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Abstract

Numerical algebraic geometry for maximum likelihood estimation

by

Jose Israel Rodriguez III

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Numerical algebraic geometry provides numerical descriptions of solution sets of polyno-
mial systems of equations in several unknown. Such sets are called algebraic varieties. In
algebraic statistics, a statistical model is associated to an algebraic variety to study its geo-
metric structure. This thesis contains my work at UC Berkeley that uses numerical algebraic
geometry for the algebraic statistics problem of maximum likelihood estimation.

In Chapter 2 we study the maximum likelihood estimation problem on manifolds of
matrices with bounded rank. These represent mixtures of distributions of two independent
discrete random variables. We determine the maximum likelihood degree for a range of
determinantal varieties, and we apply numerical algebraic geometry to compute all critical
points of their likelihood functions.

In Chapter 3 we prove a bijection between critical points of the likelihood function on the
complex variety of matrices of rank r and critical points on the complex variety of matrices of
corank r−1. From the perspective of statistics, we show that maximum likelihood estimation
for matrices of rank r is the same problem as minimum likelihood estimation for matrices of
corank r − 1, and vice versa.

In Chapter 4, a description of the maximum likelihood estimation problem in terms of
dual varieties and conormal varieties is given. With this description, we define the dual
likelihood equations. We show how solving these dual likelihood equations give solutions to
the maximum likelihood estimation problem without having the defining equations of the
model itself.

In Chapter 5, discrete algebraic statistical models are considered and solutions to the like-
lihood equations when the data contain zeros are studied. Focusing on sampling and model
zeros, we show that the solutions of the likelihood equations in these cases are contained in
a previously studied variety, the likelihood correspondence. The number of solutions give a
lower bound on the ML degree, and the problem of finding critical points to the likelihood
function can be partitioned into computationally easier problems involving sampling and
model zeros.

In Chapter 6 the Macaulay2 package Bertini.m2 is introduced. Macaulay2 is a software
system designed to support research in algebraic geometry, and Bertini is a popular software
system for numerical algebraic geometry. The package Bertini.m2 provides an interface to
Bertini via Macaulay2.
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Chapter 1

Introduction

Studying connections between statistics and algebra is at the center of algebraic statistics
[12]. A statistical modelM for discrete data is a subset of the positive orthant of Rn+1 where
the coordinates sum to one. In this thesis, we consider only models that are defined by the
vanishing of polynomial equations restricted to the positive orthant. A remarkable fact and
motivation of algebraic statistics is that many interesting statistical models are described in
this fashion. Since an algebraic variety is a solution set of polynomial equations, we can use
computational algebra to study statistical models.

The focus of this thesis is to study the maximum likelihood estimation (MLE) problem.
Given a statistical modelM⊂ Rn+1, the MLE problem is to maximize the likelihood function
on the model for given data u ∈ Nn+1. The point that maximizes this function is called the
maximum likelihood estimate (mle). One way to determine this point, is to use local hill
climbing methods. However, if there exist many local maxima, then one cannot guarantee
convergence of these local methods without further analysis.

The approach we take in this thesis is to consider the algebraic variety M that is the
Zariski closure of our statistical model. Next we determine all complex critical points of the
likelihood function restricted to the varietyM. Usually there will be finitely many critical
points, and of these points, we will determine the ones with positive coordinates. So instead
of maximizing the likelihood function overM, we maximize over the finitely many positive
critical points of the likelihood function onM. With additional hypotheses these two results
will agree.

To determine the critical points, we solve the system of likelihood equations [9, 23] for
the modelM with respect to data u. The method that we use to solve this system involves
numerical algebraic geometry and homotopies [3, 41]. The key idea is that the likelihood
equations are difficult to solve, and for each choice of data u one would have to consider
a new system. But with numerical algebraic geometry, once the likelihood equations have
been solved for a generic choice of data u, one can quickly recover solutions to likelihood
equations for another choice of data using a homotopy. More specifically, the system of
equations and its solutions that have already been found are deformed to a new system and
target solutions using numerical algorithms. In the remainder of this chapter, we will focus
on a specific statistical model to illustrate the key concepts and motivations of this thesis.
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1.1 Illustrative example
In this section, we introduce an illustrative example involving a weighted coin and weighted
dice. This example is based off the classical example of DiaNA and her dice in [35].

One coin, four dice

Suppose Oscar has a coin that is weighted such that the probability of observing side 1 is c1

and the probability of observing side 2 is c2. Further suppose Oscar has two pair of four-sided
dice. The first pair of dice consists of a red die R1 and a blue die B1. The probability of
observing one of the four sides of these respective dice is given by the matrices

[r1, r2, r3, r4]T and [b1, b2, b3, b4]T .

Similarly, the second pair consists of a red die R2 and a blue die B2. The probability of
observing one of the four sides of these dice is given by the matrices

[r′1, r
′
2, r
′
3, r
′
4]T and [b′1, b

′
2, b
′
3, b
′
4]T .

Although the weights of each die can be different from the others, the red dice are indistin-
guishable from one another and the blue dice are indistinguishable from one another.

One day Oscar meets his friend Gabriella and asks if she would like to play an estimating
game consisting of 100 rounds. Each round will consist of the following: Hidden from
Gabriella’s view, Oscar will flip the coin. If the coin lands on side 1, Oscar will select the
first pair of dice to roll. If the coin lands on side 2, Oscar will select the second pair of dice
to roll. Gabriella does not get to observe the coin. She only gets to observe the outcome of
the pair of dice. After repeating this process 100 times Gabriella records in a 4 × 4 matrix
u = [uij], the number of times she observed the pair of dice having the outcome

"red die on side i and a blue die on side j” (1.1)

in the (i, j)-entry of u. For example, if Oscar rolled a 1 with the red die and simultaneously
a 2 with the blue die 14 times among the 100 rolls, then Gabriella would have u12 = 14.
We call the matrix u the data. After providing this data, Oscar will then ask Gabriella to
estimate the true probability of observing the event (1.1). We denote this true probability
distribution as the 4× 4 matrix [pij] and denote Gabriella’s estimate as [p̂ij].

So what should Gabriella’s estimate be? One guess might be to simply take the data u
that was provided and rescale it so that the entries sum to 1. However, this guess would
almost always be incredibly wrong. We can see this because [pij] must have rank at most 2
while u will almost always have full rank.

Indeed, we have that [pij] has the following decomposition as a sum of two rank 1 matrices:
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 = c1


r1

r2

r3

r4

 [b1, b2, b3, b4] + c2


r′1
r′2
r′3
r′4

 [b′1, b
′
2, b
′
3, b
′
4].
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This decomposition makes sense because the probability of observing, say, a red die on side 3
and a blue die on side 4 would be the probability of observing the coin on side one times r3b4

plus the probability of observing the coin on side two times r′3b′4. This means [pij] has rank
at most 2, and more specifically, nonnegative rank 2. So Gabriella’s estimate [p̂ij] should be
in the statistical model consisting of nonnegative rank 2 matrices. Now the question is how
to determine the best estimate for [pij] constrained to this statistical model.

This is done by noticing that the likelihood of observing the data u for the probability
distribution [pij] is given by the likelihood function

`u(p) =
1

p
u++

++

∏
ij

pij
uij .

Here we employ the useful notation that

p++ :=
∑
ij

pij and u++ :=
∑
ij

uij.

So the best estimate for the true distribution [pij] is the maximum likelihood estimate, the
probability distribution that maximizes `u(p) on the statistical model.

Our approach to computing maximum likelihood estimates is to consider a relaxation of
the problem. We will determine every critical point of `u(p) restricted to the regular points of
the Zariski closure of a statistical model. The answer Gabriella will give to Oscar is a critical
point of `u(p) restricted to set of rank 2 matrices. Gabriella will determine this critical point
by solving a system of polynomials called the likelihood equations. This system has finitely
many solutions, and we maximize `u(p) over this finite set of critical point to determine the
maximum likelihood estimate.

Likelihood Equations

The set of nonnegative matrices of rank 2 is semi-algebraic, involving polynomial inequalities.
However, the set of matrices of rank at most 2 is defined by equalities. For Gabriella, this
means she is interested in determining the critical points of `u(p) on the zero set of the 3× 3
minors of [pij]. There are 16 such minors f1, f2, . . . , f16 in 16 unknowns pij. To determine
the critical points of `u(p) we want to determine when the gradient of `u(p) is in the row
span of the gradients of the 16 minors evaluated at the point p. Up to scaling, the gradient
of the likelihood function `u(p) equals[

u00

p00

− u++

p++

: · · · : u44

p44

− u++

p++

]
. (1.2)

To get a system of equations, we augment (1.2) to the top of the matrix
∇f1(p)
∇f2(p)

...
∇f16(p)

 .
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If we take the 5×5 minors of this augmented matrix along with the polynomials f1, f2, . . . , f16,
we get a system of equations. However there are two problems. First this is not a system
of polynomial equations. It is a system of rational functions. To get a polynomial system,
we have to subtly and carefully clear the denominators. Second, we are only interested in
regular points, which means we want to avoid degenerate cases where we have a critical point
with rank strictly less than 2. To handle this problem, we must saturate by the singular
locus. After carefully clearing the denominators and handling this saturation process, we
have likelihood equations.

The interesting aspect of these equations is that for almost any data u that Oscar gen-
erates, Gabriella will find that there are 191 complex solutions. That is, Gabriella will find
that the likelihood function has 191 complex critical points with a subset of these points
having positive coordinates that sum to one. The number of complex critical points of the
likelihood function is called the maximum likelihood degree (ML degree) [9, 23] of the sta-
tistical model. The geometry of these numbers and formulations of systems of polynomial
equations to compute them are at the heart of this thesis.

1.2 Results and contributions
This thesis introduces five main results and a software package that is an interface to solve
systems of polynomial equations. The first main result is Theorem 2.2.1. This theorem is a
new formulation of the likelihood equations that behaves well numerically. The procedure
to determine likelihood equations presented in the introduction is vastly overdetermined and
horrendous for numerical computations. With this new formulation, we solve a square system
of polynomial equations, meaning the number of unknowns in the system equals the number
of equations in the system. In our illustrating example Gabriella would need to only solve
16 equations in 16 unknowns with this new formulation.

The second main result are new computations of ML degrees (in bold below) as seen in
Theorem 2.1.1. In terms of our illustrating example, r is the number of "sides" of the coin
and number of pairs of dice. Also in terms of our illustrating example, m corresponds to the
number of sides on the red dice, while n corresponds to the number of sides of the blue dice.

(m,n) = (3, 3) (3, 4) (3, 5) (4, 4) (4, 5) (4, 6) (5, 5)
r = 1 1 1 1 1 1 1 1
r = 2 10 26 58 191 843 3119 6776
r = 3 1 1 1 191 843 3119 61326
r = 4 1 1 1 6776
r = 5 1

The 191 complex critical points that Gabriella computes correspond to the r = 2, (m,n) =
(4, 4) entry of the table.

From Table (2.4), one would conjecture that the vertical symmetry of a column to hold
in general. Indeed, the third main result of the thesis, Theorem 3.2.4, proves this to be true.
Theorem 3.2.4 also provides an explicit bijection between critical points of the likelihood
function on (m × n) matrices of rank r with critical points of the likelihood function on
(m × n) matrices of corank r − 1. In terms of the illustrating example, there is a bijection
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between critical points of the likelihood function on 4 × 4 matrices of rank 2 and critical
points of the likelihood function on 4×4 matrices of rank 3. For a generic choice of u = [uij],
the bijection between

[pij] a critical point of `u(p) on 4× 4 rank 2 matrices, and
[qij] a critical point of `u(p) on 4× 4 rank 3 matrices

is given by the relation below. p11q11 p12q12 p13q13 p14q14

p21q21 p22q22 p23q23 p24q24

p31q31 p32q32 p33q33 p34q34

p41q41 p42q42 p43q43 p44q44

 =
1

u3
++

 u1+u11u+1 u1+u12u+2 u1+u13u+3 u1+u14u+4

u2+u21u+1 u2+u22u+2 u2+u23u+3 u2+u24u+4

u3+u31u+1 u3+u32u+2 u3+u33u+3 u3+u34u+4

u4+u41u+1 u4+u42u+2 u4+u43u+3 u4+u44u+4


In addition, this bijection takes the critical point that maximizes the likelihood on the first
model to the critical point that minimizes the likelihood on the second model.

The fourth main result is Theorem 4.2.5 that recasts maximum likelihood estimation in
terms of conormal varieties. This elegant formulation allows one to define the dual likelihood
equations and makes computing ML degrees of hyperdeterminants tractable.

The fifth main result is Algorithm 5.4.2. This algorithm uses the structure of the Lagrange
Likelihood Equations to give lower bounds to the ML degree of a statistical model. This is
done by considering what happens when zeros are in the presence of data.

The final contribution of the thesis is an introduction to an interface for the numer-
ical algebraic software Bertini through the computational algebraic geometry software
Macaulay2. This interface allows one to use the main tool in numerical algebraic geom-
etry, homotopy continuation, via Bertini to solve system of polynomial equations.

Throughout the thesis various algebraic formulations of the maximum likelihood estima-
tion problem will be given. With different formulations, computational results can be pushed
further or theoretical results can be made clear. However, the key technique throughout the
thesis is

using homotopy continuation to degenerate data.

Solving the likelihood equations for a choice of data is an extremely difficult problem. But if
we can solve the likelihood equations for a generic choice of data ugeneric, then we can solve
the likelihood equations for any other specific choice of data v quickly. Using numerical
algorithms such as Euler’s method and Newton’s method, we degenerate ugeneric to specific
data v thereby degenerating the solutions of the likelihood equations with respect to ugeneric
to solutions of the likelihood equations with respect to v. For more information on numerical
algebraic geometry, the reader can jump straight to Chapter 6 or see [41, 3].



6

Chapter 2

Low Rank Matrix Models

The content of this chapter will be published in the Journal of Algebraic Statistics as an
article titled Maximum Likelihood for Matrices with Rank Constraints, with minor changes
throughout for consistency with other chapters. It is joint work with Jonathan Hauenstein
and Bernd Sturmfels.

2.1 Introduction
Maximum likelihood estimation (MLE) is a fundamental computational task in statistics. A
typical problem encountered in its applications is the occurrence of multiple local maxima.
In order to be certain that a global maximum of the likelihood function has been achieved,
one needs to locate all solutions to a system of polynomial equations. In this chapter we
study these equations for two discrete random variables, having m and n states respectively.
A joint probability distribution for two such random variables is written as an m×n-matrix:

P =


p11 p12 · · · p1n

p21 p22 · · · p2n
...

... . . . ...
pm1 pm2 · · · pmn

 . (2.1)

The entry pij represents the probability that the first variable is in state i and the second is
in state j. Thus, the entries of P are non-negative and their sum p++ is 1. By a statistical
model, we mean a closed subsetM of the probability simplex ∆mn−1 of all such matrices P .

If i.i.d. samples are drawn from some P then we summarize the data also in a matrix

U =


u11 u12 · · · u1n

u21 u22 · · · u2n
...

... . . . ...
um1 um2 · · · umn

 . (2.2)

The entries of U are non-negative integers whose sum is u++. As is customary in algebraic
statistics [12, 23, 44], we write the likelihood function corresponding to the data matrix U as

`U =

∏m
i=1

∏n
j=1 p

uij
ij(∑m

i=1

∑n
j=1 pij

)u++
. (2.3)
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This formula defines a rational function on the complex projective space Pmn−1 whose re-
striction to the simplex ∆mn−1 is the usual likelihood function divided by a multinomial
coefficient. The MLE problem is to find the global maximum of `U over the modelM.

Our model of interest is the setMr of matrices P of rank ≤ r. This is the intersection of
the variety Vr ⊂ Pmn−1 defined by the (r+1)× (r+1)-minors of P with ∆mn−1. For generic
U , the rational function `U has finitely many critical points on the determinantal variety Vr.
Their number is the ML degree of Vr. In this chapter, we formulate a polynomial system
consisting of mn equations in mn variables defining such critical points and compute them
using methods from numerical algebraic geometry. That computation enables us to reliably
find all local maxima of the likelihood function `U among positive points inMr. Among the
computational results is the determination of the bold face numbers in the following table.

Theorem 2.1.1. The known values for the ML degrees of the determinantal varieties Vr are

(m,n) = (3, 3) (3, 4) (3, 5) (4, 4) (4, 5) (4, 6) (5, 5)
r = 1 1 1 1 1 1 1 1
r = 2 10 26 58 191 843 3119 6776
r = 3 1 1 1 191 843 3119 61326
r = 4 1 1 1 6776
r = 5 1

(2.4)

The smaller numbers 10 and 26 had already been computed in [23, §5], but the symbolic
computations using Singular that were presented in [23] had failed beyond the size 3× 4.

In 2005, the third author offered a cash prize of 100 Swiss Francs (cf. [44, §3]) for the
solution of a particular 4× 4-instance that was described in [35, Example 1.16]. That prize
was won in 2008 by Mingfu Zhu who solved this challenge in [48]. See also [42, Example
5.2] for a solution using Singular, and [13] for a statistical perspective on this problem.
However, none of these papers had found the number 191 of critical points for the 4 × 4
cases.

That the column symmetry among the ML degrees always holds is the topic of the next
chapter. The following is a special case of Theorem 3.1.1.

Theorem 2.1.2. If m ≤ n then the ML degrees for rank r and for rank m− r+ 1 coincide.

This chapter might appeal also to those interested in the topology of algebraic varieties.
For a variety V in Pmn−1, let V0 denote the open subset given by p11p12 · · · pmnp++ 6= 0. Huh
[26] recently proved that if V0 is smooth then the ML degree of V is equal to the signed Euler
characteristic of V0. In our case, for r ≥ 2, the open determinantal variety V0

r is singular
along V0

r−1, but a suitably modified statement is expected to be true. It might be speculated
that the results in Theorems 2.1.1 and 2.1.2 will ultimately have a topological explanation.
For more information one can also refer to [27].

The entries “1” of the table in (2.4) have easy explanations. For r = m we have Vm =
Pmn−1 and the unique critical point of the likelihood function `U is P = 1

u++
U . The first row

of (2.4) states that the independence modelM1 has ML degree 1. This fact is well-known to
statisticians, as the rank 1 matrix with entries (ui+u+j)/u

2
++ is the unique critical point for

`U on V0
1 . We found it instructive to derive this fact from Huh’s result [26, Theorem 1.(iii)]:
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Example 2.1.3. Let r = 1. The Segre variety V1 = Pm−1×Pn−1 is smooth. Fix coordinates
(x1 : · · · : xm) on Pm−1 and coordinates (y1 : · · · : yn) on Pn−1. The open subset V0

1 consists of
all points in Pm−1 × Pn−1 with x1x2 · · ·xmy1y2 · · · yn(x1+ · · ·+xm)(y1+ · · ·+yn) 6= 0. Hence

V0
1 = (Pm−1 minus m+ 1 hyperplanes) × (Pn−1 minus n+ 1 hyperplanes).

Each factor has signed Euler characteristic 1, and hence so does their product.

This chapter is organized as follows. In Section 2.2, we formulate the constraints that
characterize critical points of `U on Vr as a square system of polynomial equations. The
specific formulation in Theorem 2.2.1 is one of our key contributions. It is used to derive
upper bounds in terms of m, n, and r. Theorem 2.2.3 extends our results to the case of
symmetric matrices, and hence to mixtures of two identically distributed random variables.

Section 2.3 is devoted to our computations using numerical algebraic geometry. This
furnishes valuable new tools for practitioners of statistics who are interested in exploring
probability one algorithms for computing the global maximum of a given likelihood function.

In Section 2.4, we introduce a refined version of Theorem 2.1.2, proven in Chapter 3,
and we summarize the computational evidence gathered to support it. The Galois group
computations in Proposition 2.4.5 might be of independent interest. In Theorem 2.4.4, we
present a proof of [48, Conjecture 11] by means of certified numerical computations.

Section 2.5 features the statistical view on our approach, and we explain how it differs
from running the EM algorithm for discrete mixture models. The determinantal variety Vr is
the Zariski closure of the latent variable model for r-fold mixtures of independent variables.
They are equal in ∆mn−1 if and only if r ≤ 2. For r ≥ 3 this takes us to the real algebraic
geometry problem, pioneered in [32], of distinguishing between rank and non-negative rank.

2.2 Equations and bounds
In this section, we present several formulations of the critical equations for the likelihood
function on the determinantal variety Vr = {rank(P ) ≤ r}. We view Vr as an affine variety in
the space of matrices Cm×n and we assume m ≤ n. Our main result is Theorem 2.2.1 which
expresses our problem as a square system of mn polynomial equations in mn unknowns.

An m × n-matrix P is a regular point in the determinantal variety Vr if and only if
rank(P ) = r. If this holds then the tangent space TP is a linear subspace of dimension
rn + rm − r2 in Cm×n, and its orthogonal complement (with respect to the standard inner
product) is a linear subspace T⊥P of dimension (m− r)(n− r) in Cm×n.

Our input is a strictly positive data matrix U . We consider the logarithm of the likelihood
function `U as in (2.3). The partial derivatives of the log-likelihood function log(`U) are then

∂log(`U)

∂pij
=

uij
pij
− u++

p++

. (2.5)

By [23, Proposition 3], a matrix P of rank r is a critical point for log(`U) on Vr if and only
if the linear subspace T⊥P contains the m × n-matrix whose (i, j) entry is (2.5). Hence the
system of equations we seek to solve can be expressed in the following geometric formulation:

rank(P ) = r , p++ = 1 , and the matrix
(
uij/pij − u++

)
lies in T⊥P . (2.6)
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This is saying that the gradient of the objective function must be orthogonal to the tangent
space of the variety at a critical point as in the elementary Lagrange multipliers method.
When translating (2.6) into polynomial equations, we need to make sure to exclude matrices
P of rank strictly less than r, as these are singular points in Vr. We also need to exclude
matrices P with pij = 0 for some (i, j). These non-degeneracy conditions require some care.

In [23], the following formulation was used to represent our problem. Let J(P ) denote
the Jacobian matrix of the prime ideal defining Vr. Since that ideal is minimally generated
by the

(
m
r+1

)(
n
r+1

)
subdeterminants of format (r+ 1)× (r+ 1), the Jacobian J(P ) is a matrix

of format
(
m
r+1

)(
n
r+1

)
× mn whose entries are homogeneous polynomials of degree r. Let

[U ] denote the matrix U when written as a row vector of format 1 ×mn, and similarly [P ]
is the vectorization of P . We write diag[P ] for the diagonal mn ×mn-matrix with entries
p11, p12, . . . , pmn. The following extended Jacobian has 2 +

(
m
r+1

)(
n
r+1

)
rows and mn columns:

J (P ) =

 [U ]
[P ]

J(P ) · diag[P ]

 .

For a matrix P of rank r, the Jacobian J(P ) has rank (m − r)(n − r) = codim(Vr). The
third condition in (2.6) translates into the requirement that the span of the first two rows
intersects the rowspace of J(P ) · diag[P ]. From this we derive the rank formulation

rank(P ) ≤ r and rank(J (P )) ≤ (m− r)(n− r) + 1. (2.7)

This formulation of our problem is elegant and is adapted to projective geometry in Pmn−1.
In terms of equations, we simply take the minors of size r+1 of the matrix P , and the minors
of size (m− r)(n− r) + 2 of the matrix J (P ). However, this has two serious disadvantages:
first, the number of minors is enormous, and second, we must get rid of extraneous solutions
by saturation. Namely, to get rid of solutions P with rank(P ) ≤ r − 1, we need to saturate
by the r × r-minors of P , and to get rid of solutions on the boundary, we need to saturate
by the product of linear forms p11p12 · · · pmnp++. This was done symbolically in [23, §4].

The calculation can be sped up a little bit by taking only (m− r)(n− r) of the rows of
J(P ), while also imposing the non-homogeneous equation p++ = 1. Finally, we can replace
the first two rows of J(P ) by a single row [U ]−u++[P ] and require that the maximal minors
of the resulting ((m− r)(n− r) + 1)×mn-matrix be zero. This leads to improvements but
is still far from sufficient to get to the full range of ML degrees reported in Theorem 2.1.1.

To get to those results, we pursue the following alternatives: first, we introduce new
unknowns which allow us to replace the rank conditions by bilinear equations, and, second,
we represent the subspace T⊥P = rowspace(J(P )) using those same new unknowns. Let L
be an (m − r) ×m-matrix of unknowns, let R be an n × (n − r)-matrix of unknowns, and
Λ = (λij) an (n− r)× (m− r)-matrix of unknowns. Then our general kernel formulation is:

p++ = 1, L · P = 0, P ·R = 0, and P ? (R · Λ · L)T + u++ · P = U. (2.8)

Here A?B denotes the Hadamard (entry-wise) product of two matrices of the same format.
If the rows of L are linearly independent and the columns of R are linearly independent,
then either of the conditions L · P = 0 and P ·R = 0 suffice to imply that rank(P ) ≤ r.
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We now explain the last condition in (2.8). The space T⊥P is spanned by the rank 1
matrices (ρi · `j)T where ρi is the i-th column of R and `j is the j-th row of L. Then

(R · Λ · L)T =
n−r∑
i=1

m−r∑
j=1

λij(ρi · `j)T

is a general matrix in T⊥P . The matrix
(
uij/pij − u++

)
in (2.6) can be written as

P ?(−1) ? U − u++ · 1. (2.9)

Hence the last condition of (2.6) is equivalent to saying (2.9) equals (R ·Λ ·L)T for some Λ.
We write this as (R ·Λ ·L)T + u++ · 1 = P ?(−1) ?U . We take the Hadamard product of both
sides with the matrix P to get the last equation in (2.8). This operation is invertible since
all entries of U are non-zero. Indeed, that last equation is P ?

