
UC Irvine
ICS Technical Reports

Title
Expressions for time and space in a recursive realization of parallelism

Permalink
https://escholarship.org/uc/item/9cw031k3

Author
Tonge, Fred M.

Publication Date
1976

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9cw031k3
https://escholarship.org
http://www.cdlib.org/

.EXPRESSIONS FOR TIME AND SPACE

IN A

RECURSIVE REALIZATION OF PARALLELISM

Fred M. Tonge
Department of

Information and Computer Science

University of California, Irvine

TECHNICAL REPORT No. 79

May, 1976

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

EXPRESSIONS FOR TIME AND SPACE IN A
RECURSIVE REALIZATION OF PARALLELISM

parallel processing~ performance measUPements~ program modularity~ resoUPce allocation

INTRODUCTION

In this paper we study the time and space behavior of a

prototypical form of parallelism achieved through recursion~

The processes whose behavior is studied are expressed as binary

decompositions of processes. Within this context we develop

expressions for space used and elapsed time, with and without

exercising maximum admissible parallelism.

* DECOMPOSITION AND THE PROCESSOR AS RESOURCE ALLOCATOR

Assume that a procedure is expressed as (defined by) a

decomposition into two component procedures. Henceforth, we call

such procedures process descriptions. (More completely, a process

description consists of a process expression giving the decomposition

into component process descriptions and a process boqy giving inputs,

outputs, and resource requirements.) At some level this decomposition

must terminate, for example, by expression of a process description

as a segment of code in some programming language (here called the

base language). Then, excepting the

*I am indebted to Bob Barton and Don Lyle of the Burroughs Corporation
for my introduction to the ideas in this and the following section.

Page 2

interpretation of base language when it is encountered, we can

view the action of the processor "executing" process descriptions

as strictly ~ne of resource allocation--that is, of making available

to the component process descriptions the resources that they need.

We define a process as consisting of a process description,

values of the process description's inputs, and an allocation of

sufficient resources to meet the process description's resource

requirements. The processor then "executes" the process by

reallocating those resources to the component process descriptions

as required and providing to the components the appropriate inputs,

thus converting those process descriptions into processes enabled

for execution. In general, the resou~ces referred to here are

processor-memory combinations; that is, the "main" processor

is itself composed of processor-memory components. A particular

version of this architecture is described in more detail in [T076].

For our purposes, it is sufficient to describe the possible forms

of decomposition, and then to consider an issue arising from the

assertion that associated with each process description must be

a statement of its resource requirrnents.

Page 3

FORMS FOR DECOMPOSITION

We consider the following four forms by which a

process description is decomposed into its components (see Figure

1) •

(a) Serial. The two components in specified order

(b) Parallel. The two components in either order, or
even simultaneously if permitted by the resources
available.

{c) Selection. One of the two components, as selected
by a-particular data input. The other component is not
executed.

{d) Cyclic. One component, then the second, then the
first--again, repeating until termination is indicated
by a par ti cul ar data output of the 11 fir st 11 component.

Several of these forms may be generalized in a

straightforward way to more than two components, but such

generalization may not be desirable from a design-aesthetic

standpoint.

Page 4

.-.- -:~

(a) Serial

(b) Parallel

(c) Selection

(d) Cyclic

Figure 1. Forms for Decornposi ton

Page 5

ATTAINING PARALLELISM

How then to attain parallelism within such an architecture?

Consider for .e~~mple the addition of two vectors to form a third.

It would be desirable to perform as many of the component

additions as possible in parallel. Or consider the problem of

finding the largest value in a sequence of numbers. Again, it

would be desirable to consider a number of subsequences in parallel.

Note that the attainable amount of parallelism depends upon

the dimension of the data at hand, and so cannot be specified at

the time that the process description is written. Thus, a

generalized version of the parallel form, in which the number of

components in parallel was specified when the process description

was written, does not solve this problem (except in the trivial

sense that a "guaranteed large enough" number of components

could be specified for all cases) . And even then some additional

processing would be needed for dividing up the data among

component process descriptions and terminating unneeded ones.

Two approaches seem possible for attaining parallelism in

this case: splitting the data set into two parts to be handled

(recursively). in parallel, and providing a process (possibly

in the base language) by which the procedure-writer can request

allocation of an arbitrary number of components. This latter

approach is that used in [AR75]. It does require the incorporation

of resource

Page 6

allocation requests in the base language or some equivalent

(e.g., specific types of components such as "allocators"),

and it also re~4ires development of methods for specifying

additional data inputs needed to uniquely identify and coordinate

the parallel components (for example, in vector additions, the

specification of which vector entry is to be added by this

component) . This approach can be viewed as requiring that

part of the input data for parallel procedures be generated by

the control structure. In an attempt to keep the resource

allocation and process control structure as simple as possible,

we have chosen to explore the other alternative.

