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EXPRESSIONS FOR TIME AND SPACE IN A 
RECURSIVE REALIZATION OF PARALLELISM 

parallel processing~ performance measUPements~ program modularity~ resoUPce allocation 

INTRODUCTION 

In this paper we study the time and space behavior of a 

prototypical form of parallelism achieved through recursion~ 

The processes whose behavior is studied are expressed as binary 

decompositions of processes. Within this context we develop 

expressions for space used and elapsed time, with and without 

exercising maximum admissible parallelism. 

* DECOMPOSITION AND THE PROCESSOR AS RESOURCE ALLOCATOR 

Assume that a procedure is expressed as (defined by) a 

decomposition into two component procedures. Henceforth, we call 

such procedures process descriptions. (More completely, a process 

description consists of a process expression giving the decomposition 

into component process descriptions and a process boqy giving inputs, 

outputs, and resource requirements.) At some level this decomposition 

must terminate, for example, by expression of a process description 

as a segment of code in some programming language (here called the 

base language). Then, excepting the 

*I am indebted to Bob Barton and Don Lyle of the Burroughs Corporation 
for my introduction to the ideas in this and the following section. 
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interpretation of base language when it is encountered, we can 

view the action of the processor "executing" process descriptions 

as strictly ~ne of resource allocation--that is, of making available 

to the component process descriptions the resources that they need. 

We define a process as consisting of a process description, 

values of the process description's inputs, and an allocation of 

sufficient resources to meet the process description's resource 

requirements. The processor then "executes" the process by 

reallocating those resources to the component process descriptions 

as required and providing to the components the appropriate inputs, 

thus converting those process descriptions into processes enabled 

for execution. In general, the resou~ces referred to here are 

processor-memory combinations; that is, the "main" processor 

is itself composed of processor-memory components. A particular 

version of this architecture is described in more detail in [T076]. 

For our purposes, it is sufficient to describe the possible forms 

of decomposition, and then to consider an issue arising from the 

assertion that associated with each process description must be 

a statement of its resource requirrnents. 
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FORMS FOR DECOMPOSITION 

We consider the following four forms by which a 

process description is decomposed into its components (see Figure 

1) • 

(a) Serial. The two components in specified order 

(b) Parallel. The two components in either order, or 
even simultaneously if permitted by the resources 
available. 

{c) Selection. One of the two components, as selected 
by a-particular data input. The other component is not 
executed. 

{d) Cyclic. One component, then the second, then the 
first--again, repeating until termination is indicated 
by a par ti cul ar data output of the 11 fir st 11 component. 

Several of these forms may be generalized in a 

straightforward way to more than two components, but such 

generalization may not be desirable from a design-aesthetic 

standpoint. 
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(a) Serial 

(b) Parallel 

(c) Selection 

(d) Cyclic 

Figure 1. Forms for Decornposi ton 
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ATTAINING PARALLELISM 

How then to attain parallelism within such an architecture? 

Consider for .e~~mple the addition of two vectors to form a third. 

It would be desirable to perform as many of the component 

additions as possible in parallel. Or consider the problem of 

finding the largest value in a sequence of numbers. Again, it 

would be desirable to consider a number of subsequences in parallel. 

Note that the attainable amount of parallelism depends upon 

the dimension of the data at hand, and so cannot be specified at 

the time that the process description is written. Thus, a 

generalized version of the parallel form, in which the number of 

components in parallel was specified when the process description 

was written, does not solve this problem (except in the trivial 

sense that a "guaranteed large enough" number of components 

could be specified for all cases) . And even then some additional 

processing would be needed for dividing up the data among 

component process descriptions and terminating unneeded ones. 

Two approaches seem possible for attaining parallelism in 

this case: splitting the data set into two parts to be handled 

(recursively). in parallel, and providing a process (possibly 

in the base language) by which the procedure-writer can request 

allocation of an arbitrary number of components. This latter 

approach is that used in [AR75]. It does require the incorporation 

of resource 
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allocation requests in the base language or some equivalent 

(e.g., specific types of components such as "allocators"), 

and it also re~4ires development of methods for specifying 

additional data inputs needed to uniquely identify and coordinate 

the parallel components (for example, in vector additions, the 

specification of which vector entry is to be added by this 

component) . This approach can be viewed as requiring that 

part of the input data for parallel procedures be generated by 

the control structure. In an attempt to keep the resource 

allocation and process control structure as simple as possible, 

we have chosen to explore the other alternative. 

