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ABSTRACT OF THE DISSERTATION 
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in a Cohort of Adolescent Girls in Santiago, Chile 

 

by 
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Doctor of Philosophy in Epidemiology 
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Professor Karin B. Michels, Chair  

 

Introduction: Breast cancer is the most common invasive cancer among women. Percent 

breast density is a strong breast cancer risk factor in adult women. Few studies have assessed 

breast composition in adolescents. Yet, breast development begins during puberty, and 

adolescent breast composition may influence later-life breast cancer risk. Breast tissue density 

during puberty, a critical period of growth, may be particularly susceptible to the influence of 

endocrine-disrupting chemicals (EDCs), which interfere with hormonal pathways in the body. 

However, the mechanisms through which EDCs may influence breast density are not well 

understood. The microbiome has emerged as a potential regulator underlying the associations 

between environmental exposures and human health, including growth and development, 

metabolic disease, and cancer. The influence of EDCs on composition of the gut microbiome 

and the relation of the gut microbiome to breast composition remain unclear. The objective of 

this dissertation was to evaluate the associations of EDCs, the gut microbiome, and breast 

density in a cohort of adolescent Chilean girls. We hypothesize that: 1) EDCs are associated 



 
 

iii 
 

with adolescent breast density; 2) EDCs influence the composition of the gut microbiome in 

adolescence; and 3) the gut microbiome composition and function is associated with breast 

composition during adolescence. 

Methods: This dissertation includes biomarker, anthropometric, demographic, dietary, and 

breast composition data from 530 girls participating in the longitudinal Growth and Obesity 

Cohort Study in Santiago, Chile.  EDC biomarker concentrations of 16 phenols, phthalates, and 

parabens were assessed by liquid chromatography mass spectrometry in urine samples. 

Microbiome composition was assessed by targeted sequencing of the V3-V4 hypervariable 

region of the 16S rRNA gene in self-collected stool samples. Breast composition was measured 

using dual-energy x-ray absorptiometry and evaluated as percent fibroglandular volume 

(%FGV), absolute fibroglandular volume (aFGV), and total breast volume (tBV). In Chapter 2, 

we evaluated the relation between urinary concentrations of suspected EDC biomarkers across 

three peripubertal time points (Tanner breast stage 1 [B1], Tanner breast stage 4 [B4], and 1-

year post menarche [1YPM]) and breast composition (%FGV, aFGV, and tBV) measured at 2-

years post-menarche in a longitudinal study design using generalized estimating equations. In 

Chapter 3, we assessed whether EDC biomarker concentrations were associated with 

composition of the gut microbiome in both single-chemical and chemical mixture analyses. In 

Chapter 4, we examined the relation between composition and predicted function of the gut 

microbiome and breast density measured at 2-years post-menarche using a cross-sectional 

study design.  All three chapters identified potential confounding factors a priori using directed 

acyclic graphs and controlled for confounding in statistical analyses. Where appropriate, the 

Benjamini-Hochberg method was used to control for multiple hypothesis testing.  

Results: There was high variability in EDC concentration across peripubertal time points. Select 

EDCs were associated with %FGV and aFGV; the association was modified by time point at 

which the urine sample was measured.  When evaluated as single chemicals, select phenols 
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and phthalates were marginally associated with differences in gut microbial alpha diversity and 

beta diversity. Only a minor association was found for the relation of an EDC mixture to gut 

microbial alpha diversity. There were no differences in gut microbial composition nor were there 

differentially abundant microbial genera across categories of breast density (%FGV, aFGV).   

Conclusions: Understanding the influence of environmental exposures during puberty, a critical 

period of growth and development, on adolescent breast composition is important for 

developing opportunities to reduce risks for breast cancer. Overall, these results suggest that 

there are pubertal windows of susceptibility to select EDCs for an association with gut microbial 

composition and breast density, though we cannot rule out significant findings by chance. We 

did not find evidence to suggest that breast density associated with composition and predicted 

function of the gut microbiome. Future research might consider the role of the gut microbiome in 

understanding how environmental chemicals may modify pubertal growth and development.  

  



 
 

v 
 

The dissertation of Lara Sumi Yoon is approved.  

Camila Corvalán 

Jonathan P. Jacobs 

Elizabeth Rose Mayeda 

Zuo-Feng Zhang 

Karin B. Michels, Committee Chair 

 

 

University of California, Los Angeles 

2021 

  



 
 

vi 
 

Table of Contents 

List of Tables ............................................................................................................................ vii 

List of Figures ............................................................................................................................ ix 

Acknowledgements ..................................................................................................................... x 

Vita .......................................................................................................................................... xiii 

Chapter 1. Introduction ............................................................................................................... 1 

Chapter 2. Variability in urinary phthalates, phenols, and parabens across childhood and 

relation to adolescent breast composition in Chilean girls .......................................................... 7 

2.1. Abstract ....................................................................................................................... 7 

2.2. Introduction .................................................................................................................. 8 

2.3. Methods ......................................................................................................................10 

2.4. Results ........................................................................................................................16 

2.5. Discussion ..................................................................................................................18 

2.6. Conclusions ................................................................................................................25 

Chapter 3. Childhood concentrations of endocrine-disrupting chemicals in relation to adolescent 

gut microbial composition in the Chilean Growth and Obesity Cohort Study .............................32 

3.1. Abstract ......................................................................................................................32 

3.2. Introduction .................................................................................................................33 

3.3. Methods ......................................................................................................................35 

3.4. Results ........................................................................................................................43 

3.5. Discussion ..................................................................................................................46 

3.6. Conclusions ................................................................................................................48 

Chapter 4. The association between breast density and gut microbiota composition at 2-years 

post menarche: A cross-sectional study of adolescents in Santiago, Chile ................................55 

4.1. Abstract ......................................................................................................................55 

4.2. Introduction .................................................................................................................55 

4.3. Methods ......................................................................................................................57 

4.4. Results ........................................................................................................................62 

4.5. Discussion ..................................................................................................................64 

4.6. Conclusions ................................................................................................................66 

Chapter 5. Conclusions and Public Health Relevance ...............................................................74 

Appendix 1. Supplemental content for Chapter 2 ......................................................................76 

Appendix 2. Supplemental content for Chapter 3 ......................................................................81 

Appendix 3. Supplemental content for Chapter 4 ......................................................................88 

References ...............................................................................................................................91 



 
 

vii 
 

 

List of Tables 

Table 2.1. Characteristics of 366 girls in the Growth and Obesity Cohort Study assessed for 

breast density at 2-years post menarche...................................................................................27 

Table 2. 2. Creatinine-adjusted urinary phenol, paraben, and phthalate biomarkers geometric 

means (95% confidence interval) by study time point. ...............................................................28 

Table 2. 3. Relative change in log10 percent FGV (95% CI) associated with log10 (ng/ml) 

increase in urinary phenol, paraben, and phthalate biomarkersa ...............................................29 

Table 2. 4. Relative change in log10 absolute FGV (95% CI) associated with log10 (ng/ml) 

increase in urinary phenol, paraben, and phthalate biomarkersa ...............................................30 

Table 2. 5. Relative change in log10 total breast volume (95% CI) associated with log10 (ng/ml) 

increase in urinary phenol, paraben, and phthalate biomarkersa ...............................................31 

 

Table 3.  1. Demographic and anthropometric characteristics of girls in the Growth and Obesity 

Cohort Study by study time point (N=257) .................................................................................50 

Table 3.  2. Results from linear regression of single-chemical EDC concentration (log10-

transformed, quartiled) on Shannon diversity by study time point  (N = 251). ............................51 

Table 3.  3. Results from PERMANOVA of single-chemical EDC concentration (log10-

transformed) by study time point  (N = 251). ..............................................................................52 

Table 3.  4. Multivariable MaAsLin2 modeling of the association between microbial taxa (ASVs) 

and log10-transformed EDC by study time point. ......................................................................53 

Table 3.  5. Results from WQS regression of EDC concentration on Shannon diversity by study 

time point with EDC concentrations quartiled in generalized linear models  (N = 251). ..............54 

 

Table 4. 1. Population characteristics of 218 girls participating in the Growth and Obesity Cohort 

Study ........................................................................................................................................67 

Table 4. 2. Multivariable PERMANOVA analyses to identify variation (R2) in microbial beta 

diversity (Bray-Curtis dissimilarity) explained by study characteristics. ......................................71 

Table 4. 3. Principal coordinate analysis (PCoA) plot of predicted MetaCyc pathway abundance 

derived from Bray-Curtis dissimilarity among fecal samples provided by 218 girls in GOCS 

colored by %FGV (A) and aFGV (B) terciles. Ellipses are 95% confidence regions for each 

tercile. .......................................................................................................................................72 



 
 

viii 
 

Table 4. 4. Multivariable PERMANOVA analyses to identify variation (R2) MetaCyc pathway 

beta diversity (Bray-Curtis dissimilarity) explained by study characteristics ...............................73 

 

Table A1. 1. Comparison of characteristics for girls in the Growth and Obesity Cohort Study with 

breast assessments (n=366) and without breast assessments (n=159) ....................................76 

 

Table A2. 1. List of Urinary EDC biomarkers and the lab-specific limit of detection ...................81 

Table A2. 2. Relative abundance of microbial taxa by phylum, class, and genus in the GOCS 

cohort (N=257) ..........................................................................................................................83 

Table A2. 3. Results from linear regression of single-chemical EDC concentration (log10-

transformed, quartiled) on Shannon diversity by study time point, excluding girls with antibiotic 

use in the 6 months prior to stool sample  (N = 241). .................................................................84 

Table A2. 4. Results from linear regression of single-chemical EDC concentration (log10-

transformed, quartiled) on Shannon diversity by study time point  (N = 257) with Benjamini-

Hochberg FDR adjusted values ................................................................................................86 

 

  



 
 

ix 
 

List of Figures 

Figure 4. 1. Microbial relative abundance at the phylum level stratified by (A) %FGV tercile and 

(B) aFGV tercile in fecal microbiota samples from 218 GOCS participants ...............................68 

Figure 4. 2. Box plots of alpha diversity metrics for observed richness and Shannon index 

across terciles of %FGV (A, B) and aFGV (C, D). .....................................................................69 

Figure 4. 3. Principal coordinate analysis (PCoA) plot of microbial composition derived from 

Bray-Curtis dissimilarity. ............................................................................................................70 

 

Figure A1. 1. Distribution of BPA concentration (log10-transformed and creatinine-adjusted) at 

B1, B4, or 1-year post-menarche for girls with breast composition assessments and those 

without breast composition assessments. .................................................................................77 

Figure A1. 2. Plot of Spearman correlation for EDC biomarker concentrations Tanner Stage B1 

among 293 girls participating in the Growth and Obesity Cohort Study in Santiago, Chile. .......78 

Figure A1. 3. Plot of Spearman correlation for EDC biomarker concentrations Tanner Stage B4 

among 333 girls participating in the Growth and Obesity Cohort Study in Santiago, Chile. .......79 

Figure A1. 4. Plot of Spearman correlation for creatinine-adjusted EDC biomarker 

concentrations 1-year post-menarche among 232 girls participating in the Growth and Obesity 

Cohort Study in Santiago, Chile. ...............................................................................................80 

 

Figure A2. 1. Boxplot of log10-transformed phenol [A], paraben [A], and phthalate [B] 

concentrations by study time point. ...........................................................................................82 

 

Figure A3. 1. Relative abundance of bacterial phyla across %FGV terciles. ..............................88 

Figure A3. 2. Relative abundance of bacterial phyla across aFGV terciles. ...............................89 

 

  



 
 

x 
 

Acknowledgements 

I want to thank my advisor, Dr. Karin Michels, for the tremendous guidance and support 

throughout my doctoral studies. I am extremely grateful for your motivation, and for pushing me 

when I needed to be pushed.  

Thank you to the other members of my committee, Drs. Camila Corvalán, Jonathan Jacobs, 

Elizabeth Rose Mayeda, and Zuo-Feng Zhang. This dissertation would not have been possible 

without your scientific support and mentorship throughout my time at UCLA.  I also want to 

thank Dr. Alexandra Binder, Dr. Ana Pereira, and other researchers affiliated with the Growth 

and Obesity Cohort Study, for your invaluable contributions over the past four years and for 

hosting me in Chile while I learned the ins-and-outs of this cohort. Thank you to Joy Miller at 

UCLA, for her endless optimism and problem-solving in the Epidemiology department.  

A special thank you to my family, especially my parents, for their inspiration, support, and 

encouragement throughout my many years of education. Mom and Dad, I would truly not be 

where I am today without you. Eric- I’m excited to have you join the club! Thank you to my 

friends from all walks of life— Atlanta, New York, Los Angeles—for your cheers and ears at all 

hours of the day. A huge thank you to Claire Kim, my partner-in-crime at UCLA.  

Finally, to my partner Will and our pup Basil, thank you for everything. This would not have been 

possible without you.  

“Variability in urinary phthalates, phenols, and parabens across childhood and relation to 

adolescent breast composition in Chilean girls” (Chapter 2) was submitted for publication. Co-

authors on this manuscript include Alexandra M. Binder, Ana Pereira, Antonia M. Calafat, John 

Shepherd, Camila Corvalán, and Karin B. Michels. LSY, AMB, and KBM conceptualized and 

designed the study. AP, AMC, JS, CC, and KBM collected and analyzed data for the study. 

Statistical analyses were completed by LSY and supervised by AMB and KBM. LSY drafted the 



 
 

xi 
 

manuscript, and all other authors were involved in critical interpretation and revision of the 

manuscript.  

“Childhood concentrations of endocrine-disrupting chemicals in relation to adolescent gut 

microbial composition in the Chilean Growth and Obesity Cohort Study” (Chapter 3) is in 

preparation for journal submission. Co-authors on the study include Moira Bixby, Shoshannah 

Eggers, Shelley Liu, Chris Gennings, Alexandra M. Binder, Camila Corvalán, Antonia M. 

Calafat, Juan Cristóbal Gana, Jonathan P. Jacobs, and Karin B. Michels. LSY, AMB, and KBM 

conceptualized and designed the study. CC, AMC, JCG, and KBM collected and analyzed data 

for the study. Statistical analyses were completed by LSY, MB, SE, and SL with supervision by 

CG, AMB, JPJ, and KBM. LSY drafted the manuscript, and all other authors were involved in 

interpretation of results and critical revision of the manuscript.  

“The association between breast density and gut microbiota composition at 2 years post 

menarche: A cross-sectional study of adolescents in Santiago, Chile” (Chapter 4) was submitted 

for publication. Co-authors on the manuscript include Jonathan P. Jacobs, Jessica Hoehner, 

Ana Pereira, Juan Cristóbal Gana, Camila Corvalán, and Karin B. Michels. LSY, JPJ, and KMB 

conceptualized and designed the study. AP, JH, JCG, CC, and KBM collected and analyzed 

data for the study. Statistical analyses were carried out by LSY and JH, with supervision by JPJ 

and KBM. LSY drafted the manuscript, and all other authors were involved in interpretation of 

results and critical revision of the manuscript.  

LSY was supported by the T32 training grant 5T32CA009142 from the National Cancer Institute 

of the National Institutes of Health and the Karen Toffler Charitable Trust. This dissertation was 

additionally supported by the following research grants: U01ES026130 from the National 

Institute of Environmental Health and the National Cancer Institute, National Institutes of Health 

(to KBM); U2CES026560 from the National Institute of Environmental Health Sciences of the 

National Institutes of Health; U2CES026561 from the National Institute of Environmental Health 



 
 

xii 
 

Sciences of the National Institutes of Health; and U2CES026555 from the National Institute of 

Environmental Health Sciences of the National Institutes of Health.  

The content of this dissertation is solely the responsibility of the authors and does not 

necessarily represent the official views of the National Institutes of Health nor the official 

position of the CDC. Use of trade names is for identification only and does not imply 

endorsement by the CDC, the Public Health Service, or the US Department of Health and 

Human Services. 

  



 
 

xiii 
 

Vita 

Education 

2015 MPH Epidemiology Columbia University 

2013 BS Biology Georgia Institute of Technology 

Experience 

2013-2015 Graduate Student Researcher 
Department of Obstetrics and Gynecology   
Columbia University 

2015 Research Intern 
Samuel Oschin Comprehensive Cancer Institute 
Cedars-Sinai Medical Center 

2015-2017 Research Scientist 
Precision Health Economics 

2017-2021 Graduate Student Researcher 
Department of Epidemiology 
University of California, Los Angeles, CA 

Fellowships and Awards 

2017-2021 T32 Trainee 
UCLA Cancer Epidemiology Training Program (NIH/NCI T32) 

2021 Toffler Scholar 
Karin Toffler Charitable Trust 

Selected Publications and Posters 

Yoon LS, Michels KB. Characterizing the Effects of Calcium and Prebiotic Fiber on Human Gut 
Microbiota Composition and Function Using a Randomized Crossover Design-A Feasibility 
Study. Nutrients. 2021 Jun 4;13(6):1937.  

Yoon LS, Corvalán C, Pereira A, Shepherd J, Michels KB. Effect of sugar-sweetened beverage 
intake on adolescent breast density. Poster; Society for Epidemiologic Research Annual 
Meeting; 16-18 De 2020; Virtual. 

Mulligan K, Sullivan J, Yoon LS, Chou J, Van Nuys K. Evaluating HCV screening, linkage to 
care, and treatment across insurers. Am J Manag Care. 2018;24(8):e257-e264. 

Yoon LS, Hillyer GC, Chen L, et al. Predictors of Interventional Treatment Use for Venous 
Thromboembolism in Cancer Patients. Cancer Invest. 2016;34(8):408-414.  

Yoon LS, Goodman MT, Rimel BJ, Jeon CY. Statin use and survival in elderly patients with 
endometrial cancer. Gynecologic Oncology. 2015;137(2):252-257. 

 



 
 

1 
 

Chapter 1. Introduction 

Epidemiology of breast cancer 

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer 

mortality among women worldwide, accounting for an estimated expected 2,261,419 new cases 

and 684,996 deaths in 2020.1 In Chile, the country in which the data for this dissertation was 

collected, the estimated number of new breast cancer cases in 2020 was 5,331, representing 

21% of all new cancer cases among women and corresponding to an age-standardized 

incidence rate of 37.4 cases per 100,000.1 Established risk factors for breast cancer account for 

an estimated 40% of the variability in breast cancer incidence. Of these known risk factors, only 

5-10% of breast cancer cases is attributable to heritable or genetic risk factors such as the 

inherited BRCA mutations.2 Biological risk factors for breast cancer include older age, family 

history of breast or ovarian cancer, endogenous hormone levels, early menarche, late 

menopause, and breast density. Behavioral risk factors for breast cancer include recent use of 

oral contraceptives, parity, age at first birth, breastfeeding, use of menopausal hormone 

therapy, physical inactivity, obesity, diet, and alcohol consumption.3–5  

A lifecourse approach to breast cancer research 

An increasing body of research suggests that early life events may be critical in later-life breast 

cancer risk.6 Initiation of breast carcinogenesis typically involves mutations in cellular genes that 

control key regulator pathways of the cell and can be induced by internal factors, such as errors 

in the normal DNA replication process, or external factors, like effects from environmental 

exposures.7 While most breast cancers are diagnosed among adult women, the breast develops 

and changes rapidly during several events throughout the lifecourse, including puberty, 

pregnancy, and menopause.7 Certain environmental exposures occurring during these windows 

may have permanent effects on breast development and potential carcinogenic triggers and that 
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subsequently affect susceptibility to breast cancer later in life. In particular, breast tissue may be 

particularly sensitive to exogenous perturbation during puberty, a period of rapid growth and 

cellular differentiation driven by hormones and other growth factors.8 Epidemiologic evidence 

indicates that menarche, height and weight gain during adolescence are associated with 

increased risk of breast cancer, while physical activity during adolescence is inversely 

associated with breast cancer risk. 6 Evidence for the effect of diet, alcohol use, and smoking 

during adolescence on breast cancer risk is mixed.6 Additional research is needed to better 

understand how the effects of other factors, including environmental exposures, during the early 

life influence risk of breast cancer.   

Breast density: a putative risk factor for breast cancer   

Breast density is recognized as one of the strongest and most consistent predictors of breast 

cancer.9 Breast density, thought to peak in young women following menarche, represents one of 

the few early life predictors of breast cancer risk that may be modified by exposure profile.10 

However, the majority of studies assessing breast density throughout the life course focus on 

adult women. Few studies have assessed breast composition in adolescents due to concerns 

over exposure to radiation during X-ray based mammography. As such, factors that contribute 

to breast composition during adolescence are not well-studied. The contribution of early life 

events to breast cancer, detailed previously, suggests an important role in for the assessment of 

adolescent breast density in contributing to an understanding of breast cancer. The prospective 

Growth and Obesity Cohort Study (GOCS) began in 2006 in Santiago, Chile and initially 

enrolled 515 girls.11 Breast density assessments were completed at Tanner stage 4 (B4) using 

dual energy X-ray absorptiometry (DXA), a low-dose method.12 Findings from this cohort 

indicate a positive association of adolescent breast density with select endocrine disrupting 

chemicals (EDCs) and certain dietary components (e.g., sugar), and an inverse association with 

other components of the diet including yogurt.13,14 Other studies focused on breast density in 
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young women have emerged from the Dietary Intervention Study in Children (DISC), a 

randomized dietary intervention trial of 663 pre-pubertal children that lasted for 7 years.15 Breast 

density assessments were done at age 25-29 during a follow-up study using non-contrast 

MRI.16 Findings from the DISC suggest an inverse association of young adult breast density 

with adolescent body fatness, monounsaturated fat intake, and age at hormonal contraceptive 

use, and a positive association with saturated fat intake, dietary energy density, duration of 

hormone use, and select endogenous sex hormones.17–20 Additional research to identify 

environmental influencers of breast development in adolescence is necessary.  

