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ABSTRACT OF THE DISSERTATION

Performance Optimization of Wireless Sensor Networks

By

Jun Guo

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2019

Professor Hamid Jafarkhani, Chair

In this dissertation, I study three factors, sensing quality, connectivity, and energy con-

sumption in static/dynamic wireless sensor networks (WSNs). First, taking sensing quality

and connectivity into account, I formulate the node deployment problem in both WSNs from

a source coding perspective. According to our analysis, the techniques in regular quantizer

can be applied to both homogeneous and heterogeneous WSNs. Second, a one-tier quantizer

with parameterized distortion measures is proposed for 3-dimension node deployment prob-

lems. Similarly, a novel two-tier quantizer, which can be applied to energy conservation in

two-tier WSNs consisting of N access points and M fusion centers, is appropriately defined

and studied. In addition, to make a trade-off between sensing quality and communication

energy consumption within static WSNs, routing algorithms are appropriately taken into

the system model. Moreover, a comprehensive optimization problem is provided to pro-

cess all three factors in a dynamic WSN where movement energy dominates total energy

consumption. The necessary conditions for the optimal solutions in the above performance

optimization problems are proposed in this dissertation. Based on these necessary conditions,

a series of Lloyd-like algorithms are designed and implemented to optimize the performance

in different WSNs. My experiment results show that the proposed algorithms outperform

the existing algorithms in the corresponding WSNs.
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Chapter 1

Introduction

1.1 Background

As a bridge between the physical world and the virtual information word, wireless sensor

networks (WSNs) collect data from the physical world and communicate it with the virtual

information world, such as computers. On the one hand, from the perspective of mobility,

sensors can be classified as static sensors and mobile sensors [1]. Static sensors, such as

temperature sensors, stay still after their one-time deployment while mobile sensors, such as

robots and unmanned aerial vehicles (UAVs), are equipped with motion components and able

to move to other locations. On the other hand, according to sensors’ functionality/capacity,

WSNs can be classified into homogeneous WSNs and heterogeneous WSNs. In homogeneous

WSNs, extensively studied in the literature [2]–[31], sensors share the same capacity, e.g.,

storage, computation power, sensitivity, communication radius, coverage radius, moving ef-

ficiency, and battery. The heterogeneous WSNs consist of sensors with different capacities

[32]–[38]. Proper sensor deployment improves monitoring and controlling of the physical en-

vironment, such as temperature, humidity, voice and so on. To accomplish their tasks, WSNs

1



should address three needs: (i) Sensing in the target region and (ii) network connectivity,

and (iii) energy conservation.

One major challenge in both homogeneous and heterogeneous WSNs is the deployment of

nodes to improve the sensing quality. To evaluate the sensing quality, the binary coverage

model [2]–[9], [11], [12], [32], [33], [36], [39]–[45] and the probabilistic model [46]–[51] are

widely used in WSNs. In the binary coverage model, sensors can only detect the points

within a range of Rs. The range Rs is called the sensing range. In the probabilistic coverage

model, the probability that a sensor detects an event depends on the distance between them.

When the number of sensors is large enough to cover the whole sensing region, the coverage

degree in [11], [52] is used to evaluate sensing performance. On the contrary, when the

sensing region is too large to be covered by the given sensors, the coverage area is used

as the performance measurement [36]. There are many coverage models and deployment

algorithms, for different sensing tasks, in the literature; look at [2]–[4] and the references

therein. According to the sensing tasks, coverage models can be classified into four popular

categories: (i) area coverage, (ii) target coverage, (iii) barrier coverage, and (iv) sensing

uncertainty. A natural sensing task is to maximize the area coverage, which is formulated by

the total area covered by sensors. In another popular coverage model, target coverage, the

specific target locations are detected and reported by relocated sensors. In this case, sensors

or robots are required to collect detailed information from discrete targets. A full-target-

coverage is achieved if and only if every discrete target in the 2-dimensional region is covered

by at least one sensor. Sensors in barrier coverage model move along the boundary to detect

intruders as they cross the border of a region or domain. To obtain full-barrier-coverage,

one should place sensors to cover the whole barrier or boundary. Finally, the minimization

of sensing uncertainty requires sensors to form a Centroidal Voronoi Tessellation (CVT). It

is mainly used when there is no specific target. The widely used sensing uncertainty model

can be presented as a quantizer with the sensing uncertainty as its distortion [2]–[10], [13],

[15]–[18], [32]–[34], [53]–[55]. In fact, WSNs should be reconfigurable/flexible to support

2



different sensing tasks. However, to the best of our knowledge, there is no unified framework

that models a variety of coverage tasks.

Connectivity is another important requirement in WSNs. In WSNs, mobile sensor nodes are

relocated to collect physical information, such as magnetism, temperature, and voice. The

collected data is forwarded to the outside world through access points (APs). Therefore, the

collected data is useless if it cannot be forwarded to the AP via single-hop or multiple-hop

communications. When sensors are connected by wirelines, the connectivity is guaranteed

automatically. The connectivity is still a challenge in WSNs where sensors are communicating

with each other through wireless channels. A common communication model [3], [6], [10]–

[12], [14], [52] assumes that each sensor node is able to communicate with sensors in a limited

communication range Rc. The Critical Sensor Density (CSD) [3] is the number of nodes per

unit area required to provide full coverage when the communication range is limited.

Energy efficiency is another key issue in WSNs, as most sensors have limited battery energy,

and it is inconvenient or even infeasible to replenish batteries of numerous densely deployed

sensors [18]. In general, the energy consumption of a device includes communication energy,

data processing energy [56], sensing energy, and movement energy. In fact, sensor movement

has a much higher level of energy consumption compared to other types of energy [19], [20].

Except movement, wireless communication is the primary source of energy consumption.

Therefore, movement energy and communication energy will dominate the energy consump-

tion in static WSNs and mobile WSNs, respectively. Literature [57] studies the optimal

angular velocity and the optimal acceleration to minimize the energy consumption for mo-

tion. Simulation results in [57] show that the energy consumption for one-step motion with

the optimal angular velocity setting is approximately linear to the movement distance. In

fact, the linear movement energy consumption is a popular assumption and widely adopted

in the literature [21]–[23], [35], [58]. Particularly, the movement energy consumption in some

specific sensors is 5.976J/m [58]. Total energy consumption and network lifetime are two

3



common energy-related measures. When battery charging is available, total energy mini-

mization is an important issue in WSNs. Otherwise, network lifetime maximization, which

balances the energy consumption among sensors, is a more common and challenging problem

because it takes into account the available battery power of sensors.

1.2 Node deployment from a source coding perspective

1.2.1 One-Tier Quantization for Node Deployment

In many applications, one needs to provide service to and collect data from a geographical

area of interest via multiple nodes, such as sensors or providers. Usually, the nodes are

distributed such that each point or client in the area is only served by only one node,

resulting in a partition of the target area to disjoint regions. The service cost for each node

may depend on its characteristics and local service region. The fundamental goal in such a

formulation is to jointly optimize the node locations and the corresponding service regions to

optimize the overall performance, which is typically defined as an aggregate of node service

costs.

The cost of providing service to a client is usually related to its distance to the local service

node. Therefore, minimizing the total cost by optimally deploying the nodes and the service

regions is identical to a spatial tessellation problem [33]. Such problems (which have also

been referred to as facility location or node deployment problems by different research com-

munities) are equivalent to the quantization problem of data compression and source coding.

In fact, in the language of quantization theory, the service nodes and service regions cor-

respond to the reproduction points and quantization regions, respectively. Minimizing the

total service cost becomes equivalent to minimizing the corresponding average distortion.

We now present several specific applications to highlight the above equivalency.
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In sensor networks, sensors are deployed in a two-dimensional planar to collect data from the

environment. The goal of sensor/node deployment is to maximize the sensing performance

and quality. An example of the sensor deployment in a two-dimensional planar is illustrated

(a) (b)
Figure 1.1: Two example node deployments. (a) One-tier network. (b) Two-tier network. 100 first-
tier nodes and 4 second-tier nodes are denoted by dots and stars, respectively. The cell partitions
are denoted by polygons. The symbols associated with the same second-tier node are filled with
the same color.
in Fig. 1.1a, where each sensor is denoted by a dot that monitors its own region. In

this scenario, the reproduction points correspond to the sensor nodes, and the quantization

Voronoi regions correspond to the sensor partitions. The cost function (distortion measure)

is usually a monotonically increasing function of the distance between the sensor and the

event that is being sensed, and quantifies the inaccuracy of sensing. The most common cost

function used in the quantization literature is the squared Euclidean distance [59]. It can

be used directly in the sensor network example to measure the overall sensing inaccuracy

in homogeneous wireless sensor networks (WSNs) [6]. For heterogeneous WSNs, a weighted

Euclidean distance square measure can be used where the weights reflect the nodes’ different

sensing capabilities [32]. Other cost functions have also been utilized to formulate the sensing

coverage or the sensing probability [32], [47], [60], [61].

Another example is the heterogeneous base station (BS) deployment [17], [62]–[64] in cellular
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networks where user equipments (UEs) are considered as the source, heterogeneous BSs are

recognized by the reproduction points, and the BS cells are represented by the quantization

Voronoi regions. Because of the path loss, the signal strength at the receiver is a non-

increasing function of the communication distance [65]–[67]. Using such a non-increasing

function as the cost function, the distortion measure can be defined as the expected signal

to noise ratio (SNR) at the UEs, where the expectation is calculated for a given channel

probability distribution.

1.2.2 Two-Tier Quantization for Node Deployment

The conventional spatial tessellation and node deployment problems in Section 1.2.1 ignore

the hierarchical architecture that is inherent in many networks. In fact, to reduce the network

burden, many practical networks have a two-tier structure, as an extension to the one-tier

examples considered in Section 1.2.1. For example, to provide an effective delivery service for

the residents, the postal system uses a two-tier network including the local post offices and

the postal hubs. Then, there will be two costs associated with each delivery. A first-tier-cost

that is the cost of delivering packages from clients to local post offices, determined by the

population density and the distance from clients to their local post offices, and a second-

tier-cost which is the total cost of delivering packages between local post offices and the

corresponding postal hubs. The second-tier-cost is determined by the workload of the local

post offices and the distance from the local post offices to their postal hubs. A similar two-

tier network appears in the hospital system where local hospitals provide the basic medical

treatment and the residents with severe disastrous issues are transferred to the hospital

centers with more medical facilities.

Two-tier WSNs and two-tier cellular networks are also very common network architectures.

A two-tier WSN [37], [38], [68]–[70] includes densely deployed sensors, multiple access points

(APs), and fusion centers (FCs). In such a network, sensor nodes collect the data and send

it to their APs for processing. Then, each AP transmits its aggregated data to its associated
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FC [37], [38], [68]–[70]. As depicted in Fig. 1.1b, the sensors, APs, and FCs correspond,

respectively, to clients, first-tier nodes, and second-tier nodes in our two-tier network. One

reasonable cost function in the two-tier WSN is the total energy consumption at sensors

and APs. The objective is to optimize the trade-off between the sensor and AP energy

consumption.

The goal of this paper is to study node deployment problems in two-tier networks, where

two-tier nodes are deployed to provide service for the clients in the target region. In such

two-tier networks, as depicted in Fig. 1.1b, the second-tier nodes provide service for the

first-tier nodes that serve the clients. Similar to the one-tier networks, the cost between two

points is generally a non-decreasing function of the Euclidean distance. Let the first-tier-cost

be the total cost between clients and first-tier nodes, and the second-tier-cost be the total

cost between the first-tier nodes and the corresponding second-tier nodes. Moving the first-

tier nodes towards the second-tier nodes, usually, will increase the average distance between

the first-tier nodes and the local clients, resulting in the increase of the first-tier-cost. On

the other hand, moving the first-tier nodes towards the local clients, usually, will increase

their distance to the second-tier nodes and will result in an increase in the second-tier-cost.

Therefore, there is a trade-off between the first-tier-cost and the second-tier-cost.

1.3 Related Work

1.3.1 Quantization

A significant body of literature exists on designing the one-tier quantizers. Gray et al. [59]

summarize the theory and practice of quantization since its inception. The best possible

quantization distortion in a high-resolution regime has been discussed in [71]–[73] and the

application of the high-resolution theory to node deployment in heterogeneous sensor net-

works is provided in [74]. Clustering is a related method where the cluster heads and cluster

regions are, respectively, the reproduction points and quantization regions. Many different
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hierarchical clustering methods, such as Agglomerative Clustering (AC) and Divisive Clus-

tering (DC), are discussed in [75]. Furthermore, some existing quantization schemes in the

literature can be employed to the two-tiered quantizers. For example, successively refinable

vector quantizers (SRVQs) [76]–[78] have multiple stages. As another example, hierarchical

vector quantizers (HVQs) [79]–[81] are proposed to reduce the quantizer encoding complexity.

HVQs employ quantizers of different dimensions in different hierarchical steps.

1.3.2 Node Deployment

A huge body of literature exists on energy-efficient sensor relocation. However, most of the

papers in the literature consider one or two key metrics rather than all the three (sensing

quality, connectivity, and energy efficiency) together. Moreover, there is no unified framework

that can support different coverage models. References [21]–[23], [35], [36] study the energy

saving with a full-area-coverage guarantee. Hungarian Algorithm is applied to minimize

the total energy consumption after the full-area-coverage is achieved by Genetic Algorithm

[21]. Similarly, the grid-based algorithms are proposed in [82] to reduce the total energy

consumption while keeping the full-area-coverage and full-connectivity. Kuei-Ping et al. [83]

propose a distributed partition avoidance lazy movement (PALM) protocol, which avoids

unnecessary movement, to ensure both full-area-coverage and connectivity. Shuhui et al.

[84] provide a scan-based relocation algorithm, SAMRT, which is supposed to be energy-

effective with densely deployed sensors. Note that the above method put sensing quality as

the first priority, and the energy efficiency is merely the secondary objective. To provide a

flexible and fair trade-off between area coverage and energy consumption, virtual force based

algorithms, HEAL [22], VFA [23], [36], and DSSA [35], are proposed. In [35], the authors

take into account the local sensor density, and thus avoid unnecessary movements in the

region with densely deployed sensors. In [22], HEAL is designed to mend area coverage holes

while minimizing the moving distance. However, the main assumption that there are enough

sensors to achieve full-area-coverage, limits its usage. A virtual force based algorithm, VFA
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[23] is proposed to maximize the area coverage while saving energy. Instead of saving the

total energy consumption, another virtual force based algorithm, VFA, is proposed in [23]

to prolong the network lifetime during the area coverage maximization. Besides, a variant

of VFA is designed in [36] to maximize the area coverage in a heterogeneous WSN. However,

connectivity is not considered in [22], [23], [35], [36].

Sensor relocation for target coverage and barrier coverage is also well studied. Rout et al.

[24] design a virtual-force based algorithm, OATIDA, to obtain both full-target-coverage and

full-connectivity on a region with obstacles, while energy consumption is ignored. Chen et

al. [25] propose a two-phase algorithm to achieve full-target-coverage with minimum total

energy consumption, but connectivity is not taken in to account. Similarly, Njoya et al. [27]

design an evolutionary-based framework to make the trade-off between target coverage and

network lifetime while the connectivity issue is ignored. Liao et al. [26] investigate how to

deploy mobile sensors with minimum total energy consumption to form a WSN that provides

both full-target-coverage and full-connectivity. Although all three factors are considered in

[26], full-target-coverage and full-connectivity are implemented sequentially, which requires

redundant sensors. On the other hand, the existing literature on barrier coverage also seeks

the perfect sensing quality, i.e., full-barrier-coverage. Chen et al. [28] focus on 1-dimensional

barriers, and then provide an energy-efficient relocation plan to obtain full-barrier-coverage.

In [29], a greedy algorithm with binary search is applied to achieve maximum network lifetime

and 2-dimensional full-barrier-coverage simultaneously. A faster algorithm which achieves

the same purpose as [29] is provided in [30]. Still, the above sensor relocation algorithms

designed for barrier coverage ignore the connectivity requirement.

Even if the entire region, targets, or barriers are covered, sensors have different sensing

accuracy at different points in the covered region. In fact, sensing capability diminishes

as the distance increases [6], [33], [85]–[92]. Therefore, a distance based model, sensing

uncertainty (or CVT model), has also been investigated in the literature. Distortion, as

an important parameter in source coding, models the sensing uncertainty via a function
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of distance [2]–[10], [13], [15]–[18], [32]–[34], [53]–[55], [91]. One can minimize distortion

in WSNs through vector quantization techniques in [59], [93]. Lloyd algorithm [94] is one

of the tools to minimize distortion in WSNs. The convergence of the Lloyd algorithm has

been studied in [95]–[97]. Taking both connectivity and sensing uncertainty into account, our

previous work [32], [98] proposes the necessary conditions for the optimal sensor relocation in

heterogeneous WSNs. Unfortunately, another key metrics, energy consumption, is not taken

into consideration. Li et al. [9] explore directional sensors whose sensing uncertainty varies

among different directions, and then design two iterative algorithms to optimize the sensor

deployment. However, energy consumption is not taken into their objective function. The

energy consumption of directional sensors or UAVs are analyzed in my previous work [55]. A

natural approach to save energy is to add an energy-related penalty term into the objective

function. In [10], the authors propose two Lloyd-like algorithms, Lloyd-α and DEED, to

minimize sensing uncertainty with a movement related penalty function. For Lloyd-α, the

movement in each iteration is scaled by a parameter α ∈ [0, 1]. In DEED, the penalty

function is properly selected with a positive definite matrix depending on a parameter δ,

and then the movement is optimized with the help of the gradient and Hessian matrix of

the distortion. Note that one has to manually adjust the parameter α (or δ) for Lloyd-α

(or DEED) to satisfy a specific energy constraint. To overcome this weakness, two Lloyd-

like algorithms without any intermediate parameter are proposed in my previous work [53].

These two algorithms can be employed to minimize sensing uncertainty with a total energy

constraint or a network lifetime constraint.

1.4 Contributions and Organization

In this dissertation, I study the performance (sensing quality, connectivity, and energy con-

sumption) optimization in WSNs and make the following contributions: (1) The sensing

quality in heterogeneous WSNs with limited communication range is formulated as a one-tier
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quantizer. (2) Both theoretical analysis and numerical algorithms are proposed to optimize

the sensing quality with the connectivity guarantee. (3) The optimal UAV deployment is

found to minimize the the uplink communication energy conservation in 3-Dimension WSN.

(4) The energy consumption in a two-tier WSN is formulated as a two-tier quantizer. (5)

Based on the necessary conditions, Lloyd-like algorithms are proposed to search the optimal

node deployment. (6) A unified optimization framework for different coverage models is pro-

vided that takes three key metrics, sensing quality, connectivity, and energy consumption,

into consideration. (7) By providing analytical necessary conditions, I design centralized

and distributed Lloyd-like algorithms to optimize sensor relocation with (i) network lifetime

constraints and (ii) limited communication ranges.

In the rest of this dissertation, I first study the sensing quality in both homogeneous and

heterogeneous WSNs with limited communication range in Chapter 2. In Chapter 3, I

explore the energy conservation of WSNs with directional UANS. In Chapter 4, I analyze

the optimal node deployment and cell partition to minimize the average power in a two-tier

WSN. After that, a unified optimization framework for different coverage models is provided

in Chapter 5. Finally, I conclude my work in Chapter 6.
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Chapter 2

Sensor Deployment with Limited

Communication Range in

Homogeneous and Heterogeneous

Wireless Sensor Networks

In this chapter, I study the heterogeneous wireless sensor networks (WSNs) and propose

the necessary condition of the optimal sensor deployment. Similar to that in homogeneous

WSNs, the necessary condition implies that every sensor node location should coincide with

the centroid of its own optimal sensing region. Moreover, I discuss the dynamic sensor de-

ployment in both homogeneous and heterogeneous WSNs with limited communication range

for the sensor nodes. The purpose of sensor deployment is to improve sensing performance,

reflected by distortion and coverage. I model the sensor deployment problem as a source cod-

ing problem with distortion reflecting sensing accuracy. However, when the communication

range is limited, a WSN is divided into several disconnected sub-graphs under certain con-

ditions as I will discuss in this paper. In such a scenario, neither the conventional distortion

nor the coverage represents the sensing performance as the collected data in disconnected
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sub-graphs cannot be communicated with the access point. By defining an appropriate sens-

ing performance measure, I propose a Restrained Lloyd (RL) algorithm and a Deterministic

Annealing (DA) algorithm to optimize sensor deployment in both homogeneous and hetero-

geneous WSNs. Our simulation results show that both DA and RL algorithms outperform

the existing algorithms when communication range is limited.

2.1 System Model and Problem Formulation

Let Ω be a simple convex polygon in R2 including its interior. Given N sensors in the target

area Ω, sensor deployment is defined by P = (p1, · · · ,pN) ⊂ ΩN , where pn is Sensor n’s

location. For any point ω ∈ Ω, f(ω) is the probability density function of an event at point

ω. I denote the first N natural numbers by [N ] = {1, . . . , N}. A cell partition R of Ω is a

collection of disjoint subsets of {Rn(P)}n∈[N ] whose union is Ω. Let B(c, r) = {ω| ‖ω− c‖ ≤

r} be a disk centered at c with radius r in two-dimensional space. For two points a and b, let

equation Eq+ F = 0, where E ∈ R1×2 is a 1× 2 matrix and F ∈ R is a constant, define the

perpendicular bisector hyperplane between the two points. Then, the equations Eq+F ≥ 0

and Eq + F ≤ 0 define two half spaces. I denote the half space that contains point a by

HS(a, b).

As mentioned before, I define the AP as the sensor node that can communicate with the

outside information world. Let S(P) be the set of sensor nodes that can communicate with

the AP when the sensor deployment is P. Note that in general not all nodes can communicate

with the AP and card(S(P)) ≤ N , where card(A) is the number of elements in set A. I

define a new sensor deployment, which is a subset of the all sensor locations, H(P) as the

vector of sensor locations for the card(S(P)) sensor nodes connected to the AP. When S(P)

includes all sensor nodes, we have P = H(P) and card(S(P)) = N . Let U be the set of sensor

deployments that provide full connectivity, i.e., U = {P|card(S(P)) = N}. In my model,

two sensor nodes can communicate with each other within one hop if and only if the distance

13



between the two is smaller than Rc, where Rc is referred to as the communication range. A

sensor node can transfer data outside if and only if there exists a path from the sensor to

the AP. The path consists of a sequence of sensor nodes where each hop distance is smaller

than the communication range Rc. Sensor nodes that are connected to the AP construct the

backbone network. Specifically, I can choose the AP as the root and run Breadth First Search

(BFS) or Depth First Search (DFS) to obtain the spanning tree. Obviously, sensors in the

spanning tree construct the backbone network. If all sensors are included in the backbone

network, I call the network fully connected. Otherwise, the network is divided into several

disconnected sub-graphs.

Another important factor in analyzing the performance of a WSN is its sensing distance.

Sensing performance directly depends on distance [6], [33], [85]–[92]. Therefore, to represent

the average sensing accuracy in the target area, I define the following general performance

measure:

D(P) =
N∑
n=1

∫
Rn(P)

f (n)(‖ω − pn‖)f(ω)dω, (2.1)

where performance function f (n) : R+ → R+ is a non-increasing function of the distance be-

tween pn and ω. When sensors have an identical performance function, i.e., f (n)(·) = f(·),

(2.1) becomes the performance measure in homogeneous WSNs and has been widely used

in different applications, such as the precipitation estimation problem in [33]. The parti-

tion {Rn(P)}n∈[N ] in the above definition include all sensor nodes. However, as explained

previously, when the communication range is limited, some sensor nodes cannot transfer

their data back to the AP. As a result, only the sensor nodes in the backbone network can

contribute to the sensing and therefore the performance should be revised as

D(P) =
∑

n∈S(P)

∫
Rn(H(P))

f (n)(‖ω − pn‖)f(ω)dω. (2.2)

Note that to derive (2.2) from (2.1), one has to replace P with H(P), i.e., one has to consider
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only the sensor nodes that are in the backbone network. I reiterate that in the case of a fully

connected network, H(P) = P, Eqs. (2.1) and (2.2) are identical. Given a fully connected

network, the distortion D(P) = D(P,R(P)) is determined by the sensor deployment P

and the cell partition R(P). In homogeneous WSNs, every point should be detected by

the nearest sensor in order to make the largest contribution to the total performance. This

is because (i) all sensors in homogeneous WSNs have the same performance function f(x)

which is only determined by the Euclidean distance x = ‖ω − pn‖, and (ii) the sensing

ability diminishes as the distance increases. Therefore, given the sensor deployment, Voronoi

partitions [33], [99] provide the optimal performance. The Voronoi partition of Ω generated

by P with respect to the Euclidean norm is the collection of sets {Vn(P)}n∈[N ] defined by

Vn(P) = {ω ∈ Ω| ‖ω − pn‖ ≤ ‖ω − pk‖,∀k ∈ [N ]}, (2.3)

where ‖ · ‖ is the Euclidean norm.

However, different sensors with different complexity, power, and sensing ability are used in

heterogeneous WSNs. As I will show later, the optimal partitioning in this case is MWVD

[44]. The MWVD of Ω generated by P is the collection of sets V H
n (P)n∈[N ] defined by

V H
n (P) = {ω ∈ Ω| ηn‖ω − pn‖2 ≤ ηk‖ω − pk‖2,∀k ∈ [N ]}, (2.4)

where the cost parameters {ηn ∈ R+}n∈[N ] are constants that depend on the sensor char-

acteristics, indicating the quality of sensor nodes. For example, the transmission power of

Radar sensors, like the distance between the sensor and the events, has a direct influence

on the sensing performance [87]. Therefore, radar sensors with different transmitting power

will have different sensing abilities. In this case, ηn depends on the transmitting power. The

smaller the cost parameter, the stronger the sensing ability. Both Voronoi regions Vn(P)n∈[N ]

and MWVDs V H
n (P)n∈[N ] are functions of P. Since the Voronoi partitioning can be con-

sidered as a special case of the weighted Voronoi partitioning, in which ηn = 1, n ∈ [N ], I
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simply use V H
n (P)n∈[N ] to represent both. Placing (2.4) back to (2.2), I will have

D(P) =
∑

n∈S(P)

∫
V H
n (H(P))

f (n)(‖ω − pn‖)f(ω)dω. (2.5)

Obviously, choosing different functions f (n)(·) in (2.5) results in different problem formula-

tions. One natural choice for the function f (n)(·) is a continuous function defined by

f (n)(x) = −ηnx2. (2.6)

(2.6) represents the negative of the mean squared error (MSE) in source coding and I refer

to it as the negative weighted MSE model. By this definition, each sensor can detect all

points in its sensing region Rn(P). Using MWVDs, every event is sensed by the node with

the smallest cost. Therefore, given the sensor deployment, MWVDs provide the minimum

distortion. In this model, maximizing D(P) is equivalent to minimizing the distortion.

Another choice for the function f (n)(·) is the one that results in the binary coverage model.

