
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
High-Order Discontinuous Galerkin Fluid-Structure Interaction Methods

Permalink
https://escholarship.org/uc/item/9cv6v6r5

Author
Froehle, Bradley M.

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9cv6v6r5
https://escholarship.org
http://www.cdlib.org/

High-Order Discontinuous Galerkin Fluid-Structure Interaction Methods

by

Bradley Michael Froehle

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Per-Olof Persson, Chair
Professor Jon Wilkening
Professor Larry S. Karp

Fall 2013

High-Order Discontinuous Galerkin Fluid-Structure Interaction Methods

Copyright 2013
by

Bradley Michael Froehle

1

Abstract

High-Order Discontinuous Galerkin Fluid-Structure Interaction Methods

by

Bradley Michael Froehle

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Per-Olof Persson, Chair

We present a high-order accurate scheme for fully coupled fluid-structure interaction
problems. The fluid is discretized using a discontinuous Galerkin method on unstructured
tetrahedral meshes, and the structure uses a high-order volumetric continuous Galerkin finite
element method. Standard radial basis functions are used for the mesh deformation. The
time integration is performed using a partitioned approach based on implicit-explicit Runge-
Kutta methods. The resulting scheme fully decouples the implicit solution procedures for
the fluid and the solid parts, which we perform using two separate efficient parallel solvers.
We demonstrate up to fifth order accuracy in time on a non-trivial test problem, on which
we also show that additional subiterations are not required. We solve a benchmark problem
of a cantilever beam in a shedding flow, and show good agreement with other results in the
literature.

In addition, we create several simulations which are motivated by real-world phenomena.
First, we investigate flow around a thin membrane at high-angle of attack, demonstrating
the ability of the leading edge of the membrane to align with the incident flow. Examples
are provided in both two and three dimensions. Next, we consider biologically inspired
flight, by investigating wing-like structures driven in a flapping motion in both two and
three dimensions.

Finally, we demonstrate how the method may be used in acoustics problems, simulating
a tuning fork in three dimensions. Here we accurately capture decay rates purely from
the fluid-structure interaction and without any damping coefficients built into the structure
model.

i

To My Wife

Because I couldn’t have done it without you.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

List of Algorithms vii

1 Introduction 1
1.1 Previous Work . 2
1.2 Overview . 3

2 Governing Equations 5
2.1 Compressible Navier-Stokes . 5

2.1.1 Boundary Conditions . 6
2.1.2 Isentropic & Isothermal Formulations 8

2.2 Arbitrary Lagrangian Eulerian formulation 8
2.3 Rigid Body Dynamics . 10
2.4 Neo-Hookean Elasticity Model . 11

2.4.1 Quasi-Static Formulation . 12

3 Discretization 14
3.1 Fluid Spatial (Discontinuous Galerkin) . 14
3.2 Structure Spatial (Continuous Galerkin) . 16

3.2.1 Quasi-Static Formulation . 17
3.3 Temporal Discretization (Runge-Kutta Methods) 18

3.3.1 Implicit-Explicit (IMEX) Runge-Kutta Schemes 21
3.4 Implicit Solvers . 23

3.4.1 Parallel Newton-Krylov Fluid Solvers 23
3.4.2 Sparse Direct Structure Solvers . 27

4 Fluid-Structure Interaction 29
4.1 Coupling . 29

iii

4.1.1 Fluid-to-structure coupling . 30
4.1.2 Structure-to-fluid coupling . 31

4.2 Temporal Integrator . 37
4.3 Validation . 40

4.3.1 ALE / Expanding Pressure Wave . 40
4.3.2 FSI / Pitching and Heaving Airfoil 43
4.3.3 FSI / Cantilever . 45

5 Membranes & Flapping Wings 49
5.1 Membrane, 2D . 50
5.2 Membrane, 3D . 52
5.3 Flapping Wing, 2D . 52
5.4 Flapping Wing, 3D . 55

6 Acoustics 59
6.1 Tuning Fork . 59

6.1.1 The Model . 59
6.1.2 Results . 61
6.1.3 Conclusions . 68

7 Conclusions & Future Work 70

Bibliography 71

iv

List of Figures

4.1 Two meshes which are face-wise matching (left) and non-matching (right) along
the interface, shown as a dashed line. 30

4.2 Mesh deformation using radial basis function interpolation. The radial basis
function is as specified in eq. (4.9) with r equal to the edge length of the outer
square. 34

4.3 Mesh deformation using a quasi-static non-linear elasticity method. 35
4.4 An expanding pressure wave on a deforming mesh using a linear deformation

(top) and an isoparametric deformation (bottom). In each case the solution was
represented using elements of polynomial degree 5. (Pressure). 42

4.5 Spatial convergence in the discrete maximum error at the final simulation time
for an expanding pressure wave for meshes of polynomial degree p = 1 to 5. The
deformation is either linear (P1) or isoparametric (Full P). 43

4.6 Schematic for the pitching and heaving airfoil. 44
4.7 The airfoil at various times. The pivot location of the airfoil is smoothly moved

upwards between time t = 0 and t = 1 and held fixed between t = 1 and t = 2.
(Mach number). 45

4.8 The relative error in angle of attack, ‖θ(t)−θexact(t)‖∞/‖θexact(t)‖∞, as a function
of timestep. The ARK3, ARK4, and ARK5 schemes achieve the expected order
of accuracy. Solving the fully-coupled (“FC-”) system using the implicit method
from the IMEX scheme shows a negligible increase in accuracy despite a large
increase in computational cost. A basic staggered weak coupling scheme is shown
for comparison. 46

4.9 Flexible cantilever behind a rigid square body. All distances shown are in cm. . 46
4.10 The the cantilever near maximal displacement (Entropy). 47
4.11 The vertical displacement of the cantilever tip as a function of time. 47

5.1 (a) The undeformed fluid (green) and structure (blue) meshes for the 2D Mem-
brane at a 10◦ angle of attack. (b) The region near the structure is enlarged. . . 50

5.2 The rigid plate and two membranes at time T = 1.0 (top), 2.0, 3.0, and 4.0
(bottom). (Entropy). 51

5.3 Lift and drag coefficients as a function of time for a rigid plate and two flexible
membranes at 10◦ angle of attack. 51

v

5.4 A cross section of the fluid mesh (blue) and entire structure mesh (green) in the
reference configuration (left) and typical deformed configuration (right). 52

5.5 A three-dimensional membrane at various times (Mach number on iso-entropy
surfaces). The leading edge of the membrane aligns with the fluid and prevents
separation. 53

5.6 A rigid plate at various times (Mach number on iso-entropy surfaces). Note the
leading edge separation caused by the high angle of attack. 54

5.7 The two-dimensional wing model in non-dimensionalized coordinates. The left
and right endpoints of the structure follow a prescribed motion. 55

5.8 The two-dimensional wing (black) at time T = 17.0 (top), 18.0, 19.0, and 20.0
(bottom). The structures have varying Young’s modulus E and prestretching
factor ∆, and range from nearly rigid (left) to quite flexible (right). (Entropy). . 56

5.9 The overhead view of the three-dimensional wing which is uniformly extruded in
the z direction. Dirichlet conditions are imposed along the planes given by the
solid lines. The leading edge is driven with a sinusoidal flapping motion in the
y-z plane, and the root chord is held fixed. 57

5.10 A three-dimensional wing at various times (Mach number on iso-entropy surfaces). 58

6.1 The dimensions of a cross section of the tuning fork, as well as its material
parameters. All distances are given in cm. The tuning fork is extruded 0.5 cm so
that the cross-section of the tines are square. 60

6.2 The computational mesh for the tuning fork (green) and two different cross sec-
tions of the computational mesh for the fluid (blue) in a region near the tuning
fork. 61

6.3 Time series data for the relative pressure at three locations each a distance 5.0 cm
from the axis of the tuning fork in a plane perpendicular to the axis. The plane
is located such that the tines of the tuning fork extend a distance 0.5 cm through
the plane. The outer box shows the boundary of computational domain. 63

6.4 The relative pressure in a plane perpendicular to the axis of the tuning fork (as
in fig. 6.3a) at various times. For scale, the figures are 20 cm per side which
represents almost all of the computational domain in that plane. 64

6.5 The sound pressure level Lp relative to a reference pressure 2 × 10−5 Pa for a
range of frequencies, as measured over the last 9 periods of the base frequency as
observed at location A. The frequencies of several eigenmodes of the linearized
structure are shown for comparison. 65

6.6 The relative sound pressure levels by angle at various distances from the axis
of the tuning fork measured in 1◦ increments, averaged over nine periods of the
fundamental mode. Each plot has been normalized to its maximum value. The
theoretical curve for a linear quadrupole as given in eq. (6.5) is shown in a solid
line. The tines of the tuning fork lie at 0◦ and 180◦. Notice the 5 dB difference
in sound pressure level between the two maxima in the extreme near-field. . . . 66

6.7 Kinetic, potential, and total energy of the tuning fork. 67

vi

List of Tables

2.1 Typical parameter values used when modeling air. 7

3.1 The 3rd order implicit-explicit Runge-Kutta coefficients ARK3(2)4L[2]SA. . . . 24
3.2 The number of high-order nodes per element for simplicial (triangles and tetra-

hedra) and quad/hex meshes of various polynomial orders. 24

4.1 A comparison of the oscillation frequency and maximal vertical tip displace-
ment of the cantilever with values reported in the literature, as reproduced from
ref. [34]. The coupling abbreviations stand for partitioned block Gauss-Seidel
(P-BGS), partitioned block-Newton (P-BN), and partitioned Newton-Raphson
(P-NR). 48

6.1 Significant frequencies and Q factors observed in the time series pressure data at
location A (see fig. 6.3a) during 5.0 ms ≤ t ≤ 30.0 ms, as extracted by the filter
diagonalization method. 68

vii

List of Algorithms

3.1 Implicit-explicit Runge-Kutta method. 22
4.1 Adaptive Newton-Raphson method. 36
4.2 Time integration scheme for the coupled fluid-structure system. 40

viii

Acknowledgments

I would like to thank my advisors, Professors Per-Olof Persson and Jon Wilkening, for their
encouragement and support over these years. As our relationship matured they have treated
me more and more like a colleague, allowing me to pursue areas I found interesting and
gently reminding me of the importance to share my work through journal papers, conference
proceedings, and talks.

I am also grateful to my outside committee member, Prof. Larry Karp, with whom I
had several insightful conversations about my research and the numerical methods used in
Agriculture and Resource Economics. I must acknowledge two other professors, L. Craig
Evans and John Strain, who kindly sat on my qualifying examination and made the process
as enjoyable as it could be.

Several colleagues merit special recognition including Trevor Potter, Adam Boocher,
Luming Wang, Matthew Zahr, Robert Saye, and Chris Rycroft for their insightful discus-
sions, technical guidance, and overall support.

From my time as an undergraduate at the University of Minnesota I must highlight
the advising received from several Mathematics faculty including Peter Webb and Steven
Sperber. In addition I am very grateful to E. Dan Dahlberg of the Physics department
for letting me work in his research laboratory. The Institute of Technology Honors Group
advisors, Pamela Drake and Robert Pepin, left a lasting impression over the four years I
worked in their office as an undergraduate tutor. In addition I am eternally grateful for their
advice and guidance in applying for scholarships, fellowships, and graduate schools.

I would be remiss not to mention the collaborations with several faculty and students
in the course of two Research Experience for Undergraduates programs. The first, at the
University of Notre Dame with Prof. Michael Gekhtman and Adam Boocher, led to my first
journal publication [15]. The second, at the Claremont Colleges and with Prof. Michael Or-
rison of Harvey Mudd College and Marie Jameson, gave me valuable experience in numerical
linear algebra which would prove useful later.

Before college, my interest in mathematics was nurtured at the University of Minnesota
Talented Youth Mathematics Program. Prof. Harvey Keynes deserves special recognition for
both his role in founding the program and as an excellent multivariable calculus instructor. In
addition, Michael Lawler was instrumental in laying down a strong introduction to calculus
and encouraging me to enter the American Mathematics Competitions. Thanks to John
Winterhalter of Eden Prairie High School for organizing the AMC exams and coaching
the high school math team. Thanks to Tom Kilkelly, Bill Boulger, and Mike Reiners for
organizing the Minnesota American Regions Math League team, and to Andrew Niedermaier
who served as a role model and often drove me to the practices.

I am exceedingly grateful to my family. To my wife, Corinne Scown, PhD, for her love
and support in finishing my research and writing my dissertation. To my parents, Michael
and Nola, for their seemingly endless emotional and financial support. Words alone cannot
express my gratitude. And to my wonderful younger sister, Kate, whom I have had the
pleasure of watching grow and mature into a lovely, confident young woman.

ix

Several open source tools including Python, IPython, and Cython provided the neces-
sary infrastructure for my research. In particular, I am very grateful to Fernando Pérez,
the founder of the IPython project, who accepted my contributions and invited me to join
the official IPython core development team. In addition, the freely available BLAS, Boost,
DistMesh, HDF5, h5py, LAPACK, matplotlib, METIS, mpi4py, MUMPS, NumPy, ScaLA-
PACK, SciPy, SuiteSparse, and SymPy libraries were invaluable in allowing me to rapidly
implement new ideas.

Lastly I would like to acknowledge generous support from the AFOSR Computational
Mathematics program under grant FA9550-10-1-0229; the Alfred P. Sloan foundation; the
Lawrence Berkeley National Laboratory and the National Energy Research Scientific Com-
puting Center funded by the Director, Office of Science, Computational and Technology
Research, U.S. Department of Energy under Contract No. DE-AC02-05CH11231; and the
Simons Fellowship.

1

Chapter 1

Introduction

Many important scientific and engineering problems require predictions of fluid-structure
interaction (FSI). For example, unexpected interactions in engineered systems can lead to
catastrophic failure or generally undesirable behavior. As a famous example, consider the
Tacoma Narrows Bridge which earned the nickname “Galloping Gertie” for the large pitching
deformation of the roadway deck observed during windy conditions. Less than 4 months after
opening, on November 7, 1940, an aerodynamically induced excitation in a torsional mode
of the structure caused the bridge to catastrophically fail [11].

Aeroelastic flutter, a positively reinforced coupling between the aerodynamic forces on
an object and the natural mode of the object, can produce large and potentially destructive
vibrations in aircraft, turbines, chimneys, and other structures. If during each oscillation
the energy transferred to the structure is greater than the energy naturally dissipated, the
amplitude of oscillation will increase. If this amplitude continues to grow the mechanical
structure may not be able to withstand the internal stresses and may fail. Even if the
structure does not fail, flutter may cause undesirable vibrations or noise.

Simulating fluid-structure interactions may also be useful in understanding flapping flight
or producing biologically inspired micro aerial vehicles. The wing of a bat, for example, can
be modeled as a collection of mostly rigid bones connected by a membrane [8]. This descrip-
tion naturally suggests a fluid-structure interaction model where the structure is driven in a
flapping motion and the various aerodynamic properties like lift and drag may be computed
from the simulation.

In medicine, a prototypical fluid-structure interaction problem would be the flow of blood
in the cardiovascular system [19]. During each contraction of the heart a pressure wave is
generated which causes local deformations in the walls of the arteries. A näıve model using
rigid walls may fail to predict the proper pressure wave propagation without corrective terms.
In theory, one should be able to accurately recover blood flow dynamics by coupling a proper
fluid model of blood and elastic structure model of arterial walls, without resorting to ad hoc
correction terms. A better understanding of the flow dynamics is thought to help predict
and diagnose various cardiovascular pathologies [29].

Numerical acoustical simulations often require a special acoustic boundary condition to

CHAPTER 1. INTRODUCTION 2

properly model walls. Here one generally specifies the acoustical impedance — a complex
number, potentially depending on the frequency of the incident wave — which describes the
absorption and reflection of a wave at the surface. This boundary condition is most naturally
represented in the frequency-domain, but can be applied in time-domain calculations [16,
31], essentially by modeling variations in the local wall displacement and velocity depending
on the incident pressure. This interpretation naturally shows that the proper acoustical
behavior could also realized using a coupled fluid-structure system with a proper elastic
structure model.

In these systems the interaction between the fluid and structure often involve multiple
scales. For example, the sound speeds and characteristic feature sizes in the fluid and
structure may be vastly different. In addition, the interaction may involve non-linear effects.
These issues often make it challenging to solve even relatively simple problems accurately.

1.1 Previous Work

There have been many approaches suggested for the simulation of fluid-structure interaction
problems [32, 56, 70], but most schemes use one of two approaches to solve the coupled
system. In the fully coupled (monolithic) approach, the two equations are solved simultane-
ously. This is straightforward to implement using an explicit time integration scheme [54],
but depending on the problem an implicit scheme may be desirable due for any number of
reasons, for example, an overly restrictive Courant-Friedrichs-Lewy (CFL) condition. Unfor-
tunately the situation becomes much more complicated when using an implicit scheme. Here
one generally needs to use specialized codes to produce a full Jacobian matrix containing
off-diagonal blocks corresponding to the fluid-to-structure and structure-to-fluid couplings.
Developing a good preconditioner for such matrices is generally difficult, especially since the
diagonal blocks, representing the fluid system and structure system individually, often have
wildly disparate properties.

An alternative which many resort to using is the so-called partitioned method in which an
existing fluid solver and an existing structure solver are used in serial, transferring data along
the fluid-structure interface from one solver to the other to maintain the coupling. It is still
possible to solve the fully-coupled system using a partitioned method. Here one generally
uses fixed point iteration, or some variant, until convergence is reached. Unfortunately since
this only converges linearly in the number of iterations it is often prohibitively expensive,
even for modest problems. In addition, convergence itself may be difficult to achieve.

Instead, the most common solution technique could be described as weak-coupling in
which for a given timestep the fluid and structure are each solved individually and coupling
transferred between them at the timestep. This method is easy to implement but yields only
first order accuracy in time. It may be possible to boost this to second order in time using
a Strang splitting technique, but higher-order accuracy is generally impossible.

CHAPTER 1. INTRODUCTION 3

1.2 Overview

In this work we propose using a high-order integration scheme based upon the coefficients
of an Implicit-Explicit (IMEX) Runge-Kutta method [40]. The main idea is to integrate the
contribution from an off-diagonal block explicitly and the remaining terms implicitly [73].
In practice, we choose the contribution arising from the fluid-to-structure coupling as the
term to integrate explicitly. This effectively decouples the system into one where we can call
the fluid and structure solvers individually. The actual algorithm is written as a predictor-
corrector scheme in which the stage predicted fluid-to-structure coupling is a linear com-
bination of previous stage couplings according to a formula which uses both the implicit
and explicit Runge-Kutta coefficients [75]. It is important to note that this naturally allows
for stage subiterations. It has been our experience that there is some benefit of increased
stability when using additional subiterations, but we emphasize that subiterations are not
required to achieve the design accuracy of the method.

There are many other partitioned FSI schemes, many of which employ similar predictor-
corrector frameworks to achieve first [25, 55] or second [23, 32] order accuracy. See [28] for
a review of ideas used in partitioned schemes.

For the fluid model we use a nodal high-order discontinuous Galerkin (DG) formulation
for the compressible Navier-Stokes equations. We handle the deforming domain using an ar-
bitrary Lagrangian-Eulerian (ALE) formulation, as is common in fluid-structure interaction
problems [1, 18, 24, 43, 65]. The ALE formulation transforms the system of conservation
laws on the deforming real domain into a system of conservation laws on a fixed reference
domain, essentially through a change of variables procedure.

The non-linear fluid equations are solved using a Newton-GMRES approach with a block-
ILU(0) or block-Jacobi preconditioner [53]. The fluid solver is implemented in parallel using
MPI for communication and efficiently scales to several thousand processes [51].

We generally couple the fluid to either a rigid body or a non-linear hyperelastic structure.
The rigid body is typically modeled using standard rigid body dynamics (i.e., F = ma and
τ = Iα) although in some cases certain variables may be constrained. The elastic structure
is discretized using a standard nodal high-order continuous Galerkin (CG) finite element
method, written in a first order formulation.

The coupling between the fluid and structure is straightforward. As the structure moves
it deforms the domain the fluid occupies. This is implemented by moving the boundary
nodes of the fluid to conform to the new structure position, and then interpolating the
boundary deformation into the interior of the fluid mesh. We use two different methods of
interpolation. The first approach uses radial basis functions [9, 13], which works well for
small to moderate deformations. The second approach treats the fluid domain as an elastic
structure and solves an elastic deformation problem with prescribed boundary positions.
This approach is more computationally expensive but may be able to produce higher quality
deformed meshes.