A major problem with the recursive splitting approach to

attaining parallelism is that allowing recursion violates the

requirement that each process description havean associated

statement of resource requirements. However, if we allow the

resource requirement to be stated as a base language expresssion

dependent on input values to the process description, we can then

ask whether such an expression can be found for recursive splitting.

(Such expressions will be necessary for stating the resource

requirements of iteration as well as recursion. Iteration is

not considered further here.) The straightforward recurrence

relation associated with a recursive procedure is of no use,

as it is not easily computable without carrying out an equivalent

recursion. The remainder of this paper, after an example, is

devoted to showing that:

Page 7

(1) a particular easily implemented strategy for recursive
splitting can be shown to be the best attainable, and

(2) the' corresponding resource expressions are simple
functions __ Qt the number of i terns being processed.

AN EXAMPLE OF RECURSIVE SPLITTING

As an example of recursive splitting, we consider the problem

of finding the largest value in a list of numbers. The basic

approach is to split the list repeatedly into two sublists until

we have lists of length one or two, find the larger value in

these smaller l~t~ and repeatedly recombine by selecting the

larger of recombined pairs. More specifically, the FINDMAX

process description can be sketched out as shown in Figure 2.

This same process description can be represented as a decomposition

tree as given in Figure 3.

In the following sections we derive expressions for time

and space requirements for such a process description as a function

of the number of items being processed. The same expressions,

with appropriate coefficient values, describe any recursive

splitting process description using this splitting strategy.

And following this approach similar expressions can be derived

for other specific process descriptions. Thus, a procedure-writer

following this approach can use a standard resource expression

to the extent that he is willing to use this standard recursive

splitting strategy.

FINDMAX is INITIALIZATION followed by RECURSION.

INITIALIZATION~is base language (to initialize
data stc uc tur es} .

Page 8

RECURSION is DETERMINE CASE followed by PROCESS_CASE .
. -.--_-

DETERMINE CASE is base language (to determine
whether Teng th of 1 ist is two or less) .

PROCESS CASE is a selection of SIMPLE CASE
or MORE RECURSION CASE.

SIMPLE CASE is DETERMINE NUMBER
followed by PROCESS NUMBER.

DETERMINE NUMBER is base language
(to dete-rmine whether length of 1 i st
is less than two) .

PROCESS NUMBER is a selection of
ONE or TWO.

ONE is base language (to return
none or one items) •

'!WO is base language (to return
larger of two items on list).

MORE RECURSION CASE is SPLIT followed
by PROCESS_SPLIT.

SPLIT is base language (to divide
the list into two parts).

PROCESS SPLIT is INITIATE RECURSIONS
followed by RECOMBINE. -

INITIATE RECUSIONS is RECURSION
in parallel with RECURSION.

RECOMBINE is base language
(to return larger of values
from two recursions) .

Figure 2. FINDMAX Defined in
standard!fecursive Form

Page 9

TWO

Figuce 3. Decomposition Tcee
forFINDMAX __ _

Page 10

SPLIT TREES AND K-SPLIT

We can represent the recursive execution of a process

by a tre~-~~ each of whose nodes is indicated the number of

items to be processed. We call such a tcee a ~£lit tree.

Severdl split trees, for different numbers of items and

different splitting strategies, are shown in Figure 4.

Because the terminal nodes of split trees denote one or

two items (we call these ~~~=le~~~.§. and _two-leaves) , all

nodes have either 0 or 2 descendents. In the following

section we make use of so~e well-known results for binary

trees with each intecioc node having exactly 2 descendents.*

a) For such trees with m leaves, the total number of
nodes, independent of the shape of the tree, is:

l (m) = 2*m-l.

b) For such trees with k leaves, where k=2lg, g a
positive integer, and with the leaves below any
interior node evenly divided between the two subtrees
of thdt node, the depth of the tree is:.

b (k) = log (k) + 1 = g+ 1 .

c) For such trees, d(k)=log(k)+l is the minimum
pos~ible depth, and any tcee of m>k leaves must have
d(m)>d(k). In particular, the minimum depth for such a
tree of m leaves is g+l, where 2f (g-l)<m~2fg, or:

*We use the following notation. [m]=largest integer not
greater than rn; log(m)=log of m to the base 2.

