use the interface to solve the Lagrange likelihood equations (Proposition
5.2.2) for a statistical model defined by f.
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i48 : R=CC[pO,p1,p2,pl12,L];
149 : £=2%pO0*pl*p2+pl~2*xp2+pl*p2~2-p0~2*pl2+pl*p2*pl2;
i50 : pList={p0,p1,p2,pl12};
i51 : uList={75,1,5,7};
i52 : ulList=1_RR/sum ulList*ulist;
i63 : gradLF=matrix{for i to #pList-1 list ulist_i-sum(uList)*pList_i};
i54 : jacF=matrix{for i in pList list Lxixdiff(i,f)};
i65 : likelihoodEquations=ideal (gradLF+jacF)+ideal f;
156 : likelihoodEquations=flatten entries gens likelihoodEquations;
i67 : criticalPoints=bertiniZeroDimSolve(likelihoodEquations,
MPTYPE=>2 ,USEREGENERATION=>1)
057 : = A list of critical points:
{{.788947, .0702306, .117171, .023651, 3.84771},
{-.92006, .722138, 1.12145, .0764765, 1.09425},
{-1.16434, 18.58, 13.1081, -29.5238, .00414006%}}

6.6 Using Bertini from NumericalAlgebraicGeometry

The Bertini package depends on the NAGtypes package, a collection of basic datatypes and
service routines common to all Macaulay2 packages for numerical AG: e.g., an interface
package to another polynomial homotopy continuation solver, PHCpack [18], also has this
dependence.

While independent from the Numerical Algebraic Geometry package, our interface provides
a valuable option for this package: the user can set Bertini as a default solver for homotopy
continuation tasks.

il : needsPackage "NumericalAlgebraicGeometry";

i2 : setDefault(Software=>BERTINI)
An alternative way is to specify the Software option in a particular command:

i3 : CC[x,y]; system = {x"2+y~2-1,2%x+3%y+5};

i4 : sols = solveSystem(system, Software=>M2engine)

04 = {{-.769231-.799408*ii, -1.15385+.532939*ii}, {-.769231+.799408%*i1i,
i6 : refsols = refine(system, sols, Bits=>99, Software=>BERTINI);

i6 : first coordinates first refsols

06 = -.769230769230769273470116331737+.799408065031789516474702850246%*11
06 : CC (of precision 100)

The unified framework for various implementations of numerical AG algorithms should be
particularly convenient to a Macaulay?2 user doing numerical computations with tools from
many packages.
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