The fluid influences the structure through a surface traction, i.e., force per unit area,
applied along the fluid-structure boundary. In the case of a rigid structure this traction is

CHAPTER 1. INTRODUCTION 4

integrated over the entire structure surface to find the net force and torque. Otherwise this
traction is computed everywhere along the surface and supplied to the structure solver as
part of its boundary conditions. To ensure a high order coupling this transfer of data is done
at Gauss integration nodes, not solution nodes.

To simplify these couplings we generally assume that the fluid and structure meshes
conform along their common interface, meaning that the meshes share common faces along
the interface. In addition we require that the same order polynomials be used to integrate
both the fluid and structure, meaning that the solution nodes and Gauss nodes are also
shared along the interface.

This work is organized as follows. First we present the equations for both the fluid on
the deforming domain and the non-linear structure. Next we present standard discontinuous
Galerkin and continuous Galerkin spatial discretizations of the fluid and structure, and
discuss standard Runge-Kutta time integration schemes. We then describe our parallel
high-order numerical solvers, before moving on to develop the coupling between the fluid
and structure systems and construct a high-order time integration technique for the coupled
system. We verify the high-order accuracy of the scheme using a test problem of a heaving
and pitching NACA airfoil in a laminar flow, subject to a simple smooth heaving motion.
In addition we show a standard FSI test problem consisting of a flexible cantilever behind a
square bluff body, showing good agreement with tip displacement and oscillation frequency
to values found in the open literature.

We then move on to show several uses of this FSI method, broadly separated into mem-
brane and flapping wings applications and acoustics applications. In both two and three
dimensions we demonstrate the ability of a compliant thin membrane to align with the in-
cident flow and delay or prevent leading edge separation. We then extend the work to basic
models of flapping flight, confirming that the same general principle may hold in certain
types of biological flight like that of bats.

Lastly we show the ability of the method to generate acoustic waves in a three-dimensional
model of a tuning fork. Here we accurately capture the sound generation and decay of the
fundamental and clang modes.

5

Chapter 2

Governing Equations

2.1 Compressible Navier-Stokes

The compressible Navier-Stokes equations are a non-linear system of equations which can
be written in conservation form as:

∂

∂t
(ρ) +

∂

∂xj
(ρuj) = 0 (2.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij) = +

∂

∂xj
τij for i = 1, 2, 3 (2.2)

∂

∂t
(ρE) +

∂

∂xj
(ρujE + ujp) =

∂

∂xj
(−qj + uiτij) (2.3)

where the conserved variables are the fluid density ρ, momentum in the j-th spatial coordi-
nate direction ρuj, and total energy ρE. The viscous stress tensor and heat flux are given
by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
and qj = − µ

Pr

∂

∂xj

(
E +

p

ρ
− 1

2
ukuk

)
. (2.4)

Here, µ is the dynamic viscosity and Pr = 0.72 is the Prandtl number which we assume to
be constant. For an ideal gas, the pressure p has the form

p = ρRT (2.5)

where R is the ideal gas constant and T is the temperature. The temperature is related to
the internal energy of the fluid e = E − ukuk/2 according to the relations

γ =
CP
CV

, e = CV T, and CP − CV = R, (2.6)

where CP and CV are the heat capacities at constant pressure and volume and their ratio γ
is the adiabatic gas constant.

CHAPTER 2. GOVERNING EQUATIONS 6

From these equations one can easily work out a simple closed form for the pressure

p = (γ − 1)ρ

(
E − 1

2
ukuk

)
. (2.7)

For air we set the adiabatic gas constant γ to 1.4 which is the theoretical value for a diatomic
ideal gas, and which is very nearly equal to empirical values measured over a wide range of
conditions.

In later sections we will often write the Navier-Stokes equations in vector notation as

∂u

∂t
+ ∇ · Finv(u)−∇ · Fvis(u,∇u) = 0 (2.8)

where the conserved variables, and inviscid and viscous fluxes in the j-th spatial coordinate
are

u =

 ρ
ρui
ρE

 , Finv,j(u) =

 ρuj
ρuiuj + δijp
uj(ρE + p)

 , and Fvis,j(u,∇u) =

 0
τij

−qj − uiτij

 . (2.9)

The enthalpy H and speed of sound a are given by

H = E +
p

ρ
and a =

√
γp

ρ
. (2.10)

For visualization we often use the vorticity ω, entropy s, or Mach number M which are
calculated as

ω = ∇× ui, s =
p

ργ
, and M =

√
ukuk
a

=

√
ρukuk
γp

. (2.11)

Vorticity measures the local rotation in the flow and is particularly useful in two dimenions
when the quantity can be treated as a scalar (i.e., only the z-component is non-zero). Entropy
is useful for visualization because it is a quantity which is produced along walls and advected
with the flow. Plotting iso-entropy contours in both two and three dimensions is useful for
highlighting the characteristics of the flow. Lastly, the Mach number is the ratio of the speed
of the fluid to the local speed of sound.

When modeling air at normal conditions we typically use the constants in table 2.1.

2.1.1 Boundary Conditions

We impose several different boundary conditions in our simulations. In the following de-
scriptions let ~v = [u1, u2, u3]T be the fluid velocity, ~vwall be the wall velocity, and n̂ be an
outward pointing unit vector.

CHAPTER 2. GOVERNING EQUATIONS 7

Table 2.1: Typical parameter values used when modeling air.

Name Symbol Value
Density ρ 1.204 kg/m3

Dynamic Viscosity µ 1.83× 10−5 kg/(m·s)
Speed of Sound a 343.0 m/s
Ratio of Specific Heats γ 1.4
Prandtl number Pr 0.72

Adiabatic No-Slip

On fluid boundaries with physical objects one generally imposes an adiabatic no-slip condi-
tion. This means no relative motion between the wall and the fluid at the interface, i.e.,

~v = ~vwall. (2.12)

In addition, no heat T (i.e., e) or mass ρ is passed into or out of the wall.

Adiabatic Slip

On a problems with a symmetry plane one often chooses to model only half of the domain
and impose an adiabatic slip condition on the boundary corresponding to the symmetry
plane. This is a relaxed form of the no-slip condition where we allow fluid to move along the
boundary but not pass through the boundary, i.e.,

~v · n̂ = ~vwall · n̂. (2.13)

Again, no heat or mass is transmitted through the boundary.

Far-Field

Since the computational domain must be finite, it generally necessary to impose far-field
boundary conditions on the far boundaries of simulation. Here we generally model uniform
“free-stream” flow by imposing the full state of the system. Often we choose free-stream
density ρ∞, velocity ~v∞ and pressure p∞. From these values we calculate the full system
state as

u∞ =

[
ρ∞, ρ∞~v∞,

p∞
γ − 1

+
1

2
ρ∞‖~v∞‖2

]T
. (2.14)

The details of how the various boundary conditions are imposed in the actual numerical
simulation will be left until section 3.1.

CHAPTER 2. GOVERNING EQUATIONS 8

2.1.2 Isentropic & Isothermal Formulations

As an alternative to solving the full set of compressible Navier-Stokes equations, several
approximations may be used to reduce the dimensionality of the system. These reductions
are most useful in the case of nearly incompressible flow.

Isentropic

An isentropic process is one in which the entropy s is constant. Since for an ideal gas
s = p/ργ, we can solve for pressure as

p = sργ. (2.15)

Notice that this approximation allows the elimination of the energy equation (eq. (2.3))
from the compressible Navier-Stokes equations. This effectively reduces the dimension of
the system from D + 2 variables to D + 1 variables in D dimensions. In three spatial
dimensions this results in 20% reduction in the number of degrees of freedom in the overall
discretized system. In addition, since the number of nonzero elements in the Jacobian matrix
in an implicit temporal discretization scales like the square of the number of variables, this
accounts for a 36% reduction in the total number of nonzero entries in the Jacobian.

While it is generally notoriously difficult to prove many facts about the Navier-Stokes
equations [27], it is known that the solution to the isentropic model converges to the solution
of the incompresible Navier-Stokes equations as the Mach number goes to 0, as long as one
makes suitable assumptions on the domain, initial data, existence of solutions, and definition
of convergence [21, 42].

Isothermal

An isothermal process is one in which the termparature T remains constant. The ideal gas
law then shows that locally the pressure must be proportional to the density:

p = ρRT∞. (2.16)

where R is the specific gas constant and T∞ is the (constant) temperature. For dry air we
use the value

Rdry air = 287.058 J/(kg ·K). (2.17)

This approximation again allows us to eliminate the energy equation (eq. (2.3)) from the
compressible Navier-Stokes equations.

2.2 Arbitrary Lagrangian Eulerian formulation

The deformable fluid domain is handled through an Arbitrary Lagrangian Eulerian (ALE)
formulation. Through a change of variables technique, the ALE formulation converts a

CHAPTER 2. GOVERNING EQUATIONS 9

system of conservation laws in a time varying physical domain into a system of conservation
laws in a fixed reference domain. In writing the equations for the ALE formulation it is
typical to denote the reference domain in capital letters (X, U , F , V , etc) and the physical
domain in lowercase letters (x, u, f , v(t), etc).

Consider, for the moment, a time varying mapping from the reference domain V to the
physical domain v(t) in which a point X ∈ V is mapped to x(X, t) ∈ v(t). We define the
deformation gradient G as the spatial gradient of the mapping, i.e.,

G = ∇Xx. (2.18)

For each reference point X the deformation gradient describes how space is locally deformed
in the physical configuration. For example, the determinant

g = detG (2.19)

describes local volume deformation, with g = 1 corresponding to no volume deformation.
Other matrix invariants of G give additional information about the local deformation, a
point which we will return to when discussing the non-linear elasticity model. Lastly, we
define the mapping velocity

ẋ =
∂x

∂t
. (2.20)

Following the derivation in [52], we note that a normal vector n, elemental area da, and
elemental volume dv in physical coordinates are related to a normal vector N , elemental
area dA, and elemental volume dV in reference coordinates according to

n da = gG−TN dA, N dA = g−1GTn da, and dv = g dV. (2.21)

Next we consider a generic system of conservation laws in the physical domain (x, t),

∂u

∂t
+ ∇ · f(u,∇u) = 0 (2.22)

where u is a vector of conserved physical quantities and f is a vector of physical fluxes. We
then write the system in integral form as∫

v(t)

∂u

∂t
dv +

∫
∂v(t)

f · n da = 0 (2.23)

which is obtained by integrating eq. (2.22) over v(t) and applying the divergence theorem to
the second term. We may then apply Reynolds transport theorem to the first term, change
to the reference coordinates, and reapply Reynolds transport theorem to get∫

V

∂(g−1u)

∂t
dV −

∫
∂V

(guG−1ẋ) ·N dA+

∫
∂V

(gG−1f) ·N dA = 0. (2.24)

CHAPTER 2. GOVERNING EQUATIONS 10

Re-applying the divergence theorem allows us to see this as a conservation law in the reference
domain

∂U

∂t
+ ∇X · F (U ,∇XU) = 0 (2.25)

in which the conserved quantities and fluxes are

U = gU and F = gG−1f −UG−1ẋ. (2.26)

We often assume that f contains both inviscid and viscous terms, so that f = finv(u) +
fvis(u,∇u). In the ALE formulation we ascribe the flux contribution from the moving
domain to the inviscid term. That is,

Finv = gG−1finv −UG−1ẋ (2.27)

Fvis = gG−1fvis (2.28)

Lastly, we note that the gradient in the physical domain is easily computed using the
chain rule as

∇u = (∇X(g−1U))G−T = (g−1∇XU −U∇X(g−1))G−T . (2.29)

Before moving one we comment on the so-called geometric conservation law (GCL) [64].
When using the ALE formulation as just described, it is generally not the case that a constant
(i.e., free-stream) solution in the physical domain is a solution of the discretized equations in
the reference domain. Enforcing the GCL may be done by integrating an auxiliary equation

∂ḡ

∂t
−∇X(gG−1ẋ) = 0 (2.30)

and replacing the system of conservation laws eq. (2.25) by

∂ḡg−1U

∂t
+ ∇X · F = 0. (2.31)

For low order methods the error introduced by violating the GCL can be quite severe,
but numerical experiments in [52] show that the issue is less acute for high-order methods.
Since we generally restrict ourselves to using high-order methods, for simplicity we are not
enforcing the GCL in our results.

For a good description of the DGCL, see [24, 32].

2.3 Rigid Body Dynamics

We quickly remind the reader that for a rigid body the center of mass xcm obeys Newton’s
second law of motion,

F = ma (2.32)

CHAPTER 2. GOVERNING EQUATIONS 11

where F is the net force acting on the body, m is the mass of the body, and a = d2xcm/dt
2

is the resulting acceleration. If the force is transmitted to the object as a surface traction t,
i.e, force per unit area along the body surface, the net force is easily obtained by integration

F =

∫
∂V

t dA. (2.33)

A similar law holds for the rotational dynamics about a fixed axis, namely

τ = Iα (2.34)

where τ is the net torque acting on the center of mass, I is the moment of inertia about the
center of mass (along the fixed axis), and α = d2θ/dt2 is the angular acceleration. Again, if
a surface traction is applied to the body the net torque is easily calculated as

τ =

∫
∂V

(x− xcm)× t dA. (2.35)

More complicated rigid body kinematics are easily derived using the Euler-Langrange
equations and the Lagrangian L = T − V , the difference between the kinetic energy T and
potential energy V of the system. For more details see [10].

2.4 Neo-Hookean Elasticity Model

We use a hyperelastic neo-Hookean formulation [36] for modeling deformable structures.
Here, the structure position is given by a mapping x(X, t), which for each time t maps
a point X in the unstretched reference configuration to its location x in the deformed
configuration. From this we compute the mapping velocity and deformation gradient as

v =
∂x

∂t
, and F = ∇Xx(X, t). (2.36)

We partition boundary of the structure domain into regions of Dirichlet and Neumann
boundary conditions, ∂V = ΓD ∪ ΓN . On the Dirichlet boundary ΓD we prescribe the
material position xD, often corresponding to no displacement. On the Neumann boundary
ΓN we allow for a general surface traction, i.e., force per unit surface area, which we denote
t.

The governing equations for the structure are then given by

∂p

∂t
−∇ · P (F) = b in V (2.37)

P (F) ·N = t on ΓN (2.38)

x = xD on ΓD (2.39)

CHAPTER 2. GOVERNING EQUATIONS 12

where p = ρv = ρ ∂x/∂t is the momentum, P is the first Piola-Kirchhoff stress tensor, b
is an external body force per unit reference volume, and N is a unit normal vector in the
reference domain.

For a compressible neo-Hookean material the strain energy density is given by

W =
µ

2
(Ī1 − 3) +

κ

2
(J − 1)2 (2.40)

where Ī1, the first invariant of the deviatoric part of the left Cauchy-Green deformation
tensor, and J , the determinant of the deformation gradient, are calculated as

Ī1 = J−2/3I1, I1 = trB = tr (FF T), J = detF . (2.41)

The constants µ and κ are the shear and bulk modulus of the material. We often find it
more convenient to think in terms of Young’s modulus E and Poisson’s ratio ν which are
related to the shear and bulk modulus as

µ =
E

2(1 + ν)
and κ =

E

3(1− 2ν)
. (2.42)

The first Piola-Kirchhoff stress tensor is computed as

P (F) =
∂W

∂F
= µJ−2/3

(
F − 1

3
tr(FF T)F−T

)
+ κ(J − 1)JF−T . (2.43)

For two-dimensional problems we use a plane strain formulation in which we treat the
stretch in the third dimension as constant [14], thinking of the problem as modeling the
cross-section of an infinitely long prismatic structure. Here we use a slightly modified strain
energy density

W =
µ

2
(Ī1 − 2) +

κ

2
(J − 1)2 (2.44)

where we have replaced the 3 in eq. (2.40) by 2. Another way to see this is to note that in
three dimensions I1 = λ2

1 + λ2
2 + λ2

3 where λi are the three eigenvalues of F . In the plane
strain formulation we posit λ3 = 1 and thus I1 = λ2

1 + λ2
2 + 1. For posterity, we present the

Piola-Kirchhoff stress tensor for the two-dimensional plane strain formulation:

P (F) =
∂W

∂F
= µJ−2/3

(
F − 1

3
(tr(FF T) + 1)F−T

)
+ κ(J − 1)JF−T . (2.45)

2.4.1 Quasi-Static Formulation

In some instances, particularly with regard to mesh deformation methods as will be discussed
in section 4.1.2, we are interested in quasi-static solutions of the non-linear elasticity equa-
tions, i.e., solutions where the material velocity is infinitely small. This is easily imposed by

CHAPTER 2. GOVERNING EQUATIONS 13

setting ∂p/∂t = 0. The structure eqs. (2.37) to (2.39) then become

−∇ · P (F) = b in V (2.46)

P (F) ·N = t on ΓN (2.47)

x = xD on ΓD. (2.48)

Here again P is the first Piola-Kirchhoff stress tensor as given in eq. (2.45) and eq. (2.43)
for two and three dimensions.

14

Chapter 3

Discretization

3.1 Fluid Spatial (Discontinuous Galerkin)

The structure equations as described in section 2.2 are discretized using a high-order dis-
continuous Galerkin formulation with tetrahedral mesh elements and nodal basis functions.
The inviscid fluxes are computed using Roe’s method [57], and the numerical fluxes for the
viscous terms are chosen according to the compact DG method [48]. Below, we summarize
this discretization for the ALE system of conservation laws eq. (2.25). For simplicity, we
change the notation and use lower-case symbols for the solution u, and we omit the sub-
scripts on the derivative operators. We also split the fluxes into an inviscid component F i(u)
and a viscous component F v(u,∇u), corresponding to terms in the left-hand side and the
right-hand side of eqs. (2.1) to (2.3), respectively.

Following standard procedure for DG discretization of second-derivatives [6], we first
introduce the auxiliary gradient variables q = ∇u, and write eq. (2.25) as the system of first
order equations

∂u

∂t
+∇ · F i(u)−∇ · F v(u, q) = 0, (3.1)

∇u = q. (3.2)

We introduce a computational mesh and denote its elements by Th = {K}. Furthermore,
we introduce the finite element spaces Vph and Σp

h as:

V p
h = {v ∈ [L2(Ω)]

5 | v|K ∈ [Pp(K)]5 ∀K ∈ Th}, (3.3)

Σp
h = {τ ∈ [L2(Ω)]

5×3 | τ |K ∈ [Pp(K)]5×3 ∀K ∈ Th}, (3.4)

where Pp(K) is the space of polynomial functions of degree at most p ≥ 1 on K. To obtain
a form that is appropriate for discretization using the CDG method, we multiply the system
of equations eqs. (3.1) and (3.2) by test functions v, τ and integrate by parts. Our semi-
discrete DG formulation is then expressed as: find uh ∈ V p

h and qh ∈ Σp
h such that for all

CHAPTER 3. DISCRETIZATION 15

K ∈ Th, we have∫
K

∂uh
∂t
· v dx+

∫
K

(
F i(uh)− F v(uh, qh)

)
: ∇v dx

−
∮
∂K

(
F̂ i(uh)− ̂F v(uh, qh)

)
· v ds = 0, ∀v ∈ [Pp(K)]5, (3.5)∫

K

qh : τ dx+

∫
K

uh · (∇ · τ) dx−
∮
∂K

(ûh ⊗ n) : τ ds = 0, ∀τ ∈ [Pp(K)]5×3. (3.6)

To complete the description we need to specify the numerical fluxes for all element boundaries

∂K. The inviscid fluxes F̂ i(uh) are computed using Roe’s method [57], and the modification

for our ALE formulation described in [52]. For the viscous fluxes F̂ v
h , ûh, we use a formulation

based on the CDG method [48], which is a slight modification of the LDG method [17] to
obtain a compact and sparser stencil with improved stability properties.

First, define a switch function SK
′

K ∈ {−1, 1} for each internal face e that element K
shares with a neighboring element K ′. We require that SK

′
K = −SKK′ , but unlike the standard

LDG method no other restrictions are imposed. Here we use the simple natural switch,
which is positive if the global element number of K is greater than that of K ′, and negative
otherwise. The numerical fluxes are then defined as follows:

• In eq. (3.6), ûh, is defined by standard “up-winding” according to the switch function:

ûh =

{
u′h if SK

′
K = +1

uh if SK
′

K = −1,
(3.7)

where u′h is the numerical solution defined by the neighboring element K ′ on the face.
This defines the gradients qh for each element K.