A major problem with the recursive splitting approach to 

attaining parallelism is that allowing recursion violates the 

requirement that each process description havean associated 

statement of resource requirements. However, if we allow the 

resource requirement to be stated as a base language expresssion 

dependent on input values to the process description, we can then 

ask whether such an expression can be found for recursive splitting. 

(Such expressions will be necessary for stating the resource 

requirements of iteration as well as recursion. Iteration is 

not considered further here.) The straightforward recurrence 

relation associated with a recursive procedure is of no use, 

as it is not easily computable without carrying out an equivalent 

recursion. The remainder of this paper, after an example, is 

devoted to showing that: 
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(1) a particular easily implemented strategy for recursive 
splitting can be shown to be the best attainable, and 

( 2) the' corresponding resource expressions are simple 
functions __ Qt the number of i terns being processed. 

AN EXAMPLE OF RECURSIVE SPLITTING 

As an example of recursive splitting, we consider the problem 

of finding the largest value in a list of numbers. The basic 

approach is to split the list repeatedly into two sublists until 

we have lists of length one or two, find the larger value in 

these smaller l~t~ and repeatedly recombine by selecting the 

larger of recombined pairs. More specifically, the FINDMAX 

process description can be sketched out as shown in Figure 2. 

This same process description can be represented as a decomposition 

tree as given in Figure 3. 

In the following sections we derive expressions for time 

and space requirements for such a process description as a function 

of the number of items being processed. The same expressions, 

with appropriate coefficient values, describe any recursive 

splitting process description using this splitting strategy. 

And following this approach similar expressions can be derived 

for other specific process descriptions. Thus, a procedure-writer 

following this approach can use a standard resource expression 

to the extent that he is willing to use this standard recursive 

splitting strategy. 



FINDMAX is INITIALIZATION followed by RECURSION. 

INITIALIZATION~is base language (to initialize 
data stc uc tur es} . 
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RECURSION is DETERMINE CASE followed by PROCESS_CASE . 
. -.--_-

DETERMINE CASE is base language (to determine 
whether Teng th of 1 ist is two or less) . 

PROCESS CASE is a selection of SIMPLE CASE 
or MORE RECURSION CASE. 

SIMPLE CASE is DETERMINE NUMBER 
followed by PROCESS NUMBER. 

DETERMINE NUMBER is base language 
(to dete-rmine whether length of 1 i st 
is less than two) . 

PROCESS NUMBER is a selection of 
ONE or TWO. 

ONE is base language (to return 
none or one items) • 

'!WO is base language (to return 
larger of two items on list). 

MORE RECURSION CASE is SPLIT followed 
by PROCESS_SPLIT. 

SPLIT is base language (to divide 
the list into two parts). 

PROCESS SPLIT is INITIATE RECURSIONS 
followed by RECOMBINE. -

INITIATE RECUSIONS is RECURSION 
in parallel with RECURSION. 

RECOMBINE is base language 
(to return larger of values 
from two recursions) . 

Figure 2. FINDMAX Defined in 
standard!fecursive Form 
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TWO 

Figuce 3. Decomposition Tcee 
forFINDMAX __ _ 
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SPLIT TREES AND K-SPLIT 

We can represent the recursive execution of a process 

by a tre~-~~ each of whose nodes is indicated the number of 

items to be processed. We call such a tcee a ~£lit tree. 

Severdl split trees, for different numbers of items and 

different splitting strategies, are shown in Figure 4. 

Because the terminal nodes of split trees denote one or 

two items (we call these ~~~=le~~~.§. and _two-leaves) , all 

nodes have either 0 or 2 descendents. In the following 

section we make use of so~e well-known results for binary 

trees with each intecioc node having exactly 2 descendents.* 

a) For such trees with m leaves, the total number of 
nodes, independent of the shape of the tree, is: 

l (m) = 2*m-l. 

b) For such trees with k leaves, where k=2lg, g a 
positive integer, and with the leaves below any 
interior node evenly divided between the two subtrees 
of thdt node, the depth of the tree is:. 

b ( k) = log ( k) + 1 = g+ 1 . 

c) For such trees, d(k)=log(k)+l is the minimum 
pos~ible depth, and any tcee of m>k leaves must have 
d(m)>d(k). In particular, the minimum depth for such a 
tree of m leaves is g+l, where 2f (g-l)<m~2fg, or: 

*We use the following notation. [m]=largest integer not 
greater than rn; log(m)=log of m to the base 2. 
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e ( m) = [ 1 og ( m-1 ) ] + 2 . 