(
(R · Λ · L)T + u++ · 1

)
= U ,

and if this holds then all mn entries of the matrix P must be non-zero.
We conclude that (2.8) is a correct formulation of our problem provided we can ensure

rank(L) = m− r, rank(R) = n− r, and rank(P ) = r.

We note that (2.8) is highly redundant as far as the number of variables is concerned. There
are several ways to reduce that number. For instance, we can simply set λij = 1 for all i, j.
In addition, we can either replace L by a single row or replace R by a single column. Even
after these simplifications, the critical points of `U on Vr are still represented faithfully.

After some experimentation, we found that the following simplification steps lead to the
best computational results. Recall that m ≤ n. Let P1 be an r × r-matrix of unknowns, let
R1 be an r× (n− r)-matrix of unknowns, and let L1 be an (m− r)× r-matrix of unknowns.
The matrix Λ = (λij) is as before. Using this notation, we take (2.8) with

L =
(
L1 −Im−r

)
, P =

(
P1 P1R1

L1P1 L1P1R1

)
, and R =

(
R1

−In−r

)
, (2.10)

where Im−r and In−r are identity matrices. We call (2.8) with (2.10) the local kernel formu-
lation of our problem. Note that the constraints L ·P = 0, P ·R = 0, rank(L) = m− r, and
rank(R) = n− r are automatically satisfied in this formulation. The condition rank(P ) = r
is also implied for every solution provided U is generic. Finally, the equation p++ = 1 can
be removed from (2.8) in this formulation since p++ = 1 is equivalent to the sum of all mn
equations given by P ? (R ·Λ ·L)T + u++ ·P = U . By counting equations and unknowns, we
now see that our system is a square system consisting of mn equations in mn unknowns.

Theorem 2.2.1. Let U be a generic m×n data matrix with m ≤ n. The polynomial system

P ? (R · Λ · L)T + u++ · P = U (2.11)

consists of mn equations in mn unknowns given by (2.10). It has finitely many complex solu-
tions (P1, L1, R1,Λ), and the corresponding m×n-matrices P defined by (2.10) are precisely
the critical points of the likelihood function `U on the determinantal variety Vr.
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Since the column sums of P ?(R ·Λ ·L)T are zero, we can further simplify the n equations.
For the first m columns, we replace each entry on the diagonal with the column sum. For
the last n−m columns, we replace the last entry in the column with the column sum.

Example 2.2.2. To illustrate the local kernel formulation (2.11), we consider m = n = 3
with the two subcases r = 1 and r = 2. Both have nine equations in nine unknowns.
Subcase r = 1: The nine unknowns are the entries in the matrices

L1 =

(
l11

l21

)
, P1 =

(
p11

)
, R1 =

(
r11 r12

)
, Λ =

(
λ11 λ12

λ21 λ22

)
,

and the nine equations from (2.11) take the form

p11(1 + l11 + l21) = (u11 + u21 + u31)/u++

p11r11(u++ − l11λ11 − l21λ12) = u12

p11r12(u++ − l11λ21 − l21λ22) = u13

p11l11(u++ − r11λ11 − r12λ21) = u21

p11r11(1 + l11 + l21) = (u12 + u22 + u32)/u++

p11l11r12(λ21 + u++) = u23

p11l21(u++ − r11λ12 + r12λ22) = u31

p11l21r11(λ12 + u++) = u32

p11r12(1 + l11 + l21) = (u13 + u23 + u33)/u++.

This system has a unique solution which writes the unknowns as rational functions in the uij.

Subcase r = 2: The nine unknowns are the entries in the matrices

L1 =
(
l11 l12

)
, P1 =

(
p11 p12

p21 p22

)
, R1 =

(
r11

r21

)
, Λ =

(
λ11

)
,

and the nine equations take the form

p11(1 + l11) + p21(1 + l12) = (u11 + u21 + u31)/u++

p12(l11r21λ11 + u++) = u12

(p11r11 + p12r21)(u++ − l11λ11) = u13

p21(l12r11λ11 + u++) = u21

p12(1 + l11) + p22(1 + l12) = (u12 + u22 + u32)/u++

(p21r11 + p22r21)(u++ − l12λ11) = u23

(p11l11 + p21l12)(u++ − r11λ11) = u31

(p12l11 + p22l12)(u++ − r21λ11) = u32

(p11r11 + p12r21)(1 + l11) + (p21r11 + p22r21)(1 + l12) = (u13 + u23 + u33)/u++.

This system has ten complex solutions for a generic data matrix U . In other words, the 9
unknowns l··, p··, r·· and λ11 are algebraic functions of degree 10 in u11, u12, . . . , u33.

Upper bounds on the ML degree of V arise from our formulation. The Bézout bound is

2r · 3n−r · 4n(m−1).
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(m,n, r) (3, 3, 1) (3, 3, 2) (3, 4, 1) (3, 4, 2) (3, 5, 1) (3, 5, 2)
Bézout 73728 49152 3538944 2359296 169869312 113246208
4-hom 270 1350 840 29400 2025 378000

linear product 172 1018 374 20844 650 68586
polyhedral 6 53 10 472 15 2724
ML Degree 1 10 1 26 1 58

(m,n, r) (4, 4, 1) (4, 4, 2) (4, 4, 3) (4, 5, 1) (4, 5, 2) (4, 5, 3)
Bézout 905969664 603979776 402653184 173946175488 115964116992 77309411328
4-hom 17600 7276500 580800 63700 323723400 115615500

linear product 5690 4791168 224598 13560 165869606 58335270
polyhedral 20 15280 2847 35 241218 145273
ML Degree 1 191 191 1 843 843

Table 2.1: Comparison of upper bounds for selected (m,n, r)

If we consider (P1, L1, R1,Λ) in the product space Cr2 ×Cr(m−r)×Cr(n−r)×C(n−r)(m−r), our
system consists of r equations of degree (1, 1, 0, 0), n−r equations of degree (1, 1, 1, 0), and
n(m−1) equations of degree (1, 1, 1, 1). The associated 4-homogeneous Bézout bound is the
coefficient of the monomial wr2 · xr(m−r) · yr(n−r) · z(n−r)(m−r) in the expression

(w + x)r · (w + x+ y)n−r · (w + x+ y + z)n(m−1).

A refinement of the 4-homogeneous bound using the fact that each polynomial only
depends upon a subset of the variables yields a linear product bound [47]. Finally, the
polyhedral root count exploits the sparsity of the monomials in our system. We computed the
polyhedral bound for various cases using MixedVol [15] in PHC [46]. All of the aforementioned
bounds are presented in Table 2.1 for selected values of m, n, and r. When solving a
polynomial system using homotopies built from these bounds, one must balance the added
computational cost required for the tighter bound with the computational savings arising
from that bound.

We close this section by discussing rank constraints on symmetric matrices of the form

P =


2p11 p12 p13 · · · p1n

p12 2p22 p23 · · · p2n

p13 p23 2p33 · · · p3n
...

...
... . . . ...

p1n p2n p3n · · · 2pnn

 . (2.12)

The case n = 3 was treated in [23, Example 12] where its ML degree was found to be 6. It
is essential that the unknowns pii on the diagonal are multiplied by 2 before imposing the
rank constraints. The matrices (2.12) of rank one form a Veronese variety in P(n+2)(n−1)/2.
This variety has ML degree 1 and represents the independence model for two identically
distributed random variables on n states. The case n = 2 is the Hardy-Weinberg curve [35,
Figure 3.1]. Larger ranks r correspond to the secant varieties of this Veronese variety.



CHAPTER 2. LOW RANK MATRIX MODELS 13

Theorem 2.2.3. The known values for the ML degrees of rank r symmetric matrices (2.12) are

n = 3 4 5 6
r = 1 1 1 1 1
r = 2 6 37 270 2341
r = 3 1 37 1394
r = 4 1 270
r = 5 1 2341
r = 5 1

(2.13)

Our input is a strictly positive symmetric n×n-matrix U . The likelihood function equals

`U =

∏
i≤j p

uij
ij(∑

i≤j pij
)∑

i≤j uij
. (2.14)

In the statistical context, when the sum of the pij entries equals 1, we have

∂log(`U)

∂pij
=

uij
pij
−
∑
i≤j

uij. (2.15)

We compute the critical points on the variety of rank r matrices (2.12) by adapting the
formulation in Theorem 2.2.1. Let P1 be a symmetric r × r-matrix of unknowns where the
diagonal entries are multiplied by 2 similar to (2.12), let L1 be an (n − r) × r-matrix of
unknowns, and Λ be a symmetric (n− r)× (n− r)-matrix. Following (2.10), we define

L =
(
L1 −Im−r

)
and P =

(
P1 P1L

T
1

L1P1 L1P1L
T
1

)
. (2.16)

To account for the pii’s not being multiplied by 2 in the likelihood function, let D be
the n×n-matrix whose diagonal entries are 2 and off-diagonal entries are 1. The symmetric
local kernel formulation is the square system consisting of the upper triangular part of

P ? (LT · Λ · L) +
∑
i≤j

uij · P = D ? U. (2.17)

This is a system of n(n+ 1)/2 equations in n(n+ 1)/2 unknowns. Similar to the local kernel
formulation, the column sums of P ? (LT ·Λ ·L) are zero. Hence (2.17) implies

∑
i≤j pij = 1.

We use this fact to replace the diagonal entries in (2.17) with the corresponding column sum.

Example 2.2.4. We illustrate the symmetric local kernel formulation (2.17) for the two
subcases r = 1, 2 when n = 3. Both have 6 equations in 6 unknowns. Here, u++ =

∑
i≤j uij.

Subcase r = 1: The six unknowns arise from the entries in the matrices

L1 =

(
l11

l21

)
, P1 =

(
2p11

)
, Λ =

(
λ11 λ12

λ12 λ22

)
,
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and the six equations take the form

2p11(1 + l11 + l21) = (2u11 + u12 + u13)/u++

2p11l11(u++ − l11λ11 − l21λ12) = u12

2p11l21(u++ − l11λ12 − l21λ22) = u13

2p11l11(1 + l11 + l21) = (u12 + 2u22 + u23)/u++

2p11l11l21(λ12 + u++) = u23

2p11l21(1 + l11 + l21) = (u13 + u23 + 2u33)/u++.

This system has a unique solution which writes the unknowns as rational functions in the uij.

Subcase r = 2: The six unknowns arise from the entries in the matrices

L1 =
(
l11 l12

)
, P1 =

(
2p11 p12

p12 2p22

)
, Λ =

(
λ11

)
,

and the six equations take the form

2p11(1 + l11) + p12(1 + l12) = (2u11 + u12 + u13)/u++

p12(l11l12λ11 + u++) = u12

(2p11l11 + p12l12)(u++ − l11λ11) = u13

p12(1 + l11) + 2p22(1 + l12) = (u12 + 2u22 + u23)/u++

(p12l11 + 2p22l12)(u++ − l12λ11) = u23

(2p11l11 + p12l12)(1 + l11) + (p12l11 + 2p22l12)(1 + l12) = (u13 + u23 + 2u33)/u++.

This system has six complex solutions for a general data matrix U . In the other words, the
6 unknowns l··, p··, and λ11 are algebraic functions of degree 6 in u11, u12, . . . , u33.

Here is the symmetric version of Theorem 2.1.2, as suggested by Theorem 2.2.3:

Theorem 2.2.5. The ML degree for symmetric n× n-matrices (2.12) of rank r is equal to
the ML degree for symmetric n× n-matrices (2.12) of rank n− r + 1.

The proof of this statement is given by Theorem 3.3.4 of the next chapter.

2.3 Solutions using numerical algebraic geometry
Theorems 2.1.1 and 2.2.3 document considerable advances relative to the computational
results found earlier by Hoşten, Khetan, and Sturmfels [23, §5]. In this project, we used
numerical algebraic geometry [3] to compute the ML degrees by solving the local kernel
formulation (2.11) which we explain in this section.

The statistical problem addressed here is to find the global maximum of a likelihood
function `U over a matrix model M given by rank constraints. For this class of problems,
the use of numerical algebraic geometry has the following significant advantage over symbolic
computations. After having solved the likelihood equations only once, for one generic data
matrix U0, all subsequent computations for other data matrices U are much faster. Numerical
homotopy continuation will start from the critical points of `U0 and transform them into the
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(m,n, r) (4, 4, 2) (4, 4, 3) (4, 5, 2) (4, 5, 3) (5, 5, 2) (5, 5, 4)
Preprocessing 257 427 1938 2902 348555 146952

Solving 4 4 20 20 83 83

Table 2.2: Running times for preprocessing and subsequent solving (in seconds)

critical points of `U . Intuitively speaking, for a fixed model M, the homotopy amounts to
changing the data. We believe that our methodology will be useful for a wider range of
maximum likelihood problems than those treated here, and we decidedly agree with the
statement of Buot and Richards [8, §5] that “... homotopy continuation algorithms often
provide substantial advantages over iterative methods commonly used in statistics”.

We discuss below two options for the preprocessing stage of solving the local kernel
formulation (2.11) for generic U0. The first option is to use a single homotopy built from an
upper bound discussed in Section 2.2, most notably a polyhedral homotopy built from the
polyhedral root count. The second option is to use a sequence of homotopies that intersect
the hypersurfaces corresponding to each equation, most notably via regeneration [21].

Parallel computation is an essential feature of numerical algebraic geometry. Both pre-
processing, by solving a generic data set once, and each subsequent solve for given specific
data can be performed in parallel. In our case, we used a 64-bit Linux cluster with 160
processors to perform the computations summarized in Table 2.2 which tracked each path
on a separate processor. For instance, for (m,n, r) = (4, 5, 2), there are 843 paths, to be dis-
tributed among the 160 processors. Using adaptive precision [4], this takes 20 seconds while
the same computation performed sequentially takes about 20 minutes on a typical laptop.

Example 2.3.1. The following data matrix is attributed to the fictional character DiaNA
in [35, Example 1.3]. It represents her alignment of two DNA sequences of length u++ = 40:

U =


4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4

 .

According to Table 2.2, it took 257 seconds to solve the first instance for (m,n, r) = (4, 4, 2),
but now every subsequent run takes only 4 seconds. In that solving step, the integers uij
become parameters over the complex numbers. For DiaNA’s data matrix U , the 191 complex
critical points degenerate to 25 real critical points, each of which is positive, and 166 nonreal
critical points. See Theorem 2.4.4 for additional information regarding the critical points.

Three advantages of the local kernel formulation (2.11) are that it is a square system with
polynomials of degree at most 4, it is sparse in terms of the number of monomials appearing,
and it has a natural product structure. These structures are clearly visible from the systems
in Example 2.2.2, and they are used to derive the smaller upper bounds in Table 2.1. In
what follows, we shall describe our preprocessing and how we can use its output to easily
compute all critical points of `U for a given data matrix U . We also analyze some specific
examples. An introduction to numerical algebraic geometry and homotopy continuation can
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be found in [41] and more details using Bertini to perform these computations appear in
the book [3] and Chapter 6.

For a square polynomial system F , basic homotopy continuation computes a finite set S of
complex roots of F which contains all isolated roots. Here, “computes S” means numerically
computing the coordinates of each point in S, and to be able to approximate these to
arbitrary accuracy. Numerical approximations to nonsingular solutions can be certified using
the software alphaCertified [22]. This certification can also determine if the solution
is real or positive. To compute S, we first construct a family of polynomial systems F
containing F and then compute the isolated roots for a sufficiently general G ∈ F . Finally,
one tracks the solution paths starting with the isolated roots as G deforms to F inside F .

Fix (m,n, r) and let F := Fm,n,r be the family of polynomial systems (2.11) for U ∈ Cm×n.
The generic root count on F is the ML degree of Vr. In particular, for any generic U0 ∈ Cm×n

the number of roots of the corresponding system FU0 ∈ F is the ML degree of Vr. Suppose
further that we know the roots of FU0 . Then, for any matrix U ∈ Cm×n, we can compute
the isolated roots of the corresponding polynomial system FU by tracking the ML degree
number of solutions paths starting with the roots of FU0 as U0 and FU0 deform to U and FU .

Since the family F is parameterized by the linear space Cm×n ∼= R2mn, we can connect
U0 to U along a line segment. If U0 is not in a sufficiently general position with respect to U ,
e.g., both real, this segment may contain matrices for which the corresponding system has
a root count that is different from the ML degree. To avoid this, we apply the gamma trick
of [33]. For γ ∈ S1 ⊂ C∗, the trick deforms from U0 to U along the arc parameterized by

γt

1 + (γ − 1)t
· U0 +

1− t
1 + (γ − 1)t

· U for t ∈ [0, 1]. (2.18)

For all but finitely many values γ ∈ S1, the root count for the corresponding polynomial
system along this arc, except possibly at U when t = 0, is the ML degree.

We conclude our discussion on deforming from a known set of critical points with a
practical issue. Due to choices of affine patches, the local kernel formulation (2.11), as
written, is not suitable for a nongeneric data matrix U . Once given a data matrix U ,
we simply choose random affine patches as in [2]. Let O1, O2 ∈ Rr×r, O3 ∈ Rm×m, and
O4 ∈ Rn×n be random orthogonal matrices and L1, P1, R1, and Λ be as before. Then, we
use (2.11) with

L = O1 ·
(
L1 −Im−r

)
·OT

3 , P = O3 ·
(
P1 P1R1

L1P1 L1P1R1

)
·OT

4 , and R = O4 ·
(

R1

−In−r

)
·OT

2 .

The homotopy (2.18) quickly computes the isolated critical points for any given data matrix
U provided that we already know the critical points for a sufficiently general data matrix U0.

We now discuss the two options for preprocessing mentioned above, namely polyhedral
homotopies and regeneration. A summary of our computations with these two methods,
now using serial processing with double precision, are presented in Table 2.3. The last pair
of entries suggest that the two methods exhibit complementary behavior with respect to
the duality of Theorem 2.1.2. In both cases, 191 roots are found as predicted by Theorem
2.4. These are essentially the same roots, by Theorem 2.4.2 below. For instance, using
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(m,n, r) (3, 3, 2) (3, 4, 2) (3, 5, 2) (4, 4, 2) (4, 4, 3)
Polyhedral using PHC 4 120 2017 23843 1869

Regeneration using Bertini 6 61 188 2348 7207

Table 2.3: Running times for preprocessing in serial using double precision (in seconds)

polyhedral homotopy, the rank 2 case can be solved in 1869 seconds and then we may read
off the solutions for rank 3 using (2.19).

The first approach to solve the equations for U0 is to use basic homotopy continuation
in the family P of polynomial systems that arise from some relevant structure. The generic
root count on P constructed from various structures are presented in Table 2.1. After
computing the roots for a general element of P , we return to basic homotopy continuation
for computing the roots of FU0 . Table 2.3 summarizes the results of using a polyhedral
approach implemented in PHC [46] where the family P is constructed based on the Newton
polytopes of the given equations.

The second approach is based on intersecting the given hypersurfaces iteratively. This can
be advantageous when the degree of the intersection is significantly less than the product
of the degrees. To be explicit, if S is a pure k-dimensional variety (k > 0) and H is a
hypersurface, intersection approaches can be advantageous when the degree of the pure
(k− 1)-dimensional part of S ∩H is less than degS · degH. Regeneration is an intersection
approach that builds from a product structure of the given system. We shall now discuss this.

We first consider the classical idea of solving polynomial systems using successive inter-
sections and then discuss how to build from a product structure. Consider N polynomials
f1, . . . , fN in N variables, defining hypersurfacesH1, . . . ,HN . One advantage of a square sys-
tem is that the isolated solutions of f1 = · · · = fN = 0 arise by computing the codimension i
components of H1∩ · · · ∩Hi sequentially for i = 1, 2, . . . , N . In fact, every codimension i+ 1
component of H1 ∩ · · · ∩ Hi ∩ Hi+1 arises as the intersection of a codimension i component
C of H1 ∩ · · · ∩ Hi and the hypersurface Hi+1, where C is not contained in Hi+1.

The use of the product structure arises from intersecting an algebraic set of pure codi-
mension i with a linear space of dimension i yielding finitely many points. The first step is a
hypersurface intersected with a line. If L2, . . . ,LN are general hyperplanes, the hypersurface
H1 is represented by the isolated points in H1∩L2∩ · · · ∩LN . Such points can be computed
by solving a univariate polynomial, namely f1 restricted to the line L2 ∩ · · · ∩ LN . Let
1 ≤ i < N and Ci be the pure one-dimensional component of H1∩ · · ·∩Hi∩Li+2∩ · · ·∩LN .
Now, basic regeneration computes Ci ∩ Hi+1 from Ci ∩ Li+1 as follows. Let M1, . . . ,Mk

be hyperplanes defined by sufficiently general linear polynomials `1, . . . , `k that represent a
linear product decomposition of fi+1. Let M =

⋃k
j=1Mj. Basic homotopy continuation

computes Ci ∩Mj from Ci ∩ Li+1 for j = 1, . . . , k. Their union is Ci ∩M. Applying basic
homotopy continuation once more yields Ci ∩Hi+1 by deforming from Ci ∩M.

For the preprocessing approaches above, we can certify that the set of approximations
obtained correspond to distinct solutions using alphaCertified. At each stage of the
regeneration and at the end of the computation, we can perform one additional test to
confirm that we have obtained all of the solutions: the trace test [39]. During regeneration,
the centroid of the solutions must move linearly as the hyperplane LN is moved linearly.
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Moreover, the centroid of the critical m× n-matrices must move linearly as the data matrix
U moves linearly. With these tests, we are able to claim, with high probability, that our initial
randomly selected data matrix U0 was sufficiently generic, and Theorems 2.1.1 and 2.2.3 hold.

After computing the positive critical points for a given data matrix U , we identify the
local maximizers by analyzing the Hessian of the corresponding Lagrangian function, namely

L(P, λ) = log `U(P ) +
k∑
i=1

λigi(P ),

where Vr is defined by the vanishing of the polynomials g1, . . . , gk. If P is a critical point
of rank r, let λ ∈ Ck be the unique vector such that ∇L(P, λ) = 0. Then, P is a local
maximizer if the matrix NT · HL(P, λ) · N is negative semidefinite where HL(P, λ) is the
Hessian of L and the columns of N form a basis for the tangent space of Vr × Ck at (P, λ).

In the remainder of this section we present three concrete numerical examples.

Example 2.3.2. We consider the symmetric matrix model (2.12) for n = 3 with the data

u11 = 10, u12 = 9, u13 = 1, u22 = 21, u23 = 3, u33 = 7.

All six critical points of the likelihood function (2.14) are real and positive. They are

p11 p12 p13 p22 p23 p33 log `U(p)
0.1037 0.3623 0.0186 0.3179 0.0607 0.1368 −82.18102
0.1084 0.2092 0.1623 0.3997 0.0503 0.0702 −84.94446
0.0945 0.2554 0.1438 0.3781 0.4712 0.0810 −84.99184
0.1794 0.2152 0.0142 0.3052 0.2333 0.0528 −85.14678
0.1565 0.2627 0.0125 0.2887 0.2186 0.0609 −85.19415
0.1636 0.1517 0.1093 0.3629 0.1811 0.0312 −87.95759

The first three points are local maxima in ∆5 and the last three points are local minima.
These six points define an extension of degree 6 over Q. For instance, via Macaulay 2 [16],
the minimal polynomial for the last coordinate is

9528773052286944p6
33 − 4125267629399052p5

33+
713452955656677p4

33 − 63349419858182p3
33+

3049564842009p2
33 − 75369770028p33 + 744139872.

As we shall see in Proposition 2.4.5, the Galois group of this irreducible polynomial is
solvable. So we can express each of the coordinates in radicals. For example, the last
coordinate, via RadiRoot [10], is

p33 =
(

14779904193
211433981207339

ζ2 − 14779904193
211433981207339

ζ
)
ω1ω

2
2

−66004846384302
19221271018849

ω2
2 + 16427

227664
+ 1

12
(ζ − ζ2)ω2 + 1

2
ω3,

where ζ is a primitive third root of unity, ω2
1 = 94834811/3, and

ω3
2 =

(
5992589425361

150972770845322208
ζ − 5992589425361

150972770845322208
ζ2
)

+ 97163
40083040181952

ω1,

ω2
3 = 5006721709

1248260766912
+
(

212309132509
4242035935404

ζ − 212309132509
4242035935404

ζ2
)
ω2 − 2409

20272573168
ω1ω2

−158808750548335
76885084075396

ω2
2 +

(
17063004159

422867962414678
ζ2 − 17063004159

422867962414678
ζ
)
ω1ω

2
2.
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We finally note that the six critical points can be matched into three pairs so that (2.19) holds:
the Hadamard product of points 1 and 6 agree with that of points 2 and 5, and that of points
3 and 4. Thus this example illustrates the symmetric matrix version of Theorem 2.4.2.

Example 2.3.3. Let m = 4, n = 5 and consider the data matrix

U =


2084 1 1 1 4

4 23587 5 3 1
6 3 41224 3 2
4 6 2 8734 4

 .

For r = 2 and r = 3, this instance has the expected number 843 of distinct complex critical
points. In both cases, 555 critical points are real, and 25 of these are positive. Consider
the 25 critical points in ∆19. For r = 2 precisely seven are local maxima, and for r = 3
precisely six are local maxima. We shall list them explicitly in Examples 2.5.3 and 2.5.4
respectively.

Example 2.3.4. Let m = n = 5, with the non-symmetric model, and consider the data

U =


2864 6 6 3 3

2 7577 2 2 5
4 1 7543 2 4
5 1 2 3809 4
6 2 6 3 5685

 .

For r = 2 and r = 4, this instance has the expected number of 6776 distinct complex critical
points. In both cases, 1774 of these are real and 90 of these are real and positive. This
illustrates the last statement in Theorem 2.4.2. The number of local maxima for r = 2 equals
15, and the number of local maxima for r = 4 equals 6. For r = 3, we have 61326 critical
points, of which 15450 are real. Of these, 362 are positive and 25 are local maxima.