In this model, Sensor n can detect events within a circle with a fixed radius Rs√
η
n
. The covered

area with respect to density function is
∫ ⋃
n∈S(P)

B(pn,Rs)
f(ω)dω. This model is equivalent to

(2.5) if the performance function is defined by

f (n)(x) =


1, for ηnx

2 < R2
s

0, for ηnx
2 ≥ R2

s

. (2.7)

This is easily shown by replacing f (n)(·) from (2.5) by (2.7) and using the fact that

⋃
n∈S(P)

B(pn, Rs) =
⋃

n∈S(P)

[
V H
n (H(P))

⋂
B(pn,

Rs√
η
n

)

]
. (2.8)

The proof of (2.8) is trivial and is omitted here. The resulting coverage area for the homo-

geneous case, ηn = 1 for all i, is the same as the model used in [36], [40]–[44].
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A third choice for the function f (n)(·) is the one that results in the exponential coverage

model. Our exponential coverage model is a modified version of the probabilistic coverage

model for homogeneous WSNs in the literature [46]–[51], where I assume each event is only

sensed by the sensor with highest probability of sensing. In the probabilistic coverage model,

events within the confident range of Rs√
ηn

can be sensed without loss. For the events outside

of the confident range, the probability of correctly sensing event ω by Sensor n is a non-

increasing function of the distance x = ‖ω − pn‖. I model this sensing probability via

P s
n(x) =


1, for ηnx

2 < R2
s

e−ε(ηnx
2+R2

s), for ηnx
2 ≥ R2

s,

(2.9)

where ε ∈ R+ is a positive constant. The exponential coverage model approximates the

binary coverage model when ε → +∞. The covered area with respect to density function

is
∫

Ω
max
n

P s
n(‖ω − pn‖)f(ω)dω. Our exponential coverage model, that allows sensing each

event by only one sensor, is equivalent to (2.5) with performance function f (n)(x) = P s
n(x).

Without loss of generality, I represent every performance function f (n) as a piece-wise con-

tinuous and differentiable function with l discontinuities, i.e., jumps, at r
(i)
1 , . . . , r

(i)
l ∈ R+,

with r
(i)
1 < · · · < r

(i)
l . For convenience, I set r

(i)
0 = 0 and r

(i)
l+1 = +∞ and rewrite f (n)(x) as

f (n)(x) =
l+1∑
α=1

f (n)
α (x)1[rα−1,rα)(x), (2.10)

where f
(i)
α (·) is a continuous and differentiable function and 1s(x) is the indicator function

defined by 1s(x) = 1 if x ∈ s, and 1s(x) = 0 if x /∈ s. Applying this representation

to the specific models presented before, we have no discontinuity, i.e., l = 0 for negative

weight MSE and l = 1 for binary coverage and exponential coverage. Our main goal is to

find a sensor deployment that maximizes D(P) defined in (2.2). It is easy to show that

a necessary condition for such an optimal sensor deployment is to have a fully connected
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network. Moreover, MWVDs are the optimal partitions for the three models in this section.

Using MWVDs, the performance is determined by the sensor deployment only. This is the

topic of the discussion in the next section.

2.2 Optimal Deployment in Heterogeneous WSNs

In this section, I study the optimal deployment in heterogeneous WSNs with infinite or

limited communication range. Finding the global optimal deployment is difficult because

one needs to compare all the local maxima. Let P∗(Rc) be a deployment set including all the

critical deployments that obtain the performance maxima when communication range is Rc.

Instead of finding the global optimal deployment, one should at least find a deployment P ∈

P∗(Rc). The connectivity is guaranteed when the communication range Rc is infinite. Under

such circumstance, the objective function is continuous and differentiable. Therefore, the

critical deployment set P∗(∞) is just the set of deployment with zero-gradient. However, the

wireless communication range is limited due to the finite transmitting power, and the network

will be divided into several subgraphs when some sensors are out of the AP’s spanning

tree. It is self-evident that the objective function is a discontinuous and indifferentiable

function when communication range is limited. The jumps result from the changes of nodes

in the backbone network. In this case, the critical deployment set becomes P∗(Rc) = {P =

(p1, . . . ,pN)|∂D(P)
∂pn

is 0 or it does not exist,∀n ∈ [N ]. Next, I provide the necessary condition

for the optimal deployment in heterogeneous WSNs.

Lemma 1. The necessary condition for the optimal deployment in heterogeneous WSNs with

communication range Rc is P ∈ P∗(Rc).

Proof. Let ∆ =
∑2N

n=1 ∆nen be a 2n-dimensional vector, where en, n ∈ [N ], are standard

basic vectors. For any local maximum point P∗, there exists some ε > 0 such that D(P) ≥

D(P∗ + ∆) for all ∆ with ‖∆‖ ≤ ε. Specially, D(P∗) ≥ D(P∗ + εen) for all n ∈ [N ]. As a
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result, the partial derivative ∂D(P)
∂pn
|P=P∗ is 0 or does not exist for n ∈ [N ]. Specially, when

Rc = +∞, the partial derivative ∂D(P)
∂pn
|P=P∗ = 0 for all n ∈ [N ].

Now, I can easily obtain the the critical deployment set by calculating the gradient of the

objective function D(P). In homogeneous WSNs, every sensor uses the same performance

function and (2.5) can be rewritten as

D(P) =
∑

n∈S(P)

∫
Vn(H(P))

f(‖ω − pn‖)f(ω)dω (2.11)

The partial derivatives of (2.11) are calculated in [6] as

∂D(P)

∂pn
=

∫
Vn(P)

∂

∂pn
f(‖ω − pn‖)f(ω)dω

+
l∑

α=1

[
(fα(rα)− fα+1(rα))

∫
arcn(P,rα)

nt(ω)f(ω)dω

]
,

(2.12)

where arcn(P, rα) consists of arcs in the boundary of Vn(P)
⋂

B(pn, rα), nt(ω) is the unit

outward normal to
l⋃

α=1

arcn(P, rα) at point ω. Before I discuss the partial derivatives in

heterogeneous WSNs, I need to present the following definitions and Lemmas.

Definition 2.1. A set S ⊆ RN is called star-shaped if and only if there exists a point

p ∈ int(S) such that for all s ∈ ∂S and all λ ∈ (0, 1], one has λp+ (1− λ)s ∈ int(S), where

int(S) is the interior of S and ∂S is the boundary of S. The point p is the reference point.

Definition 2.2. A set S ⊆ RN is called a convex region if and only if for every pair of points

x, y ∈ S and all λ ∈ (0, 1), one has λx+ (1− λ)y ∈ int(S).

Lemma 2. If a set S ⊆ RN is convex, then S is star-shaped.

Proof. For any convex region S ⊆ RN , pick a point p ∈ int(S) ⊂ S. For any point s ∈ ∂S ⊂

S and all λ ∈ (0, 1), one has λp + (1 − λ)s ∈ S. When λ = 1, λp + (1 − λ)s = p ∈ int(S).

Therefore, the set S is star-shaped.
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I will use the fact that the intersection of any collection of convex sets is convex [100], [101]

and as a result star-shaped according to Lemma 2.

Lemma 3. The union of star-shaped sets that are associated with the same reference point

p is star-shaped.

Proof. Given K star-shaped sets Sk, k ∈ [K] with the same reference point p, the corre-

sponding union is S =
⋃K
k=1 Sk. Since point p is the reference point of star-shaped sets Sk,

where k ∈ [K], we have p ∈
⋂K
k=1 Sk and therefore

⋂K
k=1 Sk 6= ∅. The boundary of S comes

from the boundaries of K star-shaped sets Sk, where k ∈ [K]. Thus, for any point s ∈ ∂S,

we have s ∈
⋃K
k=1 ∂Sk. Because of K star-shaped sets, for all s ∈ ∂Sk and all λ ∈ (0, 1], I

will have λp+ (1− λ)s ∈ int(Sk). Thus, for all s ∈ ∂S and for all λ ∈ (0, 1], one can find a

subset Sk such that s ∈ ∂Sk and so λp+ (1− λ)s ∈ int(Sk) ⊂ int(S).

Lemma 4. Let S =
K⋃
k=1

Sk be a star-shaped set that consists of K disjoint sub-sets Sk, where

k ∈ [K]. I then have

∫
∂S

ϕ(γ)nt(γ)dγ =
K∑
k=1

∫
∂Sk

ϕ(γ)nt(γ)dγ, (2.13)

where ϕ is a continuous function of γ, and nt(ω) is the unit outward normal to
K⋃
k=1

∂Sk at ω.

Proof.

K∑
k=1

∫
∂Sk

ϕ(γ)nt(γ)dγ

=
K∑
k=1

[∑
i 6=k

∫
∂(Sk

⋂
Si)

ϕ(γ)nt(γ)dγ +

∫
∂(Sk

⋂
S)

ϕ(γ)nt(γ)dγ

] (2.14)

For any k and i such that Sk
⋂
Si = ∅, the corresponding curve integral

∫
∂(Sk

⋂
Si)
ϕ(γ)nt(γ)dγ

is 0. On the other hand, for any k and i such that Sk
⋂
Si 6= ∅, the corresponding curve

integral
∫
∂(Sk

⋂
Si)
ϕ(γ)nt(γ)dγ = −

∫
∂(Si

⋂
Sk)

ϕ(γ)nt(γ)dγ because of opposite unit outward
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normal. Therefore, we have

K∑
k=1

∫
∂Sk

ϕ(γ)nt(γ)dγ =
K∑
k=1

[∫
∂(Sk

⋂
S)

ϕ(γ)nt(γ)dγ

]
=

∫
∂S

ϕ(γ)nt(γ)dγ (2.15)

Now, we have enough tools to derive the main results in this section. The calculation of

the gradient in homogeneous WSNs, (2.12), relies on Proposition 1.6 in [6], which requires

star-shaped integral regions. In homogenous WSNs, the integral regions are star-shaped

Voronoi diagrams. However, the integral regions in MWVDs can be non-star-shaped [102],

and therefore I need to show how to calculate the partial derivatives in heterogeneous WSNs.

The following proposition is needed to calculate these partial derivatives in R2.

Proposition 1. In a heterogeneous sensor network including different types of sensors, let

P = [p1,p2, · · · ,pN ] be the sensor deployment, and W ∈ R2 be an arbitrary convex set. Let

a series of functions ϕn : R2 × (a, b) → R, where n ∈ [N ], be continuous on R2 × (a, b),

continuously differentiable with respect to its second argument for all pn ∈ (a, b)2, where

n ∈ [N ], and almost all ω ∈ R2, and such that for each pn ∈ (a, b)2, the maps q 7→ ϕn(ω,pn)

and q 7→ ∂ϕn
∂x

(ω, x) are measurable, and integrable on R2. Then the function

∫
V H
n (P)

⋂
W

ϕn(q,pn)dω (2.16)

is continuously differentiable and

∂
∫
V H
n (P)

⋂
W
ϕn(ω,pn)dω

∂pm
=

∫
V H
n (P)

⋂
W

∂ϕn(ω,pn)

∂pm
dω +

∫
∂[V H

n (P)
⋂
W ]

ϕn(γ,pn)nt(γ)
∂γ

∂pm
dω.

(2.17)

Proof. See Appendix A.1.
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Theorem 2.1. Given a density function f(·) and N piece-wise continuous and differentiable

functions f (n), n ∈ [N ], the multiple-center function D(P) is continuously differentiable on

Ωn, and for each n ∈ [N ],

∂D(P)

∂pn
=

∫
V H
n (P)

∂

∂pn
f (n)(‖ω − pn‖)f(ω)dω

+
l∑

α=1

[(
f (n)
α (rα)− f (n)

α+1(rα)
)∫

arcn(P,rα)

nt(ω)f(ω)dω

]
,

(2.18)

where arcn(P, rα) consists of arcs in the boundary of V H
n (P)

⋂
B(pn, rα), nt(ω) is the unit

outward normal to
l⋃

α=1

arcn(P, rα) at point ω.

The proof is similar to that of Theorem 2 in [6] and then is omitted here. Particularly,

when we fix the partitions as V H
n (P′), n ∈ [N ], for a given deployment P ′, the constrained

performance becomes

D(P,V H(P′)) =
N∑
n=1

∫
V H
n (P′)

f (n)(‖ω − pn‖)f(ω)dω (2.19)

By Proposition 1, for each n ∈ [N ], the partial derivative of D(P,V H(P ′)) becomes

∂D(P,V H(P′))

∂pn
=

∫
V H
n (P′)

∂

∂pn
f (n)(‖ω − pn‖)f(ω)dω

+
l∑

α=1

[(
f (n)
α (rα)− f (n)

α+1(rα)
)∫

ARCn(P,P′,rα)

nt(ω)f(ω)dω

] (2.20)

where ARCn(P,P′, rα) consists of arcs in the boundary of V H
n (P′)

⋂
B(pn, rα). Obviously,

∂D(P)
∂pn

and D(P,V H(P′))
∂pn

will have the identical value at the deployment P′. Next, I provide

the corresponding gradients for specific performance functions defined in Section 2.1.
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Negative weighted MSE model:

The performance function in this model is continuous without jump discontinuities. As a

result, all the terms in the second summand of (2.18) vanish and we have

∂D(P)

∂pn
= 2ηn(pn − cn(P))vn(P), (2.21)

where vn(P) =
∫
V H
n (P)

f(ω)dω and cn(P) =

∫
V Hn (P)

ωf(ω)dω

vn(P)
are, respectively, the mass and the

center of MWVD V H
n (P) with respect to the density function f(·). The critical deployment

set P∗(∞) = {P = (p1, . . . ,pN)|pn = cn(P),∀n ∈ [N ] is similar to the centroid Voronoi

configurations [6] although the critical deployments in heterogeneous WSNs are based on

MWVDs instead of Voronoi diagrams.

Binary coverage model:

The performance function in this model is a step function with one jump discontinuity. In

this case, the first term in (2.18) vanishes and we have

∂D(P)

∂pn
=

∫
arcn(P,rα)

nt(ω)f(ω)dω. (2.22)

Exponential coverage model:

The performance function in this model is continuous with one indifferentiable point. All

the terms in the second summand of (2.18) vanish and we have

D(P)

∂pn
=

∫
V H
n (P)\B(pn,

Rs√
ηn

)

2(pn − ω)e−ηn‖ω−pn‖
2+R2

sf(ω)dω. (2.23)

Using the above gradients, we can design algorithms, such as gradient descent and Lloyd

Algorithm, to optimize the performance. Moreover, zero-gradient can help us to check if a

given deployment provides a local optimal performance (minimum distortion or maximum

coverage area). Again, given the gradient of the objective function, we can get the critical

deployment set as we discussed the beginning of this section. Furthermore, in order to
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get a locally optimal solution, the designed algorithm should converge to a deployment

P ∈ P∗(Rc). In the next section, we will discuss how to design algorithms to achieve this

convergence requirement.

2.3 Restraint Lloyd Algorithm and Deterministic An-

nealing Algorithm

In this section, we focus on the negative weighted MSE model because of its trackable critical

deployment set. Two algorithms are designed to optimize the performance of this model in

heterogeneous WSNs. Although the algorithms are designed for the negative weight MSE

model, their main ideas can be applied to the other two models too. First, we quickly review

the conventional Lloyd algorithm. Lloyd Algorithm has two basic steps in each iteration:

(i) Sensor nodes move to their centroid; (ii) Partitioning is done by assigning the optimal

partitions, MWVDs, to each sensor node. Lloyd Algorithm provides good performance and

is simple enough to be implemented distributively. It converges to a critical deployment

when the communication range is infinite [95], [96]. Unfortunately, Lloyd Algorithm also

has three shortcomings. First, since maximizing multi-center performance is a non-convex

optimization problem, Lloyd Algorithm ends at a local maximum rather than the global

maximum. Second, Lloyd Algorithm results in a disconnected network when the spanning

tree rooted at the AP does not include all sensors due to the limited communication range.

Third, when WSNs are divided into several disconnected sub-graphs, some sensors cannot

collect the complete local information and as a result Lloyd Algorithm is not feasible. In

other words, since there is no global information available about the sensor locations, each

sub-graph will run the algorithm separately. To deploy a network with full connectivity and

smaller distortion (or larger coverage area), I add some restraints on sensors’ movements. I

design a class of algorithms based on the Lloyd algorithm, referred to as RL Algorithm.
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2.3.1 Restrained Lloyd Algorithm

Before introducing the details of RL Algorithm, I introduce two concepts: (1) local perfor-

mance; (2) desired region. First, the global performance is the sum of local performances

defined by

Dn(P) =

∫
V H
n (H(P))

f (n)(‖ω − pn‖)f(ω)dω, n ∈ S(P). (2.24)

Second, to define the desired region, without loss of generality, let us assume we are trying to

move Sensor n at a given step. Our goal is to keep the connectivity of the backbone network

after moving Sensor n. Therefore, all Sensor i’s locations that result in connecting Sensor

n to the backbone network is defined as Sensor n’s desired region, denoted by Dn(P). In

RL Algorithm, if Sensor n is in the backbone network, we will restrain its movement within

its desired region. To achieve this goal, we need to find the desired region Dn(P). Given a

deployment P, if Sensor n from the backbone network is removed, the rest of the sensor nodes

in the backbone network will be divided into Kn components: Ui1(P), Ui2(P), · · · , UiKn(P),

where Uij(P) is a set of sensors included in the jth component. Then, we can calculate the

desired region as

Dn(P) =
Kn⋂
k=1

[ ⋃
j∈Uik

B(pj, Rc)

]
. (2.25)

I provide an example of the desired region that is not star shaped in Fig. 2.1. In this

simple example, n = 1, i.e., I am trying to move Sensor 1, Rc = 0.5, K1 = 2, U11(P) =

{2, 3, 4, 5, 6}, and U12(P) = {7, 8, 9, 10, 11}. According to the definition of the desired region,

the green overlaps between blue region (
⋃6
j=2 B(pj, Rc)) and yellow region (

⋃11
j=7 B(pj, Rc))

construct Sensor 1’s desired region. As shown in Fig. 2.1, the desired region D1(P) has two

disconnected parts, indicating a non-star-shaped region.
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Figure 2.1: A non-starshaped desired region.

Since the desired region is primarily influenced by the neighboring sensor nodes, we can

approximate it by

D̃n(P) =
Kn⋂
k=1

 ⋃
j∈Unk

⋂
Nn(P)

B(pj, Rc)

 , (2.26)

where Nn(P) consists of Sensor n’s neighbors when the deployment is P. Note that the

approximation in (2.26) can be calculated locally, but to calculate the exact desired region,

one needs global information. Also, according to Lemma 3, the approximate desired region

D̃n(P) is a star-shaped set.

Now, I provide the workflow of RL Algorithm as follows:

(i) Sensors in the backbone network move one by one. Every sensor in the backbone net-

work calculates its own approximate desired region D̃n(P) and moves to a critical location

with maximum local performance. Sensors outside the backbone network move randomly

and check if there is a path to the AP. Unlike the conventional Lloyd algorithm, these new
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locations may not be the centroid of the partition regions; (ii) The target area, Ω, is parti-

tioned to MWVDs for sensors in the backbone network, S(P). More details are provided in

Algorithm 1.

Algorithm 1 Restrained Lloyd Algorithm

Input: Target area Ω; Probability density function f(·); the initial sensor deployment P;
the stop threshold ε; the communication range Rc.

Output: Sensors deployment P; Distortion D(P).
1: Calculate MWVDs, {V H

n (P)}n∈[N ]

2: do
3: Calculate the old distortion Dold = D(P)
4: for n = 1 to N do
5: Calculate Sensor n’s ADR, {D̃n(P)}
6: Calculate the critical point q, closest point to cn(P) within D̃n(P)
7: Update sensor deployment pn = q
8: end for
9: Update MWVDs {V H

n (P)}n∈[N ]

10: Calculate the new distortion Dnew = D(P)
11: while Dold−DnewDold

> ε

The main difference between RL Algorithm and the Lloyd algorithm is in the first step.

Given the derivatives of each local performance, the existing gradient descent can be used to

find the critical locations in Step (i). For negative weighted MSE model, we can simplify the

algorithm by moving Sensor n to the closest point to its centroid cn(P) within D̃n(P). In

what follows, we show that Step (i) in RL Algorithm provides the smallest local distortion.

According to the parallel axis theorem, the local performance for negative weighted MSE

model can be rewritten as

Dn(P) =−
∫
V H
n (H(P))

‖ω − cn(P)‖2f(ω)dω −
∫
V H
n (H(P))

f(ω)dω · ‖pn − cn(P)‖2, n ∈ S(P)

(2.27)

where cn(P) =

∫
V Hn (H(P))

ωf(ω)dω∫
V Hn (H(P))

f(ω)dω
is the centroid of the partition region V H

n (H(P)) with respect

to the probability density function. Both
∫
V H
n (H(P))

‖ω−cn(P)‖2f(ω)dω and
∫
V H
n (H(P))

f(ω)dω

are constants when the integral area V H
n (H(P)) is fixed. In other words, the local distor-
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tion is a monotonously increasing function of ‖pn − cn(P)‖, i.e., the sensor’s distance to its

centroid. Therefore, the movements in Step (i) minimize the local distortion. As the sum

of local distortions, the global distortion will not increase. Since the sequence of the global

distortion values is a non-increasing sequence with a lower bound of zero, it will converge.

It is self-evident that the sensor deployment in RL Algorithm converges to an element in

P∗(Rc).

I also show that RL Algorithm guarantees the connectivity of the network with high prob-

ability after enough number of iterations. Note that once a sensor node finds a path

to the AP, RL Algorithm will keep it in the backbone network. Intuitively, as we have

more iterations, the sensors outside the backbone network will move randomly and eventu-

ally connect to the AP as well. Quantitatively, for the deployment after k iterations, the

area in which a sensor can communicate with the backbone network can be calculated by

Ak = AREA
(
Ω
⋂[⋃

n∈backbone B(pn, Rc)
])

. Then, the probability that a sensor outside the

backbone network is not connected to the AP in its next move is AREA(Ω)−Ak
AREA(Ω)

. After K

iterations, the probability that a sensor is still out of the backbone network can be calculated

by Pout(K) =
∏K

k=1

[
AREA(Ω)−Ak

AREA(Ω)

]
≤ Ω

[
AREA(Ω)−minAk

AREA(Ω)

]K
and then limK→∞ Pout(K) = 0

because of minAk > 0. In other words, as long as the number of iterations is large enough,

almost all sensor nodes will be included in the backbone network, indicating full connectivity,

with high probability.

2.3.2 Deterministic Annealing Algorithm

Like any other steepest-descent algorithm, RL Algorithm converges to a local optimum. One

approach to improve the sub-optimal solution or find the global optimal solution, is to use

annealing methods. Simulated Annealing (SA) [103], [104] is a method in which a candidate

sensor movement is generated randomly. However, SA ignores the characteristics of the

objective function and requires burdensome computations. In this paper, I design a DA

algorithm which combines RA with annealing to minimize the distortion. Unlike SA, the
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proposed DA generates two new sensor positions deterministically at each iteration; however,

choose one of the two options randomly.

Like RL Algorithm, DA Algorithm iterates between two steps. The second step is identical

to that of RL Algorithm. In the first step, the algorithm creates two candidate locations

for each node in the backbone network. One candidate is the RL Algorithm’s candidate

that minimizes the local distortion. On the other hand, the second candidate increases the

local distortion. It is easy to show that to maximize the local distortion of Sensor n in

the backbone network for negative weighted MSE model, one should move it to the point q

on the boundary of the desired region D̃n(P) that has the largest distance to the centroid

cn(P). But the goal of the second candidate is to increase the distortion and not necessarily

maximize it. Moreover, the performance is more sensitive to the sensors with smaller cost

parameters. In order to avoid increasing distortion too fast, Sensor n is moved to the point

pn + ηn
minj(ηj)

(q − pn). The algorithm will choose the first candidate with probability p and

increases p from 0 to 1. Otherwise, the algorithm will choose the second candidate. In

this algorithm, the probability p is increased in proportion to log k, where k is the iteration

number and for the last M iterations we force the probability p = 1. More details of DA are

provided in Algorithm 2.

Like RL Algorithm, DA Algorithm guarantees connectivity and convergence. The proof is

similar to that of RL Algorithm and is omitted. Furthermore, both RL and DA can be easily

extended to non-convex environments [90]–[92]. we only need to revise the desired region to

D′n(P) =
Kn⋂
k=1

[ ⋃
j∈Uik

B(pj, Rc)

]⋂
Ωc
o, (2.28)

where Ωo is the obstacle region. To avoid the geometric calculation of D′n(P), one can

calculate D̃′n(P) =
⋂Kn
k=1

[⋃
j∈Uik

⋂
Nn(P) B(pj, Rc)

]⋂
Ωc
o and then move Sensor n towards the

critical point by TangentBug [91].
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Algorithm 2 Deterministic Annealing Algorithm

Input: Target area Ω; Probability density function f(·); the initial sensor deployment P;
the number of iterations K; the communication range Rc.

Output: Sensors deployment P; Distortion D(P).
1: Calculate MWVDs, {V H

n (P)}n∈[N ]

2: for k = 1 to K do
3: Calculate the probability of doing RL , p.
4: Generate a random value v ∈ [0, 1]
5: for n = 1 to N do
6: Calculate Sensor n’s ADR, {D̃n(P)}
7: if v ≤ p then
8: Calculate the critical point q, closest point to cn(P) within D̃n(P)
9: else

10: Calculate the critical point q, farthest point to cn(P) within D̃n(P)
11: end if
12: Update sensor deployment pn = q
13: end for
14: Update MWVDs {V H

n (P)}n∈[N ]

15: Update Distortion D(P).
16: end for

2.4 Performance Evaluation

I compare the performance of DA Algorithm, RL Algorithm, Lloyd Algorithm [6], OPTGA

[36], and VFA [36] using the negative weighted MSE model. I provide simulation in three

sensor networks: (1) WSN1: A homogeneous WSN in which all sensors have the same

cost parameter ηn = 1,∀n ∈ [16]; (2) WSN2: A heterogeneous WSN including 2 kinds of

sensors: four strong sensors with ηn = 1 and twelve weak sensors with ηn = 16; (3) WSN3:

A heterogeneous WSN including three kinds of sensors: two strong sensors with ηn = 1,

four medium sensors with ηn = 4 and ten weak sensors with ηn = 16. Sixteen sensors are

provided in each sensor network. The parameter values are summarized in Table 2.1. The

AP is chosen from the sixteen sensors randomly. However, when I report the distortion or

coverage area for the Lloyd algorithm, I calculate the distortion and the coverage area of

each connected subgraph and report the best. Obviously, this will be advantageous for the

Lloyd algorithm, but my proposed algorithms still outperform the Lloyd algorithm. I use
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(a) (b)

(c) (d)

Figure 2.2: Sensor deployments in WSN1. (a) The initial sensor deployment and the corresponding Voronoi
regions. (b) The final deployment of Lloyd Algorithm. (c) The final deployment of RL Algorithm. (d) The
final deployment of DA Algorithm.

ten random initial deployments for each algorithm. To have a fair comparison, I consider

the same target domain Ω as in [6]. Ω is determined by the polygon vertices (0,0), (2.125,0),

(2.9325,1.5), (2.975,1.6), (2.9325,1.7), (2.295,2.1), (0.85,2.3), (0.17,1.2).

Table 2.1: Simulation Parameters of Static Wireless Sensor Networks

Parameters WSN1 WSN2 WSN3
n 16 16 16

η1 − η2 1 1 1
η3 − η4 1 1 4
η5 − η6 1 16 4
η7 − η16 1 16 16
Rc 0.5 0.5 0.5

Rs = Rc/2 0.25 0.25 0.25
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The distribution of the events is also the same as [6]. The probability density function is

the sum of five Gaussian functions of the form 5exp(6(−(x− xcenter)2− (y− ycenter)2)). The

centers (xcenter, ycenter) are (2,0.25), (1,2.25), (1.9,1.9), (2.35,1.25) and (0.1,0.1). I use 0.5 as

the communication range Rc. Also, when reporting the coverage area using (2.7), I use 0.25

as the sensing range Rs. In DA Algorithm, the first candidate is accepted at the kth iteration

by a probability of p(k) = log(k+1)/log(K+1), where K is the number of regular iterations.

Additional M = 25 iterations are used in DA Algorithm to avoid ending with a process that

increases the local distortions. Given the final deployment generated by different iterative

algorithms, we can calculate the coverage area in the binary coverage model. Specially,

Sensor n has a sensing range Rs√
η
n

in the heterogeneous WSNs. In following figures, strong

sensors, medium and weak sensors in the backbone network are, respectively, denoted by

green circles, yellow circles and magenta circles. Sensors out of the backbone network are

denoted by black dots. The corresponding centroid for sensors in the backbone network are

denoted by red stars. The radius of each blue circle is Rc/2 = 0.25. The maximum iterations

is set to K = 500 and the stop threshold is set to ε = 10−6.