In a later section we demonstrate that a particular 

splitting strategy, which we call ~-spli~, is optimal for a 

large class of .~esource expressions. In k-split, the n 

items being processed are divided into two groups, one of k 

items and one of (n-k) items, when k is the largest integer 

less than n that is an integral power of 2 -- that is, 

k=2T[log(n)]. In the case that n is itself an integral -

power of 2, the two resulting groups are of n/2 items each. 

Examples (b), (d), and (f) in Figure 4 are split trees 

produced by k-split. 
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(~) (d.) 

(e) 

Figure 4. Examples of Split Trees ------ -- -----·- ---·-
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DERIVATION OF RESOURCE EXPRESSIONS 

Development of resource requirement expressions for 

such a recursively defined process can proceed in three 

steps: 

specification of the general form of expressions for 
time and space with and without parallelism; 

analysis of the cost coefficients of those expressions; 

analysis of the parameters of those expressions as 
determined by the splitting strategy employed. 

In these derivations we use the following notation for the 

characteristics of a split tree of n items: 

sl(n) =number of one-leaves 

s2(n) =number of two-leaves 

r(n) =number of interior nodes 

d(n) = depth 

Elapsed time, minimum parallelism: 

In the case of no parallelism, elasped time is simply 

the sum of the times to.process each item or split each 

group of items (thus, summing over the nodes in the 

split tree). Since there may be different processing 

costs associated with one-leaves, two-leaves, and 

interior nodes, the total cost is: 

C(n)=Cl*sl(n)+C2*s2(n)+Cr*r(n)+Cf 
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Space used, minimum parallelism: 

In this case only one of the two components of a 

decomposition will be active and assigned space at any 

time, and so the- maximum space required is that of the 

root and the larger of its components. Repeating this 

reasoning for the larger component, we see that the 

maximum space with no parallelism depends on the 

longest sequence of interior nodes (pl us one leaf) in 

the split tree; that is, on the depth of the split 

tree. Therefore: 

K(n}=Kr*(d(n}-l)+max(Kl,K2)+Kf 

The term max(Kl,K2) arises in those cases where the 

longest sequence of nodes terminates in both a one-leaf 

and a two-leaf. For the remainder of this analysis, we 

make the simplifying assumption that K2~Kl, resulting 

in: 

K(n}=Kr*(d(n)-l)+K2+Kf 

(This simpl ication over states K (n) for n=l if K2>Kl.) 

Similar analyses show the following expressions to hold 

for the maximum parallelism cases. 

Elapsed time, maximum parallelism: 

Q(n) = Qr*(d(n)-l)+Q2+Qf 

Space used, maximum parallelism: 

J(n)=Jl*sl(n)+J2*s2(n)+Jr*r(n)+Jf 
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Cost Coefficients 

We assume here that each component has the same cost, 

independent of the type of decomposition or base language 

code. When working with a specific implementation of this 

general architecture, more precise costs can be determined. 

Given this assumption, the costs can be determined directly 

f com a decomposition tree for the standard recursive 

splitting strategy. Figures 5 and 6 indicate the derivation 

of cost coefficients for the first two cases below. The 

other coefficients ace derived in the same manner. 

Elasped time, minimum parallelism: 

Cl = 7; C2 = 7; Cr = 8; Cf = 2 

Space used, minimum parallelism: 

Kl = 5; K2 = 5; Kr = 5; Kf =l 

Elapsed time, maxim urn parallel ism; 

Ql = 7; Q2 = 7; Qr = 8; Qf = 2 

Space used, maxim um par al 1e1 i sm : 

Jl = 5; J2 = 5; Jr = 5; Jf = 1 



-----, 
~ ' 

Figure 5. ~~st Coefficients fo~ Ca~~ of 

~lapsed Time, Minimum Parallelism -.-- - -
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Cost Coefficients for Case of 

_§pac~ Used.!. Minimum Parallelism 
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_Parameters J..for ~-sElit) 

One-leaves: 

Sinee-k~split repeatedly constructs groups of size 

k=2lg until that is no longer possible {i.e., a single 

item is left), there is at most a single one-leaf {when 

n is odd) • Thus, 

sl{n) = n-2*[n/2] 

Two-leaves: 

Subtracting the number of one-leaves from n, we find 

s 2 ( n) = [ n/ 2 ] 

Interior nodes: 

Using result a) given earlier, 

r ( n) = [ { n-1) /2] 

Depth: 

We consider two cases. 

(1) If n=k, there will be k/2 leaves in the split tree 

and, from result b) earlier, d{n}= log{k) = 

log{n}=log(n/2)+1. Also, 



-----:· 

n = n > n/2, 

n > (n-1) ~ n/2, 

log(n) > log(n-1) ~ log(n/2), 

[ 1 og ( n-1 ) J = 1 og ( n/ 2 ) , 
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or 

or 

or 

since log(n) and log(n/2) are consecutive integers. 