2.4 Further results and computations
The numerical algebraic geometry techniques described in Section 2.3 have the advantage
that they permit fast experimentation with non-trivial instances. This led us to a variety
of conjectures, including those concerning ML duality. Before we come to our discussion of
duality, we briefly state a conjecture regarding the ML degree of 3× n-matrices of rank 2.

Conjecture 2.4.1. For m = 3 and n ≥ 3, the ML degree of the variety V2 equals 2n+1− 6.

The first three values already appeared in Theorem 2.1.1. We tested this formula by
solving the equations of the local kernel formulation (2.11). This was done independently
in Macaulay 2 and Bertini. With these computations, we verified Conjecture 2.4.1 up to
n = 10. This conjecture, if correct, would furnish a simple and natural sequence of models,
namely 3 × n-matrices of rank 2, whose ML degree grows exponentially in the number of
states. This allows for the possibility of many local maxima.
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We next formulate a refined version of the duality statement in Theorem 2.1.2. Given a
data matrix U of format m× n, we write ΩU for the m× n-matrix whose (i, j) entry equals

uijui+u+j

(u++)3
.

Theorem 2.4.2. Fix m ≤ n and U an m × n-matrix with strictly positive integer entries.
There exists a bijection between the complex critical points P1, P2, . . . , Ps of the likelihood
function `U on Vr and the complex critical points Q1, Q2, . . . , Qs of `U on Vm−r+1 such that

P1 ? Q1 = P2 ? Q2 = · · · = Ps ? Qs = ΩU . (2.19)

In particular, this bijection preserves reality, positivity, and rationality of the critical points.

The proof of this theorem can be found in the next chapter as Theorem 3.1.1.
From the perspective of statistics, this result implies the following striking statement:

maximum likelihood estimation for matrices of rank r is exactly the same problem as min-
imum likelihood estimation for matrices of corank r − 1, and vice versa. This refined for-
mulation of the duality statement allows us to improve the speed of MLE by passing to the
complementary problem, where it may be easier to solve the likelihood equations. We saw a
first instance of this in Section 2.3 when we discussed the last two columns in Table 2.3: the
two methods give the same set of 191 solutions but the running times are complementary.

Remark 2.4.3. Equation (2.19) is trivially satisfied for r = 1, where the ML degree is
s = 1. Here, P1 is the rank one matrix in (2.22), and Q1 = 1

u++
U . Clearly, we have

P1 ? Q1 = ΩU .

We illustrate Theorem 2.4.2 for a specific case that has already appeared in the literature
[13, 35, 48]. The first assertion in the next theorem resolves [48, Conjecture 11] affirmatively.
In their conjecture, Zhu et al. [48] had identified the matrix P (a, b) below, and they had
asserted that it is the global maximum of the likehood function for the data matrix U(a, b).
Note that, for a = 4 and b = 2, this is the matrix for DiaNA’s data in [35, Example 1.16].

Theorem 2.4.4. Let m = n = 4, a > b > 0, and consider the following matrices:

U(a, b) =


a b b b
b a b b
b b a b
b b b a

 and P (a, b) =
1

8(a+ 3b)


a+ b a+ b 2b 2b
a+ b a+ b 2b 2b

2b 2b a+ b a+ b
2b 2b a+ b a+ b

 .
The distribution P (a, b) maximizes the likelihood function for the data matrix U(a, b) onM2.

Proof. This statement is invariant under scaling the vector (a, b). We normalize by taking
4a + 12b = 16. Then b = (4− a)/3 and a ranges in the open interval defined by 1 < a < 4.
For each such a, the likelihood function `U(a,b) has exactly 25 positive critical points in the
rank 2 modelM2, with the maximum value occurring at P (a, b). This statement was shown
using the following method and its illustration in Figure 2.1.

First, we selected a = 2 and computed the 191 critical points using Bertini. From
these, alphaCertified proved that exactly 25 are real and, using the computed error
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Figure 2.1: Minimum pairwise distance and lower bound (2.20) as a function of a.

bounds, it verified that all lie in ∆15. We then expressed these real solutions as rational
functions in a and b to show that all 25 real solutions remain positive for all a > b > 0. The
critical points fall into four symmetry classes of size 6, 12, 4, and 3. Representatives of these
classes are

X1 =
1

16


1 1 1 1
1 1 1 1

1 1 2a
a+b

2b
a+b

1 1 2b
a+b

2a
a+b

 , X2 =
1

32(a+ 2b)


2a+ 4b 2a+ 4b 2a+ 4b 2a+ 4b
2a+ 4b 6a 6b 6b
2a+ 4b 6b 3a+ 3b 3a+ 3b
2a+ 4b 6b 3a+ 3b 3a+ 3b

 ,

X3 =
1

12(a+ 3b)


3a 3b 3b 3b
3b a+ 2b a+ 2b a+ 2b
3b a+ 2b a+ 2b a+ 2b
3b a+ 2b a+ 2b a+ 2b

 , and X4 = P (a, b).

Using calculus, one can prove that log `U(Xi) < log `U(Xi+1) for i = 1, 2, 3.
All that remains is to show that the 191 solutions remain distinct on 1 < a < 4 (with some

coalesce at the boundary). The function mapping a to the minimum of the pairwise distances
between the critical points is a piecewise smooth function. It is depicted in Figure 2.1. By
tracking the homotopy paths as a changes from 2 to 1 and from 2 to 4, we are able to
determine that this function is nowhere zero on the open interval (1, 4). Additionally, by
analyzing the solutions using [1], a lower bound on this minimum pairwise distance function is

min
{

(a−1)
√
a2+17

12(a+8)
,

a+2−
√

(a−1)(a−4)

48
− 3(a2−12a−16)+

√
6(a−1)(a−4)(a2−16a+96)

16(a+8)(a−10)

}
(2.20)

which is also depicted in Figure 2.1. The first term of this minimum arises from X2 and a
member of the X3 family which is equal to the minimum pairwise distances for values of a
near 1. The second term arises from comparing the (1, 1) entries of critical points. In short,
all of the solutions remain distinct on 1 < a < 4 and this establishes [48, Conjecture 11].
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We checked the duality statement in Theorem 2.4.2 by performing the same computation
for m = n = 4 and r = 3. We followed the 191 paths in the deformation from a general
U0 to a general U(a, b). Using Bertini, we found that 12 endpoints had rank 2 while the
other 179 had the expected rank of 3. Moving the other 179 solutions to a = 2 produced 179
distinct complex solutions that remain distinct and retain rank 3 on (1, 4). Using the same
certification process as above, precisely 25 are positive. These critical points of M3 form
four symmetry classes having the same sizes 6, 12, 4, and 3 as above, with representatives:

Y1 = 1
8(a+3b)


2a 2b 2b 2b
2b 2a 2b 2b
2b 2b a+ b a+ b
2b 2b a+ b a+ b

 , Y2 = 1
12(a+3b)


3a 3b 3b 3b
3b a+ 2b a+ 2b a+ 2b

3b a+ 2b 2a(a+2b)
a+b

2b(a+2b)
a+b

3b a+ 2b 2b(a+2b)
a+b

2a(a+2b)
a+b

 ,

Y3 = 1
16(a+2b)


a+ 2b a+ 2b a+ 2b a+ 2b
a+ 2b 3a 3b 3b
a+ 2b 3b 3a 3b
a+ 2b 3b 3b 3a

, Y4 = 1
16(a+b)


2a 2b a+ b a+ b
2b 2a a+ b a+ b

a+ b a+ b 2a 2b
a+ b a+ b 2b 2a

 .

The matrices are now sorted by decreasing value of `U(a,b), so the first matrix Y1 is the MLE.
Our real positive critical points satisfy the desired duality relation. Namely, we have

X1 ? Y1 = X2 ? Y2 = X3 ? Y3 = X4 ? Y4 =
1

64(a+3b)
U(a, b) =: ΩU .

We verified the same for the complex solutions.
When Theorem 2.4.2 was still a conjecture, we verified it for randomly selected data

matrices with i.i.d. entries sampled from the uniform distribution on [0, 1]. After generating
a random matrix, we verified equation (2.19) using the critical points computed by homotopy
continuation. For m = n = 3 and r = 2, we verified (2.19) for 50000 instances. Additionally,
form = n = 4 and r = 2, we verified (2.19) for 10000 instances. We also did this for a handful
of 4× 5 instances (such as Example 2.3.3) and 5× 5 instances (such as Example 2.3.4). The
user can find Macaulay 2 code, which uses the Bertini.m2 package (described in Chapter
6), to perform more numerical experiments at www.math.ncsu.edu/~jdhauens/MLE.

Theorem 2.4.2 and its analogue for symmetric matrices is particularly interesting in the
special case when m = n = 2r − 1. Here we have an involution on the set of critical points
of `U on Vr which has the following property. If P1, P2, . . . , Ps are the positive critical points
in the modelMr, ordered by increasing value of the log-likelihood function, then

`U(P1) + `U(Ps) = `U(P2) + `U(Ps−1) = · · · = `U(Pds/2e) + `U(Pbs/2c).

The identity (2.19) implies that Galois group which permutes the set of critical points is
considerably smaller than the full symmetric group on these points. We shall demonstrate
this for n = 3. What follows will explain the solutions in radicals seen in Example 2.3.2.

Let Q(U) denote the field of rational functions in entries of an indeterminate data matrix
U , and let K denote the algebraic extension of Q(U) that is defined by adjoining all solutions
of the likelihood equations. Thus the degree of the extension K/Q(U) is the ML degree.
We are interested in the Galois group G = Gal(K,Q(U)) of this algebraic extension. This
Galois group is a subgroup of the full symmetric group SM where M is the ML degree.

The following result was found by explicit computations using maple and Sage [43].

www.math.ncsu.edu/~jdhauens/MLE
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Proposition 2.4.5. The Galois group for MLE on 3×3-matrices (2.1) of rank 2 is a subgroup
of order 1920 in S10. As an abstract group, it is the semidirect product of S5 and (Z2)4. The
Galois group for MLE on symmetric 3 × 3-matrices (2.12) of rank 2 is a subgroup of order
24 in S5. As an abstract group, it is the symmetric group S4. So, in the latter case, the six
critical points of the likelihood function can be written in radicals in u11, u12, u13, u22, u23, u33.

We close this section with an important observation that is implied by the various poly-
nomial formulations of our problem, but which had not been explicitly stated in Section 2.2.

Remark 2.4.6. Every complex critical point P of the likelihood function `U on Vr satisfies

pi+ =
ui+
u++

for i = 1, . . . ,m and p+j =
u+j

u++

for j = 1, . . . , n.

A proof of this remark is given in Lemma 3.2.1. One is tempted to speculate that some
version of Theorems 2.1.2, 2.2.5, and 2.4.2 might be true for other classes of toric models.

2.5 Rank versus non-negative rank
In the previous sections, we developed accurate methods for finding the global maximum
of a likelihood function `U over non-negative matrices P of rank r whose entries sum to 1.
Unfortunately, this is not quite the problem most practitioners and users of statistics would
actually be interested in. Rather than restricting the rank of a probability table (2.1), it is
the non-negative rank that is more relevant for applications. In this section we discuss this.

Let Mixr denote the subset of ∆mn−1 that comprises all the mixtures of r independent
distributions. In statistics, this is the archetype of a latent variable model, or hidden variable
model. Mathematically, we can define the mixture model Mixr as the set of all matrices

P = A · Λ ·B, (2.21)

where A is a non-negativem×r-matrix whose columns sum to 1, Λ is an r×r diagonal matrix
whose diagonal entries are non-negative and sum to 1, and B is a non-negative r×n-matrix
whose rows sum to 1. The rank-constrained modelMr = Vr ∩∆mn−1 we discussed above is
an algebraic relaxation of the mixture model Mixr. This can be made precise as follows:

Proposition 2.5.1. The rank-constrained model Mr is the Zariski closure of the mixture
model Mixr inside the simplex ∆mn−1. If r ≤ 2 then Mixr = Mr. If r ≥ 3 then Mixr (
Mr.

Proof. See Example 4.1.2, Example 4.1.4 and Proposition 4.1.6 in [12]. That book refers to
secant varieties of Segre varieties, tensors of any format, and joint distributions of any number
of random variables. Here we only need the case of matrices and two random variables.

Our modelMr is the set of all distributions P of rank at most r, while Mixr is the set
of all distributions P of non-negative rank at most r. Having non-negative rank ≤ r means
that P = A′ ·B′ for some non-negative matrices where A′ has r columns and B′ has r rows.
Any such factorization can be transformed into the particular form (2.21) which identifies
the statistical parameters. For further information on these two models see [13, 32, 35].
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Understanding the inclusion of Mixr insideMr becomes crucial when comparing different
methodologies for maximum likelihood estimation. We used Bertini to compute all critical
points of the likelihood function `U onMr, with the aim of identifying the global maximum
P̂ of `U overMr. This assumes that P̂ is strictly positive. This is usually the case when U
is strictly positive. The standard method used by statisticians is to run the EM algorithm in
the space of model parameters (A,Λ, B). This results in a local maximum (Â, Λ̂, B̂) of the
likelihood function expressed in terms of the parameters. The fact that Mr is the Zariski
closure of the mixture model Mixr in the simplex ∆mn−1 has the following consequence:

Corollary 2.5.2. Let P̂1, . . . , P̂s be the local maxima inMr of the likelihood function `U . If
a matrix P̂i has non-negative rank at most r then P̂i lies in Mixr and matching parameters
(Âi, Λ̂i, B̂i) can found by solving (2.21). If all matrices P̂i have non-negative rank strictly
larger than r then `U attains its maximum over Mixr on the topological boundary ∂Mixr.

Proof. The second sentence holds because every matrix P ∈ ∆mn−1 of non-negative rank ≤ r
admits a factorization of the special form (2.21). Indeed, if P = A′ · B′ is any non-negative
factorization then we first scale the rows of A′ to get a matrix A with row sums equal to
1, and we adjust the second matrix so that P = A · B′′. Now let Λ be the diagonal matrix
whose entries are the column sums of B′′ and set B = Λ−1B′′. Then P = A · Λ ·B.

For the third sentence, suppose `U has its maximum over Mixr at a point P̂ in Mixr\∂Mixr.
Then P̂ is also a local maximum of `U onMr. Thus P̂ will be found by solving the critical
equations for `U on Vr. The matrix P̂ is an element of {P̂1, . . . , P̂s}. Hence, this set contains
a matrix of non-negative rank ≤ r. This proves the contrapositive of the assertion.

We shall now discuss the exact solution of the MLE problem for the mixture model Mixr.
Let us start with the low rank cases. The given input is a data matrix U as in (2.2).

If r = 1 then the likelihood function `U has a unique critical point. Let u∗+ be the
column vector of row sums of U , and let u+∗ be the row vector of column sums of U . Then

P̂ =
1

(u++)2
· u∗+ · u+∗. (2.22)

If r ≥ 2 then we compute the set {P̂1, . . . , P̂s} of all local maxima of the likelihood function
`U on the modelMr. This is done using the numerical algebraic geometry methods described
in Section 2.3, by solving the likelihood equations (2.11) for the determinantal variety Vr.

If r = 2 then every matrix P̂i has non-negative rank ≤ 2. We therefore select the matrix
whose likelihood value `U(P̂i) is maximal. Then P̂i solves the MLE problem for Mix2 =M2.

Example 2.5.3. We experimented with the EM Algorithm for r = 2, as in [35, §1.3], on the
4×5 data matrix U discussed in Example 2.3.3. We ran 10000 iterations with starting points
(A,Λ, B) sampled from the uniform distribution on the 15-dimensional parameter polytope

(∆3 ×∆3) × ∆1 × (∆4 ×∆4).
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From these 10000 runs of the EM algorithm we obtained the following seven local maxima:

Occurrences Critical point log(`U)

2643 occurrences:

[
0.001678 0.01892 0.00001325 0.007008 0.00000722
0.01894 0.2136 0.00006605 0.07912 0.00008149

0.00007930 0.00003964 0.5447 0.00003964 0.00002643
0.007023 0.07921 0.00002643 0.02933 0.00003021

]
−105973.49

2044 occurrences:

[
0.001332 0.00001777 0.02627 0.00000792 0.00000382

0.00007696 0.2274 0.00006503 0.08423 0.00004823
0.02628 0.00003913 0.5185 0.00004103 0.00007542

0.00002871 0.08432 0.00002762 0.03123 0.00001788

]
−106487.35

1897 occurrences:

[
0.002245 0.02536 0.00001725 0.000006332 0.000005379
0.02535 0.2863 0.00006471 0.00004393 0.00006072

0.00009818 0.00003897 0.4495 0.09525 0.00006537
0.00002773 0.00008630 0.09530 0.02020 0.00001388

]
−109697.04

1688 occurrences:

[
0.001111 0.00001327 0.02187 0.004634 0.000005304

0.00005289 0.3117 0.00006605 0.00003968 0.00001322
0.02191 0.00003963 0.4314 0.09144 0.0001046
0.004647 0.00007931 0.09148 0.01939 0.00002219

]
−111172.67

1106 occurrences:

[
0.005321 0.00002006 0.00001106 0.02226 0.00002038

0.00005070 0.1135 0.1983 0.00004009 0.00001444
0.00008126 0.1983 0.3465 0.00003939 0.00002520

0.02227 0.00007333 0.00002771 0.09316 0.00008532

]
−127069.50

529 occurrences:

[
0.0008641 0.009735 0.01701 0.00001350 0.00000289
0.009756 0.1099 0.1921 0.00003965 0.00003259
0.01705 0.1921 0.3357 0.00003959 0.00005693

0.00005301 0.00007930 0.00002642 0.1154 0.00005294

]
−131013.73

93 occurrences:

[
0.02754 0.00001320 0.00001319 0.00001334 0.00005311

0.00005280 0.09999 0.1747 0.03704 0.00002957
0.00007916 0.1747 0.3053 0.06472 0.00005164
0.00005339 0.03706 0.06476 0.01373 0.00001102

]
−148501.63

The first matrix is the global maximum, and it was the output in 2643 of our 10000 runs. Note
that the ordering by objective function value agrees with the ordering by occurrence. We
know from Example 2.3.3 that ∆19 contains 7 local maxima, and hence our EM experiment
found them all. Each of the 7 matrices above has both rank and non-negative rank r = 2.

If r ≥ 3 then the situation is more challenging. To begin with, we need a method for
testing whether a matrix has non-negative rank ≤ r. Recent work by Moitra [31] shows that
the computational complexity of this problem is lower than one might fear at first glance.

So, let us assume for now that this problem has been solved and we have an algorithm to
decide quickly whether any of the matrices P̂i has non-negative rank r. If so, we pick among
them the matrix P̂i of largest `U -value. This matrix is now a candidate for the MLE on Mixr.
But it may not actually be the MLE because the global maximum of the likelihood function
`U may be attained on the boundary ∂Mixr. Furthermore, it is quite possible that none
of the critical points in {P̂1, . . . , P̂s} lies in Mixr. Then, according to the third sentence of
Corollary 2.5.2, the MLE in the mixture model Mixr necessarily lies in the boundary ∂Mixr.

Our discussion implies that, in order to perform exact maximum likelihood estimation for
the mixture model, we need to have an exact algebraic description of ∂Mixr. Specifically, we
must determine the polynomial equations that cut out the various irreducible components
of the Zariski closure of ∂Mixr as a subvariety of Pmn−1. For each of these components, and
the various strata where they intersect, we then need to compute the ML degree. That list
of further ML degrees, combined with the value for Vr in Theorem 2.1.1, describes the true
intrinsic algebraic complexity of the MLE P̂ as a piecewise algebraic function of the data U .
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To be even more ambitious, we could ask for an exact semi-algebraic description of the
set Mixr. Namely, what we seek is a Boolean combination of polynomial inequalities in the
unknowns pij that characterize Mixr as a subset of Vr ∩∆mn−1. Finding such a description
is an open problem in general, but was solved in the rank at most 3 case in [28].

We illustrate the first interesting case (m,n, r) = (4, 4, 3) using the techniques developed
by Mond, Smith, and van Straten in [32]. Components of ∂Mix3 correspond to different
labelings of the configurations in [32, Figure 9]. Using the translations (seen in [32, §2])
between non-negative factorizations (2.21) and nested polygons, one of the labelings of [32,
Figure 9 (a)] corresponds to the factorization

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 =


0 a12 a13

0 a22 a23

a31 0 a33

a41 a42 0

 ·
 0 b12 b13 b14

b21 0 b23 b24

b31 b32 b33 0

 . (2.23)

This equation parametrizes an irreducible divisor in the 14-dimensional variety V3 ⊂ P15.
That divisor is one of the irreducible components of the algebraic boundary of M3. The
corresponding prime ideal of height 2 in Q[p11, . . . , p44] is obtained by eliminating the 17
unknowns aij and bij from the 16 scalar equations in (2.23). We find that this ideal is
generated by the 4× 4-determinant that defines V3 together with four sextics such as

p11p21p22p32p33p43 − p11p21p22p
2
33p42 − p11p21p23p

2
32p43 + p11p21p23p32p33p42 − p11p

2
22p31p33p43

+p11p22p23p31p32p43 + p11p22p23p31p33p42 − p11p
2
23p31p32p42 + p12p21p22p

2
33p41−p12p21p23p32p33p41

−p12p22p23p31p33p41 + p12p
2
23p31p32p41 + p13p

2
21p

2
32p43 − p13p

2
21p32p33p42 − 2p13p21p22p31p32p43

+p13p21p22p31p33p42 + p13p21p23p31p32p42 + p13p
2
22p

2
31p43 − p13p22p23p

2
31p42.

What needs to be studied now is the ML degree of this codimension 2 subvariety of P15, and
the approach of [26] would lead us to look at the topology of the associated very affine variety.
In Proposition 5.3 of [28], the ML degree was determined to be 633.

Described above is the geometry of the MLE problem for the mixture model Mixr re-
garded as a subset of the ambient simplex ∆mn−1. Statisticians, on the other hand, are more
accustomed to working in the space of model parameters, which is the product of simplices

(∆m−1)r ×∆r−1 × (∆n−1)r. (2.24)

Here our parameters are (A,Λ, B). The model Mixr is the image of this parameter space in
∆mn−1 under the map (2.21). That parametrization is very far from identifiable. The reason
is that the fibers of (A,Λ, B) 7→ P are semi-algebraic sets of possibly large dimension. In
fact, the whole point of the paper [32] is to study the topology of these fibers as P varies.

The expectation-maximization (EM) algorithm is the local method of choice for finding
the MLE on the mixture model Mixr. Our readers might enjoy the exposition given in
[35, §1.3]. We emphasize that the EM algorithm operates entirely in the parameter space
(2.24). The likelihood function `U pulls back to a function on the interior of (2.24). The
EM algorithm is an iterative method that converges to a critical point of that function, and,
under some mild regularity hypotheses, that critical point (Â, Λ̂, B̂) is then a local maximum.
The image P̂ of the point in Mixr is then a candidate for the global maximum of `U on Mixr.
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Example 2.5.4. We tried the EM Algorithm also for r = 3 on the 4 × 5 data matrix U
in Examples 2.3.3 and 2.5.3. We ran 10000 iterations with starting points sampled from
the uniform distribution on the 23-dimensional parameter polytope (∆3)3 × ∆2 × (∆4)3.
From these 10000 runs of the EM algorithm, 9997 converged to one of eight local maxima.
Three of the runs led to other fixed points. The following six local maxima are precisely
the solutions already found in Example 2.3.3. We note that, in this particular instance, it
happened that all local maxima in the rank model M3 actually lie in Mix3, i.e. they have
non-negative rank 3:

Occurrences Critical point log(`U)

3521 occurrences:

[
0.005321 0.00001322 0.00001322 0.02226 0.00002039

0.00005285 0.3117 0.00006607 0.00003964 0.00001321
0.00007929 0.00003964 0.5447 0.00003964 0.00002643

0.02227 0.00007927 0.00002642 0.09316 0.00008532

]
−84649.67679

2293 occurrences:

[
0.002244 0.02535 0.00001324 0.00001333 0.0000054
0.02535 0.2863 0.00006606 0.00003961 0.00006065

0.00007929 0.00003964 0.5447 0.00003964 0.00002643
0.00005291 0.00007928 0.00002643 0.1154 0.00005289

]
−86583.69000

1678 occurrences:

[
0.001332 0.00001326 0.02627 0.00001341 0.0000038

0.00005289 0.3117 0.00006607 0.00003964 0.00001322
0.02628 0.00003963 0.5185 0.00003961 0.00007538

0.00005296 0.00007928 0.00002642 0.1154 0.00005292

]
−87698.20128

1320 occurrences:

[
0.02754 0.00001320 0.00001321 0.00001326 0.00005298

0.00005277 0.2274 0.00006606 0.08423 0.00004806
0.00007928 0.00003964 0.5447 0.00003964 0.00002643
0.00005310 0.08430 0.00002643 0.03122 0.00001788

]
−98171.25551

576 occurrences:

[
0.02754 0.00001321 0.00001320 0.00001330 0.00005305

0.00005285 0.3117 0.00006605 0.00003968 0.00001322
0.00007916 0.00003964 0.4495 0.09526 0.00006519
0.00005324 0.00007932 0.09528 0.02019 0.00001389

]
−102495.4349

68 occurrences:

[
0.02754 0.00001322 0.00001321 0.00001321 0.00005285

0.00005287 0.1135 0.1983 0.00003968 0.00001444
0.00007927 0.1983 0.3465 0.00003962 0.00002520
0.00005285 0.00007930 0.00002642 0.1154 0.00005285

]
−121802.8945

In addition, our runs of the EM algorithm discovered the two local maxima

488 occurrences:

[
0.001678 0.01892 0.00001325 0.007008 0.0000072
0.01894 0.2136 0.00006605 0.07912 0.00008149

0.00007930 0.00003964 0.5447 0.00003964 0.00002643
0.007023 0.07921 0.00002643 0.02933 0.00003021

]
−105973.4859

53 occurrences:

[
0.001111 0.00001341 0.02187 0.004634 0.0000053

0.00005299 0.3117 0.00006602 0.00003976 0.00001324
0.02191 0.00003960 0.4314 0.09144 0.0001046
0.004647 0.00007935 0.09148 0.01939 0.00002219

]
−111172.6663

These do not satisfy the likelihood equations. They are located on the boundary of Mix3.