Page 11

e (m) = [1 og (m-1)] + 2 .

In a later section we demonstrate that a particular

splitting strategy, which we call ~-spli~, is optimal for a

large class of .~esource expressions. In k-split, the n

items being processed are divided into two groups, one of k

items and one of (n-k) items, when k is the largest integer

less than n that is an integral power of 2 -- that is,

k=2T[log(n)]. In the case that n is itself an integral -

power of 2, the two resulting groups are of n/2 items each.

Examples (b), (d), and (f) in Figure 4 are split trees

produced by k-split.

Page 12

(~) (d.)

(e)

Figure 4. Examples of Split Trees ------ -- -----·- ---·-

Page 13

DERIVATION OF RESOURCE EXPRESSIONS

Development of resource requirement expressions for

such a recursively defined process can proceed in three

steps:

specification of the general form of expressions for
time and space with and without parallelism;

analysis of the cost coefficients of those expressions;

analysis of the parameters of those expressions as
determined by the splitting strategy employed.

In these derivations we use the following notation for the

characteristics of a split tree of n items:

sl(n) =number of one-leaves

s2(n) =number of two-leaves

r(n) =number of interior nodes

d(n) = depth

Elapsed time, minimum parallelism:

In the case of no parallelism, elasped time is simply

the sum of the times to.process each item or split each

group of items (thus, summing over the nodes in the

split tree). Since there may be different processing

costs associated with one-leaves, two-leaves, and

interior nodes, the total cost is:

C(n)=Cl*sl(n)+C2*s2(n)+Cr*r(n)+Cf

Page 14

Space used, minimum parallelism:

In this case only one of the two components of a

decomposition will be active and assigned space at any

time, and so the- maximum space required is that of the

root and the larger of its components. Repeating this

reasoning for the larger component, we see that the

maximum space with no parallelism depends on the

longest sequence of interior nodes (pl us one leaf) in

the split tree; that is, on the depth of the split

tree. Therefore:

K(n}=Kr*(d(n}-l)+max(Kl,K2)+Kf

The term max(Kl,K2) arises in those cases where the

longest sequence of nodes terminates in both a one-leaf

and a two-leaf. For the remainder of this analysis, we

make the simplifying assumption that K2~Kl, resulting

in:

K(n}=Kr*(d(n)-l)+K2+Kf

(This simpl ication over states K (n) for n=l if K2>Kl.)

Similar analyses show the following expressions to hold

for the maximum parallelism cases.

Elapsed time, maximum parallelism:

Q(n) = Qr*(d(n)-l)+Q2+Qf

Space used, maximum parallelism:

J(n)=Jl*sl(n)+J2*s2(n)+Jr*r(n)+Jf

Page 15

Cost Coefficients

We assume here that each component has the same cost,

independent of the type of decomposition or base language

code. When working with a specific implementation of this

general architecture, more precise costs can be determined.

Given this assumption, the costs can be determined directly

f com a decomposition tree for the standard recursive

splitting strategy. Figures 5 and 6 indicate the derivation

of cost coefficients for the first two cases below. The

other coefficients ace derived in the same manner.

Elasped time, minimum parallelism:

Cl = 7; C2 = 7; Cr = 8; Cf = 2

Space used, minimum parallelism:

Kl = 5; K2 = 5; Kr = 5; Kf =l

Elapsed time, maxim urn parallel ism;

Ql = 7; Q2 = 7; Qr = 8; Qf = 2

Space used, maxim um par al 1e1 i sm :

Jl = 5; J2 = 5; Jr = 5; Jf = 1

-----,
~ '

Figure 5. ~~st Coefficients fo~ Ca~~ of

~lapsed Time, Minimum Parallelism -.-- - -

Page 16

Page 17

Cost Coefficients for Case of

_§pac~ Used.!. Minimum Parallelism

Page 18

_Parameters J..for ~-sElit)

One-leaves:

Sinee-k~split repeatedly constructs groups of size

k=2lg until that is no longer possible {i.e., a single

item is left), there is at most a single one-leaf {when

n is odd) • Thus,

sl{n) = n-2*[n/2]

Two-leaves:

Subtracting the number of one-leaves from n, we find

s 2 (n) = [n/ 2]

Interior nodes:

Using result a) given earlier,

r (n) = [{ n-1) /2]

Depth:

We consider two cases.

(1) If n=k, there will be k/2 leaves in the split tree

and, from result b) earlier, d{n}= log{k) =

log{n}=log(n/2)+1. Also,

-----:·

n = n > n/2,

n > (n-1) ~ n/2,

log(n) > log(n-1) ~ log(n/2),

[1 og (n-1) J = 1 og (n/ 2) ,

Page 19

or

or

or

since log(n) and log(n/2) are consecutive integers.