Figs. 2.2a and 2.2b show one example of the initial and the finial deployments of Lloyd

Algorithm in WSN1. Lloyd Algorithm assumes an infinite communication range and re-

quires the global knowledge of the sensor locations. Otherwise, disconnected sub-graphs

run Lloyd Algorithm independently and there is no guarantee for convergence. Nonetheless,

the calculation of the final distortion only considers sensors in the backbone network. In

the final deployment of the example in Fig. 2.2b, there are four sensors disconnected from

the backbone network, resulting in a large distortion D(P) = 2.21. Fig. 2.2c shows the

outcome of RL Algorithm in WSN1. After 500 iterations, the distortion is decreased from

11.30 to 0.60. Simultaneously, the coverage area is increased from 0.15 to 6.26 and the final

deployment is connected. Fig. 2.2d shows the final deployment of DA Algorithm in WSN1.

After 500 iterations, the distortion is decreased from 11.30 to 0.32, which is better than that

of RL Algorithm. Simultaneously, the coverage area is increased from 0.15 to 6.99 and full
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connectivity is provided. Unlike Lloyd Algorithm, both RL Algorithm and DA Algorithm

guarantee connectivity.

Fig. 2.3a illustrates the performance of VFA, Lloyd Algorithm, RL Algorithm, and DA

Algorithm for 10 random initial deployments. I also add a line for the performance of

OPTGA [6] which is independent of the initial deployment. While [6] reports the average

of the 100 surviving deployments, the line in Fig. 3 reports the best performance. As can

be seen from the figure, the performance of DA Algorithm is not sensitive to the initial

deployment. In other words, DA Algorithm avoids most poor local minimum solutions. Fig.

2.3a shows that DA Algorithm has the best performance among the five algorithms.
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Figure 2.3: Comparison of performance in WSN1. (a) Comparison of distortion for different algorithms in
WSN1. (b) Comparison of coverage area for different algorithms in WSN1.

Fig. 2.3b compares the final coverage area of RL Algorithm and DA Algorithm with that

of Lloyd Algorithm, OPTGA and VFA. In most cases, decreasing the distortion results in

increasing the coverage area as well. Intuitively, this behavior can be explained by consid-

ering coverage area as a hard-decision version of distortion. Next, the relationship between

performance (distortion and coverage area) and communication range Rc in homogeneous

WSN1 using DA Algorithm is depicted in Fig. 2.4.

Figs. 2.5a and 2.5b show one example of the initial and the finial deployments of Lloyd

Algorithm in WSN2. As usual, the final distortion only considers sensors in the backbone
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Figure 2.4: Relationship between performance and Rc in WSN1. (a) Relationship between distortion and
Rc in WSN1. (b) Relationship between coverage and Rc in WSN1.

network. Initially, two strong sensors and four weak sensors are consisted in the backbone

network shown in Fig. 2.5a. In Fig. 2.5b, only one strong sensor and four weak sensors are

included in the backbone network, resulting in a large distortion D(P) = 12.67 which is only

0.48 smaller than the initial distortion. Fig. 2.5c shows the outcome of RL Algorithm in

WSN2. After 500 iterations, the distortion is decreased from 13.15 to 5.52. Simultaneously,

the coverage area is increased from 0.08 to 1.46 and the final deployment is connected.

Fig. 2.5d shows the final deployment of DA Algorithm in WSN2. After 500 iterations, the

distortion is decreased from 13.15 to 1.09, which is better than that of RL Algorithm. The

coverage area is increased from 0.08 to 2.48 and full connectivity is provided.

Figs. 2.6a and 2.6b show one example of the initial and the finial deployments of Lloyd

Algorithm in WSN3. Initially, one strong sensor, two medium sensors and four weak sensors

are consisted in the backbone network shown in Fig. 2.6a. In Fig. 2.6b, two strong sensors,

one medium sensors and one weak sensors are disconnected from the backbone network,

resulting in a large distortion D(P) = 19.83. Fig. 2.6c shows the outcome of RL Algorithm in

WSN3. After 500 iterations, the distortion is decreased from 10.96 to 3.22. Simultaneously,

the coverage area is increased from 0.08 to 1.51 and the final deployment is connected.

Fig. 2.6d shows the final deployment of DA Algorithm in WSN3. After 500 iterations, the

distortion is decreased from 10.96 to 1.35, which is better than that of RL Algorithm.
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Figs. 2.7a and 2.7b illustrate the distortion and coverage area of five different algorithms

(OPTGA, VFA, Lloyd Algorithm, RL Algorithm, and DA Algorithm) in WSN2. The DA

Algorithm provides both lower distortion and higher coverage area compare to the other four

algorithms. Moreover, RL Algorithm also provides lower distortion compare VFA and Lloyd

Algorithm due to its connectivity guarantee. Figs. 2.8a and 2.8b show similar performance

comparison in WSN3. The trends in heterogeneous WSNs 2 and 3 are similar to those

in homogeneous WSN1. In other words, RL Algorithm and DA Algorithm provide the

performance improvement in both homogeneous and heterogeneous WSNs.

Furthermore, Table 2.2 provides the statistics of the performance for different algorithms

(a) (b)

(c) (d)

Figure 2.5: Sensor deployments in WSN2. (a) The initial sensor deployment and the corresponding weighted
Voronoi regions. (b) The final deployment of Lloyd Algorithm. (c) The final deployment of RL Algorithm.
(d) The final deployment of DA Algorithm.
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(a) (b)

(c) (d)

Figure 2.6: Sensor deployments in WSN3. Figure (a) The initial deployment and corresponding weighted
Voronoi regions. (b) The final deployment of Lloyd Algorithm. (c) The final deployment of RL Algorithm.
(d) The final deployment of DA Algorithm.

after 500 iterations. The statistics is reported for the 100 surviving deployments of the

OPTGA and over the 10 different initial deployments for the other algorithms. For VFA,

Lloyd, RL, and DA, a smaller standard deviation indicates less sensitivity to the initial

condition. Again, DA Algorithm provides the best performance in both Homogeneous and

Heterogeneous WSNs.

Fig. 2.9 shows the sensor deployments in a non-convex environment that includes two

obstacles. Sensors can only move out of obstacles. Figs. 2.9a and 2.9b show one example

of the initial and the finial deployments of Lloyd Algorithm in WSN2 with two obstacles.
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Figure 2.7: Comparison of performance in WSN2. (a) Comparison of distortion for different algorithms in
WSN2. (b) Comparison of coverage for different algorithms in WSN2.
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Figure 2.8: Comparison of performance in WSN3. (a) Comparison of distortion for different algorithms in
WSN3. (b) Comparison of coverage area for different algorithms in WSN3.

Table 2.2: Distortion Comparison
(µ: the average distortion, σ: the standard deviation)

Scenario
VFA OPTGA Lloyd RL DA

µ σ µ σ µ σ µ σ µ σ
WSN1 1.08 0.15 1.18 0.01 3.65 1.04 0.91 0.68 0.32 0.01
WSN2 4.44 0.19 3.04 0.51 11.76 2.80 2.72 1.45 1.00 0.04
WSN3 6.41 1.04 3.54 0.11 17.49 14.61 3.63 1.75 1.33 0.09

Initially, two strong sensors and four weak sensors are consisted in the backbone network

shown in Fig. 2.9a. In Fig. 2.9b, only one strong sensor and four weak sensors are included

37



(a) (b)

(c) (d)

Figure 2.9: Sensor deployments in WSN2. (a) The initial sensor deployment and the corresponding weighted
Voronoi regions. (b) The final deployment of Lloyd Algorithm. (c) The final deployment of RL Algorithm.
(d) The final deployment of DA Algorithm. Two obstacles are shown by the gray region.

in the backbone network. Fig. 2.9c shows the outcome of RL Algorithm in WSN2 with two

obstacles. After 500 iterations, the distortion is decreased from 13.15 to 1.67. Simultaneously,

the coverage area is increased from 0.08 to 1.73 and the final deployment is connected. Fig.

2.9d shows the final deployment of DA Algorithm in WSN2 with two obstacles. After

500 iterations, the distortion is decreased from 13.15 to 1.10, which is better than that of

RL Algorithm. Simultaneously, the coverage area is increased from 0.08 to 2.60 and full

connectivity is provided.

Figs. 2.10a and 2.10b illustrate the distortion and coverage area of four different algorithms

(VFA, Lloyd Algorithm, RL Algorithm, and DA Algorithm) for 10 random initial deploy-
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ments in WSN2 with two obstacles. The DA Algorithm provides both lower distortion and

higher coverage area compare to the other three algorithms.
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Figure 2.10: Comparison of performance in WSN2. (a) Comparison of distortion for different algorithms in
WSN2. (b) Comparison of coverage for different algorithms in WSN2.
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Chapter 3

3-Dimension Node Deployment in

Wireless Sensor Networks

In many quantization problems, the distortion function is given by the Euclidean metric to

measure the distance of a source sample to any given reproduction point of the quantizer.

We will in this work regard distortion functions, which are additively and multiplicatively

weighted for each reproduction point resulting in a heterogeneous quantization problem,

as used for example in deployment problems of sensor networks. Whereas, normally in

such problems, the average distortion is minimized for given weights (parameters), we will

optimize the quantization problem over all weights, i.e., we tune or control the distortion

functions in our favor. For a uniform source distribution in one-dimension, I derive the

unique minimizer, given as the uniform scalar quantizer with an optimal common weight.

By numerical simulations, I demonstrate that this result extends to two-dimensions where

asymptotically the parameter optimized quantizer is the hexagonal lattice with common

weights. As an application, I will determine the optimal deployment of unmanned aerial

vehicles (UAVs) to provide a wireless communication to ground terminals under a minimal

communication power cost. Here, the optimal weights relate to the optimal flight heights of

the UAVs.
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3.1 System Model and Problem Formulation

By [N ] = {1, 2, . . . , N} I denote the first N natural numbers, N. We will write real numbers

in R by small letters and row vectors by bold letters. The Euclidean norm of x is given by

‖x‖ =
√∑

n x
2
n. We denote by V c the complement of the set V ⊂ Rd. The positive real

numbers are denoted by R+ := {a ∈ R|a > 0}.

To motivate the concept of parameterized distortion measures, we will investigate the de-

ployment of N UAVs positioned at P = {p1, . . . ,pN} ⊂ (Ω × R+)N to provide a wireless

communication link to ground terminals (GTs) in a given target region Ω ⊂ Rd. Here, the

nth UAV’s position, pn = (qn, hn), is given by its ground position qn = (xn, yn) ∈ Ω, repre-

senting the quantization point, and its flight height hn, representing its distortion parameter.

The optimal UAV deployment is then defined by the minimum average communication power

(distortion) to serve GTs distributed by a density function f in Ω with a minimum given

data rate Rb. Hereby, each GT will select the UAV which requires the smallest communi-

cation power, resulting in so called generalized Voronoi (quantization) regions of Ω, as used

in [8], [13], [17], [18], [32], [34], [53], [105]. We also assume that the communication between

all users and UAVs is orthogonal, i.e., separated in frequency or time (slotted protocols).

In the recent decade, UAVs with directional antennas have been widely studied in the lit-

erature [106]–[111], to increase the efficiency of wireless links. However, in [106]–[111], the

antenna gain was approximated by a constant within a 3dB beamwidth and set to zero

outside. This ignores the strong angle-dependent gain of directional antennas, notably for

low-altitude UAVs. To obtain a more realistic model, I will consider an antenna gain which

depends on the actual radiation angle θn ∈ [0, π
2
] from the nth UAV at pn to a GT at ω,

see Fig. 3.1. To capture the power falloff versus the line-of-sight distance dn along with the

random attenuation and the path-loss, I adopt the following propagation model [112, (2.51)]

PLdB = 10 log10K − 10α log10(dn/d0)− ψdB, (3.1)
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where K is a unitless constant depending on the antenna characteristics, d0 is a reference

distance, α ≥ 1 is the terrestrial path-loss exponent, and ψdB is a Gaussian random variable

following N
(
0, σ2

ψdB

)
. This air-to-ground or terrestrial path-loss model is widely used for

UAV basestations path-loss models [113]. Practical values of α are between 2 and 6 and

depend on the Euclidean distance of GT ω and UAV qn

dn(ω) = d(pn, (ω, 0)) =
√
‖qn − ω‖2 + h2

n =
√

(xn − x)2 + (yn − y)2 + h2
n. (3.2)

For common practical measurements, see for example [114]. Typically maximal heights

for UAVs are < 1000m, due to flight zone restrictions of aircrafts. Hence, the received

power at UAV n can be represented as PRX = PTXGTXGRXKd
α
0 d
−α
n (ω)10−

ψdB
10 , where GTX

and GRX are the antenna gains of the transmitter and the receiver, respectively. Here,

we assume perfect omnidirectional transmitter GT antennas with an isotropic gain and

directional receiver UAV antennas. The angle dependent antenna gains are

GGT > 0 , GUAV = cos (θn) = hn/dn(ω), (3.3)

see [115, p.52]. The combined antenna intensity is then proportional to G = GUAVGGTK,

see Fig. 3.1. Accordingly, the received power can be rewritten as

PRX = PTXhnGGTKd
α
0 d
−α−1
n (ω)10−

ψdB
10 . (3.4)

To achieve a reliable communication between GT and UAV with bit-rate at least Rb for a

channel bandwidthB and noise power densityN0, the Shannon formula requiresB log2

(
1 + PRX

BN0

)
≥

Rb. The minimum transmission power to UAV qn is then given by

PTX =
(
2
Rb
B −1

)
BN0d(pn, (ω, 0))α+110

ψdB
10 (hnGGTKd

α
0 )−1 (3.5)
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Figure 3.1: UAV deployment with directed antenna beam and associated GT cells for α = 2 and N = 2 for
a uniform GT distribution.

with expectation

E[PTX ]=
(2

Rb
B − 1)N0

hnGGTKdα0

dα+1
n (ω)√
2πσψdB

∫
R

exp

(
− ψ2

dB

2σ2
ψdB

+ln(10)
ψdB
10

)
dψdB =

β

hn
d2γ
n (ω) (3.6)

where the independent and fixed parameters are given by

β = (2
Rb
B − 1)BN0 exp

(
−
σ2
ψdB

(ln 10)2

200

)
(GGTK)−1d−α0 and γ =

α+ 1

2
. (3.7)

Since the goal is to minimize the average transmission power (3.6) I define the nth parameter

distortion function as

D(ω,qn, an, bn) = β ·
(
an ‖qn − ω‖2

2 + bn
)γ

(3.8)

where an = h
−1/γ
n and bn = h

2−1/γ
n . As can be seen from (3.8), the distortion is a function

of the parameter hn in addition to the distance between the reproduction point qn and the

represented point ω. From a quantization point of view, one can start with the distortion

function (3.8) without knowing the UAV power consumption formulas in this section. This
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is what I will do in the next section. For simplicity, I will set from here on β = 1, since it

will not affect the quantizer.

3.2 Optimizing Quantizers with parameterized distor-

tion measures

The communication power cost (3.8) defines, with hn and fixed γ ≥ 1, a parameter-dependent

distortion function for qn. For a given source sample GT density f in Ω and UAV deployment,

the average power is the average distortion for given quantization and parameter points (Q,h)

with quantization sets R = {Rn}, which is called the average distortion of the quantizer

(Q,h,R)

D(Q,h,R) =
N∑
n=1

∫
Rn
D(ω,qn, hn)f(ω)dω. (3.9)

The N quantization sets, which minimize the average distortion for given quantization and

parameter points (Q,h), define a generalized Voronoi tessellation V = {Vn(Q,h)}

D(Q,h,V ) :=

∫
Ω

min
n∈[N ]

{D(ω,qn, hn)} f(ω)dω =
N∑
n=1

∫
Vn(Q,h)

D(ω,qn, hn)f(ω)dω,

(3.10)

where the generalized Voronoi regions Vn(Q,h) are defined as the set of sample points ω

with smallest distortion to the nth quantization point qn with parameter hn. Minimizing the

average distortion D(Q,h,V ) over all parameter and quantization points can be seen as an

N−facility locational-parameter optimization problem [18], [32], [33], [53]. By the definition

of the Voronoi regions (3.10), this is equivalent to the minimum average distortion over all
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N−level parameter quantizers

D(Q∗,h∗,V ∗) = min
(Q,h)∈ΩN×RN+

D(Q,h,V ) = min
(Q,h)∈ΩN×RN+

min
R={Rn}⊂Ω

D(Q,h,R), (3.11)

which I call the N−level parameter optimized quantizer. To find local extrema of (3.10)

analytically, I will need that the objective function D be continuously differentiable at any

point in ΩN × RN
+ , i.e., the gradient should exist and be a continuous function. Such a

property was shown to be true for piecewise continuous non-decreasing distortion functions

in the Euclidean metric over ΩN [6, Thm.2.2] and weighted Euclidean metric [32]. Then the

necessary condition for a local extremum is the vanishing of the gradient at a critical point1.

First, I will derive the generalized Voronoi regions for convex sets Ω in d dimensions for

any parameters hn ∈ R+ for the quantization points qn, which are special cases of Möbius

diagrams (tessellations), introduced in [116].

Lemma 5. Let Q = {q1,q2, . . . ,qN} ⊂ ΩN ⊂ (Rd)N for d ∈ {1, 2} be the quantization

points and h = (h1, . . . , hN) ∈ RN
+ the associated parameters. Then the average distortion of

(Q,h) over all samples in Ω distributed by f for some exponent γ ≥ 1

D (Q,h,V ) =
N∑
n=1

∫
Vn

(‖qn − ω‖2 + h2
n)γ

hn
f(ω)dω (3.12)

has generalized Voronoi regions Vn = Vn(Q,h) =
⋂
m6=n Vnm, where the dominance regions

of quantization point n over m are given by

Vnm =


{ω ∈ Ω | ‖qn − ω‖ ≤ ‖qm − ω‖} , hm = hn

{ω ∈ Ω | ‖ω − cnm‖ ≤ rnm} , hn < hm

{ω ∈ Ω | ‖ω − cnm‖ ≥ rnm} , hn > hm

(3.13)

1Note, if ∇P̄ is not continuous in PN than any jump-point is a potential critical point and has to be
checked individually.
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where cnm and rnm are given by

cnm=
qn − hnmqm

1− hnm
and rnm=

(
hnm

(1− hnm)2 ‖qn − qm‖2 + h2
n

h1−2γ
nm − 1

1− hnm

) 1
2

. (3.14)

Here, I introduced the parameter ratio of the nth and mth quantization point as hnm =

(hn/hm)
1
γ .

Remark . It is also possible that two quantization points are equal, but have different param-

eters. If the parameter ratio is very small or very large, one quantization point can become

redundant, i.e., if its optimal quantization set is empty. In fact, if one optimizes over all

quantizer points, such a case will be excluded, which I show for one-dimension in Lemma 7.

Proof. The minimization of the distortion functions over Ω defines an assignment rule for a

generalized Voronoi diagram V (Q,h) = {V1,V2, . . . ,VN} where

Vn = Vn(Q,h) :=
{
ω ∈ Ω

∣∣ an ‖qn − ω‖2 + bn ≤ am ‖qm − ω‖2 + bm,m 6= n
}

(3.15)

is the nth generalized Voronoi region, see for example [33, Cha.3]. Here I denoted the weights

by the positive numbers

an = h
− 1
γ

n , bn = h
2− 1

γ
n (3.16)

which define a Möbius diagram [116], [117]. The bisectors of Möbius diagrams are circles or

lines in R2 as I will show below. The nth Voronoi region is defined by N − 1 inequalities,

which can be written as the intersection of the N−1 dominance regions of qn over qm, given

by

Vnm =
{
ω ∈ Ω

∣∣ an ‖qn − ω‖2 + bn ≤ am ‖qm − ω‖2 + bm
}
. (3.17)
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If hn = hm then an = am and bn = bm, such that Vnm = H(qn,qm), the left half-space

between qn and qm. For an > am we can rewrite the inequality as

‖ω‖2 − 2 〈cnm,ω〉+
a2
n ‖qn‖

2+a2
m ‖qm‖

2−anam(‖qn‖2+‖qm‖2)

(an − am)2
+
bn − bm
an − am

≤0

where the center point is given by

cnm =
anqn − amqm
an − am

= an
qn − hnmqm
an − am

=
qn − hnmqm

1− hnm
(3.18)

where I introduced the parameter ratio of the nth and mth quantization point as

hnm := am/an = (hn/hm)
1
γ > 0. (3.19)

If 0 < an−am, which is equivalent to hn < hm, then this defines a ball (disc) and for hn > hm

its complement. Hence we get

Vnm =


{ω ∈ Ω | ‖ω − cnm‖ ≤ rnm} , hn < hm

{ω ∈ Ω | ‖ω − qn‖ ≤ ‖ω − qm‖} , hn = hm

{ω ∈ Ω | ‖ω − cnm‖ ≥ rnm} , hn > hm

(3.20)

where the radius square is given by

r2
nm = anam

‖qn − qm‖2

(an − am)2
+
bm − bn
an − am

=
an
am

‖qn − qm‖2

(1− an
am

)2
+
bm − bn
an − am

. (3.21)

The second summand can be written as

bm − bn
an − am

=
h

2− 1
γ

m − h
2− 1

γ
n

h
− 1
γ

n − h
− 1
γ

m

=
h2
n

(
(hn/hm)

1
γ
−2 − 1

)
1− (hn/hm)

1
γ

= h2
n

h−αnm − 1

1− hnm
. (3.22)
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For any γ ≥ 1, we have hnm = (hn/hm)1/γ < 1 if hn < hm and hnm ≥ 1 else. In both cases

(3.22) is positive, which implies a radius rnm > 0 whenever qn 6= qm. Inserting (3.22) in

(3.21) yields the result.

Example 3.1. We plotted in Fig. 3.1, for N = 2 and Ω = [0, 1]2, the GT regions for a

uniform distribution with UAVs placed on

q1 = (0.1, 0.2), h1 = 0.5, and q2 = (0.6, 0.6), h2 = 1. (3.23)

If the second UAV reaches an altitude of h2 ≥ 2.3, its Voronoi region V2 = V2,1 will be empty

and hence become “inactive“.

3.2.1 Local optimality conditions

To find the optimal N−level parameter quantizer (3.10), we have to minimize the average

distortion (3.9) over all possible quantization-parameter points, i.e., we have to solve a non-

convex N−facility locational-parameter optimization problem,

D(Q∗,h∗,V ∗) = min
Q∈ΩN ,h∈RN+

N∑
n=1

∫
Vn(Q,h)

h−1
n (‖qn − ω‖2 + h2

n)γf(ω)dω (3.24)

where Vn(Q,h) are the Mbius regions given in (3.13) for each fixed (Q,h). A point (Q∗,h∗)

with Mbius diagram V ∗ = V (Q∗,h∗) = {V ∗1 , . . . ,V ∗N} is a critical point of (3.24) if all

partial derivatives of D are vanishing, i.e., if for each n ∈ [N ] it holds

0 =

∫
V ∗n

(q∗n − ω)(‖q∗n − ω‖
2 + h∗2n )γ−1f(ω)dω (3.25)

0 =

∫
V ∗n

(‖q∗n − ω‖
2 + h∗2n )γ−1 · (‖q∗n − ω‖

2 − (2γ − 1)h∗2n )f(ω)dω. (3.26)

For N = 1 the integral regions will not depend on Q or h and since the integral kernel

is continuously differentiable, the partial derivatives will only apply to the integral kernel.
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Similar to [6], for N > 1, the conservation-of-mass law, can be used to show that the

derivatives of the integral domains will cancel each other out.

Remark . The shape of the regions depend on the parameters, which if different for each

quantization point (heterogeneous), generate spherical and not polyhedral regions. We will

show later, that homogeneous parameter selection with polyhedral regions will be the optimal

regions for d = 1.

3.2.2 The optimal N-level parameter quantizer in one-dimension

for uniform density

In this section, I discuss the parameter optimized quantizer for a one-dimensional convex

source Ω ⊂ R, i.e., for an interval Ω = [s, t] given by some real numbers s < t. Under such

circumstances, the quantization points are degenerated to scalars, i.e., qn = xn ∈ [s, t],∀n ∈

[N ]. If we shift the interval Ω by an arbitrary a ∈ R, then the average distortion, i.e., the

objective function, will not change if we shift all quantization points by the same number

a. Hence, if we set a = −s, we can shift any quantizer for [s, t] to [0, A] where A = t − s

without loss of generality. Let us assume a uniform distribution on Ω, i.e. f(ω) = 1/A. To

derive the unique N−level parameter optimized quantizer for any N , I will first investigate

the case N = 1.

Lemma 6. Let A > 0 and γ ≥ 1. The unique 1−level parameter optimized quantizer (x∗, h∗)

with distortion function (3.8) is given for a uniform source density in [0, A] by

x∗=
A

2
, h∗=

A

2
g(γ) and the minimum average distortion D(x∗, h∗)=

(
A

2

)2γ−1

g(γ)

where g(γ) = arg minu>0 F (u, γ) < 1/
√

2γ − 1 is the unique minimizer of

Ψ(u, γ) =

∫ 1

0

ψ(ω, u, γ)dω with ψ(ω, u, γ) =
(ω2 + u2)γ

u
(3.27)
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which is for fixed γ a continuous and convex function over R+. For γ ∈ {1, 2, 3} the mini-

mizer can be derived in closed form as

g(1) =
√

1/3, g(2) =

√
(
√

32/5− 1)/9, g(3) =

√(
(32/7)1/3 − 1

)
/5. (3.28)

Proof. See Appendix A.2.

Remark . The convexity of Ψ(·, γ) can be also shown by using extensions of the Hermite-

Hadamard inequality [118], which allows to show convexity over any interval. Let us note

here that for any fixed parameter hn > 0, the average distortion D(x∗n ± ε, hn) is strictly

monotone increasing in ε > 0. Hence, x∗n is the unique minimizer for any hn > 0. We will

use this decoupling property repeatedly in the proofs [55].

To derive the main result, we need some general properties of the optimal regions.

Lemma 7. Let Ω = [0, A] for some A > 0. The N−level parameter optimized quantizer

(Q∗,h∗) ∈ ΩN × RN
+ for a uniform source density in Ω has optimal quantization regions

Vn(Q∗,h∗) = [b∗n−1, b
∗
n] with 0 ≤ b∗n−1 < b∗n ≤ A and optimal quantization points x∗n =

(b∗n + b∗n−1)/2 for n ∈ [N ], i.e., each region is a closed interval with positive measure and

centroidal quantization points.

Proof. See Appendix A.3.

Remark . Hence, for an N−level parameter optimized quantizer, all quantization points

are used, which is intuitively, since each additional quantization point should reduce the

distortion of the quantizer by partitioning the source in non-zero regions.

50



Theorem 3.1. Let N ∈ N, Ω = [0, A] for some A > 0, and γ ≥ 1. The unique N−level

parameter optimized quantizer (Q∗,h∗,R∗) is the uniform scalar quantizer with identical

parameter values, given for n ∈ [N ] by

q∗n = x∗n =
A

2N
(2n− 1), h∗ = h∗n =

A

2N
g(γ), R∗n =

[
A

N
(n− 1),

A

N
n

]
(3.29)

with minimum average distortion

D(Q∗,h∗,R∗) =

(
A

2N

)2γ−1 ∫ 1

0

(
ω2 + g2(γ)

)γ
g(γ)

dω. (3.30)

For γ ∈ {1, 2, 3}, the closed form g(γ) is provided in (3.28).

Proof. See Appendix A.4.