In the paper [28] the (algebraic) geometry of the EM algorithm is analyzed, with focus
on the small cases of Theorem 2.1.1. Comparison with the methods introduced in this
chapter opens up the possibility of characterizing conditions under which EM finds the
global maximum, as it did in Example 2.5.4.

In this chapter, we have introduced a numerical algebraic geometry approach to maxi-
mum likelihood estimation. This approach led to new computational results and motivated
surprising conjectures.
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Chapter 3

Duality of Matrix Models

The content of this chapter will be published in the International Mathematics Research
Notices as an article titledMaximum Duality of Determinantal Varieties, with minor changes
throughout for consistency with other chapters. This is joint work with Jan Draisma.

3.1 Introduction and results
For an m×n-data table U = (uij) ∈ Nm×n, we define the likelihood function `U : Tm×n → T,
where T = C∗ is the complex one-dimensional torus, as `U(Y ) =

∏
ij y

uij
ij for Y = (yij)ij ∈

Tm×n. This terminology is motivated by the following observation. If Y is a matrix with
positive real entries adding up to 1, interpreted as the joint probability distribution of two
random variables taking values in [m] := {1, . . . ,m} and [n] := {1, . . . , n}, respectively, then
up to a multinomial coefficient depending only on U , `U(Y ) is the probability that when
independently drawing

∑
i,j uij pairs from the distribution Y , the number of pairs equal to

(i, j) is uij. In other words, `U(Y ) is the likelihood of Y , given observations recorded in the
table U . A standard problem in statistics is to maximize `U(Y ).

Without further constraints on Y this maximization problem is easy: it is uniquely
solved by the matrix Y obtained by scaling U to lie in said probability simplex. But various
meaningful statistical models require Y to lie in some subvariety X of Tm×n. For instance,
in the model where the first and second random variable are required to be independent, one
takes X equal to the intersection of the variety of matrices of rank 1 with the hyperplane∑

ij yij = 1 supporting the probability simplex. Taking mixtures of this model, one is also
led to intersect said hyperplane with the variety of rank-r matrices.

For general X, the maximum-likelihood estimate is typically much harder to find (though
in the independence model it is still well-understood). One reason for this is that the restric-
tion of `U to X may have many critical points. Under suitable assumptions, this number of
critical points is finite and independent of U (for sufficiently general U), and is called the
maximum likelihood degree or ML degree of X. Finiteness and independence of U holds, for
instance, for smooth closed subvarieties of a torus [26], but also for all varieties X studied in
[20, 23] (which are smooth but not closed, and become closed but singular if one takes the
closure).

We take X to be a smooth, irreducible, locally closed, complex subvariety of a torus.
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Doing so, we tacitly shift attention from the statistical motivation to complex geometry—in
particular, we no longer worry whether the critical points counted by the ML degree lie in
the probability simplex or are even real-valued matrices.

The set of all critical points for varying data matrices U has a beautiful geometric inter-
pretation: Given P ∈ X and a vector V in the tangent space TPX to X at P , the derivative
of `U at P in the direction V equals `U(P ) ·

∑
ij
vij
pij
uij. This vanishes if and only if U is

perpendicular, in the standard symmetric bilinear form on Cm×n = Cmn, to the entry-wise
quotient V

P
of V by P . This leads us to define

Crit(X) := {(P,U) | TXP
P
⊥ U} ⊆ X × Cm×n,

which is called the variety of critical points of X in [26], except that there U varies over
projective space and the closure is taken. By construction, Crit(X) is smooth and irreducible,
and has dimension mn; indeed, it is a vector bundle over X of rank mn− dimX. The ML
degree of X is well-defined if and only if the projection Crit(X) → Cm×n is dominant, in
which case the degree of this rational map is the ML degree of X.

In this chapter, we consider three choices for X, all given by rank constraints: First, in
the rectangular case, we order m,n such that m ≤ n, fix a rank r ∈ [m], and take X equal
to

Mr := {P ∈ Tm×n |
∑
ij

pij = 1 and rkP = r}.

Second, in the symmetric case, we take m = n and take X equal to

SMr :=

P =


2p11 p12 · · · p1m

p12 2p22
... . . .
p1m 2pmm

 ∈ Tm×m |
∑
i≤j

pij = 1 and rk(P ) = r

 .

Third, in the skew-symmetric or alternating case, we take m = n and, for even r ∈ [m], take
X equal to

AMr :=

P =


0 p12 · · · p1m

−p12 0
... . . .

−p1m 0

 ∈ Cm×m |
∑

i<j pij = 1, rk (P ) = r,

and ∀i < j : pij 6= 0

 .

Minor modifications of the likelihood function are needed in the latter two cases: we define
as `U(P ) :=

∏
i≤j p

uij
ij in the symmetric case, and as `U(P ) :=

∏
i<j p

uij
ij in the alternating

case.
In Chapter 2, using the numerical algebraic geometry software Bertini [5, 3], the ML

degree of Mr is computed for various values of r,m, n with r ≤ m ≤ n. The numbers are
listed in Theorem 2.4. Observe that the numbers for rank r and rank m − r + 1 coincide.
From these computations, the natural conjecture to put forward is that this always holds,
and that there is an explicit bijection between the two sets of critical points. In addition,
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the computational results from in 2.13 motivate similar conjectures regarding symmetric
matrices. In this chapter, we prove these results using the term ML-duality suggested by
Sturmfels.

Theorem 3.1.1 (ML-duality for rectangular matrices). Fix a rank r ∈ [m] and let U ∈
Nm×n with m ≤ n be a sufficiently general data matrix. Then there is an explicit involutive
bijection between the critical points of `U on Mr and the critical points of `U on Mm−r+1.
In particular, the ML degrees ofMr andMm−r+1 coincide.

Moreover, the product `U(P )`U(Q) is the same for all pairs consisting of a rank-r critical
point P and the corresponding rank-m− r + 1 point Q.

Theorem 3.1.2 (ML-duality for symmetric matrices). Fix a rank r ∈ [m] and let U ∈ Nm×m

be a sufficiently general symmetric data matrix. Then there is an explicit involutive bijection
between the critical points of `U on SMr and the critical points of `U on SMm−r+1. In
particular, the ML degrees of SMr and SMm−r+1 coincide.

Moreover, the product `U(P )`U(Q) is the same for all pairs consisting of a rank-r critical
point P and the corresponding rank-m− r + 1 point Q.

In the alternating case, the duality of AMr turns out not to be some AMs but rather an
affine translate of a determinantal variety defined as follows. Let S be the skewm×m-matrix

S :=


0 1 · · · 1

−1 0
. . . ...

... . . . . . . 1
−1 · · · −1 0

 ,
and for even s ∈ {0, . . . ,m− 1} consider the variety

AM′
s := {P ∈ Cm×m | P skew, ∀i < j : pij 6= 0, and rk(S − P ) = s}.

Note that, unlike in AMr, the upper triangular entries of P ∈ AM′
s are not required to add

up to 1. For this reason we do not say AMr and AM′
s are ML-dual. Instead, we only say

there is a duality between critical points of `U on AMs and critical points of `U on AM′
s.

The difference between this notion of duality and ML-duality is explained in Section 4.4.

Theorem 3.1.3 (Duality for skew matrices). Fix an even rank r ∈ {2, . . . ,m} and let
U ∈ Nm×m be a sufficiently general symmetric data matrix with zeroes on the diagonal. Let
s ∈ {0, . . . ,m− 2} be the largest even integer less than or equal to m− r. Then there is an
explicit involutive bijection between the critical points of `U on AMr and the critical points
of `U on AM′

s. In particular, the ML degrees of AMr and AM′
s coincide.

Moreover, the product `U(P )`U(Q) is the same for all pairs consisting of a rank-r critical
point P on AMr and the corresponding rank-s point Q on AM′

s.

The proof is similar in each of the three cases. First, we determine the tangent space to
X at a critical point P of `U for sufficiently general U . It turns out that this space is spanned
by certain rank-one or rank-two matrices. Imposing that P be a critical point, i.e., that the
derivative of `U vanishes in each of these low-rank directions leads to the conclusion that a
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certain matrix Q, determined from P using some involution involving the fixed matrix U ,
has rank at most m− r+ 1 (or s in the skew case) and is itself a critical point on the variety
of matrices of its rank. Letting k ≤ m−r+1 (respectively, k ≤ s) be generic rank of Qs thus
obtained, we reverse the roles of P and Q to argue that k must equal s, thus establishing
the result. In the remainder of this chapter we fill in the details in each of the three cases,
in particular making the involution P → Q explicit.

3.2 Maximum likelihood duality in the rectangular case
Let m ≤ n be natural numbers and letMr ⊆ Tm×n denote the variety of m× n-matrices of
rank r whose entries sum up to 1. Fix a sufficiently general data matrix U = (uij)ij ∈ Nm×n,
which gives rise to the likelihood function `U :Mr → T, `U(P ) =

∏
i,j p

uij
ij . Let P ∈Mr be

a critical point for `U , which means that the derivative of `U vanishes on the tangent space
TPMr toMr at P . This tangent space equals

TPMr = {X = (xij)ij ∈ Cm×n | X kerP ⊆ imP and
∑
ij

xij = 0}. (3.1)

Here the first condition ensures that X is tangent at P to the variety of rank-r matrices
(see, e.g., [19, Example 14.6]) and the second condition ensures that X is tangent to the
hyperplane where the sum of all matrix entries is 1.

Given X ∈ TPMr, the derivative of `U in that direction equals `U(P ) ·
∑

ij
xijuij
pij

, which
vanishes if and only if the second factor vanishes. We will now prove that the marginals of
P are proportional to those of U (see also 2.4.6). We write 1 for the all-one vectors in both
Cm and Cn, and use self-explanatory notation such as ui+ :=

∑
j uij and u++ :=

∑
ij uij.

Lemma 3.2.1. The column vector P1 is a non-zero scalar multiple of U1 and the row vector
1TP is a non-zero scalar multiple of 1TU .

Proof. We prove the first statement; the second statement is proved similarly. We want to
show that the 2× 2-minors of the m× 2-matrix [P1|U1] vanish. We give the argument for
the upper minor. Let X = (xij) be the m × n-matrix whose first row equals p2+ times the
first row of P , whose second row equals −p1+ times the second row of P , and all of whose
other rows are zero. Then X ∈ TPMr, so that the derivative

∑
ij xij

uij
pij

is zero. On the
other hand, substituting X into

∑
ij xij

uij
pij

yields u1+p2+ − u2+p1+, hence this minor is zero
as desired. The scalar multiple in both cases is p++

u++
= 1

u++
, which is non-zero.

Define Q = (qij)ij by pijqij = ui+uiju+j. This is going to be our dual critical point, up
to a normalization factor that we determine now.

Lemma 3.2.2. The sum
∑

ij qij equals (u++)3.

Proof. By Lemma 3.2.1 the rank-one matrix Y defined by yij = ui+u+j has image contained
in imP . Hence it satisfies the linear condition Y kerP ⊆ imP , but not the condition∑

ij yij = 0. Similarly, P itself satisfies P kerP ⊆ imP , but not
∑

ij pij = 0. Hence, we can
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decompose Y uniquely as cP + X where c ∈ C and where X satisfies X kerP ⊆ imP and∑
ij xij = 0, i.e., where X ∈ TPMr. Then we have∑

ij

qij =
∑
ij

yijuij
pij

=
∑
ij

cuij +
∑
ij

xijuij
pij

=
∑
ij

cuij + 0 = cu++

by criticality of P . The scalar c equals∑
ij yij∑
ij pij

=

∑
ij ui+u+j

1
= (u++)2,

which proves the lemma.

We will use rank-one matrices in the tangent space TPMr. We equip both Cm and Cn

with their standard symmetric bilinear forms.

Lemma 3.2.3. The tangent space TPMr at P is spanned by all rank-one matrices vwT
satisfying the following two conditions:

• v ∈ imP or w⊥ kerP ; and

• v⊥1 or w⊥1.

In the proof we will need that imP is not contained in the hyperplane 1⊥ and that,
dually, kerP does not contain 1. These conditions will be satisfied by genericity of U .

Proof. The first condition ensures that the rank-one matrices in the lemma map kerP into
imP , and the second condition ensures that the sum of all entries of those rank-one matrices
is zero, so that they lie in TPMr, see (3.1). To show that these rank-one matrices span the
tangent space TPMr, decompose Cm as A⊕ B ⊕ C where A⊕ C = 1⊥ and A⊕ B = imP .
Here we use that imP is not contained in the hyperplane 1⊥.

Similarly, decompose Cn = A′⊕B′⊕C ′ where A′⊕C ′ is the hyperplane 1⊥ and A′⊕B′ =
(kerP )⊥; here we use the second genericity assumption on P . These spaces have the following
dimensions:

dimA = r − 1 dimB = 1 dimC = m− r
dimA′ = r − 1 dimB′ = 1 dimC ′ = n− r.

The space spanned by the rank-one matrices in the lemma has the space (B⊗B′)⊕ (C⊗C ′)
as a vector space complement. The dimension of this complement is 1 + (m − r)(n − r),
which is also the codimension ofMr.

Let R = diag(ui+)i and K = diag(u+j)j be the diagonal matrices recording the row and
column sums of U on their diagonals. Then, by Lemma 3.2.1, P1 is a scalar multiple of R1
and 1TP is a scalar multiple of 1TK. This implies that, in the decompositions in the proof
of Lemma 3.2.3, we may take B spanned by U1 = R1 and B′ spanned by U1 = K1. Note
that P,Q satisfy P ∗Q = RUK, where ∗ denotes the Hadamard product.

Observe also that criticality of P is equivalent to vTR−1QK−1w = 0 for all rank-one
matrices vwT as in Lemma 3.2.3. This criterion will be used in the proof of our duality
result forMr.
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Theorem 3.2.4 (ML-duality for rectangular matrices). Let U ∈ Nm×n be a sufficiently
general data matrix and let P be a critical point of `U on Mr. Define Q = (qij)ij by
qijpij = ui+uiju+j. Then Q/(u3

++) is a critical point of `U onMm−r+1.

Before proceeding with the proof, we point out that the construction of Q′ := Q/(u++)3

from P is symmetric in P and Q. As a consequence, the map P 7→ Q′ from critical points
of `U onMr to critical points onMm−r+1 is a bijection. Moreover, it has the property that
`U(P ) · `U(Q′) depends only on U . In particular, if one lists the critical points P ∈ Mr

with positive real entries in order of decreasing log-likelihood, then the corresponding Q′ ∈
Mm−r+1 appear in order of increasing log-likelihood, since the sum log `U(P ) + log `U(Q′)
depends only on U .

Proof. Lemma 3.2.2 takes care of the normalization factor, which we therefore ignore during
most of this proof. We first show that Q has rank at most m − r + 1. For this we take
arbitrary v in the space A = 1⊥∩ imP from the proof of Lemma 3.2.3 and arbitrary w ∈ Cn,
so that vwT ∈ TPMr. From vTR−1QK−1w = 0 we conclude that R−1 imQ ⊆ A⊥ because v
was arbitrary in A. Equivalently, since R is diagonal and hence symmetric, we conclude that
imQ ⊆ (R−1A)⊥ = (R−1A)⊥. The latter space has dimension m− r + 1, which is therefore
an upper bound on the rank of Q.

Similarly, for w ∈ A′ and any v ∈ Cm, the matrix vwT lies in the tangent space TPMr,
and we find vTR−1QK−1w = 0. Since v was arbitrary, this means that QK−1w = 0, so kerQ
contains K−1A′, a space of dimension r−1. If n > m, however, then by the above the kernel
of Q strictly contains K−1A′.

Next we prove that for any rank-one matrix xyT such that

• x⊥R−1A or y⊥K−1A′; and

• x⊥1 or y⊥1

we have
∑

ij
xiuijyj
qij

= 0. Note that the conclusion can be written as xTR−1PK−1y = 0, and
observe the similarity with the characterization of TPMr in Lemma 3.2.3 that will give us
conditions of criticality of Q.

Given arbitrary y ∈ Cn we can write PK−1y as v+cR1 with v ∈ A. Then for x ∈ (R−1A)⊥

perpendicular to 1 we find

xTR−1PK−1y = xTR−1(v + cR1) = 0 + cxT1 = 0,

as desired. If, on the other hand, x ∈ (R−1A)⊥ is not perpendicular to 1 but y ∈ Cn is, then
writing w := K−1y we claim that v := Pw lies in A. For this we compute the dot product

1TPw = 1TUw = 1TKw = 1Ty = 0,

where the first equality is justified by Lemma 3.2.1. Hence, again, xTR−1PK−1y = xTR−1v =
0. The checks for the case where y⊥K−1A′ are completely analogous.

Now denote the rank of Q by k, so that k ≤ m − r + 1. From imQ ⊆ (R−1A)⊥ and
(kerQ)⊥ ⊆ (K−1A′)⊥ we conclude that the derivative of `U at Q′ in the direction xyT

vanishes, in particular, when xyT lies in the tangent space at Q′ to Mk. Hence Q′ is a
critical point for `U onMk.
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Finally, we need to show that the generic rank k of Q thus obtained (from a sufficiently
general U and a critical point P ∈ Mr of `U) equals m − r + 1, rather than being strictly
smaller. For this, observe that we have constructed, for any r ∈ [m], a rational map of
irreducible varieties

ψr : Crit(Mr) 99K Crit(Mf(r)), (P,U) 7→ (
1

(u++)3
· RUK

P
,U) = (Q′, U)

where f : [m] → [m] maps r to the generic rank of the matrix Q′ as (P,U) varies over
Crit(Mr). Since ψr commutes with the projection on the second factor, its image has
dimensionmn, hence ψr is dominant. But it is also injective—in fact, (P,U) can be recovered
from (Q′, U) with the exact same formula. This shows that ψr is birational, and that ψf(r) is
its inverse as a birational map. In particular, f(f(r)) = r, so that f is a bijection. But the
only bijection [m]→ [m] with the property that f(r) ≤ m− r+ 1 for all r is r 7→ m− r+ 1.
Indeed, if r were the smallest value for which f(r) 6= m − r + 1, then m − r + 1 would not
be in the image of f . This concludes the proof of the theorem.

Remark 3.2.5. It can happen that the rank of Q is strictly smaller than m− r+ 1 but the
proof above shows that for sufficiently general U this does not happen. For example, in the
rectangular case where m = n = 4, if we have that

U =
1

40


4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4

 and P =
1

80


6 + 2i 5−

√
5 5 +

√
5 4− 2i

5−
√

5 6− 2i 4 + 2i 5 +
√

5

5 +
√

5 4 + 2i 6− 2i 5−
√

5

4− 2i 5 +
√

5 5−
√

5 6 + 2i


then there exist ML degree points in Crit(M2) with this choice of U . It can be shown
(P,U) ∈ Crit(M2) is one such point. Because u++=1 we have Q = Q′, and

Q =
1

500


6− 2i 5 +

√
5 5−

√
5 4 + 2i

5 +
√

5 6 + 2i 4− 2i 5−
√

5

5−
√

5 4− 2i 6 + 2i 5 +
√

5

4 + 2i 5−
√

5 5 +
√

5 6− 2i


satisfies pijqij =

ui+u++u+j

u3++
. In this case, Q has rank 2 instead of rank 3. This is an important

fact for numerical computations. If we were to use the homotopy methods as in Chapter 2 to
find the critical points of lU onM3, we would track a path from a generic point of Crit(M3)
to the point (Q,U). Since Q has rank less than 3, this will correspond to tracking a path to
a singularity leading to numerical difficulties. But by determining all critical points of lU on
M2, we avoid these numerical difficulties. To determine the points of Crit(M3) with U as
above, we use the equation pijqij =

ui+u++u+j

u3++
and determine which (qij) have rank 3.
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3.3 Maximum likelihood duality in the symmetric case
Let m be a natural number and let SMr denote the variety of symmetric m ×m-matrices
of rank r whose entries sum to 2. A point P of SMr and data matrix U will be denoted by

P =


2p11 p12 · · · p1m

p12 2p22
... . . .
p1m 2pmm

 and U =


2u11 u12 · · · u1m

u12 2u22
... . . .

u1m 2umm

 .
We denote the (i, j)-entries of P and U by Pij and Uij to distinguish them from the pij
and uij, respectively. Recall that the likelihood function in the symmetric case is defined
as `U(P ) :=

∏
i≤j p

uij
ij , which in terms of the entries of P equals (

∏
i<j P

uij
ij ) · (

∏
i(Pii/2)uii).

From now on we fix a sufficiently general data matrix U and a critical point P for `U on
SMr. The tangent space TPSMr equals

TPSMr = {X ∈ Cm×m symmetric | X kerP ⊆ imP and
∑
ij

xij = 0}. (3.2)

Given a tangent vector X ∈ TPSMr, the derivative of `U in that direction equals∑
i<j

Xijuij
Pij

+
∑
i

(Xii/2)uii
Pii/2

=
∑
i≤j

Xijuij
Pij

(up to a factor irrelevant for its vanishing). We set

Ui+ :=
∑
j

Uij and U++ :=
∑
i

∑
j

Uij,

and similarly for P . The symmetric analogue of Lemma 3.2.1 is the following.

Lemma 3.3.1. The vector P1 is a non-zero scalar multiple of U1.

Proof. We need to prove that the m × 2-matrix (P1|U1) has 2 × 2-minors equal to zero.
We prove this for the minor in the first two rows. Set a := P1+ and b := P2+, and define
v1, v2 ∈ Cm by v1 = (b, 0, 0, . . . , 0)T , v2 = (0, a, 0, . . . , 0). Let w1, w2 be the first and second
column of P , respectively. Then for each i = 1, 2 the matrix X(i) = viw

T
i + wiv

T
i lies

in the tangent space at P to the variety of symmetric rank-r matrices, and the difference
X := X(1)−X(2) has sum of entries equal to 0 and therefore lies in TPSMr. The symmetric
matrix X looks like 

2bP11 (b− a)P12 bP13 · · · bP1m

∗ 2aP22 −aP23 · · · −aP2m

∗ ∗ 0 · · · 0
...

...
...

...
∗ ∗ 0 · · · 0

 .
The derivative of `U at P in the direction X equals∑

i≤j

Xijuij
Pij

= bU1+ − aU2+,
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and this derivative vanishes by criticality of P . The relevant non-zero scalar multiple is
P++

U++
= 2

U++
, which is non-zero.

The analogue of R,K from the rectangular case is R := diag (U1+, . . . , Um+) and K :=
diag (U+1, . . . , U+m). Note R = K because U is symmetric, but we keep this notation to
mirror the rectangular case. As in the rectangular case, define the symmetric matrix Q by
P ∗ Q = RUR, i.e., PijQij = Ui+UijUj+ for i, j ∈ [m]. This will be our dual critical point,
up to a normalizing factor to be determined now.

Lemma 3.3.2. The sum
∑

ij Qij equals (U++)3

2
.

Proof. By Lemma 3.3.1 the rank-one matrix Y with entries Yij = Ui+Uj+ has image contained
in imP , and so does P . So we can decompose Y = cP + X with c ∈ C and X ∈ TPSMr,
and we find ∑

ij

Qij =
∑
ij

YijUij
Pij

=
∑
ij

cUij +
∑
ij

XijUij
Pij

= cU++ + 0 = cU++.

Moreover, the scalar c equals Y++

P++
= (U++)2

2
, which shows that Q++ = (U++)3

2
.

As in the rectangular case, we will make use of low-rank elements in TPSMr, where now
“low rank” means rank two.

Lemma 3.3.3. The tangent space TPSMr is spanned by all matrices of the form vwT +wTv
with v ∈ im(P ) and w ∈ Cm, with the additional constraint that the sum of all entries is
zero, i.e., that one of v and w is perpendicular to 1.

In the proof we will implicitly use that imP is not contained in 1⊥, which is true by
genericity of U .

Proof. The proof is similar to that of Lemma 3.2.3. First, the matrices in the lemma satisfy
the conditions characterizing TPSMr; see (3.2). Second, to show that they span that tangent
space, split Cm as A ⊕ B ⊕ C with A ⊕ B = imP and A ⊕ C = 1⊥, so that the second
symmetric power S2Cm equals

S2(A)⊕ S2(B)⊕ S2(C)⊕ (A⊗B)⊕ (A⊗ C)⊕ (B ⊗ C).

The matrices in the lemma span S2(A) + A⊗ B + (A⊕ B)⊗ C. This space has dimension(
r
2

)
+ (r − 1) + r(n− r), which equals

(
r+1

2

)
+ r(n− r)− 1 = dimSMr.

By Lemma 3.3.3, it suffices to understand the derivative
∑

i≤j
Xijuij
Pij

for X equal to
vwT + wvT , in which case it equals

∑
i≤j

Xijuij
Pij

=
∑
i≤j

(viwj + wivj)
uij
Pij

= vT


2u11
P11

u12
P12

· · · u1m
P1m

u12
P12

2u22
P22... . . .

u1m
P1m

2umm

Pmm

w.
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The right-hand side can be concisely written as vT (U
P

)w, where U
P
is the Hadamard (element-

wise) quotient of U by P . So criticality of P is equivalent to the statement that vT (U
P

)w
vanishes for all v, w as in Lemma 3.3.3. This, in turn, is equivalent to the condition that
vTR−1QR−1w = 0 for all v, w as in Lemma 3.3.3. We now state and prove our duality result
in the symmetric case.