• In eq. (3.5), the numerical fluxes F̂ v
h are defined by first introducing the “face gradients”

qeh for each face e of K, using a slight modification of eq. (3.6):∫
K

qeh : τ dx+

∫
K

uh · (∇ · τ) dx−
∮
∂K

(ûeh ⊗ n) : τ ds = 0, ∀τ ∈ [Pp(K)]5×3 (3.8)

with

ûeh =

{
ûh on face e, from equation eq. (3.7),

uh otherwise.
(3.9)

These are then used to define the numerical fluxes F̂ v
h on face e:

F̂ v
h

e
= C11(u′h − uh) +

{
F v(ueh, q

e
h) · n if SK

′
K = +1

F v(ueh
′, qeh

′) · n if SK
′

K = −1
(3.10)

CHAPTER 3. DISCRETIZATION 16

where ueh
′, qeh

′ are the solutions / face gradients from the neighboring element K ′ on
face e. Note that these fluxes can be seen as “down-winding” according to the switch
function. The parameter C11 is used for additional stabilization, here we will use a
value of C11 = 10/hmin where hmin is the height of the element with respect to face e.

For more details on the CDG scheme and its properties, including the compact sparsity
pattern of the stencils, see [48]. At a boundary face, we impose either far field or no-slip
conditions weakly through the fluxes, see [47].

We use standard finite element procedures for the discretization. We define a set of
equidistributed nodes xj, j = 1, . . . , Np, within each element K, where for simplex elements
Np =

(
p+D
D

)
in D spatial dimensions. We then determine the shape functions as the Lagrange

interpolation functions φi(x) ∈ Pp(K) such that φi(xj) = δij. Using these, the solution in
each element can be written in terms of its discrete expansion coefficients ui as:

uh(x) =
n∑
i=1

uiφi(x) (3.11)

and similarly for the auxiliary variable qh, the test functions v, τ , and the time-derivatives
∂uh/∂t. We evaluate all integrals in eqs. (3.5) and (3.6) using high-order Gaussian quadra-
ture rules, and setting the test function expansion coefficients to the identity matrix and
eliminating the local qh variables, we obtain the semi-discrete form of our equations:

Mf du
f

dt
= rf (uf), (3.12)

for solution vector uf , mass matrix Mf , and residual function rf (uf).

3.2 Structure Spatial (Continuous Galerkin)

The structure equations as described in section 2.4 are discretized as follows. The domain
is represented using an unstructured simplicial mesh Th, and curved boundaries are fit using
isoparametric elements. On this mesh, we define the space of continuous piecewise polyno-
mials of degree p:

V p
h = {v ∈ [C0(Ω)]c3 | v|K ∈ [Pp(K)]3 ∀K ∈ Th}, (3.13)

We also define the subspaces of functions in V p
h that satisfy the non-homogeneous Dirichlet

boundary conditions:

V p
h,D = {v ∈ V p

h | v|ΓD
= xD}, (3.14)

as well as the homogeneous Dirichlet boundary conditions:

V p
h,0 = {v ∈ V p

h | v|ΓD
= 0}. (3.15)

CHAPTER 3. DISCRETIZATION 17

By multiplying eq. (2.37) by an arbitrary test function z ∈ V p
h,0, integrating over the domain

V , and applying Green’s theorem, we obtain our finite element formulation: find xh ∈ V p
h,D

such that for all z ∈ V p
h,0,∫

V

ρ
∂2xh
∂t2

z dX = −
∫
V

P (F (xh)) : ∇z dX +

∮
ΓN

t(xh) · z dS +

∫
V

b · z dX . (3.16)

The system of equations eq. (3.16) is implemented using standard finite element techniques.
The discrete solution vector X and the test functions are represented at the nodes using
nodal basis functions. The integrals are computed using high-order Gauss integration rules.
The computed elemental residuals are assembled into a global discrete residual vectorR(X),
to give the nonlinear ODE

M
d2X

dt2
= R(X) (3.17)

which we immediately convert to a first-order system by introducing the velocity V = dX/dt.
The discrete positions and velocities are combined into a single solution vector us = [X;V],
corresponding residual vector rs(us) = [V ;R(X)], and mass matrix M s = diag(I,M), to
obtain the semi-discrete form of our equations:

M sdu
s

dt
= rs(us). (3.18)

3.2.1 Quasi-Static Formulation

The quasi-static non-linear elasticity equations as given in section 2.4.1 are discretized in
a similar fashion. Again, the domain is represented using an unstructured simplicial mesh
Th and curved boundaries are fit using isoparametric elements. We repeat the process of
defining V p

h the space of continuous piecewise polynomials of degree p, and V p
h,D (resp. V p

h,0)
the subspaces of functions which satisfy the non-homogeneous (resp. homogeneous) Dirichlet
boundary conditions.

Following a similar procedure of multiplying eq. (2.46) by an arbitrary test function
z ∈ V p

h,0, integrating over the domain V , and applying Green’s theorem, we obtain our finite
element formulation: find xh ∈ V p

h,D such that for all z ∈ V p
h,0,

0 =

∫
V

P (F (xh)) : ∇z dX +

∮
ΓN

t(xh) · z dS +

∫
V

b · z dX. (3.19)

The system of equations in eq. (3.19) is implemented using standard finite element tech-
niques. The discrete solution vector X and the test functions are represented at the nodes
using nodal basis functions. The integrals are computed using high-order Gauss integration
rules. The computed elemental residuals are assembled into a global discrete residual vector
R(X) giving the non-linear system

R(X) = 0. (3.20)

CHAPTER 3. DISCRETIZATION 18

The system is generally solved using the standard Newton-Raphson method, where given
an initial guess X(0) we iterate by

X(k+1) = X(k) −
[
dR

dX
(X(k))

]−1

R(X(k)) (3.21)

Here the Jacobian matrix K = dR/dX is computed for each element and assembled into a
global matrix. The prescribed displacement at the boundary nodes is enforced by elimination
of the corresponding variables from the system of equations.

Alternatively, we have found that it is often convenient, especially in the implementation
of our parallel solver, to assemble the global residual leaving the boundary nodes in the
system. The displacement of these nodes is enforced strongly, by setting the corresponding
equations of the global residual to Xi−xD,i for each node i in the Dirichlet boundary. (Here
xD,i is the prescribed location of that node Xi as specified in the problem). Observe that
solving R(X) = 0 would give Xi = xD,i as desired. Clearly the corresponding rows in the
Jacobian matrix K become the identity.

3.3 Temporal Discretization (Runge-Kutta Methods)

We use the method of lines to evolve the fluid and structure partial differential equations in
time, by first discretizing in space as described in the previous sections and then integrating
the resulting ordinary differential equation (ODE) using standard techniques.

In this section, we will generically write the ODE as

M
du

dt
= R(t, u) (3.22)

u(t0) = u0 (3.23)

where u = [u1, . . . , uN]T is the vector of discretized spacial variables, M is the mass matrix,
R the residual, and u0 is the initial condition at time t0. We will also assume some minimal
requirements on the ODE to ensure wellposedness, namely M is non-singular and R is nice
(e.g., Lipschitz).

The most basic ways to integrate eq. (3.22) in time are the explicit forward Euler

Mu(n+1) = Mu(n) + ∆tR(tn, u
(n)) (3.24)

and implicit backward Euler

Mu(n+1) = Mu(n) + ∆tR(tn+1, u
(n+1)) (3.25)

methods.
Of these, forward Euler is referred to as an explicit method since the expression for u(n+1)

can be evaluated directly. On the other hand, backward Euler is referred to as an implicit

CHAPTER 3. DISCRETIZATION 19

method since u(n+1) appears on both sides of the equation and hence must be solved for,
often using the Newton-Raphson method.

The Newton-Raphson method is an iterative procedure for finding a root f(x) = 0 from
an approximate root x0 via a series of iterations

xk+1 = xk −
[
df

dx
(xk)

]−1

f(xk) (3.26)

until a tolerance is reached, i.e., f(xn) < tol.
The Newton-Raphson method, as applied in the case of the backward Euler method, is:

given an approximate solution u
(n+1)
0 , repeat

u
(n+1)
k+1 = u

(n)
k −

[
M −∆t

dR

du
(tn+1, u

(n+1)
k)

]−1 (
Mu

(n+1)
k −Mu(n) −∆tR(tn+1, u

(n+1)
k)

)
(3.27)

until numerical convergence is reached, i.e.,

‖Mu
(n+1)
k −Mu(n) −∆tR(tn+1, u

(n+1)
k)‖ < tol. (3.28)

Note that the term in the square brackets is a matrix of the form A = M − αJ , where
α = ∆t and J = dr/du; and the term in the parenthesis is a vector b. Here it’s clear that
each step of the Newton method requires solving a linear system Ax = b.

For small, two-dimensional problems, a direct method of solving this resulting linear
system is often viable. For example, one can use Gaussian Elimination (with partial pivoting)
to factorize A as

A = PLU (3.29)

where P is a permutation matrix, L is a unit lower triangular matrix, and U is an upper
triangular matrix.

Given this factorization, the solution process for Ax = b becomes

x = U−1(L−1(P−1b)) (3.30)

where each term is easy to evaluate via permutation, forward substitution, and backward
substitution. It goes without saying that we suggest using existing libraries which already
implement the factorization and solve algorithms like LAPACK [5] and ScaLAPACK [12] for
dense matrices, and MUMPS [3, 4] and UMFPACK [20] for sparse matrices.

Before moving on, let us take a minute to rewrite the forward Euler method:

Mk1 = R(tn, u
(n)) (3.31)

u(n+1) = u(n) + ∆tk1 (3.32)

CHAPTER 3. DISCRETIZATION 20

and backward Euler method:

Mk1 = R(tn + ∆t, u(n) + ∆tk1) (3.33)

u(n+1) = u(n) + ∆tk1. (3.34)

Here we have introduce auxiliary variable k1 which records the slope at a specific time. This
idea of recording intermediate slopes naturally extends to multiple stages in Runge-Kutta
methods. Consider, for example, the classical Runge-Kutta method, RK4:

Mk1 = R(tn, u
(n)) (3.35)

Mk2 = R(tn + ∆t/2, u(n) + ∆t/2k1) (3.36)

Mk3 = R(tn + ∆t/2, u(n) + ∆t/2k2) (3.37)

Mk4 = R(tn + ∆t, u(n) + ∆tk3) (3.38)

u(n+1) = u(n) + ∆t(k1/6 + k2/3 + k3/3 + k4/6). (3.39)

This is a 4-stage, 4-th order, explicit method.
We can generalize this framework to allow for other coefficients as:

Mki = R(tn + ci∆t, u
(n) + ∆t

s∑
j=1

aijkj) for i = 1, . . . , s (3.40)

u(n+1) = u(n) + ∆t
s∑
i=1

biki (3.41)

where s is the number of stages. We call the s-by-s matrix aij the coefficients, the vector bi
the weights, and the vector ci the nodes.

These Runge-Kutta methods are generally written as a Butcher tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

. (3.42)

For example, forward and backward Euler may be written as

0 0
1

and
1 1

1
, (3.43)

and the RK4 scheme as:

0
1/2 1/2
1/2 1/2
1 1

1/6 1/3 1/3 1/6

(3.44)

CHAPTER 3. DISCRETIZATION 21

where missing entries should be interpreted as 0.
Certain properties of the Runge-Kutta scheme may be read directly from the coefficients.

For example, one can determine if the scheme is explicit (ERK) or implicit (IRK) depending
on the matrix of coefficients aij. The method is explicit if the coefficients are strictly lower-
triangular. If this is the face, we can first solve for k1, then k2, etc, each by explicit evaluation
(and possibly a mass matrix solve).

Otherwise the scheme is called implicit and will require a non-linear iterative solve pro-
cedure like the one discussed for the backward Euler method. Note that if the coefficient
matrix is dense each ki will depend on all of the other kj, meaning that we will likely need
to use one big Newton-Raphson non-linear solve on all of the ki simultaneously. At each
step this will require the solve of a (Ns)-by-(Ns) linear system which may be prohibitively
expensive.

To get around this we can use a diagonally implicit Runge-Kutta (DIRK) scheme where
the coefficient matrix aij is lower-triangular. Here it’s clear that k1 only depends on k1; k2

depends on k1 and k2; and ki depends only on k1 through ki. Because of this, we can first
solve for k1 using Newton-Raphson on a smaller N -by-N system, then solve for k2, then k3,
etc. In other words, we now require s non-linear solves of an N -by-N system, rather than 1
non-linear solve of an (Ns)-by-(Ns) system.

In the class of DIRK schemes, we call those whose non-zero diagonal coefficients are all
equal singly diagonally implicit (SDIRK) schemes. If in addition the first stage is explicit
(i.e., a11 = 0), we call the scheme explicit first stage, singly diagonally implicit (ESDIRK).

As a rather trivial example of an ESDIRK scheme consider the trapezoidal rule:

0
1 1/2 1/2

1/2 1/2
. (3.45)

3.3.1 Implicit-Explicit (IMEX) Runge-Kutta Schemes

Consider for the moment a convection-diffusion type partial differential equations

ut = uux + ν∆u (3.46)

which, after discretizing the spatial derivatives, gives an ordinary differential equation

du

dt
= f(u) + g(u). (3.47)

Here f corresponds to the convection term uux and g corresponds to the diffusion term ν∆u.
We know that the properties of f and g are very different. For example, f is non-linear and
the ODE du/dt = f(u) is generally not very stiff. On the other hand, g is linear and the
ODE du/dt = g(u) is generally stiff. Here it would be natural to use an explicit scheme to
integrate f and an implicit scheme to integrate g.

CHAPTER 3. DISCRETIZATION 22

Implicit-Explicit Runge-Kutta methods, as introduced in ref. [7], propose using an explicit
Runge-Kutta method to integrate f together with a paired diagonally implicit Runge-Kutta
method to integrate g. As is traditional, we use the regular notation to denote the coefficients
of the diagonally implicit scheme (aij, bi, ci) and a hat to denote the coefficients of the explicit

scheme (âij, b̂i, ĉi). In general, and in every case we consider, the nodes are common between
the two schemes, i.e., c = ĉ. Since the first stage of an explicit scheme has ĉ1 = 0, this means
that the first stage of the implicit scheme is also typically explicit. In particular, most IMEX
Runge-Kutta schemes are a pairing of an explicit (ERK) method and an ESDIRK method.

The implicit-explicit Runge-Kutta scheme is given by the definitions of the stage solution:

u
(n)
i = u(n) + ∆t

i−1∑
j=1

âijk̂j + ∆t
i∑

j=1

aijkj for i = 1, . . . , s (3.48)

and slopes:

M k̂i = f(u
(n)
i) and Mki = g(u

(n)
i) for i = 1, . . . , s. (3.49)

The solution is advanced to the next time step via

u(n+1) = u(n) + ∆t
s∑
i=1

b̂ik̂i + ∆t
s∑
i=1

biki. (3.50)

In terms of implementation, one can trace through the equations to see that one can
first solve for k1, then evaluate k̂1, then solve for k2, then evaluation k̂2, and so on. This
corresponds to, for each stage, first doing an implicit solve of g followed by an implicit
evaluation of f . The algorithm is written out fully in algorithm 3.1.

Algorithm 3.1 Implicit-explicit Runge-Kutta method.

Input: Ordinary differential equation M(du/dt) = f(t,u) + g(t,u).
Input: Numerical solution u(n) at time tn.
Input: Timestep ∆t > 0.

for stages i = 1, . . . , s do
Define the stage solution u

(n)
i = u(n) + ∆t

∑i−1
j=1 âijk̂j + ∆t

∑i
j=1 aijkj.

Solve for ki in Mki = g(tn + ci∆t,u
(n)
i). # Implicit solve of g.

Solve for k̂i in M k̂i = f(tn + ci∆t,u
(n)
i). # Explicit evaluation of f .

end for
Set u(n+1) = u(n) + ∆t

∑s
i=1 b̂ik̂i + ∆t

∑s
i=1 biki.

Output: Numerical solution u(n+1) at time tn+1 = tn + ∆t.

CHAPTER 3. DISCRETIZATION 23

There are many examples of implicit-explicit Runge-Kutta schemes. For example, forward
backward Euler :

0
1 1

1 0
and

0
1 0 1

0 1
(3.51)

where the tableau on the left is the explicit scheme (âij, b̂i, ĉi) and the tableau on the right

the implicit scheme (aij, bi, ci). Note here that unlike many other examples b̂ 6= b.
A second order example is the trapezoidal rule [41]:

0
1 1

1/2 1/2
and

0
1 1/2 1/2

1/2 1/2
. (3.52)

Many popular IMEX coefficients are due to Kennedy & Carpenter, who in ref. [40]
provided schemes of orders 3, 4, and 5 which have many desirable properties including
for the ESDIRK coefficients L-stability, stage order 2 and stiff accuracy. The schemes are
named ARK3(2)4L[2]SA, ARK4(3)6L[2]SA, and ARK5(4)8L[2]SA, according to the naming
convention ARKq(p)sS[qSO]X where q is the order, p is the order of an embedded method,
s is the number of stages, S is a characterization of the stability, qso is the stage-order of the
implicit method, and X is any other notable trait. This means, for example, that the 3rd
order method has 4 stages; the 4th order method has 6 stages; and the 5th order method has
8 stages. The coefficients for the 3rd order method are reproduced in table 3.1. See ref. [40]
for the coefficients of the other schemes. In this document we will generally abbreviate the
scheme names, calling them ARK3, ARK4, and ARK5 respectively.

3.4 Implicit Solvers

The systems of equations produced by the DG discretization of the fluid system are typically
very large. We often use polynomials of degree p = 3 or higher which gives a large number
of degrees of freedom per element and solution component. These numbers are summarized
in table 3.2.

Recall that in three dimensions the Navier-Stokes equations have 5 solution components
per node. This means that a p = 3 tetrahedral element will have 100 degrees of freedom per
element. At typical mesh consisting of tens or hundreds of thousands elements would then
have millions of degrees of freedom, as for example in section 5.2.

3.4.1 Parallel Newton-Krylov Fluid Solvers

The IMEX Runge-Kutta scheme as discussed in section 3.3.1 requires both explicit residual
evaluations and implicit non-linear solves. For the following descriptions we assume the fluid

CHAPTER 3. DISCRETIZATION 24

Table 3.1: The 3rd order implicit-explicit Runge-Kutta coefficients ARK3(2)4L[2]SA.

0

1767732205903

2027836641118

1767732205903

2027836641118

3

5

5535828885825

10492691773637

788022342437

10882634858940

1
6485989280629

16251701735622

−4246266847089

9704473918619

10755448449292

10357097424841

1471266399579

7840856788654

−4482444167858

7529755066697

11266239266428

11593286722821

1767732205903

4055673282236

(a) Explicit Runge-Kutta (ERK) coefficients.

0

1767732205903

2027836641118

1767732205903

4055673282236

1767732205903

4055673282236

3

5

2746238789719

10658868560708

640167445237

6845629431997

1767732205903

4055673282236

1
1471266399579

7840856788654

−4482444167858

7529755066697

11266239266428

11593286722821

1767732205903

4055673282236

1471266399579

7840856788654

−4482444167858

7529755066697

11266239266428

11593286722821

1767732205903

4055673282236

(b) Explicit first stage, singly diagonally implicit Runge-Kutta (ESDIRK) coefficients.

Table 3.2: The number of high-order nodes per element for simplicial (triangles and tetra-
hedra) and quad/hex meshes of various polynomial orders.

2D 3D

Polynomial Order Triangles Quadrilaterals Tetrahedra Hexahedra

p = 2 6 9 10 27
p = 3 10 16 20 64
p = 4 15 25 35 125
p = 5 21 36 56 216
p = 6 28 49 84 343
p = 7 36 64 120 512

CHAPTER 3. DISCRETIZATION 25

system has been discretized in space to give an ordinary differential equation

Mf du
f

dt
= rf (uf). (3.53)

Of course the right hand side may rely additionally on some external fields, e.g., body forces,
mesh deformation in an ALE formulation, etc, but for brevity these are not shown.

Explicit stages

The explicit evaluation is relatively straightforward. Essentially, given the current fluid state
uf solve for kf in

Mfkf = rf (uf). (3.54)

Here the right hand side is trivially evaluated on an element by element basis. Here we paral-
lelize the computation by decomposing the domain the into nproc partitions, each containing
some subset of the elements. For the flux computations along each element face the solver
needs to know the state of the element across that face. Computationally this means that
each process needs to maintain up-to-date values of neighboring elements one layer outside
of the local partition.