Impacts of endocrine-disrupting chemicals on breast density  

Endocrine disruptors are exogenous agents that interfere with processes in the endocrine 

system, including “synthesis, secretion, transport, metabolism, binding action, or elimination of 

natural blood-borne hormones that are present in the body and are responsible for homeostasis, 

reproduction, and developmental process.”21 The mechanisms through which endocrine-

disrupting chemicals (EDCs) act are broad and varied. EDCs are a heterogeneous group in 

characterization (synthetic or natural chemicals), exposure source (food, water, occupation, or 

consumer products), and mechanism of action. EDCs may exert actions through nuclear 

hormone receptors, including estrogen receptors (ERs) and progesterone receptors (PRs), 

nonsteroidal receptors, or through any number of other metabolic or endocrine pathways.21 

Phthalates, the diesters of 1,2-benzenedicarboxylic acid (phthalic acid), and phenols are 

synthetic chemicals found in plastics, medical devices, personal care products (e.g., perfume 

and soap), and pharmaceuticals.22 Common phthalates include di(2-ethylhexyl) phthalate 

(DEHP) and diethyl phthalate (DEP). Bisphenol a (BPA) is a widely recognized phenol; others 

include parabens and triclosan. Given the potential to interfere with endogenous hormones and 

impact the endocrine system, widespread exposure to EDCs during childhood and adolescence 

has caused concern over their health effects. 
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Experimental and epidemiologic evidence suggests an association between EDC exposure and 

breast health. In vitro studies have demonstrated that cells exposed to genistein show increased 

estrogen-sensitive mammary cancer cell growth and that diethyl phthalate (DEP) causes 

activation of estrogen-receptor alpha followed by proliferation of breast cancer cells.23,24 Mice 

and rats exposed to Bisphenol A (BPA) have altered breast development, an increased number 

of epithelial cells, and develop preneoplastic lesions.25–27 In a study of 76 adolescent Puerto 

Rican girls, higher levels of phthalates and mono-(2-ethylhexyl) phthalate were associated with 

premature thelarche.28 Exposure to mono-benzyl phthalate has been associated with older age 

at breast development in a longitudinal study of US girls.29 To date, one study has investigated 

the effect of childhood EDC exposure and adolescent breast density. Binder et al. evaluated the 

effect of urinary concentration of 26 select phenols and phthalates collected at Tanner stages 1 

(B1) and 4 (B4) on breast density at B4. Monocarboxyisooctyl phthalate and monoethyl 

phthalate were positively associated with breast density.14 Chapter 2 of this dissertation 

expands on the Binder et al. study of Chilean girls by 1) increasing the sample size, 2) 

describing the variability in EDCs across three peripubertal childhood time points, rather than 

two; and 3) elucidating the association of EDCs to a post-menarche measure of breast density, 

while taking into account the interaction with pubertal time point at which the EDC was 

measured.  

Associations of EDCs with the gut microbiome  

The gut microbiome, the collection of trillions of microorganisms living in in association with the 

human body in the gastrointestinal tract, has been increasingly linked to human health and 

disease.30 Experimental and observational evidence suggests that gut microbiota are important 

for maintenance of health and development of disease, playing an important role in the 

immunology and metabolism through nutrient absorption, immune regulation, and 

metabolization of chemicals.31–33 Hypotheses suggest a unique interplay between the immune 
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and metabolic systems in the body and gut microbiota. For instance, the gut microbiome is 

involved in estrogen metabolism, metabolic syndrome, and inflammation, indicating several 

pathways for contribution to breast development and breast cancer.34–39 The role of the gut 

microbiota in transformation and metabolism of chemicals and compounds also suggests a 

potential association with EDCs. It is plausible that there is a link between EDC exposure and 

metabolization, gut microbial composition or function, and human health and disease. To date, 

the role of EDC exposure in gut composition and metabolism in the context of breast cancer has 

not been explored. 

Growing evidence from animal models suggests that environmental EDCs such as phenols, 

phthalates, and parabens can influence composition and result in dysbiosis of gut microbiota.40 

Studies of mice, dogs, and rats have demonstrated that bisphenol-A (BPA), diethyl phthalate 

(DEP), diethylhexyl phthalate (DEHP), methyl paraben (MPB), and triclosan (TCS) exposure 

may alter gut microbial α-diversity (a measure of within-community microbial diversity).41–45 Few 

studies have examined the relation of EDCs—specifically, phenols, phthalates, or parabens— to 

the gut microbiota among humans. A Taiwanese study of newborns found that medical 

exposure to DEHP through intravenous infusions was associated with altered microbial 

composition.46 However, limitations of this study include a small sample size and limited 

generalizability. There is thus a significant lack of understanding of how EDCs may affect the 

gut microbiota in human population-based studies. It is currently unknown how childhood 

exposure to phenols, parabens, and phthalates may influence the composition of the gut 

microbiome in adolescence. Chapter 3 of this dissertation presents an exploration of the impact 

of single-chemical EDCs and an EDC mixture on the composition of the gut microbiome.  

Relation of the gut microbiome to breast density 

The gut microbiome represents a novel mechanistic pathway that may contribute to breast health. 

The gut microbiome is involved in estrogen metabolism, metabolic syndrome, and inflammation, 
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indicating several pathways for contribution to breast development and breast cancer.34–39 

Perturbations in microbiota composition resulting in a microbial imbalance, or dysbiosis, may 

increase vulnerability to pathogens through greater intestinal permeability and systemic 

inflammation.47 Alterations to the abundance of microbes involved in estrogen metabolism may 

result in heightened circulating estrogen.48 Estrogen levels are directly associated with breast 

development; therefore, the gut microbiome may play a mechanistic role in the development of 

breast density during puberty and adolescence.49,50  It is unknown whether the gut microbiome is 

associated with breast density in adolescence. Chapter 4 of this dissertation investigates the 

relation of adolescent breast density to various measures of gut microbial composition.  
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Chapter 2. Variability in urinary phthalates, phenols, and parabens across 
childhood and relation to adolescent breast composition in Chilean girls 

2.1. Abstract 

Background: Epidemiologic evidence suggests that environmental factors that act as endocrine 

disrupting chemicals (EDCs) are associated with breast development and the risk of breast 

cancer. Exposure to EDCs during puberty, a period of rapid breast development, may affect 

susceptibility to breast carcinogenesis.  

Methods: In a cohort of 366 Chilean adolescents participating in the Growth and Obesity Cohort 

Study, we evaluated the relation between urinary concentrations of 15 suspected EDCs 

biomarkers across three pubertal time points (Tanner breast stage 1 (B1), 4 (B4), and 1-year 

post-menarche) and breast fibroglandular volume (FGV; percent FGV [%FGV] and absolute 

FGV [aFGV]) and total breast volume (tBV) at 2-years post-menarche. We used linear mixed 

models to test differences in creatinine-corrected EDC biomarker concentrations at B4 and 1-

year post-menarche compared to B1 and calculated intraclass correlation coefficients (ICC) of 

EDC concentrations across study time points to appraise the consistency of measurements over 

time. We fit multivariable generalized estimating equations (GEEs) to evaluate windows of 

susceptibility for the association between log10-transformed EDCs and log10-transformed breast 

outcomes. GEEs were adjusted for age, body fat percentage, total caloric intake, and maternal 

education.  

Results: Urinary EDC biomarker concentrations were highly varied across pubertal time points 

(ICC range 0.01-0.30). For 12 of the 15 evaluated EDCs, biomarker concentrations decreased 

over time. Triclosan measured at 1-year post-menarche was inversely associated with %FGV at 

2-years post-menarche (β= -0.025, 95% confidence interval (CI) -0.041, -0.008). Monobenzyl 

phthalate measured at B1 was inversely associated with aFGV. Mono(2-ethyl-5-carboxypentyl) 

phthalate and the sum of di(2-ethylhexyl) phthalate metabolite concentrations at B4 were 
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positively associated with aFGV and tBV at 2-years post-menarche. No measured phenols were 

significantly associated with aFGV and tBV, while no measured parabens were associated with 

%FGV and aFGV.    

Conclusions: Overall, our study suggests high variability in EDC biomarker concentrations 

across the peripubertal time period. We also found evidence to suggest that there are pubertal 

windows of susceptibility to select EDCs for the association with adolescent breast density.  

2.2. Introduction 

Endocrine disrupting chemicals (EDCs) are exogenous agents that interfere with processes in 

the endocrine system, including synthesis and metabolism of hormones.21 Recent trends in 

breast cancer risk suggest that exposure to putative EDCs, including phthalates, parabens, and 

phenols, may play a role in increasing incidence of breast cancer.51 The question of how EDCs 

are associated with breast cancer has been evaluated in a limited number of animal and 

epidemiologic studies.52 In animal models, exposure to bisphenol A (BPA) has resulted in 

increased mammary gland growth, greater cell proliferation, and more tumor multiplicity.53–55 

Prenatal exposure to butyl benzyl phthalate in rats was associated with increased mammary 

gland susceptibility to carcinogens through modulation of gene expression.56 Epidemiologic 

evidence for an association between EDCs and breast cancer risk is inconsistent. Medium-sized 

(N<500) studies of breast cancer cases and controls in adult populations of Mexican and Native 

Alaskan women have found positive associations between certain phthalate biomarkers, 

including monoethyl phthalate (MEP) and mono(2-ethylhexyl) phthalate (MEHP), and breast 

cancer risk.57,58 In a larger nested-case control study within the Women’s Health Initiative, 

urinary concentrations of 13 phthalate biomarkers were not associated with breast cancer risk.59 

Recently, a nested case-control study within the Multiethnic Cohort Study reported suggestive 

associations for increased breast cancer risk among women with a higher ratio of MEHP to 

oxidative di(2-ethylhexyl) phthalate (DEHP) metabolites compared to those with a lower ratio.60 
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Oxidative DEHP metabolites were presumed to be less toxic than MEHP, the hydrolytic DEHP 

metabolite, and thus would have lesser physiological effect on breast carcinogenesis.60 In a US 

population-based study with 18 years of follow-up, higher urinary concentrations of 

methylparaben and propylparaben were associated with a 30 – 50% increase in breast cancer 

risk; the association was stronger among women with body mass index (BMI)<25.0 kg/m2.61 

Other studies of Polish and American women have not found evidence to link urinary bisphenol-

A concentrations to breast cancer risk.62,63  

Endocrine disruptors, ubiquitous in personal care products, industrial materials, food packaging, 

and pharmaceuticals,64–66 have the potential to interfere with breast carcinogenesis through their 

action on hormone receptors.52 EDCs have been implicated in modulation of estrogenic and 

anti-estrogenic activity, modification of development of mammary tissue, and inhibition of sex 

steroids metabolism.52 A strong risk factor for breast cancer is high mammographic breast 

density, a measure of the amount of fibroglandular tissue in the breast.9 Breast tissue 

development begins early in the lifecourse and may be particularly sensitive to environmental 

perturbation during puberty, a period of rapid growth and cellular differentiation driven by 

hormones and other growth factors.8 Exposure to EDCs during this window of sensitivity may 

have outsized impact on breast development and subsequent susceptibility to breast cancer, as 

pubertal breast development is thought to be an important determinant of adult mammographic 

density.67 However, the effect of exposure to EDCs on breast density is understudied. 

We have previously found associations between childhood exposure to select phenols and 

phthalates and breast composition at Tanner breast stage 4 (B4) in a cohort of Chilean 

adolescents. Specifically, B4 breast density was higher among girls with higher levels of 

monocarboxy-isooctyl phthalate measured at Tanner breast stage 1 (B1) and B4, and positively 

associated with MEP concentrations measured at B4.14 In this study, we expanded on our 

earlier analysis by increasing the sample from 200 to 366 participants, increasing the number of 
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time points at which the EDC biomarkers were assessed from two to three, and utilizing a post-

menarche measurement of breast density, when the breast has reached maturity. Breast 

density is thought to peak in young women following menarche; high density at this age may 

define breast density trajectories throughout the life course.10 The goals of this study were to 

assess the variability of EDC biomarker concentrations across three peripubertal time points 

and to evaluate the relation between EDC biomarker concentrations breast composition at 2-

years post-menarche. This study provides additional insight into potential windows of 

susceptibility to EDC exposures during childhood on adolescent breast density.  

2.3. Methods 

Study population  

Participants in this study were part of the Growth and Obesity Cohort Study (GOCS), an 

ongoing longitudinal cohort study of children in Santiago, Chile. GOCS began in 2006 and 

included 1,196 children aged 2.5-4 years enrolled in preschool at the National Board of 

Preschool Council Program (Junta Nacional de Jardines Infantiles).11 Participants in the study 

met the following criteria: (1) singleton birth born at term (37-42 weeks), (2) birthweight of ≥2500 

and <4500 grams, and (3) without health conditions that might affect growth (e.g., metabolic or 

endocrine disorders). Of the children initially enrolled in the cohort, approximately half (n=601) 

were female. Once enrolled, participants visited the Instituto de Nutrición y Tecnología de los 

Alimentos (INTA) Health Clinic at the Universidad de Chile in Santiago, Chile at least one per 

year; in 2011, the visit frequency increased to twice per year to better capture pubertal 

maturation. At the clinic, trained dietitians evaluated anthropometry, bioimpedance, and pubertal 

development (thelarche, menarche, Tanner staging) in the children. Biological specimens (e.g., 

urine) were collected at defined follow-up time points: B1, B4, and 1-year post-menarche. 

Limited socioeconomic, demographic, and behavioral information was also collected via 

questionnaires completed by the mothers of the children. Diet was assessed via 24-hour recall 
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every six months beginning in 2013. Breast density was measured using dual X-ray 

absorptiometry when the girls reached B4 and again at 2-years post-menarche among 525 girls. 

The current study includes 366 girls with a breast assessment at 2-years post-menarche and at 

least one urine sample collected at B1, B4, or 1-year post-menarche. The study protocol was 

approved by the University of Chile Ethics Committee at INTA and the University of California, 

Los Angeles Institutional Review Board. Written informed consent was obtained from all parents 

or guardians of the children at enrollment and again before breast assessment. The analysis of 

blinded specimens by the CDC laboratory was determined not to constitute engagement in 

human subjects' research.  

EDC biomarker assessment 

Fasting spot urine samples were collected during visits to the clinic at INTA corresponding to 

three study time points: B1, B4, and 1-year post-menarche. During morning visits to the clinic, 

each participant collected at least 2 mL of urine in polypropylene sterile containers. The urine 

was temporarily stored at 4°C before processing for homogenization of the sample and 

measurement of urinary density, followed by aliquoting and storage at -80°C before being 

shipped to a laboratory for biomarker quantification. This protocol has shown to be effective with 

regards to temporal stability of metabolites in the urine.68  

We selected 18 suspected EDC biomarkers a priori for measurement in urine, including 6 

phenols (benzophenone-3, BPA, bisphenol F [BPF], bisphenol S [BPS], triclosan, triclocarban), 

4 parabens (ethylparaben, butylparaben, methylparaben, and propylparaben), and 8 phthalate 

metabolites (mono(2-ethyl-5-carboxypentyl) phthalate [MECPP], mono(2-ethyl-5-hydroxyhexyl) 

phthalate [MEHHP], MEHP, mono(2-ethyl-5-oxohexyl) phthalate [MEOHP], MEP, mono-isobutyl 

phthalate [MiBP], mono-n-butyl phthalate [MBP], and the nonspecific metabolite of several 

phthalates mono-3-carboxypropyl phthalate [MCPP]). Urine samples collected at B1 and B4 

from 200 randomly selected girls (400 samples total) were processed at the CDC National 
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Center for Environmental Health Laboratory using on-line solid phase extraction-high 

performance liquid chromatography-isotope dilution-tandem mass spectrometry as previously 

described.69,70  Quality control pooled human urine materials were analyzed along with 

standards, blanks, and study samples. The limits of detection (LOD) ranged from 0.1 to 1.7 

ng/mL depending on the analyte.69,70 Additional funding supported the analysis of the remaining 

urine samples from 166 girls collected at B1 (93 samples), B4 (133 samples), and 1-year post-

menarche (232 samples) at the Mount Sinai CHEAR Network Laboratory Hub using a 

previously described protocol.71 EDC biomarkers needed to have been measured by both the 

CDC laboratory and the Mount Sinai laboratory in order to be included in this analysis. One 

EDC biomarker, mono-benzyl phthalate (MBzP), was excluded from this analysis and will be 

presented elsewhere. Creatinine quantification for all samples was performed at Mount Sinai. A 

subset of 40 samples collected at B1 and B4 and initially analyzed at the CDC lab was also 

analyzed at the Mount Sinai lab for quality control (QC) followed by calculation of the QC 

intraclass correlation coefficient (ICC) using a one-way random effects model measuring 

absolute agreement with multiple raters/measurements to evaluate agreement between 

labs.72,73 Three EDC biomarkers with ICC < 0.75 and with more than 50% replicates below the 

lab-specific LOD for both samples were excluded from further analysis (BPF, butylparaben, 

triclocarban). A total of 15 EDC biomarkers were used in the analyses; the mean ICC for 

biomarker pairs was 0.87. EDC concentrations below the lab-specific LOD were imputed a 

value of the LOD/sqrt(2).74 

Prior to analysis, we standardized the distribution of EDC biomarker concentrations across 

assay batches. The QC samples analyzed by both labs were used to estimate the difference in 

the mean and relative standard deviation (SD) in biomarker concentrations between the two 

labs. These estimates were then used to shift the mean and scale the SD among the full sample 

group analyzed at CDC to that of the samples analyzed at Mount Sinai, assuming the true 
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distribution of concentrations between the two labs was the same and there were no differences 

in participant characteristics for the samples analyzed at different labs. We also calculated the 

molar summation of several biomarkers: DEHP metabolites (MEHP, MEHHP, MECPP, 

MEOHP), ∑high- molecular weight phthalates (high-MWP) (MCPP, MECPP, MEHHP, MEHP, 

MEOHP), ∑low-MWP (MEP, MiBP, MBP), ∑phenols (benzophenone-3, BPA, BPS, triclosan), 

and ∑parabens (ethylparaben, methylparaben, propylparaben) by dividing each biomarker 

concentration by its molar mass and then summing the individual concentrations.  

Breast composition assessment  

Breast assessments were completed when the girls were 2-years post-menarche. Dual energy 

X-ray absorptiometry (DXA) was used to quantify dense breast tissue volume (fibroglandular 

volume; FGV) based on a breast scanning protocol developed by Shepherd and colleagues the 

University of California, San Francisco.75 In this method, each breast was scanned with the 

Prodigy DXA system software (version 13.6, series 200674; GE Healthcare). The DXA system 

was continuously calibrated throughout the study using a quality control breast phantom. Values 

from the left and right breast were averaged to obtain single measures of absolute FGV (aFGV; 

cm3) and total breast volume (tBV; cm3). We derived percent FGV (%FGV; %) by calculating the 

proportion of absolute FGV among total breast volume. The DXA protocol has high validity and 

precision for breast density assessments among adolescent girls and is frequently used to 

evaluate bone density in children.76,77 All breast composition assessments were log10-

transformed prior to analyses.  

Covariates 

Demographic, anthropometric, and nutritional information was collected during follow-up visits to 

the INTA health clinic. Body fat percentage was measured using bioelectrical impedance 

measurements (Tanita-BC-418 MA, Tanita-Corporation, Tokyo, Japan) and presented as a 
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continuous measure. Body fat percentage was also categorized (underfat/normal, overfat, 

obese) based on Tanita age- and sex-specific body fat reference curves.78,79 Age at menarche 

was determined via phone interviews completed by study dietitians every 3 months during 

puberty and confirmed at the subsequent study visit. Information on birth mode (vaginal, 

caesarean), duration of predominant breast-feeding (<3 months, 3-6 months, >6 months), and 

maternal education (secondary education or less, more than secondary education) was 

collected via interviews with the mothers of the participants. Total caloric intake (g/day) was 

measured using 24-hour dietary recalls at each clinic visit and averaged across the recalls that 

occurred prior to each study time point (B1, B4, 1-year post-menarche) for each girl to reduce 

random measurement error.80 Missing covariate data were imputed using last observation 

carried forward if available followed by mean or median imputation. 