Example 3.2. We plot the optimal heights and optimal average distortion for a uniform GT

density in [0, 1] over various α and N = 2 in Fig. 3.2. Note that the factor A/2N = 1/4 will

play a crucial role for the height and distortion scaling. Moreover, the distortion decreases

exponentially in α if A/2N < 1.

Let us set β = 1 = A. Then, the optimal UAV deployment is pictured in Fig. 3.3 for N = 2

and N = 4. The maximum elevation angle θmax is hereby constant for each UAV and does

not change if the number of UAVs, N , increases. Moreover, it is also independent of A and

β, since with (3.29) we have µ∗n = x∗n − x∗n−1 = A/N and

cos(θmax) = cos(θn) =
h∗

µ∗n/2
=

2N

A

A

2N
g(1) =

1√
3
. (3.31)

3.3 Llyod-like Algorithms and Simulation Results

In this section, I introduce two Lloyd-like algorithms, Lloyd-A and Lloyd-B, to optimize the

quantizer for two-dimensional scenarios. The proposed algorithms iterate between two steps:
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Figure 3.2: Optimal height (solid) with
bound (dashed) and average distortion
(dotted) for N = 2, A = 1 and uniform

GT density.

Figure 3.3: Optimal UAV deployment in one dimension
for A = 1,α = 1 and N = 2, 4 over a uniform GT

density by (3.29).

(1) The reproduction points are optimized through gradient descent while the partitioning

is fixed; (ii) The partitioning is optimized while the reproduction points are fixed. In Lloyd-

A, all UAVs (or reproduction points) share the common flight height while Lloyd-B allows

UAVs at different flight heights.

In what follows, I provide the simulation results over the two-dimensional target region

Ω = [0, 10]2 with uniform and non-uniform density functions. The non-uniform density

function is a Gaussian mixture of the form
∑3

k=1
Ak√
2πσ2

k

exp
(
−‖ω−ck‖

2

2σk

)
, where the weights,

Ak, k = 1, 2, 3 are 0.5, 0.25, 0.25, the means, ck, are (3, 3), (6, 7), (7.5, 2.5), the standard

deviations, σk, are 1.5, 1, and 2, respectively.
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Figure 3.4: The performance comparison of Lloyd-A, Lloyd-B and Random Deployment (RD). (a) Uniform
density. (b) Non-uniform density.
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(a) (b)
Figure 3.5: The UAV projections on the ground with generalized Voronoi Diagrams where α = 2 and the
source distribution is uniform. (a) 32 UAVs. (b) 100 UAVs.

To evaluate the performance of the proposed algorithms, I compare them with the average

distortion of 100 random deployments (RDs). Figs. 3.4a and 3.4b, show that the proposed

algorithms outperform the random deployment on both uniform and non-uniform distributed

target regions. From Fig. 3.4a, one can also find that the distortion achieved by Lloyd-A

and Lloyd-B are very close, indicating that the optimality of the common height, as proved

for the one-dimensional case in Section 3.2, might be extended to the two-dimensional case

when the density function is uniform. However, one can find a non-negligible gap between

Lloyd-A and Lloyd-B in Fig. 3.4b where the density function is non-uniform. For instance,

given 16 UAVs and the path-loss exponent α = 6, Lloyd-A’s distortion is 40.17 while Lloyd-

B obtains a smaller distortion, 28.25, by placing UAVs at different heights. Figs. 3.5a and

3.5b illustrate the UAV ground projections and their partitions on a uniform distributed

square region. As the number of UAVs increases, the UAV partitions approximate hexagons

which implies that the optimality of congruent partition (Theorem 3.1) might be extended to

uniformly distributed users for two-dimensional sources. 3.6a and 3.6b show that congruent

partition is no longer a necessary condition for the optimal quantizer when distribution is

non-uniform.
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(a) (b)
Figure 3.6: The UAV projections on the ground with generalized Voronoi Diagrams where α = 2 and the
source distribution is non-uniform. (a) 32 UAVs. (b) 100 UAVs.

54



Chapter 4

Energy Efficiency in Two-Tiered

Wireless Sensor Networks

Multi-tier networks have many applications in different fields. In this Chapter, I define a

novel two-tier quantizer that can be applied to different node deployment problems including

the energy conservation in two-tier wireless sensor networks (WSNs) consisting of N access

points (APs) and M fusion centers (FCs). We aim at finding an optimal deployment of APs

and FCs to minimize the average weighted total, or Lagrangian, of sensor and AP powers.

For one fusion center, M = 1, I show that the optimal deployment of APs is simply a linear

transformation of the optimal N -level quantizer for density f , and the sole FC should be

located at the geometric centroid of the sensing field. I also provide the exact expression of the

AP-Sensor power function and prove its convexity. For more than one fusion center, M > 1,

I provide a necessary condition for the optimal deployment. Furthermore, to numerically

optimize the AP and FC deployment, I propose three Lloyd-like algorithms and analyze their

convergence.
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4.1 System Model and Problem Formulation

We consider a two-tier WSN consisting of three kinds of nodes: sensors, APs, and FCs. This

is a canonical application of the two-tier quantizer. A similar network architecture has been

studied in [68] where the authors ignore the energy consumption of the sensor nodes. We

model the energy consumption by radio communication in two-tier WSNs.

Let Ω be a convex polygon in R2 including its interior. Given the target area Ω, N APs andM

FCs are deployed to collect data. Without loss of generality, we assume that N > M . IA =

{1, . . . , N}, and IB = {1, . . . ,M} denote the sets of AP indices and FC indices, respectively.

AP deployment and FC deployment are, respectively, defined by P = (p1, · · · ,pN) and

Q = (q1, · · · , qM), where pn ∈ R2 is the location of AP n and qm ∈ R2 is the location of FC

m. An AP partition RA = {RAn }n∈IA is a collection of disjoint subsets of R2 whose union is

Ω. Let T : IA → IB be an index map for which T(n) = m if and only if AP n is connected

to FC m. A continuous and differentiable function f(·) : Ω2 → R+ is used to denote the

density of the data rate from the densely distributed sensors [68]. Then,
∫
R f(ω)dω is the

total amount of data generated from the sensors in region R in one time unit.

Usually, FCs have access to reliable energy sources and their energy consumption is not

the main concern in this paper. Therefore, we focus on the energy consumption of sensors

and APs. In fact, the energy consumed by sensors and APs comes from three parts: (i)

Sensors transmit bit streams to APs; (ii) APs transmit bit streams to FCs; (iii) APs receive

bit streams from sensors. The transmitting powers (Watt) of nodes, e.g., sensors and APs,

mainly depend on two factors: (i) the instant-transmission-power (Joules/second); and (ii)

the channel-busy-ratio: the percentage of time that the transmitter forwards data. The

average-transmitting-power of AP n is defined as PAtn = EAtnΓAn , n ∈ IA, where EAtn is the

instant-transmission-power of AP n and ΓAn is the channel-busy-ratio for the channel from

AP n to the corresponding FC. In order to achieve the required SNR thresholds at the

receivers, the instant-transmission-power EAtn should be set to a value that is determined

by the distance, the antenna gain, and the SNR threshold [119]. More realistically, the
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transmission power is proportional to distance squared or another power of distance in the

presence of obstacles [66]. Taking path-loss into consideration, it is reasonable to model the

instant-transmission-power from AP n to FC T(n) by EAtn = ηAn,T(n)‖pn − qT(n)‖α, where

‖ · ‖ denotes the Euclidean distance, ηAn,T(n) is a constant determined by the antenna gain

of AP n and the SNR threshold of FC T(n), and α ∈ [2, 4] is the path-loss parameter. We

consider an environment without obstacles, i.e., α = 2. Let ξAnT(n) be the AP n’s instant-

transmitter-data-rate which is determined by the SNR at the corresponding FC T(n). In

this chapter, we focus on homogeneous sensors, APs, and FCs. Hence, we consider identical

sensor antenna gains, identical AP antenna gains, identical AP SNR thresholds, and identical

FC SNR thresholds. Without loss of generality, we set ηAn,T(n) = ηA and ξAnT(n) = ξA. In

such a homogeneous scenario, the total amount of data is proportional to the number of

sensors, and f(·) is just a scaled sensor density function. Note that AP n collects data

from the sensors in RAn , indicating that the average-receiver-data-rate - the amount of data

received from sensors in the unit time - is
∫
RAn

f(ω)dω. It is reasonable to assume that the

AP transmitters have idle time and forward data only when the collected sensing data comes

into the buffer. Hence, the channel-busy-ratio is proportional to the average-receiver-data-

rate, and can be written as ΓAn =

∫
RAn

f(ω)dω·T/ξA

T
=

∫
RAn

f(ω)dω

ξA
, where ξA is AP n’s instant-

transmitter-data-rate. Therefore, the average-transmitter-power of AP n can be rewritten as

PAtn = EAtnΓAn = ηA

ξA
‖pn − qT(n)‖2

∫
RAn

f(ω)dω.

The power consumption at AP receivers is a constant and does not affect energy optimization

[54]. Without loss of generality, we drop it from the total energy consumption. Therefore,

to consider the total energy consumption, we use the sum of the APs’ average-transmitter-

powers, PAtn , which is calculated as

PA(P ,Q,RA,T) =
N∑
n=1

PAtn =
N∑
n=1

∫
RAn

ηA

ξA
‖pn − qT(n)‖2f(ω)dω. (4.1)
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Next, we discuss sensors’ total power consumption. Similar to the power consumption at

AP receivers, the power consumption at sensor receivers is also a constant and thus dropped

from the objective function. In what follows, we focus on power consumption at sensor

transmitters. Since f should be approximately uniform on an infinitesimal region [ω,ω+dω],

the total amount of data generated from [ω,ω+dω] in one time unit is f(ω)dω. As a result,

the sum of channel-busy-ratios of the sensors in [ω,ω + dω] is ΓS = f(ω)dω·T/ξS
T

= f(ω)dω
ξS

,

where ξS is sensors’ instant-transmitter-data-rate. In addition, sensors within [ω,ω+dω] are

supposed to have approximately the same distance to the corresponding FC q, and then have

the same instant-transmission-power ESt = ηS‖ω−q‖2, where ηS is a constant determined by

the antenna gain of sensors and the SNR threshold of the corresponding AP. Hence, the sum

of the sensors’ average-transmitter-powers within [ω,ω + dω] is ηS

ξS
‖q − ω‖2f(ω)dω. Note

that sensors in RA transfer data to AP n. Therefore, the sum average-transmitter-powers

of the sensors in the whole region Ω is calculated as

PS(P ,RA) =
N∑
n=1

∫
RAn

ηS

ξS
‖pn − ω‖2f(ω)dω. (4.2)

We define the scaled AP power and the scaled sensor power, respectively, as

PA(P ,Q,RA,T) ,
ξA

ηA
PA(P ,Q,RA,T) =

N∑
n=1

∫
RAn
‖pn − qT(n)‖2f(ω)dω, (4.3)

PS(P ,RA) ,
ξS

ηS
· PS(P ,RA) =

N∑
n=1

∫
RAn
‖pn − ω‖2f(ω)dω. (4.4)

In what follows, we focus on the scaled sensor power and the scaled AP power which are

also, respectively, referred to as Sensor-power and AP-power for simplicity. On one hand,

Sensors’ densely deployment prevent the network from breaking by few sensor failures. On

the other hand, the limited number of APs makes the recharging possible for APs. Under such
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scenario, saving the total energy consumption becomes an important requirement. Therefore,

one objective could be minimizing the scaled total AP power consumption in (4.3) given a

constraint on the total sensor power (4.4) or vice versa. Like rate-distortion function R(D)

and the distortion-rate function D(R), we define the AP-sensor power function and Sensor-

AP power function, respectively, as

A(S) , inf
(P ,Q,RA,T):PS(P ,RA)≤S

PA(P ,Q,RA,T) (4.5)

S(A) , inf
(P ,Q,RA,T):PA(P ,Q,RA,T)≤A

PS(P ,RA). (4.6)

We can then define the Lagrangian objective function (two-tier distortion) to be minimized

as

D(P ,Q,RA,T) = PS(P ,RA) + βPA(P ,Q,RA,T)

=
N∑
n=1

∫
RAn

[
‖pn − ω‖2 + β‖pn − qT(n)‖2

]
f(ω)dω.

(4.7)

Our main goal is to minimize the two-tier distortion over the following four variables: (i) AP

deployment P ; (ii) FC deployment Q; cell partition RA; (iv) index map T . There are many

applications that result in a two-tier quantization set-up and as long as the corresponding

distortion is a function of the distance, the results will hold for those applications as well.

Another interpretation is to consider (4.1) as the sensor energy consumption and (4.2) as

the sensing quality measured by the mean square error (MSE) in a one-tier WSN scenario in

which dots in Fig. 1.1b are sensors, stars are APs and the density function f(·) is replaced by

the event probability density function. In other words, the proposed optimization problem

can also provide the trade-off between energy efficiency and sensing quality in one-tier WSNs.
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4.2 The Best Possible Distortion for the Two-tier WSNs

with One FC

As discussed earlier, the node deployment problem in two-tier WSNs can be interpreted as

a two-tier quantizer design problem whose reproduction points are APs and FCs. Similarly,

if one only considers the energy consumption of sensors, the corresponding optimization

problem becomes a “regular” (or one-tier) quantization problem with distortion

Dr(X,R) =
N∑
n=1

∫
Rn

‖xn − ω‖2f(ω)dω. (4.8)

Let (X∗,R∗) = arg min(X,R)Dr(X,R) be the optimal one-tier quantizer. In some cases [37],

[68]–[70], only one FC or fusion center is deployed to collect data from the entire WSNs. In

the case of one FC and multiple APs, the following proposition holds.

Proposition 2. For a two-tier WSN with one FC, We have the following:

(i) The optimal FC location is the centroid of the target region, i.e., q∗ =
∫
Ω ωf(ω)dω∫
Ω f(ω)dω

.

(ii) The optimal AP locations of the two-tier WSNs are linear transformations of the opti-

mal reproduction points X∗ = (x∗1, . . . , x
∗
N), i.e., p∗n = x∗n+βq∗

1+β
, n ∈ IA.

(iii) The optimal AP partition is the same as the optimal one-tier quantizer partition R∗ =

(R∗1, . . . , R
∗
N), i.e., RA∗ = R∗.

(iv) The best possible distortion is 1
1+β

Dr(X
∗, R∗) + β

1+β

∫
Ω
‖ω − q∗‖2f(ω)dω.

The proof of the proposition is provided in Appendix A.5. By Proposition 2, one can obtain

the optimal solution for the two-tier quantization by shrinking the optimal reproduction

points of the one-tier quantizer towards the corresponding FCs. Note that the algorithms AC

and DC in [75] identify the optimal reproduction of the N -level one-tier quantizer as the AP

deployment and then determine the FC deployment in terms of the identified AP deployment,

and vice versa. In what follows, I provide an example to compare the quantizer generated
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Figure 4.1: Two deployment examples in a 1-dimensional space with one FC. (a) The AC/DC two-tier
quantizer. (b) The optimal quantizer. AP and FC locations are denoted by circles and star. The optimal
partition cells are denoted by intervals. Each AP and its corresponding cell are illustrated by the same color.

by AC/DC with the proposed optimal quantizer, respectively. Consider one FC, N APs,

and a uniform distribution over the 1-dimensional target region Ω = [s, t]. The reproduction

points and the cells of an optimal one-tier quantizer are given by x∗n = s+ (2n−1)(t−s)
2N

, n ∈ IA,

and R∗n =
[
s+ (n−1)(t−s)

N
, s+ n(t−s)

N

]
, n ∈ IA. In this case, the quantizers generated by AC

and DC are identical. There is no surprise that the AP deployment and cell partition of

AC/DC are exactly the reproduction points and partition of the optimal one-tier quantizer,

i.e., p′n = x∗n, RA′n = R∗n, n ∈ IA. FC location is the geometric centroid q′ = (t + s)/2.

However, according to Proposition 2, the optimal AP deployment and cell partition are,

respectively, p∗n = s + β(t−s)
2(1+β)

+ (2n−1)(t−s)
2N(1+β)

and RA∗n = R∗n, n ∈ IA. Similar to the solution

of AC/DC, the optimal FC location is q∗ = q′ = (t + s)/2. The corresponding minimum

distortion is (t−s)2

12(1+β)N2 + β(t−s)2

12(1+β)
. In particular, for β = 1 and Ω = [−1

2
, 1

2
] with 1 FC and 4

APs, the solution of AC/DC, shown in Fig. 4.1a, is q′ = 0, RA′n =
[
n−3

4
, n−2

4

]
, and p′n = 2n−5

8
,

n ∈ IA, indicting a distortion of 61
768

. But, the optimal FC location is q∗ = 0, the optimal

cells are RA∗n =
[
n−3

4
, n−2

4

]
, n ∈ IA, the optimal AP locations are p∗n = 2n−5

16
, n ∈ IA, and the

best possible distortion is 17
384

< 61
768

. The optimal two-tier quantizer is shown in Fig. 4.1b.

Furthermore, the best possible distortion can be exactly determined in the high resolution

regime N → ∞. In fact, the best possible distortion Dr(X
∗,R∗) of a one-tier quantizer is

given by [71]

κddN
− 2
d‖f‖ d

d+2
+ o(N−

2
d ), N →∞, (4.9)

where ‖f‖q , (
∫
Rd f

q(x)dx)
1
q , and κd depends only on the dimension d. For example, we

have κ1 = 1
12

and κ2 = 5
18
√

3
[71], [73]. By using Proposition 2, the best possible distortion
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in high resolution regime N →∞ with one FC is

1

1 + β
κddN

− 2
d‖f‖ d

d+2
+

β

1 + β

∫
Ω

‖ω − c‖2f(ω)dω + o(N−
2
d ). (4.10)

4.3 The Optimal Deployment in two-tier WSNs with

Multiple FCs

In this section, I extend the analysis of the optimal deployment to WSNs with multiple FCs.

Given multiple FCs, APs are divided into clusters in terms of the index map T , and the

number of clusters is M . In particular, the M -th cluster is defined as Nm , {n : T(n) = m}.

Let Nm be the number of elements in Nm, and Wm =
⋃
n∈NmR

A
n be the mth cluster region.

Distortion in this general case is determined by (i) AP deployment, (ii) FC deployment, (iii)

AP cell partition, and (iv) Clustering (or the index map from APs to FCs). Before we discuss

the optimal AP and FC deployment, we need to know (a) the best index map T given P ,

Q, and RA, and (b) the best AP partition RA given P , Q, and T.

The index map T only influences the second term in (4.7). To minimize the second term,

each AP should transfer data to the closest FC. Thus, the best index map is TE
[P ,Q](n) =

arg minm ‖pn − qm‖. However, given P , Q, and T = TE
[P ,Q], AP cell partition RA affects

both terms in (4.7). The best AP cell partitions, called the energy Voronoi diagrams (EVDs),

are

V E
n (P ,Q)={ω

∣∣‖pn − ω‖2 + β‖pn − qTE
[P ,Q]

(n)‖2 ≤ ‖pl − ω‖2 + β‖pl − qTE
[P ,Q]

(l)‖2, ∀l ∈ IA}.

(4.11)

Now, let V E(P ,Q) = {V E
n (P ,Q)}n∈IA be the energy Voronoi partition. Putting the best
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index map TE
[P ,Q](·) and the best AP partition V E(P ,Q) into (4.7), the distortion is

D̃(P ,Q)=D(P ,Q,V E(P ,Q),TE
[P ,Q])=

N∑
n=1

∫
V E
n (P ,Q)

(
‖pn−ω‖2 + βmin

m
‖pn−qm‖2

)
f(ω)dω.

(4.12)

Let P ∗ = (p∗1, . . . ,p
∗
N) and Q∗ = (q∗1, . . . , q

∗
M) be, respectively, the optimal AP and FC

deployments. Let vn(P ∗,Q∗) =
∫
V E
n (P ∗,Q∗)

f(ω)dω be the Lebesgue measure (volume) of

V E
n (P ∗,Q∗). Without loss of generality, we may assume vn(P ∗,Q∗) > 0, as quantization

cells with zero probability do not affect the overall distortion.

Proposition 3. Let α = 2 and N > M . The necessary conditions for the optimal deploy-

ments in the two-tier WSN with distortion defined by (4.7) are

p∗n =
cn(P ∗,Q∗) + βq∗

TE
[P∗,Q∗](n)

1 + β
, n ∈ IA, (4.13)

q∗m =

∑
n:TE

[P∗,Q∗](n)=m cn(P ∗,Q∗)vn(P ∗,Q∗)∑
n:TE

[P∗,Q∗](n)=m vn(P ∗,Q∗)
,m ∈ IB, (4.14)

where p∗n is the optimal location for AP n and q∗m is the optimal location for FC m,

TE
[P ∗,Q∗](n) = arg minm ‖p∗n − q∗m‖ is the best index map, vn(P ∗,Q∗) =

∫
V E
n (P ∗,Q∗)

f(ω)dω

is the Lebesgue measure (volume) of V E
n (P ∗,Q∗) and cn(P ∗,Q∗) is the geometric centroid

of V E
n (P ∗,Q∗).

The proof of the proposition is provided in Appendix A.6. According to (4.13), the optimal

location of AP n, connected to FC m, should be on the segment cn(P ,Q)qm. According

to (4.14), the best location of FC m should be the geometric centroid of the mth cluster

region
⋃
n:T(n)=m V

E
n (P ∗,Q∗). Obviously, the optimal deployment and the optimal partition

in Proposition 2 also satisfy the necessary conditions in Proposition 3. In the next section,

using Proposition 3, I design Lloyd-like algorithms to determine the optimal deployment.

First, note that when the AP cell partition is fixed, the geometric centroid cn, n ∈ IA, and
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the volume of the cells vn, n ∈ IA, are fixed. Second, the index map TE
[P ,Q] represents the

best connection between APs and FCs (or clustering) if and only if P and Q are given. We

now find the optimal deployment, the optimal partition, the optimal index map and the best

possible distortion for a uniform density in one-dimensional space.

Theorem 4.1. Let Ω = [s, t] with length µ(Ω) = t− s. Also, let

`a =
(
β + dN

M
e−2
)− 1

2 , `b =
(
β + bN

M
c−2
)− 1

2 (4.15)

Ma = (N mod M), Mb = M − (N mod M). (4.16)

Then, given a uniform distribution on Ω with M FCs and N APs, the minimum distortion

is

µ2(Ω)

12(1 + β)
(Ma`a +Mb`b)

−2 . (4.17)

The minimum is achieved if and only if

(i) Ma of the clusters consist of dN
M
e APs each and have length `aµ(Ω)/(Ma`a +Mb`b),

(ii) Mb of the clusters consist of bN
M
c APs each and have length `bµ(Ω)/(Ma`a +Mb`b),

(iii) FCs are deployed at the centroids of the cluster regions,

(iv) AP cells are uniform partitions of the cluster, and

(v) AP n is deployed at
cn+βqT(n)

1+β
, n ∈ IA, where cn is the geometric centroid of AP n’s

cell.

The proof of the theorem provided in Appendix A.7.

In particular, when K = N
M

is a positive integer, the optimal FC locations are q∗m =

s + (2m−1)(t−s)
2M

,m ∈ IB, and the optimal index map is T∗(n) =
⌈
n
K

⌉
, n ∈ IA. The
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Figure 4.2: Two deployment examples in a 1-dimensional space with two FCs. (a) The AC/DC two-tier
quantizer. (b) The optimal two-tier quantizer. AP and FC locations are denoted by circles and stars. The
optimal partition cells are denoted by intervals. Each AP and its corresponding cell are illustrated by the
same color. The two clusters are denoted by solid and dashed lines.

optimal AP locations are p∗n = s + (t−s)
(1+β)

(
(2n−1)

2N
+ β

(2d n
K
e−1)

2M

)
, n ∈ IA, and the opti-

mal AP cell partitions are RA∗n =
[
s+ (n−1)(t−s)

N
, s+ n(t−s)

N

]
, n ∈ IA. The correspond-

ing minimum distortion is (t−s)2

12(1+β)M2

(
1
K2 + β

)
. However, in such a uniform distributed 1-

dimensional scenario, the quantizers generated by AC [75] and DC [75] are identical but

different from the above optimal solution. The corresponding FC and AP deployments of

AC/DC are, respectively, the optimal M -level and N -level one-tier reproduction points,

i.e., p′n = s + (2n−1)(t−s)
2N

, q′m = s + (2m−1)(t−s)
2M

, n ∈ IA,m ∈ IB. The corresponding AP

cell partitions are RA′n =
[
s+ (n−1)(t−s)

N
, s+ n(t−s)

N

]
, n ∈ IA. In what follows, I provide

an example to elucidate the gap between AC/DC quantizer and the optimal quantizer.

For β = 1 and Ω = [−1
2
, 1

2
] with 2 FC and 6 APs, the AC/DC quantizer, illustrated

by Fig. 4.2a, is Q′ = {−1
4
, 1

4
}, P ′ = {− 5

12
,− 3

12
,− 1

12
, 1

12
, 3

12
, 5

12
}, and RA′n =

[
n−4

6
, n−3

6

]
,

n ∈ IA. The corresponding distortion is thus 49
2592

. Nonetheless, according to Theo-

rem 4.1, the optimal FC deployment is Q∗ = {−1
4
, 1

4
}, the optimal AP deployment is

P ∗ = {−1
3
,−1

4
,−1

6
, 1

6
, 1

4
, 1

3
}, the optimal AP cells are RA∗n =

[
n−4

6
, n−3

6

]
, n ∈ IA, and the

optimal index map is T∗(n) = dn
3
e, n ∈ IA. The optimal quantizer, shown in Fig. 4.2b, gains

the minimum distortion, 5
432

which is much smaller than 49
2592

. The distortion gap holds for

more complicated circumstances, e.g., non-uniform distributed 2-dimensional space. There-

fore, in order to approach the optimal distortion, it is necessary to designed a better two-tier

quantizer. This is the topic of the discussion in Section 4.5.
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4.4 AP-Sensor Power Function

As explained before, minimizing the distortion in (4.7) is the unconstrained version of min-

imizing the sum of the AP powers when the sum of the sensor powers is constrained or

vise versa. In this section, we study the minimization of the sum of the AP powers when

the sum of the sensor powers is constrained via analyzing the AP-Sensor power function

in (4.5). An AP-Sensor power pair (x, y) is said to be achievable if there exists a solution

(P ,Q,RA,T) with Sensor-power PS(P ,RA) ≤ x and AP-power PA(P ,Q,RA,T) = y.

(P ,Q,RA,T) is said to be a feasible solution for the AP-Sensor power pair (S,A(S)) if and

only if PS(P ,RA) ≤ S and PA(P ,Q,RA,T) = A(S). Let F (S) be the set of the feasible

solutions for the point (S,A(S)), and F̂ =
⋃
S

F (S) be the set of all feasible solutions for

all points on the curve A(S). It is self-evident that every point above the curve A(S) is

achievable. We now discuss the convexity of the AP-Sensor power function. By parallel axis

theorem, (4.2) can be rewritten as

PS(P ,RA) =
N∑
n=1

∫
RAn
‖cn − ω‖2f(ω)dω +

N∑
n=1

‖pn − cn‖2vn, (4.18)

where cn =

∫
RAn

ωf(ω)dω∫
RAn

f(ω)dω
is the centroid of RAn , vn =

∫
RAn

f(ω)dω is the volume of RAn . Note

that cn and vn are functions of RA. cn and vn are constants if and only if the AP cell

partition RA is fixed. Furthermore, AP-power, (4.1), can be rewritten as

PA(P ,Q,RA,T) =
N∑
n=1

‖pn − qT(n)‖2vn. (4.19)

The representations (4.18) and (4.19) are convenient for the following convexity analysis.
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Lemma 8. Let DR(k) be the minimum distortion of the k-level one-tier quantizer on space

Ω. Let M and N be, respectively, the number of FCs and the number of APs, where N > M .