Clearly we can overlap the communication of data with residual computations, so the
algorithm employed is:

• Evaluate the residual on each element which shares a face with a neighboring partition.

• Set up asynchronous send and receive operations for the element-wise residuals with
neighboring partitions.

• Evaluate the residuals on remaining elements.

• Wait for the send and receive operations to complete.

To decompose the domain we first we build the element adjacency graph, where vertices
correspond to elements and edges occur when two elements share a common face. We then use
the METIS software [38] to create the partitioning. In general the software attempts to create
partitions of roughly equal size with minimal surface area (since surface area corresponds to
the amount of data which must be sent during the residual evaluation).

Since the mass matrix Mf is block diagonal, the inverse can be applied in parallel on a
per-element basis.

Implicit stages

An implicit stage of the Runge-Kutta method requires a non-linear solve for kf in an equation
of the form

Mfkf = rf (uf + αkf) (3.55)

CHAPTER 3. DISCRETIZATION 26

where at stage i we have α = ∆taii and uf = uf0 +∆t
∑i−1

j=1 aijk
f
j . To complete the non-linear

solve we use a Newton-GMRES method. The outer Newton solve requires linear solutions
to equations of the form

(Mf − αK)δkf = r (3.56)

where K = drf/duf is the Jacobian. Here we solve the linear system using an iterative
preconditioned GMRES method.

Since the linear system is quite large, one would prefer to avoid computing and storing
the sparse matrix Mf − αK and instead compute the required matrix-vector products on
the fly using a so-called matrix free method. However these methods are often difficult to
precondition.

Even worse, for these high order methods the Jacobian matrices (drf/duf) tend to be
less sparse than their low order counterparts. For a typical problem of the compressible
Navier-Stokes equations in three dimensions which is discretized using polynomials of degree
p = 3 on a mesh of a hundred thousand tetrahedra, a simple calculation shows that the
resulting system will have 10 million degrees of freedom and each Jacobian will have about
3 billion entries requiring 24 GB of storage. It is clear that parallel computers are needed,
both for storing these matrices and to perform the computations.

In our highly parallel 3DG implementation [51], we compute and store the Jacobian in
a specialized block storage format. Here we have a series of diagonal blocks, one for each
element, and a series of off-diagonal blocks, two for each interior face (one in the lower
triangular part and one in the upper triangular part). In the parallel partitioning scheme,
each processor owns all of the rows corresponding to the degrees of freedom associated with
the nodes in that partition. Note that it does not store rows associated with neighboring
partitions.

The matrix-vector products required for each GMRES iteration are computed in the
obvious fashion. Much like the explicit residual evaluation, some communication is required
after each matrix vector product to transfer element data across the faces on the boundary
of each partition.

There are many ways to precondition the linear system. We generally use one of two
preconditioners:

• Block Jacobi: This preconditioner relies on approximating the matrix by its diagonal
blocks, i.e., mij = aij if i and j are degrees of freedom which lie in the same element
and mij = 0 otherwise. This preconditioner is useful for ensuring that the equations
have a similar scaling. In parallel this preconditioner scales perfectly since it is a purely
local operation.

• Block ILU(0): Here we create an approximate LU decomposition of the matrix by
using the standard Gaussian elimination algorithm on each block of the matrix, but
insist that no additional fill is introduced along the way. That is, the block sparsity
pattern of L + U is the same as the sparsity pattern of the original matrix. Gaussian

CHAPTER 3. DISCRETIZATION 27

elimination is a fundamentally sequential operation so this cannot be used in parallel.
As a compromise we can do block ILU(0) on the rows corresponding to each partition
separately. In this way, no communication is required. However, as the number of
the partitions approaches the number of elements, i.e., as the number of elements per
partition goes to one, this method becomes equivalent to block Jacobi.

More complicated p-multigrid and ILU(k) schemes have been implemented, but experience
for a wide range of problems leads us to generally use block Jacobi or block ILU(0). For
more details see [53].

In addition to choosing the preconditioner, we can also optimize the original partitioning
by providing edge weights in the adjacency graph as suggested in [53]. This can cause the
partitioning to vaguely follow streamlines of the solution and can reduce the number of
GMRES iterations by a small factor. In addition we order the elements using a Minimum
Discarded Fill (MDF) algorithm when using the block ILU(0) preconditioner.

The resulting simulation time for a particular problem is heavily dependent upon the
number of processors used, the problem, the timestep, and the tolerances in the Newton and
Krylov solvers. Even the order of the chosen Runge-Kutta method can have a large impact.
For a large discussion on these points alone, see ref. [72]. For the results presented in this work
used anywhere between a handful of cores on a local machine for low fidelity 2D simulations
to over 2048 cores for large 3D simulations using the Hopper and Edison systems at the
National Energy Research Scientific Computing Center (NERSC). The longest simulations
took approximately 24 hours to run, often broken into smaller 6 hour or 1 hour increments
to get through the batch queuing system faster.

3.4.2 Sparse Direct Structure Solvers

The system of equations produced by the CG discretization of the structure is generally
much smaller than the that of the fluid, both because of structure domain is physically
smaller and because the CG discretization avoids the duplicate nodes which would appear
in a DG discretization. Nonetheless, we still find it expedient to use a parallel code, again
based on MPI. The structure domain is decomposed using the METIS software [38], and
the discretization and matrix assembly are each done in parallel. In order to solve the linear
systems arising from Newton’s method, we use the MUMPS [3, 4] software package providing
the matrix in distributed coordinate form.

Explicit Stages

In the explicit stages of the Runge-Kutta scheme we require computing the stage derivative
ks from the stage state us as

M sks = rs(us). (3.57)

We can compute this in an almost identical way as in the DG fluid case. Each process
computes the local element-wise residual on the elements within that partition. The local

CHAPTER 3. DISCRETIZATION 28

results are then assembled together into the global residual via addition using the so-called
stamping method. One key difference when compared to a discontinuous Galerkin method
is the mass matrix is no longer block diagonal. There are many ways to do the requisite
mass matrix solve, including iterative methods which can be quite competitive since the
mass matrix is symmetric positive definite and generally well conditioned. Here, however,
we choose to prefactorize the mass matrix using the MUMPS [3, 4] multifrontal parallel
sparse direct solver.

Implicit Stages

In the implicit stages of the Runge-Kutta scheme we compute the stage derivative as

M sks = rs(us + αks) (3.58)

where again at stage i we have us = us0 + ∆t
∑i−1

j=1 aijk
s
j and α = ∆taii. We use a Newton-

Raphson procedure to complete the non-linear solve, which at each iteration requires the
solution of a linear system of the form

(M s − αKs)δks = b (3.59)

where Ks = drs/dus is the Jacobian. For convenience we again use the MUMPS solver
to complete the linear solve, providing the matrix to the software package in a distributed
coordinate format. That is, each process provides their local portion of the matrix as a
list of entries (i, j, Aij) where i and j are the global coordinates of the entry and Aij
is the value. This assembly process is done element by element, each process providing
entries corresponding to elements in that region. Duplicate entries which occur along element
boundaries are automatically summed by MUMPS as in the stamping method.

Since the sparsity pattern of the resulting matrix does not change between subsequent
solves, we can have MUMPS precompute and reuse a symbolic factorization. The numeric
factorization phase must of course be repeated since the matrix entries will have changed.

We remark that this direct solver is not particularly competitive, especially in 3D, and
that other means of assembling and solving the linear system are likely to be more efficient.
Nonetheless, we chose this implementation because it was easy to add to the existing 3DG
software and provides adequate performance for problems of interest. Many applications
discussed in this work have structures which, despite being fully three-dimensional, behave
more as a two-dimensional object because they are just one element thick in the third
dimension. In this regime direct solvers can be competitive with iterative solvers.

In terms of implementation, the CG structure code reuses the generic DG framework
with internal boundary fluxes disabled. The resulting element-wise residuals and Jacobians
are assembled into global residuals and Jacobians using the stamping method,

rcg = W T rdg and Kcg = W TKdgW, (3.60)

where W is the natural operator which takes a CG solution and returns a DG solution by
duplicating the values at repeated nodes.

29

Chapter 4

Fluid-Structure Interaction

4.1 Coupling

In a fluid-structure interaction problem, a primary consideration is the coupling between the
fluid and the structure. Generally we treat the fluid as exerting a surface traction, i.e., force
per unit area, on the boundary of the structure. The structure, in response to the fluid and
its own internal dynamics deforms the domain in which the fluid is modeled.

In situations where the structure is deformable and modeled using a finite element dis-
cretization, we require that the fluid mesh and structure mesh along the fluid-structure
interface be face-wise matching. As shown in fig. 4.1, two meshes T1 and T2 are face-wise
matching if each face along their interface Γ12 is a proper face of each mesh. That is,

∂T1 ∩ Γ12 = ∂T2 ∩ Γ12. (4.1)

In addition, we require that the fluid and structure be discretized using the same polynomial
order.

This approach offers two key benefits which we exploit. First, boundary data is easily
passed between the fluid and structure meshes, at either the solution nodes or Gauss integra-
tion nodes, by a simple pre-computed lookup table and without any interpolation. Second,
the deformed fluid mesh is easily constructed to be exactly conformal to a given deformed
structure position.

The main drawback of this approach is that we are no longer free to choose the meshes
for the fluid and structure independently. This adds an additional level of complexity to
the process of mesh generation, but is generally surmountable. In addition, element size
constraints essentially leak across the boundary. For example, if the discretized fluid requires
many tiny elements near the boundary to resolve fine features, the structure may be required
to have an undesirably large number of elements. Note that this constraint applies only to
the mesh size in directions tangent to the interface. For example, one can create a boundary
layer of highly anisotropic elements in the fluid mesh without imposing additional constraints
on the structure mesh.

CHAPTER 4. FLUID-STRUCTURE INTERACTION 30

(a) Matching interface (b) Non-matching interface

Figure 4.1: Two meshes which are face-wise matching (left) and non-matching (right) along
the interface, shown as a dashed line.

4.1.1 Fluid-to-structure coupling

We begin by describing the coupling from the fluid to the solid, which differs depending on
the specifics of the structure model.

For example, if the structure is modeled as a rigid body we need only compute the total
force and torque which the fluid applies to the structure. Recall that these quantities may
be obtained by integrating the surface traction, i.e., momentum flux, over the entirety of the
fluid-structure interface. Specifically, we obtain a total force

F =

∮
∂V

t dA (4.2)

and torque

τ =

∮
∂V

(x− x0)× t dA (4.3)

where x0 is a point about which the torque is measured.
Numerically, we compute these integrals using Gaussian integration. For each face e in

the fluid-structure interface Γs, we compute the position x
{e}
i and traction t(x

{e}
i) for each

of the i = 1, . . . , ng Gauss nodes. These quantities are then summed to produce the total
force:

F =
∑
e∈Γs

ng∑
i=1

w
{e}
i t(x

{e}
i). (4.4)

CHAPTER 4. FLUID-STRUCTURE INTERACTION 31

The numerical calculation of the torque is done analogously.
If the structure is not a rigid body and is instead allowed to deform, the the fluid to

structure coupling consists of a traction applied along the boundary of the structure domain.
The traction, computed as the momentum flux through the boundary of the fluid mesh, is
computed using the fluid state variables and transfered to the structure mesh. Since we have
assumed that the faces are shared between fluid and structure meshes along the interface,
this transfer can be done without any interpolation. To ensure the highest possible accuracy
this transfer is done pointwise at the Gauss integration nodes, not the solution nodes.

4.1.2 Structure-to-fluid coupling

The structure-to-fluid coupling is a deformation of the fluid mesh in response to a change
in the structure position. We represent the deformed fluid mesh and mapping velocity on
each element of the fluid mesh in an isoparametric fashion, i.e., by using polynomials of the
same order as the fluid discretization. This means that the deformed fluid mesh may exactly
conform to the deformed structure by setting the positions of the boundary fluid nodes to
the deformed position of the structure. For deformations much smaller than the size of an
element no additional work is required. However larger deformations may cause the mesh to
invert if the interior nodes are not moved as well.

There are several methods of deforming meshes in response to moving boundaries. Here
we will discuss two possible options, radial basis function interpolation and quasi-static
elasticity deformation.

Radial Basis Function Interpolation

Radial basis function (RBF) interpolation for mesh deformation has been well studied [9, 13].
In general this method of deforming the mesh is straightforward to implement, reasonable
to parallelize, and works well for small to moderate mesh deformations. On the other hand,
the resulting quality of the deformed mesh may be quite poor (and possibly inverted) for
severe deformations or poor selection of the various parameters.

Radial basis function interpolation seeks to create a global approximation of a function
from values given pointwise in some regions of the domain. The basic premise is that the
value at a specific point should strongly influence the area near that point and weakly
influence areas distant from the point. Here the rate of decay of influence depends only on
the radial distance between the source point and the measurement point. In addition, RBF
interpolation usually includes a polynomial term which we will think of as capturing global
translations and rotations.

In this context, we seek an interpolant giving the deformed fluid mesh position x as a
function of the position X in the reference fluid mesh, and which is of the form

x(X) =
n∑
j=1

αjφj(‖X −Xj‖2/rj) + p(X) (4.5)

CHAPTER 4. FLUID-STRUCTURE INTERACTION 32

where Xj are a set of control points, φj radial basis functions, rj characteristic radii, and p
a linear polynomial. We generally restrict ourselves to the case where all of the radial basis
functions and characteristic radii are equal, the indices from those terms to indicate that
they do not vary.

The coefficients αj and coefficients of the polynomial p are found by imposing the value
of x at the control points Xj :

xj = x(Xj) for j = 1, . . . , N (4.6)

and additionally requiring

N∑
j=1

αjq(Xj) = 0 (4.7)

for all polynomials q of degree less than or equal to the degree of p, i.e. 1.
This gives rise to a linear system[

M φ
φT 0

] [
α
p

]
=

[
x
0

]
(4.8)

where Mij = φ(‖Xj −Xi‖2/r) and φ = [1, X]. Note that if there are nb boundary nodes in
dimension d, this gives a linear system of size (nb + d+ 1)-by-(nb + d+ 1). There are many
ways to solve such a system, including both iterative techniques [26] and direct methods.
Here the control points Xj are the nodes on the boundary of the fluid mesh, both along the
fluid-structure interface and at far boundaries.

Clearly the properties of the coefficient interpolation matrix will depend heavily on the
radial basis function and problem. For example, in our work we have considered compactly
supported radial basis functions φ, like the C2 function

φ(r) =

{
(1− r)4(4r + 1) if 0 ≤ r ≤ 1

0 if 1 ≤ r.
(4.9)

This leads to some sparsity in the resulting matrix as the radial basis function is zero when-
ever ‖Xj −Xi‖2 ≥ r. Other common radial basis functions are not compactly supported,
including the inverse quadratic

φ(r) =
1

1 + r2
. (4.10)

Finally we note that the radial basis function need not even have positive weight at the
origin. For example, the thin plate spline

φ(r) =

{
r2 log r if r > 0

0 if r = 0
(4.11)

CHAPTER 4. FLUID-STRUCTURE INTERACTION 33

is supported entirely away from the origin.
Since we need to solve for the mesh deformation many times per simulation, we have

found it expedient to use a direct method to prefactorize the coefficient matrix in eq. (4.8)
to minimize the amount of time later spent during the simulation performing the linear solve.
Note that this is possible in our case because the control points all lie on the boundary of the
fluid domain, a co-dimension one surface. This means that there are comparatively fewer
such nodes and in general the prefactorization procedure becomes a relatively small portion
of the overall simulation time.

Nevertheless we generally use the parallelized LU factorization routines in ScaLAPACK
[12] to both further reduce computation time and alleviate memory pressure by spreading
the matrix over several compute nodes.

After the coefficients αj and polynomial p have been computed the interior nodes of the
deformed mesh are easily computed using eq. (4.5). Depending on the actual form of the
radial basis function, the quantity φ(‖X−Xj‖2/r) may be somewhat expensive to compute.
If sufficient memory is available this can be avoided by precomputing the values for each
mesh node X and storing the result as a two-dimensional matrix of shape n-by-nb where n
is the number of (local) mesh nodes and nb is the number of (global) boundary nodes. The
final interpolant can then be computed via an efficient matrix vector product.

In our framework, the deformed positions of the boundary nodes on the fluid-structure
interface are specified by the displacement of the structure at that node. Nodes along other
boundaries, e.g., far-field boundaries, can be set arbitrarily, however we generally observed
the best results when those nodes where held fixed in their reference position.

Observe that for a fixed (interior) nodeX the radial basis function interpolant in eq. (4.5)
is linear in the displacement of the boundaries xj. This means that the mapping velocity,

v(X) =
N∑
j=1

dαj
dt

φ(‖X −Xj‖2/rj) +
dp

dt
(X), (4.12)

may be seen as the field given by an interpolation process of the boundary velocities instead of
the boundary positions. In fact, given the boundary positions and velocities, it is often easy
to perform both interpolations simultaneously to take advantage of additional efficiencies
present in the BLAS-3 routines.

As a test problem, consider a square domain with a square removed from the center:

Ω = [0.0, 1.0]2 \ [0.4, 0.6]2. (4.13)

The domain is triangulated in a structured fashion using isoparametric elements of poly-
nomial degree 2. We fix the outer boundary of the domain and rotate the inner boundary
about the middle, [0.5, 0.5]T , by and angle θ. We select the C2 compactly supported ra-
dial basis function in eq. (4.9) with characteristic radius 1, which gave the best results for
this deformation for several different RBF interpolants and radii examined. The resulting
deformed mesh for rotations of 30◦, 60◦, 90◦, and 120◦ are shown in fig. 4.2.

CHAPTER 4. FLUID-STRUCTURE INTERACTION 34

(a) 30◦ (b) 60◦ (c) 90◦ (d) 120◦

Figure 4.2: Mesh deformation using radial basis function interpolation. The radial basis
function is as specified in eq. (4.9) with r equal to the edge length of the outer square.

Here we see that this mesh deformation method does a very good job with the small
deformation (30◦), but has some difficulty with larger deformations. In particular, some ele-
ments have already inverted (i.e., the determinant of the local Jacobian mapping is negative)
by 90◦.

In addition one can easily show that a non-inverting deformation of a 180◦ rotation of
the inner square is not possible using this technique for any choice of radial basis function
interpolant. To see this, recall that the deformed position of any node depends linearly on
the positions of the boundary nodes. Since a +180◦ and −180◦ rotation of the inner square
would lead to the same locations of the boundary nodes, the RBF interpolant is unable
to distinguish between these two cases. In particular, a curve connecting the left outer
boundary to the left inner boundary in the undeformed mesh would have to pass both under
the square in the +180◦ rotation and under the square in the −180◦ rotation, which is not
possible.

One way of avoiding this issue is to continually redefine the reference mesh as the mesh
at the previous step. In this way we can construct large global deformations out of only
small deformations, however it is still difficult to guarantee a high element quality and
the additional cost of recomputing the RBF interpolation matrix may make the method
uncompetitive.

Quasi-Static Non-Linear Elasticity

Another method of mesh deformation is by a quasi-static non-linear elasticity model. In
analogy to previously proposed linear elasticity method for mesh deformation [62], here we
imagine that the entire fluid domain is a non-linear elastic structure. We impose Dirichlet
boundary conditions corresponding to the desired boundary deformations and solve the non-
linear system of equations as given in section 3.2.1.

There are two main benefits of this method over radial basis function interpolation. First,
the method is generally able to handle larger and more severe deformations. Second, we
have much greater and more intuitive control over the resulting deformation by varying the
physical parameters in the strain energy density eq. (2.40). For example, as Poisson’s ratio

CHAPTER 4. FLUID-STRUCTURE INTERACTION 35

(a) 30◦ (b) 60◦ (c) 90◦ (d) 120◦

Figure 4.3: Mesh deformation using a quasi-static non-linear elasticity method.

ν increases to 0.5 the material becomes incompressible and this may help preserve higher
element qualities at the expense of making the resulting non-linear system harder to solve.
Also we can vary Young’s modulus E throughout the domain, choosing low values in regions
able to withstand large deformation and large values in regions where the deformation should
be minimized. One obvious thing to do here is make E large near the domain boundary and
small in the interior. This could be done using a distance function or by a proxy such as
element size or height. The former case allows better control and often gives better results
but requires more effort as a distance function must be created from scratch unless one can
be reused from the mesh generation process, say from using a tool like DistMesh [49, 50].