Statistical Analysis  

To assess temporal variability in EDC biomarker concentration, we calculated geometric means 

and 95% confidence intervals at each study time point. The geometric mean is less influenced 

by extreme outliers than other measures of central tendency.81 ICCs and corresponding 95% 

confidence intervals were calculated from a one-way random effects model for consistency to 

compare variability of each log10-transformed EDC biomarker concentration across the three 

study time points (B1, B4, 1-year post-menarche).73 The ICC ranges from 0 to 1; a higher ICC 

indicates less intra-individual variability.81 Individual linear mixed models (LMM) with random 

intercepts were used to evaluate differences in log10-transformed EDC biomarker concentrations 

at B4 and 1-year post-menarche compared to B1. These LMMs allow for intra-individual 

correlation across timepoints. Spearman correlation coefficients were calculated between log-

transformed EDC biomarkers separately for each time point. EDC concentrations were 

creatinine-corrected to account for dilution and are presented in units of μg/g creatinine or 

μmol/g creatinine. For analyses of temporal variability, we corrected for creatinine using the 
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classical adjustment method by dividing urinary EDC biomarker concentration by creatinine 

concentration.82  

To evaluate windows of susceptibility for the association between log10(ng/ml)- EDC biomarker 

concentrations and breast outcomes, we fit generalized estimating equation (GEE) models with 

an identity link and independent correlation structure. This GEE approach is based on the 

multiple informants method and models subject-specific patterns of EDC biomarker 

concentrations (repeated measures) in relation to the breast composition outcome.83,84 The 

multiple informants GEE approach can be used to examine whether the exposure of interest is 

associated with the outcome in the same manner for each study time point and provides a 

single coefficient estimate for each time point.84 We examined the significance of the interaction 

between study time point and log10-EDC biomarker concentration on breast outcomes using the 

F test. All models were adjusted for time-varying (age (years; continuous), body fat percent 

(continuous), total caloric intake (kilocalories (kCal) per day; continuous)) and fixed (maternal 

education (categorical)) factors selected a priori as potential confounders using directed acyclic 

graphs.85 We used non-creatinine-adjusted EDC biomarker concentrations in the multivariable 

GEE analyses and additionally included creatinine as covariate in the models.86 Log10 

transformations of the EDC biomarker concentrations and breast outcomes were used to 

account for a non-linear relation and highly skewed variables. Therefore, beta coefficients 

represent the association between log10(ng/ml)- EDC concentrations and log10-transformed 

breast outcomes and can be interpreted as the percent chance in breast outcome when the 

EDC biomarker concentration increases by 1%. Exposure to EDC biomarkers often occurs in a 

cumulative, not isolated, manner; many EDC biomarkers are thus likely to be correlated. We 

therefore did not include more than one EDC biomarker in a model to avoid inducing large 

variance. We did not adjust for multiple comparisons for confidence intervals within the GEE 

models due to high shared variation between EDCs and to avoid reducing power.87 However, 
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we did adjust p-values for analyses evaluating the significance of the interaction between study 

time point and log10-EDC biomarker concentration using the Benjamini-Hochberg procedure; 

false discovery rate (FDR) <0.25 was considered significant.88 All analyses were performed in R 

version 4.0.4.89  

2.4. Results 

Participant characteristics at each study time point are presented in Table 2.1. Among the 366 

girls with breast assessments at 2-years post-menarche included in the study, 293 provided a 

urine sample at B1; 333, B4; and 232, 1-year post-menarche. Girls included in the study did not 

noticeably differ from the 159 girls excluded from the study for missing breast composition 

assessments with respect to key study characteristics (Table A1. 1). Of the participants included 

at each of the study time points, the proportion providing a urine sample on at least one other 

time point was moderate to high. For instance, among girls who provided a urine sample at B4, 

65.8 % also provided one at 1-year post-menarche; among the girls with a urine sample at 1-

year post-menarche, 84.9% had provided one at B1. Participants were, on average, 7.9 years 

old (SD 0.45) at B1, 11.4 years old (SD 0.9) at B4, and 13.4 years old (SD 0.8) at 1-year post-

menarche. Overall, participants’ mean body fat percentage increased from B1 to 1-year post-

menarche (25.6 % to 30.5 %), with the greatest proportion of obese girls at 1-year post-

menarche. A majority of mothers of the participants reported secondary education or less, 3-6 

months of predominant breast feeding, and vaginal births. Average caloric intake of the girls 

ranged from 1,745 to 1,873 kCal/day across the study time points.  

Temporal variability of EDC biomarkers 

Creatinine-adjusted EDC biomarker geometric means and standard deviations by study time 

point are presented in Table 2. 2. Apart from BPA, the distribution of the log10-transformed and 

creatinine-adjusted EDC biomarker concentrations at B1, B4, and 1-year post-menarche did not 

significantly differ between GOCS girls included in the analysis and girls excluded from the 
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analysis (Figure A1. 1). Overall, results from linear mixed models suggest that EDC 

concentrations were significantly lower at B4 and 1-year post-menarche compared to B1 for 

individual EDCs (methylparaben, ethylparaben, propylparaben, and all phthalate metabolites) 

and for summed EDC groupings (∑Phenols, ∑Parabens, ∑Low-MWP, and ∑High-MWP). 

However, benzophenone-3 concentrations were higher at B4 and 1-year post-menarche 

compared to B1. Spearman correlations of individual EDC biomarker concentrations within 

study time points ranged from low (close to 0) to high (close to 1) depending on the EDC 

biomarker grouping (Figure A1. 2, Figure A1. 3, Figure A1. 4). In general, EDC biomarker within 

the same chemical class were more likely to be highly correlated with each other than with 

biomarkers from other chemical classes. For instance, DEHP metabolites highly correlated with 

other DEHP metabolites; parabens highly correlated with other parabens. This pattern was 

consistent within each study time point. We also found evidence to suggest high variability of 

EDC biomarker concentrations across study time points (Table 2. 2). The ICC for phenols 

ranged from 0.01 to 0.11; for parabens, 0.07 to 0.15; for phthalates, 0.06 to 0.30.  

Association of EDC concentrations with breast composition measures 

A log10(ng/ml) increase in benzophenone-3 concentration at B1 was associated with a modest 

decrease (β:-0.024, 95% CI: 0.05, 0.000) in log10%FGV at 2-years post-menarche after 

adjusting for creatinine, maternal education, age, body fat percentage, and average daily caloric 

intake (Table 2. 3). We also found an inverse association between triclosan at 1-year post-

menarche and %FGV at 2-years post-menarche (β:-0.025, 95% CI: -0.41, -0.008). The 

interaction between triclosan biomarker concentration and study time point was significant, 

suggesting differences in associations between triclosan concentrations and %FGV across B1, 

B4, and 1-year post-menarche (p=0.007). No other EDC biomarkers measured at B1 or 1-year 

post-menarche were associated with differences in %FGV at 2-years post-menarche, nor were 



 
 

18 
 

any EDC biomarkers measured at B4. We also did not report other significant interactions 

between EDC biomarker and study time point on %FGV at 2-years post-menarche.  

A higher concentration of MBP measured at B1 was associated with lower aFGV at 2-years 

post-menarche (β: -0.09, 95% CI: -0.15, -0.024) (Table 2. 4). Higher aFGV at 2-years post 

menarche was also associated with higher concentrations of the single EDC biomarker MECPP 

(β: 0.055, 95% CI: 0.006, 0.104) and ∑DEHP metabolite biomarkers (β: 0.053, 95% CI: 0.003, 

0.104) measured at B4. The association between EDC biomarker concentration and aFGV at 2-

years post-menarche was significantly modified by study time point for several phthalates (MBP, 

MEHHP, and ∑DEHP) in models adjusted for confounding.  

Biomarker concentrations of phenols measured at any time point were not associated with tBV 

(Table 2. 5). Propylparaben measured at 1-year post menarche was associated with higher tBV 

at 2-years post menarche (β: 0.021, 95% CI: 0.001, 0.041), and the relation of propylparaben to 

tBV was significantly modified by study time point (p=0.038). Several phthalate biomarkers 

MBP, MECPP, MEHP) were linked to differences in tBV; study time point significantly modified 

the associations. However, none of the summed phthalate groupings were significantly 

associated with tBV.  

2.5. Discussion 

In this longitudinal study of adolescent Chilean girls, urinary concentrations of select EDC 

biomarkers measured across different stages of puberty were weakly associated with breast 

outcomes measured at 2-years post-menarche. These associations were not consistent across 

time: for EDC biomarkers significantly associated with breast outcomes, those measured at B1 

were generally associated with lower breast density and volume, while those measured at B4 

and 1-year post-menarche were largely associated with higher breast density and volume. Our 

results also suggest differences in EDC biomarker concentration across time. For the majority of 

EDC biomarkers we evaluated, concentrations at B4 and 1-year post-menarche were 
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significantly lower than concentrations at B1. Taken together, these findings suggest that breast 

development may have windows of susceptibility to EDC exposure throughout puberty. 

However, given the number of hypotheses tested in our analyses, we cannot rule out the 

possibility of significant findings by chance.  

Variability in EDC biomarker concentration across puberty 

We reported geometric mean concentrations of creatinine-adjusted EDC biomarkers across 

time points corresponding to age 8 (B1), 11.5 (B4) and 13.5 (1-year post-menarche) years. 

Overall, urinary concentrations of EDC biomarkers were similar in our study population to those 

observed in other studies of young children or adolescents in the United States (U.S.), China, 

Sweden, and Mexico.90–96 These observed differences in EDC biomarker concentration may 

reflect true geographic differences in population exposure to certain EDCs. For example, we 

observed lower concentration of BPA among the girls in our study (1.4 – 1.6 μg/g creatinine) 

compared to studies of U.S. children of similar age (1.1-4.2 μg/g creatinine), which might 

suggest decreased exposures through sources such as ultra-processed food (UPF) 

packaging.92,96 EDCs such as BPA, DEHP, and other phthalates are ubiquitous in UPF 

packaging such as plastic containers and food lining.97 UPFs account for roughly a quarter of 

total energy intake (kCal) in the general population in Chile.98 In comparison, data from the U.S.-

based National Health and Nutrition Examination Survey suggest that more than 50% of total 

energy intake among the general population and more than 65% of total energy intake among 

children and adolescents comes from UPF.99 We also observed higher concentrations of 

paraben biomarkers (ethylparaben, methylparaben) in the Chilean girls compared to Swedish 

and Danish children of similar age, which might relate to differences in public and regulatory 

focus on parabens in the European Union compared to Chile.95,100  

In the present study we observed decreasing EDC biomarker concentrations over time. With the 

exception of benzophenone-3 and BPA, creatinine-corrected concentrations of individual 
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phenols, parabens, and phthalate biomarkers were lower at B4 and 1-year post-menarche 

compared to B1. This trend is somewhat unexpected, as we might anticipate higher 

concentrations of certain parabens and phthalates biomarkers at older ages with increasing use 

of cosmetics and other personal care products. However, creatinine also increases with age; 

creatinine-adjusted concentrations of EDC biomarkers may decline with increasing age.86 In 

contrast to our analysis, prior studies of Danish children reported higher concentrations of MEP 

among girls at older ages and more advanced pubertal stages (B4 and B5) compared to 

younger girls and those at less advanced stages (e.g., B1).101,102 Notably, creatinine was either 

not measured or not mentioned in these studies. A U.S.-study observed higher metabolite 

concentrations of certain high-MWPs (MCOP, MCNP) among children aged 6-11 years 

compared to adolescents (12-19 years); these concentrations were also corrected for 

creatinine.103 Though we did not quantify MCOP and MCNP in this analysis because they were 

only measured at one lab, we did observe a similar trend of higher concentrations at earlier 

pubertal stages (i.e., younger ages) among metabolites of other high-MWP (MCPP, MECPP, 

MEHHP, MEHP, MEOHP). While these studies confirm exposure to EDCs in childhood, it is 

difficult to disentangle changes in exposure to these chemicals from physiological differences 

such as changing body size.  

Results from our study suggest relatively high variability in biomarker concentrations across the 

study period for all EDC biomarkers. Our ICCs generally agree with those reported in cohort 

studies in populations of children, with most studies reporting low ICCs, particularly when the 

period of time between urine collection is greater than several months. The HOME study of 

U.S.-based pre-school aged children reported relatively high variability of BPA and phthalate 

metabolite concentrations (ICC range 0.09 - 0.39) over an 8-year study period, with MEP 

exhibiting the lowest variability across time.96,104,105 Overall, studies which have evaluated 

longitudinal EDC concentration in childhood or adolescence find relatively high variability across 
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time, particularly when the period between sample collections is greater than several 

months.96,106,107 We also observed less temporal variability and lower concentrations of urinary 

MEHP, the hydrolytic metabolite of DEHP, across time compared to the other three DEHP 

metabolites (MECPP, MEHHP, MEOHP) measured in the study. Other observational studies 

have reported similar relative variability (ICC range 0.30-0.50) and lower concentration of MEHP 

relative to the oxidative DEHP metabolites.108–113 The reasons for the lower variability of MEHP 

compared to other DEHP metabolites are unclear as MEHP has a shorter half-life compared to 

oxidative DEHP metabolites.114 It is possible that DEHP exposure is relatively stable across 

childhood and the distribution of oxidative DEHP metabolites concentrations relates to changes 

in the body’s metabolic activity with age and body size.112,115  

Association of EDC biomarkers with breast outcomes  

In our study, select EDC biomarkers measured across puberty demonstrated weak but 

significant associations with breast outcomes at 2-years post-menarche. Our results for the 

associations between these EDCs measured at B1, B4, and 1-year post-menarche and breast 

outcomes at 2-years post-menarche are not consistent with our prior study, which measured 

breast outcomes at B4. We had previously found an inverse association between triclosan 

concentration at B1 and B4 and aFGV at B4, a positive association between MEP concentration 

at B4 and aFGV at B4, and a non-linear association for the relation of BPA to aFGV and MCNP 

to tBV.14 There are several major differences in this study and our prior study. In the current 

study, our sample size increased by more than 150 girls, increasing our study power. Girls 

included in this study differed from those in our prior study with respect to BMI Z-score: median 

BMI Z-score at B1 and B4 were 0.85 and 0.88, respectively. In contrast, girls included in the 

prior study had median BMI Z-score of -0.1 at B1 and 0.1 at B4. It is likely that the higher BMI Z-

score in the current study sample better reflects the nutritional intake and obesity status of the 

cohort and of Chilean girls overall. While both studies adjusted for body size, we were able to 
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further adjust for total caloric intake to account for any residual confounding in the current study. 

We also evaluated three time points across the peripubertal window representing different 

periods of development, rather than two. Our breast composition outcome was assessed at 2-

years post-menarche, after the exposure windows. In contrast, our prior study evaluated a 

simultaneous EDC measure and breast outcome assessment (B4). Looking at prospective 

exposure to EDCs such as diethyl phthalate, the parent compound of MEP, and later breast 

outcomes may have allowed us to better characterize the temporal nature of any potential effect 

of EDCs on breast development. Finally, we were able to capture a measure of breast density 

composition post-puberty when the breast has reached maturity.10 Unpublished analyses from 

our cohort suggest a correlation between breast density measures at B4 and a 2-years post-

menarche: girls in the highest category of breast density at B4 are likely to remain in the highest 

category at 2-years post-menarche. However, aFGV and tBV overall are significantly higher in 

girls at the 2-year post-menarche timepoint compared to the B4 timepoint.  

While to our knowledge no other cohorts have evaluated the EDC-breast composition link in 

adolescents, several other studies have evaluated the relation between these chemical 

biomarkers and the timing of breast development. Evidence from longitudinal studies in the USA 

and UK suggests that timing of breast development is related to breast composition: earlier 

thelarche (i.e., first breast development) and greater time between thelarche and menarche 

have been associated with higher adult percent breast density.116,117 Moreover, an increase in 

adult breast density and earlier thelarche are both associated with an increase in breast cancer 

risk.118 It is unknown whether these risk factors are markers for each other or whether they 

might act through similar mechanisms to influence breast cancer risk. However, we might 

expect similar associations between EDCs and timing of breast development, and EDCs and 

breast composition. Support for this theory is inconsistent across other longitudinal cohorts. Two 

publications from the Breast Cancer and Environment Research Program (BCERP), a multi-
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ethnic longitudinal cohort study of U.S. girls, report earlier breast development (i.e., age at 

Tanner breast stage 2 [B2]) for higher urinary concentrations of triclosan at age 6-8 years, but 

later breast development for higher benzophenone-3 and monobenzyl phthalate (MBzP) 

concentrations at age 6-8 years.29,119 The BCERP studies and others have also observed null 

associations between select EDCs, including low-molecular weight phthalate biomarkers and 

phenols, and the timing of breast development. A study of 725 Danish girls did not find 

significant relations of age at B2 to concentrations of 12 phthalate biomarkers.102 In the U.S.-

based CHAMACOS longitudinal cohort of Latinos, peripubertal concentrations of 

benzophenone-3 and triclosan were not associated with age at B2.120 Evaluating the literature 

on the association between EDCs and adolescent breast development should consider the 

difference in choice of breast or pubertal outcomes, study populations, sample sizes, and the 

timing of EDC biomarker measurements across studies.  

It is notable that our current study was able to measure EDC biomarker concentrations at three 

different time points across puberty, compared to a single peripubertal window in other cohorts, 

allowing for examination of specific susceptible peripubertal periods. We observed significant 

interaction by study time point for the association between certain DEHP metabolites and breast 

outcomes, with significant positive associations for B4 concentrations of MECPP and both 

aFGV and tBV. It is plausible that the breast is more susceptible to EDC exposure during the B4 

stage, in which the breast tissue is continuing to differentiate and proliferate, compared to B1, a 

pre-pubertal stage in which there is less rapid development, or 1-year post-menarche, when the 

breast is mature.121 However, the significant associations observed with aFGV were among the 

phthalates with higher levels of exposure. A potential explanation for lack of significance at this 

stage for other phthalates is that we are limited in power to observe associations with lower 

concentrations. To our knowledge, no other studies have evaluated adolescent breast 
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composition with multiple pubertal exposure time points. Overall, these findings suggest Tanner 

breast stage B4 as a potential window of susceptibility to DEHP for aFGV. 

Finally, a potential explanation for our findings is that EDCs are not associated with breast 

density in adolescence. Instead, it is possible that the use of multiple statistical tests related to 

the number of EDC biomarkers and breast outcomes measured increased the likelihood of 

falsely positive results by chance.122 We attempted to control for type 1 errors by adjusting p-

values from joint hypothesis testing of interaction using the Benjamini-Hochberg method and a 

standard false discover rate of 0.25.88 However, EDC biomarker concentrations vary 

significantly across  pubertal time periods; it is conceivable that our concentrations do not truly 

represent the average EDC concentrations among the cohort and that the timing between EDC 

biomarker measurement and breast outcome measurement significantly precludes any 

permanent effect. As previously discussed, other cohort studies have found null associations 

between EDC biomarkers and important pubertal breast outcomes.  

Strengths and limitations  

A limitation of our study is potential exposure misclassification from single spot urine collection 

at each study time point. While urine is the preferred biospecimen for characterizing 

concentrations of phthalate metabolites, parabens, and phenols as biomarkers, non-persistent 

chemicals such as EDCs are metabolized quickly and biomarker concentrations reflect recent 

exposure.123,124 A single urine sample may not accurately represent an entire pubertal period. 

However, studies suggest that metabolite concentrations of certain phthalates and phenols have 

moderate to good correlation over time frames of weeks or months in children.104,105 Because 

EDC exposures are often linked to consistent behavioral and dietary patterns such as use of 

personal care products and food choices, use of a single urine sample may reasonably reflect 

an exposure period. Additionally, though we did adjust for multiple comparisons for select joint 

hypotheses, it is possible that some our reported associations are due to type I error. However, 
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we may have increased type II error by adjusting for multiple comparisons if we believe that the 

relation between EDC biomarkers and breast outcomes are truly not null.87 Urinary metabolite 

quantification represents a measure of internal dose that accounts for multiple parent 

compounds and routes of exposure.107 We are unable to disentangle the specific source of the 

metabolite or parent compound exposure, particularly for nonspecific biomarkers that have more 

than one parent compound such as MCPP. However, biomarkers can be used to estimate the 

totality of exposure for a relevant time window and may provide a more accurate assessment of 

EDC exposure than assessment via lifestyle or dietary questionnaire.125 

Our study has several strengths, including the large sample size and ability to prospectively 

study the relation between EDC exposure and adolescent breast density. We collected repeated 

samples of urine for EDC biomarkers assessment throughout puberty, which allowed us to 

examine the associations of interest at more than one time point and identify potential windows 

of susceptibility. There was moderate loss to follow-up in this study and only marginally varying 

sample sizes across time points. GOCS has longitudinal covariate information that allowed us to 

adjust for potential confounders such as maternal education and anthropometry. It is possible 

that there is residual confounding from diet due to the use of a single measure of total caloric 

intake. While we were unable to estimate dietary habits that may reflect source exposure to 

EDCs such as packaged food, we were able to control for factors such as maternal education 

as a surrogate for socioeconomic status, which may drive dietary choices.  

2.6. Conclusions 

We found strong temporal variability in urinary concentrations of phthalate metabolites, phenols, 

and parabens across pubertal time points. Urinary concentrations of a limited number of 

phenols and phthalates biomarkers across various pubertal stages were associated with 

differences in adolescent breast outcomes measured at 2-years post-menarche, which suggests 
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potentially varying windows of susceptibility during puberty. However, we cannot rule out 

findings of chance.   
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Table 2.1. Characteristics of 366 girls in the Growth and Obesity Cohort Study assessed for 

breast density at 2-years post menarche 

Characteristic Study Time Point 

  Tanner Stage 
B1 

Tanner Stage 
B4 

1-Year Post-
Menarche 

  (n=293) (n=333) (n=232) 

Urine sample provided        

B1 293 (100.0) 261 (78.4) 197 (84.9) 

B4 261 (89.1) 333 (100.0) 219 (94.4) 

1Y PM  197 (67.2) 219 (65.8) 232 (100.0) 

        

Age, years (mean (SD)) 7.87 (0.45) 11.38 (0.88) 13.40 (0.82) 

Age at menarche, years (mean (SD)) 12.09 (0.91) 12.04 (0.89) 12.42 (0.76) 

BMI Z-score (mean (SD)) 0.85 (1.10) 0.88 (1.10) 0.86 (1.11) 

Body fat percentage (mean (SD)) 25.58 (4.41) 26.93 (5.11) 30.62 (5.61) 

Body fat percentage category (count (%))       

Underfat/Normal 155 (54.4) 198 (62.3) 55 (40.1) 

Overfat 82 (28.8) 68 (21.4) 39 (28.5) 

Obese 48 (16.8) 52 (16.4) 43 (31.4) 

Maternal education (%)       

Secondary education or less 236 (80.5) 271 (81.4) 192 (82.8) 

Greater than secondary education 57 (19.5) 62 (18.6) 40 (17.2) 

Duration of predominant breast feeding 
(count (%)) 

      

< 3 months  90 (30.7) 107 (32.1) 74 (31.9) 

3-6 months  171 (58.4) 188 (56.5) 134 (57.8) 

> 6 months  32 (10.9) 38 (11.4) 24 (10.3) 

Birth mode (%)       

Caesarean 85 (29.0) 91 (27.3) 73 (31.5) 

Vaginal 208 (71.0) 242 (72.7) 159 (68.5) 

Average caloric intake, kCal (mean (SD)) 1878.81 
(490.73) 

1873.00 
(457.64) 

1745.07 (446.37) 
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Table 2. 2. Creatinine-adjusted urinary phenol, paraben, and phthalate biomarkers geometric 
means (95% confidence interval) by study time point. 