Substituting above, 

d ( n) = [ 1 og ( n-1 ) J + 1 

(2) If n>k, then d(n) = max(d(k) ,d(n-k) )+l. Since k is 

defined such that n>k>n/2, it follows that 

(n-k) < (n-n/2)=n/2, and so k> (n-k). From result c) 

earlier and repeated application of the above redsoning 

until (n-k)=l or 2, it follows that d(k)~ d(n-k). 

Therefore, d(n)=d(k)+l. 

The split tree for k items will have k/2 leaves and so, 

from result 2) earlier, d(k)=log(k). Then, 

2*k > n > k, or 

2*k > (n-1) -~ k, or 

1 og ( 2 * k) > 1 og ( n-1 ) > 1 og ( k) , or 

[ 1 og ( n-1 ) J = 1 og ( k) • 

Substituting above, 
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d ( n) = [ 1 og ( n -1 ) ] + 1 

SUMMARY OF RESOURCE EXPRESSIONS 

The expc.e.SJ~-~~ns developed foe time and space resources 

under recursive splitting using k-split are summarized in 

Fig UC e 7. 

The cost coefficients used in that figure reflect a 

particular simplifying assumption and would be changed for 

any specific implementation. The magnitude of the increase 

in space used with parallelism, and also of the decrease in 

elapsed time, is of the order n/[log(n-1)]. For the units 

of measure assumed here, the space-time tradeoff is 

approximately one-to-one. 

These four cases are of interest even in a single 

processor environment. For example, space used with minimum 

parallelism corresponds to the usual serial processing while 

space used with maximum parallelism corresponds to 

pipelining. 



Elapsed !ime, minimum parallelism: 

C(n) = 7*(n-2*[n/2]) + 7*[n/2] + 8*[(n-l)/2] + 2 

or, C(n) = 1~~~D~6 if n is even 

= 7.5*n+l.5 if n is odd 

.space used, minimum _earallel!_sm: 

K(n) = 5*[log(n-l)] + 5 + 1 

= 5*[log(n-l)] + 6 

Elapsed time, maximu~ parallelism: 

Q ( n) = 8 * [ 1 og ( n-1 ) ] + 7 + 2 

= 8*[log(n-l)] + 9 

J(n) = 5*(n-2*[n/2]) + 5*[n/2] + 5*[ (n-1)/2] + 1 

or, J(n) = S*n-4 if n is even 

= 5*n+l if n is odd 

Page 21 



Page 22 

OPTIMALITY OF K-SPLIT 

Consider those splitting strategies which generate two 

descendents -a-t-._each interior node and which terminate in 

either one-leaves or two-leaves. 

K-split as defined generates for a set of n data items 

either n/2 two-leaves (if n is even) or (n-1)/2 two-leaves 

and 1 one-leaf (if n is odd) . Clearly this is the rainimum 

number of one-leaves attainable. Since replacing two-leaves 

with one-leaves must result in two additional one-leaves for 

each two-leaf replaced, this is also the minimum number of 

total leaves attainable. That is.!.. _k-spl it results in the 

minimum number of leaves attainable. 

From result a) given earlier, it follows that number of 

interior nodes is the number of leaves less one. Thus, a 

splitting strategy which minimizes the number of leaves also 

minimizes the number of interior nodes. 1herefor~L ~-split 

results in the minimum number of interior nodes attainable. 

From result b) given earlier, we see that for n=k, 

k-split generates the minimum depth tree. For n>k, the 

resulting tree will have n/2 leaves if n is even and (n+l)/2 

leaves if n is odd. We analyze the two cases separately, 

using result c) given earlier. 

i.~E ~eve~: 2f (g-l)<n/2~2ig is equivalent to 



Page 23 

2Tg<n~2T(g+l) which is equivalent to 

2lg<(n-1)<2T(g+l) since n and 2Tg 

-- .al:~ integer. 

Thus, g = [log(n-1)] and minimum attainable depth = 

[ 1 og ( n-1 ) ] + 1 

Foe n odd: 2l(g-l)<(n+l)/2~2fg is equivalent to 

2Tg<(n+l)~2T(g+l) which is equivalent to 

2lg~n<2T(g+l) since n and 2Tg are integer, 

and that is equivalent to 

2Tg<n<2f (g+l) since n is odd, or to 

2lg~(n-1)<2f (g+l) 

Again, minimum attainable depth= [log(n-1)]+1. 