In fig. 4.3 we repeat the experiment of rotating and inner square inside of a fixed box,
this time using the non-linear elasticity deformation method. Here we set ν = 0.40 and a
spatially varying E according to

E(x) = 1 +
100

1 + (d(x)/d0)2
(4.14)

where d0 = 0.05 and

d(x) = max {0.0,min (dist(x,Γin)− d0, dist(x,Γout) + 2d0)} (4.15)

where Γin and Γout are the inner and outer boundaries. This somewhat complicated expres-
sion for E was chosen to create high values near the inner boundary, moderate values near
the far boundary, and low values in an intermediate region. This causes more deformation
to occur in the intermediate region, which is desirable. As the figure shows, the resulting
mesh still has not inverted, even at a rotation of 120◦, but the element quality does become
quite poor for the larger rotations.

Because the deformation equations are non-linear, the system may exhibit multiple solu-
tions for a given configuration of the boundary. In particular, the zero that we find is going to
be dependent upon the initial approximate zero in the Newton-Raphson procedure. In par-
ticular this means that we are able to construct deformed meshes corresponding to +180◦

and −180◦ rotations of the inner boundary using essentially a homotopy of intermediate
rotations (e.g. +30◦, +60◦, . . . , +180◦).

CHAPTER 4. FLUID-STRUCTURE INTERACTION 36

In fact, this gives an easy way to increase the robustness of the solver. We can add a
parameter α, varying between 0 and 1, to our non-linear system in eq. (3.20). Here α = 0
corresponds to a problem with a known solution and α = 1 corresponds to the system that
we are interested in solving. For α = 0 an obvious choice is the result of a previous non-linear
solve, or if none available the undeformed reference configuration. Intermediate values of
α correspond to intermediate problems, e.g., a linear interpolation of the positions of the
Dirichlet boundaries:

xD(α) = (1.0− α)xD,0 + αxD,1 (4.16)

where xD,0 are the Dirichlet boundary conditions for the known α = 0 solution and xD,1 are
the Dirichlet boundary conditions for the desired α = 1 solution.

Algorithm 4.1 Adaptive Newton-Raphson method.

Input: System of equations Rα(X) = 0 with known solution X0 for α = 0.
X ←X0 # Initial configuration.
α← 0, ∆α← 1 # Start at 0, attempt full step.
while α < 1 do

Xold ←X, αold ← α # Backup old solution.
α← min(α + ∆α, 1)
Solve Rα(X) = 0 using Newton’s method # Terminate early if NaNs of Infs.
if Newton convergence then

∆α← 2∆α # Accept step, increase stepsize.
else

X ←Xold, α← αold # Restore solution.
∆α← ∆α/2 # Decrease stepsize.
if ∆α < ∆αmin then

Solver failed.
end if

end if
end while

Output: X, a solution to Rα(X) = 0 for α = 1.

With this formulation any homotopy technique may be used to advance the known solu-
tion at α = 0 to the desired solution at α = 1. In particular we have found it convenient to
use an adaptive process where α is slowly increased by ∆α, the increment chosen so that the
Newton convergence is well behaved. The details of the algorithm are given in algorithm 4.1.
This strategy can certainly be improved upon, but it does contain the essential ingredients
of adaptive parameter stepping based upon feedback from the Newton convergence.

One immediate difficulty when using this non-linear elasticity deformation method is the
inability to easily compute the deformed mesh mapping velocity dx/dt from the boundary
velocity data. Clearly one could use a finite difference approach. For example if we call x the

CHAPTER 4. FLUID-STRUCTURE INTERACTION 37

deformed mesh arising from the boundary data xD, the mapping velocity may be generically
approximated to second order accuracy as:

ẋ(xD) =
x(xD + εẋD)− x(xD − εẋD)

2ε
+O(ε2) (4.17)

for small ε where we have used a dot to indicate a time derivative d/dt. Higher order approx-
imations could be used if we need more accuracy, but this quickly becomes a cumbersome
process.

Instead, we propose using the chosen time integration scheme itself as a means of com-
puting the mesh velocities. Specifically, if we are given the mesh position xi at each of the
stages i = 1, . . . , s of an implicit Runge-Kutta scheme aij, we say that the mapping velocities
ẋi are stage consistent if

xi = x0 + ∆t
s∑
j=1

aijẋj for i = 1, . . . , s (4.18)

where x0 is the mesh position at the start of the Runge-Kutta step. In other words, we define
the stage consistent mesh velocities to be those velocities which when integrated using the
scheme result in the given mesh positions.

In the case when A is of full rank, e.g., a fully implicit or diagonally implicit Runge-Kutta
scheme, some algebraic manipulation gives the stage mesh velocities as a linear combination
of the mesh positions:

ẋi =
s∑
j=1

(A−1)ij
xj − x0

∆t
for i=1,. . . ,s. (4.19)

Note that for a DIRK scheme A and A−1 are lower triangular so the mesh velocity at stage j
depends only on stages i = 1, . . . , j. This preserves an obvious time dependency and may be
desirable if the stage mesh position is calculated on-the-fly from the current stage variables.

In the case of an ESDIRK scheme A is of rank s − 1 and the situation becomes more
complicated. Here it is natural to require that a mesh velocity be given at the beginning of
the time step, ẋ0. Since c1 = 0, to avoid a multi-valued mesh velocity we set ẋ1 = ẋ0. This
then closes eq. (4.19) and allows us to solve for all of the later stage velocities ẋj. All of
the ESDIRK schemes we consider have the first same as last property, so we take the mesh
velocity at the final stage ẋs of one time step as the initial mesh velocity of the subsequent
time step.

4.2 Temporal Integrator

Consider for the moment our system of fluid uf and structure us variables written as a
coupled first order system of ordinary differential equations M du/dt = r(u) where

u =

[
uf

us

]
, r =

[
rf (uf ; x(us))
rs(us; t(uf))

]
, M =

[
Mf

M s

]
. (4.20)

CHAPTER 4. FLUID-STRUCTURE INTERACTION 38

Note that we have highlighted the dependence of the fluid on the structure arising from the
ALE mesh motion x, and the structure on the fluid via the surface traction t.

In addition, observe that the discretized structure equation may be separated into two
terms

rs(us; t(uf)) = rss(us) + rsf (t(uf)) (4.21)

where the first gives the structure dynamics in the absence of an applied surface traction
and the second accounts for the additional dynamics from the applied surface traction. Since
the second term is linear in t, if t̃ is any other surface traction, we may write the structure
equation as

rs(us; t(uf)) = rs(us; t̃) + rsf (t(uf)− t̃) (4.22)

Here we will generally think of t̃ as a predicted value of t(uf) and refer to it as a predicted
fluid-to-structure coupling.

Using this formulation, we may split eq. (4.20) as

M
du

dt
=

[
rf (uf ; x(us))
rs(us; t̃)

]
+

[
rsf (t(uf)− t̃)

]
(4.23)

where we intend to integrate the first term implicitly and the second term explicitly. Observe
here how the predicted fluid-structure coupling allows us to complete the implicit solve in
two phases, first calling a structure solver to compute the stage value of us and then calling
a fluid solver to compute the stage value of uf .

Our scheme differs slightly from the standard IMEX formulation in that we avoid eval-
uating the explicit terms rsf but instead update the stage flux for the structure equation
using the corrected value of the coupling t(uf). Note that this naturally allows per stage
Gauss-Seidel iterations where we treat the corrected fluid-to-structure coupling as the new
predicted value and repeat the stage calculations. It has been reported that using one or
more Gauss-Seidel iterations can improve the stability of the overall method [73], but we
emphasize that these iterations are generally not required to achieve the design accuracy of
the method.

Here we use the predictor suggested in ref. [75], namely the predicted value t̃ at stage i
is a linear combination of the corrected values t at previous stages

t̃i =
i−1∑
j=1

âij − aij
aii

tj (4.24)

where aij (resp. âij) are the coefficients from the implicit (resp. explicit) Runge-Kutta in-
tegration scheme. This predictor is easily derived by assuming a linear ODE du/dt = Au
which we split into parts intended to be integrated implicitly and explicitly:

du

dt
= (A− C)u︸ ︷︷ ︸

implicit

+ Cu︸︷︷︸
explicit

. (4.25)

CHAPTER 4. FLUID-STRUCTURE INTERACTION 39

The stage solution at stage i is

u(i) = u(0) + ∆t
i∑

j=1

aijkj + ∆t
i−1∑
j=1

âij k̂j (4.26)

= u(0) + ∆t
i∑

j=1

aij(A− C)u(j) + ∆t
i−1∑
j=1

âijCu
(j) (4.27)

= u(0) + ∆t
i∑

j=1

aijAu
(j)

︸ ︷︷ ︸
implicit scheme

+∆t

(
−Caiiu(i) +

i−1∑
j=1

(âij − aij)Cu(j)

)
(4.28)

which recognize as being the implicit scheme plus some additional terms. Here the additional
terms inspire the choice of a predictor:

C̃u(i) =
i−1∑
j=1

âij − aij
aii

Cu(j). (4.29)

To see how this actually is a predictor we solve for the stage solution and substitute to
see

(I −∆taii(A− C))u(i) = u(0) + ∆t
i−1∑
j=1

aij(A− C)u(j) + ∆t
i−1∑
j=1

âijCu
(j) (4.30)

= u(0) + ∆t
i−1∑
j=1

aijAu
(j) + ∆taiiC̃u(i) (4.31)

where C̃u(i) now is obviously a predicted coupling.
To better understand the coupling we now suppose our system consists of both fluid

variables and structure variables

A =

[
Aff Afs
Asf Ass

]
(4.32)

with the coupling C chosen to be

C =

[
0 0
Asf 0

]
. (4.33)

Then the matrix I −∆taii(A− C) is block upper-triangular and can be backsolved by first
doing a structure solve and then a fluid solve.

If the system is non-linear, as is the case with our fluid and structure models, the algo-
rithm and analysis becomes more tedious but the ideas remain the same. In general we use

CHAPTER 4. FLUID-STRUCTURE INTERACTION 40

Algorithm 4.2 Time integration scheme for the coupled fluid-structure system.

Input: Structure usn and fluid ufn values at time tn.
Input: Timestep ∆t > 0.
Input: Paired implicit (aij, bi, ci) and explicit (âij, b̂i, ĉi) Runge-Kutta coefficients.

tn,1 ← t(ufn,1) # Fluid-to-structure coupling.
ksn,1 ←M−1

s r
s(usn,1, tn,1) # Structure residual.

kfn,1 ←M−1
f r

f (ufn,1,x(usn,1)) # Fluid residual.
for stage i = 2, . . . , s do

t̃n,i ←
∑i−1

j=1
âij−aij
aii

tn,j # Predict fluid-to-structure coupling.

Solve for ksn,i in Msk
s
n,i = rs(usn,i, t̃n,i)

where usn,i = usn + ∆t
∑i

j=1 aijk
s
n,j # Implicit structure solve.

Solve for kfn,i in Mfk
f
n,i = rf (ufn,i,x(usn,i))

where ufn,i = ufn + ∆t
∑i

j=1 aijk
f
n,j # Implicit fluid solve.

tn,i ← t(ufn,i) # Correct fluid-to-structure coupling.
ksn,i ←M−1

s r
s(usn,i, tn,i) # Re-evaluate structure residual.

end for
usn+1 ← usn + ∆t

∑s
i=1 bik

s
n,i # Advance structure.

ufn+1 ← ufn + ∆t
∑s

i=1 bik
f
n,i # Advance fluid.

Output: Structure usn+1 and fluid ufn+1 values at time tn+1 = tn + ∆t.

the same formula for the predictor (since that term enters the structure equation linearly)
but replace the linear structure and fluid solves with their non-linear counterparts.

At a minimum it is easy to see that the algorithm, as presented in algorithm 4.2, is
first order accurate by linearizing around the initial conditions and noting that it becomes
equivalent to the linear algorithm just discussed. Numerical experiments, however, indicate
that the design order is achieved.

The algorithm easily lends itself to subiterations, repeating the structure and fluid solvers.
However this is quite expensive and not required to achieve the design accuracy [74]. There
have been reports of some increased stability when using subiterations [73] and we did
experience this to some extent. However, we found the method was generally stable in the
regime of time accurate coupling.

4.3 Validation

4.3.1 ALE / Expanding Pressure Wave

We begin by testing the Arbitrary Lagrangian-Eulerian formulation with a specified analytic
mesh deformation, and compare spatial convergence for several deformation strategies. As

CHAPTER 4. FLUID-STRUCTURE INTERACTION 41

a non-trivial test problem, we consider a small Gaussian perturbation in the density and
pressure of an otherwise constant state.

As the domain we choose Ω = [0, 1]2 with far-field boundary conditions on the left,
bottom, and right walls and an adiabatic no-slip condition on the top wall. The spatially
varying fluid density, momentum and pressure are initialized as

ρ = ρ∞(1 + d0 exp(‖x− x0‖2
2/r

2
0) (4.34)

ρ~u = 0 (4.35)

p = p∞(1 + d0 exp(‖x− x0‖2
2/r

2
0)) (4.36)

with non-dimensionalized far-field density ρ∞ = 1. The far-field pressure p∞ is calculated
from eq. (2.10) using the non-dimensionalized sound speed a∞ = 5. The perturbation
parameters where chosen as d0 = 0.1, r0 = 0.1, and x0 = [0.5, 0.7]T .

The fluid is modeled using the compressible Navier-Stokes equations, eqs. (2.1) to (2.3),
with dynamic viscosity µ = 1/1000. The background mesh was optionally deformed using
an analytic mapping

x(X, Y, t) = X + A sin(2πX) sin(2πY) sin(2πft) (4.37)

y(X, Y, t) = Y + A sin(2πX) sin(2πY) sin(4πft) (4.38)

with amplitude A = 0.05 and frequency f = 20.
The system was integrated until a final time of T = 1/20 which is sufficient time for

the pressure wave to propagate and hit the adiabatic no-slip wall on the top of the domain.
We used the explicit RK4 scheme with a sufficiently small ∆t so that the error in the
solution at time T was dominated by errors in the spatial discretization and not the temporal
discretization.

Note that T is the period of mesh deformation, so that the mesh starts in an undeformed
configuration at time t = 0 and returns to an undeformed configuration at time t = T . This
allows us to measure the accuracy of the ALE mapping by comparing the numerical solution
of the problem at t = T to one obtained on a non-deforming mesh.

The domain Ω is discretized using triangular elements into a mesh Th by first dividing
the domain into a regular grid of squares of side length h and then dividing each of those
squares in half along the diagonal.

The solution on each element is represented using polynomials of degree p where we
investigate p = 1 through 5. Numerically the mesh deformation is represented on each
element using either a linear p = 1 representation or an isoparametric representation. A
time series of the solution on two meshes is shown in fig. 4.4.

Here we observe that both deformation strategies are easily able to accurately capture the
radiating pressure wave. Notice that when we represent the mesh deformation using p = 1
elements the resulting map x(X, t) is piecewise linear and hence the ALE formulation in
section 2.2 simplifies significantly as the deformation gradient G and mapping determinant
g are both constant. This also simplifies calculation of the viscous derivative as an entire
term ∇X(g−1) vanishes.

CHAPTER 4. FLUID-STRUCTURE INTERACTION 42

(a) t = 0 (b) t = T/3 (c) t = 2T/3 (d) t = T

(e) t = 0 (f) t = T/3 (g) t = 2T/3 (h) t = T

Figure 4.4: An expanding pressure wave on a deforming mesh using a linear deformation
(top) and an isoparametric deformation (bottom). In each case the solution was represented
using elements of polynomial degree 5. (Pressure).

However, a p = 1 mesh deformation representation is unlikely to be able to accurately
capture complicated boundary motions. On the other hand, the isoparametric p = 5 mesh
deformation representation can much more accurately capture complicated motions but is
more computationally expensive. A mixed approach is possible, where high order defor-
mations are used on elements near the boundaries and low order deformations are used
elsewhere, but this is not explored in this work.

The relative accuracy of using a p = 1 deformation instead of an isoparametric can be
discussed. Here we näıvely expect the p = 1 mapping to produce slightly better results
since the resulting map from real coordinates x to the solution u, which requires inverting
the mesh deformation, is slightly less complicated. This intuition is reflected in a numerical
convergence plot which is shown in fig. 4.5.

Here we measure the error in the solution at t = T in the discrete maximum norm for
a non-deforming fixed mesh, a p = 1 deformation, and an isoparametric deformation (‘Full
P’) for elements of order p = 1 though 5. In general we observe convergence at the expected
p + 1 rate for the fixed mesh and both deformation strategies. For small p the difference
in accuracy between the three methods is difficult to ascertain, however for larger p the
difference is more acute. At p = 5 there is a notable difference in accuracy between the three
methods, with the fixed mesh being the most accurate and the isoparametric deformation
being the least accurate.

CHAPTER 4. FLUID-STRUCTURE INTERACTION 43

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

Element size h

D
is

c
re

te
 m

a
x
im

u
m

 e
rr

o
r

p=1

p=2

p=3

p=4

p=5

1

2

1

6

Fixed

P1 Deformation

Full P Deformation

Figure 4.5: Spatial convergence in the discrete maximum error at the final simulation time
for an expanding pressure wave for meshes of polynomial degree p = 1 to 5. The deformation
is either linear (P1) or isoparametric (Full P).

From this experiment we can generally recommend using a linear representation of the
mesh deformation if possible. If not, the isoparametric deformation still performs adequately
and is able to represent a much larger class of deformations. Mixed approaches should be
feasible and represent a possible compromise.

4.3.2 FSI / Pitching and Heaving Airfoil

To validate the high-order convergence of the integration scheme in time, we considered a
simple test problem consisting of a pitching and heaving NACA 0012 airfoil. The airfoil
is allowed to rotate around a fixed pivot in the interior of the airfoil, as shown in fig. 4.6.
Since the airfoil is treated as a rigid body, the structure variables consist only of the pitching
angle θ and the angular velocity ω. The fluid is assigned no-slip boundary conditions on the
interface with the airfoil, which contributes a torque τ about the pivot of the airfoil.

The position of the pivot follows a prescribed vertical motion y(t) between t = 0 and
t = 1 which is C3 and satisfies y(0) = 0 and y(1) = 1/4. In addition the airfoil is subjected
to a torsional restoring force with torsional spring constant k. The equations of motion of

CHAPTER 4. FLUID-STRUCTURE INTERACTION 44

θ(t)

y(t)

l

Figure 4.6: Schematic for the pitching and heaving airfoil.

the airfoil written as a first order system are

∂θ

∂t
= ω (4.39)

I
∂ω

∂t
= −kθ − τ − lm cos(θ)y′′(t) (4.40)

where I is the moment of inertia (around the pivot), l is the distance from the pivot to the
center of mass, and m is the total mass of the airfoil.

The non-dimensionalized constants chosen for this problem were I = 1, k = 0.1, l = 0.2,
and M = 1. The airfoil has chord length 1, and the pivot located along the midline a
distance 1/3 from the leading edge. The far field fluid has velocity u = [1, 0]T , density 1,
Mach number 0.2, and Reynolds number 1000. To initialize the system at time t = 0 we let
the structure be at rest and solve for the steady state solution of the fluid. The evolution of
the system is shown in fig. 4.7.

To validate the temporal convergence of the scheme we measured the relative error in the
angle of attack θ(t) as compared to the solution of the same system using an explicit fourth
order Runge-Kutta method with a suitably small timestep. A plot of the observed relative
error as a function of timestep for the third, fourth, and fifth order ARK coefficients is shown
in fig. 4.8. Note that in each case, the scheme exhibits convergence at the designed rate.
For comparison we also solved the fully-coupled (monolithic) fluid-structure system using
the implicit coefficients of the ARK scheme, by performing many Gauss-Seidel subiterations
until achieving numerical convergence. This resulted in a negligible increase in accuracy
despite a tremendous increase in computational cost.

We emphasize that a näıve staggered method would generally achieve first, or at most
second, order accuracy in time. Here, we are able to achieve up to 5th order accuracy in time
while reusing the same fluid and and structure solvers that would be used in a staggered
scheme.

CHAPTER 4. FLUID-STRUCTURE INTERACTION 45

t = 0.0 t = 0.4 t = 0.8

t = 1.2 t = 1.6 t = 2.0

Figure 4.7: The airfoil at various times. The pivot location of the airfoil is smoothly moved
upwards between time t = 0 and t = 1 and held fixed between t = 1 and t = 2. (Mach
number).

4.3.3 FSI / Cantilever

Next we consider a variation on a standard fluid-structure interaction benchmark [68], which
consists of a flexible cantilever behind a rigid square body as shown in fig. 4.9.