  Tanner Stage B1 Tanner Stage B4 1-Year Post-Menarche ICC (95% CI) 

N 293 333 232 

Phenols         

Benzophenone-3 31.3 (27.7, 35.4) 50.5 (43.6, 58.5) a 47 (40, 55.4) a 0.07 (0, 0.16) 

BPA 1.6 (1.4, 1.7) 1.4 (1.3, 1.6) 1.6 (1.4, 1.7) 0.11 (0.02, 0.2) 

BPS 0.5 (0.5, 0.6) 0.5 (0.4, 0.6) 0.4 (0.3, 0.4) a 0.01 (0, 0.1) 

Triclosan 12.3 (10.5, 14.5) 11.2 (9.6, 13.1) 10.1 (8.2, 12.5) 0.1 (0.02, 0.2) 

∑Phenols b 0.2 (0.2, 0.3) 0.3 (0.3, 0.4) a 0.3 (0.3, 0.4) a 0.06 (0, 0.16) 

Parabens         

Ethylparaben 1.8 (1.5, 2.2) 1.1 (1, 1.4) a 1 (0.8, 1.3) a 0.07 (0, 0.16) 

Methylparaben 46.3 (38.4, 55.8) 31.7 (26.4, 38.1) a 20.8 (16.5, 26.1) a 0.14 (0.05, 0.24) 

Propylparaben 3.9 (3, 5) 2.3 (1.8, 2.8) a 1.7 (1.3, 2.3) a 0.15 (0.06, 0.25) 

∑Parabens b 0.4 (0.3, 0.5) 0.3 (0.2, 0.3) a 0.2 (0.1, 0.2) a 0.14 (0.05, 0.24) 

Phthalates         

MBP 42.5 (38.8, 46.5) 29.6 (27, 32.4) a 32.6 (29.6, 35.9) a 0.10 (0.01, 0.19) 

MCPP 3.3 (3, 3.7) 2.8 (2.5, 3.2) a 2.7 (2.4, 3.1) a 0.14 (0.05, 0.23) 

MECPP 86.9 (79, 95.5) 46.3 (42.5, 50.4) a 36.8 (33.2, 40.7) a 0.06 (0, 0.15) 

MEHHP 43.2 (39, 47.7) 22.8 (21, 24.8) a 19.2 (17.3, 21.3) a 0.07 (0, 0.17) 

MEHP 4.4 (4, 4.9) 3.2 (2.9, 3.5) a 2.9 (2.6, 3.2) a 0.30 (0.21, 0.39) 

MEOHP 26.1 (23.7, 28.9) 14.5 (13.3, 15.9) a 12.2 (11, 13.5) a 0.11 (0.02, 0.2) 

MEP 168.3 (147, 192.7) 108.2 (95, 123.1) a 95.4 (81.9, 111.1) a 0.09 (0, 0.18) 

MIBP 39.5 (35.9, 43.3) 34 (31.3, 37) a 28 (25.7, 30.5) a 0.25 (0.16, 0.35) 

∑DEHP b 0.5 (0.5, 0.6) 0.3 (0.3, 0.3) a 0.2 (0.2, 0.3) a 0.07 (0, 0.16) 

∑High-MWP b 0.6 (0.5, 0.7) 0.3 (0.3, 0.4) a 0.3 (0.2, 0.3) a 0.11 (0.02, 0.2) 

∑Low-MWP b 1.5 (1.3, 1.6) 1 (0.9, 1.1) a 0.9 (0.8, 1) a 0.09 (0, 0.18) 

a  Significant difference (p < 0.05) in urinary EDC biomarker concentration compared to Tanner Stage B1 
(reference) based on linear mixed models 
b Concentrations are presented in μg/g creatinine except for ∑Parabens, ∑Phenols, ∑DEHP, ∑High-MWP, 
∑Low-MWP (μmol/g creatinine).  
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Table 2. 3. Relative change in log10 percent FGV (95% CI) associated with log10 (ng/ml) 
increase in urinary phenol, paraben, and phthalate biomarkersa 

  Tanner Stage B1 Tanner Stage B4 1-Year Post-Menarche Interaction 

(p-value)b 

Phenols 
    

Benzophenone-3 -0.024 (-0.048, 0.00) 0.004 (-0.012, 0.021) 0.006 (-0.015, 0.026) 0.15 

BPA 0.005 (-0.029, 0.039) 0.001 (-0.026, 0.028) -0.02 (-0.063, 0.023) 0.784 

BPS -0.016 (-0.055, 0.024) 0.019 (-0.007, 0.045) 0.011 (-0.019, 0.04) 0.395 

Triclosan 0.009 (-0.009, 0.026) 0.009 (-0.007, 0.025) -0.025 (-0.041, -0.008) 0.007 c 

∑Phenols -0.016 (-0.031, 0.00) -0.001 (-0.014, 0.013) 0.006 (-0.01, 0.022) 0.17 

Parabens 
    

MEPB -0.017 (-0.033, -0.002) 0 (-0.014, 0.014) 0.006 (-0.01, 0.022) 0.116 

ETPB 0.002 (-0.012, 0.017) -0.006 (-0.021, 0.01) 0.007 (-0.011, 0.024) 0.432 

PRPB -0.009 (-0.021, 0.003) -0.001 (-0.012, 0.01) -0.002 (-0.016, 0.011) 0.677 

∑Parabens -0.005 (-0.028, 0.017) 0.007 (-0.012, 0.025) -0.008 (-0.029, 0.014) 0.76 

Phthalates 
    

MBP -0.029 (-0.061, 0.003) 0.017 (-0.01, 0.044) -0.022 (-0.067, 0.024) 0.419 

MCPP -0.004 (-0.034, 0.027) 0.006 (-0.015, 0.027) 0.004 (-0.023, 0.03) 0.978 

MECPP 0.016 (-0.015, 0.046) 0.013 (-0.016, 0.042) 0.007 (-0.032, 0.047) 0.910 

MEHHP 0.01 (-0.018, 0.037) 0.017 (-0.013, 0.046) 0.006 (-0.033, 0.045) 0.996 

MEHP 0.009 (-0.018, 0.036) 0.013 (-0.012, 0.039) -0.01 (-0.045, 0.024) 0.705 

MEOHP 0.01 (-0.017, 0.038) 0.016 (-0.013, 0.045) 0.01 (-0.029, 0.049) 0.985 

MEP 0.013 (-0.007, 0.033) -0.002 (-0.021, 0.017) -0.001 (-0.024, 0.023) 0.422 

MiBP -0.02 (-0.052, 0.012) 0.01 (-0.022, 0.042) 0.002 (-0.045, 0.048) 0.742 

∑DEHP 0.013 (-0.016, 0.043) 0.015 (-0.015, 0.044) 0.007 (-0.033, 0.047) 0.959 

∑High-MWP 0.011 (-0.019, 0.04) 0.01 (-0.02, 0.041) 0.007 (-0.032, 0.045) 0.941 

∑Low-MWP 0.014 (-0.012, 0.04) 0.001 (-0.023, 0.024) -0.002 (-0.033, 0.029) 0.599 

a Estimating average change (β) in %FGV associated with EDC biomarkers across study time points using a 
multivariable GEE model. Adjusted models include creatinine, maternal education, age at study time point, body 
fat percentage at study time point, and average daily caloric intake at study time point. Significant associations 
(95%CI does not include 0) are in bold. 
b P-value for interaction between EDC biomarker concentration and study time point on %FGV (F test); p<0.05 are 
in bold.  
c False Discovery Rate (FDR) <0.25  
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Table 2. 4. Relative change in log10 absolute FGV (95% CI) associated with log10 (ng/ml) 
increase in urinary phenol, paraben, and phthalate biomarkersa 

  Tanner Stage B1 Tanner Stage B4 1-Year Post-Menarche Interaction 

(p-value)b 

Phenols         

Benzophenone-3 -0.024 (-0.074, 0.025) -0.009 (-0.037, 0.019) 0.004 (-0.036, 0.043) 0.311 

BPA -0.018 (-0.078, 0.042) 0.006 (-0.04, 0.053) -0.004 (-0.083, 0.076) 0.194 

BPS -0.007 (-0.073, 0.058) 0.004 (-0.04, 0.047) 0.025 (-0.035, 0.086) 0.654 

Triclosan 0.001 (-0.032, 0.034) -0.013 (-0.043, 0.016) -0.02 (-0.052, 0.011) 0.969 

∑Phenols -0.013 (-0.041, 0.014) -0.013 (-0.035, 0.009) 0.018 (-0.012, 0.048) 0.141 

Parabens         

MEPB -0.015 (-0.044, 0.013) -0.012 (-0.034, 0.009) 0.016 (-0.014, 0.046) 0.167 

ETPB 0.008 (-0.021, 0.036) -0.012 (-0.037, 0.013) 0.021 (-0.01, 0.052) 0.231 

PRPB -0.013 (-0.033, 0.008) -0.012 (-0.03, 0.006) 0.02 (-0.005, 0.046) 0.068 c 

∑Parabens -0.011 (-0.057, 0.035) -0.016 (-0.046, 0.015) -0.002 (-0.041, 0.037) 0.517 

Phthalates         

MBP -0.087 (-0.15, -0.024) 0.028 (-0.016, 0.071) 0.052 (-0.028, 0.133) 0.0005 

MCPP 0.00 (-0.055, 0.056) 0.024 (-0.018, 0.067) 0.02 (-0.028, 0.068) 0.249 

MECPP 0.014 (-0.043, 0.071) 0.055 (0.006, 0.104) 0.052 (-0.022, 0.126) 0.104 

MEHHP 0.001 (-0.05, 0.051) 0.05 (-0.001, 0.1) 0.053 (-0.021, 0.126) 0.041 c 

MEHP 0.007 (-0.043, 0.058) 0.039 (-0.005, 0.082) 0.04 (-0.023, 0.102) 0.056 c 

MEOHP 0.004 (-0.047, 0.055) 0.047 (-0.003, 0.097) 0.053 (-0.019, 0.125) 0.051 c 

MEP 0.014 (-0.022, 0.051) 0.012 (-0.02, 0.045) 0.011 (-0.031, 0.054) 0.701 

MiBP -0.054 (-0.113, 0.006) 0.001 (-0.049, 0.052) 0.04 (-0.045, 0.124) 0.024 c 

∑DEHP 0.009 (-0.046, 0.064) 0.053 (0.003, 0.104) 0.054 (-0.021, 0.129) 0.068 c 

∑High-MWP 0.006 (-0.05, 0.062) 0.042 (-0.014, 0.099) 0.05 (-0.022, 0.123) 0.094 

∑Low-MWP -0.006 (-0.052, 0.041) 0.019 (-0.021, 0.058) 0.029 (-0.026, 0.084) 0.136 

a Estimating average change (β) in aFGV associated with EDC biomarkers across study time points using a 
multivariable GEE model. Adjusted models include creatinine, maternal education, age at study time point, body 
fat percentage at study time point, and average daily caloric intake at study time point. Significant associations 
(95%CI does not include 0) are in bold. 
b P-value for interaction between EDC biomarker concentration and study time point on %FGV (F test); p<0.05 are 
in bold.  
c False Discovery Rate (FDR) <0.25  
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Table 2. 5. Relative change in log10 total breast volume (95% CI) associated with log10 (ng/ml) 
increase in urinary phenol, paraben, and phthalate biomarkersa 

  Tanner Stage B1 Tanner Stage B4 1-Year Post-Menarche Interaction 

(p-value)b 

Phenols         

Benzophenone-3 0 (-0.039, 0.04) -0.013 (-0.04, 0.013) -0.002 (-0.036, 0.031) 0.725 

BPA -0.029 (-0.082, 0.023) 0.005 (-0.037, 0.046) 0.014 (-0.036, 0.065) 0.019 c 

BPS 0.005 (-0.045, 0.055) -0.014 (-0.06, 0.033) 0.015 (-0.036, 0.066) 0.724 

Triclosan -0.008 (-0.036, 0.02) -0.022 (-0.046, 0.002) 0.004 (-0.021, 0.028) 0.27 

∑Phenols 0.003 (-0.022, 0.028) -0.012 (-0.03, 0.006) 0.011 (-0.015, 0.036) 0.362 

Parabens         

MEPB 0.003 (-0.023, 0.028) -0.012 (-0.03, 0.006) 0.008 (-0.017, 0.034) 0.444 

ETPB 0.007 (-0.017, 0.031) -0.007 (-0.029, 0.015) 0.014 (-0.012, 0.04) 0.45 

PRPB -0.003 (-0.022, 0.015) -0.011 (-0.026, 0.004) 0.021 (0.001, 0.041) 0.038 c 

∑Parabens -0.006 (-0.042, 0.03) -0.022 (-0.049, 0.005) 0.005 (-0.026, 0.037) 0.255 

Phthalates         

MBP -0.058 (-0.108, -0.007) 0.01 (-0.03, 0.05) 0.065 (-0.017, 0.147) 0.003 c 

MCPP 0.007 (-0.043, 0.056) 0.02 (-0.012, 0.052) 0.014 (-0.027, 0.054) 0.207 

MECPP 0.001 (-0.048, 0.051) 0.045 (0.001, 0.089) 0.043 (-0.009, 0.095) 0.03 c 

MEHHP -0.007 (-0.048, 0.035) 0.036 (-0.009, 0.082) 0.045 (-0.005, 0.096) 0.012 c 

MEHP -0.002 (-0.043, 0.039) 0.022 (-0.015, 0.059) 0.049 (0.001, 0.098) 0.017 c 

MEOHP -0.004 (-0.046, 0.038) 0.034 (-0.01, 0.079) 0.042 (-0.009, 0.093) 0.017 c 

MEP 0.00 (-0.032, 0.033) 0.014 (-0.012, 0.041) 0.012 (-0.02, 0.045) 0.244 

MiBP -0.034 (-0.079, 0.011) -0.008 (-0.05, 0.033) 0.025 (-0.041, 0.092) 0.055 c 

∑DEHP -0.002 (-0.049, 0.045) 0.042 (-0.004, 0.087) 0.046 (-0.007, 0.098) 0.019 c 

∑High-MWP -0.002 (-0.05, 0.045) 0.035 (-0.011, 0.081) 0.042 (-0.009, 0.093) 0.032 c 

∑Low-MWP -0.021 (-0.062, 0.02) 0.018 (-0.013, 0.05) 0.028 (-0.014, 0.07) 0.021 c 

a Estimating average change (β) in tBV associated with EDC biomarkers across study time points using a 
multivariable GEE model. Adjusted models include creatinine, maternal education, age at study time point, body 
fat percentage at study time point, and average daily caloric intake at study time point. Significant associations 
(95%CI does not include 0) are in bold. 
b P-value for interaction between EDC biomarker concentration and study time point on %FGV (F test); p<0.05 are 
in bold.  
c False Discovery Rate (FDR) <0.25 from Benjamini-Hochberg adjusted p-values 
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Chapter 3. Childhood concentrations of endocrine-disrupting chemicals in relation 
to adolescent gut microbial composition in the Chilean Growth and Obesity Cohort 
Study 

3.1. Abstract 

Background: Endocrine-disrupting chemicals (EDCs) have the potential to impact the 

composition of the gut microbiome. The objective of our study was to examine whether 

concentration of EDC biomarkers across three pubertal stages was associated with composition 

of the gut microbiome in adolescence in a longitudinal cohort of Chilean girls.  

Methods: We quantified concentrations of 16 EDCs in urine collected at Tanner breast stage 1 

(B1), Tanner breast stage 4 (B4), and 1-year post-menarche in the Growth and Obesity Cohort 

Study. Gut microbial composition of stool samples collected 3-years post-menarche was 

analyzed using 16s rRNA sequencing of the V3-V4 hypervariable region. Alpha diversity was 

quantified using the Shannon index. Beta diversity was quantified using Bray-Curtis dissimilarity. 

We assessed associations of single-chemical EDCs with the Shannon index using generalized 

linear regression. Permutational Analysis of Variance (PERMANOVA) was used to determine 

whether microbial communities differed by concentration of EDC using a Bray-Curtis based 

dissimilarity matrix. Multivariable generalized linear models  (MaAsLin2) were used to identify 

differentially abundant amplicon sequence variants (ASVs) associated with concentrations of 

single-chemical EDCs. The relation of EDC mixtures to the Shannon index was conducted with 

weighted quantile sum (WQS) regression. All models were evaluated separately for each study 

time point and adjusted for potential confounders, including age, creatinine, body fat 

percentage, maternal education, average caloric intake, birth mode, breast feeding, and 

antibiotic use. A total of 257 girls were included in the analytic cohort.  

Results: Bisphenol A measured at Tanner stage 1 was positively associated with Shannon 

diversity adjusted for covariates (β=0.17, 95% confidence interval [CI]:0.02, 0.32), while mono-
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butyl phthalate measured at 1-year post-menarche was inversely associated with Shannon 

index adjusted for covariates (β=-0.19, 95% CI:-0.34, -0.03). No differences in beta diversity 

were observed for any single EDC biomarker. Presence of three genera from the Firmicutes 

phylum were associated with concentrations of triclosan measured at B4 and MNBP measured 

at 1-year post-menarche. In WQS regression analyses with positive constraints,  EDC mixtures 

measured at B1, B4, and 1-year post-menarche were not associated with the Shannon index  

Conclusions: Our results suggest marginal associations for select individual EDCs with gut 

microbial composition. However, no relation was noted for an EDC biomarker mixture. The 

association of EDCs to gut microbial composition may be modified by the timing of the urine 

sample during puberty. Overall, our results provide support for biomarker-specific windows of 

susceptibility for gut microbial composition.  

3.2. Introduction 

The gut microbiota, the trillions of microbial organisms living in the human intestinal tract, has 

been increasingly linked to human health and disease.30 A collection of experimental and 

observational evidence has demonstrated that the gut microbiota plays an essential role in 

nutrient absorption, immune regulation, and metabolization of chemicals.31–33 An important 

aspect of the gut microbiota is the overall composition and function of the bacterial community.30 

Two metrics commonly used to quantify composition of the microbiota are alpha diversity, a 

measure of community variation within a sample that evaluates the number and evenness of 

species, and beta diversity, a measure of community dissimilarity between pairs of samples.126 

Perturbations to the gut microbiota and the resulting imbalance between microbes and host, or 

dysbiosis, have been linked to obesity, gastrointestinal disease, neurological disorders, and 

some estrogen-modulated diseases through observed differences in alpha diversity and beta 

diversity.48,49,127–130  Host genetics, age, sex, and lifestyle factors like diet and antibiotic use have 

been associated with dysbiosis and gut microbial diversity.131–134 Studies have also suggested 
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that the gut microbiota may be influenced by environmental chemicals and may modulate an 

association between environmental chemical exposure and health outcomes.40,135  

Endocrine disrupting chemicals (EDCs), exogenous agents which interfere with the endocrine 

system, are ubiquitous in food packaging, consumer products, industrial processes, and medical 

devices around the world.22,136,65 Increased exposure to EDCs has been linked to various human 

disorders, including male and female reproductive abnormalities, obesity, and cancer.137–139 

Given the overlap in human health outcomes associated with EDCs and the gut microbiota, and 

the oral route of exposure to EDCs and subsequent metabolization in the gut, it is plausible that 

the gut microbiota may mediate the association between exposure to EDCs and human 

diseases. A possible link between EDCs and the gut microbiota is estrogen synthesis. EDCs 

can interact with estrogen receptors to influence transcriptional activity and modulation of 

enzymes that are involved in estrogen metabolism.140 The gut microbiota is influenced by 

circulating estrogen, while also impacting estrogen levels through β-glucuronidase secretion.49 

Despite this potential mechanistic link, few studies have evaluated the extent to which EDCs are 

associated with the gut microbiota. Evidence from animal models suggests that environmental 

EDCs such as phenols, phthalates, and parabens can influence composition and result in 

dysbiosis of gut microbiota.40 In studies of mice and dogs, exposure to bisphenol A (BPA), a 

widespread EDC, has resulted in changes to alpha diversity  and increased abundance of 

Bacteroides species and Bifidobacterium species (spp).41–43 Other mouse and rat models have 

demonstrated that exposure to phthalates, including diethyl phthalate (DEP) and diethylhexyl 

phthalate (DEHP), methyl paraben (MPB), and triclosan (TCS) alters gut microbial community 

composition through changes in abundance of organisms like Prevotella spp., Bacilli spp., and 

Lachnoclostridium spp.44,45 Evidence for the relation of EDCs to the gut microbiota among 

humans is lacking. A few studies have examined the relation of heavy metals or environmental 

pollutants to gut microbial outcomes 141,142; however, only one study to date has examined gut 
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microbiota composition in relation to phthalate exposure. In a population of Taiwanese 

newborns, medical exposure to DEHP through intravenous infusions was associated with 

altered microbial composition, including decreased abundance of Rothia spp. and 

Bifidobacterium longum.46 Limitations of this study include a small sample size (N=25) and 

limited generalizability to other age groups across the life course. There is thus a substantial 

gap in our understanding of how environmental EDCs may influence the gut microbiota in 

human population-based studies.  

Given their potential to interfere with endogenous hormones and impact the endocrine system, 

exposure to EDCs are of particular importance during childhood and puberty– periods of rapid 

growth and development.143 Research suggests that the gut microbiota continues to develop 

throughout childhood and adolescence before stabilizing during adulthood.144–146 Therefore, the 

childhood and adolescent periods of development may represent opportunities to promote 

health through modulation of the gut microbiota. It is currently unknown how childhood exposure 

to phenols, parabens, and phthalates may influence the composition of the gut microbiota in 

adolescence. In this study, we examined the relation between 16 EDCs on adolescent gut 

microbial composition in a longitudinal study of Chilean girls. We first aimed to investigate the 

effects of individual phenols, parabens, and phthalates measured at three pubertal time points 

(Tanner breast stage 1 (B1), Tanner breast stage 4 (B4), and 1-year post-menarche) on the 

composition of the gut microbiota measured at adolescence (3-years post-menarche). Given the 

potential for multicollinearity, common exposure routes, and similar biologic mechanisms among 

the EDCs, we then aimed to investigate the combined effect of a phenol, paraben, and 

phthalate mixture on gut microbial composition.  