The AP-Sensor power function is a non-increasing function with the domain [DR(N),+∞)

such that A(S) > 0 when DR(N) ≤ x < DR(M) and A(S) = 0 when x ≥ DR(M).

The proof of the Lemma is provided in Appendix A.8.

4.4.1 Closed-form formulas and convexity for one FC

In this section, we assume only one FC and derive a closed-form analytical formula for the

AP-Sensor power function. We also prove that the AP-sensor power function is convex.

Lemma 9. When one FC Q = (q) and multiple APs P = (p1, . . . ,pN) are provided, and

RA is fixed, the minimum PA(P ,Q,RA,T) with the constraint PS(P ,RA) ≤ S is defined

by

Â(S,RA) , inf
(P ,Q,T):PS(P ,RA)≤S

PA(P ,Q,RA,T). (4.20)

We have the following results: (i) The domain of Â(S,RA) is {(S,RA)|H(RA) ≤ S};

(ii) When (S,RA) ∈ {(S,RA)|H(RA) ≤ S,DR(N) ≤ S < DR(M)}, we have


Â(S,RA) =

[√
(S −H(RA))−

√
DR(1)−H(RA)

]2

, S ∈ [DR(N), DR(1))

0, S ∈ [DR(1),+∞)

(4.21)

where H(RA) =
∑N

n=1

∫
RAn
‖cn − ω‖2f(ω)dω, cn =

∫
RAn

ωf(ω)dω∫
RAn

f(ω)dω
is the centroid of RAn , and

vn =
∫
RAn

f(ω)dω is the volume of RAn .

The proof is provided in Appendix A.9.
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Theorem 4.2. When one FC and multiple APs are provided, i.e., M = 1 and N > 1, the

AP-Sensor power function A(S) is a convex function with the expression

A(S) =


[√

S −DR(N)−
√
DR(1)−DR(N)

]2

, S ∈ [DR(N), DR(1))

0, S ∈ [DR(1),+∞)

(4.22)

The proof of the theorem is provided in Appendix A.10. When M = 1, as an inverse function

of A(S), the Sensor-AP power function is also a convex function with the expression

S(A) =


DR(N) +

[√
DR(1)−DR(N)−

√
A
]2

, A ∈ [0, DR(1)−DR(N))

DR(N), A ∈ [DR(1)−DR(N),+∞)

(4.23)

Therefore, for M = 1, finding the solution of A(S) on S ∈ [DR(N), DR(1)) is equivalent to

(i) finding the minimizer of PA(P ,Q,RA,T) + λPS(P ,Q), where the Lagrange Multiplier

λ = −
(
∂A(S)
∂S

)
=
√

DR(1)−DR(N)
S−DR(N)

− 1 is the negative derivative at (S,A(S)) and (ii) finding

the minimizer of D(P ,Q,RA,T) = PS(P ,Q) + βPA(P ,Q,RA,T), where the Lagrange

Multiplier β = −
(
∂A(S)
∂S

)−1

= 1√
DR(1)−DR(N)

S−DR(N)
−1

is the negative reciprocal of the derivative at

(S,A(S)).

In what follows, I provide an example for the 1-dimensional space [s, t] and a uniform dis-

tribution. On one hand, due to the quantization theorem [59], we have DR(1) = (t−s)2

12
and

DR(N) = (t−s)2

12N2 . Therefore, (4.22) becomes

A(S) = S − (t− s)2

6N2
+

(t− s)2

12
− 2

√(
S − (t− s)2

12N2

)(
(t− s)2

12
− (t− s)2

12N2

)
. (4.24)
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On the other hand, let (P ∗,Q∗,RA∗,T∗) be an optimal solution for D(P ,Q,RA,T) with

β = 1√
DR(1)−DR(N)

S−DR(N)
−1

. By Proposition 2, we have PS(P ∗,RA∗) = S and

PA(P ∗,Q∗,RA∗,T∗) = S − (t− s)2

6N2
+

(t− s)2

12

−2

√(
S − (t− s)2

12N2

)(
(t− s)2

12
− (t− s)2

12N2

)
,

(4.25)

which is the same as (4.24).

4.5 Node deployment Algorithms

We introduce three algorithms, One-Tiered Lloyd (OTL), Two-Tiered Lloyd (TTL), and

Combining Lloyd (CL), to minimize the distortion in two-tier WSNs. First, we quickly re-

view the conventional Lloyd algorithm. Lloyd Algorithm has two basic steps in each iteration:

(i) The node deployment is optimized while the partitioning is fixed; (ii) The partitioning

is optimized while the node deployment is fixed. As shown in [32], Lloyd algorithm, which

provides good performance and is simple enough to be implemented distributively, can be

used to solve one-tier quantizers or one-tier node deployment problems. However, the con-

ventional Lloyd Algorithm cannot be applied to two-tier WSNs where two kinds of nodes are

deployed. We thus introduce three Lloyd-based algorithms to solve the optimal deployment

problem in two-tier WSNs.

4.5.1 One-tier Lloyd Algorithm

OTL combines two independent Lloyd Algorithms. Using the Lloyd algorithm, an M -

level one-tier quantizer is designed and its reproduction points are used as Q. Another

N -level one-tier quantizer is designed and its partition is used as RA. The index map

is determined by T(n) = arg minm ‖p′n − qm‖ and the deployment P is determined by

pn = minm
p′n+βqm

1+β
, n ∈ IA, where p′n is the nth reproduction point obtained by the N -level
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quantizer. Using Proposition 2, it is easy to show that, for the networks with one FC, the

distortion of OTL converges to the minimum as long as the second Lloyd Algorithm provides

the optimal N -level quantizer.

4.5.2 Two-tier Lloyd Algorithm

Before introducing the details of TTL, I introduce two concepts: (i) AP local distortion and

(ii) FC local distortion. The AP local distortion is defined as

DAn (P ,Q,RA,T) =

∫
RAn

[
‖pn − ω‖2 + β‖pn − qT(n)‖2

]
f(ω)dω.

The total distortion is the sum of the AP local distortions, i.e.,

D(P ,Q,RA,T) =
N∑
n=1

DAn (P ,Q,RA,T).

Similarly, for Nm , {n : T(n) = m}, the FC local distortion is defined as

DBm(P ,Q,RA,T) =
∑
n∈Nm

∫
RAn

(
‖pn − ω‖2 + β‖pn − qm‖2

)
f(ω)dω.

The total distortion is the summation of these FC local distortions, i.e., D(P ,Q,RA,T) =∑M
m=1DBm(P ,Q,RA,T). Let cn and vn be, respectively, the geometric centroid and the

volume of the current AP cell partition. TTL iterates over fthe steps: (i) AP n moves to

cn+βqT(n)

1+β
; (ii) AP partitioning is done by assigning the corresponding EVD to each AP node;

(iii) FC m moves to
∑
n∈Nm pnvn∑
n∈Nm vn

; (iv) Clustering is done by assigning the nearest FC to each

AP. Furthermore, to avoid the APs with a zero-measure partition, we move such an AP

towards a randomly selected FC q until the distance to the q is minn‖pn − q‖ after (ii).

In what follows, I show that the distortion with TTL converges. First, due to the parallel
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axis theorem and (A.52), the local distortion of AP n can be rewritten as

DAn (P ,Q,RA,T) =
1

1 + β

∫
RAn
‖cn − ω‖2f(ω)dω

+ (1 + β)‖pn − p̂n‖2vn +
β

1 + β

∫
RAn
‖ω − qT(n)‖2f(ω)dω,

(4.26)

where p̂n =
cn+βqT(n)

1+β
. When Q, RA, and T are given, the first term and the third term

of (4.26) are constants. In other words, the AP local distortion becomes a function of

‖pn− p̂n‖. Therefore, Step (i) does not increase the AP local distortions and then the total

distortion. Second, given P , Q and T, EVDs minimize the total distortion, indicating that

the total cost is not increased by Step (ii). Third, observe that for q̂m =
∑
n∈Nm pnvn∑
n∈Nm vn

, we

have
∑

n∈Nm vn‖pn − qm‖2 =
∑

n∈Nm vn [‖pn − q̂m‖2 + ‖qm − q̂m‖2]. Therefore, the local

distortion of FC m can be rewritten as

DBn (P ,Q,RA,T) =
∑
n∈Nm

∫
RAn
‖pn − ω‖2f(ω)dω

+ β

(∑
n∈Nm

vn

)
‖qm − q̂m‖2 + β

∑
n∈Nm

(
vn‖pn − q̂m‖2

)
.

(4.27)

When P , RA, and T are given, the first term and the third term in (4.27) are constants.

In other words, the FC local distortion becomes a function of ‖qm − q̂m‖. Therefore, Step

(iii) does not increase the FC local distortions and then the total distortion. Last, given P ,

Q, and RA, TE
[P ,Q](n) = arg minm ‖pn − qm‖ minimizes the total distortion, indicating that

the total distortion is not increased by Step (iv). In other words, the algorithm generates a

positive non-increasing sequence of distortion values and therefore will converge.

4.5.3 Combining Lloyd Algorithm

Note that there is no guarantee to achieve a minimum distortion with OTL when M > 1.

The distortion with TTL converges to the local minimum, however, depends on the initial
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deployments. Our simulations show that starting with some initial deployments, TTL ends

with large minimum distortions. A natural idea to avoid these issues is to combine the two

algorithms. First, OTL is applied to obtain a deployment with small distortion as the initial

deployment for TTL. Second, TTL is applied to further decrease the distortion. We refer to

such an algorithm as Combining Lloyd (CL) Algorithm.

4.6 Performance Evaluation

We provide the simulation results in two two-tier WSNs: (i) WSN1: A two-tier WSN includ-

ing one FC and 20 APs; (ii) WSN2: A two-tier WSN including 4 FCs and 20 APs. Similar

to [6], [32], the target region is set to Ω = [0, 10]2 and β is set to 1. The traffic density

function is the sum of five Gaussian functions of the form 5 exp(0.5(−(x−xc)2− (y− yc)2)),

where centers (xc, yc) are (8,1), (4,9), (7.6,7.6), (9.4,5), and (2,2). We generate 50 initial

AP and FC deployments on Ω randomly, i.e, every node location is generated with uniform

distribution on Ω. For each initial AP and FC deployments, we connect every AP to its

closest FC and then assign the corresponding EVD to the AP node. The maximum number

of iterations is set to 100. FCs and APs are denoted, respectively, by colored five-pointed

stars and colored circles. The corresponding geometric centroid of AP cells are denoted by

colored crosses. Each FC and its connected APs form a cluster. To make clusters more

visible, the symbols in the same cluster are filled with the same color. As discussed in

Section 4.1, the distortion is the weighted power. We compare the distortion of my three

algorithms (OTL, TTL, and CL) with Minimum Energy Routing (MER), Agglomerative

Clustering (AC) [75], and Divisive Clustering (DC) [75] algorithms. AC and DC are two

clustering methods applied to multi-tier networks. MER combines Voronoi Partition [33]

and Bellman-Ford algorithms. On one hand, Voronoi Partition is the optimal cell partition

in the first tier (one-tier WSNs). On the other hand, when edge costs are set as the AP

powers, Bellman-Ford Algorithm provides the flow with the minimum energy consumption
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[70], [120], indicating the optimal routing protocol in one tier network. Note that multi-hop

communication among sensors is unnecessary because of the small distance between a sensor

and its corresponding AP [68]. Therefore, the existing routing protocol, Bellman-Ford, is

only applied to the second tier.

Figs. 4.3a, 4.3b, 4.3c, and 4.3d show one example of the final deployments of the four

algorithms (MER, AC, DC, and CL) in WSN1. For MER, the multi-hop paths are denoted

by black dotted lines in 4.3a. From Fig. 4.3d, we can find that APs are placed on the

line between the corresponding FCs and cell centroids, as expected from Proposition 3.

Compared to MER, CL saves 41.90% of the weighted total power in WSN1. However,

AC and DC consume more energy compared to MER. Figs. 4.4a, 4.4b, 4.4c, and 4.4d

show examples of the final deployments of MER, AC, DC, and CL, in WSN2, respectively.

Compared to MER, the AC, DC, and CL save, respectively, 60.69%, 69.92%, and 81.55% of

the weighted total power. Moreover, in Figs. 4.3 and 4.4, the FC deployments of the three

algorithms, AC, DC, and CL, are approximately the same, but the AP deployments of AC

and DC are more uniform than that of CL. Intuitively, compared to the MER, AC, and DC

Algorithms, the APs are deployed closer to FCs and then produce smaller AP powers in CL

Algorithm, which justifies my observation that CL saves more power compared to the other

three algorithms.

Figs 4.5a and 4.5b illustrate the weighted total power (4.7) of different algorithms in WSN1

and WSN2. Our algorithms, OTL, TTL, and CL, outperform MER, AC, and DC in both

networks, especially when β is large (the energy consumed on APs is significant). In WSN1,

the three proposed algorithms have almost the same weighted power savings. Although it

cannot be seen from the figure, for WSN2, TTL’s power saving relative to MER is about

1% better than that of OTL. Comparing the two schemes directly, the power saving of TTL

over that of OTL is about 1-3%. Besides, CL, whose performance is better than OTL and

TTL in WSN2, requires the shortest running time among the three algorithms. When β = 1,

the running time of repeating each algorithm 50 times is provided in Table 4.1. Note that
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(a) (b)

(c) (d)

Figure 4.3: AP and FC deployments of different algorithms in WSN1. (a) MER. (b) AC (c) DC. (d) CL.

the running time is dominated by the calculation of the partition. OTL calculates Voronoi

partitions for both FCs and APs. TTL calculates energy Voronoi partitions for APs only.

Therefore, the running time of OTL increases as we increase the number of FCs. On the

contrary, the running times of TTL are almost the same because WSN1 and WSN2 have
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(a) (b)

(c) (d)

Figure 4.4: AP and FC deployments of different algorithms in WSN2. (a) MER. (b) AC (c) DC. (d) CL.

the same number of APs. CL, as a combination of OTL and TTL, is associated with the

running time that is related to the number of FCs. Besides, TTL spends a lot of time to

relocate APs with zero-measure partitions because of the bad initial deployments. However,

CL attains a good deployment by operating OTL before TTL which greatly reduces the time
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Figure 4.5: The weighted power comparison of different Algorithms. (a) WSN1. (b) WSN2.

consumed by AP relocation. Consequently, as shown in Table 4.1, CL requires the shortest

running time among the three algorithms.

Figs. 4.6a and 4.6b illustrate the comparison between the AP Sensor power pair (PS ,PA)

using CL with different values of β and the AP-Sensor power function A(S) in (4.5). One

FC and twenty APs are provided, i.e., M = 1 and N = 20. Fig. 4.6a is based on a one-

dimensional region uniformly distributed in [0, 1] and Fig. 4.6b is based on WSN1. The green

dotted line shows the value of DR(20) and the orange dotted line shows the value of DR(1).

DR(1) and DR(20) in Fig. 4.6a are theoretical values derived from the quantization theory,

i.e., DR(1) = 1
12

and DR(20) = 1
12∗202 . DR(1) and DR(20) in Fig. 4.6b are obtained from

repeating Lloyd Algorithm and choosing the smallest distortion. From Figs. 4.6a and 4.6b,

we find that the AP Sensor power pair (PS ,PA) obtained from CL matches the theoretical

AP-Sensor power function very well.

Table 4.1: Running times(s)

Algorithms WSN1 WSN2
OTL 1931.41 2196.03
TTL 7078.12 7047.40
CL 1858.88 1968.30
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Figure 4.6: The comparison between the AP-Sensor power function and the performance of TTL: (a) One-
dimensional region uniformly distributed in [0,1]. (b) WSN1.
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Chapter 5

Movement-efficient Sensor

Deployment in Wireless Sensor

Networks

In this Chapter, I study a mobile wireless sensor network (MWSN) consisting of multiple

mobile sensors or robots. To take all the three factors (sensing quality, energy consumption,

and connectivity) into consideration, I model the sensor deployment problem as a constrained

optimization problem. The main goal is to find an optimal sensor deployment (or relocation)

to optimize the sensing quality with a limited communication range and a specific network

lifetime constraint. Then, the necessary conditions for the optimal sensor deployment in both

homogeneous and heterogeneous MWSNs are derived. Using these necessary conditions, both

centralized and distributed algorithms are provide to make a flexible and explicit trade-off

between sensing uncertainty and network lifetime. The proposed algorithms are successfully

extended to more applications, such as area coverage and target coverage, via properly

selected density functions.
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5.1 System Model and Problem Formulation

Let Ω ∈ R2 be a convex target region including its interior. Given N sensors in the target

area Ω, sensor deployment before and after the relocation are, respectively, defined by P0 =

(p0
1, . . . ,p

0
N) ⊂ ΩN and P = (p1, . . . ,pN) ⊂ ΩN , where p0

n is Sensor n’s initial location and

pn is Sensor n’s final location. Let IΩ = {1, . . . , N} be the set of sensors in the MWSN. A

cell partitionR(P) is defined as a collection of N disjoint subsets, {Rn(P)}n∈IΩ , whose union

is Ω. We assume that Sensor n only monitors the events that occurred in its cell partition

Rn(P), ∀n ∈ IΩ. Let ‖·‖ denote the Euclidean distance, card(A) be the number of elements

in set A, ∂W be the boundary of a region W ⊂ Ω, and B(c, r) = {ω| ‖ω− c‖ ≤ r} be a ball

centered at c with radius r.

In the binary disk communication model [2]–[9], [20]–[22], two sensor nodes can establish

reliable communications within one hop if and only if the distance between the two is smaller

than Rc, where Rc is referred to as the communication range. We define the access point

(AP) as the sensor node that can communicate with the outside information world. Without

loss of generality, we assume that Sensor 1 acts as the AP. Other sensor nodes can transfer

data outside if and only if there exist paths from the sensors to the AP. Each path consists

of a sequence of sensor nodes where each hop distance is smaller than Rc. Sensor nodes that

are connected to the AP via one-hop or multi-hop communications construct the backbone

network. Let S(P) be the backbone network when the sensor deployment is P. The sensors

in S(P) are referred to as active sensors while the sensors outside of S(P) are referred to

as inactive sensors. Accordingly, I define the active sensor deployment, H(P), as the vector

of locations of active sensors. In particular, we have P = H(P) and card(S(P)) = n when

S(P) includes all sensor nodes. If all sensors are included in the backbone network, we call

the network fully connected. Otherwise, the network is divided into several disconnected

sub-graphs. For convenience, we assume that the initial sensor deployment constructs a

fully connected network, i.e., P0 = H(P0).
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To evaluate the sensing uncertainty in heterogeneous MWSNs, we consider the distortion

function [32]–[34] defined by

D(P) =
N∑
n=1

∫
Rn(P)

ηn‖pn − ω‖2f(ω)dω, (5.1)

where the sensing cost parameters ηn ∈ (0, 1] are constants that depend on Sensor n’s

characteristics, e.g. sensitivity, and f(ω) : Ω→ R+ is a spatial density function that reflects

the frequency of random events taking place over the target region. In homogeneous MWSNs,

sensors have identical parameters, i.e., ηn = η,∀n ∈ IΩ. Note that the sensing uncertainty

is only determined by the final deployment P.

However, as explained previously, when the communication range Rc is limited, some sensor

nodes cannot transfer their data back to the AP. As a result, only the sensor nodes in the

backbone network can contribute to the sensing and therefore the performance should be

revised as

D(P) =
∑

n∈S(P)

∫
Rn(H(P))

ηn‖pn − ω‖2f(ω)dω, (5.2)

The optimal partition for the performance function (5.2) is Multiplicatively Weighted

Voronoi Diagram (MWVD) [32], which can be applied to both homogeneous and hetero-

geneous MWSNs. The MWVD of Ω generated by P is the collection of sets {V H
n (P)}n∈IΩ

defined by

V H
n (P) = {ω ∈ Ω|ηn‖ω − pn‖2 ≤ ηm‖ω − pm‖2,∀m ∈ IΩ}. (5.3)

In particular, the MWVD for homogeneous MWSNs degenerates to the Voronoi Dia-

gram [33]. From now on, we use V H(P) = {V H
n (P)}n∈IΩ to replace partition R(P) =

{Rn(P)}n∈IΩ . Placing (5.3) back to (5.2), we can rewrite the distortion as

D(P) =
∑

n∈S(P)

∫
V H
n (H(P))

ηn‖pn − ω‖2f(ω)dω. (5.4)
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The same distortion can also be applied to formulate the communication energy consumption

among densely deployed sensors where the f(·) presents the sensor density function [54].

Next, we review a classic energy consumption model for the mobile sensor networks. Since the

sensor movement dominates the power consumption, we only consider the power consumption

for sensor movement. As I mentioned in Section 1.1, the energy consumption for one-step

movement is linearly related to the moving distance. Therefore, the energy consumption for

Sensor n moving from a to b can be defined [21]–[23], [35], [57], [58] as

En(a, b) = ξn‖b− a‖, (5.5)

where the moving cost parameter ξn is a predetermined constant that depends on Sensor n’s

energy efficiency.

5.2 Centralized sensor deployment with a network life-

time constraint

In a centralized sensor deployment scenario, a fusion center or base station collects global

information (all sensor locations and parameters) and then computes and determines the

final destinations for the sensors. After receiving the decisions from the fusion center, sensors

move to their final destinations directly. It is self-evident that this point-to-point relocation

is the most efficient strategy in terms of energy consumption.

5.2.1 Problem formulation

Since sensors move to their final destinations directly, the energy consumption for Sensor n

is formulated as

En(P) = En(p0
n,pn) = ξn‖pn − p0

n‖, (5.6)
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where pn is Sensor n’s final destination. Our main goal is minimizing the sensing uncertainty

defined by (5.4) given a constraint on the network lifetime T . To guarantee a required

network lifetime, each sensor should be assigned an energy threshold (or maximum movement

distance) for relocation [28]–[31]. Therefore, the corresponding constrained optimization

problem, which is referred to as Problem A, is

minimize
P

D(P) (5.7)

s.t. En(P) ≤ γn, n ∈ IΩ, (5.8)

where γn is the maximum energy consumption of Sensor n. Let en be the battery energy

of Sensor n at the initial time and β (watt) be Sensor n’s power consumption (which is

dominated by communication, sensing, and computation) after the relocation. To ensure

the network lifetime, T , we have minn (en − En(P)) ≥ βT , and thus γn = en − βT, n ∈ IΩ.

5.2.2 The Optimal Sensor Deployment

Lemma 10. Given a fully connected initial deployment, i.e., P0 = H(P0), the optimal

deployment P∗ for Problem A in a homogeneous MWSN is also fully connected, i.e., P∗ =

H(P∗).

The proof is provided in Appendix A.11.

According to Lemma 10, homogeneous networks should keep connectivity after optimal sen-

sor movements as long as the initial deployment is fully connected. To analyze the network

connectivity, I introduce two important concepts: desired region (DR) and feasible region

(FR). Let I ⊆ IΩ be an arbitrary sensor set. For convenience, the sensors in I and IΩ−I are

referred to as internal and external sensors, respectively. For each sensor, n, the set of all loca-

tions of n that result in a connected I is called the DR of n. An internal sensor’s DR for sensor

set I is defined as the region in which if the sensor is placed, the sensors in I are connected.

As a special case, if an internal sensor’s DR is empty, the sensors in I cannot construct

a connected network. Without the internal sensor, n ∈ I, the rest of the internal sensors,
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I−{n}, consists of Kn(P, I) disjoint components: Un1(P, I), Un2(P, I), · · · , UnKn(P,I)(P, I),

where the sensors in each component are connected and
⋃Kn(P,I)
k=1 Unk(P, I) = I − {n}. The

internal sensors are connected if and only if Sensor n connects to all {Unk(P, I)}s. Thus,

internal sensors’ DRs for set I are formulated as

Dn(P, I) =

Kn(P,I)⋂
k=1

 ⋃
j∈Unk(P,I)

B (pj, Rc)

 ,∀n ∈ I. (5.9)

Although we represent DRs as functions of P for convenience, Sensor n’s DR is in fact deter-

mined by all sensors except itself. For an internal sensor n ∈ I, the condition pn ∈ Dn(P, I)1

guarantees that all internal sensors can communicate with each other. In particular, if the

AP is included in I, we have I ⊆ S(P). In addition, it is trivial to show that for two sensors

m,n ∈ I, pm ∈ Dm(P, I) is equivalent to pn ∈ Dn(P, I).

An example for 12 sensors with Rc = 1 is illustrated in Fig. 5.1a. The internal sensor

set I is defined as all sensors, i.e., I = IΩ = {1, . . . , 12}. Consider n = 1, to calculate

D1 (P, IΩ), the rest of the sensors are divided into K1 = 2 components U11 = {2, 3, 4, 5, 6, 7}

and U12 = {8, 9, 10, 11, 12}. According to the definition of DR, the green overlap between

the cyan region
[⋃7

j=2 B (pj, Rc)
]

and the yellow region
[⋃12

j=8 B (pj, Rc)
]

in Fig. 5.1a con-

structs Sensor 1’s DR, D1 (P, IΩ). Obviously, if p1 is placed within D1 (P, IΩ), all 12 sen-

sors can communicate with each other. However, if the internal sensor set I is defined as

{1, 4, 5, 6, 9, 10, 11}, the corresponding DR for Sensor 1 will be empty, indicating that the

sensors {1, 4, 5, 6, 9, 10, 11} cannot construct a connected network.

Next, I define W (P, I) ,
⋃
n∈IΩ−I B (pn, Rc). It is self-evident that the internal sensors

placed in W (P, I) connect to at least one external sensor. As a result, the sensor set I

is the exact backbone network if and only if 1 ∈ I and pn ∈ Dn(P, I)
⋂
Wc (P, I), where

Wc (P, I) = Ω−W (P, I) is the complement ofW (P, I). In what follows, I take the energy

constraints (5.8) into account, and propose the concept of FR defined by

1Remark: When Sensor n is placed in its DR for I, some external sensors, m ∈ IΩ−I, may also connect
to internal sensors.
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(a) (b) (c)

Figure 5.1: Example1: (a) DR and FR for Sensor 1; (b) ADR and AFR for Sensor 1; (c) SDR and SFR
for Sensor 1; DR, ADR, and SDR are shown by green. FR, AFR, and SFR are shown by the intersections
of green regions and the magenta circles. Communication ranges, movement range, and Connections are,
respectively, denoted by black doted curves, magenta solid curve, and red lines.

Fn(P, I) , Dn(P, I)
⋂

B
(

p0
n,
γn
ξn

)
, n ∈ I, (5.10)

where the energy constraint, ξn‖pn−p0
n‖ ≤ γn, is satisfied by the condition pn ∈ B

(
p0
n,

γn
ξn

)
.

The example of FR for Sensor 1 is illustrated in Fig. 5.1a. The magenta circle demonstrates

Sensor 1’s movement range B
(
p0

1,
γn
ξn

)
. Then, the intersection of green regions and the

magenta circle in Fig. 5.1a is Sensor 1’s FR, F1 (P, IΩ). Obviously, if p1 is placed within

F1 (P, IΩ), we have (a) all 12 sensors can communicate with each other and (b) Sensor 1’s

energy constraint is also satisfied.