The cantilever and square body are assigned no-slip boundary conditions. We impose a
far field boundary condition at the far walls, with the far field conditions corresponding to
uniform flow to the right at 51.3 cm/s. To approximate incompressible flow, we assign a far
field Mach number of 0.2. The flow has Reynolds number Re = 333 based on the dimension
of the bluff body (1 cm).

We model the cantilever using the neo-Hookean formulation as described in section 2.4,
instead of the St. Venant-Kirchhoff model as the test problem describes. We are careful to
assign the same elastic moduli, which are specified as Young’s modulus E = 2.5×105 Pa and
Poisson’s ratio ν = 0.35. The shear and bulk moduli are then calculated as µ = E/(2(1+ν))
and κ = E/(3(1− 2ν)).

The fluid domain was triangulated using 6576 degree 3 elements, for a total of 65,760
high-order nodes. The cantilever was triangulated using 64 degree 3 elements. The system
was integrated in time using the ARK3 coefficients and a fixed time step of 1× 10−3 s. One
Gauss-Seidel iteration was performed at each integration stage to increase the stability of
the coupling.

CHAPTER 4. FLUID-STRUCTURE INTERACTION 46

10-2 10-1 100

Time step ∆t

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 e

rr
o
r

in
 θ

(t
)

1
1

1

3

1

4

1

5
Weak Coupling

ARK3

FC-ARK3

ARK4

FC-ARK4

ARK5

FC-ARK5

Figure 4.8: The relative error in angle of attack, ‖θ(t)−θexact(t)‖∞/‖θexact(t)‖∞, as a function
of timestep. The ARK3, ARK4, and ARK5 schemes achieve the expected order of accuracy.
Solving the fully-coupled (“FC-”) system using the implicit method from the IMEX scheme
shows a negligible increase in accuracy despite a large increase in computational cost. A
basic staggered weak coupling scheme is shown for comparison.

5.5 14.0

12.0

1.0

1.0

4.0

0.06

Cantilever
ρs = 100 kg/m3

νs = 0.35
E = 2.5× 105 Pa

Fluid & Flow
ρf = 1.18 kg/m3

νf = 1.54× 10−5 m2/s
vf = 0.513 m/s
Re = 333
Ma = 0.2

Figure 4.9: Flexible cantilever behind a rigid square body. All distances shown are in cm.

CHAPTER 4. FLUID-STRUCTURE INTERACTION 47

Figure 4.10: The the cantilever near maximal displacement (Entropy).

0 5 10 15 20
Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

V
e
rt

ic
a
l
ti

p
 d

is
p
la

ce
m

e
n
t

(c
m

)

Figure 4.11: The vertical displacement of the cantilever tip as a function of time.

The Reynolds number considered is high enough that the flow separates at the bluff body
and produces a von Kármán vortex street. This causes the cantilever to begin oscillating
and after a period of a few seconds the fluid-cantilever system settles into a nearly periodic
state. Figure 4.11 shows the vertical displacement of the tip as a function of time.

The observed tip vertical amplitude and oscillation frequency are compared to the existing
literature in table 4.1. Our observed a maximal tip amplitude of 1.12 cm and oscillation
frequency of 3.18 Hz show good agreement with values obtained in the literature, which were
computed using different fluid, structure, and temporal discretizations.

CHAPTER 4. FLUID-STRUCTURE INTERACTION 48

Table 4.1: A comparison of the oscillation frequency and maximal vertical tip displacement
of the cantilever with values reported in the literature, as reproduced from ref. [34]. The
coupling abbreviations stand for partitioned block Gauss-Seidel (P-BGS), partitioned block-
Newton (P-BN), and partitioned Newton-Raphson (P-NR).

Author Fluid Structure Coupling f(Hz) dmax(cm)

Kassiotis et al. [39] FVM FEM P-BGS 2.98 1.05
Wood et al. [69] FVM FEM P-BGS 2.94 1.15
Yvin [71] FVM FEM P-BGS 3.16 1.20
Olivier et al. [46] FVM FVM P-BGS 3.17 0.95
Habchi et al. [34] FVM FVM P-BGS 3.25 1.02
Walhorn et al. [66] Stabilized FEM FEM P-BGS 3.14 1.02
Wall and Ramm [68] Stabilized FEM FEM P-BGS 2.99 1.22
Matthies and Steindorf [45] FVM FEM P-BN 3.13 1.18
Dettmer and Perić [22] Stabilized FEM FEM P-NR 3.03 1.25
Present study DG FEM FEM IMEX 3.18 1.12

49

Chapter 5

Membranes & Flapping Wings

There has been recent interest in better understanding the mechanics of animal flight. One
particularly interesting and little understood regime of animal flight are bats and other
similar mammals which have thin compliant membrane-like wings. Here the pattern of flight
is quite complicated; bats, for example, are able to articulate numerous joints in the wing.
In addition, the compliant skin membrane is thought to play a large role in the resulting
aerodynamic properties of the wing. Better understanding the role the membrane wings play
animal flight is thought likely to improve the performance of micro air vehicles [60].

Because of the relative difficulty in working with live animals and the inability to isolate
the effect of a particular kinematic parameter, considerable effort has been put into other
means of studying bat flight including building a robotic replica [8]. In the same vein as
ref. [63] we propose using numerical simulations of more canonical geometries (squares and
triangles) of membranes whose boundaries are either held fixed or driven in an idealized
flapping motion [30].

In this chapter we demonstrate that the techniques in this work are suitable for simulating
simple motions of thin membranes at moderate Reynolds number. We begin by investigating
a thin two-dimensional membrane whose leading and trailing edges are held fixed to create a
constant angle of attack with an incoming fluid. We then extend this work to a fully three-
dimensional model where tip vortices create a non-uniform flow in the span-wise direction.
In each case we demonstrate that the compliance of the membrane is successful in delaying
or eliminating leading edge separation which would be present if the membrane was instead
perfectly rigid.

We then extend this work to flapping flight, first in the two-dimensional case where
the leading and trailing edges of the membrane are instead driven in a sinusoidal pattern.
A similar ability of the leading edge to align with the incident flow is observed. In three
dimensions we model a flapping wing as a triangular membrane which is stretched between a
fixed body and an oscillating leading edge, with an unconstrained trailing edge. The dihedral
angle of the leading edge varies sinusoidally and we observe that the membrane experiences
both inertial effects from the flapping motion and aeromechanical effects from the fluid.

CHAPTER 5. MEMBRANES & FLAPPING WINGS 50

(a)

(b)

Figure 5.1: (a) The undeformed fluid (green) and structure (blue) meshes for the 2D Mem-
brane at a 10◦ angle of attack. (b) The region near the structure is enlarged.

5.1 Membrane, 2D

First we considered a thin rectangular membrane with length 1 and height 0.01 in uniform
incoming flow at a 10◦ angle of attack. This structure was modeled using the standard vol-
umetric equations as described in section 2.4, with highly anisotropic elements. We applied
no-slip conditions on the membrane boundary and far field boundary conditions on the far
fluid domain boundaries. The far field flow was set to unit density, unit velocity in the x
direction, Mach number 0.2, and Reynolds number 1000. We assigned Dirichlet boundary
conditions of no displacement to the front and rear faces of the membrane.

The membrane was set to a non-dimensionalized density of ρ = 40.0, Poisson’s ratio of
ν = 0.3. We explored two different Young’s moduli of E = 1 × 103 and E = 5 × 103. For
comparison we also investigated a fixed, rigid plate.

The membrane was discretized using 44 degree 3 triangular elements, and the fluid was
discretized using 2575 degree 3 triangular elements. See fig. 5.1. The system was integrated
in time using the ARK3 coefficients and a timestep of 2× 10−3.

The lift and drag coefficients as a function of time for the rigid plate and two membranes
are plotted in fig. 5.3. In each case the coefficients were computed using the characteristic
planform area, i.e., 1.

CHAPTER 5. MEMBRANES & FLAPPING WINGS 51

Rigid Plate Membrane (E = 5× 103) Membrane (E = 1× 103).

Figure 5.2: The rigid plate and two membranes at time T = 1.0 (top), 2.0, 3.0, and 4.0
(bottom). (Entropy).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
ra

g
 c

o
e
ff

ic
ie

n
t
C
D

Rigid plate

Membrane (E=5×103)

Membrane (E=1×103)

0 2 4 6 8 10
Time

0.0

0.5

1.0

1.5

2.0

2.5

Li
ft

 c
o
e
ff

ic
ie

n
t
C
L

Figure 5.3: Lift and drag coefficients as a function of time for a rigid plate and two flexible
membranes at 10◦ angle of attack.

CHAPTER 5. MEMBRANES & FLAPPING WINGS 52

Figure 5.4: A cross section of the fluid mesh (blue) and entire structure mesh (green) in the
reference configuration (left) and typical deformed configuration (right).

5.2 Membrane, 3D

In three dimensions we considered an extruded form of the 2D membrane module from
section 5.1. The membrane has length and width 1 and height 0.01 and is placed in uniform
flow at an atan(5/12) ≈ 22.6◦ angle of attack. The fluid was assigned no-slip conditions at
the membrane boundary and far field conditions at the far boundaries. The far field flow was
set to unit density ρ = 1.0, unit velocity u = [1.0, 0, 0.]T , Mach number 0.2 and Reynolds
number 2000. The membrane was assigned Dirichlet boundary conditions on the leading and
trailing faces. The physical parameters of the membrane were chosen as density ρ = 100.0,
Young’s modulus E = 1× 103, and Poisson’s ratio ν = 0.35.

The membrane was discretized using 1317 highly anisotropic degree 3 elements. The fluid
mesh had 108,358 degree 3 elements, for a total of about 2.17 million high-order nodes or
almost 11 million degrees of freedom. A cross-section of the fluid mesh is shown in fig. 5.4.

A timestep of 1 × 10−3 was used and the system was solved until T = 3.0. The Mach
number is shown on iso-entropy surfaces for several time steps in fig. 5.5. Here we see that the
leading edge of the membrane aligns with the incoming fluid and successfully prevents leading
edge separation. In addition we see that the fluid curls around the sides of the membrane
and exhibits a classic roll-up behavior. For comparison, in fig. 5.6 we show the behavior of
a fluid when the membrane is replaced by a fixed rigid plate of the same dimensions.

5.3 Flapping Wing, 2D

We model a two-dimensional flapping wing as a thin rectangular structure of chord length 1
and height 0.06 whose endpoints are heaved according to a prescribed vertical motion. The
leading (“left”) and trailing (“right”) edges follow a sinusoidal motion with a phase lag of

CHAPTER 5. MEMBRANES & FLAPPING WINGS 53

t = 0.0 t = 0.6 t = 1.2

t = 1.8 t = 2.4 t = 3.0

t = 3.6 t = 4.2 t = 4.8

t = 5.4 t = 6.0

Figure 5.5: A three-dimensional membrane at various times (Mach number on iso-entropy
surfaces). The leading edge of the membrane aligns with the fluid and prevents separation.

60◦. Specifically,

yl(t) = A sin(2πft) (5.1)

yr(t) = A sin(2πft− φ) (5.2)

where A = 0.5, f = 0.2, and φ = π/3. A schematic of the model along with the material
parameters is shown in fig. 5.7.

CHAPTER 5. MEMBRANES & FLAPPING WINGS 54

t = 0.0 t = 0.6 t = 1.2

t = 1.8 t = 2.4 t = 3.0

t = 3.6 t = 4.2 t = 4.8

t = 5.4 t = 6.0

Figure 5.6: A rigid plate at various times (Mach number on iso-entropy surfaces). Note the
leading edge separation caused by the high angle of attack.

For consistency in the initialization of the fluid, the structure was forced into a 0◦ angle
of attack at time t = 0 by multiplying the yl- and yr-coordinates by a smooth C3 blending
function which was 0 at t = 0 and 1 at t = 1/(4f). This creates a somewhat violent initial
motion and in some cases introduces transient modes in the structure which decay after a
few periods of heaving.

The structure was always started with no velocity and in a rectangular configuration with

CHAPTER 5. MEMBRANES & FLAPPING WINGS 55

0 1

yl(t)

yr (t)

−2 5
−3

3

u∞

h

Structure
h = 0.06
l = 1.0
ρs = 200
νs = 0.40
Es = 1× 103 or 5× 103

Fluid & Flow
ρ∞ = 1.0
u∞ = 1.0
Ma∞ = 0.2
Re = 2000

Figure 5.7: The two-dimensional wing model in non-dimensionalized coordinates. The left
and right endpoints of the structure follow a prescribed motion.

height h = 0.06 and length l = 1. In some cases the structure was prestretched by an amount
∆ by changing the reference dimensions of the structure to lref = l/∆ and href = h∆2ν ,
where ν is Poisson’s ratio. This is not a stationary configuration for the structure, but the
initial transients decay quickly and do not cause any difficulties in the simulation.

The domain was triangulated into 44 elements each discretized using polynomials of
degree 3 for a total of 268 nodes or 1072 degrees of freedom. The fluid was discretized using
2575 degree 3 polynomial elements for a total of 25,750 nodes or 103,000 degrees of freedom.
A timestep of ∆t = 5× 10−3 was used to integrate the system until time T = 20.0.

We investigated several different material parameters and prestretching factors, and show
the results of the simulations at several times in fig. 5.8. Note that the varying parameters
greatly impact the ability of the structure to align with the incident flow. Each simulation
took approximately 3 hours on 48 CPU cores.

5.4 Flapping Wing, 3D

In three dimensions we consider a thin prismatic triangular structure of root chord length 1,
tip-to-tip span length 3, thickness 0.01, and 0◦ sweep, as shown in fig. 5.9. The leading edge

CHAPTER 5. MEMBRANES & FLAPPING WINGS 56

E = 5× 103

∆ = 1.5
E = 1× 103

∆ = 1.2
E = 1× 103

∆ = 1.1

Figure 5.8: The two-dimensional wing (black) at time T = 17.0 (top), 18.0, 19.0, and 20.0
(bottom). The structures have varying Young’s modulus E and prestretching factor ∆, and
range from nearly rigid (left) to quite flexible (right). (Entropy).

of the wing is driven in a sinusoidal skewing motion in the y-z plane, namely

x(t,X, Y, Z) = X (5.3)

y(t,X, Y, Z) = cos(θ(t))Y (5.4)

z(t,X, Y, Z) = sin(θ(t))|Y |+ Z (5.5)

where the dihedral angle θ(t) follows a sinusoidal pattern

θ(t) = θ0 cos(2πft), (5.6)

with amplitude θ0 = π/12 and frequency f = 0.2.
To introduce some additional rigidity into the structure, it was prestretched by a factor

CHAPTER 5. MEMBRANES & FLAPPING WINGS 57

u∞

1

3

z thickness =10−2

x

y

Structure
ρs = 200
νs = 0.35
Es = 5× 103

Fluid & Flow
ρ∞ = 1.0
u∞ = 1.0
Ma∞ = 0.2
Re = 500

Figure 5.9: The overhead view of the three-dimensional wing which is uniformly extruded
in the z direction. Dirichlet conditions are imposed along the planes given by the solid lines.
The leading edge is driven with a sinusoidal flapping motion in the y-z plane, and the root
chord is held fixed.

∆ by changing the dimensions of the reference structure to

spanref = span/∆ (5.7)

chordref = chord/∆ (5.8)

thicknessref = thickness/∆−ν . (5.9)

We used a prestretching factor ∆ = 1.05. To avoid strong initial transients in the
structure we began the simulation by first allowing the structure to relax into a steady state
configuration at the top of the flapping stroke and in the absence of the fluid.

The structure was discretized using 498 degree 2 tetrahedral elements for a total of
1197 nodes and 7182 degrees of freedom. The fluid was discretized using 22,683 degree 2
tetrahedral elements for a total of 226,830 nodes or 1,134,150 degrees of freedom. A timestep
of ∆t = 5× 10−3 was used to integrate until the time T = 5.5 which corresponds to a little
more than one complete stroke.

The simulation was run on 192 CPU cores and took approximately two hours to complete.
See fig. 5.10.

CHAPTER 5. MEMBRANES & FLAPPING WINGS 58

t = 0.0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5

Figure 5.10: A three-dimensional wing at various times (Mach number on iso-entropy sur-
faces).

59

Chapter 6

Acoustics

6.1 Tuning Fork

The tuning fork and its properties have long been of interest. Helmholtz, for instance,
observed that the sound generation is not directionally uniform near the tuning fork. Instead,
in ref. [35] (page 161), Helmholtz observes:

On striking a tuning-fork and slowly revolving it about its longitudinal axis close
to the ear, it will be found that there are four positions in which the tone is
heard clearly; and four intermediate positions in which it is inaudible. The four
positions of strong sound are those in which either one of the prongs, or one of
the side surfaces of the fork, is turned towards the ear.

Helmholtz continues to explain that the sound pattern is due to an interference effect between
sound generated from each of the tines. Further work refined this observation to posit that
the radiated sound field is that of a linear quadrupole, i.e., a sum of two dipole sources of
opposite phase whose axes lie on a single line [61], a result which has been generally validated
by experimental measurement [59].

This observation shows that modeling a tuning fork fundamentally requires a three-
dimensional simulation, as a two-dimensional slice would either fail to capture this directivity
pattern or would be unable to properly model the tuning fork itself.

Here we seek to computationally reproduce these measurements of the near-field sound
directivity pattern. In addition we study the decay rates for various modes in the tuning fork
and demonstrate that a high-order method can naturally capture these rates without any
assumptions beyond the standard physical parameters for air and steel. In particular, we
observe proper levels of damping without any damping terms in the structure model itself.

6.1.1 The Model

The dimensions of the tuning fork considered are shown in fig. 6.1. The two tines have a
square cross section with dimensions 0.5 cm by 0.5 cm and are approximately 8.5 cm long.

CHAPTER 6. ACOUSTICS 60

4.0 8.5

110 ◦

0.5

0.9
E = 200 GPa

ν = 0.29

ρ = 7.8 gm/cm3

Figure 6.1: The dimensions of a cross section of the tuning fork, as well as its material
parameters. All distances are given in cm. The tuning fork is extruded 0.5 cm so that the
cross-section of the tines are square.

They connect to a stem which is 0.5 cm by 0.5 cm in cross section and 4.0 cm long. The
tines are separated by a distance of 0.9 cm. While these dimensions are typical for a tuning
fork, it is important to note that this model is not based upon a physical tuning fork and in
particular the fundamental mode does not correspond to a standard musical pitch.

The tuning fork is modeled after steel, using the physical parameters density ρ =
7800 kg/m3, Young’s Modulus E = 200 GPa, and Poisson’s ratio ν = 0.29. In our work
we have chosen to hold the tuning fork by rigidly clamping the square face at the base of
the stem.

Approximations of a tuning fork using a beam model [58] predict symmetric in-plane
modes with frequencies of

fn =
πK

8L2

√
E

ρ

[
1.1942, 2.9882, 52, . . . (2n− 1)2] (6.1)

where L is the length of the tines and K is the radius of gyration (1/
√

12 × 0.5 cm in our
case). Using the physical parameters for steel, this gives approximate values of the first two
frequencies:

f1 ≈ 566.3 Hz and f2 ≈ 3546 Hz. (6.2)

As is customary, we will refer to the first mode as the fundamental or principal mode. This
is the dominant mode when the tuning fork is struck and corresponds to the pitch that is
heard. In this mode the two tines move in a symmetrical fashion — at any moment either
both towards each other or both away from each other. The second mode is called the clang
mode and corresponds to a symmetric mode where the tips of the tines move towards each
other while the middle of the tines move away from each other, and vice versa.

In addition to symmetric in-plane modes, there are also a few other natural classes of
modes. Asymmetric in-plane modes are ones where the tines of the tuning fork move in the

CHAPTER 6. ACOUSTICS 61

(a) Along the tuning fork axis. (b) Perpendicular to the tuning fork axis.

Figure 6.2: The computational mesh for the tuning fork (green) and two different cross
sections of the computational mesh for the fluid (blue) in a region near the tuning fork.

same direction. Here it is difficult to have a theoretical formula for the frequencies because
the stem also plays a large role in the motion. Out-of-plane modes are ones where the tines
of the tuning fork leave the plane, either in a symmetrical or asymmetrical fashion.