3.3. Methods  

Study population  
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The Growth and Obesity Cohort Study (GOCS) is an ongoing prospective cohort of 1,196 

children in Santiago, Chile. The study design and enrollment have been described elsewhere.11 

Briefly, GOCS recruited children aged 3-4 years from low- and middle-income families enrolled 

in a public preschool program in the southern region of Santiago in 2006. Information was 

collected on demographic, anthropometric, and lifestyle factors through bi-annual clinic visits to 

the Instituto de Nutrición y Tecnología de los Alimentos (INTA) at the University of Chile. The 

current study was limited to female participants, comprising approximately 50% of the cohort. In 

2009, trained dietitians began assessing pubertal development every 6 months using the 

Tanner rating scale.147 Onset of menarche was evaluated at the clinic visit or by telephone. 

Urine biospecimens were collected three times throughout the study when the participant 

reached Tanner breast stage 1 (B1), Tanner breast stage 4 (B4), and 1-year post-menarche 

(1YPM). Stool specimens were collected once the participant was 13-15 years of age, 

corresponding to approximately 3 years post-menarche. Of the 601 girls enrolled at baseline, a 

total of 261 girls with at least one urine collection and a stool sample were eligible for inclusion 

in this analysis.  

The study protocol was approved by the University of Chile INTA Ethics Committee and the 

Institutional Review Board at the University of California, Los Angeles. Parents or legal 

guardians of the participants provided written informed consent. The analysis of blinded 

specimens by the CDC laboratory was determined not to constitute engagement in human 

subjects' research.  

Urinary EDC biomarker assessment 

Study staff at INTA collected morning fasting spot urine samples from participants at B1, B4, 

and 1-year post-menarche. Urine samples were immediately processed, aliquoted, and stored 

at -80°C for later analysis. Urine samples were analyzed at either the National Center for 

Environmental Health Laboratory at the Centers for Disease Control and Prevention (CDC) in 
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Atlanta, GA, or the Children's Health Exposure Analysis Resource (CHEAR) Laboratory at the 

Icahn School of Medicine at Mount Sinai in New York, NY. A total of 19 EDC biomarkers 

(phthalates, parabens, phenols) selected a priori were quantified at each lab (Table A2. 1). 

From the 261 girls included in the analytic cohort, 198 samples from randomly selected girls 

collected at B1 (99 samples) and B4 (99 samples) were analyzed at CDC using previously 

described methods 69,14; additional funding permitted the analysis of 415 urine samples from the 

remaining girls taken at B1 (106 samples), B4 (144 samples), and 1YPM (165 samples) at 

Mount Sinai using previously described methods.71 A total of 40 samples analyzed at the CDC 

were also analyzed at Mount Sinai as duplicates to inform quality control and between-lab 

standardization. The intra-class correlation coefficient (ICC) for each EDC biomarker duplicate 

pair was estimated from a one-way random effects model measuring absolute agreement with 

multiple raters/measurements.72,73 EDC biomarkers with ICC >0.75 and those with >50% of 

samples above the limit of detection (LOD) in both the CDC and Mount Sinai analyses were 

maintained in the analysis. Therefore, two EDC biomarkers (bisphenol F, triclocarban) were 

excluded from all analyses; butylparaben was excluded from analyses of the B4 study time 

point. EDC biomarker concentrations below the lab-specific LOD were imputed as 

LOD/sqrt(2).74 

Before statistical analyses, we normalized CDC-analyzed biomarker data to the Mount Sinai-

analyzed biomarker data using scaling parameters calculated with the 40 duplicate samples 

using a previously described method.148 Specifically, we calculated the mean and relative 

standard deviation (SD) difference in biomarker concentration among the 40 duplicate samples, 

then shifted and scaled the mean and SD, respectively, in all the samples analyzed at the CDC 

to that of those analyzed at Mount Sinai. Samples were randomly chosen to be analyzed at the 

CDC; therefore, we assumed no significant differences in study participant characteristics in the 

normalization step. Creatinine was quantified for all samples at Mount Sinai to facilitate 
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correction for urine dilution. All EDC biomarker and creatinine concentrations were log10-

transformed prior to analyses. EDC biomarkers were evaluated both continuously and in 

quantiles (quartiles) in statistical analyses.  

Stool gut microbiome assessment 

Participants collected a fresh stool sample at home after receiving instructions and materials 

during their annual visit to the INTA health clinic. Immediately after collection, the stool sample 

was stored in the participants freezer before transfer to the INTA laboratory and storage in a -

80°C freezer. A total of 279 samples (266 distinct samples, 13 duplicates) were shipped on dry 

ice to the National Exposure Assessment Laboratory at Emory University in Atlanta, GA, a 

CHEAR Laboratory, for sequencing of the gut microbiome.  

At the National Exposure Assessment Laboratory, DNA was extracted from stool samples using 

the Qiagen DNeasy PowerSoil Kit (Qiagen; 12888) according to the manufacturer’s protocol. 

The V3-V4 hypervariable region of the 16s ribosomal RNA (rRNA) gene was barcoded and 

amplified (PCR primer pair: 341F 5'-GTGCCAGCMGCCGCGGTAA-3’; 805R 5'-

GACTACHVGGGTWTCTAAT-3’). Following amplification, 12.5 ng of DNA was used to 

generate and pool libraries based on fluorescence according to a standard workflow (Illumina, 

Inc.). Quantitation of final library pools was done using qPCR (Kapa Biosystems; KK4824). 

Pooled libraries were then sequenced on an Illumina MiSeq sequencer with MiSeq v3 600 cycle 

chemistry (Illumina MS-102-3003) with loading density of 6-8 pM and 20% PhiX following the 

manufacturer’s instructions. Positive controls, negative controls, no template controls, and 

ZymoBIOMICS mock microbial community controls were also included.149 

Raw demultiplexed amplicon sequence data were processed using QIIME2 (Quantitative 

Insights Into Microbial Ecology) version 2019.4.150 Sequencing error rates were estimated using 

Divisive Amplicon Denoising Algorithm 2 (DADA2).151 We trimmed the first 30 base pairs (bp) 
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from each read and truncated at position 290 based on Phred quality scores. Filtered 

sequences were dereplicated and chimeric sequences were removed to generate unique 

sequences, then processed to infer exact amplicon sequence variants (ASVs).152 Sequences 

were assigned to ASVs using a naive Bayes classifier on the SILVA database (SILVA 132 

release).153 

Of the 266 study participants who provided fecal samples, 261 provided at least one urine 

sample at any of the three urine collection time points and were included in this analysis. ASV 

abundance and taxonomic classification for these samples were combined using the ‘phyloseq’ 

package in R, resulting in 261 samples, 6270 ASVs, and 7 levels of taxonomy for each 

ASV.154,155 ASVs that were not present in at least 2 samples and with missing or 

uncharacterized taxonomy were filtered out, resulting in 5856 remaining ASVs. Samples that 

were below a read count of 10,000 were also dropped. The final analytic sample consisted of 

257 participants.  

Covariates 

We selected covariates a priori as potential confounders of the EDC-microbiota relation using 

directed acyclic graphs. Variables included as potential confounding factors were age at clinic 

visit, maternal education (secondary education or less, more than secondary education), body 

fat percentage, mode of delivery at birth (vaginal, caesarean), duration of predominant breast-

feeding (<3 months, 3-6 months, >6 months), antibiotic use in the 6 months prior to stool sample 

(yes, no, unknown), average caloric intake (g/day), and lab (CDC, Mount Sinai). Antibiotic use 

occurred after urine sample collection and therefore was unlikely to be a directly associated with 

EDC exposure; however, antibiotic use has a strong association with microbial composition and 

was therefore included as a covariate in analyses.156 We calculated average caloric intake in the 

period prior to each clinic visit by taking the average values for all 24-hour dietary recalls prior to 

the sample. Diet data was not available prior to B1; therefore, we assumed that the average 
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caloric intake prior to B4 was representative of caloric intake prior to B1. Lab was not included 

as a covariate for the models evaluating the 1-year post-menarche exposure time point as all 

biomarkers collected at this time point were measured by Mount Sinai. Missing covariate data 

were imputed using last observation carried forward when possible; if prior observations were 

unavailable, we imputed values with the mean for normally distributed variables or median for 

skewed variables under the assumption that values were missing completely at random. . The 

percentage of missing values for covariates ranged from 0% to 8% for the cohort.  

Statistical analysis  

We calculated descriptive statistics for all covariates by study exposure time point (B1, B4, 1-

year post-menarche). We visually evaluated the distribution of each EDC biomarker 

concentration using boxplots. Correlation between EDCs at each time point were calculated 

using Spearman correlation coefficients.  

We quantified gut microbial alpha diversity as the Shannon index using the ‘vegan’ package in 

R 157–159. The Shannon index is a measure of diversity of species in a given microbial 

community, accounting for both richness and evenness, and represents within-sample 

diversity.160 A higher Shannon index generally implies higher diversity of the sample.160 We 

evaluated Shannon index outliers as the 25th percentile (Shannon index=3.85) plus or minus the 

inter-quartile range (IQR=0.69). Six samples were outside this value— all less than 3.16— and 

were excluded from the analysis. We evaluated the relation of the Shannon index to single-

chemical log10-transformed and quantiled (quartiles) EDC biomarker concentrations using 

generalized linear models with an identity link structure. Models were stratified by study time 

point and adjusted for potential confounders, including age, creatinine, maternal education, 

body fat percentage, breast feeding, birth mode, average caloric intake, antibiotic use, and lab. 

As a sensitivity analysis, because antibiotic use is strongly associated with gut microbial 
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outcomes, we ran the same regression models while excluding girls who reported antibiotic 

usage in the 6 months prior to the stool sample (N=13-24 by time point).  

To evaluate beta diversity, permutational multivariate analysis of variance (PERMANOVA) 

models were used to examine the contribution of single-chemical log10-transformed EDC 

biomarker concentrations to gut microbiota composition using the adonis2 function in the ‘vegan’ 

package in R.154,157 All models assessed the marginal effect of the EDC biomarker, accounting for  

age, creatinine, maternal education, body fat percentage, breast feeding, birth mode, average 

caloric intake, antibiotic use, and lab. In this approach, PERMANOVA partitioned a Bray-Curtis 

distance matrix and specified 999 permutations and marginal effects in the function.  

To identify microbial taxa that might be driving differences in alpha diversity or beta diversity, we 

performed multivariable linear regression analyses to evaluate associations of the log10-

transformed single-EDC biomarkers with genus-level microbial taxa using the ‘MaAsLin2’ 

package in R.161 We first agglomerated the microbial ASV data to the taxonomic rank of genus 

using the ‘phyloseq’ package in R, which resulted in 358 genera represented in the data.154,155 

We ran log-transformed generalized linear models with the MaAsLin2 default specifications 

(minimum abundance of 0.01% in 10% of samples, total sum scaling normalization, arsine 

square-root transformation). These parameters have recently been observed to perform equally 

as well as compositionality-corrected and specialized normalization or transformation 

methods.161 Models were adjusted for the same set of potential confounders as in prior 

analyses.  

Because we evaluated hypotheses for many different biomarker-diversity and abundance 

relations across three time points, the probability of type 1 error was considerable. Therefore, we 

also evaluated our single-chemical EDC biomarker relations to alpha  and beta diversity and 

abundance outcomes while controlling for multiple comparisons using the Benjamini-Hochberg 
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false discovery rate (FDR) in supplementary analyses.88 FDR-corrected statistical significance 

was defined as q-values less than 0.25. 

To build upon our single-chemical analyses, we additionally examined the EDC biomarker 

concentration profile of our cohort using a mixture approach. We first used weighted quantile 

sum (WQS) regression to assess the mixture effect (i.e., joint action) of EDC biomarkers on the 

outcome of Shannon diversity. The WQS method allows for a complex correlation structure 

among highly-correlated EDCs and has been previously described.162 In all WQS models, data 

were divided into 40% training and 60% validation sets; 1000 bootstrap samples were used for 

parameter estimation such that the final reported beta coefficient is the mean across simulated 

distributions. In the multistep WQS approach, the model first built a weighted index with 

empirical weights based on each EDC biomarker’s association with the Shannon index, 

representing an alpha diversity associated EDC mixture effect. The association of the WQS 

index to the Shannon index was then evaluated in a generalized linear model with an identity 

link function. The coefficient associated with the WQS index is interpreted as the change in 

Shannon index associated with a quartile-increase in the WQS index. While few studies have 

evaluated the association of these chemicals to alpha diversity, they have demonstrated similar 

mechanisms of effect.135 We hypothesized a priori that these chemicals would act in the same 

direction on the outcome; therefore, the WQS approach, which limits constraints to one direction 

of effect, is appropriate for this analysis. To explore the potential direction of effect, we included 

separate WQS regression models with constraints in the positive and negative directions when 

estimating the weights. Like the single-chemical analyses, the WQS analyses were stratified by 

time point (B1, B4, and 1-year post-menarche) and adjusted for age, creatinine, maternal 

education, body fat percentage, breast feeding, birth mode, average caloric intake, antibiotic 

use, and lab. For models with statistically significant WQS estimates (p<0.05), we replicated the 
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analysis with an alternate seed for reproducibility. The R package ‘gWQS’ was used for WQS 

analyses.  

Statistical analyses were conducted in SAS version 9.4 and R version 4.0/RStudio version 

1.4.1106.  

3.4. Results 

Study characteristics 

Among the 257  participants with at least one urine sample and a stool sample included in this 

analysis, 197 provided a urine sample at Tanner stage B1; 233, Tanner stage B4; and 167, 1-

year post-menarche (Table 3.  1). The mean (SD) age of participants who provided urine 

samples at B1, B4, and 1-year post-menarche was 7.9 years (SD=0.46), 11.3 years (SD=0.82), 

and 13.3 years (SD=0.76), respectively; the mean age at stool sample was 15.36 years (data 

not shown). Across the cohort, roughly 77% of participants had mothers with a secondary 

school education or less. With respect to birth-related variables, more than half of participants 

were breast fed for 3-6 months and more than 75% of participants were born vaginally. Average 

caloric intake ranged from 1,872 kCal at B1 and B4 to 1,779 kCal at 1-year post-menarche. 

Approximately 52-58% of the urine samples were measured at CDC at B1 and B4; at 1-year 

post-menarche, all urine samples were measured at Mount Sinai. Approximately half of 

participants reported having no antibiotic usage in the six months prior to stool sample 

collection, 10% reported antibiotic use, and the remaining 40% reported not knowing whether 

they had taken antibiotics. Log10-transformed EDC concentrations are presented in Figure A2. 

1.  

The overall mean Shannon index of the stool samples was 4.0 (SD=0.31) (data not shown). The 

mean (SD) Shannon index was consistent across study time point strata (Table 3.  1). The 

relative composition of gut microbiota by taxonomic classification is presented in Table A2. 2. 
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Overall, Firmicutes was the most highly represented microbial phyla, comprising on average 

65.9% of sample relative abundance, followed by Bacteroidetes (18.1%) and Actinobacteria 

(10.3%). At the class level, Clostridia and Bacteroidia represented 57.9% and 18.3% of 

microbial taxa, respectively. Bacteroides (12.2%) was the most abundant genus.  

Single-chemical analyses  

Single-chemical analyses using log10-transformed EDC biomarker concentrations suggested 

that bisphenol A (BPA) measured at B1 was positively associated with the Shannon index 

(β=0.17, 95% confidence interval [CI]:0.02, 0.32), mono-isobutyl phthalate (MIPB) at B1 was 

inversely associated with the Shannon index (β=-0.17, 95%CI:-0.32, -0.02), and mono-n-butyl 

phthalate (MNBP) measured at 1-year post-menarche was inversely associated with the 

Shannon index (β=-0.19, 95%CI:-0.34, -0.03) (Table 3.  2). The associations of  BPA, MIPB, 

and MNBP measured at other study time points to the Shannon index were not significant. We 

also found evidence to suggest non-significant but trending inverse associations for bisphenol S 

(BPS) (β=-0.14, 95%CI:-0.29, 0.01), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) (β=-

0.15, 95%CI:-0.32, 0.01), mono (2-ethyl-5- hydroxyhexyl) phthalate (MEHHP) (β=-0.14, 95%CI:-

0.29, 0.01), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) (β=-0.14, 95%CI:-0.3, 0.02), and 

monoethyl phthalate (MEP) (β=-0.09, 95%CI:-0.19, 0.01) measured at 1-year post-menarche 

and the Shannon index. When evaluating single-chemical quartiled EDC biomarker 

concentrations, BPA measured at B1 remained positively associated with Shannon index, while 

MNBP, MECPP, and MEOHP were similarly inversely associated with the Shannon index 

(Table 3.  2). In supplementary analyses which excluded the 10% of the cohort who reported 

using antibiotics in the six months prior to stool sample, the relations of MIBP measured at B1 

(β=-0.18, 95% CI -0.33, -0.03) and MNBP measured at 1-year post-menarche (β=-0.17, 95% CI 

-0.34, -0.01) to the Shannon index remained significant (Table A2. 3). Additionally, controlling 

for multiple comparisons using the Benjamini-Hochberg FDR method resulted in fewer 
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statistically significant associations among the total cohort (Table A2. 4). However, the 

significance of the relation of MNBP, MECPP, MEHHP, and MEOHP measured at 1-year post-

menarche to the Shannon index persisted for both log10-transformed values and quartiled 

values (q < 0.25).  

PERMANOVA analyses using the single-chemical log10-transformed EDC biomarkers indicated 

marginally significant sample dissimilarity associated with MNBP measured at 1-year post-

menarche (Bray-Curtis distance PERMANOVA, R2=0.008, p=0.05) (Table 3.  3). However, this 

result was no longer significant after correction for multiple comparisons. No other biomarkers 

were observed to contribute significantly to differences in gut microbial composition in 

PERMANOVA models.  

In multivariable linear models, four single-chemical log10-transformed EDC biomarkers were 

associated with microbial genera (Table 3.  4). Among the EDC biomarkers quantified at B4, 

triclosan was associated with higher abundance of microbes from the Anaerofustis genus (β= 

0.13, p= 0.0001, q= 0.15), while mono-ethyl phthlate (MEP) was associated with lower 

abundance of microbes from the Bifidobacterium genus (β= -0.20, p= 0.0002, q= 0.23). MNBP 

measured at 1-year post-menarche was inversely associated with the Ruminiclostridium.9 

genus (β= -0.33, p= 0.0001, q= 0.07) and positively associated with the Tyzzerella.4 genus (β= 

0.12, p= 0.0007, q= 0.18). No other ASVs were associated with concentrations of single-

chemical EDCs after FDR correction.  

WQS mixture analyses 

Mixture analyses using WQS regression with quartiled EDC concentrations suggested no 

association between the EDC mixture when measured at B1 and B4 and the Shannon index, 

regardless of the direction or constraints applied to the β coefficient (Table 3.  5). Though we 

observed a statistically significant inverse association between the EDC mixture measured at 1-
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year post-menarche and the Shannon index in a WQS analysis with positively constrained β 

values (β=-0.14; 95% CI: -0.25, -0.03; p=0.02), we did not observe this relation was not 

observed in secondary analyses for reproducibility. When  evaluating the same positively 

constrained WQS model with a different seed for reproducibility, the association was no longer 

statistically significant (β=-0.09; 95% CI: -0.21, 0.04; p=0.18) (Table 3.  5).  

3.5. Discussion 

To our knowledge, this is the first investigation of childhood phenol, phthalate, and paraben 

biomarker concentrations in relation to adolescent gut microbial composition. In this study, we 

found that childhood concentrations of select EDC biomarkers at B1 and 1-year post-menarche 

were differentially associated with adolescent gut microbial alpha diversity and weakly 

associated with beta diversity. In single-chemical analyses, higher bisphenol A (BPA) 

concentration measured at B1 was associated with higher Shannon diversity in adolescence, 

while higher mono-n-butyl phthalate (MNBP) concentration measured at 1-year post-menarche 

was associated with lower Shannon diversity in adolescence. Higher concentration of select 

phthalates measured at 1-year post-menarche were also borderline associated with lower 

Shannon diversity in adolescence. An EDC biomarker mixture at 1-year post-menarche was not 

significantly associated with lower Shannon diversity in adolescence. Taken together, these 

results suggest higher EDC concentration in childhood is associated with small variation in 

global gut microbial diversity in adolescence in a chemical-specific manner and provide support 

for the idea of windows of susceptibility to EDC exposure in relation to gut microbial 

composition.  

Little epidemiologic evidence exists for the relation between our selected EDCs and the gut 

microbiome. Previous studies using single-EDC analytic strategies have found mixed results for 

the relation of a few select EDC to gut microbial composition. For example, triclosan (TCS) 

exposure was associated with lower gut microbial alpha diversity (Shannon index) in infants 
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exposed to TCS-containing breast milk 163, but was not associated with the Shannon index 

among mothers and infants in a randomized crossover study of TCS-containing household 

products.164 While we did not find an association with TCS measured at B1, B4, nor 1-year post-

menarche and the Shannon index, it is difficult to compare our results to prior studies due to 

differences in study population (infants versus children), sample sizes (<50 versus >200), and 

source of TCS (breast milk versus urine). Similar important differences exist for when comparing 

our study to a study of phthalates and the gut microbiome. The study of Taiwanese infants that 

found an association between DEHP and gut microbial dysbiosis did not calculate alpha 

diversity, had a small sample size, and limited generalizability beyond infants.46 In a review of 

the literature, we found no studies in humans that have evaluated the relation of parabens or 

other phenols to the gut microbiome. To our knowledge, few studies have characterized 

childhood or peripubertal exposure to EDCs using a mixture approach, and none have 

evaluated the association with gut microbiota. Recently, studies evaluating EDC mixture effects 

have focused on the prenatal exposure window in relation to infant or early childhood health 

outcomes, including neurodevelopment and body size.165–170 Two other studies have evaluated 

a phthalate mixture in early childhood (after infancy) on child behavior.171,172 While the study 

from Li et al. also collected urine samples and quantified EDC biomarkers at multiple time points 

in a large cohort, the EDC mixture index represented the weighted exposure intensity across all 

collections, rather than each childhood time window separately.172 In contrast, the study from 

Daniel et al. of more than 400 inner-city mothers and their children evaluated an EDC mixture at 

3 years of age and 5 years of age on child behavior outcomes.171 The pubertal window, much 

like the prenatal or early childhood window, is an important critical period of development in the 

lifecourse.173 EDC exposure during these windows of childhood may have heightened impact on 

later life health and disease. Therefore, evaluation of EDC mixture exposure across different 

windows of time provides valuable contributions to our understanding of windows of 

susceptibility throughout the lifecourse.  
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This study is not without limitations. Phenol, phthalate, and paraben biomarkers have short half-

lives and metabolize quickly in the body; a single fasting spot urine thus reflects the period 

shortly before sample collection and may not be representative of long-term exposure.123,124 

However, any misclassification of EDC exposure is unlikely to be associated with the outcome 

of interest and will thus be non-differential. Moreover, although these EDCs have short half-

lives, pervasive availability and chronic exposure suggests that a single urine sample may 

reasonably reflect a longer period of time.123 Additionally, while we were able to prospectively 

assess EDC biomarker concentration over three study time points, it is difficult to gauge the 

appropriate amount of follow-up time necessary to see a potential effect on the gut microbiota. 