Substituting above,

d (n) = [1 og (n-1) J + 1

(2) If n>k, then d(n) = max(d(k) ,d(n-k))+l. Since k is

defined such that n>k>n/2, it follows that

(n-k) < (n-n/2)=n/2, and so k> (n-k). From result c)

earlier and repeated application of the above redsoning

until (n-k)=l or 2, it follows that d(k)~ d(n-k).

Therefore, d(n)=d(k)+l.

The split tree for k items will have k/2 leaves and so,

from result 2) earlier, d(k)=log(k). Then,

2*k > n > k, or

2*k > (n-1) -~ k, or

1 og (2 * k) > 1 og (n-1) > 1 og (k) , or

[1 og (n-1) J = 1 og (k) •

Substituting above,

Page 20

d (n) = [1 og (n -1)] + 1

SUMMARY OF RESOURCE EXPRESSIONS

The expc.e.SJ~-~~ns developed foe time and space resources

under recursive splitting using k-split are summarized in

Fig UC e 7.

The cost coefficients used in that figure reflect a

particular simplifying assumption and would be changed for

any specific implementation. The magnitude of the increase

in space used with parallelism, and also of the decrease in

elapsed time, is of the order n/[log(n-1)]. For the units

of measure assumed here, the space-time tradeoff is

approximately one-to-one.

These four cases are of interest even in a single

processor environment. For example, space used with minimum

parallelism corresponds to the usual serial processing while

space used with maximum parallelism corresponds to

pipelining.

Elapsed !ime, minimum parallelism:

C(n) = 7*(n-2*[n/2]) + 7*[n/2] + 8*[(n-l)/2] + 2

or, C(n) = 1~~~D~6 if n is even

= 7.5*n+l.5 if n is odd

.space used, minimum _earallel!_sm:

K(n) = 5*[log(n-l)] + 5 + 1

= 5*[log(n-l)] + 6

Elapsed time, maximu~ parallelism:

Q (n) = 8 * [1 og (n-1)] + 7 + 2

= 8*[log(n-l)] + 9

J(n) = 5*(n-2*[n/2]) + 5*[n/2] + 5*[(n-1)/2] + 1

or, J(n) = S*n-4 if n is even

= 5*n+l if n is odd

Page 21

Page 22

OPTIMALITY OF K-SPLIT

Consider those splitting strategies which generate two

descendents -a-t-._each interior node and which terminate in

either one-leaves or two-leaves.

K-split as defined generates for a set of n data items

either n/2 two-leaves (if n is even) or (n-1)/2 two-leaves

and 1 one-leaf (if n is odd) . Clearly this is the rainimum

number of one-leaves attainable. Since replacing two-leaves

with one-leaves must result in two additional one-leaves for

each two-leaf replaced, this is also the minimum number of

total leaves attainable. That is.!.. _k-spl it results in the

minimum number of leaves attainable.

From result a) given earlier, it follows that number of

interior nodes is the number of leaves less one. Thus, a

splitting strategy which minimizes the number of leaves also

minimizes the number of interior nodes. 1herefor~L ~-split

results in the minimum number of interior nodes attainable.

From result b) given earlier, we see that for n=k,

k-split generates the minimum depth tree. For n>k, the

resulting tree will have n/2 leaves if n is even and (n+l)/2

leaves if n is odd. We analyze the two cases separately,

using result c) given earlier.

i.~E ~eve~: 2f (g-l)<n/2~2ig is equivalent to

Page 23

2Tg<n~2T(g+l) which is equivalent to

2lg<(n-1)<2T(g+l) since n and 2Tg

-- .al:~ integer.

Thus, g = [log(n-1)] and minimum attainable depth =

[1 og (n-1)] + 1

Foe n odd: 2l(g-l)<(n+l)/2~2fg is equivalent to

2Tg<(n+l)~2T(g+l) which is equivalent to

2lg~n<2T(g+l) since n and 2Tg are integer,

and that is equivalent to

2Tg<n<2f (g+l) since n is odd, or to

2lg~(n-1)<2f (g+l)

Again, minimum attainable depth= [log(n-1)]+1.

Since this is precisely the expression for the depth of a

tree generated by k-split, it follows that ~-sp~it results

in the the minimum depth of tree attainable.