Before moving on we finally note that we model the tuning fork as immersed in air. The
air is assigned typical values: density ρ = 1.24 kg/m3, speed of sound c = 343.0 m/s, and
dynamic viscosity 1.836 ·10−5kg/(m s). The simulation domain is a box which extends 10 cm
from the tuning fork in each of the Cartesian directions. Note that this domain is almost
entirely near-field, as the wavelengths for the two symmetric in-plane modes (eq. (6.2)) are:

λ1 = 60.5 cm and λ2 = 9.67 cm. (6.3)

These lengths are both on the order of, or larger than, the size of the computational domain.
The fluid is assigned no-slip boundary conditions on the interface with the tuning fork

and characteristic far-field boundary conditions at the far boundaries. We note that the
characteristic boundary conditions are not perfectly absorbing, i.e., waves may be reflected.
Future work could include using a perfectly matched layer at the boundary of the box to
prevent internal reflections.

6.1.2 Results

Finally, we present results for a single three-dimensional tuning fork simulation. We created
two unstructured tetrahedral meshes, one for the fluid and and one for the structure. The
structure mesh contained about 2,200 tetrahedra which for our polynomial degree p = 3
gives about 13,600 high-order nodes, or 82,000 degrees of freedom. The fluid mesh consisted
of approximately 23,200 tetrahedra, which for our polynomial degree p = 3 gives 464,000
high-order nodes, or 2,320,000 degrees of freedom (see fig. 6.2).

The tuning fork was initialized by linearly skewing the tines apart from each other so
that at the tip the interior spacing increased by 0.014 cm and the exterior spacing increased

CHAPTER 6. ACOUSTICS 62

by 0.029 cm. We note that this is a highly nonphysical excitation, but was intended to
validate the robustness of the solver and ensure that many of the symmetrical modes of the
tuning fork would be excited. The tines were then released and the system integrated in
time using the algorithm in section 4.2. A timestep of ∆t = 50µs was used and the system
was solved until T = 30 ms for a total of 600 time steps. This timestep corresponds to a
sampling frequency of 20 kHz allowing us to resolve frequencies below 10 kHz. We note that
this timestep is approximately a factor of 20 times above CFL for the fluid based upon the
sound speed and the size of the smallest elements.

Because of rather severe initial transients due to the highly deformed configuration of the
structure, a timestep of ∆t/5 was used for the first 5 timesteps.

Each time step took approximately one minute on 768 processors, for a total simulation
time of approximately 10 hours.

Pressure Time Series

We measured the pressure at several locations surrounding the tuning fork, in each case
recording the value relative to the baseline pressure p0 = 1.012 × 105 Pa. In fig. 6.3 we
present a time series for the pressure at three locations, each in a plane perpendicular to the
axis of the tuning fork intersecting the tuning fork 0.5 cm away from the tips of the tines.
The locations shown are all a distance of 5.0 cm from the axis of the tuning fork, making
angles of 0◦, 45◦, and 90◦ with the axis which passes through both tines. Observe that
the high frequency modes decay quickly over the first 10 ms or so, leaving a signal which is
almost entirely composed of the principal frequency.

We also present cross sectional visualizations of the pressure at two representative se-
quences of frames in fig. 6.4. The first sequence, 4.00 ms to 4.10 ms, is before the initial
transients have decayed. In this sequence we can see that a high frequency mode, most
likely the clang mode, is dominant. In the second sequence, 23.60 ms to 24.00 ms, we see
approximately one quarter period of the fundamental mode.

Recall that the sound pressure level Lp, measured in dB above a standard reference level,
is calculated as

Lp = 10 log10

(
prms

2

pref
2

)
, (6.4)

where prms is the root mean square of the signal (relative to the baseline pressure) and pref

is a reference pressure typically set to 2 × 10−5 Pa [2]. By taking a Fourier transform of
the last 9 periods of the pressure signal at location A, we show the sound pressure level for
various frequency in fig. 6.5. In addition we linearized the tuning fork model around the
reference configuration (in the absence of air) and show several computed eigenfrequencies
with a description of their corresponding eigenmodes. Due to the comparatively short length
of time simulated, the resolution from the Fourier transform is somewhat lacking especially
in the low frequency regime. We will return to this point later in section 6.1.2.

CHAPTER 6. ACOUSTICS 63

A (0 ◦)

B (45 ◦)

C (90 ◦)

5.0

(a) Measurement locations.

100

50

0

50

100

A
 (

0
◦
)

Relative Pressure (mPa)

100

50

0

50

100

B
 (

4
5
◦
)

0 5 10 15 20 25 30
Time (ms)

100

50

0

50

100

C
 (

90
◦
)

(b) Time series.

Figure 6.3: Time series data for the relative pressure at three locations each a distance 5.0 cm
from the axis of the tuning fork in a plane perpendicular to the axis. The plane is located
such that the tines of the tuning fork extend a distance 0.5 cm through the plane. The outer
box shows the boundary of computational domain.

Angular Dependence

The directionality of the sound field radiated by a tuning fork may also be measured. The
tuning fork is thought to be well modeled by a linear quadrupole, i.e., two dipoles of opposite
phase whose dipole axes lie along a single line. A formula for the resulting pressure field is
derived as [59, 61]

p(r, θ) =
A

r

[
(1− 3 cos2 θ)

(
ik

r
− 1

r2
+
k2

3

)
− k2

3

]
(6.5)

where A is a normalization constant, r is the distance from the linear quadrupole source,
k = 2π/λ is the wave number, and i indicates an out-of-phase term. The product kr is
generally used to separate the so-called near-field kr � 1 from the far-field kr � 1.

From this formula we compute the angular and radial dependence on the sound pressure
level for an idealized linear quadrupole:

Lp = 10 log10

(
‖p(r, θ)‖2

pref
2

)
. (6.6)

In fig. 6.6, we compare this idealized angular dependence to measured sound pressure levels
at a variety of distances from the axis of the tuning fork. In each case the measurements
were done in the same plane as our previous measurements (see fig. 6.3a). As is typical, we

CHAPTER 6. ACOUSTICS 64

(a) t = 4.00 ms (b) t = 4.05 ms (c) t = 4.10 ms

(d) t = 23.60 ms (e) t = 23.80 ms (f) t = 24.00 ms

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Relative
Pressure
(Pa)

Figure 6.4: The relative pressure in a plane perpendicular to the axis of the tuning fork
(as in fig. 6.3a) at various times. For scale, the figures are 20 cm per side which represents
almost all of the computational domain in that plane.

have normalized each plot to the maximum value so that the maximum sound pressure level
is shown as 0 dB.

Perhaps the most striking aspect of the directivity plots is the sharp decrease in sound
pressure levels between regions of maxima. For instance, we observe an SPL drop of over
40 dB for 4 specific angles when measuring 2.5 cm away from the axis of the tuning fork.
Next observe that we accurately capture the expected 5 dB drop in the maximum sound
pressure level between the 0◦–180◦ and the 90◦–270◦ axes.

Also notable is the relatively good agreement between the measured sound pressure levels
and the linear quadrupole source behavior, especially at the larger radii of 7.5 cm and 10.0 cm.
For smaller radii the system is likely no longer well-modeled by an idealized linear quadrupole
as the finite size effects of the actual tuning fork are likely to play a larger role. We note
that our observed disparity between measurements and the linear quadrupole at 2.5 cm has a
similar character to previous experimental measurements (c.f., fig. 9b in ref. [59]) wherein the
lobes at 90◦ and 270◦ are observed to be wider than those of an idealized linear quadrupole,
and the lobes at 0◦ and 180◦ are observed to be narrower.

CHAPTER 6. ACOUSTICS 65

100 200 500 1000 2000 5000 10000
Frequency (Hz)

40

20

0

20

40

60

80
S
o
u
n
d
 P

re
ss

u
re

 L
e
v
e
l
(d

B
)

f=195.6 Hz

Asymmetric
in-plane

f=564.9 Hz

Fundamental
mode

f=1463.2 Hz

Asymmetric
in-plane

f=3484.3 Hz

Clang
mode

Frequency Spectrum at location A (0 ◦)

Figure 6.5: The sound pressure level Lp relative to a reference pressure 2 × 10−5 Pa for a
range of frequencies, as measured over the last 9 periods of the base frequency as observed
at location A. The frequencies of several eigenmodes of the linearized structure are shown
for comparison.

Quality Factor

A major quantity of interest in a resonator system is the Q factor or quality factor. There
are two equivalent definitions for the Q factor, one based on energy storage and losses and
another based on resonance bandwidth. Here we consider the former, defining the Q factor
as

Q = 2π
E

∆E
(6.7)

where E is the total energy stored in the resonator and ∆E is the energy dissipated per
cycle. Since ∆E � E, a bit of algebra shows that we can equivalently define the Q factor as
the number of periods required for the energy to decay by e−2π. In other words, Q = 2πfτ if
the energy signal decays like e−t/τ . Since we have seen that the tuning fork emits an almost
entirely pure signal at the fundamental frequency after 10 ms, we will consider 1 cycle to be
one period of the fundamental mode.

CHAPTER 6. ACOUSTICS 66

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

-40 -30 -20 -10 0
dB

(a) 2.5 cm

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

-40 -30 -20 -10 0
dB

(b) 5.0 cm

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

-40 -30 -20 -10 0
dB

(c) 7.5 cm

0°

30°

60°
90°

120°

150°

180°

210°

240°
270°

300°

330°

-40 -30 -20 -10 0
dB

(d) 10.0 cm

Figure 6.6: The relative sound pressure levels by angle at various distances from the axis of
the tuning fork measured in 1◦ increments, averaged over nine periods of the fundamental
mode. Each plot has been normalized to its maximum value. The theoretical curve for a
linear quadrupole as given in eq. (6.5) is shown in a solid line. The tines of the tuning fork lie
at 0◦ and 180◦. Notice the 5 dB difference in sound pressure level between the two maxima
in the extreme near-field.

CHAPTER 6. ACOUSTICS 67

0 5 10 15 20 25 30
Time (ms)

0.0

0.5

1.0

1.5

2.0

E
n
e
rg

y
 (

m
J
)

Potential
Kinetic
Total

(a) Energy time series.

0 5 10 15 20 25 30
Time (ms)

0.770

0.775

0.780

0.785

0.790

0.795

0.800

0.805

0.810

E
n
e
rg

y
 (

m
J
)

Total Energy
Best fit

(b) Zoomed in view with a best-fit curve.

Figure 6.7: Kinetic, potential, and total energy of the tuning fork.

We calculate the total energy of the tuning fork as

E =

∫
V

W dx︸ ︷︷ ︸
potential

+

∫
V

1

2
ρv2 dx︸ ︷︷ ︸

kinetic

(6.8)

where V is the reference configuration, ρ is the reference density, v is the material velocity,
and W is the strain energy density as defined in eq. (2.40).

We show the potential, kinetic, and total energy contained within the tuning fork as a
function of time in fig. 6.7a. Note the large initial losses due to the decay of high-frequency
transients followed by a region of little decay. By changing the scale of the vertical axis we
can better highlight the slow decay of the energy in the tuning fork, as shown in fig. 6.7b.
Here we have fit an exponential decay curve to the total energy for the values after 10 ms.
We see that the best fit curve quite closely approximates the decay in energy over many
cycles, with only some small intra-cycle deviations as the tuning fork does not emit energy
at a constant rate.

CHAPTER 6. ACOUSTICS 68

Table 6.1: Significant frequencies and Q factors observed in the time series pressure data at
location A (see fig. 6.3a) during 5.0 ms ≤ t ≤ 30.0 ms, as extracted by the filter diagonaliza-
tion method.

Frequency (Hz) Q Factor Notes

196.0 453.1 Asymmetric in-plane
562.2 3414.0 Fundamental mode

1459.0 194.8 Asymmetric in-plane
3424.0 22.8 Clang mode

The best fit exponential has the form E ≈ A exp(−t/τ) where we find A = 0.798 mJ and
τ = .96 s. Since the fundamental frequency is f = 564 Hz we easily calculate the Q factor to
be 3400 which is in the range expected for a tuning fork.

Filter Diagonalization & Harmonic Inversion

Another way to measure the Q factor is by running the pressure time series through a so-
called harmonic inversion process. Here we approximate the pressure by a sum of decaying
exponential functions

p(t) ≈
∑
k

dke
−iωkt (6.9)

with complex-valued parameters dk and ωk, where ωk encodes the resonant frequency and Q
factor of the k-th mode.

There are many such ways to decompose a signal into such a series. For example, the
Fourier transform (fig. 6.5) is already such a series, however its numerical stability comes at
the expense of poor frequency resolution as the ωk are fixed with a linear spacing of O(1/T)
where T is the duration of the time series.

Here we employ the filter diagonalization method [33, 44, 67], using the freely available
Harminv software [37]. We use the pressure time series data from location A (see fig. 6.3a)
as the input signal and specify a frequency window of 100 Hz to 10, 000 Hz. The method
identifies the fundamental frequency f = 562.6 Hz with corresponding Q factor 3414.0. In
addition, several other modes are well resolved and are shown in table 6.1. These modes
include the clang mode and two asymmetric in-plane modes, each of which has a much
smaller Q factor than the fundamental mode. Note that the identified frequencies are in
good agreement with the modes predicted by the linear eigenvalue analysis as shown in
fig. 6.5.

6.1.3 Conclusions

In this section we have demonstrated how high-order fluid-structure interaction methods
can accurately capture the dynamics of a tuning fork, providing accurate predictions of

CHAPTER 6. ACOUSTICS 69

frequencies, angular sound pressure level distributions, Q factors, and damping rates.
Future work includes more realistic initial conditions (e.g., an impulsive hit with a mallet),

a larger computational domain for far-field measurements, improved absorbing boundary
conditions on the far walls, and the addition of a resonance box. In addition more work
could be done to explore the higher symmetric modes as well as the asymmetric and out-of-
plane modes.

Lastly we mention that techniques similar to the ones used in this work could be used to
simulate a variety of other instruments including gongs, xylophones, and marimbas.

70

Chapter 7

Conclusions & Future Work

We have presented a high-order accurate scheme for fluid-structure interaction problems.
By using a predictor for the fluid-to-structure coupling, the method allows the reuse of
existing domain specific fluid and structure solvers while still maintaining a high-order of
time accuracy. The accuracy of the method in space and in time were verified using grid
convergence studies. The overall implementation was validated by comparing the results of
standard fluid-structure interaction test problem to other values reported in the literature.

We demonstrated the applicability of this method to several interesting problems, includ-
ing membrane and flapping wing aerodynamics and acoustics. In doing so we showed that
this method is versatile and robust, and easily scales to large three-dimensional simulations.

Yet much more work remains. We would like to better understand the stability of the
method. While the overall stability of the method never caused an issue in practice, the
scheme did exhibit instabilities for large time steps. To some extent stability was improved
using subiterations, and effect which merits further investigation.

We would like to develop more sophisticated mesh deformation procedures to allow for
larger more complicated motions. For example, our three-dimensional wing simulation in
section 5.4 involved only a ±15◦ flapping motion, which we would like to extend to a more
realistic ±45◦ or higher. In the same vein we would like to improve our flapping flight model
to include internal structure within the wing, much like how the bones run through the
wing of the bat. This could be accomplished by creating a mesh whose elements could be
partitioned into regions of membrane and bone and separate physical parameters could be
assigned to those regions. Alternatively several patches of membrane could be coupled to
one rigid or semi-rigid bone structure, although this would greatly complicate the structure
solver.

Lastly we are interested in investigating musical instruments with more complicated
sound generation mechanisms, particularly air-reed instruments like clarinets, oboes, and
saxophones.

71

Bibliography

[1] H.T. Ahn and Y. Kallinderis. “Strongly coupled flow/structure interactions with a
geometrically conservative ALE scheme on general hybrid meshes”. In: J. Comput.
Phys. 219.2 (2006), pp. 671–696. doi: 10.1016/j.jcp.2006.04.011.

[2] American National Standards Institute. Acoustical terminology. ANSI S1.1-1994. New
York, 1994.

[3] P.R. Amestoy, I.S. Duff, J. Koster, and J.-Y. L’Excellent. “A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling”. In: SIAM Journal on Matrix
Analysis and Applications 23.1 (2001), pp. 15–41. doi: 10.1137/S0895479899358194.

[4] P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. “Hybrid scheduling
for the parallel solution of linear systems”. In: Parallel Computing 32.2 (2006), pp. 136–
156. doi: 10.1016/j.parco.2005.07.004.

[5] E. Anderson et al. LAPACK users’ guide. Third. Philadelphia, PA: Society for Indus-
trial and Applied Mathematics, 1999. isbn: 978-0-89871-447-0; 0-89871-447-8.

[6] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. “Unified analysis of discontinu-
ous Galerkin methods for elliptic problems”. In: SIAM J. Numer. Anal. 39.5 (2001/02),
pp. 1749–1779. doi: 10.1137/S0036142901384162.

[7] U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. “Implicit-explicit Runge-Kutta methods for
time-dependent partial differential equations”. In: Appl. Numer. Math. 25.2–3 (1997).
Special issue on time integration (Amsterdam, 1996), pp. 151–167. doi: 10.1016/

S0168-9274(97)00056-1.

[8] J.W. Bahlman, S.M. Swartz, and K.S. Breuer. “Design and characterization of a multi-
articulated robotic bat wing”. In: Bioinspir. Biomim. 8 (1 2013), p. 016009. doi:
10.1088/1748-3182/8/1/016009.

[9] A. Beckert and H. Wendland. “Multivariate interpolation for fluid-structure-interaction
problems using radial basis functions”. In: Aerosp. Sci. Technol. 5 (2 2001), pp. 125–
134. doi: 10.1016/S1270-9638(00)01087-7.

[10] W. Benson, J.W. Harris, H. Stocker, and H. Lutz, eds. Handbook of physics. Springer-
Verlag New York, 2002, pp. xxv+1181. isbn: 978-0-387-95269-7; 0-387-95269-1.

http://dx.doi.org/10.1016/j.jcp.2006.04.011
http://dx.doi.org/10.1137/S0895479899358194
http://dx.doi.org/10.1016/j.parco.2005.07.004
http://dx.doi.org/10.1137/S0036142901384162
http://dx.doi.org/10.1016/S0168-9274(97)00056-1
http://dx.doi.org/10.1016/S0168-9274(97)00056-1
http://dx.doi.org/10.1088/1748-3182/8/1/016009
http://dx.doi.org/10.1016/S1270-9638(00)01087-7

BIBLIOGRAPHY 72

[11] K.Y. Billah and R.H. Scanlan. “Resonance, Tacoma Narrows bridge failure, and un-
dergraduate physics textbooks”. In: Am. J. Phys. 59 (2 1991), pp. 118–124. doi:
10.1119/1.16590.

[12] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLA-
PACK users’ guide. Philadelphia, PA: Society for Industrial and Applied Mathematics,
1997. isbn: 978-0-89871-397-8; 0-89871-397-8.

[13] A. de Boer, M.S. van der Schoot, and H. Bijl. “Mesh deformation based on radial
basis function interpolation”. In: Comput. Struct. 85 (11–14 2007), pp. 784–795. doi:
10.1016/j.compstruc.2007.01.013.

[14] J. Bonet and R.D. Wood. Nonlinear continuum mechanics for finite element analysis.
Cambridge: Cambridge University Press, 1997, pp. xviii+248. isbn: 978-0-521-57272-9;
0-521-57272-X.

[15] A. Boocher and B. Froehle. “On generators of bounded ratios of minors for totally
positive matrices”. In: Linear Algebra Appl. 428.7 (2008), pp. 1664–1684. doi: 10.

1016/j.laa.2007.10.011.

[16] D. Botteldooren. “Acoustical finite-difference time-domain simulation in a quasi-Car-
tesian grid”. In: J. Acoust. Soc. Am. 95 (5 1994), pp. 2313–2319. doi: 10.1121/1.
409866.

[17] B. Cockburn and C.-W. Shu. “The local discontinuous Galerkin method for time-de-
pendent convection-diffusion systems”. In: SIAM J. Numer. Anal. 35.6 (1998), pp. 2440–
2463. doi: 10.1137/S0036142997316712.

[18] J.F. Cori, S. Etienne, D. Pelletier, and A. Garon. “Implicit Runge-Kutta time integra-
tors for fluid-structure interactions”. In: 48th AIAA Aerospace Sciences Meeting and
Exhibit, Orlando, Florida. AIAA-2010-1445. Jan. 2010. doi: 10.2514/6.2010-1445.

[19] P. Crosetto, P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos, and A. Quater-
oni. “Fluid-structure interaction simulation of aortic blood flow”. In: Comput. & Fluids
43 (1 2011), pp. 46–57. doi: 10.1016/j.compfluid.2010.11.032.

[20] T.A. Davis. “Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal
method”. In: ACM Trans. Math. Software 30.2 (2004), pp. 196–199. doi: 10.1145/
992200.992206.