Although we have detailed longitudinal covariate data, it is possible that we did not completely 

control for confounding factors. While we were able to include important variables which may 

affect gut microbial composition, like diet and antibiotic usage, we cannot rule out that other 

perturbations of the gut microbiota occurred. In this temporal context, it is possible that the 

most-recent EDC assessment at 1-year post-menarche more accurately reflects the association 

between EDC exposure and gut microbial composition. Given this limitation, we evaluated 

models with constraints in both the positive and negative direction to allow for future hypothesis 

generation.  

Our study has many strengths. Notably, it is one of the earliest population-based human studies 

with a large sample size and prospective study design to investigate the relation between 

childhood exposure to EDCs and the gut microbiome. We were able to control for a number of 

potential confounding factors known to be associated with the gut microbiome and related to 

EDC exposure, including birth mode, breast feeding, and diet. Finally, we were able to consider 

three separate exposure windows throughout childhood, allowing for potential identification of 

important windows of susceptibility for development of the gut microbiome. 

3.6. Conclusions 
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In this longitudinal cohort of Chilean girls, we found evidence to indicate a biomarker-specific 

association between childhood and pubertal EDC exposure and adolescent gut microbial 

composition. This association differed across exposure time points in puberty, suggesting 

potential windows of susceptibility to EDCs. We additionally report the results of an EDC mixture 

approach, which is highly appropriate when considering the totality of EDC exposure.  
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Table 3.  1. Demographic and anthropometric characteristics of girls in the Growth and Obesity 
Cohort Study by study time point (N=257) 

Characteristic Study Time Point*  

  Tanner Stage B1 Tanner Stage B4 1 Year Post-Menarche 

  (n=197) (n=233) (n=167) 

Lab of urine sample analysis        

CDC 95 (48.2) 98 (42.1) 0 

Mount Sinai 102 (51.8) 135 (57.9) 160 (100.0) 

Age, years (mean (SD)) 7.91 (0.46) 11.33 (0.82) 13.26 (0.76) 

Body fat percentage (mean (SD)) 25.48 (4.21) 26.80 (4.89) 30.23 (5.35) 

Maternal education (%)       

Secondary education or less 151 (76.6) 182 (78.1) 126 (78.8) 

Greater than secondary education 46 (23.4) 51 (21.9) 34 (21.2) 

Duration of predominant breast feeding 
(count (%)) 

      

< 3 months  65 (33.0) 71 (30.5) 53 (33.1) 

3-6 months  113 (57.4) 134 (57.5) 91 (56.9) 

> 6 months  19 (9.6) 28 (12.0) 16 (10.0) 

Birth mode (%)       

Caesarean 49 (24.9) 57 (24.5) 38 (23.8) 

Vaginal 148 (75.1) 176 (75.5) 122 (76.2) 

Average caloric intake, kCal (mean 
(SD)) 

1871.61 (464.50) 1872.98 (503.44) 1779.36 (479.95) 

Antibiotic use in  6 months prior to stool 
sample 

      

Yes 18 (9.1) 24 (10.3) 13 (8.1) 

No 103 (52.3) 131 (56.2) 89 (55.6) 

Unknown 76 (38.6) 78 (33.5) 58 (36.2) 

Shannon index (mean (SD)) 4.08 0.33) 4.07 (0.33) 4.08 (0.33) 

* Not mutually exclusive  
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Table 3.  2. Results from linear regression of single-chemical EDC concentration (log10-
transformed, quartiled) on Shannon diversity by study time point  (N = 251). 

  Tanner Stage B1 
(n=197) 

Tanner Stage B4 
(n=233) 

1 Year Post-Menarche 
(n=167) 

  βa (95%CI) βa (95%CI) βb (95%CI) 

Log10-transformed EDC concentration 
  

BP3 -0.05 (-0.17, 0.06) -0.04 (-0.11, 0.03) 0.02 (-0.08, 0.11) 

BPA 0.17 (0.02, 0.32)* 0.07 (-0.05, 0.17) -0.03 (-0.2, 0.14) 

BPS 0.04 (-0.1, 0.18) -0.03 (-0.14, 0.08) -0.14 (-0.29, 0.01)** 

BUPB 0.00 (-0.06, 0.07) -0.02 (-0.08, 0.05) 0.02 (-0.07, 0.10) 

ETPB 0.00 (-0.07, 0.07) -0.02 (-0.08, 0.04) 0.02 (-0.05, 0.09) 

MBP -0.11 (-0.25, 0.05) -0.03 (-0.16, 0.07) -0.19 (-0.34, -0.03)* 

MBZP -0.01 (-0.12, 0.11) -0.04 (-0.13, 0.07) -0.1 (-0.23, 0.02) 

MCPP -0.01 (-0.14, 0.13) -0.01 (-0.09, 0.07) -0.08 (-0.2, 0.04) 

MECPP -0.01 (-0.16, 0.16) 0.05 (-0.11, 0.17) -0.15 (-0.32, 0.01)** 

MEHHP -0.04 (-0.18, 0.12) 0.04 (-0.11, 0.17) -0.14 (-0.29, 0.02)** 

MEHP 0.00 (-0.13, 0.13) 0.07 (-0.06, 0.18) -0.09 (-0.24, 0.05) 

MEOHP -0.07 (-0.21, 0.09) 0.04 (-0.1, 0.16) -0.14 (-0.3, 0.02)** 

MEP -0.03 (-0.14, 0.07) -0.04 (-0.13, 0.04) -0.09 (-0.19, 0.01)** 

MEPB 0.01 (-0.07, 0.08) 0.00 (-0.05, 0.06) 0.00 (-0.07, 0.07) 

MIBP -0.17 (-0.32, -0.02)* 0.00 (-0.13, 0.14) -0.13 (-0.31, 0.04) 

PRPB 0.00 (-0.05, 0.05) -0.01 (-0.06, 0.04) 0.02 (-0.03, 0.08) 

TCS 0.01 (-0.07, 0.1) 0.03 (-0.04, 0.11) -0.03 (-0.1, 0.05) 

Quartiled EDC concentration 
  

BP3 -0.03 (-0.07, 0.02) -0.02 (-0.06, 0.03) -0.01 (-0.06, 0.05) 

BPA 0.06 (0.00, 0.11)* 0.03 (-0.02, 0.08) 0.01 (-0.05, 0.07) 

BPS 0.01 (-0.03, 0.05) -0.01 (-0.05, 0.03) -0.04 (-0.1, 0.03) 

BUPB -0.02 (-0.06, 0.03) -0.03 (-0.07, 0.02) 0.02 (-0.05, 0.08) 

ETPB 0.00 (-0.05, 0.04) -0.03 (-0.07, 0.02) 0.00 (-0.06, 0.05) 

MBP -0.05 (-0.11, 0.0)** -0.02 (-0.08, 0.03) -0.07 (-0.13, 0.00)* 

MBZP -0.02 (-0.07, 0.04) -0.04 (-0.09, 0.01) -0.02 (-0.08, 0.03) 

MCPP 0.00 (-0.06, 0.05) 0.00 (-0.05, 0.05) -0.02 (-0.08, 0.03) 

MECPP -0.02 (-0.07, 0.04) 0.02 (-0.03, 0.08) -0.07 (-0.13, -0.01)* 

MEHHP -0.01 (-0.06, 0.05) 0.02 (-0.03, 0.07) -0.06 (-0.12, 0.00)** 

MEHP -0.01 (-0.06, 0.05) 0.03 (-0.02, 0.08) -0.04 (-0.1, 0.01) 

MEOHP -0.03 (-0.08, 0.03) 0.02 (-0.03, 0.07) -0.07 (-0.13, 0.00)* 

MEP -0.02 (-0.06, 0.03) -0.03 (-0.07, 0.02) -0.03 (-0.09, 0.02) 

MEPB 0.00 (-0.05, 0.04) -0.01 (-0.05, 0.04) 0.02 (-0.02, 0.07) 

MIBP -0.05 (-0.11, 0.00)** -0.02 (-0.07, 0.03) -0.05 (-0.11, 0.02) 

PRPB 0.00 (-0.04, 0.04) 0.00 (-0.05, 0.04) 0.00 (-0.05, 0.05) 

TCS -0.01 (-0.05, 0.04) 0.01 (-0.03, 0.06) 0.00 (-0.05, 0.05) 

a: Adjusted for age at clinic visit, maternal education (secondary education or less, more than 
secondary education), body fat percentage, (vaginal, caesarean), duration of predominant 
breast-feeding (<3 months, 3-6 months, >6 months), antibiotic use in the 6 months prior to stool 
sample (yes, no, unknown), average caloric intake (g/day), and lab (CDC, Mount Sinai) 

b: Adjusted for the same set of covariates but excluding lab  

*: P-value <=0.05 

**: P-value <=0.10  
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Table 3.  3. Results from PERMANOVA of single-chemical EDC concentration (log10-
transformed) by study time point  (N = 251). 

  Tanner Stage B1 
(n=197) 

Tanner Stage B4 
(n=233) 

1 Year Post-Menarche 
(n=167) 

  R2 P-value FDR R2 P-value FDR R2 P-value FDR 

Log10-transformed EDC 
concentration 

            

BP3 0.005 0.45 0.9 0.004 0.38 0.9 0.008 0.06 0.9 

BPA 0.005 0.33 0.9 0.004 0.62 0.9 0.005 0.72 0.9 

BPS 0.005 0.59 0.9 0.004 0.28 0.9 0.006 0.55 0.9 

TCS 0.004 0.92 0.93 0.004 0.45 0.9 0.007 0.27 0.9 

MEPB 0.004 0.86 0.9 0.004 0.77 0.9 0.006 0.63 0.9 

ETPB 0.004 0.93 0.93 0.003 0.84 0.9 0.007 0.13 0.9 

PRPB 0.005 0.43 0.9 0.005 0.17 0.9 0.006 0.52 0.9 

MBP 0.004 0.69 0.9 0.004 0.58 0.9 0.008 0.05 0.9 

MBZP 0.005 0.29 0.9 0.003 0.86 0.9 0.006 0.35 0.9 

MCPP 0.004 0.85 0.9 0.004 0.76 0.9 0.006 0.47 0.9 

MECPP 0.004 0.64 0.9 0.004 0.68 0.9 0.006 0.45 0.9 

MEHHP 0.005 0.6 0.9 0.004 0.71 0.9 0.005 0.79 0.9 

MEHP 0.005 0.33 0.9 0.004 0.62 0.9 0.006 0.69 0.9 

MEOH
P 

0.005 0.5 0.9 0.004 0.61 0.9 0.006 0.67 0.9 

MEP 0.005 0.45 0.9 0.005 0.08 0.9 0.006 0.45 0.9 

MIBP 0.005 0.36 0.9 0.003 0.77 0.9 0.008 0.06 0.9 

 

a: Adjusted for age at clinic visit, maternal education (secondary education or less, more than 
secondary education), body fat percentage, (vaginal, caesarean), duration of predominant 
breast-feeding (<3 months, 3-6 months, >6 months), antibiotic use in the 6 months prior to stool 
sample (yes, no, unknown), average caloric intake (g/day), and lab (CDC, Mount Sinai) 

b: Adjusted for the same set of covariates but excluding lab  

*: P-value <=0.05 

**: P-value <=0.10  
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Table 3.  4. Multivariable MaAsLin2 modeling of the association between microbial taxa (ASVs) 
and log10-transformed EDC by study time point. 

EDC Taxa (Phylum; Class; Order; Family; Genus) β SE p-
value 

q-
value 

  B4         

TCS Firmicutes;Clostridia;Clostridiales;Eubacteriaceae;Anaerofustis 0.13 0.03 0.0001 0.15 

MEP Actinobacteria;Actinobacteria;Bifidobacteriales;Bifidobacteriaceae;Bifidobacterium -0.20 0.05 0.0002 0.23 

  1-year post-menarche         

MBP Firmicutes;Clostridia;Clostridiales;Ruminococcaceae;Ruminiclostridium.9 -0.33 0.08 0.0001 0.07 

MBP Firmicutes;Clostridia;Clostridiales;Lachnospiraceae;Tyzzerella.4 0.12 0.04 0.0007 0.18 
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Table 3.  5. Results from WQS regression of EDC concentration on Shannon diversity by study 
time point with EDC concentrations quartiled in generalized linear models  (N = 251). 

  Tanner Stage B1 (n=197) Tanner Stage B4 (n=233) 1 Year Post-Menarche 
(n=167) 

Positive, no constraintsa       

β (95%CI)  -0.03 (-0.16, 0.1) -0.01 (-0.11, 0.09) -0.07 (-0.18, 0.04) 

p-value  0.65 0.82 0.22 

Positive, with constraintsb       

β (95%CI)  0.04 (-0.06, 0.13) -0.01 (-0.11, 0.09) -0.14 (-0.25, -0.03) 

p-value  0.45 0.81 0.02c 

Negative, no constraintsa       

β (95%CI)  -0.12 (-0.27, 0.02) 0 (-0.12, 0.12) -0.02 (-0.15, 0.12) 

p-value  0.10 0.97 0.81 

Negative, with constraintsa       

β (95%CI)  0.02 (-0.11, 0.15) 0 (-0.12, 0.12) -0.06 (-0.22, 0.1) 

p-value  0.79 0.96 0.48 

        

Positive, with constraints and 
different seedb 

      

β (95%CI)      -0.09 (-0.21, 0.04) 

p-value      0.18 

 

a: Models for time points B1 and B4 are adjusted for age at clinic visit, maternal education 
(secondary education or less, more than secondary education), body fat percentage, (vaginal, 
caesarean), duration of predominant breast-feeding (<3 months, 3-6 months, >6 months), 
antibiotic use in the 6 months prior to stool sample (yes, no, unknown), average caloric intake 
(g/day), and lab (CDC,Mount Sinai). Models for time point 1-year post-menarche did not include 
lab as a covariate.  

b: Secondary analysis with different seed for evaluation of reproducibility 

c: P-value <=0.05 
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Chapter 4. The association between breast density and gut microbiota composition 
at 2-years post menarche: A cross-sectional study of adolescents in Santiago, 
Chile 

4.1. Abstract 

Background: The gut microbiome has been linked to breast cancer via immune, inflammatory, 

and hormonal mechanisms. We examined the relation between adolescent breast density and 

gut microbial composition and function in a cohort of Chilean girls.   

Methods: This cross-sectional study included 218 female participants in the Growth and Obesity 

Cohort Study who were 2 years post-menarche. We measured absolute breast fibroglandular 

volume (aFGV) and derived percent FGV (%FGV) using dual energy X-ray absorptiometry. All 

participants provided a fecal sample. The gut microbiome was characterized using 16S 

ribosomal RNA sequencing of the V3-V4 hypervariable region. We examined alpha diversity 

and beta diversity across terciles of %FGV and aFGV. We used MaAsLin2 for multivariable 

general linear modeling to assess differential taxa abundance and differential MetaCyc pathway 

abundance between %FGV and aFGV terciles. All models were adjusted for potential 

confounding variables and corrected for multiple comparisons.  

Results: The mean %FGV and aFGV was 49.5% and 217.0 cm3, respectively, among study 

participants. Similar median alpha diversity levels were found across %FGV and aFGV terciles 

when measured by the Shannon diversity index (%FGV T1: 4.0, T2: 3.9, T3: 4.1; aFGV T1: 4.0, 

T2: 4.0, T3: 4.1). No genera were differentially abundant when comparing %FGV nor aFGV 

terciles after adjusting for potential confounders (q > 0.56 for all genera). We found no 

associations between predicted MetaCyc pathway abundance and %FGV and aFGV.  

Conclusions: Breast density measured at 2-years post menarche was not associated with 

composition and predicted function of the gut microbiome among adolescent Chilean girls.  

4.2. Introduction  
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Breast cancer is the most common cancer among women worldwide, however, one third of 

affected women have no known or suspected risk factors.1 Greater breast density is strongly 

associated with increased risk of breast cancer among adult women.174 Breast density, 

measured as the relative proportion of fibroglandular tissue to fatty tissue in the breast, is 

inversely related to age, parity, and later menopause and also associated with childhood and 

adolescent body fatness.175,176 Initial peak breast density is hypothesized to be established 

during adolescence 177, and breast tissue may be particularly vulnerable to exposures during 

puberty, a period of rapid breast development.178,179 Adolescent breast density has been 

associated with pubertal maturation and body fatness.180 However, few studies have 

characterized other important associates of breast development and composition during this 

vulnerable period.  

A novel mechanistic pathway that may contribute to development of the breast is the gut 

microbiome. Collectively the trillions of microbes living in the human intestinal tract, the gut 

microbiome plays important roles in numerous biological processes including immune 

regulation, dietary metabolism, epithelial barrier function, and hormone regulation.129,181–183 

Experimental and epidemiologic evidence suggests that the gut microbiome may be associated 

with different diseases such as metabolic disorders and cancers, including breast cancer, 

through direct and indirect mechanisms.184–189 For instance, perturbations in microbiota 

composition, or dysbiosis, may lead to systemic inflammation resulting in an increased 

vulnerability to pathogens.47 Carcinogenesis may follow from dysbiosis-induced permeability of 

the intestinal epithelium and resulting extracellular vesicle circulation throughout the body in 

biofluids.190 Changes in the composition of gut microbiome, and specifically in microbes involved 

in estrogen metabolism, may influence breast cancer development through an increase in 

circulating estrogen levels.48 Evidence for an association between circulating estrogens and 

adult mammographic breast density is mixed.191–194 However, we have shown that levels of 
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prepubertal estrogen, measured with an ultra-sensitive method, are associated with earlier 

thelarche, which is in turn related to breast density at the end of puberty.50 Estrogen levels are 

directly associated with breast development; therefore, the gut microbiome may play a 

mechanistic role in the development of breast density during puberty and adolescence.49,50  

It is unknown whether the gut microbiome is associated with breast density in adolescence. The 

current study examined the association between breast density at two years post-menarche and 

the gut microbiome in a cohort of adolescent Chilean girls. We hypothesized that the microbial 

composition and function of the gut would differ across densities of the breast.  

4.3. Methods 

Study design and population  

We conducted a cross-sectional analysis of a subset of female participants in the Growth and 

Obesity Cohort Study (GOCS). The original GOCS, which began in 2006, has been described 

previously.11 In brief, 1,196 children aged 2.5 to 4 years from low- and middle- income families 

and enrolled in preschool at the National Board of Preschool Council Program (Junta Nacional 

de Jardines Infantiles) were enrolled in the study; approximately half (601) were girls. 

Participants in the study visit the Institute of Nutrition and Food Technology (INTA) Health Clinic 

at the Universidad de Chile in Santiago, Chile at least once per year for anthropometric 

assessments, pubertal (Tanner) evaluation, collection of biospecimens, and to complete 24-

hour dietary recall interviews. A limited set of behavioral and demographic information was also 

collected via questionnaire. Breast composition was measured when the participants were two 

years post-menarche (2PM). The current study included a subset of 218 girls randomly selected 

to provide a fecal sample and who had a breast composition measurement at 2PM. The 2PM 

breast assessment and fecal sample collection occurred between 2018 and 2019.  The study 

protocol and written consent forms were approved by the University of Chile Ethics Committee 

at INTA.   
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Breast composition measurement 

Breast composition was measured at the clinic visit corresponding to a timepoint of 2PM for 

each girl using the dual energy X-ray absorptiometry (DXA) breast scanning protocol developed 

by Shepherd et al. at the University of California, San Francisco.75 The Prodigy DXA system 

software (version 13.6, series 200674; GE Healthcare) was used to scan each breast for 

quantification of adipose fat and fibroglandular (FG) tissue. Stable calibration of the system was 

continuously performed using a quality control breast phantom. Absolute fibroglandular volume 

(FGV; cm3) and total breast volume for each breast were derived from a two-compartment 

model of adipose fat and fibroglandular tissue. The percentage of FGV tissue in the breast was 

derived by dividing the absolute FGV by total breast volume and multiplying by 100. Percent 

FGV and absolute FGV for the left and right breast were averaged to obtain two single 

measures of breast density: percent FGV (%FGV) and absolute FGV (aFGV). DXA is frequently 

used in studies of bone density in children; exposure to ionizing radiation from the DXA protocol 

is low.77 The DXA approach for breast composition assessment has high validity and precision 

among adolescent girls.76 Both breast density outcomes were categorized into terciles (‘T1’, 

‘T2’, ‘T3’) based on the distribution of the sample for statistical analyses.  

Fecal collection 

Fecal samples were collected after annual visits to the INTA health clinic occurring when the 

girls were between 13 and 15 years old.  During the visit, girls were provided with materials 

(sealed plastic bag, stool catcher, a plastic, sterile container with a spoon to manipulate the 

sample and procedure gloves) and instructions for at-home fecal collection. Briefly, after the 

stool deposit, girls were asked to collect a part of the stool approximately the size of a walnut 

and place it in the plastic sterile container and label with the date and time of sample collection. 