Thus, k-split is optimal for any linear resource

expression in number of leaves, number of interior nodes,

and depth. It is also optional for expressions which

distinguish one-leaves and two-leaves as long as C2~2*Cl+Cr,

Q2~2*Ql+Q2, etc.

Page 24

GENERALIZATlON OF RECURSIVE SPLITTING

The binary recursive splitting approach presented above

can be generalized for splitting the data items into more

than two subsets. In the following, we conside~ the case of

a p-way split, with up to q items handled (in base language)

at each leaf. We do not fully develop a proof of optimality

here, but rather sketch out the results needed for such a

proof.

The general form of resource expressions in this case

is given by the following two examples:

C (n) = (sum, i=l to q: Ci*si (n)) + Cr*r (n) + Cf

K (n) = (max, i=l to q: Ki*si (n)) + Cr* (d (n)-1) + Kf

where, for example, Ci is the generalization of Cl,C2, ... ,

and si (n) is the generalization of sl (n), s2 (n), ...

The results for full binary trees are extended as

follows for p-way trees in which each interior node has

exactly p descendents.

a) For such trees with m leaves, the total number of

nodes is:

l(m,p) = {p*m-1)/(p-l)

b) For such trees with k leaves, k=ptg for g a positive

integer and with the leaves below any interior node

evenly divided among its subtrees, the depth of the

tree is:

b(k,p) = log(k)/log{p) + 1

Page 25

c) For such a tree with m leaves, m>k, the depth is:

e~m,p) = [log(m-l)/log(p)]+2

Note that the number of leaves in a p-way tree must be

an ___ irrteger_ of the form l+j*(p-1) for j=0,l,2, ...

Next we consider the minimum number of leaves necessary

to represent n data items, given that at most g items may be

handled at each leaf. Note that q must be ~ (p-1) or some

c as e s w il 1 not be def in ed . (For ex amp 1 e , for p= 4 and q= 2 ,

what split tree would represent the case of 3 data items?)

The number of split tree leaves for n data items, given

at most q items per leaf, is at least [(n-1)/q]+l. However,

this number of leaves may not be realizable in a p-way

s pl it'

to the

in which case the number of leaves must be increased

next acceptable number of leaves. Taking into

account the leaves forced because of the need to split p

ways, the number of leaves for n data items is:

m (n , p , q) = (p-1) * [([(n -1) I q] -1) I (p-1)] + p .

(For p=q=2, the case presented earlier, this simplifies to

[(n-1) /2] +l.)

Finally, we note that this minimum number of leaves

does not always uniquely determine the number of one-leaves,

two leaves, ... ,p-leaves. For example, for p=q=3 and n=S,

there must be at least 3 leaves, but these can represent

item partitions of 3,1,1 or 2,2,1. Further, it is true that

if the cost of a leaf is proportional to the number of

Page 26

items, the total cost of these partitioned items is

independent of how they are partitioned into a fixed number

of groups.

Thus, we conclude that the splitting strategy

equivalent to k-split in the case of p-way splitting with at

most q items per node is one of possibly several that

achieve the minimum number of leaves. One such strategy is

given by the following algorithm for splitting n items into

(1 or) p groups:

If n<q
then done
else if n = q*pTg for positive integer g

then split into p groups of n/p items each
else beg in

for j=l thr u p-1
begin create group of

m in (max (g * pf g f o r po s i t iv e in t e g e r g) ,
n- (p-j)) ;

decrease n by size of group
end;

create group of size n
end;

Page 27

CONCLUSION

In the preceding we present a standardized approach to

attaining parallelism through recursive splitting. We show

that simple expressions can be derived for the time and

space resources requirements of this approach. These

resource expressions are simple functions of the number of

items being processed, and so could be used to control

resource allocation -- in particular to implement recursive

pcocessing in a decomposition scheme where no process :de

scription would be initiated unless the required resources were

available for allocation.

We prove that for binary splitting a particular

strategy, k-split, is optimal for a wide variety of linear

cost equations. And we generalize this result to p-way

splitting.

This standard recursive approach can be adapted to many

problems and these resource expressions used directly. In

those cases where another recursion scheme is used, similar

expressions can be developed.

Page 28

REFERENCES

[Ar75] Arvind and Gostelow, K.P., ~New Interpcete~ fO£ Data

Flow Sch-~m~s - and Its Implications for _CO!!!__EUter

Archit_ecture, Technical Report No.72, October 1975,

Department of Information and Computer Science, U.C.

Irvine.

[To76] Tonge, F.M., ~~Introductory Programming System ~ase~

on Structured Decomposition, Department of Information

and Computer Science, U.C. Irvine, forthcoming.