Theorem 3.3.4 (ML-duality for symmetric matrices). Let U ∈ Nm×m be a sufficiently
general symmetric data matrix, and let P be a critical point of `U on SMr. Define the
matrix Q by PijQij = Ui+UijUj+. Then 4Q/(U++)3 is a critical point of `U on SMm−r+1.

As in the rectangular case, the map P 7→ Q′ := 4Q/(U++)3 is a bijection by virtue of
the symmetry in P and Q, and the same conclusions for the cricital points with positive real
entries can be drawn as in the rectangular case.

Proof. The normalizing factor was dealt with in Lemma 3.3.2 and will be largely ignored in
what follows. As in the proof of Lemma 3.3.3, decompose Cm as A⊕B⊕C with A⊕B = imP
and A⊕C = 1⊥. So A has dimension r−1, C has dimension m− r, and B has dimension 1.
We take B to be spanned by P1, which is a non-zero scalar multiple of R1 by Lemma 3.3.3.

First we bound the rank of Q. To do so we prove that the image of Q is contained in
a space of dimension m − r + 1. Indeed, by criticality of P we have vTR−1QK−1w = 0 for
w ∈ Cm, v ∈ imP such that v ⊥ 1 or w ⊥ 1. Taking w arbitrary and v in A, we find that
imQ ⊆ (R−1A)⊥, which has dimension m− r + 1.

Next we show that
xTR−1PK−1y = 0

for any x ∈ (R−1A)⊥ and y ∈ Cm with x ⊥ 1 or y ⊥ 1. First, suppose x⊥1. Since PK−1y
may be written as a+ cR1 with a ∈ A and scalar c, we find

xTR−1PK−1y = xTR−1a+ cxTR−1R1 = xTR−1a+ 0 = 0.

Otherwise, we have y⊥1 and we may assume x = cR1 with c a scalar. In this case, we have

xTR−1PK−1y = c1TPK−1y = c1TKK−1y = 1y = 0,

where we use Lemma 3.3.1.
Let k be the rank of Q. Since imQ ⊂ (R−1A)⊥ we conclude that xTR−1PK−1y = 0

holds, in particular, for all matrices xyT + yxT spanning the tangent space to SMk at Q′, so
that Q′ is critical. By reversing the roles of P and Q and using the involution argument at
the end of the proof of Theorem 3.2.4, we conclude that for generic U the value of k equals
m− r + 1 (rather than being strictly smaller). This proves the theorem.

3.4 Duality in the skew-symmetric case
The skew-symmetric case, while perhaps not of direct relevance to statistics, is of considerable
algebro-geometric interest [23], since the varietyAMr, consisting of skew-symmetric matrices
of even rank r whose upper-triangular entries are non-zero and add up to 1, is (an open subset
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of a hyperplane section of the affine cone over) a secant variety of the Grassmannian of 2-
spaces in Cm. Recall that we want to prove a bijection between critical points of `U on (the
intersection of a determinantal variety with an affine hyperplane) AMr and critical points
of `U on the affine translate AM′

s of a determinantal variety.
A point P of AMr and data matrix U will be denoted by

P =


0 p12 · · · p1m

−p12 0
... . . .

−p1m 0

 and U =


0 u12 · · · u1m

u12 0
... . . .

um1 0

 .
Note that U is symmetric rather than alternating. We fix a sufficiently general data matrix
U and a critical point P for `U on AMr. The tangent space TPAMr equals

TPAMr = {X ∈ Cm×m skew | X kerP ⊆ imP and
∑
i<j

xij = 0}. (3.3)

The derivative of `U at P in the direction X equals
∑

i<j
xijuij
pij

, up to a factor irrelevant for
its vanishing. The following lemma is the skew analogue of Lemmas 3.2.1 and 3.3.1.

Lemma 3.4.1. The vector a = (
∑

j<i pji +
∑

j>i pij)i is a scalar multiple of U1.

Proof. We need to show that 2×2-minors of the matrix (a|U1) are zero, and do so for the first
minor. Let v1, v2 be the first and second column of P , respectively, and set w1 := (a2, 0, . . . , 0)
and w2 := (0,−a1, 0, . . . , 0). Then each of the matrices viwTi − wivTi is tangent at P to the
variety of skew-symmetric rank-r matrices, and their sum

X =


0 (a2 − a1)p12 a2p13 · · · a2p1m

−(a2 − a1)p12 0 −a1p23 · · · −a1p2m

−a2p13 a1p23 0 · · · 0
...

...
...

...
−a2p1m a1p2m 0 · · · 0


has upper-triangular entries adding up to 0, so that X is tangent at P to AMr. The
derivative of `U at P in the direction X, which is zero by criticality of P , equals

(a2 − a1)u12 + a2u13 + . . .+ a2u1m − a1u23 − . . .− a1p2m = a2u1+ − a1u2+,

which is the minor whose vanishing was required.

Next we determine rank-two elements spanning TPAMr. For this we introduce the skew
bilinear form 〈., .〉 on Cm defined by 〈v, w〉 = vTSw =

∑
i<j(viwj − vjwi), where S is the

skew-symmetric matrix

S =


0 1 · · · 1

−1 0
. . . ...

... . . . . . . 1
−1 · · · −1 0
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from the introduction. By elementary linear algebra, this form is non-degenerate if m is even
and has a one-dimensional kernel spanned by (1,−1, 1,−1, . . . , 1) ∈ Cm if m is odd.

In what follows, it will be convenient to think of skew-symmetric matrices also as elements
of
∧2 Cm or as alternating tensors.

Lemma 3.4.2. The tangent space TPAMr is spanned by skew-symmetric matrices of the
form vwT − wvT with v ∈ imP and 〈v, w〉 = 0.

In the proof we will use that imP is non-degenerate with respect to 〈., .〉. This condition
will be satisfied for general U .

Proof. The proof is similar to the symmetric case and the rectangular case: a skew-symmetric
matrix X lies in the tangent space if and only if X kerP ⊆ imP and

∑
i<j xij = 0. The

condition v ∈ imP ensures the first property and the condition that 〈v, w〉 = 0 ensures the
second property.

To complete the proof, decompose Cm as A ⊕ C with A = imP and 〈A,C〉 = 0, so
that

∧2 Cm decomposes as
∧2A ⊕ (A ⊗ C) ⊕

∧2C. Taking the vector w in vTw − wvT

from C we see that A ⊗ C is contained in the span of the matrices in the lemma. Next we
argue that a codimension-one subspace of

∧2A is also contained in their span. Indeed, the
(non-zero) tensors vTw−wvT ∈

∧2A with v, w ∈ A perpendicular with respect to 〈., .〉 form
a single orbit under the symplectic group Sp(A) = Spr (recall that r is even, so that this is a
reductive group), and hence their span is an Sp(A)-submodule of

∧2A. But
∧2A splits as

a direct sum of only two irreducible modules under Sp(A): a one-dimensional trivial module
corresponding to (the restriction of) 〈., .〉 and a codimension-one module. Hence the tensors
vTw − wvT must span that codimension-one module.

Summarizing, we find that the matrices in the lemma span a space of dimension r(n −
r) +

(
r
2

)
− 1, which equals dimAMr.

Recall that in the alternating case the likelihood function is given by `U(P ) =
∏

i<j p
uij
ij .

The derivative of this expression in the direction of a skew-symmetric matrix X of the form
vwT − wvT equals (up to a factor irrelevant for its vanishing)

∑
i<j

xij
uij
pij

=
∑
i<j

uij
pij

(viwj − vjwi) = vT


0 u12

p12
· · · u1m

p1m

−u12
p12

0
. . . ...

... . . . . . . um−1,m

pm−1,m

−u1m
p1m

· · · −um−1,m

pm−1,m
0

w.

Define the skew matrix Q by P ∗Q = U . Then criticality of P translates into vTQw = 0 for
all v ∈ imP and w ∈ Cm with 〈v, w〉 = 0.

Theorem 3.4.3 (Duality for skew matrices). Let U = (uij)ij be a sufficiently general sym-
metric data matrix with zeroes on the diagonal, and let P be a critical point of `U on AMr,
where r ∈ {2, . . . ,m} is even. Let s ∈ {0, . . . ,m− 2} be the largest even integer less than or
equal to m − r. Define the matrix Q by P ∗ Q = U . Then the skew matrix Q′ := 2Q/U++

is a critical point of `U on the translated determinantal variety AM′
s. Moreover, the map

P → Q′ is a bijection between the critical points of `U on AMr and those AM′
s.
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As in the rectangular and symmetric cases, the bijection P → Q′ maps real, positive
critical points to real, positive critical points in such a way that the sum of the log-likelihoods
of P and Q′ is constant.

Proof. By construction of Q we have vTQw = 0 for all v ∈ imP and w ∈ Cm with vTSw = 0.
This means that the quadratic form (v, w) 7→ vTQw on imP × Cm is a scalar multiple of
the quadratic form (v, w) 7→ vTSw, denoted 〈., .〉 earlier, on that same space. The scalar is
computed by computing

(0,−p12, . . . ,−p1m)Q(1, 0, . . . , 0)T = U1+

and
(0,−p12, . . . ,−p1m)S(1, 0, . . . , 0)T = P1+ = a1,

where a is the vector of Lemma 3.4.1. Using that lemma and the fact that
∑

i ai = 2 we find
that a1 = 2U1+/U++. We conclude that the skew bilinear form associated to B := S− 2

U++
Q

is identically zero on imP × Cm, hence kerB contains imP and imB = (kerB)⊥ (where ⊥
refers to the standard bilinear form on Cm) is contained in kerP = (imP )⊥. In particular,
B has rank at most s; let k ≤ s denote the actual rank of B.

Next we argue that Q′ := 2
U++

Q is critical for `U on AM′
k. By arguments similar to

(but easier than) those in Lemma 3.4.2 the tangent space TQ′AM′
k is spanned by rank-two

matrices vwT − wvT with v ∈ imB and w ∈ Cm arbitrary. Thus proving that Q′ is critical
boils down to proving that vTPw = 0 for all v ∈ imB and w ∈ Cm. But this is immediate
from imB ⊆ kerP . Thus Q′ is critical.

Furthermore, we need to show that (for generic U) the rank k of B = S −Q′ is equal to
s rather than strictly smaller, and that the map P 7→ Q′, which is clearly injective, is also
surjective on the set of critical points for `U on AM′

s. For these purposes we reverse the
arguments above: assume that Q′ is a critical point on AM′

k, where k is an even integer
in the range {0, . . . ,m − 2}. Define Q := U++

2
Q′ and define P by P ∗ Q = U . Also, define

B := S − Q′. Then criticality of Q′ implies that vTPw = 0 for all v ∈ imB and w ∈ Cm,
and this implies that kerP ⊇ imB. Thus l := rkP is at most m− k.

Moreover, B itself lies in the tangent space TQ′AM′
k, and criticality of Q′ implies that∑

i<j Bij
Uij

Qij
= 0. Substituting the expression for B into this we find that

0 =
∑
i<j

(1− 2

U++

Qij)
Uij
Qij

=
∑
i<j

(Pij −
2

U++

) = (
∑
i<j

Pij)− 1,

i.e., the upper-triangular entries of P add up to one. We conclude that P lies in AMl. Next,
we argue that P is critical. Indeed, for v ∈ imP and w ∈ Cm such that 〈v, w〉 = (vTSw =)0
we find

vTQw = vT (
U++

2
(S −B))w =

U++

2
(vTSw − vTBw) = 0 + 0 = 0,

where we have used that imP ⊆ kerB.
Summarizing, we have found rational maps

ψr : Crit(AMr) 99K Crit(AM′
f(r)), (P,U) 7→ (

2

U++

· U
P
,U) = (Q′, U) and
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ψ′k : Crit(AM′
k) 99K Crit(AMg(k)), (Q′, U) 7→ (

2

U++

· U
Q′
, U)

for some map f mapping even integers r ∈ {2, . . . ,m} to even integers k ∈ {0, . . . ,m − 2},
and some map g in the opposite direction. By the argument in the proof of Theorem 3.2.4,
both ψr and ψ′k are birational and g(f(r)) = r. Hence f is a bijection, and by the above it
satisfies f(r) ≤ m − r. The only such bijection is the one that maps r to the largest even
integer less than or equal to m− r. This concludes the proof of the theorem.

Example 3.4.4. Now we give an explicit example illustrating dual solutions in the alter-
nating case. When m = 4 the ML degree of AM2 is 4 [23]. When

U =
1

41


0 2 3 5
2 0 7 11
3 7 0 13
5 11 13 0

 and P =


0 0.0386 0.0978 0.1075

−0.0386 0 0.1563 0.2929
−0.0978 −0.1563 0 0.3069
−0.1075 −0.2929 −0.3069 0

 ,
we have P is a critical point of lU on AM2 and U++ = 2. Having Q defined as P ∗Q = U , we
find that Q(= Q′) has full rank. But in the alternating case, we consider the affine translate
of a determinantal variety. We find that B = S −Q equals

B =


0 −0.2638 0.2518 −0.1344

0.2638 0 −0.0924 0.0841
−0.2518 0.0924 0 −0.0332
0.1344 −0.0841 0.0332 0

 ,
and indeed B has rank 4 − 2 = 2. We can actually compute the ML degree of AM′

2

symbolically to be 4 (even with the uij treated as symbols). For the data matrix U above, the
minimal polynomial for q34 equals 434217q4

34−1335767q3
34 +1536717q2

34−764049q34 +127426.

3.5 Conclusion
We have proved that a number of natural determinantal varieties of matrices are ML-dual
to other such varieties living in the same ambient spaces. However, we have done so without
formalizing what exactly we mean by ML-duality. In Chapter 4 we will give a precise
definition of ML-duality. In addition a generalization of Theorem 3.4.3 will be provided by
Corollary 4.2.7.
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Chapter 4

Maximum Likelihood for Dual Varieties

The content of this chapter has been submitted to the Symbolic-Numeric Computation con-
ference to be held July 28-31, 2014 at the East China Normal University in Shanghai, China
under the same title with some minor modifications for consistency with other chapters.

4.1 Introduction
Maximum likelihood estimation (MLE) is a fundamental problem in statistics that has been
extensively studied from an algebraic viewpoint [9, 11, 12, 20, 23, 26]. We continue to follow
an algebraic approach to MLE in this chapter, considering statistical models for discrete
data in the probability simplex as irreducible varieties X in projective space Pn.

An algebraic statistical model X in Pn will be defined by the vanishing of homogeneous
polynomials in the unknowns p0, p1, . . . , pn. We assume that X is an irreducible generically
reduced variety. When the coordinates p0, p1, . . . , pn of a point p in X are positive and sum
to one, we interpret p as a probability distribution, where the probability of observing event
i is pi. We let u = (u0, u1, . . . , un) ∈ (C∗)n+1 be a vector of length n + 1. This represents
our data. When each entry ui of the data vector is a positive integer, we interpret ui as the
number of observations of event i. We use the notation

u+ := u0 + · · ·+ un and p+ := p0 + · · ·+ pn,

always assuming u+ 6= 0.
The likelihood function for u is defined as

`u(p) := pu00 p
u1
1 · · · punn /p

u+
+ .

When u and p are interpreted as data and a probability distribution respectively, the like-
lihood of observing u with respect to the distribution p is `u(p) divided by a multinomial
coefficient depending only on u.

For fixed data u, to determine local maxima of `u(p) on a statistical model and give a
solution to the MLE problem, we determine all complex critical points of `u(p) restricted to
X. Of these critical points, we find the one with positive coordinates and greatest likelihood
to determine the maximum likelihood estimate p̂. The (algebraic) maximum likelihood es-
timation problem is solved by determining all critical points of `u(p) on X and maximizing
`u(p) on this set.
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To find the complex critical points, we determine when the gradient of `u(p) is orthogonal
to the tangent space of X at p. So the set of critical points is

{p ∈ Xreg such that ∇`u(p) ⊥ TpX}.

Because the gradient of the likelihood function (up to a scalar) equals

∇`u(p) =

[
u0

p0

− u+

p+

,
u1

p1

− u+

p+

, . . . ,
un
pn
− u+

p+

]
,

critical points of `u(p) are p ∈ X such that[
u0

p0

− u+

p+

,
u1

p1

− u+

p+

, . . . ,
un
pn
− u+

p+

]
⊥ Tp(X),

implicitly forcing the condition p0p1 · · · pn(p0 + · · ·+ pn) 6= 0.

Definition 4.1.1. Given an algebraic statistical model X in Pn, the maximum likelihood
degree (ML degree) of X is the number of critical points of `u(p) restricted to X for generic
choices of data u,

MLdegree(X) = # {p ∈ X : ∇`u(p) ⊥ Tp(X)} .

The main result of this chapter is to give a formulation that relates maximum likelihood
estimation to a conormal variety derived from X [Theorem 4.2.5]. With this perspective,
we use the dual likelihood equations [Theorem 4.3.2] to solve the MLE problem for X when
only given the defining equations of its dual variety X∗.

The computations in this chapter were done using Bertini [5] and Macaulay2 [16].

4.2 MLE and conormal varieties
In this section, we consider an algebraic statistical model X in Pn and will define X ′ to
be an embedding of X in Pn+1. We will present our first result in Theorem 4.2.5. It gives
a formulation of the MLE problem in terms of conormal varieties and dual varieties. In
Corollary 4.2.7 we present a bijection between critical points of the likelihood function on
two different varieties. In Corollary 4.2.9 we furnish equations to solve the MLE problem
when the defining equations of a conormal variety are known. We will also recall how to
compute conormal varieties and dual varieties of X and X ′.

Let X ⊂ Pn be a codimension c algebraic statistical model defined by homogenous
polynomials f1, f2, . . . , fk. We let Jac(X) denote the k× (n+1) matrix of partial derivatives
of f1, . . . , fk with respect to p0, . . . , pn. We say this is the Jacobian of X.

To keep track of the sum of the coordinates p0, p1, . . . , pn we introduce the coordinate ps
and a hyperplane of Pn+1 defined by the vanishing of the polynomial

H(p) := −p0 − p1 + · · · − pn + ps. (4.1)

If X is defined by f1, . . . , fk, then X ′ in the coordinates p0, p1, . . . , pn, ps is defined by the
vanishing of f1, . . . , fk and H. With this definition, we have the following proposition.
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Proposition 4.2.1. Suppose X is defined by the homogeneous polynomials f1, f2, . . . , fk.
Then, the Jacobian of X ′ is the (k + 1)× (n+ 2)-matrix

Jac(X ′) =


−1 −1 · · · −1 1

Jac (X)

0
...
0

 .
The important fact about the construction of X ′ is that there is a bijection between the

critical points of the function `u(p) on X and the critical points of the Laurent monomial

`′u(p) := pu00 p
u1
1 · · · punn p−u+s on X ′

given by Lemma 4.2.2.
By a slight abuse of notation, the “p” in `u(p) and the “p” in `′u(p) represent two different

things. The first p represents a point [p0 : p1 : · · · : pn] ∈ X, while the second represents a
point [p0 : p1 : · · · : pn : ps] ∈ X ′.

Lemma 4.2.2. There is a bijection between the critical points of the function `u(p) on X
and the critical points of `′u(p) on X ′. Under this bijection, [p0 : p1 : · · · : pn] ∈ Pn is a
critical point of `u(p) on X if and only if [p0 : p1 : · · · : pn : ps] ∈ Pn+1 is a critical point of
`′u(p) on X ′.

Proof. To prove this we need to show that

[p0 : · · · : pn : ps] ∈ X ′reg satisfies ∇`′u(p) ⊥ TpX
′

if and only if
[p0 : · · · : pn] ∈ Xreg satisfies ∇`u(p) ⊥ TpX.

By Proposition 4.2.1, it follows that [p0 : · · · : pn : ps] ∈ X ′reg if and only if [p0 : · · · : pn] ∈
Xreg. So it remains to show that ∇`′u(p) ⊥ TpX

′ if and only if ∇`u(p) ⊥ TpX. To do so,
we prove that ∇`′u(p) is in the row space of Jac(X ′) implies ∇`u(p) is in the row space of
Jac(X) and vica versa. To see this, observe

[
∇`′u(p)
Jac (X ′)

]
1

. . .
1

1 · · · 1 1

 =


u0
p0
− u+

ps
u1
p1
− u+

ps
· · · un

pn
− u+

ps

0 0 · · · 0

−u+
ps

1

Jac (X)

0
...
0


Since ps = p+ we have completed the proof because the top row in the matrix above is[
∇`u(p),−u+

p+

]
.
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The conormal variety of X is defined to be the Zariski closure in Pn × Pn of the set

NX := {(p, q) : q ⊥ TpX}.

To determine the defining equations of NX , we let M denote a (k + 1)× (n + 1) that is an
extended Jacobian whose top row is [q0, q1, . . . , qn] and whose bottom rows are Jac(X). The
defining equations of the conormal variety can be computed by taking the ideal generated
by f1, . . . , fk and the (c + 1) × (c + 1)-minors of M and saturating by the c × c-minors of
Jac(X).

The dual variety X∗ is the projection of the conormal variety NX to the dual projective
space Pn associated to the q-coordinates. To compute the equations of the dual variety,
one eliminates the unknowns p0, p1, . . . , pn from the equations defining NX . For additional
information on computing conormal varieties and dual varieties see [38].

Since X ′ is contained in a hyperplane defined by H, the dual variety of X ′ is known to
be a cone of X∗ over the point h := [−1 : −1 : · · · : −1 : 1]. The dual of X ′ in Pn+1 is given
by

X ′∗ = {[q0 − bs : q1 − bs : · · · : qn − bs : bs] : [q0 : · · · : qn] ∈ X∗}.

It is easy to go between the coordinates of X and coordinates of X ′ because there is
a birational map between these two varieties. But there does not have to be a birational
map between X∗ and X ′∗ as in [Example 4.2.4]. Indeed, the dimension of X∗ and X ′∗ are
not necessarily equal. For this reason, the coordinates of the former are in q0, . . . , qn, and
the coordinates of the latter are in b0, . . . , bn, bs. Our notation is to let q denote a point
[q0 : q1 : · · · : qn] ∈ X∗ and let b denote a point [b0 : b1 : · · · : bn : bs] ∈ X ′∗.

The next proposition shows that if given the defining equations of X∗ in the unknowns
q0, . . . , qn, then we can determine the defining equations of X ′∗ in the unknowns b0, . . . , bn, bs
using the relations

q0 = b0 + bs, q1 = b1 + bs, . . . , qn = bn + bs. (4.2)

Specifically, if g(q0, q1, . . . , qn) vanishes on X∗, then g(b0 + bs, b1 + bs, . . . , bn + bs) vanishes
on X ′∗. Moreover, if given the Jacobian of X∗, we can easily determine the Jacobian of X ′∗
as well using the relations in (4.2).

Proposition 4.2.3. If g1(q), . . . , gl(q) are defining equations for the variety X∗ ⊂ Pn in
coordinates q0, q1, . . . , qn, then the defining equations of X ′∗ in coordinates b0, b1, . . . , bn, bs
are

g1(b0 + bs, b1 + bs, . . . , bn + bs) = 0
...

gl(b0 + bs, b1 + bs, . . . , bn + bs) = 0.

Moreover, the Jacobian of X ′∗ is given by

Jac (X ′∗) = Jac (X∗)|(b0+bs,...,bn+bs)


1 1

1
...

. . . 1
1 1

 .
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Proof. The first part of proposition follows immediately from the relations in (4.2). By

Jac (X∗)|(b0+bs,...,bn+bs)

we mean evaluate the Jacobian of X∗ at (b0 + bs, . . . , bn + bs). Since the defining equations
of X ′∗ are found by evaluating each gi(q) at (b0 + bs, . . . , bn + bs), it follows by the chain rule
that Jac(X ′∗) equals the desired matrix product.

Example 4.2.4. Consider X in P3 that is defined by

f = 2p0p1p2 + p2
1p2 + p1p

2
2 − p2

0p12 + p1p2p12.

The Jacobian of X and the defining polynomial g(q) of the dual variety X∗ are

Jac(X) = [2p1p2 − 2p0p12, p2(2p0 + 2p1 + p2 + p12), p1(2p0 + p1 + 2p2 + p12),−p2
0 + p1p2]

and

g(q) = q4
0 − 8q2

0q1q2 + 16q2
1q

2
2 − 8q3

0q12 + 16q2
0q1q12 + 16q2

0q2q12 − 32q0q1q2q12.

The variety X ′ is defined by the two equations in P4,

f(p) = 0 and ps = p0 + p1 + p2 + p12,

but the dual variety X ′∗ is defined by one equation

g(b0 + bs, b1 + bs, b2 + bs, b12 + bs) =
(b0 + bs)

4 − 8(b0 + bs)
2(b1 + bs)(b2 + bs)+

16(b1 + bs)
2(b2 + bs)

2 − 8(b0 + bs)
3(b12 + bs)+

16(b0 + bs)
2(b1 + bs)(b12 + bs)+

16(b0 + bs)
2(b2 + bs)(b12 + bs)

−32(b0 + bs)(b1 + bs)(b2 + bs)(b12 + bs).

The Jacobian of X∗ is

Jac(X∗) =


4q3

0 − 16q0q1q2 − 32q12(3
4
q2

0 − q0q1 − q0q2 + q1q2)
−8q2

0q2 + 32q1q
2
2 + 16q2

0q12 − 32q0q2q12

−8q2
0q1 + 32q2

1q2 + 16q2
0q12 − 32q0q1q12

−8q3
0 + 16q2

0q1 + 16q2
0q2 − 32q0q1q2


T

.