Within 15 minutes of collection, the samples were sealed and then stored temporarily in the 

participant’s freezer, at which time study personnel were contacted to schedule the sample pick 
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up.  Samples were retrieved no later than three days after initial collection, labeled with a de-

identified key, and stored at INTA in a -80°C freezer prior to shipment.   

Fecal processing and 16s rRNA sequencing  

Fecal processing of 279 samples (266 unique samples and 13 duplicates) was performed at the 

National Exposure Assessment Laboratory at Emory University, a Children’s Health Exposure 

Analysis Resource Laboratory. DNA was extracted from fecal samples using the Qiagen 

DNeasy PowerSoil Kit (Qiagen; 12888). Composition of the gut microbiome was determined 

through sequencing and amplification of the V3-V4 hypervariable region of the 16S rRNA gene. 

Libraries were made from 12.5 ng of DNA following a standard 16S Metagenomic Library 

Preparation Workflow from Illumina, Inc. Libraries were pooled in equal amounts based on 

fluorescence quantification, resulting in a 630 bp amplicon. Final library pools were quantitated 

via qPCR (Kapa Biosystems; KK4824).  The pooled library was sequenced on an Illumina 

MiSeq using MiSeq v3 600 cycle chemistry (Illumina MS-102-3003) at a loading density of 6-8 

pM with 20% PhiX, generating roughly 20M, 300 bp paired-end reads. In addition to the 279 

experimental samples, traditional negative, no template control (NTC) negative, positive, and 

ZymoBIOMICS mock microbial community controls were included in the assays.149 The Emory 

Integrated Genomics Core performed the assays. 

After sequencing, demultiplexed raw amplicon sequences were processed using QIIME2 

(Quantitative Insights Into Microbial Ecology) version 2019.4.150 Denoising and dereplication, 

including chimera removal and trimming of reads based on quality scores, were performed 

using the Divisive Amplicon Denoising Algorithm 2 (DADA2) module.151 Amplicon sequence 

variants (ASVs) were inferred using DADA2 to increase resolution and allow for intrinsic biologic 

meaning.152 Taxonomy was assigned using a naive Bayes classifier on the SILVA database 

(SILVA 132 release).153 We excluded samples from girls that did not have breast assessments 

at 2PM (n=48). The end product yielded a total of 6,270 unique ASVs from 218 samples. 
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Standard preprocessing (filtering, subsetting, agglomeration) with the R package ‘phyloseq’ was 

used to exclude undefined or ambiguous taxa and taxa below a prevalence threshold of 2% of 

total samples.154,155 The final ASV feature table comprised 18,628,903 total reads (mean per 

sample = 87,872, range 28,118 to 278,065) and a total of 1,600 unique ASVs across 218 

samples. 

Covariates 

Demographic, anthropometric, and nutritional data were collected by trained dietitians during the 

annual study visit at the health clinic. Age- and sex- adjusted body mass index (BMI; kg/m2) Z-

scores were calculated using the World Health Organization growth reference data and 

categorized into Norma/Underweight (Z-score ≤ 1), Overweight (1 < Z-score ≤ 2), and Obese (2 

< Z-score). Body fat percentage was estimated using Tanita-BC-418 MA bioelectrical 

impedance measurements (Tanita-Corporation, Tokyo, Japan) and categorized into Healthy, 

Overweight, and Obese based on Tanita children’s age- and sex-specific body fat reference 

curves.78,79 Age at menarche was determined via phone interviews completed by study dietitians 

every three months during puberty and dichotomized (≤ 12 years, > 12 years). Mothers of the 

participants were present at the clinic visits and were asked to complete short questionnaires 

with information on their highest level of education (ssecondary education or less, post-

secondary education), birth mode of the participant (cesarean, vaginal), and months of 

exclusive breast feeding (<3 months, 3-6 months, >6 months). Dietary 24-hour recalls were 

collected longitudinally beginning in April 2014 by trained dietitians using the USDA multiple-

pass method. Food and nutrient information were obtained using a harmonization process that 

mapped Chilean foods to the USDA Food and Nutrient Database for Dietary Studies. Daily 

intake of five major food groups (vegetables [g], fruit [g], red or processed meat [g], yogurt [g], 

and whole grains [g]) and total energy intake (kCal) were averaged over the data collection 

period and up to the date of the 2PM breast composition assessment to reduce random-
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measurement error and to obtain a more accurate assessment of long-term diet.80 We also 

collected data on ethnicity (Mapuche [native Chilean indigenous] and non-Mapuche, according 

to last name), average daily hours of television during the week (≤1 hour, 1-3 hours, >3 hours) 

as a proxy of physical activity, and antibiotic use in the 6 months prior to fecal sample (yes, no). 

Missing covariate data were imputed using last observation carried forward where applicable 

and regression imputation in the R package ‘mice’ with available covariates otherwise.195 

Statistical analysis 

Relative abundance at the phyla level was plotted for all samples and across %FGV and aFGV 

terciles. We estimated alpha diversity as the observed richness (the number of species per 

sample) and the Shannon index (a measure of richness and evenness) on unfiltered data.158,196 

Rarefaction without replacement was used to standardize library sizes and account for uneven 

sampling depth prior to estimating alpha diversity metrics.197 Overall differences in observed 

richness and the Shannon index by %FGV and aFGV terciles were tested using the Kruskal-

Wallis (KW) followed by post-hoc pairwise testing with the Wilcoxon Rank Sum in cases where 

data were compatible with evidence to reject the KW null hypothesis. Beta diversity was 

visualized using principal coordinate analysis (PCoA) plots with Bray-Curtis dissimilarity. Single 

and multivariate permutational analysis of variance (PERMANOVA) were used to test for overall 

differences in microbial composition between %FGV and aFGV terciles.198 Homogeneity of 

variance was used to test whether differences in community structure were due to dissimilar 

dispersions. Microbial diversity metrics were estimated using the R packages ‘phyloseq’ and 

‘vegan’.154,157 

ASVs were agglomerated to the genus level prior to associating microbial community features 

with breast density outcomes. We used the R package ‘MaAsLin2’ (Microbiome Multivariable 

Associations with Linear Models), which relies on a modified generalized linear model for 

compositional data, to identify differentially abundant microbe genera across %FGV and aFGV 
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terciles.161 All models specified minimum abundance of 0.01% in 10% of samples, total sum 

scaling normalization, and arcsine square root-transformation.161 The models were adjusted for 

a set of potential confounders including age, body fat percentage, antibiotic use, maternal 

education, total calories, hours of TV watching, ethnicity, birth mode, and breast feeding. Where 

appropriate, the Benjamini and Hochberg (BH) correction method was used control the false 

discovery rate (FDR) and produced q-values.88  

Functional metabolic pathways of microbial communities were predicted from 16S rRNA marker 

sequencing data using PICRUSt2 implemented as a QIIME2 plugin.199 Default parameters were 

used in the pipeline, including SATe-enabled phylogenetic placement, hidden-state prediction, 

and a distance cut-off of 2. PCoA ordination with Bray-Curtis dissimilarity was used to visualize 

MetaCyc pathway abundance predictions. Differences in MetaCyc pathway abundance between 

%FGV and aFGV terciles were testing using multivariable PERMANOVA. Multivariable 

MaAsLin2 was used to evaluate differential abundance of predicted MetaCyc pathways with 

default parameters and BH correction for multiple comparisons.  

4.4. Results 

Study sample characteristics  

The association between breast density and gut microbial composition and function was 

assessed among 218 GOCS participants. The mean age of the participants was 14 years at the 

time of breast assessment and 12 years at reported menarche (Table 4. 1). The participants 

were primarily non-indigenous (Non-Mapuche, 82.5%) and 77.5% of the mothers had a 

secondary school educational attainment or less. The mean %FGV among the sample was 

49.5% (SD=14.5); for tercile 1 (T1), mean %FGV was 33.7%; tercile 2 (T2), 48.9%; and tercile 3 

(T3), 66.2%. The mean aFGV among the sample was 217.0 cm3; for T1, mean aFGV was 136.2 

cm3; T2, 209.9 cm3; and T3, 306.2 cm3. More than half the cohort was considered overweight or 
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obese. Overall, participants had a mean BMI Z-score of 1.0 and a mean body fat percentage of 

32.6%. Additional study population characteristics are reported in Table 4. 1.  

Phylum-level microbial composition of the sample  

The relative composition of the gut microbiome for each %FGV and aFGV tercile is displayed in 

Figure 4. 1. Overall, Firmicutes was the most highly represented bacterial phylum and 

comprised 66% of the sample abundance. Microbes from the Bacteroidetes and Actinobacteria 

phyla represented 18.1% and 10.4% of the abundance, respectively. We found minor 

differences in relative abundance across %FGV terciles for Bacteroidetes (T1: 20.4%, T2: 

15.4%, T3: 18.5%), Actinobacteria (T1: 8.9%, T2: 10.9%, T3: 11.5%) and Euryarchaeota (T1: 

1.4%, T2: 0.9%, T3: 0.9%) (Figure A3. 1). There were no differences in relative abundance at 

the phylum level across aFGV terciles (Figure A3. 2).  

Microbial diversity analyses  

We calculated alpha diversity for each sample using observed richness and the Shannon 

diversity index. Overall, the mean number of observed species present in the fecal samples was 

214 and the mean Shannon index was 4.0 (Figure 4. 2). We observed differences in median 

observed species richness across %FGV terciles (T1: 226; T2: 200, T3: 223).  There were no 

differences in the observed number of species across aFGV terciles nor in the Shannon index 

for both %FGV and aFGV terciles.  

Beta diversity analysis was performed using Bray-Curtis dissimilarity and visualized by principal 

coordinate analysis (PCoA) (Figure 4. 3). PCoA axes 1 and 2 represented 9.2% and 5.8% of the 

total variance, respectively. Multivariable PERMANOVA analyses included body fat percentage, 

age, antibiotic use, birth mode, breast feeding, daily caloric intake, maternal education, and 

ethnicity along with either with %FGV and aFGV to evaluate associations of microbial 
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composition with participant characteristics (Table 4. 2). Only 1.3% of the variability in microbial 

composition was associated with %FGV, while 0.8% was associated with aFGV.  

Differential abundance of microbial taxa and predicted functional pathways 

In multivariable linear modeling with MaAsLin2, no genera were associated with %FGV nor with 

aFGV after FDR correction (q < 0.25) (data not shown). We also noted no shifts in global 

predicted microbial pathway abundances (Figure 4. 3). Altogether, cohort characteristics 

reflected a small proportion of sample variation; %FGV and aFGV explained 0.9% and 0.8% 

respectively (Table 4. 4). There were no major differences in abundance of predicted MetaCyc 

pathways by %FGV nor aFGV when adjusting for potential confounders (data not shown).  

4.5. Discussion 

In this cross-sectional study of Chilean adolescents, we found no associations of microbial 

composition nor predicted function with breast density. Our results suggest minimal differences 

in alpha diversity: girls in the lowest and highest breast %FGV terciles had slightly higher 

observed species richness compared to those in tercile 2. However, this pattern was not 

observed for aFGV and when examining different alpha diversity metrics (Shannon index).  

Several recent clinical studies have examined the association between the gut microbiome and 

breast cancer. In a case-control study of 96 post-menopausal women, pre-treatment breast 

cancer patients had altered microbial composition (beta diversity) and increased abundance of 

Clostridiaceae, Faecalibacterium, and Ruminococcaceae compared to controls.48 A cross-

sectional study of incident pre- and post-menopausal breast cancer patients reported a less 

diverse microbiome and differential abundance of Firmicutes in women with human epidermal 

growth factor receptor 2 (HER2) positive breast cancer compared to HER2 negative breast 

cancer.200 Other studies also support associations of specific microbial taxa (e.g., Bacteroidetes, 

Blautia spp.) with breast cancer staging and clinical characteristics, including body size.201,202 
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Much less information is available from epidemiologic studies on the possible association 

between the gut microbiome and breast density. A study of healthy menopausal women in the 

United States found no association between mammographic breast density and gut microbial 

beta diversity and Firmicutes to Bacteroidetes (F/B) ratio, and suggestive differences in alpha 

diversity.203 These results are comparable to those from a study of cancer-free postmenopausal 

women, which found that alpha diversity and relative abundance did not differ in women with 

high versus low mammographic density.194 To our knowledge, our study is the first that 

examines the association between the gut microbiome and breast density in adolescents. 

Though our study differs in several ways from the prior studies of the breast density and gut 

microbiome relation, notably in study population and breast density assessment method, we 

found similar null associations for alpha diversity and relative abundance with respect to breast 

density alone. Null findings specifically in studies of the gut microbiome-breast density 

association might reflect the complex interaction between body composition (e.g., body fatness), 

the gut microbiome, and breast density. Obesity is strongly inversely associated with breast 

density and with composition of the gut microbiome.129,181,204 It is plausible that an association is 

mediated by body composition, such that any affect is cancelled out when controlling for body 

fat percentage.205 However, we did not note any breast density and microbial composition 

associations when stratified by category of body fatness. It is also possible that studies of the 

microbiome-breast cancer association are reflective of alterations to the composition of the gut 

following the disease state, rather than the hypothesized effects of the gut microbiome in 

contributing to breast cancer pathogenesis through early alteration of estrogen metabolism. 

Limitations and Strengths  

Our study has several limitations. The cross-sectional design does not allow for a temporal 

specification of the gut microbiome – breast density association, so we cannot rule out reverse 

causation. However, the human gut microbiome is thought to be relatively stable after infancy 
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and early childhood.30 We cannot fully preclude that other perturbations of the microbiome, such 

as major dietary changes, occurred in the time just prior to sample collection. However, we 

collected information on antibiotic usage and clinical diagnoses of disease in the six months 

prior to stool collection, and less than 2% of the sample reported any probiotic consumption.  

We did not have comprehensive information on nutritional supplements; however, use of 

vitamins or nutritional supplements is uncommon in Chile, particularly among girls. We had 

limited information on physical activity, which is associated with gut microbial composition and 

many anthropometric characteristics (e.g., body fatness) associated with breast density. We 

also lack direct information on functional microbiome data which may show relations with breast 

density that were not apparent when examining composition alone. However, we were able to 

approximate functional potential of the community using PICRUSt2.  

Our study also has several strengths, including a large sample of geographically, 

socioeconomically, and behaviorally similar girls. We were also able to comprehensively assess 

the gut microbial community using fecal 16s rRNA gene sequencing. The GOCS study has 

collected longitudinal data on lifestyle, socioeconomic, and anthropometric factors, allowing for 

specific control of potential confounders. MaAsLin2, a novel general linear modeling approach, 

allows for preserved statistical power with multiple covariates and control for false-discovery rate.  

4.6. Conclusions 

In conclusion, we found no important association between the gut microbiome and breast density 

at 2 years post-menarche in female adolescents.  
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Table 4. 1. Population characteristics of 218 girls participating in the Growth and Obesity Cohort 
Study 

Characteristic Distribution 

Percent FGV (%), mean (SD) 49.5 (14.5) 

Tercile 1, median (range) 34.0 (19.1, 41.4) 

Tercile 2, median (range) 48.8 (41.5, 56.3) 

Tercile 3, median (range) 65.3 (56.6, 98.0) 

Absolute FGV (cm3), mean (SD) 217.0 (78.1) 

Tercile 1, median (range) 140.2 (74.2, 178.0) 

Tercile 2, median (range) 210.8 (178.1, 249.2) 

Tercile 3, median (range) 292.7 (250.1, 546.4) 

Total breast volume (cm3), mean (SD) 472.0 (236.4) 

Age (years), mean (SD) 14.0 (0.9) 

Age at menarche (years), mean (SD) 12.0 (0.8) 

BMI Z-score, mean (SD) 1.0 (1.0) 

Body fat percentage (%), mean (SD) 32.6 (5.8) 

Energy intake per day (kCal), mean (SD)  1709.4 (376.5 

Ethnicity, n (%) 
 

Non-Mapuche 181 (83.0) 

Mapuche 37 (17.0) 

Birth mode, n (%) 
 

Cesarean 54 (24.8) 

Vaginal 164 (75.2) 

Antibiotic use in prior 6 months, n (%)   

No 198 (90.8) 

Yes 20 (9.2) 

Maternal education, n (%)   

Secondary education or less 171 (78.4) 

Post-secondary education 47 (21.6) 

Hours of TV per day, n (%)   

≤1 hour 77 (35.3) 

1-3 hours 109 (50.0) 

>3 hours 32 (14.7) 
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Figure 4. 1. Microbial relative abundance at the phylum level stratified by (A) %FGV tercile and 
(B) aFGV tercile in fecal microbiota samples from 218 GOCS participants 
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Figure 4. 2. Box plots of alpha diversity metrics for observed richness and Shannon index across 
terciles of %FGV (A, B) and aFGV (C, D).  

P-values are presented for overall differences in alpha diversity metrics (Kruskal-Wallis) and 

post-hoc pairwise differences. Boxes represent the lower, median, and upper quartile of the 

data and whiskers are 1.5*interquartile range. 
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Figure 4. 3. Principal coordinate analysis (PCoA) plot of microbial composition derived from Bray-
Curtis dissimilarity.  

N= 218 girls in GOCS colored by %FGV (A) and aFGV (B) terciles. Ellipses are 95% confidence 

regions for each tercile. 
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Table 4. 2. Multivariable PERMANOVA analyses to identify variation (R2) in microbial beta 
diversity (Bray-Curtis dissimilarity) explained by study characteristics. 
 

Percent FGV Absolute FGV 

Characteristic R2 p-value R2 p-value 

FGV  0.013 0.01 0.008 0.73 

Body fat percentage 0.009 0.35 0.011 0.10 

Age 0.005 0.18 0.005 0.21 

Antibiotic use 0.006 0.08 0.006 0.08 

Birth mode 0.004 0.79 0.004 0.83 

Breast feeding 0.009 0.46 0.009 0.43 

Daily caloric intake 0.013 0.61 0.013 0.58 

Maternal education 0.005 0.30 0.005 0.29 

Ethnicity 0.007 0.03 0.006 0.06 

TV hours  0.003 1.00 0.003 1.00 

Residuals 0.926   0.929   
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Table 4. 3. Principal coordinate analysis (PCoA) plot of predicted MetaCyc pathway abundance 
derived from Bray-Curtis dissimilarity among fecal samples provided by 218 girls in GOCS colored 
by %FGV (A) and aFGV (B) terciles. Ellipses are 95% confidence regions for each tercile.  
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Table 4. 4. Multivariable PERMANOVA analyses to identify variation (R2) MetaCyc pathway 
beta diversity (Bray-Curtis dissimilarity) explained by study characteristics 
 

Percent FGV Absolute FGV 

Characteristic R2 p-value R2 p-value 

FGV  0.008 0.56 0.007 0.66 

Body fat percentage 0.009 0.40 0.009 0.48 

Age 0.004 0.55 0.004 0.57 

Antibiotic use 0.006 0.20 0.006 0.20 

Birth mode 0.003 0.64 0.004 0.46 

Breast feeding 0.011 0.28 0.010 0.32 

Daily caloric intake 0.016 0.26 0.016 0.25 

Maternal education 0.007 0.19 0.007 0.15 

Ethnicity 0.004 0.44 0.004 0.49 

TV hours  0.002 0.85 0.003 0.77 

Residuals 0.929   0.930   
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Chapter 5. Conclusions and Public Health Relevance 

The peripubertal period represents an important life stage during which environmental 

chemicals may influence the risk of breast cancer in later life. The role of the gut microbiome in 

this process remains unclear. As observed in this dissertation, endocrine disrupting chemicals 

(EDCs) measured at different time points throughout puberty can have varying impacts on the 

breast density in adolescence. Select EDCs measured at Tanner breast stage B4 (B4), 

including mono(2-ethyl-5-carboxypentyl) phthalate and di(2-ethylhexyl) phthalate metabolites 

were positively associated with absolute breast fibroglandular volume; others measured at 1-

year post-menarche, including triclosan, were inversely associated percent breast fibroglandular 

volume. Other phthalates measured at 1-year post-menarche, including monobenzyl phthalate, 

were inversely associated with diversity of the gut microbiome. However, no association 

between the gut microbiome and breast density in adolescence was found.  

By using the framework of lifecourse epidemiology, this dissertation contributes to a growing 

body of evidence evaluating the influence of environmental factors during puberty and 

addresses several methodological challenges in studying the relation to breast density. 

Significantly, chapter 2 found high variability in EDC biomarker concentrations across stages of 

puberty and identified potential windows of susceptibility during puberty for breast density. The 

use of longitudinal exposure data from a prospective cohort with high retention allowed for an 

innovative and unconventional application of generalized estimating equations. Additionally, this 

dissertation presents several exploratory hypotheses and methodologies related to a novel and 

potentially significant mechanism through which EDCs might act on breast density- the gut 

microbiome. Chapter 3 is among the first human studies to evaluate the relation of phenol, 

phthalate, and paraben EDCs to the gut microbiome; it is also the first to consider how a mixture 

of EDCs, rather than single chemical, might influence the gut microbiome. Chapter 4 is one of 
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three studies to examine the association between breast density and the gut microbiome, and 

the first to do so among adolescents.  