Note that pn ∈ Fn(P, I) implicitly implies that Fn(P, I) 6= ∅. Accordingly, the set of

deployments that not only constructs the backbone network S (P) = I but also satisfies the

energy constraints can be formulated as

Γ (I) = {P|1 ∈ I,pn ∈ Fn(P, I)
⋂
Wc (P, I) ,∀n ∈ I}. (5.11)

Based on the aforementioned concepts, I propose the following necessary condition for the

optimal deployment.
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Theorem 5.1. Let P∗=(p∗1,. . .,p
∗
N) be the optimal deployment for Problem A. The neces-

sary conditions for the optimal deployment are

(i) cn(P∗) /∈ [Fn(P∗,S(P∗))
⋂
W(P∗,S(P∗))] ,∀n ∈ S(P∗)

(ii)p∗n=


cn(P∗), if cn(P∗)∈ Fn(P∗,S(P∗))

⋂
Wc(P∗,S(P∗))

arg min
q∈∂Fn(P∗,S(P∗))

‖q−cn(P∗)‖, if cn(P∗)∈ Ω− Fn(P∗,S(P∗))

,∀n ∈ S(P∗)

The proof is provided in Appendix A.12.

According to Theorem 5.1, if n is a sensor in the backbone network S(P∗), its optimal

location, p∗n, is either at the centroid cn(P∗) or on the boundary of Fn(P∗,S(P∗)). Note

that Theorem 5.1 only provides the necessary conditions for the sensors in the backbone

network S(P∗) because sensors that are not in the backbone network make no contribution

to the distortion (5.4). In particular, by Lemma 10, all sensors in homogeneous MWSNs

should be included in the backbone network, i.e., S (P∗) = IΩ, and therefore the necessary

conditions in Theorem 5.1 can be extended to all sensors in homogeneous MWSNs. Since

there are no inactive sensors in homogeneous MWSNs, we have W(P∗,S(P∗)) = ∅. Then,

the necessary conditions for the optimal deployment in homogeneous MWSNs can be refined

as

p∗n=


cn(P∗), if cn(P∗)∈ Fn(P∗, IΩ)

arg min
q∈∂Fn(P∗,IΩ)

‖q−cn(P∗)‖, if cn(P∗) /∈ Fn(P∗, IΩ)

, ∀n ∈ IΩ (5.12)

With the help of the necessary conditions in Theorem 5.1, I design centralized Lloyd-like

algorithms to find the optimal sensor deployment with a network lifetime constraint in the

next subsection.

5.2.3 Centralized Lloyd-like Algorithms

To optimize the sensor deployments in homogeneous and heterogeneous MWSNs, I propose

two centralized Lloyd-like algorithms: Centralized Constrained Movement Lloyd (CCML)
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Algorithm and Backward-stepwise Centralized Constrained Movement Lloyd (BCCML) Al-

gorithm. CCML Algorithm, which is designed for homogeneous MWSNs, keeps all sensors in

the backbone network. Based on CCML Algorithm, BCCML Algorithm recursively selects

the optimal sensor set to construct the backbone network for heterogeneous MWSNs.

CCML Algorithm

According to our analysis in Section 5.2.2, Sensor n’s movement should be restrained within

its desired region, Dn(P, IΩ), in order to keep full-connectivity, i.e., I = IΩ. Since the

desired region is primarily influenced by the neighboring sensor nodes, we can approximate

it by

D̃n(P, IΩ) =

Kn(P,I)⋂
k=1

 ⋃
j∈Unk(P,IΩ)

⋂
Nn(P)

B (pj, Rc)

 , (5.13)

where Nn(P) is the set of Sensor n’s neighbors. Then, FR is approximated by

F̃n(P, IΩ) = D̃n(P, IΩ)
⋂

B
(

p0
n,
γn
ξn

)
(5.14)

Note that the approximation in (5.14) can be calculated locally, but to calculate the exact

feasible region, one needs global information. The above two approximations are referred

to as approximated desired region (ADR) and approximated feasible region (AFR). The

examples of ADR, and AFR for Sensor 1 are illustrated in Fig. 5.1b. Different from the DR

shown in Fig. 5.1a, the ADR only considers Sensor 1’s neighbors, N1 = {2, 3, 12}. Thus,

the green overlap between cyan region
[⋃3

j=2 B (pj, Rc)
]

and yellow region B (p12, Rc) in Fig.

5.1b construct Sensor 1’s ADR, D̃1 (P, IΩ). Then, the intersection of the green region and

the magenta circle in Fig. 5.1b is Sensor 1’s AFR, F̃1 (P, IΩ). Note that Sensor 1’s FR

in Fig. 5.1a consists of two disconnected regions while Sensor 1’s AFR in Fig. 5.1b is a

connected region.
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Now, I provide the details of CCML Algorithm. Like Lloyd Algorithm, the proposed al-

gorithm iterates between two steps: (1) Partition optimization: Partitioning is done by

MWVDs; (2) Location optimization: each sensor moves to the closest point to its centroid

cn(P) within F̃n(P, IΩ). More details about CCML Algorithm are shown in Algorithm 3.

Algorithm 3 Centralized Constrained Movement Lloyd Algorithm

Input: Target area Ω; Probability density function f(·); the initial sensor deployment P0;
the required network lifetime T ; the stop threshold ε; the communication range Rc.

Output: Sensors deployment P; Distortion D(P).
1: Calculate the energy constraints {γn}n∈IΩ in terms of T
2: Initialize sensor deployment P = P0

3: do
4: Calculate the old distortion Dold = D(P)
5: Do multiplicatively weighted Voronoi partition
6: for n = 1 to N do
7: Calculate the feasible region {Fn(P, IΩ)}
8: Calculate the critical point q, closest point to cn(P) within {Fn(P, IΩ)}
9: Update sensor deployment pn = q

10: Calculate the new distortion Dnew = D(P)
11: end for
12: while Dold−Dnew

Dold
> ε

Theorem 5.2. CCML Algorithm is an iterative improvement algorithm, i.e., the distortion

decreases at each iteration and converges.

Proof. CCML Algorithm is an iterative improvement algorithm only if both steps in CCML

Algorithm do not increase the distortion (5.4) subject to the constraints (5.8). In Section 5.1,

I have proved that MWVD is the optimal cell partition for a given deployment. Therefore,

Step (1) of CCML will not increase the distortion. During Step (2) of CCML, the cell

partition is fixed as MWVD. In Appendix A, I show that Sensor n’s optimal location should

minimize its distance to the centroid cn(P) when the cell partition is fixed. In addition,

by the analysis in Section 5.2.2, Sensor n’s movement should be restricted in F̃n(P, IΩ) in

order to guarantee both (i) energy constraints (5.8) and (ii) full-connectivity which has been

proved (in Lemma 10) as a necessary condition for the optimum solution. Accordingly, Step

(2) of CCML will not increase the distortion. Therefore, CCML Algorithm is an iterative
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improvement algorithm. Furthermoer, the distortion has a lower bound 0. As a result, the

distortion of CCML Algorithm is non-increasing with a lower bound, indicating that the

distortion converges.

BCCML Algorithm

Sensors with low-battery energy have small energy to spend on motion, which results in

small movement ranges. To keep the connection with a low-battery node, e.g., Sensor n,

the neighboring sensors’ movements will be restricted by the limited communication range

of Sensor n, even if Sensor n’s neighbors have access to large battery energy. In this case, if

Sensor n is not used in the MWSN, the neighboring sensors will have more freedom to move

and probably further decrease the overall distortion. Given the current sensor set I, sensors

that decrease the distortion when removed from I are referred to as bottleneck sensors. To

select the optimal sensor set as our backbone network, BCCML Algorithm starts with all

sensors and repeatedly eliminates the least significant bottleneck sensor in terms of reducing

the distortion until no bottleneck sensor is left. Intuitively, a bottleneck sensor n should

satisfy the following conditions: (i) After eliminating n, the rest of sensors in I should be

connected, i.e., Kn(P, I) = 1 and Un1(P, I) = I − {n}. In other words, Sensor n is a

leaf node in the network. Otherwise, the network will be divided into multiple sub-graphs

after eliminating n, and then fewer sensors will be used in the sensing task. (ii) Sensor

n should already run out of its movement energy, i.e., ξn‖pn − p0
n‖ = γn. (iii) At least

one of its neighbors has redundant energy, i.e., ∃m ∈ Nn, ξm‖pm − p0
m‖ < γm. The above

three conditions are referred to as the bottleneck criterion. To speed up the computation,

BCCML Algorithm merely eliminates bottleneck sensors satisfying the bottleneck criterion.

The details of BCCML Algorithm are shown in Algorithm 4.
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Algorithm 4 Backwards-stepwise Centralized Constrained Movement Lloyd Algorithm

Input: Target area Ω; probability density function f(·); the initial sensor deployment P0;
the required network lifetime T ; the stop threshold ε; the communication range Rc.

Output: Sensors deployment P; Distortion D(P).
1: Calculate the energy constraints {γn}n∈IΩ in terms of T
2: Initialize sensor set I = IΩ

3: Run CCML: [P, D(P)] = CCML(Ω,P0, Rc, {γn}n∈IΩ , f(·), ε, I)
4: for k = 1 to N − 1 do
5: Identify bottleneck sensor set Ib by checking the bottleneck criterion
6: LSS = null
7: for i ∈ Ib do
8: Generate a temporary sensor set Î = I − i
9: Run CCML: [P̂,D(P̂)] = CCML(Ω,P0, Rc, {γn}n∈I , f(·), ε, Î)

10: if D(P̂) < D(P) then
11: Update the least significant sensor (LSS): LSS = i, P = P̂
12: end if
13: end for
14: if LSS 6= null then
15: Eliminate the least significant sensor: I = I − LSS
16: else
17: break
18: end if
19: end for

5.3 Distributed sensor deployment with a network life-

time constraint

5.3.1 Problem formulation

In the distributed scenario, there is no fusion center, and sensors determine their own des-

tinations. In general, sensors are supposed to only collect neighboring information (the

locations and parameters of its neighbors and itself). As I discussed in Section 5.2, the

most energy-efficient relocation strategy is moving a sensor from its initial location to the

final destination in one step. Unfortunately, this one-step relocation strategy requires global

information and cannot be implemented in a distributed scenario. In fact, the distributed

sensor relocation methods in the literature are categorized into continuous and discrete time
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systems [3]–[10], [13], [15]–[17], [32]. In the continuous time systems2, sensors keep com-

municating with their neighbors during continuous movements. Then, dynamic systems are

widely used to control sensors’s first order dynamics, velocity, and/or second order dynamics,

acceleration [7], [8], [13]. However, in the discrete time system, sensors only communicate

with their neighbors at some discrete time instances, and their relocation is divided into

multiple steps [10]. Regarding the discrete nature of the relocation, the sensors should be

synchronized with each other in some fashion. Some iterative algorithms, such as Lloyd-like

algorithms and virtual-force based algorithms, have been applied to this scenario [9], [10],

[15]–[17], [32], [34]. To reduce the communication costs during the relocation, I use a discrete

time system to control sensors’ movements.

In what follows, I concentrate on the sensor relocation with multiple stops. The sensor

deployment at the k-th stop is defined by Pk = (pk1, . . . ,p
k
N) ⊂ ΩN , where pkn is Sensor n’s

location at the k-th stop. LetK be the maximum number of stops (iterations) for each sensor.

For convenience, each sensor is extended to have K stops. For a sensor with J physical

stops, e.g. Sensor n, its redundant stops are extended as pkn = pJn,∀k ∈ {J + 1, . . . , K}. In

particular, P0 = (p0
1, . . . ,p

0
N) ⊂ ΩN and PK = (pK1 , . . . ,p

K
N ) ⊂ ΩN are the initial and final

deployments, respectively. Sensor n’s total movement distance is
∑K

k=1 ‖pkn − pk−1
n ‖, and

therefore Sensor n’s individual energy consumption is formulated as

K∑
k=1

E (pk−1
n ,pk) = ξn

K∑
k=1

‖pkn − pk−1
n ‖. (5.15)

Now, we discuss the distributed realization for the node deployment with (i) network lifetime

constraint and (ii) limited communication range. According to the analysis in [10], the move-

ment distance should be constrained at each iteration in order to avoid zigzag movements.

2Remark: The energy formulation (5.5) works for a one-step movement where the optimal velocity and
acceleration is determined by the distance [57]. However, the movement in continuous time systems is not
step-wise and the corresponding motion energy is a function of velocity [13]. Thus, the energy model in
this paper cannot be applied to continuous time systems. The continuous sensor relocation in MWSNs is an
interesting future work.
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Therefore, we limit Sensor n’s movement distance in the k-th iteration by an upper bound

dkn. Note that dkn can be a constant or a function of the previous and current deployments.

For instance, dkn = α‖pk−1− ck−1‖ in Lloyd-α [10], where α ∈ (0, 1]. Moreover, to guarantee

the required network lifetime, another constraint ξn
∑k

i=1 ‖pin − pi−1
n ‖ ≤ γn should be taken

into account. Furthermore, full-connectivity, which is ignored in most distributed sensor re-

location algorithms, is definitely required to obtain neighboring information. Then, another

constraint H
(
Pk
)

= Pk should also be considered. With the above constraints, each sensor

in the distributed scenario optimizes its next stop, Pk, in terms of the previous and current

neighboring information, Pi,∀i < k. In particular, the cell partition in Lloyd-like algorithms

is generated by the current deployment [9], [10], [15]–[17], [32], [34], Rn = V H
n (Pk−1). The

corresponding optimization problem, which is referred to as Problem B, is thus represented

as

minimize
Pk

N∑
n=1

∫
V H
n (Pk−1)

ηn‖pkn − ω‖2f(ω)dω (5.16)

s.t. H
(
Pk
)

= Pk (5.17)

‖pkn − pk−1
n ‖ ≤ min

(
ẽkn
ξn
, dkn

)
, n ∈ IΩ (5.18)

where ẽkn = γn − ξn
∑k−1

i=1 ‖pin − pi−1
n ‖ is the residual energy at the k-th iteration. Since

full-connectivity is guaranteed by constraint (5.17), all sensors contribute to the distortion

(5.16).

5.3.2 Semi-desired Region and Semi-feasible Region

Before studying the optimal solution for (5.16), we analyze the constraints (5.17) and (5.18).

In the distributed scenario, sensors are supposed to relocate simultaneously. However,

the full-connectivity strategy used in CCML and BCCML requires a one-by-one relocation

scheme, which is not possible in large-scale distributed networks. To follow full-connectivity

constraint (5.17) in a large-scale distributed network, I introduce another important concept,

semi-desired region (SDR), which is a shrunk version of the approximated desired region
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D̃n (P, IΩ). Let G(P) = (V(P), E(P)) be the undirected connectivity graph comprising a set

of vertices V = {p1, . . . ,pN} and a set of edges E = {eij}. The edge cost, wij = ‖pi−pj‖, is

defined as the Euclidean distance between the end vertices of the edge, eij, and there exists

an edge between pi and pj in G(P) if and only if wij ≤ Rc. For a fully connected graph, G(P),

the corresponding minimum spanning tree (MST) is defined as G̃(P) =
(
V(P), Ẽ(P)

)
, where

Ẽ(P) ⊂ E(P) is a subset of size |V(P)| − 1. Let N s
n(P) = {m|ẽnm ∈ Ẽ(P) or ẽmn ∈ Ẽ(P)}

be the set of Sensor n’s neighbors in MST. Then, the SDRs are defined as

Ds
n(P) =

⋂
m∈N sn(P)

B
(

pm + pn
2

,
Rc

2

)
,∀n ∈ IΩ. (5.19)

An example of SDR is illustrated in Fig. 5.1c. In this example, 12 sensors with communi-

cation range Rc = 1 are deployed on the plane, indicating that IΩ = {1, . . . , 12}. The edges

in MST are denoted by red lines in Fig. 5.1c. Also, Sensor 1’s movement range, B (p0
1, dn),

is demonstrated by a magenta circle. According to the definition of semi-desired region, the

green overlap between cyan region B
(
p1+p2

2
, Rc

2

)
and yellow region B

(
p1+p12

2
, Rc

2

)
in Fig. 5.1c

constructs Sensor 1’s semi-desired region, Ds
1 (P). From Figs. 5.1a, 5.1b, and 5.1c, it is also

clear that the semi-desired region is a subset of the approximated desired region and the

desired region, i.e., Ds
1(P) ⊆ D̃1(P, IΩ) ⊆ D1(P, IΩ).

Theorem 5.3. Starting with a fully connected network (S(Pk) = IΩ), the network is still

fully connected (S(Pk+1) = IΩ) if sensors simultaneously move within their respective semi-

desired regions i.e., pk+1
n ∈ Ds

n

(
Pk
)
,∀n ∈ IΩ.

The proof is provided in Appendix A.13.

Then, I define the semi-feasible regions as

Fsn(P, ẽkn, d
k
n) = Ds

n(P)
⋂

B
(

p0
n,min

(
ẽkn
ξn
, dkn

))
,∀n ∈ IΩ, (5.20)

It is trivial to show that both (5.17) and (5.18) are satisfied if sensors move within their

semi-feasible regions. Let Pk = {Pk|H
(
Pk
)

= Pk, ‖pkn − pk−1
n ‖ ≤ min

(
ẽkn
ξn
, dkn

)
,∀n ∈ IΩ}
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be the set of deployments that follow constraints (5.17) and (5.18), and P̂k = {Pk|pkn ∈

Fsn(P, ẽkn, d
k
n),∀n ∈ IΩ} be the set of deployments that are placed within semi-feasible regions.

Then, we have P̂k ⊆ Pk. To simplify the problem, we replace Pk by P̂k, and the optimization

problem is represented as N independent problems:

minimize
Pk

∫
V H
n (Pk−1)

ηn‖pkn − ω‖2f(ω)dω (5.21)

s.t. pkn ∈ Fsn(P, ẽkn, d
k
n) (5.22)

where n ∈ IΩ. By parallel axis theorem[121], (5.21) can be rewritten as

∫
V H
n (Pk−1)

ηn‖ck−1
n − ω‖2f(ω)dω + ηn‖pkn − ck−1

n ‖2vk−1
n , (5.23)

where vk−1
n =

∫
V H
n (Pk−1) f(ω)dω and ck−1

n =

∫
V Hn (Pk−1) ωf(ω)dω∫
V Hn (Pk−1) f(ω)dω

. Since the first term in (5.23)

is a constant, Sensor n’s distortion is an increasing function of the distance from pkn to

ck−1
n . Accordingly, the optimal solution for (5.21) with constraint (5.22) is the point closet

to ck−1
n within Fsn(P, ẽkn, d

k
n), i.e., pkn = arg minq∈Fsn(P,ẽkn,d

k
n) ‖q − ck−1

n ‖. By moving sensors to

arg minq∈Fsn(P,ẽkn,d
k
n) ‖q − ck−1

n ‖ at each iteration, we will have a distributed realization, Dis-

tributed Constrained Movement Lloyd (DCML) Algorithm. According to the above analy-

sis, DCML Algorithm will result in a deployment that guarantees both connectivity and the

required network lifetime. Like CCML Algorithm, DCML Algorithm is an iterative improve-

ment algorithm in which the distortion is non-increasing and converges. The proof is similar

to that of Theorem 5.2 and therefore omitted here. More details about DCML Algorithm

are shown in Algorithm 5.
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Algorithm 5 Distributed Constrained-Movement Lloyd Algorithm

Input: Target area Ω; probability density function f(·); the initial sensor deployment P0;
the required network lifetime T ; The number of stops K; the communication range Rc.

Output: Sensors deployments at K stops {Pk}k∈{1,...,K}; Distortion at the final deployment
D(PK).

1: Calculate energy constraints γn and initialize the residual energy ẽ1
n = γn,∀n ∈ IΩ

2: for k = 1 to K do
3: Determine the maximum movement distances dkn = min

(
ẽkn
ξn
, 2ẽkn
K−k+1

)
, n ∈ IΩ

4: Sensors obtain their MST neighbors {N s
n}n∈IΩ by GHS Algorithm [122]

5: Do multiplicatively weighted Voronoi partition, and then update centroid
{cn(Pk−1)}n∈IΩ

6: Calculate semi-desired regions {Ds
n(Pk−1, dkn)}n∈IΩ

7: Calculate the critical point qkn, closest point to cn(Pk−1) within Ds
n(Pk−1, dkn), ∀n ∈ IΩ

8: Each sensor moves to its next stop pkn = pk−1
n + min

(
γn

2Kξn
, ‖qkn − pk−1

n ‖
)

qkn−p
k−1
n

‖qkn−p
k−1
n ‖

,

∀n ∈ IΩ

9: Update residual energy ẽk+1
n = ẽkn − ξn‖pkn − pk−1

n ‖,∀n ∈ IΩ

10: end for

5.4 Algorithm complexity and communication overhead

5.4.1 Algorithm Complexity

Before I calculate the complexity of different algorithms, I need to study the computational

complexity of FR, AFR, SFR, cn(P) and V H
n (P). Finding Sensor n’s FR, Fn(P, I), includes

the following four stages: (i) DetermineKn(P, I) disjoint components {Unk(P, I)}k=1,...,Kn(P,I)

by Breadth First Search (BFS) or Depth First Search (DFS) with time complexityO(card(I))3.

(ii) Calculate the union of communication balls in each component, i.e.,
⋃
j∈Unk(P,I) B (pj, Rc),

∀k ∈ {1, . . . , Kn(P, I)}. Note that the complexity of calculating the union of two regions is

a constant, O(1). Thus, the complexity of Stage (ii) is O(card(I)). (iii) Obtain Dn(P, I) by

calculating the intersection of Kn(P, I) regions obtained from the previous stage. Since the

computational complexity of intersection is O(1), the complexity in Stage (iii) is O(Kn(P, I)).

(iv) Compute the intersection between Dn(P, I) and Bn(p0
n,

γn
ξn

) with complexity O(1).

Therefore, the computational complexity of Fn(P, I) is O(card(I)+Kn(P, I)). In total, the

3The exact complexity of BFS and DFS is O(N + E), where E is the number of connections in the
communication graph. Since each sensor has very limited neighbours in the range of Rc, we have O(N) =
O(E) and thus O(N + E) = O(N).
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complexity of finding card(I) sensors’ FRs is O(card(I)2 + card(I) ·Kn(P, I)). In general,

Kn(P, I) � card(I), and then the corresponding complexity becomes O(card(I)2). The

computations of AFR and SFR are similar to that of FR, and have the same complexity

O(card(I)2).

Next, we study the computational complexity of cn(P) and V H
n (P). Let µ(R) =

∫
R
ωdω

be the volume of region R with the uniform distribution. Many integral algorithms, such

as uniform sampling, stratified sampling, importance sampling, sequential Monte Carlo,

and Risch algorithm are available in the literature [123], [124]. For simplicity, I assume

the integrals in cn(P) and V H
n (P) are calculated by uniform sampling4. In this case, the

computational complexity of cn(P) and V H
n (P) is proportional to the number of samples,

O(µ(V H
n (P))
ε

), where ε is the sample size. Thus, the total complexity of computing all cn(P)s

and V H
n (P)s is O(

∑N
n=1 µ(V H

n (P))

ε
) = O(µ(Ω)

ε
).

Now, we have enough materials to derive the complexity of different algorithms. Since

CCML is deigned for homogeneous MWSN, the backbone network includes all sensors, i.e.,

card(I) = N . Therefore, CCML’s algorithm complexity is O((N2 + µ(Ω)
ε

)K), where K is

the number of iterations. Let Z be the number of sensors out of the final backbone net-

work. BCCML’s algorithms complexity is calculated as O((
∑Z

z=0(N − z)2 + O(µ(Ω)
ε

))K).

The complexity of the worst case, Z = 1, is then O((N2 + µ(Ω)
ε

)NK). Different from CCML

and BCCML, DCML is a distributed algorithm. Thus, we focus on Sensor n’s complex-

ity in DCML. Note that MST can be obtained by a distributed minimum spinning tree

algorithm, GHS Algorithm [122], with complexity O(N log(N)). At the k-th stop, DCML

calculates (a) cn(P)s and V H
n (P), (b) Fn(P, I) and (c) MST with complexities O(µ(V H

n (Pk))
ε

),

O(N), and O(N log(N)), respectively. In total, DCML’s complexity during K stops is then

O(KN log(N) +
∑K

k=1
µ(V H

n (Pk))
ε

). Obviously, as a distributed algorithm, DCML’s complex-

ity is smaller than that of CCML and BCCML. i.e., O(KN log(N) +
∑K

k=1
µ(V H

n (Pk))
ε

) <

O((N2 + µ(Ω)
ε

)K) < O((N2 + µ(Ω)
ε

)NK).

4The integral is approximated by the summation over uniform samples.
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5.4.2 Communication Overhead

In centralized implementations, the relocation includes the following stages: (i) Sensors send

their spatial information to AP via multi-hop communications; (ii) AP calculates the final

deployment by running CCML/BCCML in terms of the collected information; (iii) AP sends

final deployment to each sensor by multi-hop communications; (iv) Sensors are relocated to

their destinations based on the received deployment. In the worst case, where sensors are

connected with a line topology, the sensor with a hops to AP will transfer N − a messages

from itself and N − 1 − a farther sensors in Stage (2). Thus, the communication overhead

in Stage (ii) is O(
∑N−1

a=1 a) = O(N2). Similarly, the communication overhead in Stage (iv)

is also O(N2). Therefore, the total communication overhead in centralized implementations

(CCML and BCCML) is O(N2).

In what follows, we analyze the communication in the distributed implementation. At each

stop, sensors need to compute (a) their own Voronoi Diagrams and (b) MST in terms of their

neighbor information. Sensor n can compute its Voronoi Diagram by exchanging message

with its one-hop neighbors [6], [10]. Since each sensor has very limited number of one-

hop neighbours, the communication overhead of N sensors for Voronoi Diagram is O(N).

In addition, communication overhead for distributed MST for each stop is O(N log(N))

[122]. Therefore, the total communication overhead in a K-stop distributed implementation

(DCML) is O(K(N log(N) +N)) = O(KN log(N)).

5.5 Extension

In this section, I extend the proposed algorithms, CCML and DCML, to other sensing tasks:

area coverage and target coverage. We employ the binary coverage model [2]–[12], [14], [32],

[33] in which Sensor n can only detect the points within its sensing radius Rs,n. Intuitively,

in order to decrease the sensing uncertainty, CCML and DCML deploy sensors into high-

density regions, and thus the points with high density are more likely to be covered. To cover

the objects in different tasks, the density function f(ω) in (5.2) should be predetermined to
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highlight the points around the objects of interest. In the following three subsections, we

introduce three kinds of coverage and propose the corresponding density functions.

5.5.1 Area Coverage

Without any prior information about the target region, the density function is chosen to be

uniform, i.e., f(ω) = 1∫
Ω dω

,∀ω ∈ Ω. Under such circumstances, maximizing the area covered

by sensors is a primary task. To evaluate the corresponding sensing performance, we employ

area coverage [6], [23], [32] (the proportion of covered area) defined by

CA(P) =

∫⋃N
n=1 B(pn,Rs,n)

dω∫
Ω
dω

=

∑N
n=1

∫
V H
n (P)

⋂
B(pn,Rs,n)

dω∑N
n=1

∫
V H
n (P)

dω
. (5.24)

The experimental results in Section 5.6 show that CCML and DCML algorithms with

uniform density function provide a large area coverage in addition to a small distortion.

5.5.2 Target Coverage

In another popular scenario, sensors are deployed to collect detailed information from the

targets with known locations [24]–[27]. Let T = {t1, t2, . . . , tL} be the set of known targets,

T̂ = {t|min
n

(
‖t−pn‖
Rs,n

)
≤ 1, t ∈ T } be the set of targets that covered by at least one sensor.