Since this is precisely the expression for the depth of a 

tree generated by k-split, it follows that ~-sp~it results 

in the the minimum depth of tree attainable. 

Thus, k-split is optimal for any linear resource 

expression in number of leaves, number of interior nodes, 

and depth. It is also optional for expressions which 

distinguish one-leaves and two-leaves as long as C2~2*Cl+Cr, 

Q2~2*Ql+Q2, etc. 
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GENERALIZATlON OF RECURSIVE SPLITTING 

The binary recursive splitting approach presented above 

can be generalized for splitting the data items into more 

than two subsets. In the following, we conside~ the case of 

a p-way split, with up to q items handled (in base language) 

at each leaf. We do not fully develop a proof of optimality 

here, but rather sketch out the results needed for such a 

proof. 

The general form of resource expressions in this case 

is given by the following two examples: 

C (n) = (sum, i=l to q: Ci*si (n)) + Cr*r (n) + Cf 

K (n) = (max, i=l to q: Ki*si (n)) + Cr* (d (n)-1) + Kf 

where, for example, Ci is the generalization of Cl,C2, ... , 

and si (n) is the generalization of sl (n), s2 (n), ... 

The results for full binary trees are extended as 

follows for p-way trees in which each interior node has 

exactly p descendents. 

a) For such trees with m leaves, the total number of 

nodes is: 

l(m,p) = {p*m-1)/(p-l) 

b) For such trees with k leaves, k=ptg for g a positive 

integer and with the leaves below any interior node 

evenly divided among its subtrees, the depth of the 

tree is: 

b(k,p) = log(k)/log{p) + 1 
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c) For such a tree with m leaves, m>k, the depth is: 

e~m,p) = [log(m-l)/log(p)]+2 

Note that the number of leaves in a p-way tree must be 

an ___ irrteger_ of the form l+j*(p-1) for j=0,l,2, ... 

Next we consider the minimum number of leaves necessary 

to represent n data items, given that at most g items may be 

handled at each leaf. Note that q must be ~ (p-1) or some 

c as e s w il 1 not be def in ed . (For ex amp 1 e , for p= 4 and q= 2 , 

what split tree would represent the case of 3 data items?) 

The number of split tree leaves for n data items, given 

at most q items per leaf, is at least [(n-1)/q]+l. However, 

this number of leaves may not be realizable in a p-way 

s pl it' 

to the 

in which case the number of leaves must be increased 

next acceptable number of leaves. Taking into 

account the leaves forced because of the need to split p 

ways, the number of leaves for n data items is: 

m ( n , p , q) = ( p-1 ) * [ ( [ ( n -1 ) I q] -1 ) I ( p-1 ) ] + p . 

(For p=q=2, the case presented earlier, this simplifies to 

[ (n-1) /2] +l.) 

Finally, we note that this minimum number of leaves 

does not always uniquely determine the number of one-leaves, 

two leaves, ... ,p-leaves. For example, for p=q=3 and n=S, 

there must be at least 3 leaves, but these can represent 

item partitions of 3,1,1 or 2,2,1. Further, it is true that 

if the cost of a leaf is proportional to the number of 
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items, the total cost of these partitioned items is 

independent of how they are partitioned into a fixed number 

of groups. 

Thus, we conclude that the splitting strategy 

equivalent to k-split in the case of p-way splitting with at 

most q items per node is one of possibly several that 

achieve the minimum number of leaves. One such strategy is 

given by the following algorithm for splitting n items into 

(1 or) p groups: 

If n<q 
then done 
else if n = q*pTg for positive integer g 

then split into p groups of n/p items each 
else beg in 

for j=l thr u p-1 
begin create group of 

m in (max ( g * pf g f o r po s i t iv e in t e g e r g ) , 
n- ( p-j) ) ; 

decrease n by size of group 
end; 

create group of size n 
end; 
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CONCLUSION 

In the preceding we present a standardized approach to 

attaining parallelism through recursive splitting. We show 

that simple expressions can be derived for the time and 

space resources requirements of this approach. These 

resource expressions are simple functions of the number of 

items being processed, and so could be used to control 

resource allocation -- in particular to implement recursive 

pcocessing in a decomposition scheme where no process :de

scription would be initiated unless the required resources were 

available for allocation. 

We prove that for binary splitting a particular 

strategy, k-split, is optimal for a wide variety of linear 

cost equations. And we generalize this result to p-way 

splitting. 

This standard recursive approach can be adapted to many 

problems and these resource expressions used directly. In 

those cases where another recursion scheme is used, similar 

expressions can be developed. 
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