Taken together, these studies point to the importance of the pubertal window of susceptibility to 

environmental factors in influencing breast cancer risk. This research contributes to an 

understanding of the variation in breast cancer risk associated with environmental exposures in 

childhood to develop early-life recommendations for breast cancer prevention. Future studies 

may build on the hypotheses generated and methodologies used in this dissertation to further 

investigate environmental influences on breast cancer risk.
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Appendix 1. Supplemental content for Chapter 2  

 

Table A1. 1. Comparison of characteristics for girls in the Growth and Obesity Cohort Study with 
breast assessments (n=366) and without breast assessments (n=159) 

Characteristic Included in the analysis* (n=366) Excluded from the analysis (n=159) 

  Study Time Point Study Time Point 

  Tanner 
Stage B1 

Tanner 
Stage B4 

1-Year 
Post-

Menarche 

Tanner 
Stage B1 

Tanner 
Stage B4 

1-Year 
Post-

Menarche 

  (n=293) (n=333) (n=232) (n=122) (n=115) (n=34) 

Urine sample provided              

B1 293 (100.0) 261 (78.4) 197 (84.9) 122 (100.0) 79 (68.7) 28 (82.4) 

B4 261 (89.1) 333 (100.0) 219 (94.4) 79 (64.8) 115 (100.0) 28 (82.4) 

1Y PM  197 (67.2) 219 (65.8) 232 (100.0) 28 (23.0) 28 (24.3) 34 (100.0) 

Age, years (mean (SD)) 7.87 (0.45) 11.38 
(0.88) 

13.40 
(0.82) 

7.92 (0.50) 11.24 
(0.98) 

14.01 
(1.18) 

Age at menarche, years 
(mean (SD)) 

12.09 
(0.91) 

12.04 
(0.89) 

12.42 
(0.76) 

12.14 
(1.08) 

11.86 
(1.09) 

12.88 
(1.09) 

BMI Z-score (mean (SD)) 0.85 (1.10) 0.88 (1.10) 0.86 (1.11) 0.86 (1.17) 0.96 (1.07) 0.67 (1.08) 

Body fat percentage (mean 
(SD)) 

25.58 
(4.41) 

26.93 
(5.11) 

30.62 
(5.61) 

25.91 
(5.02) 

26.64 
(5.40) 

29.75 
(5.85) 

Body fat percentage (count 
(%)) 

            

Underfat/Normal 155 (54.4) 198 (62.3) 55 (40.1) 69 (57.5) 74 (67.3) 11 (47.8) 

Overfat 82 (28.8) 68 (21.4) 39 (28.5) 28 (23.3) 20 (18.2) 2 (8.7) 

Obese 48 (16.8) 52 (16.4) 43 (31.4) 23 (19.2) 16 (14.5) 10 (43.5) 

Maternal education (%)             

Secondary education or 
less 

236 (80.5) 271 (81.4) 192 (82.8) 96 (78.7) 85 (73.9) 22 (64.7) 

Greater than secondary 
education 

57 (19.5) 62 (18.6) 40 (17.2) 26 (21.3) 30 (26.1) 12 (35.3) 

Duration of breast feeding 
(count (%)) 

            

< 3 months  90 (30.7) 107 (32.1) 74 (31.9) 35 (28.7) 31 (27.0) 13 (38.2) 

3-6 months  171 (58.4) 188 (56.5) 134 (57.8) 77 (63.1) 69 (60.0) 17 (50.0) 

> 6 months  32 (10.9) 38 (11.4) 24 (10.3) 10 (8.2) 15 (13.0) 4 (11.8) 

Birth mode (%)             

Caesarean 85 (29.0) 91 (27.3) 73 (31.5) 50 (41.0) 32 (27.8) 7 (20.6) 

Vaginal 208 (71.0) 242 (72.7) 159 (68.5) 72 (59.0) 83 (72.2) 27 (79.4) 

Average caloric intake, 
kCal (mean (SD)) 

1878.81 
(490.73) 

1873.00 
(457.64) 

1745.07 
(446.37) 

1906.21 
(544.87) 

1871.09 
(465.24) 

1759.18 
(530.93) 

* Only girls with breast assessments at 2-years post-menarche were included in the analysis 
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Figure A1. 1. Distribution of BPA concentration (log10-transformed and creatinine-adjusted) at 
B1, B4, or 1-year post-menarche for girls with breast composition assessments and those 
without breast composition assessments. 

Only girls with breast composition assessments were included in the analysis. P-values were 

produced from non-parametric t-test for two-sample comparison of means. 
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Figure A1. 2. Plot of Spearman correlation for EDC biomarker concentrations Tanner Stage B1 
among 293 girls participating in the Growth and Obesity Cohort Study in Santiago, Chile. 

Acronyms: Bbenzophenone-3 (bp3), bisphenol-A (bpa), bisphenol S (bps), triclosan (tcs), 

ethylparaben (etpb), methylparaben (mepb), propylparaben (prpb), mono(2-ethyl-5-

carboxypentyl phthalate (mecpp), mono(2-ethyl-5-hydroxyhexyl) phthalate (mehhp), mono(2-

ethylhexyl) phthalate (mehp), mono(2-ethyl-5-oxohexyl) phthalate (meohp), monoethyl phthalate 

(mep), mono-isobutyl phthalate (mibp), mono-n-butyl phthalate (mbp), mono-3-carboxypropyl 

phthalate (mcpp), oxidative di(2-ethylhexyl) phthalates (dehp), high-molecular weight phthalates 

(hiphth), low-molecular weight phthalates (lophth), parabens (parbf), phenols (phenf).  
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Figure A1. 3. Plot of Spearman correlation for EDC biomarker concentrations Tanner Stage B4 
among 333 girls participating in the Growth and Obesity Cohort Study in Santiago, Chile.  

Acronyms: Bbenzophenone-3 (bp3), bisphenol-A (bpa), bisphenol S (bps), triclosan (tcs), 

ethylparaben (etpb), methylparaben (mepb), propylparaben (prpb), mono(2-ethyl-5-

carboxypentyl phthalate (mecpp), mono(2-ethyl-5-hydroxyhexyl) phthalate (mehhp), mono(2-

ethylhexyl) phthalate (mehp), mono(2-ethyl-5-oxohexyl) phthalate (meohp), monoethyl phthalate 

(mep), mono-isobutyl phthalate (mibp), mono-n-butyl phthalate (mbp), mono-3-carboxypropyl 

phthalate (mcpp), oxidative di(2-ethylhexyl) phthalates (dehp), high-molecular weight phthalates 

(hiphth), low-molecular weight phthalates (lophth), parabens (parbf), phenols (phenf) 
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Figure A1. 4. Plot of Spearman correlation for creatinine-adjusted EDC biomarker 
concentrations 1-year post-menarche among 232 girls participating in the Growth and Obesity 
Cohort Study in Santiago, Chile.  

Acronyms: Bbenzophenone-3 (bp3), bisphenol-A (bpa), bisphenol S (bps), triclosan (tcs), 

ethylparaben (etpb), methylparaben (mepb), propylparaben (prpb), mono(2-ethyl-5-

carboxypentyl phthalate (mecpp), mono(2-ethyl-5-hydroxyhexyl) phthalate (mehhp), mono(2-

ethylhexyl) phthalate (mehp), mono(2-ethyl-5-oxohexyl) phthalate (meohp), monoethyl phthalate 

(mep), mono-isobutyl phthalate (mibp), mono-n-butyl phthalate (mbp), mono-3-carboxypropyl 

phthalate (mcpp), oxidative di(2-ethylhexyl) phthalates (dehp), high-molecular weight phthalates 

(hiphth), low-molecular weight phthalates (lophth), parabens (parbf), phenols (phenf)
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Appendix 2. Supplemental content for Chapter 3 

Table A2. 1. List of Urinary EDC biomarkers and the lab-specific limit of detection 

Biomarker Source Lab  % 
Detect 

LOD ICC % Invalid 
Replicates with 
both samples 

<LOD 

Benzophenone-3 BP3 Mount Sinai 100 1 0.87 NA 

CDC 100 0.4 

Bisphenol-A BPA Mount Sinai 95 0.1 0.74 50 

CDC 97.5 0.2 

Bisphenol-F BPF* Mount Sinai 55 0.25 0.18 39 

CDC 30 0.2 

Bisphenol-S BPS Mount Sinai 35 0.25 0.95 37 

CDC 62.5 0.1 

Butyl paraben BUPB* Mount Sinai 57.5 0.1 0.81 62 

CDC 57.5 0.1 

Ethyl paraben ETPB Mount Sinai 85 0.2 0.82 21 

CDC 42.5 1 

Methyl paraben MEPB Mount Sinai 100 0.25 0.84 NA 

CDC 100 1 

Propyl paraben PRPB Mount Sinai 90 0.1 0.87 0 

CDC 100 0.1 

Triclorocarban TCC* Mount Sinai 15 0.1 0.83 53 

CDC 47.5 0.1 

Triclosan TCS Mount Sinai 97.5 1 0.94 0 

CDC 90 1.7 

Mono-benzyl phthalate MBZP Mount Sinai 97.5 0.1 0.93 0 

CDC 95 0.3 

Mono-(3-
carboxypropyl) 
phthalate 

MCPP Mount Sinai 100 0.05 0.9 0 

CDC 97.5 0.2 

Mono- (2-ethyl-5-
carboxypentyl) 
phthalate 

MECPP Mount Sinai 100 0.1 0.91 NA 

CDC 100 0.2 

Mono(2-ethyl-5-
hydroxyhexyl) 

MEHHP Mount Sinai 100 0.1 0.9 NA 

CDC 100 0.2 

Mono-2-ethylhexyl 
phthalate 

MEHP Mount Sinai 97.5 0.3 0.85 50 

CDC 95 0.5 

Mono-(2-ethyl-5-
oxohexyl) phthalate  

MEOHP Mount Sinai 100 0.1 0.83 NA 

CDC 100 0.2 

Mono-ethyl phthalate MEP Mount Sinai 100 0.1 0.94 NA 

CDC 100 0.6 

Mono-isobutyl 
phthalate 

MIBP Mount Sinai 100 0.1 0.91 0 

CDC 100 0.2 

Mono-n-butyl phthalate  MNBP Mount Sinai 100 0.1 0.92 0 

CDC 97.5 0.4 

* BPF and TCC were excluded from the analysis based ICC <0.75 from overlapping CDC/Mount 

Sinai samples (n=40). BUPB was excluded from single-chemical analyses at B4 due to % 

detected (>50% invalid).  
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Figure A2. 1. Boxplot of log10-transformed phenol [A], paraben [A], and phthalate [B] 
concentrations by study time point.  

Abbreviations: B1= Tanner breast stage 1, B4 = Tanner breast stage 4, 1Y PM = 1-year post-

menarche 

A 

 

B 
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Table A2. 2. Relative abundance of microbial taxa by phylum, class, and genus in the GOCS 
cohort (N=257) 

Taxonomic classification  
Mean Relative 

Abundance 

Phylum   

Firmicutes 65.9% 

Bacteroidetes 18.1% 

Actinobacteria 10.3% 

Verrucomicrobia 2.6% 

Proteobacteria 1.5% 

Euryarchaeota 1.1% 

Tenericutes 0.3% 

Cyanobacteria 0.03% 

Patescibacteria 0.02% 

Fusobacteria 0.01% 

Class  
Clostridia 57.9% 

Bacteroidia 18.3% 

Actinobacteria 6.9% 

Erysipelotrichia 5.0% 

Coriobacteriia 3.5% 

Verrucomicrobiae 2.7% 

Negativicutes 2.3% 

Bacilli 1.5% 

Gammaproteobacteria 1.3% 

Mollicutes 0.3% 

Genus  
Bacteroides 12.2% 

Bifidobacterium 7.9% 
[Eubacterium] coprostanoligenes 
group 6.0% 

Tyzzerella 4 5.6% 

Faecalibacterium 4.6% 

Blautia 4.4% 

Subdoligranulum 4.1% 

Ruminococcaceae UCG-014 3.9% 

Akkermansia 3.1% 

[Eubacterium] hallii group 3.0% 
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Table A2. 3. Results from linear regression of single-chemical EDC concentration (log10-
transformed, quartiled) on Shannon diversity by study time point, excluding girls with antibiotic 
use in the 6 months prior to stool sample  (N = 241). 

  Tanner Stage B1 
(n=179) 

Tanner Stage B4 
(n=209) 

1 Year Post-
Menarche 

(n=147) 

  β a (95%CI) βa (95%CI) βa (95%CI) 

Log10-transformed EDC concentration 
  

BP3 -0.06 (-0.19, 0.05) -0.02 (-0.1, 0.05) 0.04 (-0.05, 0.14) 

BPA 0.14 (-0.03, 0.3) 0.08 (-0.05, 0.19) -0.01 (-0.19, 0.17) 

BPS 0.03 (-0.11, 0.18) -0.03 (-0.15, 0.09) -0.14 (-0.3, 0.01)** 

BUPB 0 (-0.07, 0.07) -0.02 (-0.09, 0.05) 0.04 (-0.04, 0.13) 

ETPB -0.01 (-0.07, 0.07) -0.03 (-0.09, 0.04) 0.03 (-0.04, 0.11) 

MBP -0.12 (-0.27, 0.05) -0.04 (-0.17, 0.09) -0.17 (-0.34, -
0.01)* 

MBZP -0.01 (-0.13, 0.12) -0.06 (-0.16, 0.05) -0.07 (-0.21, 0.06) 

MCPP -0.02 (-0.15, 0.12) 0 (-0.09, 0.08) -0.06 (-0.18, 0.07) 

MECPP -0.01 (-0.17, 0.16) 0.06 (-0.1, 0.2) -0.14 (-0.31, 
0.03)** 

MEHHP -0.05 (-0.2, 0.13) 0.05 (-0.11, 0.19) -0.12 (-0.29, 0.04) 

MEHP -0.01 (-0.14, 0.13) 0.09 (-0.04, 0.21) -0.07 (-0.22, 0.09) 

MEOHP -0.07 (-0.22, 0.1) 0.05 (-0.1, 0.19) -0.12 (-0.29, 0.04) 

MEP -0.02 (-0.13, 0.09) -0.04 (-0.13, 0.05) -0.09 (-0.2, 0.02)** 

MEPB 0 (-0.08, 0.08) -0.01 (-0.07, 0.06) 0.01 (-0.06, 0.08) 

MIBP -0.18 (-0.33, -
0.03)* 

-0.01 (-0.14, 0.14) -0.15 (-0.34, 0.03) 

PRPB 0 (-0.06, 0.06) -0.01 (-0.06, 0.04) 0.02 (-0.04, 0.08) 

TCS 0.03 (-0.06, 0.12) 0.03 (-0.05, 0.11) -0.02 (-0.1, 0.06) 

Quartiled EDC concentration 
  

BP3 -0.03 (-0.08, 0.02) 0 (-0.05, 0.04) 0.01 (-0.05, 0.06) 

BPA 0.05 (-0.01, 0.11)** 0.03 (-0.02, 0.08) 0.02 (-0.04, 0.08) 

BPS 0.01 (-0.04, 0.05) -0.01 (-0.05, 0.03) -0.03 (-0.1, 0.03) 

BUPB -0.02 (-0.07, 0.02) -0.03 (-0.07, 0.02) 0.03 (-0.04, 0.1) 

ETPB -0.01 (-0.06, 0.04) -0.04 (-0.09, 0.01) 0.01 (-0.05, 0.06) 

MBP -0.07 (-0.13, -
0.01)* 

-0.02 (-0.08, 0.03) -0.05 (-0.12, 0.01) 

MBZP -0.02 (-0.08, 0.03) -0.05 (-0.1, 0.01)** -0.01 (-0.07, 0.04) 

MCPP -0.01 (-0.07, 0.05) -0.01 (-0.06, 0.05) -0.02 (-0.07, 0.04) 

MECPP -0.02 (-0.08, 0.04) 0.03 (-0.03, 0.08) -0.06 (-0.12, 
0.01)** 

MEHHP -0.02 (-0.08, 0.04) 0.02 (-0.04, 0.08) -0.05 (-0.11, 0.01) 

MEHP -0.01 (-0.06, 0.05) 0.04 (-0.02, 0.09) -0.03 (-0.09, 0.03) 

MEOHP -0.03 (-0.09, 0.03) 0.03 (-0.03, 0.09) -0.05 (-0.12, 0.01) 
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MEP -0.02 (-0.06, 0.03) -0.02 (-0.07, 0.03) -0.04 (-0.09, 0.01) 

MEPB 0 (-0.05, 0.05) 0 (-0.05, 0.04) 0.03 (-0.02, 0.08) 

MIBP -0.06 (-0.12, 0)* -0.02 (-0.07, 0.03) -0.04 (-0.11, 0.03) 

PRPB 0 (-0.05, 0.04) -0.01 (-0.05, 0.04) 0 (-0.05, 0.06) 

TCS 0 (-0.05, 0.05) 0.01 (-0.04, 0.06) -0.01 (-0.06, 0.04) 

 

a: Adjusted for age at clinic visit, maternal education (secondary education or less, more than 
secondary education), body fat percentage, (vaginal, caesarean), duration of predominant 
breast-feeding (<3 months, 3-6 months, >6 months), antibiotic use in the 6 months prior to stool 
sample (no, unknown), average caloric intake (g/day), and lab (CDC, Mount Sinai) 

b: Adjusted for the same set of covariates but excluding lab  

*: P-value <=0.05 

**: P-value <=0.10  
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Table A2. 4. Results from linear regression of single-chemical EDC concentration (log10-
transformed, quartiled) on Shannon diversity by study time point  (N = 257) with Benjamini-
Hochberg FDR adjusted values 

  Tanner Stage B1 (n=197) Tanner Stage B4 (n=233) 1 Year Post-Menarche 
(n=167) 

  Estimatea P-
value 

q-
value 

Estimatea P-
value 

q-
value 

Estimatea P-
value 

q-
value 

Log10-transformed EDC 
concentration 

                  

BP3 -0.05 0.34 0.98 -0.04 0.31 0.77 0.02 0.72 0.77 

BPA 0.17 0.02 0.23b 0.07 0.24 0.77 -0.03 0.73 0.77 

BPS 0.04 0.54 0.98 -0.03 0.6 0.77 -0.14 0.07 0.23 b 

BUPB 0 0.92 0.98 -0.02 0.6 0.77 0.02 0.71 0.77 

ETPB 0 0.94 0.98 -0.02 0.51 0.77 0.02 0.61 0.77 

MBP -0.11 0.15 0.93 -0.03 0.57 0.77 -0.19 0.02 0.23 b 

MBZP -0.01 0.87 0.98 -0.04 0.46 0.77 -0.1 0.11 0.25 

MCPP -0.01 0.9 0.98 -0.01 0.87 0.97 -0.08 0.17 0.3 

MECPP -0.01 0.92 0.98 0.05 0.5 0.77 -0.15 0.06 0.23 

MEHHP -0.04 0.63 0.98 0.04 0.53 0.77 -0.14 0.09 0.23 

MEHP 0 0.96 0.98 0.07 0.25 0.77 -0.09 0.21 0.34 

MEOHP -0.07 0.38 0.98 0.04 0.51 0.77 -0.14 0.09 0.23 b 

MEP -0.03 0.56 0.98 -0.04 0.34 0.77 -0.09 0.08 0.23 b 

MEPB 0.01 0.86 0.98 0 0.97 0.97 0 1 1 

MIBP -0.17 0.03 0.23 b 0 0.96 0.97 -0.13 0.14 0.28 

PRPB 0 0.98 0.98 -0.01 0.71 0.86 0.02 0.41 0.61 

TCS 0.01 0.84 0.98 0.03 0.41 0.77 -0.03 0.48 0.66 

Quartiled EDC concentration                   

BP3 -0.03 0.26 0.92 -0.02 0.5 0.69 -0.01 0.84 0.94 

BPA 0.06 0.04 0.42 0.03 0.27 0.69 0.01 0.78 0.94 

BPS 0.01 0.65 0.92 -0.01 0.56 0.7 -0.04 0.25 0.49 

BUPB -0.02 0.43 0.92 -0.03 0.23 0.69 0.02 0.62 0.86 

ETPB 0 0.85 0.92 -0.03 0.23 0.69 0 0.9 0.94 

MBP -0.05 0.07 0.42 -0.02 0.36 0.69 -0.07 0.04 0.2 

MBZP -0.02 0.51 0.92 -0.04 0.15 0.69 -0.02 0.38 0.62 

MCPP 0 0.85 0.92 0 0.91 0.91 -0.02 0.43 0.65 

MECPP -0.02 0.55 0.92 0.02 0.43 0.69 -0.07 0.03 0.2 

MEHHP -0.01 0.82 0.92 0.02 0.48 0.69 -0.06 0.06 0.2 

MEHP -0.01 0.82 0.92 0.03 0.21 0.69 -0.04 0.11 0.33 

MEOHP -0.03 0.37 0.92 0.02 0.44 0.69 -0.07 0.04 0.2 

MEP -0.02 0.39 0.92 -0.03 0.25 0.69 -0.03 0.19 0.42 

MEPB 0 0.87 0.92 -0.01 0.8 0.87 0.02 0.33 0.6 

MIBP -0.05 0.07 0.42 -0.02 0.48 0.69 -0.05 0.14 0.37 

PRPB 0 0.99 0.99 0 0.82 0.87 0 0.94 0.94 
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TCS -0.01 0.71 0.92 0.01 0.58 0.7 0 0.87 0.94 

 

a: Models for time points B1 and B4 are adjusted for age at clinic visit, maternal education 
(secondary education or less, more than secondary education), body fat percentage, (vaginal, 
caesarean), duration of predominant breast-feeding (<3 months, 3-6 months, >6 months), 
antibiotic use in the 6 months prior to stool sample (yes, no, unknown), average caloric intake 
(g/day), and lab (CDC, Mount Sinai). Models for time point 1-year post-menarche did not include 
lab as a covariate. 

b: FDR <0.25 
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Appendix 3. Supplemental content for Chapter 4 

 

Figure A3. 1. Relative abundance of bacterial phyla across %FGV terciles.  

Global and pairwise p-values are presented from Kruskal-Wallis and t-tests, respectively. Ns = 

non-significant at an alpha level of 0.05; **:  p<= 0.05; *: p<= 0.10 
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Figure A3. 2. Relative abundance of bacterial phyla across aFGV terciles.  

Global and pairwise p-values are presented from Kruskal-Wallis and t-tests, respectively. Ns = 

non-significant at an alpha level of 0.05; **:  p<= 0.05; *: p<= 0.10 
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