[21] B. Desjardins, E. Grenier, P.-L. Lions, and N. Masmoudi. “Incompressible limit for
solutions of the isentropic Navier-Stokes equations with Dirichlet boundary condi-
tions”. In: J. Math. Pures Appl. (9) 78.5 (1999), pp. 461–471. doi: 10.1016/S0021-
7824(99)00032-X.

[22] W. Dettmer and D. Perić. “A computational framework for fluid-structure interaction:
finite element formulation and applications”. In: Comput. Methods Appl. Mech. Engrg.
195.41-43 (2006), pp. 5754–5779. doi: 10.1016/j.cma.2005.10.019.

http://dx.doi.org/10.1119/1.16590
http://dx.doi.org/10.1016/j.compstruc.2007.01.013
http://dx.doi.org/10.1016/j.laa.2007.10.011
http://dx.doi.org/10.1016/j.laa.2007.10.011
http://dx.doi.org/10.1121/1.409866
http://dx.doi.org/10.1121/1.409866
http://dx.doi.org/10.1137/S0036142997316712
http://dx.doi.org/10.2514/6.2010-1445
http://dx.doi.org/10.1016/j.compfluid.2010.11.032
http://dx.doi.org/10.1145/992200.992206
http://dx.doi.org/10.1145/992200.992206
http://dx.doi.org/10.1016/S0021-7824(99)00032-X
http://dx.doi.org/10.1016/S0021-7824(99)00032-X
http://dx.doi.org/10.1016/j.cma.2005.10.019

BIBLIOGRAPHY 73

[23] W.G. Dettmer and D. Perić. “A new staggered scheme for fluid-structure interaction”.
In: Internat. J. Numer. Methods Engrg. 93.1 (2013), pp. 1–22. doi: 10.1002/nme.4370.

[24] C. Farhat and P. Geuzaine. “Design and analysis of robust ALE time-integrators for
the solution of unsteady flow problems on moving grids”. In: Comput. Methods Appl.
Mech. Engrg. 193.39-41 (2004), pp. 4073–4095. doi: 10.1016/j.cma.2003.09.027.

[25] C. Farhat and M. Lesoinne. “Two efficient staggered algorithms for the serial and
parallel solution of three-dimensional nonlinear transient aeroelastic problems”. In:
Comput. Methods Appl. Mech. Engrg. 182.3-4 (2000), pp. 499–515. doi: 10.1016/

S0045-7825(99)00206-6.

[26] A.C. Faul and M.J.D. Powell. “Proof of convergence of an iterative technique for
thin plate spline interpolation in two dimensions”. In: Adv. Comput. Math. 11.2-3
(1999). Radial basis functions and their applications, pp. 183–192. doi: 10.1023/A:
1018923925800.

[27] C.L. Fefferman. Existence and smoothness of the Navier-Stokes equation. Clay Math-
ematics Institute Millenium Prize Problems. url: http : / / www . claymath . org /

millennium/Navier-Stokes_Equations/navierstokes.pdf.

[28] C.A. Felippa, K.C. Park, and C. Farhat. “Partitioned analysis of coupled mechani-
cal systems”. In: Computer Methods in Applied Mechanics and Engineering 190.24-25
(2001), pp. 3247–3270. doi: 10.1016/S0045-7825(00)00391-1.

[29] L. Formaggia, A. Quarteroni, and A. Veneziani, eds. Cardiovascular mathematics.
Vol. 1. MS&A. Modeling, Simulation and Applications. Modeling and simulation of
the circulatory system. Springer-Verlag Italia, Milan, 2009, pp. xiv+522. isbn: 978-88-
470-1151-9. doi: 10.1007/978-88-470-1152-6.

[30] B. Froehle and P.-O. Persson. “A high-order implicit-explicit fluid-structure interaction
method for flapping flight”. In: 21st AIAA Computational Fluid Dynamics Conference,
San Diego, California. June 2013. doi: 10.2514/6.2013-2690.

[31] K.-Y. Fung and H. Ju. “Time-domain impedance boundary conditions for compu-
tational acoustics and aeroacoustics”. In: Int. J. Comput. Fluid Dyn. 18 (6 2004),
pp. 503–511. doi: 10.1080/10618560410001673515.

[32] P. Geuzaine, C. Grandmont, and C. Farhat. “Design and analysis of ALE schemes with
provable second-order time-accuracy for inviscid and viscous flow simulations”. In: J.
Comput. Phys. 191.1 (2003), pp. 206–227. doi: 10.1016/S0021-9991(03)00311-5.

[33] S. Govindjee and P.-O. Persson. “A time-domain discontinuous Galerkin method for
mechanical resonator quality factor computations”. In: J. Comput. Phys. 231.19 (2012),
pp. 6380–6392. doi: 10.1016/j.jcp.2012.05.034.

[34] C. Habchi, S. Russeil, D. Bougeard, J.-L. Harion, T. Lemenand, A. Ghanem, D.D.
Valle, and H. Peerhossaini. “Partitioned solver for strongly coupled fluid-structure in-
teraction”. In: Comput. & Fluids 71 (2013), pp. 306–319. doi: 10.1016/j.compfluid.
2012.11.004.

http://dx.doi.org/10.1002/nme.4370
http://dx.doi.org/10.1016/j.cma.2003.09.027
http://dx.doi.org/10.1016/S0045-7825(99)00206-6
http://dx.doi.org/10.1016/S0045-7825(99)00206-6
http://dx.doi.org/10.1023/A:1018923925800
http://dx.doi.org/10.1023/A:1018923925800
http://www.claymath.org/millennium/Navier-Stokes_Equations/navierstokes.pdf
http://www.claymath.org/millennium/Navier-Stokes_Equations/navierstokes.pdf
http://dx.doi.org/10.1016/S0045-7825(00)00391-1
http://dx.doi.org/10.1007/978-88-470-1152-6
http://dx.doi.org/10.2514/6.2013-2690
http://dx.doi.org/10.1080/10618560410001673515
http://dx.doi.org/10.1016/S0021-9991(03)00311-5
http://dx.doi.org/10.1016/j.jcp.2012.05.034
http://dx.doi.org/10.1016/j.compfluid.2012.11.004
http://dx.doi.org/10.1016/j.compfluid.2012.11.004

BIBLIOGRAPHY 74

[35] H.L.F. Helmholtz. On the sensations of tone as a physiological basis for the theory of
music. Third. London: Longmans, Green, and Co., 1895, pp. xix+576.

[36] G.A. Holzapfel. Nonlinear solid mechanics. A continuum approach for engineering.
Chichester: John Wiley & Sons Ltd., 2000, pp. xiv+455. isbn: 978-0-471-82304-9; 0-
471-82304-X.

[37] S.G. Johnson. Harminv. Version 1.3.1. 2006. url: http://ab- initio.mit.edu/

harminv/.

[38] G. Karypis and V. Kumar. “A fast and high quality multilevel scheme for partitioning
irregular graphs”. In: SIAM J. Sci. Comput. 20.1 (1998), pp. 359–392. doi: 10.1137/
S1064827595287997.

[39] C. Kassiotis, A. Ibrahimbegovic, R. Niekamp, and H.G. Matthies. “Nonlinear fluid-
structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability
proof and validation examples”. In: Comput. Mech. 47.3 (2011), pp. 305–323. doi:
10.1007/s00466-010-0545-6.

[40] C.A. Kennedy and M.H. Carpenter. “Additive Runge-Kutta schemes for convection-
diffusion-reaction equations”. In: Appl. Numer. Math. 44.1-2 (2003), pp. 139–181. doi:
10.1016/S0168-9274(02)00138-1.

[41] T. Koto. “IMEX Runge-Kutta schemes for reaction-diffusion equations”. In: J. Com-
put. Appl. Math. 215.1 (2008), pp. 182–195. doi: 10.1016/j.cam.2007.04.003.

[42] C.K. Lin. “On the incompressible limit of the compressible Navier-Stokes equations”.
In: Comm. Partial Differential Equations 20.3-4 (1995), pp. 677–707. doi: 10.1080/
03605309508821108.

[43] I. Lomtev, R.M. Kirby, and G.E. Karniadakis. “A discontinuous Galerkin ALE method
for compressible viscous flows in moving domains”. In: J. Comput. Phys. 155.1 (1999),
pp. 128–159. doi: 10.1006/jcph.1999.6331.

[44] V.A. Mandelshtam and H.S. Taylor. “Harmonic inversion of time signals and its appli-
cations”. In: J. Chem. Phys. 107.17 (1997), pp. 6756–6769. doi: 10.1063/1.475324.

[45] H.G. Matthies and J. Steindorf. “Partitioned strong coupling algorithms for fluid-
structure interaction”. In: Comput. Struct. 81.8–11 (2003), pp. 805–812. doi: 10 .

1016/S0045-7949(02)00409-1.

[46] M. Olivier, J.-F. Morissette, and G. Dumas. “A fluid-structure interaction solver for
nano-air-vehicle flapping wings”. In: 19th AIAA Computational Fluid Dynamics, San
Antonio, Texas. AIAA-2009-3676. June 2009. doi: 10.2514/6.2009-3676.

[47] J. Peraire and P.-O. Persson. “Adaptive high-order methods in computational fluid
dynamics”. In: vol. 2. Advances in CFD. World Scientific Publishing Co., 2011. Chap. 5
– High-Order Discontinuous Galerkin Methods for CFD. isbn: 978-981-4313-18-6; 981-
4313-18-1.

http://ab-initio.mit.edu/harminv/
http://ab-initio.mit.edu/harminv/
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1007/s00466-010-0545-6
http://dx.doi.org/10.1016/S0168-9274(02)00138-1
http://dx.doi.org/10.1016/j.cam.2007.04.003
http://dx.doi.org/10.1080/03605309508821108
http://dx.doi.org/10.1080/03605309508821108
http://dx.doi.org/10.1006/jcph.1999.6331
http://dx.doi.org/10.1063/1.475324
http://dx.doi.org/10.1016/S0045-7949(02)00409-1
http://dx.doi.org/10.1016/S0045-7949(02)00409-1
http://dx.doi.org/10.2514/6.2009-3676

BIBLIOGRAPHY 75

[48] J. Peraire and P.-O. Persson. “The compact discontinuous Galerkin (CDG) method
for elliptic problems”. In: SIAM J. Sci. Comput. 30.4 (2008), pp. 1806–1824. doi:
10.1137/070685518.

[49] P.-O. Persson. DistMesh. Version 1.1. 2012. url: http://persson.berkeley.edu/
distmesh/.

[50] P.-O. Persson and G. Strang. “A simple mesh generator in Matlab”. In: SIAM Rev.
46.2 (2004), 329–345 (electronic). doi: 10.1137/S0036144503429121.

[51] P.-O. Persson. “Scalable parallel Newton-Krylov solvers for discontinuous Galerkin
discretizations”. In: 47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando,
Florida. AIAA-2009-606. Jan. 2009. doi: 10.2514/6.2009-606.

[52] P.-O. Persson, J. Bonet, and J. Peraire. “Discontinuous Galerkin solution of the Navier-
Stokes equations on deformable domains”. In: Comput. Methods Appl. Mech. Engrg.
198.17–20 (2009), pp. 1585–1595. doi: 10.1016/j.cma.2009.01.012.

[53] P.-O. Persson and J. Peraire. “Newton-GMRES preconditioning for discontinuous Ga-
lerkin discretizations of the Navier-Stokes equations”. In: SIAM J. Sci. Comput. 30.6
(2008), pp. 2709–2733. doi: 10.1137/070692108.

[54] P.-O. Persson, J. Peraire, and J. Bonet. “A high order discontinuous Galerkin method
for fluid-structure interaction”. In: 18th AIAA Computational Fluid Dynamics Con-
ference, Miami, Florida. AIAA-2007-4327. June 2007. doi: 10.2514/6.2007-4327.

[55] S. Piperno, C. Farhat, and B. Larrouturou. “Partitioned procedures for the transient
solution of coupled aeroelastic problems. I. Model problem, theory and two-dimensional
application”. In: Comput. Methods Appl. Mech. Engrg. 124.1-2 (1995), pp. 79–112. doi:
10.1016/0045-7825(95)92707-9.

[56] J.J. Reuther, J.J. Alonso, J.R.R.A. Martins, and S.C. Smith. “A coupled aero-structur-
al optimization method for complete aircraft configurations”. In: 37th AIAA Aerospace
Sciences Meeting and Exhibit, Reno, Nevada. AIAA-99-0187. Jan. 1999. doi: 10.2514/
6.1999-187.

[57] P.L. Roe. “Approximate Riemann solvers, parameter vectors, and difference schemes”.
In: J. Comput. Phys. 43.2 (1981), pp. 357–372. doi: 10.1016/0021-9991(81)90128-5.

[58] T.D. Rossing, D.A. Russell, and D.E. Brown. “On the acoustics of tuning forks”. In:
Am. J. Phys. 60.7 (1992), pp. 620–626. doi: 10.1119/1.17116.

[59] D.A. Russell. “On the sound field radiated by a tuning fork”. In: Am. J. Phys. 68.12
(2000), pp. 1139–1145. doi: 10.1119/1.1286661.

[60] W. Shyy, M. Berg, and D. Ljungqvist. “Flapping and flexible wings for biological and
micro air vehicles”. In: Prog. Aerosp. Sci. 35.5 (1999), pp. 455–505. doi: 10.1016/
S0376-0421(98)00016-5.

[61] R.M. Sillitto. “Angular distribution of the acoustic radiation from a tuning fork”. In:
Am. J. Phys. 34.8 (1966), pp. 639–644. doi: 10.1119/1.1973192.

http://dx.doi.org/10.1137/070685518
http://persson.berkeley.edu/distmesh/
http://persson.berkeley.edu/distmesh/
http://dx.doi.org/10.1137/S0036144503429121
http://dx.doi.org/10.2514/6.2009-606
http://dx.doi.org/10.1016/j.cma.2009.01.012
http://dx.doi.org/10.1137/070692108
http://dx.doi.org/10.2514/6.2007-4327
http://dx.doi.org/10.1016/0045-7825(95)92707-9
http://dx.doi.org/10.2514/6.1999-187
http://dx.doi.org/10.2514/6.1999-187
http://dx.doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1119/1.17116
http://dx.doi.org/10.1119/1.1286661
http://dx.doi.org/10.1016/S0376-0421(98)00016-5
http://dx.doi.org/10.1016/S0376-0421(98)00016-5
http://dx.doi.org/10.1119/1.1973192

BIBLIOGRAPHY 76

[62] R.W. Smith and J.A. Wright. “A classical elasticity-based mesh update method for
moving and deforming meshes”. In: 48th AIAA Aerospace Sciences Meeting and Ex-
hibit, Orlando, Florida. AIAA-2010-164. Jan. 2010. doi: 10.2514/6.2010-164.

[63] A. Song, X. Tian, E. Israeli, R. Galvao, K. Bishop, S. Swartz, and K. Breuer. “Aerome-
chanics of membrane wings with implications for animal flight”. In: AIAA J. 46.8
(2008), pp. 2096–2106. doi: 10.2514/1.36694.

[64] P.D. Thomas and C.K. Lombard. “Geometric conservation law and its application to
flow computations on moving grids”. In: AIAA J. 17 (10 1979), pp. 1030–1037. doi:
10.2514/3.61273.

[65] C.S. Venkatasubban. “A new finite element formulation for ALE (arbitrary Lagrangian
Eulerian) compressible fluid mechanics”. In: Internat. J. Engrg. Sci. 33.12 (1995),
pp. 1743–1762. doi: 10.1016/0020-7225(95)00021-O.

[66] E. Walhorn, B. Hübner, and D. Dinkler. “Space-time finite elements for fluid-structure
interaction”. In: PAMM 1.1 (2002), pp. 81–82. doi: 10.1002/1617-7061(200203)1:
1<81::AID-PAMM81>3.0.CO;2-1.

[67] M.R. Wall and D. Neuhauser. “Extraction, through filter-diagonalization, of general
quantum eigenvalues or classical normal mode frequencies from a small number of
residues or a short-time segment of a signal. I. Theory and application to a quantum-
dynamics model”. In: J. Chem. Phys. 102.20 (1995), pp. 8011–8022. doi: 10.1063/1.
468999.

[68] W.A. Wall and E. Ramm. “Fluid-structure interaction based upon a stabilized (ALE)
finite element method”. In: 4th World Congress on Computational Mechanics: New
Trends and Applications. Ed. by S.R. Idelsohn, E. Oñate, and E.N. Dvorkin. Barcelona,
Spain: CIMNE, 1998.

[69] C. Wood, A.J. Gil, O. Hassan, and J. Bonet. “Partitioned block-Gauss-Seidel coupling
for dynamic fluid-structure interaction”. In: Comput. Struct. 88.23-24 (2010), pp. 1367–
1382. doi: 10.1016/j.compstruc.2008.08.005.

[70] Z. Yosibash, R.M. Kirby, K. Myers, B. Szabó, and G. Karniadakis. “High-order finite
elements for fluid-structure interaction problems”. In: 44th AIAA/ASME/ASCE/AHS
Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia. AIAA-
2003-1729. Apr. 2003. doi: 10.2514/6.2003-1729.

[71] C. Yvin. “Partitioned fluid-structure interaction with open-source tools”. In: 12ème
Journées de l’Hydrodynamique, Nantes, France. Oct. 2010.

[72] M.J. Zahr and P.-O. Persson. “Performance tuning of Newton-GMRES methods for
discontinuous Galerkin discretizations of the Navier-Stokes equations”. In: 21st AIAA
Computational Fluid Dynamics Conference, San Diego, California. June 2013. doi:
10.2514/6.2013-2685.

[73] A.H. van Zuijlen. “Fluid-structure interaction simulations: efficient higher order time
integration of partitioned systems”. PhD thesis. TU Delft, Nov. 2006.

http://dx.doi.org/10.2514/6.2010-164
http://dx.doi.org/10.2514/1.36694
http://dx.doi.org/10.2514/3.61273
http://dx.doi.org/10.1016/0020-7225(95)00021-O
http://dx.doi.org/10.1002/1617-7061(200203)1:1<81::AID-PAMM81>3.0.CO;2-1
http://dx.doi.org/10.1002/1617-7061(200203)1:1<81::AID-PAMM81>3.0.CO;2-1
http://dx.doi.org/10.1063/1.468999
http://dx.doi.org/10.1063/1.468999
http://dx.doi.org/10.1016/j.compstruc.2008.08.005
http://dx.doi.org/10.2514/6.2003-1729
http://dx.doi.org/10.2514/6.2013-2685

BIBLIOGRAPHY 77

[74] A.H. van Zuijlen and H. Bijl. “A higher-order time integration algorithm for the sim-
ulation of nonlinear fluid-structure interaction”. In: Nonlinear Anal. 63.5–7 (2005),
e1597–e1605. doi: 10.1016/j.na.2005.01.054.

[75] A.H. van Zuijlen, A. de Boer, and H. Bijl. “Higher-order time integration through
smooth mesh deformation for 3D fluid-structure interaction simulations”. In: J. Com-
put. Phys. 224 (2007), pp. 414–430. doi: 10.1016/j.jcp.2007.03.024.

http://dx.doi.org/10.1016/j.na.2005.01.054
http://dx.doi.org/10.1016/j.jcp.2007.03.024

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Previous Work
	Overview

	Governing Equations
	Compressible Navier-Stokes
	Boundary Conditions
	Isentropic & Isothermal Formulations

	Arbitrary Lagrangian Eulerian formulation
	Rigid Body Dynamics
	Neo-Hookean Elasticity Model
	Quasi-Static Formulation

	Discretization
	Fluid Spatial (Discontinuous Galerkin)
	Structure Spatial (Continuous Galerkin)
	Quasi-Static Formulation

	Temporal Discretization (Runge-Kutta Methods)
	Implicit-Explicit (IMEX) Runge-Kutta Schemes

	Implicit Solvers
	Parallel Newton-Krylov Fluid Solvers
	Sparse Direct Structure Solvers

	Fluid-Structure Interaction
	Coupling
	Fluid-to-structure coupling
	Structure-to-fluid coupling

	Temporal Integrator
	Validation
	ALE / Expanding Pressure Wave
	FSI / Pitching and Heaving Airfoil
	FSI / Cantilever

	Membranes & Flapping Wings
	Membrane, 2D
	Membrane, 3D
	Flapping Wing, 2D
	Flapping Wing, 3D

	Acoustics
	Tuning Fork
	The Model
	Results
	Conclusions

	Conclusions & Future Work
	Bibliography