Then, area coverage CT (P) - the proportion of covered target points - can be written as

CT (P) =
card(T̂ )

card(T )
=

∑
n∈S(P)

∫
V H
n (P)

⋂
B(pn,Rs,n)

[∑L
l=1 φ (‖ω − tl‖)

]
dω∑

n∈S(P)

∫
V H
n (P)

[∑L
l=1 φ (‖ω − tl‖)

]
dω

, (5.25)

where φ(·) is the unit impulse response, card(S) is the cardinality of the set S. To emphasize

the importance of discrete targets, we model the density function as a Gaussian mixture

centered at discrete targets. The corresponding density function can be written as

f(ω) =
L∑
l=1

Ale
− ‖ω−tl‖

2

R2
s,n (5.26)

where Al reflects the comparative importance of the target ql. Similarly, CCML and DCML

can also be extended to maximize barrier coverage [28]–[30].
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5.6 Performance Evaluation

We provide the simulation results for two different MWSNs: (1) MWSN1: A homogeneous

MWSN in which all sensors have the same characteristics. (2) MWSN2: A heterogeneous

MWSN including sensors with different sensing, moving cost parameters, and battery ener-

gies. In addition, we employ uniform density function, f(ω) = 1, for MWSN1 while the non-

uniform density function in [6], [32] is employed for MWSN2. The non-uniform density func-

tion is the sum of five Gaussian functions of the form 5exp(6(−(x−xcenter)2−(y−ycenter)2)).

The centers (xcenter, ycenter) are (2,0.25), (1,2.25), (1.9,1.9), (2.35,1.25) and (0.1,0.1). More-

over, the target region, Ω, which is also the same as in [6], [32], is determined by the poly-

gon vertices (0,0), (2.125,0), (2.9325,1.5), (2.975,1.6), (2.9325,1.7), (2.295,2.1), (0.85,2.3),

(0.17,1.2). Also, I set the power consumption after sensor relocation as β = 1. As a result,

the energy constraints can be calculated by γn = en − T , where en is Sensor n’s battery

energy. Other parameters are provided in Table 5.1. Moreover, I generate initial sensor

deployments randomly, i.e., every node location is generated with uniform distribution on

Ω. To guarantee the initial full-connectivity, I sequentially generate random node locations,

and only keep a node if it connects with at least one previous node. The maximum number

of iterations is set to 1005.
Table 5.1: Simulation Parameters of Mobile Wireless Sensor Networks

Parameters N η1−η8 η9−η32 ξ1−ξ8 ξ9−ξ32 Rs,1−Rs,8 Rs,9−Rs,32 e1−e28 e29−e32

MWSN1 32 1 1 1 1 0.2 0.2 2 2
MSWN2 32 1 4 2 1 0.3 0.15 2 0.8

To evaluate the performance, I compare the distortion (5.4) and area coverage (5.24) of

CCML, BCCML, and DCML with those of VFA [36], Lloyd-α [10], and DEED [10]. We

run the algorithms for: (i) the centralized scheme where each sensor’s energy consumption

for relocation is determined by the distance from the initial location and the final location;

and (ii) the distributed scheme where each sensor’s energy consumption for relocation is

5100 is large enough for the proposed algorithms to converge. Therefore, instead of using the stop
threshold ε in CCML and BCCML, I run all algorithms 100 iterations in the experiments.
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determined by the total distance of its specific (100-stop) movement path. Several important

simulation details are provided as follows. Since network lifetime is not considered in VFA

[36], it is impossible to apply the original VFA to satisfy the required network lifetime. Thus,

I propose a variant of VFA in which each sensor stops moving after the predetermined energy,

γn, is consumed. Furthermore, when the communication range Rc is limited, the lack of full-

connectivity prevents VFA, Lloyd-α, and DEED from operating in a distributed scheme. To

compare them with our DCML Algorithm, sensors need to have global information in VFA,

Lloyd-α, and DEED. Another issue is that sensors may be divided into multiple disconnected

sub-graphs after running VFA, Lloyd-α, and DEED because of the limited communication

range. Under such circumstances, I compute the distortions associated with different sub-

graphs and report the minimum one. In other words, I focus on the best performances

that VFA, Lloyd-α, and DEED can reach in MWSNs when communication range is limited.

Nonetheless, when I compute the distortion for our proposed algorithms, only sensors in the

actual backbone network (the sub-graph including AP, i.e., Sensor 1), are taken into account,

which gives our algorithm more advantage over the existing algorithms.

Simulation results for the centralized scheme are provided in Figs. 5.2 and 5.3. From Figs.

5.2a and 5.2c, I observe that both VFA and CCML algorithms generate fully connected final

deployments for the required network lifetime, T = 1.3. By setting α to 0.2, Lloyd-α achieves

a similar network lifetime T = 1.31. However, Lloyd-0.2 generates a disconnected network

where 12 sensors are placed out of the backbone network. The corresponding distortions for

VFA, Lloyd-0.2, and CCML are, respectively, 0.17, 0.78, and 0.14.

The centralized sensor relocations in heterogeneous MWSN (MWSN2) are illustrated in

Figs. 5.2d, 5.2e, and 5.2f. In MWSN2, BCCML activates 30 sensors to sense the target

region while the other two sensors are deactivated because of their low battery energy. VFA

and Lloyd-α attempt to use all sensors to finish the sensing task, but AP can only collect

information from the active sensors shown by red dots. BCCML’s distortion, 0.29, is much

smaller than that of VFA and Lloyd-α, which are 4.16 and 0.66, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Centralized sensor deployments: (a) VFA in MWSN1; (b) Lloyd-α in MWSN1; (c) CCML in
MWSN1; (d) VFA in MWSN2; (e) Lloyd-α in MWSN2; (f) BCCML in MWSN2. The initial sensor locations
are denoted by green dots. The final locations of active and inactive sensors are denoted by red and black
dots. The sensing regions of active and inactive sensors are denoted by blue and black. The movement paths
are denoted by blue lines.

More detailed performance comparisons are provided in Figs. 5.3a, 5.3b, 5.3c, and 5.3d.

In Fig. 5.3a, for any given network lifetime, CCML Algorithm provides a lower distortion

compare to other algorithms in the homogeneous MWSN1. Similarly, BCCML Algorithm

outperforms other algorithms in heterogeneous MWSNs shown in Fig. 5.3b. It is also

noteworthy that low distortion is accompanied with high area coverage in MWSN1 where

the density function is uniform. Unfortunately, such a relationship does not hold for MWSN2

where the density function is non-uniform. Consequently, one can approximately optimize

the area coverage by CCML and BCCML with a uniform density function.

There are two primary reasons why the proposed CCML and BCCML perform better than

the existing algorithms, VFA, Lloyd-α, and DEED. (i) The existing algorithms do not take

connectivity into consideration. As a result, when the communication range is small, VFA,
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Figure 5.3: Performance comparison for centralized sensor deployment. (a) Distortion in MWSN1; (b)
Distortion in MWSN2; (c) Area coverage in MWSN1; (d) Area coverage in MWSN2.

Lloyd-α, and DEED may generate disconnected networks and then large distortions. (ii)

In the existing algorithms, each sensor attempts to save its own energy consumption which

results in unbalanced energy consumption among sensors and then short network lifetime.

However, CCML and BCCML determine the relocation considering all sensors’ residual

energy.

Besides, our proposed algorithms perform well in both homogeneous and heterogeneous

MWSNs, but the existing algorithms, which are designed for homogeneous MWSNs, have

very restricted performance in heterogeneous MWSNs or even cannot be applied to hetero-

101



(a) (b) (c)

(d) (e) (f)

Figure 5.4: Distributed sensor deployments: (a) VFA in MWSN1; (b) Lloyd-α in MWSN1; (c) DCML in
MWSN1; (d) VFA in MWSN2; (e) Lloyd-α in MWSN2; (f) DCML in MWSN2. The initial sensor locations
are denoted by green dots. The final locations of active and inactive sensors are denoted by red and black
dots. The sensing regions of active and inactive sensors are denoted by blue and black. The movement paths
are denoted by blue lines.

geneous MWSNs. Note that the implementation of DEED needs both gradient and Hessian

matrix of the objective function (5.4). To our best knowledge, the theoretical computation

of Hessian matrix in heterogeneous MWSNs is still an open problem. Although one can

approximate the second-order derivatives by numerical methods, the corresponding extreme

time complexity prevents DEED from being a feasible solution. Therefore, DEED cannot

be extended to heterogeneous MWSNs. Different from DEED, Lloyd-α, which only needs

gradient, can be extended to heterogeneous MWSNs as the calculation of the gradient in

heterogeneous MWSNs already proposed in our previous work [32]. Unfortunately, when

sensors are equipped with variant battery energies, Lloyd-α can only achieve a short net-

work lifetime. In MWSN2, where 4 sensors are equipped with a low battery energy, 0.8,

Lloyd-α still uses all sensors to sense the target region. Note that the network will die after
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the first node runs out of its battery energy. As a result, Lloyd-α cannot achieve a net-

work lifetime larger than 0.8 in MWSN2 (see Fig. 5.3b). However, the proposed BCCML

Algorithm appropriately selects a subset of sensors to finish the sensing task.

Another advantage of BCCML Algorithm over Lloyd-α and DEED is its tractability. BC-

CML Algorithm directly controls the network lifetime while Lloyd-α and DEED indirectly

influence network lifetime by tuning the hyperparameters α and δ, respectively. There is

no explicit relationship between α (or δ) and network lifetime. Thus, one has to attempt

different values of α (or δ) in Lloyd-α (or DEED) to reach the required network lifetime.

In what follows, I analyze the impact of communication range, Rc, on the performance.

The sensors with larger communication range, Rc, are more likely to construct or maintain

a connected network. According to our simulation results, VFA, Lloyd-α, DEED, CCML

and BCCML keep full-connectivity for the two considered MWSNs when the communica-

tion range is large, e.g., Rc = 0.5. However, when Rc = 0.4, VFA, Lloyd-α, DEED lose

connectivity in some cases. In general, a shorter network lifetime implies that more energy

can be used for relocation, and then smaller distortions can be achieved. We observe from

Figs 5.3a and 5.3b that all algorithms provide non-decreasing Distortion-Lifetime functions

for the cases of Rc = 0.5. However, when Rc = 0.4, the distortions of VFA, Lloyd-α, and

DEED fluctuate because of the unpremeditated loss of connectivity in some cases. On the

contrary, the distortions of CCML and BCCML are still non-decreasing functions of network

lifetime because the backbone network is appropriately selected and maintained by CCML

and BCCML. In sum, for VFA, Lloyd-α, and DEED algorithms, the distortions are signifi-

cantly increased when Rc is decreased from 0.5 to 0.4. However, CCML/BCCML provides

similar performance for both Rcs.

The above analysis also works for the distributed sensor relocation scheme. The distributed

relocations in both MWSNs are illustrated in Fig. 5.4, and the corresponding performances

are compared in Figs. 5.5a, 5.5b, 5.5c, and 5.5d. Different from the sensor relocation in the

centralized implementation (Fig. 5.2) where movement paths are straight lines from initial
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Figure 5.5: Performance comparison for distributed sensor deployment. (a) Distortion in MWSN1; (b)
Distortion in MWSN2; (c) Area coverage in MWSN1; (d) Area coverage in MWSN2.

locations to final locations, the sensor relocation in the distributed implementation (Fig.

5.4) are represented by broken lines with multiple stops.

Last, I provide sensor relocation of three different algorithms (Basic+ECST-H [26], TV-

Greedy+ECST-H [26], and CCML) in Figs. 5.6 and 5.7 to confirm that CCML Algorithm

can be successfully extended to target coverage problems. Both Basic+ECST-H and TV-

Greedy+ECST-H consist of three stages: (i) A subset of sensors are placed to cover all

targets; and (ii) other sensors are placed to guarantee connectivity; (iii) Hungarian Algo-

rithm is employed to reduce the total energy consumption. According to our experiments,
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(a) (b) (c)

Figure 5.6: The target coverage in MWSN1. (a) Basic+ECST-H; (b) TV-Greedy+ECST-H; (c) CCML.
The covered targets and uncovered targets are denoted by magenta triangles and black triangles,

respectively.
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Figure 5.7: The target coverage in MWSN1. (a) Rc = 0.4, Rs = 0.2; (b) Rc = 0.5, Rs = 0.25. The target
coverage of Basic+ECST-H, TV-Greedy+ECST-H, and CCML are, respectively, denoted by green dots,

yellow dots and blue boxes.

Basic+ECST-H and TV-Greedy+ECST-H require more sensors than CCML to achieve both

full-coverage and full-connectivity. In Fig. 5.6a, all sensors are scheduled to cover targets

in Stage (i) of Basic+ECST-H, and then no sensor is available in Stage (ii). As a result,

Basic+ECST-H with Rc = 0.4 is terminated with four disconnected subgraphs in which the

largest sub-graph merely covers 48% of targets. In Fig. 5.6b, 32 sensors are not enough

to achieve full-coverage in Stage (i) of TV-Greedy+ECST-H, and only 92% of targets are

covered. However, with the same number of sensors, our proposed CCML Algorithm covers
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all targets and ensures full-connectivity. To perform a statistical performance analysis, I run

the relocation algorithms with 100 random target deployments6. The detailed comparisons7

of Basic+ECST-H, TV-Greedy+ECST-H, and CCML are provided in Figs. 5.7a and 5.7b.

Given a specific target coverage, CCML, on average, achieves a longer network lifetime.

6Each target deployment consists of 50 target locations.
7For each required network lifetime, a boxplot is employed to display minimum, first quartile, median,

third quartile, and maximum distortions of CCML with 100 target deployments. However, the target cov-
erages of Basic+ECST-H and TV-Greedy+ECST-H are represented by, in total, 200 dots since network
lifetime is not explicitly controlled by Basic+ECST-H and TV-Greedy+ECST-H.
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Chapter 6

Conclusion

The performance (sensing quality, connectivity, and energy consumption) optimization of

wireless sensor network (WSN) is studied in this dissertation.

First, I studied the deployment of sensors for three kinds of model in heterogeneous wire-

less sensor networks. The optimal partitioning and gradient are supplied to search optimal

sensor deployment. Similar to homogeneous WSNs, the necessary condition for optimal de-

ployment in heterogeneous WSNs implies that every sensor node location should coincide

with the centroid of its own optimal sensing region. Moreover, I considered connectivity and

modeled the sensor deployment problem as a multi-center optimization problem with dif-

ferent performance functions. By defining an appropriate performance measure, I proposed

a Restrained Lloyd algorithm and a Deterministic Annealing algorithm to optimize sensor

deployment in both homogeneous and heterogeneous WSNs. The simulation results show

that both DA and RL algorithms provide a fully connected network and outperform Lloyd

algorithm, Genetic Algorithm, and Virtual Force Algorithm when communication range is

limited. The DA is not sensitive to initial conditions. Moreover, both RL and DA have been

applied to solve sensor deployment in non-convex environments. Our future work includes

the optimal sensor deployment with the random connection model in heterogeneous WSNs.

Second, I studied quantizers with parameterized distortion measures for an application to
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UAV deployments. Instead of using the traditional mean distance square as the distortion, I

introduce a distortion function which models the energy consumption of UAVs in dependence

of their heights. I derived the unique parameter optimized quantizer – a uniform scalar

quantizer with an optimal common parameter – for uniform source density in one-dimensional

space. In addition, two Lloyd-like algorithms are designed to minimize the distortion in two-

dimensional space. Numerical simulations demonstrate that the common weight property

extends to two-dimensional space for a uniform density.

Third, two-tier quantizer and its application, energy efficiency in a two-tier wireless sensor

network (WSN), are studied in this dissertation, too. Different from one-tier WSNs, the two-

tier WSN collects data from a large-scale wireless sensor network to fusion centers through

access points. The necessary condition for optimal deployment implies that every AP location

should be deployed between the centroid of its cell and its associated FC. In addition, the AP-

Sensor power function is introduced and analyzed to provide the minimum AP power with a

sensor power constraint. We also proposed Lloyd-like algorithms to minimize the distortion.

According to the experiments, the algorithms proposed in this dissertation significantly save

the weighted power or energy in two-tier WSNs.

Last, the trade-off between sensing quality and energy consumption, which is dominated

by movement, is discussed in this dissertation. I explore the optimal sensor deployment to

minimize sensing uncertainty with a network lifetime constraint in both homogeneous and

heterogeneous mobile wireless sensor networks. According to the analysis, full-connectivity

is necessary to minimize the sensing uncertainty in homogeneous MWSNs. The necessary

condition for an optimal deployment implies that sensors should move towards the cen-

troid within their own feasible regions, determined by both the battery energies and the

communication range. With the help of these necessary conditions, two centralized sensor

relocation algorithms, Centralized Constrained Movement Lloyd Algorithm and Backwards-

stepwise Centralized Constrained Movement Lloyd Algorithm, are designed for homogeneous

and heterogeneous MWSNs, respectively. Moreover, a distributed realization, Distributed
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Constrained Movement Lloyd Algorithm, whose performance is similar to the centralized

scheme, is also provided in this dissertation. Furthermore, by manually changing the den-

sity function, the proposed sensor relocation algorithms can be extended to solve target

coverage. The simulation results show that the proposed algorithms outperform the exist-

ing algorithms in the literature (VFA, Lloyd-α, DEED) when a minimum network lifetime

is given in homogeneous and heterogeneous MWSNs. Compared with the existing target

coverage algorithms, such as Basic+ECST-H and TV-Greedy+ECST-H, CCML Algorithm

provides a more flexible trade-off between target coverage and network lifetime.

109



Bibliography

[1] M. Cardei and J. Wu, Handbook of Sensor Networks, 1st ed. Hoboken, NJ, USA: John Wiley & Sons,

2004.

[2] C. Zhu, C. Zheng, L. Shu, and G. Han, “A survey on coverage and connectivity issues in wireless

sensor networks,” ELSEVIER J. Netw. Comput. Appl., vol. 35, no. 2, pp. 619–632, Mar. 2012.

[3] B. Wang, “Coverage problems in sensor networks: A survey,” ACM Comput. Surveys, vol. 43, no. 4,

pp. 1–53, Oct. 2011.

[4] M. R. Senouci, A. Mellouk, K. Asnoune, and F. Y. Bouhidel, “Movement-assisted sensor deployment

algorithms: A survey and taxonomy,” IEEE Commun. Surveys Tut., vol. 17, no. 4, pp. 2493–2510,

Mar. 2015.

[5] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,”

IEEE Trans. on Robot. Autom., vol. 20, no. 2, pp. 243–255, Apr. 2004.

[6] J. Cortes, S. Martinez, and F. Bullo, “Spatially-distributed coverage optimization and control with

limited-range interactions,” ESAIM: COCV, vol. 11, no. 4, pp. 691–719, Oct. 2005.

[7] K. Sugimoto, T. Hatanaka, M. Fujita, and N. Huebel, “Experimental study on persistent coverage

control with information decay,” in IEEE Annu. Conf. Soc. Instrum. Control Eng. Japan (SICE),

Jul. 2015.

[8] M. T. Nguyen, L. Rodrigues, C. S. Maniu, and S. Olaru, “Discretized optimal control approach for

dynamic multi-agent decentralized coverage,” in IEEE Int. Symp. Intell. Control (ISIC), Sep. 2016.

[9] F. Li, J. Luo, S. Xin, and Y. He, “Autonomous deployment of wireless sensor networks for optimal

coverage with directional sensing model,” ELSEVIER Comput. Netw., vol. 108, no. 10, pp. 120–132,

Oct. 2016.

110



[10] Y. Song, B. Wang, Z. Shi, K. Pattipati, and S. Gupta, “Distributed algorithms for energy-efficient even

self-deployment in mobile sensor networks,” IEEE Trans. Mobile Comput., vol. 13, no. 5, pp. 1035–

1047, Apr. 2014.

[11] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated coverage and connectivity

configuration for energy conservation in sensor networks,” ACM Trans. Sensor Netw., vol. 1, no. 1,

pp. 36–72, Aug. 2005.

[12] X. Bai, S. Kumar, D. Xuan, Z. Yun, and T. H. Lai, “Deploying wireless sensors to achieve both

coverage and connectivity,” in ACM Int. Symp. Mobile Ad Hoc Netw. Comput. (MobiHoc), May

2006.

[13] M. Moarref and L. Rodrigues, “An optimal control approach to decentralized energy-efficient coverage

problems,” in Elsevier The International Federation of Automatic Control (IFAC), vol. 47, Aug. 2014,

pp. 6038–6043.

[14] H. Yousefi’zadeh, H. Jafarkhani, and J. Kazemitabar, “A study of connectivity in MIMO fading

ad-hoc networks,” IEEE J. Commun. Netw., vol. 11, no. 1, pp. 47–56, Feb. 2009.

[15] X. Liu, K. Wub, Y. Zhu, L. Kong, and M. Wua, “Mobility increases the surface coverage of distributed

sensor networks,” ELSEVIER Comput. Netw., vol. 57, no. 11, pp. 2348–2363, Aug. 2013.

[16] V. N. Had, “Decentralized control of three dimensional mobile robotic sensor networks,” arxiv, Jun.

2016.

[17] E. Koyuncu, R. Khodabakhsh, N. Surya, and H. Seferoglu, “Deployment and trajectory optimization

for UAVs: A quantization theory approach,” in IEEE Wireless Commun. Netw. Conf. (WCNC), Apr.

2018. eprint: 1708.08832v5.

[18] J. Guo, E. Koyuncu, and H. Jafarkhani, “A source coding perspective on node deployment in two-tier

networks,” IEEE Trans. Commun., vol. 66, no. 7, pp. 3035–3049, Jul. 2018.

[19] K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dbariwal, and G. S. Sukhatme, “Robomote: Enabling

mobility in sensor network,” in IEEE 4th Int. Symp. Inf. Process. Sensor Netw. (IPSN), Apr. 2005.

[20] J. Wu and S. Yang, “Optimal movement-assisted sensor deployment and its extensions in wireless

sensor networks,” in IEEE 12th Int. Conf. Parallel Distrib. Syst. (ICPADS), Jul. 2006.

[21] W. Li, “On wireless sensors covering and movement problem,” in IEEE Int. Conf. Wireless Commun.,

Netw. Mobile Comput. (WiCOM), Sep. 2007.

111

1708.08832v5


[22] M. R. Senouci and A. Mellouk, “Localized movement-assisted sensor deployment algorithm for hole

detection and healing,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 5, pp. 1267–1276, May 2014.

[23] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization in distributed sensor net-

works,” ACM Trans. Embedded Comput. Syst., vol. 3, no. 1, pp. 61–91, Feb. 2004.

[24] M. Rout and R. Roy, “Self-deployment of mobile sensors to achieve target coverage in the presence

of obstacles,” IEEE Sensors J., vol. 16, no. 14, pp. 5837–5842, Jul. 2016.

[25] Z. Chen, X. Gao, F. Wu, and G. Chen, “A PTAS to minimize mobile sensor movement for target

coverage problem,” in IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016.

[26] Z. Liao, J. Wang, S. Zhang, J. Cao, and G. Min, “Minimizing movement for target coverage and

network connectivity in mobile sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 7,

pp. 1971–1983, Jul. 2015.

[27] A. N. Njoya, W. Abdou, A. Dipanda, and E. Tonye, “Evolutionary-based wireless sensor deployment

for target coverage,” in IEEE Int. Conf. Signal-Image Technol. & Internet-Based Syst. (SITIS), Nov.

2015.

[28] D. Z. Chen, Y. Gu, J. Li, and H. Wang, “Algorithms on minimizing the maximum sensor movement

for barrier coverage of a linear domain,” Springer Discrete & Computational Geometry, vol. 50, no. 2,

374–408, Sep. 2013.

[29] S. Li and H. Shen, “Minimizing the maximum sensor movement for barrier coverage in the plane,”

in IEEE Int. Conf. Comput. Commun. (INFOCOM), May 2015.

[30] B. Z. Z. He, “An improved algorithm for minimizing the maximum sensor movement in linear barrier

coverage,” in IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2016.

[31] A. S. S and J. D. Beegum, “Enhancing the life time of sensor network with energy awareness and

clutter adaptability,” in IEEE Int. Conf. Control Commun. & Comput. India (ICCC), Mar. 2016.

[32] J. Guo and H. Jafarkhani, “Sensor deployment with limited communication range in homogeneous and

heterogeneous wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 15, no. 10, pp. 6771–

6784, Oct. 2016.

[33] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations: Concepts and Applications

of Voronoi Diagrams, 2nd ed. New York, NY, USA: John Wiley & Sons, 2000.

112



[34] E. Koyuncu and H. Jafarkhani, “On the minimum average distortion of quantizers with index-

dependent distortion measures,” IEEE Trans. Signal Process., vol. 65, no. 17, pp. 4655–4669, Sep.

2017.

[35] Z. Yong and W. Li, “A sensor deployment algorithm for mobile wireless sensor networks,” in IEEE

Chinese Control and Decision Conf. (CCDC), Jun. 2009.

[36] Y. Yoon and Y.-H. Kim, “An efficient genetic algorithm for maximum coverage deployment in wireless

sensor networks,” IEEE Commun. Surveys Tut., vol. 43, no. 5, pp. 1473–1483, Apr. 2013.

[37] M. Gani, “Optimal deployment control for a heterogeneous mobile sensor network,” in IEEE 9th Int.

Conf. Control, Autom., Robot. Vision (ICARCV), Dec. 2006.

[38] S. Karimi-Bidhendi, J. Guo, and H. Jafarkhani, “Using quantization to deploy heterogeneous nodes

in two-tier wireless sensor networks,” in IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019. arXiv:

1901.06742.

[39] C. Hu, X. Wang, Z. Yang, J. Zhang, Y. Xu, and X. Gao, “A geometry study on the capacity of

wireless networks via percolation,” IEEE Trans. Commun., vol. 58, no. 10, pp. 2916–2925, Oct. 2010.

[40] N. Bartolini, T. Calamoneri, T. F. L. Porta, and S. Silvestri, “Autonomous deployment of heteroge-

neous mobile sensors,” IEEE Trans. Mobile Comput., vol. 10, no. 6, pp. 753–766, Jun. 2011.

[41] M. Cardei, M. Thai, Y. Li, and W. Wu, “Energy-efficient target coverage in wireless sensor networks,”

in IEEE 24th Annu. Joint Conf. Comput. Commun. Societies., Aug. 2005, pp. 1976–1984.

[42] A. Saipulla, C. Westphal, B. Liu, and J. Wang, “Barrier coverage of line-based deployed wireless

sensor networks,” in IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2009.

[43] S. He, X. Gong, J. Zhang, J. Chen, and Y. Sun, “Curve-based deployment for barrier coverage in

wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 724–735, Feb. 2014.

[44] J. A. Cobb, “Improving the lifetime of non-penetrable barrier coverage in sensor networks,” in IEEE

Int. Conf. Distrib. Comput. Syst. (ICDCSW), Jul. 2015.

[45] S. He, X. Gong, J. Zhang, J. Chen, and Y. Sun, “Curve-based deployment for barrier coverage in

wireless sensor networks,” IEEE Trans. Mobile Comput., vol. 5, no. 6, pp. 640–652, Jun. 2006.

[46] C. Wu, K. Lee, and Y. Chung, “A delaunay triangulation based method for wireless sensor network

deployment,” in IEEE Int. Conf. on Parallel Distrib. Syst. (ICPADS), Jul. 2006.

[47] N. Aitsaadi, N. Achir, K. Bousseta, and B. Gavish, “A gradient approach for differentiated wireless

sensor network deployment,” in 2008 1st IFIP Wireless Days, Nov. 2008.

113

http://arxiv.org/abs/1901.06742


[48] A. Ababnah and B. Natarajan, “LQR formulation of sensor deployment for decision fusion based

detection,” in IEEE Global Telecommun. Conf. (GLOBECOM), Dec. 2010.

[49] S. Li, C. Xu, W. Pan, and Y. Pan, “Sensor deployment optimization for detecting maneuvering

targets,” in IEEE Int. Conf. Inf. Fusion (ICIF), Jul. 2005.

[50] S. Temel, N. Unaldi, and O. Kaynak, “On deployment of wireless sensors on 3-D terrains to maximize

sensing coverage by utilizing cat swarm optimization with wavelet transform,” IEEE Trans. Syst.,

Man, Cybern., Syst., vol. 44, no. 1, pp. 111–120, Jan. 2014.