The Jacobian of X ′∗ is found by evaluating Jac(X∗) at (b0 + bs, . . . , bn + bs) and multiplying
the result on the right by the matrix

1 1
1 1

1 1
1 1

 .
Now we are ready to state our first result.
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Theorem 4.2.5. Fix an algebraic statistical model X. A point(
[p0 : p1 : · · · : pn : ps], [b0 : b1 : · · · : bn : bs]

)
∈ NX′

satisfies the relation

[p0b0 : p1b1 : · · · : pnbn : psbs] = [u0 : u1 : · · · : un : −u+]

if and only if [p0 : p1 : · · · : pn : ps] is a critical point of `′u(p) = pu00 p
u1
1 · · · punn p−u+s on X ′.

Proof. To determine critical points of `′u(p) on X ′ we find when

∇`′u(p) = [∂l′u/∂p0 : · · · : ∂l′u/∂ps]

is orthogonal to the tangent space of X ′ at the point p. This is the same as determining
when (

[p0 : p1 : · · · : ps],∇`′u(p)
)
∈ NX′ .

As a point in projective space, we have that whenever p0p1 · · · ps 6= 0 that

∇`′u(p) =

[
u0

p0

: · · · : un
pn

: −u+

ps

]
.

So we immediately have that a critical point of `′u(p) satisfies the desired relations when we
take the coordinate-wise product of [p0 : p1 : · · · : ps] and ∇`′u(p).

In summary, Theorem 4.2.5, together with Lemma 4.2.2, says if [p, b] ∈ NX′ and the
coordinate-wise product of p and b is

[p0b0 : · · · : pnbn : psbs] = [u0 : · · · : un : −u+] , (4.3)

then [p0 : · · · : pn] is a critical point of `u(p) on X.

Definition 4.2.6. The extended likelihood locus of X for the data u is defined as the set of
points in NX′ satisfying the relations in (4.3), notated EX(u). We define Pu and Bu to be

Pu := {p : (p, b) ∈ EX(u)} and Bu := {b : (p, b) ∈ EX(u)}.

For additional clarification, note that points in EX(u) are contained in the conormal
variety NX′ ⊂ Pn+1 × Pn+1. These points are expressed as

(p, b) =
(
[p0 : p1 : · · · : ps], [b0 : b1 : · · · : bs]

)
∈ EX(u).

In regards to ML degree, we have for generic choices of u

MLdegree(X) = #EX(u) = #Pu = #Bu.

There are two corollaries to Theorem 4.2.5. The first corollary gives a bijection between
critical points of `′u(p) on X ′ and critical points of `′u(b) on X ′∗. The second corollary gives
equations to determine critical points of `′u(p) on X ′.
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Corollay 4.2.7. There is a bijection between critical points of `′u(p) on X ′ and critical
points of `′u(b) on X ′∗ given by (4.3). Moreover, the product `′u(p)`′u(b) remains constant
over EX(u).

Proof. The first part follows by noticing that the relation forces us to have

[p0 : p1 : · · · : ps] = [u0/b0 : u1/b1 : · · · : −u+/bs]

which is also the gradient of `′u(b). The second part follows as on EX(u) we have

`′u(p)`
′
u(b) = uu00 u

u1
1 · · ·uunn (−u+)−u+ .

When u0, . . . , un are positive integers, the bijection in Corollary 4.2.7 pairs positive critical
points of `′u(p) ordered by increasing likelihood with positive critical points of `′u(b) ordered
by decreasing likelihood!

Example 4.2.8. We will compute the ML degree of X in Example 4.2.4 to be 3. We fix the
data vector (u0, u1, u2, u12) = 1

40
(2, 13, 5, 20), and determine the points of EX(u) as follows:

p0 p1 p2 p12 ps
.167493 .242186 .0532836 .537037 1
−.485608 .632011 .35886 .494736 1
−2.58189 5.56009 6.19312 −8.17133 1

b0 b1 b2 b12 bs
.29852 1.34194 2.34594 .931035 −1
−.102964 .514232 .348325 1.01064 −1
−.0193657 .0584523 .0201837 −.0611895 −1.

The eliminants for p0, p1, p2, and p12 are

(100p3
0 + 290p2

0 + 74p0 − 21),
(62700p3

1 − 403430p2
1 + 314358p1 − 53361),

(1900p3
2 − 12550p2

2 + 4886p2 − 225),
(62700p3

12 + 447650p2
12 − 511962p12 + 136125).

The eliminants for b0, b1, b2, b12 of EX(u) are

(1680b3
0 − 296b2

0 − 58b0 − 1),
(34151040b3

1 − 65386464b2
1 + 27271868b1 − 1377519),

(28800b3
2 − 78176b2

2 + 25100b2 − 475),
(272250b3

12 − 511962b2
12 + 223825b12 + 15675).

Note that we are not saying the ML degree of X equals the ML degree of X∗. In general,

MLdegree(X) 6= MLdegree(X∗).
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The reason why equality fails is because

b0 + b1 + · · ·+ bn − bs

does not vanish on X ′∗. So there is no analog of Lemma 4.2.2 involving X ′∗ and X∗. In
terms of the previous chapters, one should think of Corollary 4.2.7 as a generalization of
Theorem 3.4.3 and not as a generalization of Theorem 4.2.5.

Corollay 4.2.9. Fix a point [p, b] of NX′ such that psbs 6= 0. The following are equivalent:

1. The point [p, b] is in EX(u).

2. The point [p, b] satisfies

uipsbs = −u+pibi for i = 0, 1, 2, . . . , n

3. There exists [q0 : · · · : qn] ∈ X∗ such that

uipsbs = −u+pi(qi − bs) for i = 0, 1, . . . , n

Proof. It is immediate that part 1 and part 2 are equivalent. To see part 2 and part 3 are
equivalent, recall qi = bi + bs for i = 0, 1, . . . , n, from the definition of X ′∗.

A consequence of these equations is that it removes the need for saturation by p0p1 · · · pn
with Gröbner basis computations that involve the likelihood equations whenever the ui are
nonzero. In addition, if we restrict to the affine charts defined by ps = 1 and bs = −u+, then
the condition psbs 6= 0 is immediately satisfied.

4.3 Dual likelihood equations
In this section we will define a system of equations whose solutions are precisely

Bu = {b : (p, b) ∈ EX(u)} .

Once we know the set Bu, we determine the critical points of `u(p) = pu00 · · · punn /p
u+
+ on X

using Lemma 4.2.2 and Corollary 4.2.9. For this reason we have the following definition.

Definition 4.3.1. The dual maximum likelihood estimation problem for the algebraic sta-
tistical model X and data u is to determine Bu, the set of critical points of `′u(b) on X ′∗.

By Corollary 4.2.7, we find the critical points of `′u(b) = bu00 b
u1
1 · · · bunn b−u+s on X ′∗ to

determine the set Bu. That is, we determine the points b ∈ X ′∗ such that the gradient

∇`′u(b) =

[
u0

b0

:
u1

b1

: · · · : un
bn

:
−u+

bs

]
is orthogonal to the tangent space of X ′∗ at b.

If X∗ in Pn has codimension c, which means X ′∗ in Pn+1 has codimension c, then the
dual likelihood equations are obtained by taking the sum of ideals generated by
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• the polynomials defining X ′∗, and

• the (c + 1)× (c + 1) minors of an extended Jacobian multiplied by a diagonal matrix
with entries b0, b1, . . . , bn, bs,

[
∇lu (b)

Jac (X ′∗)

] b0

. . .
bs

 , (4.4)

and saturating by the product of two ideals,

• the principal ideal generated by b0b1 · · · bnbs, and

• the ideal generated by the c× c-minors of Jac(X ′∗).

This gives us a formulation of the dual likelihood equations. Now we make some simplifica-
tions to these equations to get Theorem 4.3.2.

By Euler’s relations for partial derivatives, the columns of the matrix product in (4.4)
are linearly dependent. Indeed the columns sum to zero, so we may drop the last column of
the product without effecting the rank.

By Proposition 4.2.3, if g1(q), . . . , gl(q) define the variety X∗, then the defining equations
of X ′∗ are

g1(b0 + bs, b1 + bs, . . . , bn + bs) = 0
...

gl(b0 + bs, b1 + bs, . . . , bn + bs) = 0.

and the Jacobian of X ′∗ is

Jac (X ′∗) = Jac (X∗)|(b0+bs,...,bn+bs)


1 1

1
...

. . . 1
1 1

 .
Since the last column of Jac(X ′∗) is the sum of the first columns, it follows the dual likelihood
equations can be calculated by the next theorem.

Theorem 4.3.2. Let g1(q), . . . , gl(q) define X∗ ⊂ Pn with codimension c. Then the dual
likelihood equations of X are calculated by taking the sum of the ideals generated by

• g1(b0 + bs, . . . , bn + bs), . . . , gl(b0 + bs, . . . , bn + bs) and

• the (c+ 1)× (c+ 1) minors of u0
b0

u1
b1

. . . un−1

bn−1

un
bn

Jac (X∗)|(b0+bs,...,bn+bs)


 b0

. . .
bn

 ,
and saturating by the product of two ideals,
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• the principal ideal generated by b0b1 · · · bnbs, and

• the ideal of c× c-minors of Jac (X∗)|(b0+bs,...,bn+bs) .

The point of Theorem 4.3.2, is that the dual likelihood equations define a homogenous
ideal in the polynomial ring C[b0, b1, . . . , bn, bs] whose variety is Bu, the set of critical points
of `′u(b) on X ′∗.

Example 4.3.3. Let X be defined by f(p) = 4p0p2 − p2
1 in P2. Then X∗ is defined by

g(q) = q0q2 − q2
1 in P2. So

f(p) = det

[
2p0 p1

p1 2p2

]
and g(q) = det

[
q0 q1

q1 q2

]
.

The dual likelihood equations are computed by taking the ideal generated by

• g(b0 + bs, b1 + bs, b2 + bs) = (b0 + bs)(b2 + bs)− (b1 + bs)
2, and

• 2× 2 minors of [
u0
b0

u1
b1

u2
b2

(b2 + bs) −2(b1 + bs) (b0 + bs)

] b0

b1

b2


and saturating by the product of two ideals

• the principal ideal (b0b1b2bs) and

• the 1× 1 minors of [
(b2 + bs) −2(b1 + bs) (b0 + bs)

]
.

We find that there is a unique critical point of `′u(b) on X ′∗ whose coordinates are derived
from the matrix equality

1

bs

[
b0 b1

b1 b2

]
=

[
4u0u+

(2u0+u1)2
4u1u+

2(u1+2u2)(2u0+u1)
4u1u+

2(u1+2u2)(2u0+u1)
4u2u+

(2u2+u1)2

]
.

So by Corollary 4.2.9, the coordinates of the critical point of `u(p) on X are derived from
the matrix equality

1

ps

[
2p0 p1

p1 2p2

]
=

1

2u2
+

[
(2u0 + u1)
(u1 + 2u2)

] [
(2u0 + u1)
(u1 + 2u2)

]T
.

To calculate ML degrees when X∗ is not a complete intersection [Computation 4.3.5],
we will work with an adjusted formulation of the dual likelihood equation. This formula-
tion introduces codimension X∗ auxiliary unknowns (Lagrange multipliers). Also, instead
of working with every generator of the ideal of X∗, we work with codimension X∗ genera-
tors. These generators should be chosen so that they define a reducible variety whose only
irreducible component not contained in the coordinate hyperplanes is X∗.
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Example 4.3.4. Consider 2×2×2-tensors of the form [pijk] with i, j, k,∈ {0, 1}. If X is the
hyperdeterminant of these tensors, then X∗ is defined by the 2×2 minors of all flattenings of
the tensor [qijk]. The codimension of X∗ is 4. The 4 minors below define X∗ after saturating
by q111.

g1 (q) = q011q101 − q001q111 g2 (q) = q011q110 − q010q111

g3 (q) = q001q110 − q000q111 g4 (q) = q011q101 − q001q111

So by introducing auxiliary unknowns λ0, λ1, λ3, λ4 we create a square system of 12 equations
in the homogeneous variable groups (b000, . . . , b111, bs) and (λ0, . . . , λ4):

g1 = (b011 + bs)(b101 + bs)− (b001 + bs)(b111 + bs)
g2 = (b011 + bs)(b110 + bs)− (b010 + bs)(b111 + bs)
g3 = (b001 + bs)(b110 + bs)− (b000 + bs)(b111 + bs)
g4 = (b011 + bs)(b101 + bs)− (b001 + bs)(b111 + bs)

[λ0, λ1, λ2, . . . , λ4]

[
∇`′u(b)
Jac(g)

] b000

. . .
b111

 = 0.

The solutions with λ0bs 6= 0 give the critical points. We find that there are 13 critical points
of `′u(b) on X∗. For more details on the statistical model X we refer to [12], Example 2.2.10.

The next example is a new computational result to determine the ML degree of a hyper-
determinant.

Computation 4.3.5. Let X denote the hyperdeterminant of 2× 2× 3 tensors of the form
[pijk] for i ∈ {0, 1}, j ∈ {0, 1}, k ∈ {0, 1, 2}. Then the ML degree of X is 71.

Proof. The variety X is dual to the variety X∗ defined by the 2× 2-minors of the flattenings
of the 2 × 2 × 3 tensor [qijk] with i ∈ {0, 1}, j ∈ {0, 1}, k ∈ {0, 1, 2}. The variety X∗ has
codimension 7, degree 12, and 24 generators. We consider 7 of the 24 generators,

g1 (q) = q102q111 − q101q112

g2 (q) = q102q110 − q100q112

g3 (q) = q002q111 − q001q112

g4 (q) = q012q102 − q002q112

g5 (q) = q012q111 − q011q112

g6 (q) = q012q110 − q010q112

g7 (q) = q002q110 − q000q112

such that when saturated by q112 we recover the dual variety X∗. We solve the following
square system of equations: the seven equations

g1(b0 + bs, . . . , b112 + bs) = · · · = g7(b0 + bs, . . . , b112 + bs) = 0

and the 12 equations

[1, λ1, λ2, . . . , λ7]M

 b101

. . .
b112

 = 0,
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with M in (4.5) for a choice of u consisting of random complex numbers to determine the
ML degree of X is 71.

(4.5)

u101
b101

u011
b011

u100
b100

u010
b010

u001
b001

u000
b000

u002
b002

u012
b012

u102
b102

u110
b110

u111
b111

u112
b112

−q112 0 0 0 0 0 0 0 q111 0 q102 −q101
−q112 0 0 0 0 0 q111 0 0 q012 −q011

−q112 0 0 0 0 0 q110 q102 0 −q100
−q112 0 0 0 q110 0 q012 0 −q010

−q112 0 q111 0 0 0 q002 −q001
−q112 q110 0 0 q002 0 −q000

−q112 q102 q012 0 0 −q002



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(b101+bs,...,b112+bs)

4.4 The dual MLE problem and ML duality
In this section we introduce two examples and show how the results presented in this chapter
fit in context with Chapter 3.

Definition 4.4.1. A pair of algebraic statistical models X and Y in Pn are said to be ML-
dual if for generic u there is a involutive bijection between points of EX(u) and points of
EY (u). Moreover, this bijection pairs points of EX(u) with points of EY (u) such that the
coordinate-wise product of each pair can be expressed terms of the data u alone.

Example 4.4.2. Suppose r ≤ m ≤ n, and let Vm,n,r denote the Zariski closure in Pmn−1 of
rank r matrices of the form 

p11 p12 . . . p1n

p21 p22
... . . .
pm1 pmn

 .
Then V ∗m,n,r is known to be the Zariski closure in Pmn−1 of rank m− r matrices of the form

q11 q12 . . . q1n

q21 q22
... . . .
qm1 qmn

 .
Fix a choice of m,n, r. If we take X = Vm,n,r, then points in X ′ will be represented as

[pij : ps] ∈ X ′ ⊂ Pmn

and points in X ′∗ will be represented as

[bij : bs] ∈ X ′∗ ⊂ Pmn.

With Corollary 4.2.7, it follows that there is a bijection between Pu and Bu for X = Vm,n,r.
On the other hand, we know that Vm,n,r and Vm,n,m−r are ML-dual by Theorem 3.1.1.

This means, if we take Y to be Vm,n,m−r there is a involutive bijection between critical points
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EX(u) and EY (u) for generic choices of u. In particular, the bijection is such that the
coordinate-wise product of the paired points is([

ui+u+juij
u3

++

: 1

]
,

[
uiju++

ui+u+j

: 1

])
∈ Pmn × Pmn.

Here u++ :=
∑

i,j uij, ui+ :=
∑

j uij, and u+j :=
∑

i uij, and likewise for p++, pi+, p+j.

In the next example will provide a another pair of varieties that are ML-dual. Afterwards
we generalize the example to provide a family of statistical models for which we can find
ML-duals.

Example 4.4.3. Let X in P3 be defined by

f1(p) = (3p2
0 + 22p0p1 + 3p2

1 − 6p0p2 − 6p1p2 + 23p2
2

−22p0p3 − 22p1p3 − 34p2p3 + 39p2
3)

and fix
(v0, v1, v2, v3, vs) = (1, 1, 1, 1, 4) and (u0, u1, u2, u3) = (2, 5, 9, 7).

Then, the variety X ′ is a cone over the point

v = [v0 : v1 : v2 : v3 : vs],

and also contained in the hyperplane defined by

p0 + p1 + p2 + p3 − ps.

The defining equations of X ′∗ are

g1(b) = (b0 + b1 + b2 + b3 + 4bs)
g2(b) = −152b2

1 − 152b1b2 + b2
2 − 152b1b3 − 42b2b3+

−15b2
3 − 608b1bs − 192b2bs − 224b3bs − 512b2

s

(4.6)

Note that X ′∗ is contained in the hyperplane defined by

g1(b) = v0b0 + v1b1 + v2b2 + v3b3 + vsbs.

This is because X ′ is a cone over the point v. In addition, since X ′ is contained in a
hyperplane then X ′∗ is a cone as well. In this case X ′∗ is a cone over the point

[1, 1, 1, 1− 1].

Now, let Y be defined the polynomial

32p2
0 − 88p0p1 + 32p2

1 + 16p0p2 + 16p1p2 − 17p2
2 + 8p0p3 + 8p1p3 + 2p2p3 − 9p2

3. (4.7)

Doing so, it follows that Y ′ is a linear change of coordinates ofX ′∗. If we replace b0, b1, b2, b3, bs
with p0, p1, p2, p3,

−1
4
ps respectively in (4.6), then we have the defining equations of Y ′:

p0 + p1 + p2 + p3 − ps and
32p2

0 − 88p0p1 + 32p2
1 + 16p0p2 + 16p1p2 − 17p2

2 + 8p0p3 + 8p1p3 + 2p2p3 − 9p2
3.
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Eliminating the unknown ps from Y ′ yields the relation (4.7) defining Y .
The varieties X and Y in Pn are ML-dual, meaning there is a bijection between the points

of EX(u) and EY (u). The bijection pairs a point of EX(u) with a point of EY (u) such that
the coordinate-wise product of these two points is([

u0

v0

: · · · : u3

v3

:
−u+

vs

]
,

[
u0

v−1
0

: · · · : u3

v−1
3

:
−u+

v−1
s

])
.

For the fixed choice of u = (2, 5, 9, 7) we find that there are 12 points in EX(u) and 12 points
in EY (u).

Theorem 4.4.4. Fix an algebraic statistical model X. Suppose X ′ is a cone over the point
v = [v0 : v1 : · · · : vn : vs] ∈ (C∗)n+2. Then, there exists an algebraic statistical model Y that
is ML dual to X. Explicitly, if the defining equations of X ′∗ are

g1(b0, b1, . . . , bn, bs),
g2(b0, b1, . . . , bn, bs),

...
gk(b0, b1, . . . , bn, bs),

then the defining equations of Y ′ are

g1

(
p0
v0
, p1
v1
, . . . , pn

vn
, ps
vs

)
,

g2

(
p0
v0
, p1
v1
, . . . , pn

vn
, ps
vs

)
,

...
gk

(
p0
v0
, p1
v1
, . . . , pn

vn
, ps
vs

)
.

To determine Y , eliminate ps from the equations defining Y ′. Moreover, there is a bijection
between EX(u) and EY (u). This bijection pairs a critical point of EX(u) with a critical point
of EY (u) such that coordinate-wise product of the pair is given by the relation([

u0

v0

:
u1

v1

: · · · : un
vn

:
−u+

vs

]
,

[
u0

v−1
0

:
u1

v−1
1

: · · · : un
v−1
n

:
−u+

v−1
s

])
.

It is too strong of a hypothesis to expect a statistical model to be a cone over a point.
But the following example shows why Theorem 4.4.4 is still of great interest. It shows that
the critical points of the likelihood function over common statistical models can be found by
determining critical points of the likelihood function over cone.

Example 4.4.5. Fix u to be the data

(u11, u12, u13, u22, u23, u33) = (10, 9, 1, 21, 3, 7). (4.8)

Let X ′ be defined by ps = p11 + p12 + p13 + p22 + p23 + p33 and

f1(p) = (−p12 + 3p13 − 2p22 + 2p23 + 6p33)
f2(p) = (6p11 + 7p13 − 6p22 + p23 + 8p33)
f3(p) = (6p13p22 − 18p13p23 + 6p22p23 − p2

23+
54p13p33 − 56p22p33 + 18p23p33 + 108p2

33).
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Here, X ′ is a cone over the point v = [v11 : v12 : v13 : v22 : v23 : v33 : vs] such that

v11 = (2u11 + u12 + u13)2

v12 = 2(u12 + 2u22 + u23)(2u11 + u12 + u13)
v13 = 2(u13 + u23 + 2u33)(2u11 + u12 + u13)
v22 = (u12 + 2u22 + u23)2

v23 = 2(u13 + u23 + 2u33)(u12 + 2u22 + u23)
v33 = (u13 + u23 + 2u33)2

vs = −4(u11 + u12 + u13 + u22 + u23 + u33)2.

The dual variety X ′∗ is defined by the polynomials

g1(b) = v11b11 + v12b12 + v13b13 + v22b22 + v23b23 + vsbs
g2(b) = 2(b12b13 − b13b22 − b11 + b12b23 + b13b23 − b12b33)

−b2
13 + b11b22 − b2

12 + b23 − b2
23 + b11b33 + b22b33.

If we take Y ′ to be as in Theorem 4.4.4, then Y is ML dual to X. We determine there are
15 points in EX(u) and 15 points in EY (u).

Six of these 15 points are even more interesting when we consider the algebraic statistical
model Z defined by the determinant of 2p11 p12 p13

2p12 2p22 p23

2p13 p23 2p33

 .
So Z consists of symmetric matrices of rank at most 2. The extended likelihood locus EZ(u)
for the prescribed data (4.8) consists of six points

EZ(u) = {z1, z2, . . . , z6}.

The surprising result is that the set EZ(u) is a subset of EX(u).

From this final example we saw that we can determine critical points of standard algebraic
statistical models by considering critical points of varieties which are cones.

4.5 Conclusion
In this chapter, we have given an elegant formulation of the MLE problem involving conormal
varieties. This formulation allows one to forgo the expensive computation of saturation by
a product of unknowns. We also define the dual likelihood equations that allows one to
compute critical points on X even if the defining equations of X are not known using a dual
variety. We showed that if we solve the dual likelihood equations equations, we recover the
critical points on X by Theorem 4.2.5. More broadly, we showed that if there is a bijection
between critical points of a function restricted to a variety and critical points of a Laurent
monomial restricted to a different variety, then we can formulate a new set of equations to
determine these points.
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Chapter 5

Maximum likelihood geometry in the
presence of data zeros

The content of this chapter has been submitted to the International Symposium on Symbolic
and Algebraic Computation to be held July 23-25, 2014 at Kobe University, Japan under
the same title. This is joint work with Elizabeth Gross with some minor modifications for
consistency with other chapters.

5.1 Introduction
The method of maximum likelihood estimation for a statistical model M and an observed
data vector u ∈ Rn+1 involves maximizing the likelihood function lu over all distributions
in M. This involves understanding the zero-set of a system of equations, and, thus, when
the models of interest are algebraic, the process lends itself to investigation using algebraic
geometry. In fact, likelihood geometry has been studied in a series of papers in the field
of algebraic statistics beginning with [9] and [23]. Subsequent papers include [7, 25, 17, 20,
45, 26] covering both discrete and continuous models. In this chapter, we look at discrete
models and the case where the observed data vector contains zero entries.

In [23], Hoşten, Khetan, and Sturmfels introduce the likelihood locus and its associated
incidence variety for discrete statistical models. In [27], Huh and Sturmfels study this in-
cidence variety further under the name of the likelihood correspondence. Given a discrete
algebraic statistical model with sample space of size n + 1 and Zariski closure X, the like-
lihood correspondence LX is a closed algebraic subset of Pn × Pn. We view Pn × Pn as
the product of the probability space Pnp with homogeneous coordinates p0, p1, . . . , pn and the
data space Pnu with homogeneous coordinates u0, u1, . . . , un. In this chapter, we are concerned
with special fibers of the projections pr1 : LX → Pnp and pr2 : LX → Pnu. Specifically, we set
out to understand pr−1

2 (u) when u contains zero entries and show how our understanding of
pr−1

2 (u) yields information about generic fibers of pr2. In particular, we want to understand
the degree of a generic fiber of pr2. That quantity is the ML degree (maximum likelihood
degree) of X as discussed in previous chapters.
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A statistical modelM is a subset of the probability simplex

∆n =

{
(p0, p1, . . . , pn) ∈ Rn+1 |

n∑
i=0

pi = 1 and pi ≥ 0 for i = 0, 1, . . . n

}
.

Given positive integer data u ∈ Zn+1
≥0 , the maximum likelihood estimation problem is to

determine p̂ ∈M that maximizes the likelihood function

lu = pu00 p
u1
1 · · · punn

restricted toM. The point p̂ ∈ M is called the maximum likelihood estimate, or mle. The
family of models we are interested in are algebraic statistical models, which are defined by
the vanishing of polynomial equations restricted to the probability simplex.

To use algebraic methods, we consider points ofM⊂ Rn+1 as representatives of points in
Pn and study the Zariski closureM = X ⊂ Pn. This makes the problem easier by relaxing
the nonnegative and real constraints, which allows us to obtain an understanding about the
number of possible modes of the likelihood surface. There are subtleties when performing
this relaxation as mentioned for example in Section 2.5 of Chapter 2 regarding rank and
non-negative rank.

Let p+ := p0 + p1 + · · ·+ pn and Hn be the set of points where p+p0p1 · · · pn equals zero.
With algebraic methods, our goal is to determine all complex critical points of `u(p) := lu/p

u+
+

when restricted to Xreg\Hn ⊂ Pn, where Xreg is the set of regular points of X. We work
with `u(p) since it is a rational function of degree zero and thus a function on Pn (see [12,
§2.2]).

A point p ∈ Xreg is said to be a critical point if the gradient of `u(p) is orthogonal to the
tangent space of X at p, that is

∇`u(p) ⊥ TpX.

If the maximum likelihood estimate p̂ for the data vector u is in the interior ofM, then p̂
will be a critical point of `u(p) over X. By determining the critical points of `u(p) on X, we
find all local maxima of lu onM.

If the data vector u contains zero entries, in the statistics literature each zero entry is
called either a sampling zero or a structural zero. Considering u as a flattened contingency
table, a sampling zero at ui occurs when no observations fall into cell i even though pi is
nonzero. A structural zero occurs at ui when the probability of an observation falling into
cell i is zero. Structural and sampling zeros occur commonly in practice, for example, in
large sparse data sets (for more on sampling and structural zeros see [6, §5.1.1]).

The terms “sampling zero” and “structural zero” are denotationally about contingency
tables, but they also carry implications about X as well. For example, the term “structural
zero” connotes that maximum likelihood estimation should proceed over a projection of X
(see [36]). Due to this secondary definition imparted to the term “structural zero," and in
view of the fact that this chapter is concerned with the intersection of X with the hyperplane
pi = 0 as opposed to the projection of X, we introduce the definition of a model zero.

Definition 5.1.1 (Model zeros). Given a modelM withM = X ⊂ Pn and data vector
u with ui = 0, a model zero at cell i is a zero such that the maximum likelihood estimate p̂
for u is a critical point of `u(p) over X ∩ {pi = 0}.
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Remark 5.1.2. From the remainder of the chapter, we will use “structural zero" to mean a
zero at cell i such that 1) pi = 0, and 2) maximum likelihood estimation proceeds over the
projection of X onto all coordinates except the ith coordinate.

In this chapter we explore in depth the algebraic considerations of maximum likelihood
estimation when the data contains sampling zeros or model zeros. The main theorem of
Section 5.2, Theorem 5.3.6, shows how solutions to the maximum likelihood estimation
problem for data with zeros on X are contained in the likelihood correspondence of X. This
result gives statistical meaning to the likelihood correspondence when ui is equal to zero
and has interesting theoretical and computational implications. On the theoretical side, we
can use Theorem 5.3.6 to compute a lower bound on the ML degree of a variety X. On the
computational side, Theorem 5.3.6 can be applied using coefficient-parameter homotopies to
quickly find critical points of `u(p) over X (Algorithm 5.4.2) and can make the problem of
computing the ML degree for multi-way tables tractable (Section 5.4).

This chapter is organized as follows. In Section 5.2, we give preliminary definitions and
introduce a square parameterized system called the Lagrange likelihood equations. Proposi-
tion 5.2.2 describes the properties of the Lagrange likelihood equations that will be referenced
in later sections. We also describe how the variety of the Lagrange likelihood equations is
related to the likelihood correspondence of Huh and Sturmfels [27].

In Section 5.2, we discuss how sampling and model zeros change the maximum likelihood
problem. Theorem 5.3.6 describes the special fiber pr−1

2 (u) when u contains zero entries.
We use this theorem to give a lower bound on the ML degree of X. The section continues
with exploring how solutions to the Lagrange likelihood equations partition into solutions
for different maximum likelihood estimation problems for sampling and model zeros; these
partitions are captured in the ML tables introduced in this section. We end this section by
fully characterizing the ML degree for different sampling and model zero configurations of a
generic hypersurface of degree d in Pn.

We conclude with Section 5.3, which illustrates several computational advantages that
can be achieved in ML degree computation by first considering data vectors with zeros.
Algorithm 5.4.2 gives a method to find critical points of `u(p) over X by computing the
critical points of `u(p) when u contains model zeros; these solutions are significantly easier
to compute. We continue the section by looking at Grassmannian and tensor examples. We
conclude by extending maximum likelihood duality to u with zero entries and showing how
ML duality offers further computational benefits.

5.2 Likelihood equations and ML degree
The maximum likelihood degree (ML degree) of a variety X ⊂ Pn is defined as the number
of critical points of the likelihood function `u(p) on Xreg \ Hn for generic data u. The
ML degree of X quantifies the algebraic complexity of the maximum likelihood estimation
problem over the model M, indicating how feasible symbolic algebraic methods are for
finding the maximum likelihood estimate. The ML degree has an explicit interpretation in
numerical algebraic geometry as well. Assuming that the ab initio stage of a coefficient-
parameter homotopy has been run [41, §7] the ML degree is the number of paths that need
to be followed for every subsequent run.
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For each u, all critical points of `u(p) over X form a variety. Thus, by varying u over Pnu
we obtain a family of projective varieties with base Pu. In algebraic geometry, the natural
way to view this family of parameterized varieties is as a subvariety LX of the product
variety Pnp × Pnu where the elements of the family are the fibers of the canonical projection
pr2 : Pnp × Pnu → Pnu over the points u in Pnu. The subvariety LX is called the likelihood
correspondence [27], which is the closure in Pnp × Pnu of

{(p, u) : p ∈ Xreg \ Hn and dlog(`u(p)) vanishes at p}.

Just as we can talk about a parameterized family of varieties, we can also talk about a
parameterized system of polynomial equations. For us, a parameterized polynomial system is
a family F of polynomial equations in the variables p0, . . . , pn and the parameters u0, . . . , un.
A member of the family is chosen by assigning a complex number to each parameter ui. If
u is a generic vector in Pn, we call the resulting system generic. A system of equations is
said to be square if the number of unknowns (variables) equals the number of equations of
the system. Algebraic homotopies are an effective way to solve many members of a family
F . By solving a generic member of the family, we determine the solutions to another system
of the family using a coefficient-parameter homotopy (see [34]), thus, this viewpoint can be
computationally advantageous.

Now we define a parameterized square system of polynomial equations called the Lagrange
likelihood equations. The Lagrange likelihood equations for a variety X ⊂ Pn of codimension
c consists of n+ 1 + c equations. The n+ 1 + c unknowns are p0, p1, . . . pn, λ1, . . . , λc and the
parameters are u0, . . . , un. The advantage of the Lagrange likelihood equations, in addition
to being a parameterized square system, is that properties of a point (p, u) in the likelihood
correspondence become apparent. These properties are summarized in Proposition 5.2.2.

Definition 5.2.1 (Lagrange likelihood equations). Let X be a codimension c irreducible
variety. If X is an irreducible component of the variety of h1, h2, . . . , hc, then the Lagrange
likelihood equations of X denoted by LL(X, u) are

h1 = h2 = · · · = hc = 0 (5.1)

(u+pi − ui) = pi (λ1∂ih1 + λ2∂ih2 + · · ·+ λc∂ihc) for i = 0, . . . , n (5.2)

If X is a complete intersection, then h1, . . . , hc are the minimal generators of I(X).
Otherwise, in order to satisfy the conditions imposed on X, one can choose h1, . . . , hc to be
c random linear combinations of the minimal generators of I(X).

Proposition 5.2.2. The Lagrange likelihood equations have the following properties.

1. If (p, λ) is a solution of LL (X, u) and u+ 6= 0, then
∑
pi = 1.

2. If pi = 0, then ui = 0.

3. If the point p is a critical point of `u(p) restricted to Xreg\Hn, then there exists an
unique λ such that (p, λ) is a solution to LL (X, u).

4. If p ∈ Xreg and (p, λ) is a regular isolated solution to LL (X, u), then p is a critical
point of `u(p) on Xreg\Hn.
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5. For generic choices of u, the number of solutions of LL (X, u) with p ∈ Xreg\Hn equals
the MLdegree of X.

Proof. To arrive at property (1), we sum the equations of (5.2) to get

n∑
i=0

(u+pi − ui − pi(λ1∂ih1 + · · ·+ λn∂ihc)) =
n∑
i=0

piu+ − u+ = u+(
n∑
i=0

pi − 1).

The first equality above follows by Euler’s relation of homogeneous polynomials.
The implication stated in property (2) is clearly seen by setting pi equal to zero in the

ith equation of Equations (5.2).
For properties (3) and (4), we note that, as discussed in Chapter 4, p ∈ Xreg\Hn is a

critical point of `u(p) on X if and only if the linear subspace T⊥p contains the point(
u0

p0

− u+

p+

: . . . :
un
pn
− u+

p+

)
.

When X is of codimension c, this is equivalent to saying that p ∈ Xreg\Hn is a critical point
for `u(p) on X if and only if there exist λ1, . . . , λc ∈ C such that for all 0 ≤ i ≤ n,

ui
pi
− u+

p+

= λ1 · ∂ih1 + . . .+ λc · ∂ihc.

The Langrange likelihood equations are a restatement of this condition with the denomina-
tors cleared. Property (5) follows from (3) and (4).

If we homogenenize the Lagrange likelihood equations using p+ and u+ so that each
equation is homogeneous in both the coordinates p0, . . . , pn and the coordinates u0, . . . , un
λ1, . . . , λc, the Lagrange likelihood equations define a variety L̂X in the product space Pnp ×
Pn+c
u,λ . The variety L̂X is related to the likelihood correspondence as follows. Let

π : Pn × Pn+c → Pn × Pn

((p0 : . . . : pn), (u0 : . . . : un : λ1 : . . . λn)) 7→ ((p0 : . . . : pn), (u0 : . . . : un)).

Then by Proposition 5.2.2, the morphism π maps a dense open set of L̂X to a dense open
set of L(X), thus,

L(X) = π(L̂X).

The implication of this equality is that by studying the Lagrange likelihood equations, we
are in fact studying fibers of the projection pr2 : Pnp × Pnu → Pnu.

We conclude this section with an example that shows how the Lagrange likelihood equa-
tions are used to find critical points of `u(p).

Example 5.2.3. Let X = Gr2,6 ⊂ P14 be the variety defined by

pijpkl − pikpjl + pijpjk, 1 ≤ i < j < k < l ≤ 6.
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The Grassmannian Gr2,6 parameterizes lines in the projective space P5. It has codimension
6 and is not a complete intersection. However, the 6 equations

h1 = p36p45 − p35p46 + p34p56, h4 = p26p45 − p25p46 + p24p56,
h2 = p25p34 − p24p35 + p23p45, h5 = p16p45 − p15p46 + p14p56,
h3 = p15p34 − p14p35 + p13p45, h6 = p14p23 − p13p24 + p12p34

define a reducible variety that has Gr2,6 as an irreducible component (the other compo-
nents live in the coordinate hyperplanes). The system of equations LL (X, u) consists of 21
equations: the equations h1 = · · · = h6 = 0 and the 15 below

u12 − u+p12 = p12(λ1 · ∂h1∂p12
+ . . .+ λ6 · ∂h6∂p12

)

u13 − u+p13 = p13(λ1 · ∂h1∂p13
+ . . .+ λ6 · ∂h6∂p13

)
...

u56 − u+p56 = p56(λ1 · ∂h1∂p56
+ . . .+ λ6 · ∂h6∂p56

).

Solving LL (X, u), we find there are 156 regular isolated solutions (p, λ) with p ∈ X, thus,
by Proposition 5.2.2 the ML degree of X is 156.

5.3 Sampling and model zeros
In this section, we determine what happens when the data vector u contains zero entries. By
understanding the maximum likelihood estimation problems for sampling and model zeros
we gain insight into the ML degree of a variety X.

For a subset S ⊆ {0, 1, . . . , n}, we define

US := {u ∈ Pn | ui = 0 if i ∈ S and nonzero otherwise}.

The set US specifies which entries of the data vector are zero. A partial order on the set
of all {US : S ⊆ {0, 1, . . . , n}} is induced by inclusion and we notice US ⊆ US′ if and only
if S ′ ⊆ S. For ease of notation, we define U := U∅. When u ∈ US, every ui with i ∈ S is
considered a sampling zero or a model zero.

A sampling zero at cell i changes the likelihood function since the monomial puii no longer
appears in lu. In the case of a model zero at cell i, the model zero is not considered as part
of the data, and thus, the likelihood function is changed as well: puii no longer appears in the
function and pi is set to zero in p+. Below, we make precise how the maximum likelihood
estimation problem changes in the presence of model zeros and sampling zeros and describe
the maximum likelihood estimation problem on X for data u ∈ US with model zeros R.

Let S ⊆ {0, 1, . . . , n} and R ⊆ S and consider the following modified likelihood function

`u,S :=
∏
i 6∈S

puii /p
u+
+ .

The set XR := X ∩{p ∈ Pn | pi = 0 for all i ∈ R} will be called the model zero variety for X
and R. We consider XR as a projective variety in Pn−|R| and define HR as the set of points
in Pn−|R| where

(∏
i 6∈R pi

)
· p+ vanishes. The model zero variety XR is called proper if the

codimension of XR ⊂ Pn−|R| equals the codimension of X ⊂ Pn.
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Definition 5.3.1. The maximum likelihood estimation problem on X for data u ∈ US with
model zeros R, denoted MLR,S, is to determine the critical points of `u,S on XR \ HR. The
MLdegree (XR, S) is defined to be the number of critical points of `u,S on XR\HR for generic
u ∈ US when XR is proper and zero otherwise.

In terms of the likelihood correspondence, the MLdegree(XR, S) is the cardinality of
the subset of points (p, u) of pr−1

2 (u) such that pi = 0 for all i ∈ R for generic u ∈ US.
Whenever R = S, then MLdegree(XR, S) simply equals MLdegree(XR ⊂ Pn−|R|). In terms
of optimization, the MLdegree (XR, S) gives an upper bound on the local maxima of lu,S :=∏

i/∈S p
ui
i onM∩ {pi = 0 for all i ∈ R}.

Next, we take the time to explain the subtleties of sampling zeros, model zeros, and
structural zeros. When given a model M with closure X and structural zeros R, common
practice is to optimize lu,R restricted to πR(X), the closure of the projection of X onto all
coordinates not indexed by R [6][36]. In contrast, given a model M with closure X and
model zeros R, the goal is to optimize lu,R restricted to XR. In general, πR(X) 6= XR, and
so, the number of critical points will differ. The reason this occurs is because projections
of intersections is not the same as intersecting projections. We illustrate the differences
between model zeros, sampling zeros, and structural zeros in the next three examples.

Notation 5.3.2. We use S to denote the indices of the data zeros in u and R ⊂ S to denote
the indices of the model zeros. While we defined S ⊂ {0, 1, . . . , n}, in some examples, it
is more natural to index the entries of u by ordered pairs. In this case, S will be a set of
ordered pairs indicating the positions of the data zeros and R will be a set of ordered pairs
indicating the positions of the model zeros.

Example 5.3.3 (Model, sampling, and structural zeros). Let X denote the set of
3 × 3 matrices of rank 2 in P8. The variety X is a hypersurface defined by the polynomial
f = p11p22p33 − p11p23p32 − p12p21p33 + p12p23p31 + p13p21p32 − p13p22p31. The ML degree of
X is 10.

When we have data u as a 3 × 3 table and the upper left entry u11 is a model zero,
then optimization proceeds over XR = X{(1,1)}. The model zero variety XR is defined by the
polynomial −p12p21p33 + p12p23p31 + p13p21p32 − p13p22p31, obtained by setting p11 = 0 in f .
In this case, there are 5 complex critical points, that is, MLdegree(XR) = 5.

When u11 is a sampling zero, optimization proceeds over X and critical points on the
coordinate hyperplanes are ignored. In this case, there are 5 complex critical points whose
coordinates are all non-zero, i.e., MLdegree(X, {(1, 1)}) = 5.

When u11 is a structural zero, optimization proceeds over πR(X) = P7. The projection
is onto since X is a hypersurface. In this case, there is one complex critical point.

Example 5.3.4. Let X denote the set of 3× 4 matrices of rank 2 in P11. The defining ideal
of X is generated by the four 3× 3 minors of p,

I(X) = 〈p11p22p33 − p11p23p32 − p12p21p33 + p12p23p31 + p13p21p32 − p13p22p31,

p11p22p34 − p11p24p32 − p12p21p34 + p12p24p31 + p14p21p32 − p14p22p31,

p11p23p34 − p11p24p33 − p13p21p34 + p13p24p31 + p14p21p33 − p14p23p31,
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p12p23p34 − p12p24p33 − p13p22p34 + p13p24p32 + p14p22p33 − p14p23p32〉.

The ML degree of X is 26.
Now let u11 be a model zero in the contingency table u. In this case, R = {(1, 1)} and

the defining ideal of XR is

I(XR) = 〈p12p21p33 + p12p23p31 + p13p21p32 − p13p22p31,

p12p21p34 + p12p24p31 + p14p21p32 − p14p22p31,

p13p21p34 + p13p24p31 + p14p21p33 − p14p23p31,

p12p23p34 − p12p24p33 − p13p22p34 + p13p24p32 + p14p22p33 − p14p23p32〉.

The MLdegree(XR) = 13.
When u11 is a structural zero, we follow [36] and eliminate p11 from the ideal I(X) to

obtain the defining ideal of πR(X),

I(πR(X)) = 〈p12p23p34 − p12p24p33 − p13p22p34 + p13p24p32 + p14p22p33 − p14p23p32〉.

Optimizing over πR(X), yields 10 complex critical points. Coincidently, 10 is also the ML
degree for 3× 3 rank 2 matrices.

Example 5.3.5. Let X be the set of 3×3 matrices of rank 1 in P8. It is well known that the
ML degree of X equals 1 and that the corresponding critical point of `u(p) is 1

u3++
[ui+u+j]

for generic choices of data. Now consider the case when

u =

 0 u12 u13

u21 0 u23

u31 u32 0

 .
The zeros of u are indexed by S = {(1, 1), (2, 2), (3, 3)}.

If all zeros of u are sampling zeros, then we ask how many critical points of `u,∅ =
pu1111 p

u12
12 · · · pu3333 /p

u++

++ restricted to X ⊂ P8 there are. We find the unique critical point is
again 1

u3++
[ui+u+j].

If the zeros of u are model zeros, then we let R = S and we ask how many critical points
of `u,R = pu1212 p

u13
13 p

u21
21 p

u23
23 p

u31
31 p

u32
32 /p

u++

++ restricted to X ∩ {p11 = p22 = p33 = 0} \ HR ⊂ P5

there are. We find there are no such critical points. This is because X ∩ {p11 = p22 = p33 =
0} ⊆ HR.

If the zeros of u are structural zeros, then the model under consideration is a quasi-
independence model; such models have been well-studied. The projection πR(X) is defined
by one equation p12p23p31 − p13p21p32, and we find the ML degree of πR(X) is 3.

We now come to the description of the special fiber pr−1
2 (u) when u is a generic data

vector in US. This connects the material in this chapter with previous work on the likelihood
correspondence [27].

Theorem 5.3.6. Let u be a generic data vector in US for some S ⊆ {0, . . . , n}. Let X ⊆ Pn
be a codimension c irreducible component of a projective variety defined by homogeneous
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polynomials h1, . . . , hc. Let XR be a proper model zero variety for all R ⊆ S. Then, the
special fiber pr−1

2 (u) contains the critical points of the problem MLR,S for all R ⊆ S.
Moreover, if (p, u) ∈ pr−1

2 (u) with p ∈ (XR \ HR)reg then p is a critical point of the
problem MLR,S for some R ⊆ S.

Proof. Most of the work of this proof comes from the formulation of the Lagrange likelihood
equations. First, note that for a variety Y ⊆ Pn and u ∈ U ′S for S ′ ⊆ {0, 1, . . . , n}, the point
p ∈ Yreg \ H is a critical point on Y for lu,S′ if and only if the linear subspace T⊥p contains
the point v ∈ Pn−|R| where

vi =

{
ui
pi
− u+

p+
if i /∈ S,

−u+
p+

if i ∈ S.
.

This condition results in the same equations as in LL(Y, u) when ui = 0 for all i ∈ S and pi
is assumed not to be zero when i /∈ S.

Second, note that when we substitute pi = 0 into LL(X, u), we get the equations for
LL(XR, u). Thus, by substituting pi = 0 for i ∈ R and ui = 0 for i ∈ S into LL(X, u), we
get a system of equations whose solutions are the critical points of `u,S on XR.

This implies that if XR is a proper model zero variety then p is a critical point on XR

for `u,S if and only if there exists λ such that (p, λ) is an isolated solution to LL(X, u), or
equivalently, the point (p, u) ∈ LX .

From Proposition 5.2.2, we know ui 6= 0 implies pi 6= 0, thus, we can account for all
solutions to LL(X, u) since we consider every subset R ⊆ S.

In the proof of Theorem 5.3.6, we also proved the following statement (Proposition 5.3.7).
We state Proposition 5.3.7 separately in order to highlight the equations for MLR,S.

Proposition 5.3.7. Fix u ∈ US and X ⊂ Pn with codimension c that is an irreducible
component of the projective variety defined by homogeneous polynomials h1, . . . , hc.Whenever
XR is proper, the critical points of `u,S restricted to XR are regular isolated solutions of the
equations:

h1 = h2 = · · · = hc = 0
pi = 0 for i ∈ R, and (5.3)

u+ = (λ1∂ih1 + λ2∂ih2 + · · ·+ λc∂ihc) for i ∈ S \R
(u+pi − p+ui) = pi (λ1∂ih1 + λ2∂ih2 + · · ·+ λc∂ihc) for i 6∈ S (5.4)

Moreover, the solutions to (5.3) and (5.4) for all R ⊆ S account for all the solutions to
LL (X, u).

An important consequence of Theorem 5.3.6 is that we can use a parameter homotopy
to take the solutions of LL(X, u) for u ∈ U to the solutions of LL(X, v) for v ∈ US. Such
methods are discussed in [41] and can be implemented in Bertini [3] or PHCpack [46]. Doing
so, we solve 2|S| different optimization problems corresponding to the 2|S| subsets of S. In
the case | S |= 1, we get the following corollary.

Corollary 5.3.8 (ML degree bound). Suppose S = {n} and X ⊂ Pn is an irreducible
projective variety. Then for generic u ∈ US, we have

MLdegree(X) ≥ MLdegree(XS) + MLdegree(X,S)
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Moreover, when X is a generic complete intersection, the inequality becomes an equality.

Proof. This follows from Theorem 5.3.6 and the fact that the number of solutions to a
parameterized family of polynomial systems for a generic choice of parameters can only
decrease on nested parameter spaces [34]. Equality holds when u remains off an exceptional
subset E ⊂ U which is defined by an algebraic relation among the p coordinates and u
coordinates [41]. Since X is a generic intersection, we have US is not strictly contained in E ,
and the equality holds.

As we can see from Corollary 5.3.8, solutions to LL(X, u) with u ∈ US get partitioned
into sampling zero and model zero solutions, in fact, we see this same behavior even as we
increase the size of S. We encode MLdegree (XR, S) for all possible choices of (R, S) in a
table called the ML table of X whose rows are indexed by R ⊂ {0, 1, . . . , n} and whose
columns are indexed by S ⊂ {0, 1, . . . , n}. Due to space considerations, in our examples, we
often only print partial ML tables, i.e. that is subtables of the complete ML table.

Example 5.3.9. The ML table of a generic curve of degree d in P2 is below. The top left
entry of the table is the ML degree of a generic curve of degree d in P2.

R\S {} {0} {1} {2}
{} d+ d2 d2 d2 d2

{0} d 0 0
{1} d 0
{2} d

Example 5.3.10. Let X ⊂ P8 be the projectivization of all 3 × 3 matrices of rank 2. A
partial ML table of X is below.

R\S {} {11} {12} {11, 12}
{} 10 5 5 1
{11} 5 − 4
{12} 5 4
{11, 12} 1

.

In Example 5.3.9 and Example 5.3.10 above, each of the columns of the MLtable(X) sum
to MLdegree(X). This does not happen for all varieties, but, in general, the column sums
are lower bounds of the ML degree of X.

Corollary 5.3.11. The column sums of the ML table of X are less than or equal to MLdegree(X),
meaning MLdegree(X) ≥

∑
R⊆S MLdegree(XR, S). Moreover, when X is a generic complete

intersection, the inequality becomes an equality.

The inequality in Corollary 5.3.11 above can be strict as the next example shows.

Example 5.3.12. Let f = p3
0 + p3

1 + p3
2 + p3

3 define a hypersurface X ⊂ P3. Some of the
entries of the MLtable of X are below. We have MLdegree(X) = 30 but for S = {0, 1}, we
have

∑
R⊆S MLdegree(XR, S) = 28.



CHAPTER 5. MAXIMUM LIKELIHOOD GEOMETRY IN THE PRESENCE OF DATA
ZEROS 67

R\S {} {0} {0, 1}
{} 30 21 12
{0} 9 7
{1} 7
{0, 1} 2

Remark 5.3.13. Our definition for the entries of the ML table ignores multiplicities and
singularities of the variety. We only take account regular isolated solutions. An interesting
research direction would be to take into account multiplicities to obtain an equality in the
statement of Corollary 5.3.8.

We conclude this section with a full description of the ML table for a generic hypersurface
of degree d in Pn.

Theorem 5.3.14. Suppose X is a generic hypersurface of degree d in Pn and let s =| S |
and r =| R |. Then

MLdegree (XR, S) =


d
d−1

(dn−s − 1) s = r

dn−s+1 (d− 1)s−r−1 , s > r

0 otherwise.

Proof. Since the entries of the ML table of generic degree d hypersurfaces X ⊂ Pn depend
only on d, n, and the size of R and S, we ease notation and let MLdegree (Xr ⊂ Pn, s) :=
MLdegree (XR ⊂ Pn, S). By Proposition 5.3.7, it follows

MLdegree
(
Xr ⊂ Pn+1, s

)
= MLdegree (Xr−1 ⊂ Pn, s− 1) for r, s ≥ 1 (5.5)

because a section of a generic hypersurface projected into a smaller projective space is again
generic degree d hypersurface. We will use (5.5) to induct on n.

Recall by [23] the ML degree of a generic degree d hypersurface in Pn is d
d−1

(dn − 1). So
when s = r, we have MLdegree (XR, S) = d

d−1
(dn−s − 1) as desired. So for n = 2 we have

MLdegree (X∅, ∅) = MLdegree (X∅, {0}) + MLdegree
(
X{0}, {0}

)
.

Simple algebra reveals MLdegree (X∅ ⊂ P2, {0}) = d2. With this we have shown the theorem
holds when n = 2. To complete the proof by induction, we need only show
MLdegree (Xr ⊂ Pn+1, s) equals dn−s+1 (d− 1)s−r−1, when r = 0 and r < s. To show this we
recall

MLdegree(X ⊂ Pn+1) =
∑
R⊂S

MLdegree
(
XR ⊂ Pn+1, S

)
. (5.6)

The right hand side of (5.6) becomes

MLdegree
(
X∅ ⊂ Pn+1, s

)
+

s∑
r=1

(
s

r

)
MLdegree (Xr−1 ⊂ Pn, s− 1) .
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Letting D = MLdegree (X∅ ⊂ Pn+1, s) we have that (5.6) simplifies to

d

d− 1
(dn+1 − 1) = D +

s−1∑
r=1

(
s

r

)
dn−s+2(d− 1)s−r−1 +

d

d− 1
(dn−s+1 − 1).

With the binomial formula it follows D = dn−s+2 (d− 1)s−1 finishing the proof.

Example 5.3.15. By Theorem 5.3.14 we have the following MLtable of a generic degree d
hypersurface X ⊂ Pn.

R\S {} {0} {0, 1} {0, 1, 2} · · ·
{} d

d−1
(dn − 1) dn (d− 1)0 dn−1 (d− 1) dn−2 (d− 1)2

{0} d
d−1

(dn−1 − 1) dn−1 (d− 1)0 dn−2 (d− 1)1

{0, 1} d
d−1

(dn−2 − 1) dn−2 (d− 1)0

{0, 1, 2} d
d−1

(dn−3 − 1)
... . . .

5.4 Applications and further directions
In this section we illustrate the computational gains acquired by working with model zero
varieties. This section has four brief subsections focused on different applications: ML table
homotopies, ML duality, tensors (multi-way tables), and Grassmannians.

ML table homotopy

Let X ⊂ Pn be a generic complete intersection of codimension c defined by homogeneous
polynomials h1, . . . , hc. Let u be generic data vector in U , and let us be a generic data vector
in US with S ⊆ {0, 1, . . . , n}. Our first application of Corollary 5.3.8 is the construction of
a homotopy to determine critical points of `u(p) on X. We determine the critical points of
`us,S on X∩HR for each subset R of S. So rather than doing a single expensive computation
to determine the critical points of `u(p) on X, we perform several easier computations to
determine critical points of `us,S. Doing so allows us to use Proposition 5.3.7 to get the
critical points of `u(p) using a coefficient-parameter homotopy. The homotopy requires two
steps. Step 1 determines the start points by solving multiple systems of equations. Step 2
constructs the coefficient-parameter homotopy (see [41, §7]) that will do the path tracking.

Example 5.4.1. Let X ⊂ P3 be defined by f = 2p3
0 − 3p3

1 + 5p3
2 − 7p3

3. We note that
MLdegree(X) = 39 and the ML table of X is:

R\S {} {0} {1} {0, 1}
{} 39 27 27 18
{0} 12 − 9
{1} 12 9
{0, 1} 3
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Let S = {0, 1} and let us be a generic vector in US. For Step 1 of the algorithm, we solve
four systems of equations. Each system of equations corresponds to a choice of R from
R := {∅, {0} , {1} , {0, 1}}. For example, when R = {0, 1}, we solve the following system

f = 0
p0 = 0
p1 = 0

(u+p2 − p+u2) = p2λ1 · ∂2f
(u+p3 − p+u3) = p3λ1 · ∂3f

and find 3 solutions. In general, we solve the equations in Proposition 5.3.7. So when
R = ∅, {0}, {1}, {0, 1} we determine there are 18, 9, 9, 3 solutions for the respective systems
for a total of 39 solutions. For Step 2, by Proposition 5.3.7, the computed 39 solutions are
solutions to the Lagrange likelihood equations LL (X, us). By using the coefficient-parameter
homotopy LL(X, us → u), we can go from data with zeros us to generic data u.

Algorithm 5.4.2.

• Input: us ∈ US and homogeneous polynomials h1, h2, . . . , hc defining X with codimen-
sion c.

• (Step 1) Solve LL(XR, us) for eachR ⊂ S to determine the start points of the homotopy.

• (Step 2) Construct and solve the coefficient-parameter homotopy LL(X, us → u).

• Output solutions to LL(X, u) yielding the critical points of `u(p) on X.

The immediate advantage of this homotopy is that we can get several critical points of
`u(p) quickly. Thus, we get some insight if the ML degree of X is small. Moreover, one
can use monodromy methods [39] to attempt to recover additional solutions. One drawback
is that by increasing the size of S we also increase the number of subproblems we need to
solve, a second drawback is that we may not know a priori that

∑
R⊆S MLdegree(XR, S)

equals the ML degree. To address the first drawback, one can take advantage of the structure
of the problem to lessen the number of subproblems. For example, in the case when X is
a generic hypersurface, we know that the ML degree of X depends only on the size of R
and S. Taking advantage of this structure and pairing change of variables with parameter
homotopies, we preprocess much fewer subproblems—namely |S| subproblems versus 2|S|.
While we do not have equality in Corollary 5.3.8 in general, equality does occur in some
examples (see Theorem 5.3.14).

Maximum Likelihood Duality

In this section, we extend ML duality for matrix models when u contains zero entries. We
let X ⊂ Pmn−1 be the variety of m × n matrices of rank less than or equal to r and we let
Y ⊂ Pmn−1 be the variety of m× n matrices of rank less than or equal to m− r + 1 where
m ≤ n. In Chapter 3, it is shown that MLdegreeX = MLdegreeY by considering critical
points of lu on subvarieties of the algebraic torus; a bijection between said critical points is
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also given. Translating these results into the language of determining critical points of `u(p)
on subvarieties of projective space, we are able to talk about sampling zeros and model zeros.
As a consequence, we can use maximum likelihood duality to gain computational advantages
by exploiting that sampling zeros are dual to model zeros.

Proposition 5.4.3. Let X and Y be defined as above so that they are ML dual varieties.
Let S ⊂ [n] and u ∈ US. If P ∈ Cmn is a solution to LL(X, u), then there exists a Q ∈ Cmn

such that Q is a solution to LL(Y, u) and

P ? Q = ΩU (5.7)

where ΩU =

[
u

u++

]
?

[
ui+u+j

u2
++

]
(5.8)

Proof. Let D ⊂ Pnm−1×Pnm−1×Pnm−1 be the set of all points (p, q, u) such that (p, u) ∈ LX ,
(q, u) ∈ LY and

u3
++pijqij − p++q++ui+uiju+j = 0 for 0 ≤ i ≤ m, 0 ≤ i ≤ n.

The set D is a projective variety, thus, if we consider the projection

φ : Pn × Pn × Pn → Pn × Pn

(p, q, u) 7→ (p, u),

the image of D under φ is a variety. By 3.2.4, we know that a dense open subset of LX is
contained in φ(D), therefore, LX ⊆ φ(D) and the statement of the theorem follows.

Theorem 5.4.4. Let X and Y be defined as in Lemma 5.4.3. Fix S ⊂ [m]× [n] and generic
u ∈ US. Then a solution to the maximum likelihood estimation problem MLR,S(u) is dual to
a solution to the maximum likelihood estimation problem MLR′,S(u), with (S \R) ⊂ R′.

When | S |= 1, the theorem says that a sampling zero critical point is dual to a model
zero critical point. We also believe that the converse, model zero critical points are dual
to sampling zero critical points is true, and that in general, (S \ R) ⊂ R′ is actually an
equality in the theorem. Nonetheless, because computing model zeros is heuristically easier
than computing sampling zeros, we make computational gains with Theorem 5.4.4.

In Example 5.3.10, we see that a column of the ML table is symmetric. This is because
the variety of 3 × 3 matrices of rank 2 is ML self dual. Other examples of varieties that
are ML self dual include m × n matrices of rank m+1

2
with m being odd. We conclude this

subsection with an ML table of 4 × 4 matrices of rank 2 and 3 respectively. An ongoing
project is to give a recursive formula for the ML table of m × n matrices of rank r similar
to what was done in Theorem 5.3.14.
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Example 5.4.5. ML table of 4× 4 rank 2 matrices:

R\S {} {11} {11, 44} {11, 22, 44} {11, 22, 33, 44}
{} 191 118 76 51 35
{11} 73 42 25 16
{22} − 25 16
{33} − − 16
{44} 42 25 16

{11, 22} − 17 9
{11, 33} − − 9
{11, 44} 31 17 9
{22, 33} − 9
{22, 44} 17 9
{33, 44} − 9

{11, 22, 33} − 8
{11, 22, 44} 14 8
{11, 33, 44} 8
{22, 33, 44} 8

{11, 22, 33, 44} 6

ML table of 4× 4 rank 3 matrices:

R\S {} {11} {11, 44} {11, 22, 44} {11, 22, 33, 44}
{} 191 73 31 14 6
{11} 118 42 17 8
{22} − 17 8
{33} − − 8
{44} 42 17 8

{11, 22} − 25 9
{11, 33} − − 9
{11, 44} 76 25 9
{22, 33} − 9
{22, 44} 25 9
{33, 44} − 9

{11, 22, 33} − 16
{11, 22, 44} 51 16
{11, 33, 44} 16
{22, 33, 44} 16

{11, 22, 33, 44} 35

Tensors

Let T be the set of 2 × 2 × 2 × 2 tensors with border rank ≤ 2. The ML degree of this
variety is unknown. The variety is defined by the 3 × 3 minors of all possible flattenings.
This is an overdetermined system of equations with codimension 6. We choose 6 of the
equations to be h1, . . . , h6 for the Lagrange likelihood equations. For the model zero variety
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with p1111 = p2222 = 0 we find 3 solutions for a generic u ∈ US with S = {1111, 2222}. When
we solve the Lagrange likelihood equations for R = {1111}, we find 52 solutions with p ∈ X.

Theorem 5.4.6. Let T be the set of 2× 2× 2× 2 tensors with border rank ≤ 2.

MLdegree(T ) ≥ 52

In this example, we also see that when we have data with zeros the number of critical
points can drop significantly as we introduce more model zeros.

Grassmannians

Let the ideal I2,n be generated by the quadrics

pijpkl − pikpjl + pilpjk, 1 ≤ i < j < k < l ≤ n.

Then the variety of I2,n is the Grassmannian Gr2,n ⊂ P(n
2)−1. The Grassmannian Gr2,n

parameterizes lines in the projective space Pn−1. Below we have a table of computations.
The top line of numbers are ML degrees of Grassmannians while the next line are ML degrees
of a model zero variety for Grassmannians. The bottom line has ML degrees of sampling
zeros.

Gr2,4 Gr2,5 Gr2,6

MLdegreeX 4 22 156
MLdegree

(
X{12}, {12}

)
1 4 22

MLdegree (X∅, {12}) 3 18 134

These computations were performed by choosing c = codimX generators of I2,n to be h1 . . . hc
for LL(X, u). We used the numerical software bertini and symbolic packages available in
Macauay2 [16]. From this data we make the following conjecture to motivate the pursuit of
a recursive formula for ML degrees of Grassmannians.

Conjecture 5.4.7. For n ≥ 4 we conjecture

MLdegree Gr2,n = MLdegree(Gr2,n+1 ∩{p12 = 0}).

5.5 Conclusion
Understanding model and sampling zeros gives us insights into the maximum likelihood
degree for a given model. When the data vector contains a zero entry, we see that critical
points to the likelihood function partition into two groups: critical points for the sampling
zero problem and critical points for the model zero problem. This split can help us obtain
bounds for the ML degree and provides interesting directions for further research within
the study of likelihood geometry, for example, determining which varieties yield an equality
in Corollary 5.3.8. Furthermore, model zeros can help with the computational problem of
finding all the solutions to a set of likelihood equations. This chapter illustrates some of the
advantages of working with model zeros, as seen by the lower bound obtained on the set of
2× 2× 2× 2 tensors of border rank ≤ 2.
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Chapter 6

Bertini for Macaulay2

The content of this chapter has been submitted to the Journal of Software for Algebra and
Geometry as an article of the same title with minor changes throughout for consistency with
other chapters. It is joint work with Daniel J. Bates, Elizabeth Gross, and Anton Leykin.

6.1 Numerical algebraic geometry
Numerical algebraic geometry (numerical AG) refers to a set of methods for finding and
manipulating the solution sets of systems of polynomial equations. Said differently, given
f : CN → Cn, numerical algebraic geometry provides facilities for computing numerical
approximations to isolated solutions of V (f) =

{
z ∈ CN |f(z) = 0

}
, as well as numerical ap-

proximations to generic points on positive-dimensional components. The book [41] provides
a good introduction to the field, while the newer book [3] provides a simpler introduction as
well as a complete manual for the software package Bertini [5].

Bertini is a free, open source software package for computations in numerical algebraic
geometry. The purpose of this chapter is to present a Macaulay2 package Bertini that pro-
vides an interface to Bertini. This package uses basic datatypes and service routines for
computations in numerical AG provided by the package NAGtypes. It also fits the framework
of NumericalAlgebraicGeometry package [30], a native Macaulay2 implementation of a collec-
tion of numerical AG algorithms: most of the core functions of NumericalAlgebraicGeometry
have an option of using Bertini instead of the native solver.

In the remainder of this section, we very briefly describe a few fundamental concepts of
the field. In the subsequent sections, we describe the various run modes of Bertini that
have been implemented in this interface. We conclude with Section 5, which describes how
to use Bertini within NumericalAlgebraicGeometry.

Finding isolated solutions

The core computational engine within Bertini is homotopy continuation. This is a three-
stage process for finding a superset of all isolated solutions in V (f). Given a polynomial
system f(z), the three steps are as follows:
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1. Choose an easily-solved polynomial system g(z) that reflects the structure of f(z), and
solve it. Call this set of solutions S.

2. Form the homotopy
H(z, t) = (1− t)f(z) + γtg(z),

with γ ∈ C a random complex number. Notice that H(z, 1) = γg(z), the solutions of
which are known, and H(z, 0) = f(z), for which we seek the solutions.

3. There is a real curve extending from each solution z ∈ S. Use predictor-corrector
methods, adaptive precision, and endgames to track along all of these paths as t goes
from 1 to 0.

Assuming g(z) is constructed in one of several canonical ways [41], there is a probability one
guarantee that this procedure will result in a superset of all isolated solutions of f(z) = 0.

There are many variations of this general technique, and there are many minor issues to
consider when implementing this method. However, due to space limitations, we leave the
reader to explore the references for more information on this powerful method.

Finding irreducible components

Given an irreducible algebraic set X of dimension k, it is well known that X will intersect
almost any linear space of codimension k in a finite set of points. In fact, there is a Zariski
open subset of the set of all linear spaces of codimension k for which intersection with X
yields some fixed number of points, called the degree of X, degX.

This fundamental fact underlies the computation of positive-dimensional irreducible com-
ponents in numerical algebraic geometry. Suppose algebraic set Z decomposes into irre-
ducible components Zi,j,

Z = ∪dimZ
i=0 ∪j∈Λi

Zi,j,

where i is the dimension of Zi,j and j is just the index of component Zi,j in dimension i,
stored in finite indexing set Λi.

In numerical algebraic geometry, the representation W of an algebraic set Z consists of
representations Wi,j for each irreducible component Zi,j of Z. In particular, witness set Wi,j

is a triple (f, Li,j, Ŵi,j), consisting of polynomial system f , linear functions Li,j corresponding
to a linear space of codimension i, and witness point set Ŵi,j = Zi,j ∩ V (Li,j).

There are a variety of ways to compute W , many of which are described in detail in [3].
Most of these methods can be accessed through the package Bertini by using optional inputs
to specify the desired algorithm.

6.2 Solving zero-dimensional systems
In the following sections we outline and give examples of the different Bertini run modes
implemented in the interface package Bertini.
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Finding solutions to zero-dimenstional systems

The method bertiniZeroDimSolve calls Bertini to solve a polynomial system and returns
solutions as a list of Points using the data types from NAGtypes. Diagnostic information,
such as the residuals and the condition number, are stored with the coordinates of the
solution and can be viewed using peek.

i1 : R=CC[x,y];
i2 : f = {x^2+y^2-1,(x-1)^2+y^2-1};
i3 : solutions=bertiniZeroDimSolve(f)
o3 = {{.5, .866025}, {.5, -.866025}}
i4 : peek solutions_0
o4 = Point{ConditionNumber => 88.2015 }

Coordinates => {.5, .866025}
CycleNumber => 1
FunctionResidual => 3.66205e-15
LastT => .000390625
MaximumPrecision => 52
NewtonResidual => 4.27908e-15
SolutionNumber => 3

Users can specify to use regeneration, an equation-by-equation solving method, by setting
the option USEREGENERATION to 1.

i5 : solutions=bertiniZeroDimSolve(f, USEREGENERATION=>1);

In common applications, one would like to classify solutions, e.g. separate real solutions
from non-real solutions, and, thus, recomputing solutions to a higher accuracy becomes
important. The method bertiniRefineSols calls the sharpening module of Bertini and
sharpens a list of solutions to a desired number of digits using Newton’s method.

i6 : refinedSols=bertiniRefineSols(f, solutions, 20);
i6 : (coordinates refinedSols_0)_1
o6 = .86602540378443859659+3.5796948761134507351e-83*ii

Parameter homotopies

Many fields, such as statistics, physics, chemical biology, and engineering contain applications
that require solving a large number of systems from a parameterized family of polynomial
systems. In such situations, computational time can be decreased by using parameter ho-
motopies. For an example illustrating how parameter homotopies can be used in statistics
see [20].

The method bertiniParameterHomotopy calls Bertini to run both stages of a parame-
ter homotopy. First, Bertini assigns a random complex number to each specified parameter
and solves the resulting system, then, after this initial phase, Bertini computes solutions
for every given choice of parameters using a number of paths equal to the exact root count.



CHAPTER 6. BERTINI FOR MACAULAY2 76

i7: i68 : R=CC[a,b,c][x,y];
i8 : f={a*x^2+b*y^2-c, y};
i9 : bertiniParameterHomotopy(f,{a,b,c},{{1,1,1},{2,3,4}})
o9 = {{{-1, 0}, {1, 0}}, {{-1.41421, 0}, {1.41421, 0}}}

User-defined homotopies

A user may define their own homotopy to solve a square system of polynomial equations. If
the homotopy H consists of n polynomials in n unknowns and the path variable t, then the
method bertiniTrackHomotopy calls Bertini to compute solutions to H when t = 0. But
to do so, the user must also input start points of the homotopy, which are solutions to the
system H when t = 1.

i10 : R=CC_200[x,y,t]
i11 : H = { (x^2-y^2)*t +(2*x^2-3*x*y-5*y^2)*(1-t),(y-1)*t+(x+2*y-3)*(1-t)}
i12 : sol1= point{{1,1}}, sol2= point{{ -1,1}}
i13 : S0={sol1,sol2}
i14 : S1=bertiniTrackHomotopy( H,t,S0)
o14 : {{1.66667, .666667}, {-3, 3}}

6.3 Solving positive-dimensional systems
Given a positive-dimensional system f , the method bertiniPosDimSolve calls Bertini
to compute a numerical irreducible decomposition, this decomposition is assigned the type
NumericalVariety in Macaulay2. In the default settings, Bertini uses a classical cascade
homotopy to find witness supersets in each dimension, removes extra points using a mem-
bership test or local dimension test, deflates singular witness points, then factors using a
combination of monodromy and a linear trace test.

i10 : R = CC[x,y,z];
i11 : f = {(y^2+x^2+z^2-1)*x, (y^2+x^2+z^2-1)*y};
i12 : NV = bertiniPosDimSolve f

o12 = A variety of dimension 2 with components in
dim 1: [dim=1,deg=1]
dim 2: [dim=2,deg=2].

o12 : NumericalVariety

Once the solution set to a system, i.e. the variety V , is computed and stored as a
NumericalVariety,
bertiniComponentMemberTest can be used to test numerically whether a set of points p
lie on the variety V . For every point in p, bertiniComponentMemberTest returns the com-
ponents to which that point belongs. As for sampling, bertiniSample will sample from a
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witness setW . These methods call the membership testing and sampling options in Bertini
respectively.

i13 : p={{0,0,0}};
i14 : bertiniComponentMemberTest (NV, p)
o14 = {{[dim=1,deg=1]}}

i15 : component=NV#1_0
i16 : bertiniSample(component,1)
o16 = {{0, -8.49385e-20+7.48874e-20*ii, -.148227-.269849*ii}}

6.4 Solving homogeneous systems
The package Bertini includes functionality to solve a homogenous system that defines a
projective variety. In Bertini, the numerical computations are performed on a generic affine
chart to compute representatives of projective points. To solve homogeneous equations, set
the option ISPROJECTIVE to 1. If the user inputs a square system of n homogeneous
equations in n + 1 unknowns, then the method bertiniZeroDimSolve outputs a list of
projective points.

i35 : R = CC[x,y,z];
i36 : f = {y^2-4*z^2,16*x^2-y^2};
i37 : bertiniZeroDimSolve(f,ISPROJECTIVE=>1);
o37 = {{.251411+.456072*ii, 1.00564+1.82429*ii, .502821+.912143*ii},
{.106019+.160896*ii, .424078+.643585*ii, -.212039-.321792*ii},
{-.15916-.12286*ii, .636639+.49144*ii, -.318319-.24572*ii},
{-.48005-.092532*ii, 1.9202+.370128*ii, .960101+.185064*ii}}

If f is a positive-dimensional homogeneous system of equations, then the method
bertiniPosDimSolve calls Bertini to compute a numerical irreducible decomposition of
the projective variety defined by f .

i48 : R = CC[x,y,z];
i49 : f = {(x^2+y^2-z^2)*(z-x),(x^2+y^2-z^2)*(z+y)};
i50 : NV = bertiniPosDimSolve(f,ISPROJECTIVE=>1)
o50 : = A projective variety with components in projective dimension:

dim 0: [dim=0,deg=1]
dim 1: [dim=1,deg=2]

6.5 Algebraic Statistics Example
In this section, we use the interface to solve the Lagrange likelihood equations (Proposition
5.2.2) for a statistical model defined by f .
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i48 : R=CC[p0,p1,p2,p12,L];
i49 : f=2*p0*p1*p2+p1^2*p2+p1*p2^2-p0^2*p12+p1*p2*p12;
i50 : pList={p0,p1,p2,p12};
i51 : uList={75,1,5,7};
i52 : uList=1_RR/sum uList*uList;
i53 : gradLF=matrix{for i to #pList-1 list uList_i-sum(uList)*pList_i};
i54 : jacF=matrix{for i in pList list L*i*diff(i,f)};
i55 : likelihoodEquations=ideal(gradLF+jacF)+ideal f;
i56 : likelihoodEquations=flatten entries gens likelihoodEquations;
i57 : criticalPoints=bertiniZeroDimSolve(likelihoodEquations,

MPTYPE=>2,USEREGENERATION=>1)
o57 : = A list of critical points:

{{.788947, .0702306, .117171, .023651, 3.84771},
{-.92006, .722138, 1.12145, .0764765, 1.09425},
{-1.16434, 18.58, 13.1081, -29.5238, .00414006}}

6.6 Using Bertini from NumericalAlgebraicGeometry
The Bertini package depends on the NAGtypes package, a collection of basic datatypes and
service routines common to all Macaulay2 packages for numerical AG: e.g., an interface
package to another polynomial homotopy continuation solver, PHCpack [18], also has this
dependence.

While independent from the NumericalAlgebraicGeometry package, our interface provides
a valuable option for this package: the user can set Bertini as a default solver for homotopy
continuation tasks.

i1 : needsPackage "NumericalAlgebraicGeometry";

i2 : setDefault(Software=>BERTINI)

An alternative way is to specify the Software option in a particular command:

i3 : CC[x,y]; system = {x^2+y^2-1,2*x+3*y+5};
i4 : sols = solveSystem(system, Software=>M2engine)
o4 = {{-.769231-.799408*ii, -1.15385+.532939*ii}, {-.769231+.799408*ii, ...
i5 : refsols = refine(system, sols, Bits=>99, Software=>BERTINI);
i6 : first coordinates first refsols
o6 = -.769230769230769273470116331737+.799408065031789516474702850246*ii
o6 : CC (of precision 100)

The unified framework for various implementations of numerical AG algorithms should be
particularly convenient to a Macaulay2 user doing numerical computations with tools from
many packages.
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