[51] E. Onur, C. Ersoy, H. Delic, and L. Akarun, “Surveillance wireless sensor networks: Deployment

quality analysis,” IEEE Netw., vol. 21, no. 6, pp. 48–53, Dec. 2007.

[52] X. Liu, “Coverage with connectivity in wireless sensor networks,” in IEEE 3rd Int. Conf. Broadband

Commun., Netw. Syst., Oct. 2006.

[53] J. Guo and H. Jafarkhani, “Movement-efficient sensor deployment in wireless sensor networks,” in

IEEE Int. Conf. Commun. (ICC), May 2018.

[54] J. Guo, E. Koyuncu, and H. Jafarkhani, “Energy efficiency in two-tiered wireless sensor networks,”

in IEEE Int. Conf. Commun. (ICC), May 2017.

[55] J. Guo, P. Walk, and H. Jafarkhani, “Quantizers with parameterized distortion measures,” arxiv,

Nov. 2018. eprint: 1811.02554 (arxiv).

[56] H. J. H. Yousefi’zadeh and M. Moshfeghi, “Power optimization of wireless media systems with space-

time code building blocks,” IEEE Trans. Image Process., vol. 13, no. 7, 873–884, Jul. 2004.

[57] G. Wang, M. J. Irwin, P. Berman, H. Fu, and T. L. Porta, “Optimizing sensor movement planning

for energy efficiency,” in IEEE Int. Symp. Low Power Electron. Des., Aug. 2005.

[58] Y. Mei, Y. Lu, Y. C. Hu, and C. S. G. Lee, “Energy-efficient motion planning for mobile robots,” in

IEEE Int. Conf. Robot. & Autom. (ICRA), Aug. 2004.

[59] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2325–

2383, Oct. 1998.

[60] G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor deployment,” IEEE Trans. Mobile

Comput., vol. 5, no. 6, pp. 640–652, Jun. 2006.

[61] O. Arslan and D. E. Koditschek, “Voronoi-based coverage control of heterogeneous disk-shaped

robots,” in IEEE Int. Conf. Robot. (ICRA), May 2016.

114

1811.02554


[62] C. C. Coskun and E. Ayanoglu, “Energy-efficient base station deployment in heterogeneous networks,”

IEEE Wireless Commun. Lett., vol. 3, no. 6, pp. 593–596, Dec. 2014.

[63] T. Zhang, J. Zhao, L. An, and D. Liu, “Energy efficiency of base station deployment in ultra dense

hetnets: A stochastic geometry analysis,” IEEE Wireless Commun. Lett., vol. 5, no. 2, pp. 184–187,

Apr. 2016.

[64] H. Elsawy, E. Hossain, and M. Haenggi, “Stochastic geometry for modeling, analysis, and design of

multi-tier and cognitive cellular wireless networks: A survey,” IEEE Commun. Surveys Tuts., vol. 15,

no. 3, pp. 996–1019, Jul. 2013.

[65] H. Jafarkhani, Space-Time Coding: Theory and Practice, 1st ed. Cambridge, United Kingdom: Cam-

bridge Univ. Press, 2005.

[66] K. Akkaya and M. Younis, “A survey on routing protocols in wireless sensor networks,” Elsevier Ad

Hoc Network, vol. 3, no. 3, pp. 325–349, May 2005.

[67] L. Li and J. Y. Halpern, “Minimum-energy mobile wireless networks revisited,” in IEEE Int. Conf.

Commun. (ICC), Jun. 2001.

[68] Y. T. Hou, Y. Shi, H. D. Sherali, and F. Midkiff, “On energy provisioning and relay node placement

for wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 5, no. 5, pp. 2579–2590, Sep.

2005.

[69] W. Pawgasame, “A survey in adaptive hybrid wireless sensor network for military operations,” in

IEEE 2th Asian Conf. Defence Technol. (ACDT), Jan. 2016.

[70] J.-H. Chang and L. Tassiulas, “Energy conserving routing in wireless ad-hoc networks,” in IEEE Int.

Conf. Comput. Commun. (INFOCOM), Mar. 2000.

[71] W. R. Bennett, “Spectra of quantized signals,” IEEE The Bell Syst. Tech. J., vol. 27, no. 3, pp. 446–

472, Jul. 1948.

[72] A. Gersho, “Asymptotically optimal block quantization,” IEEE Trans. Inf. Theory, vol. 25, no. 4,

pp. 373–380, Jul. 1979.

[73] P. L. Zador, “Asymptotic quantization error of continuous signals and the quantization dimension,”

IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 139–148, Mar. 1982.

[74] E. Koyuncu and H. Jafarkhani, “On the minimum average distortion of quantizers with index-

dependent distortion measures,” IEEE Trans. Signal Process., vol. 65, no. 17, pp. 4655–4669, Sep.

2017.

115



[75] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 1st ed. San Francisco, CA,

USA: Morgan Kaufmann, 2011.

[76] H. Jafarkhani and V. Tarokh, “Design of successively refinable trellis coded quantizers,” IEEE Trans.

Inf. Theory, vol. 45, no. 5, pp. 1490–1497, Jul. 1999.

[77] H. Jafarkhani, H. Brunk, and N. Farvardin, “Entropy-constrained successively refinable scalar quan-

tization,” in IEEE Data Compression Conf. (DCC), Mar. 1997.

[78] D. Mukherjee and S. K. Mitra, “Successive refinement lattice vector quantization,” IEEE Trans.

Image Process., vol. 11, no. 12, pp. 1337–1348, Dec. 2002.

[79] N. Chaddha, P. A. Chou, and R. M. Gray, “Constrained and recursive hierarchical table-lookup

vector quantization,” in IEEE Data Compression Conf. (DCC), Apr. 1996.

[80] A. Gersho and Y. Shoham, “Hierarchical vector quantization of speech with dynamic codebook

allocation,” in IEEE Int. Conf. on Acoust., Speech, and Signal Process. (ICASSP), Mar. 1984.

[81] H. Jafarkhani and N. Farvardin, “Channel-matched hierarchical table-lookup vector quantization,”

IEEE Trans. Inf. Theory, vol. 46, no. 3, pp. 1121–1125, May 2000.

[82] S. S. Prakash and P. Niranjan, “Movement minimization of randomly deployed mobile nodes for

complete coverage and connectivity,” in IEEE Int. Conf. Advanced Commun., Control Comput. Tech.,

May 2014.

[83] K. Shih, H. Chen, J. Tsai, and C. Li, “PALM: A partition avoidance lazy movement protocol for

mobile sensor networks,” in IEEE Wireless Commun. Netw. Conf., Mar. 2007.

[84] S. Yang, M. Li, and J. Wu, “Scan-based movement-assisted sensor deployment methods in wireless

sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 8, pp. 1108–1121, Aug. 2007.

[85] S. Meguerdichian, F. Koushanfar, M. Potkinjak, and M. B. Srivastava, “Coverage problems in wireless

ad-hoc sensor networks,” in IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2001, pp. 1380–

1387.

[86] M. Jin, G. Rong, H. Wu, L. Shuai, and X. Guo, “Optimal surface deployment problem in wireless

sensor networks,” in IEEE Int. Conf. Comput. Commun. (INFOCOM), Mar. 2012.

[87] L. Yang, J. Liang, and W. Liu, “Radar sensor (RS) deployment for multi-target detection,” in IEEE

Int. Conf. Wireless Commun. Signal Process. (WCSP), Oct. 2014.

[88] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak, “Exposure in wireless ad-hoc sensor

networks,” in ACM The 7th Annu. Int. Conf. Mobile Comput. Netw (MobiCom), Jul. 2001.

116



[89] V. Choudhary and K. R Chowdhary, “Probabilistic sensor deployment in wireless sensor network: A

new approach,” in IEEE Int. Conf. Emerging Trends Netw Comput. Commun. (ETNCC), Apr. 2011.

[90] A. Gusrialdi and L. Zeng, “Distributed deployment algorithms for robotic visual sensor networks in

non-convex environment,” in IEEE Int. Conf. Netw., Sens. Control (ICNSC), Apr. 2011.

[91] A. Breitenmoser, M. Schwager, J. C. Metzger, R. Siegwart, and D. Rus, “Voronoi coverage of non-

convex environments with a group of networked robots,” in IEEE Int. Conf. Robot. Autom. (ICRA),

May 2010.

[92] T. S. Helal, P. Mozumdar, and L. Akter, “Evaluating the performance of optimal control based sensor

deployment algorithms for realistic terrain model,” in IEEE Int. Conf. Elect. Comput. Eng. (ICECE),

Dec. 2014.

[93] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression, 2nd ed. Boston, MA, USA:

Kluwer, 1992.

[94] A. Gersho, “Asymptotically optimal block quantization,” IEEE Trans. Inf. Theory, vol. 28, no. 2,

pp. 129–137, Mar. 1982.

[95] J. C. Kieffer, “Exponential rate of convergence for lloyd’s method i,” IEEE Trans. Inf. Theory, vol. 28,

no. 2, pp. 205–210, Mar. 1982.

[96] X. Wu, “On convergence of lloyd’s method i,” IEEE Trans. Inf. Theory, vol. 38, no. 1, pp. 171–174,

Mar. 1982.

[97] Q. Du, M. Emelianenko, and L. Ju, “Convergence of the lloyd algorithm for computing centroidal

voronoi tessellations,” Siam J. Numer. Anal., vol. 44, no. 1, pp. 102–119, Mar. 2006.

[98] J. Guo and H. Jafarkhani, “Sensor deployment in heterogeneous wireless sensor networks,” in IEEE

Global Telecommun. Conf. (GLOBECOM), Dec. 2016.

[99] H. Yousefi’zadeh, H. Jafarkhani, and J. Kazemitabar, “Voronoi diagrams – a survey of fundamental

geometric data structure,” ACM Comput. Surveys, vol. 23, no. 3, pp. 345–405, Sep. 1991.

[100] S. Valeriu, Introduction to the Axiomatic Theory of Convexity, 1st ed. Russian: Stiinta, 1984.

[101] W. P. Soltan, Abstract Convex Analysis, 1st ed. New York, NY, USA: John Wiley & Sons, 1997.

[102] F. Aurenhammer and H. Edelsbrunner, “An optimal algorithm for constructing the weighted voronoi

diagram in the plane,” Pattern Recognition, vol. 17, no. 2, pp. 251–257, Dec. 1984.

[103] P. J. M. Laarhoven and E. H. L Aarts, Simulated Annealing: Theory and Applications, 1st ed. Norwell,

MA, USA: Springer, 1987.

117



[104] S. Geman and D. Geman, “Stochastic relaxation, gibbs distortion and the bayesian restoration of

images,” IEEE Trans. Pattern Anal. Mach. Int., vol. 6, no. 6, pp. 721–741, Nov. 1984.

[105] E. Koyuncu and H. Jafarkhani, “On the minimum distortion of quantizers with heterogeneous repro-

duction points,” in IEEE Data Compression Conf. (DCC), Mar. 2016.

[106] B. Galkin, J. Kibilda, and L. A. DaSilva, “Backhaul for low-altitude UAVs in urban environments,”

in IEEE Int. Conf. Commun. (ICC), May 2018.

[107] M. M. Azari, F. Rosas, and S. Pollin, “Reshaping cellular networks for the sky: Major factors and

feasibility,” arxiv, Oct. 2017.

[108] H. Shakhatreh, A. Khreishah, N. S. Othman, and A. Sawalmeh, “Maximizing indoor wireless cover-

age using UAVs equipped with directional antennas,” in IEEE 13th Malaysia Int. Conf. Commun.

(MICC), Nov. 2017.

[109] K. Venugopal, M. C. Valenti, and R. W. Heath, “Device-to-device millimeter wave communications:

Interference, coverage, rate, and finite topologies,” IEEE Trans. Wireless Commun., vol. 15, no. 9,

pp. 6175–6188, Sep. 2016.

[110] H. He, S. Zhang, Y. Zeng, and R. Zhang, “Joint altitude and beamwidth optimization for UAV-

enabled multiuser communications,” IEEE Commun. Lett., vol. 22, no. 2, Feb. 2018.

[111] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient deployment of multiple unmanned

aerial vehicles for optimal wireless coverage,” IEEE Commun. Lett., vol. 20, no. 8, pp. 1647–1650,

Aug. 2016.

[112] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.

[113] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Unmanned aerial vehicle with underlaid device-

to-device communications: Performance and tradeoffs,” IEEE Trans. Wireless Commun., vol. 15,

no. 6, pp. 3949–3963, Jun. 2016.

[114] A. Al-Hourani and K. Gomez, “Modeling Cellular-to-UAV path-loss for suburban environments,”

IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 82–85, Feb. 2018.

[115] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. John Wiley & Sons, 2005.

[116] J.-D. Boissonnat, C. Wormser, and M. Yvinec, “Curved voronoi diagrams,” in Effective Computa-

tional Geometry for Curves and Surfaces. Berlin, Heidelberg, Germany: Springer, 2007.

[117] J.-D. Boissonnat and M. I. Karavelas, “On the combinatorial complexity of euclidean voronoi cells

and convex hulls of d-dimensional spheres,” INRIA, Jul. 2002.

118



[118] X. M. Zhang and Y. M. Chu, “Convexity of the integral arithmetic mean of a convex function,” Rocky

Mountain Journal of Mathematics, vol. 40, no. 3, pp. 1061–1068, Jun. 2010.

[119] M. Skolnik, Radar Handbook, 1st ed. New York, NY, USA: McGraw-Hill, 2008.

[120] D. Bertsekas and R. Gallager, Data Networks, 1st ed. Englewood Cliffs, NJ, USA: McGraw-Hill, 1992.

[121] B. Paul, Kinematics and Dynamics of Planar Machinery, 1st ed. Aurora, IL, USA: Prentice-Hall,

1979.

[122] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A distributed algorithm for minimum-weight

spanning trees,” ACM Trans. Programming Languages Syst., vol. 5, no. 1, pp. 66–77, Jan. 1983.

[123] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of

Scientific Computing, 3rd ed. New York, NY, USA: Cambridge University Press, 2007.

[124] K. O. Geddes, S. R. Czapor, and G. Labahn, Algorithms for Computer Algebra, 1st ed. Boston, MA,

USA: Kluwer Academic Publishers, 1992.

[125] D. Zwillinger, Standard Matehematical Tables and Formulae, 31st ed. Boca Raton, FL, USA: CRC

Press, 2003.

[126] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 1st ed. New York, NY, USA:

Springer Science & Business Media, 1993.

119



Appendix A

Proofs

A.1 Proof of Proposition 1

At the beginning, it is necessary to study the shape of WVDs. Let V H
nk (P) = {ω| ηn‖ω −

pn‖2 ≤ ηk‖ω−pk‖2} be the pairwise Multiplicatively Weighted Voronoi Diagram (MWVD)

of Sensor n when we only consider Sensors n and k. Then, the exact MWVD of Sensor

n is the intersection of these pairwise WVDs, i.e., V H
n (P) =

⋂
k 6=n V

H
nk (P). We define the

coordinates of ω = (x, y), pn = (pnx,pny) and pk = (pkx,pky) and define η =
√
ηn/ηk > 0.

Then, expanding the hyperplane equation ηn‖ω − pn‖2 = ηk‖ω − pk‖2 results in

(η2 − 1)(x2 + y2) + 2(pkx − η2pnx)x+ 2(pky − η2pny)y = p2
kx − η2p2

nx + p2
ky − η2p2

ny. (A.1)

When η = 1, the hyperplane equation is 2(pkx−pnx)x+2(pky−pny)y+p2
nx+p2

ny−p2
kx−p2

ky =

0. This hyperplane is the boundary of the half space HS(pn,pk). When η < 1, V H
nk is defined

by

(ω − cnk)
2 ≥ r2

nk. (A.2)
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When η > 1, Partnk is defined by

(ω − cnk)
2 ≤ r2

nk, (A.3)

where cnk = (pkx−η
2pnx

1−η2 ,
pky−η2pny

1−η2 ), rnk = η
|1−η2|‖pn − pk‖. Therefore, we have

V H
n (P)= {ω ∈ Ω|ηn‖ω − pn‖ ≤ ηl‖ω − pl‖2,∀l ∈ [N ]}

=

[ ⋂
i:ηi<ηn

B(cin, rin)

]⋂[ ⋂
k:ηk=ηn

HS(pn, pk)

]⋂ ⋂
j:ηj>ηn

[B(cnj, rnj)]
c


=

[ ⋂
i:ηi<ηn

B(cin, rin)

]⋂[ ⋂
k:ηk=ηn

HS(pn, pk)

]⋂ ⋃
j:ηj>ηn

B(cnj, rnj)

c ,
(A.4)

where Ac denotes the complementary set of A.

Let V̄ H
n (P) be the MWVD of Sensor n when we ignore sensors with larger cost parameters.

Accordingly, V̄ H
n (P) is defined by V̄ H

n (P) = {ω ∈ Ω|ηn‖ω−pn‖2 ≤ ηl‖ω−pl‖2,∀l, ηn ≥ ηl}.

Review the definition of V H
n (P) in (2.4), we have

V H
n (P) = {ω ∈ Ω| ηn‖ω − pn‖2 ≤ ηi‖ω − pi‖2, ηn‖ω − pn‖2 ≤ ηj‖ω − pj‖2,

∀i, j, ηj > ηn, ηn ≥ ηi}
(A.5)

According to (A.4), V̄ H
n (P) is the intersection of convex regions and therefore star-shaped.

The relationship between V̄ H
n (P) and V H

n (P) is

V̄ H
n (P) = V H

n (P)
⋃

Wn, (A.6)
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where Wn = {ω ∈ Ω| ηn‖ω − pn‖2 ≥ ηj‖ω − pj‖2, ηn‖ω − pn‖2 ≤ ηi‖ω − pi‖2,∀i, j, ηj >

ηn, ηn ≥ ηi}. For any point ω such that ηj‖ω − pj‖2 ≤ ηn‖ω − pn‖2 and ηn‖ω − pn‖2 ≤

ηi‖ω − pi‖2, we have ηj‖ω − pj‖2 ≤ ηi‖ω − pi‖2. So we can rewrite Wn as

Wn = {ω ∈ Ω| ηj‖ω − pj‖2 ≤ ηi‖ω − pi‖2, ηj‖ω − pj‖2 ≤ ηn‖ω − pn‖2,

ηn‖ω − pn‖2 ≤ ηi‖ω − pi‖2 for any i, j such that ηj > ηn, ηn ≥ ηi}.
(A.7)

Due to the definitions of V̄ H
n (P) and V H

n (P), we have

Wn=

 ⋃
j:ηj>ηn

V H
j (P)

⋂ V̄ H
n (P) =

⋃
j:ηj>ηn

[
V H
j (P)

⋂
V̄ H
n (P)

]
(A.8)

Replacing Wn from (A.8) in (A.6), we get the final result

V̄ H
n (P) = V H

n (P)
⋃

j:ηj>ηn

[
V H
j (P)

⋂
V̄ H
n (P)

]
(A.9)

The elements in the right side are disjoint subsets. Without loss of generality, let us assume

that the M disjoint cost parameters are ordered such that the k-level cost parameter is larger

than the k + 1-level cost parameter. We also call the set including the indices of all sensors

with a k-level cost parameter Zk. Then:

(1) For any level-1 sensor n, V H
n (P) is a convex set. Accordingly, the intersection V H

n (P)
⋂
W

is a convex set and therefore (2.17) holds due to Proposition 1.6 in [6].

(2) Assume the equation holds for any sensor whose level is smaller than or equal to k. Con-

sider a sensor n whose level is k + 1, by using the relationship between V̄ H
n (P) and V H

n (P)

in (A.9), we rewrite the objective function as

∫
V H
n (P)

⋂
W

ϕ(ω,pn)dω =

∫
V̄ H
n (P)

⋂
W

ϕ(ω,pn)dω −
k∑
l=1

∑
t∈Zl

[∫
V H
t (P)

⋂
V̄ H
n (P)

⋂
W

ϕ(ω,pn)dω

]
.

(A.10)

122



Since V H
n (P)

⋂
W is a convex set and therefore star-shaped, the partial derivative of the first

term can be solved by proposition 1.6 in [6]. Sensors’ levels in the second term are smaller

than k and thus the partial derivative of the second term can be solved by our assumption

in Step (2). Therefore, for n,m ∈ [N ], the partial derivative becomes

∂
∫
V H
n (P)

⋂
W
ϕn(ω,pn)dω

∂pm

=

∫
V̄ H
n (P)

⋂
W

∂ϕn(ω,pn)

∂pm
dω +

∫
∂[V̄ H

n (P)
⋂
W ]
ϕn(γ,pn)nt(γ)

∂γ

∂pm
dγ

−
k∑
l=1

∑
t∈Zl

[∫
V H
t (P)

⋂
V̄ H
n (P)

⋂
W

∂ϕn(ω,pn)

∂pm
dω

]

−
k∑
l=1

∑
t∈Zl

[∫
∂[V H

t (P)
⋂
V̄ H
n (P)

⋂
W ]

ϕn(γ,pn)nt(γ)
∂γ

∂pm
dγ

]
.

(A.11)

Note that V̄ H
n (P)

⋂
W =

[
V H
n (P)

⋂
W
]⋃
G(P), whereG(P)=

[⋃k
l=1

⋃
t∈Zl(V

H
t (P)

⋂
V H
n (P)

⋂
W )
]
,

is a star-shaped set consisting of several disjoint subsets. By using Lemma 4, we have

∫
∂[V̄ H

n (P)
⋂
W ]
ϕn(γ,pn)nt(γ)

∂γ

∂pm
dγ −

k∑
l=1

∑
t∈Zl

[∫
∂[V H

t (P)
⋂
V̄ H
n (P)

⋂
W ]

ϕn(γ,pn)nt(γ)
∂γ

∂pm
dγ

]

=

∫
∂[V H

n (P)
⋂
W ]

ϕn(γ,pn)nt(γ)
∂γ

∂pm
dγ.

(A.12)

Also, we have

∫
V̄ H
n (P)

⋂
W

∂ϕn(ω,pn)

∂pm
dω−

k∑
l=1

∑
t∈Zl

[∫
V H
t (P)

⋂
V̄ H
n (P)

⋂
W

∂ϕn(ω,pn)

∂pm
dω

]
=

∫
V H
n (P)

⋂
W

∂ϕn(ω,pn)

∂pm
dω.

(A.13)

(2.17) is derived by replacing (A.12) and (A.13) in (A.11). In other words, (2.17) is correct

for sensors whose level is smaller than or equal to k + 1. In summary, (2.17) is correct for

sensors in all levels of heterogeneous WSNs.
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A.2 Proof of Lemma 6

To find the optimal 1−level parameter quantizer (x∗, h∗) for a uniform density f(ω) = 1/A,

we need to satisfy (3.26), i.e., for1 Ω = V1 = V ∗1 = [0, A]

0 =

∫ A

0

(x∗ − ω)
(
(x∗ − ω)2 + h∗2

)γ−1
dω. (A.14)

Substituting x∗ − ω by ω we get

0 =

∫ x∗

x∗−A
ω
(
ω2 + h∗2

)γ−1
dω. (A.15)

Since the integral kernel is an odd function in ω and x∗ ∈ [0, A], it must hold

0 = −
∫ x∗−A

0

ω(ω2 + h∗2)γ−1dω +

∫ x∗

0

ω(ω2 + h∗2)γ−1dω (A.16)

by substituting ω by −ω we get

∫ A−x∗

0

ω(ω2 + h∗2)γ−1dω =

∫ x∗

0

ω(ω2 + h∗2)γ−1dω. (A.17)

Hence for any choice of h∗ it must hold x∗ = A − x∗, which is equivalent to x∗ = A/2. To

find the optimal parameter, we can just insert x∗ into the average distortion

D(x∗, h) =
1

A

∫ A

0

(x∗ − ω)2 + h2)γ

h
dω =

1

A

∫ A/2

0

(ω2 + h2)γ

h
dω (A.18)

where we substituted again and inserted x∗ = A/2. By substituting ω with 2ω/A and h

with u = 2h/A we get

=

∫ 1

0

2

A

((Aω/2)2 + (Au/2)2)γ

u
dω =

(
A

2

)2γ−1 ∫ 1

0

ψ(ω, u, γ)dω (A.19)

1Note, there is no optimizing over the regions, since there is only one.
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where for each γ ≥ 1 the integral kernel ψ is a convex function in x = (ω, u) over R2
+. Let

us rewrite f as

ψ(ω, u, γ) =
(ω2 + u2)γ

u
=
‖(ω, u)‖2γ

2

u
. (A.20)

Clearly, ‖x‖2 is a convex and continuous function in x over R2 and since (·)2γ with 2γ ≥ 2

is a strictly increasing continuous function, the concatenation ψ(x, γ) is a strict convex and

continuous function over R2
+. Hence, for any x1,x2 ∈ R2 we have

‖λx1 + (1− λ)x2‖2γ
2 < λ ‖x1‖2γ

2 + (1− λ) ‖x2‖2γ
2 (A.21)

for all λ ∈ (0, 1). But then we have also for any u1, u2 ∈ R2
+ and ω ≥ 0

ψ(λu1 + (1− λ)u2,ω, γ) <
λ ‖(ω, u1)‖2γ

2 + (1− λ) ‖(ω, u2)‖2γ
2

λu1 + (1− λ)u2

. (A.22)

Considering the following inequality

1

u1

+
1

u2

=

(
1

u1

+
1

u2

)
λu1+(1−λ)u2

λu1+(1−λ)u2

=

(
λ+ (1−λ)u2

u1
+(1−λ)+ λu1

u2

)
λu1+(1−λ)u2

>
1

λu1+(1−λ)u2

and (A.22), we will have

ψ(λu1 + (1− λ)u2,ω, γ) < λψ(u1,ω, γ) + (1− λ)ψ(u2,ω, γ) (A.23)

for every λ ∈ (0, 1). Hence, the integral kernel is a strictly convex function for every ω ≥

0, γ ≥ 1, and since the infinite sum (integral) of convex functions is again a convex function,

for u > 0, we have shown convexity of Ψ(u, γ). Note, ψ(u,ω, γ) is continuous in R2
+ since

it is a product of the continuous functions ‖(u,ω)‖2γ
2 and 1/(u + 0 · ω), and so is Ψ(u, γ).
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Therefore, the only critical point of Ψ(·, γ) will be the unique global minimizer

g(γ) = arg min
u>0

Ψ(u, γ), (A.24)

which is defined by the vanishing of the first derivative:

Ψ′(u)=

∫ 1

0

(ω2+u2)γ−1

(
(2γ−1)− ω

2

u2

)
dω=

1

u2

∫ 1

0

(ω2+u2)γ−1
(
(2γ−1)u2 − ω2

)
dω.

(A.25)

Hence, Ψ′(u) can only vanish if u < 1/
√

2γ − 1, which is an upper bound on g(γ). The

optimal parameter for minimizing the average distortion (A.18) is then

h∗ =
A

2
g(γ) with D(x∗, h∗) =

(
A

2

)2γ−1

g(γ). (A.26)

Analytical solutions for Ψ′(u) = 0 are possible for integer valued γ. Let us set 0 < x = u2 in

(A.25), then for γ ∈ N, the integrand in (A.25) will be a polynomial in Ω of degree 2γ and

in x of degree γ. For γ ∈ {1, 2, 3} the integrand will be

(ω2 + x)0(1x− ω2) = x− ω2 (A.27)

(ω2 + x)1(3x− ω2) = 3x2 + 2ω2x− ω4 (A.28)

(ω2 + x)2(5x− ω2) = 5x3 + 9ω2x2 + 3ω4x− ω6 (A.29)

which yield with the definite integrals to

0 = ω(x− ω
2

3
)
∣∣∣
Ω=1

(A.30)

0 = ω(3x2 +
2ω2x

3
− ω

4

5
)
∣∣∣
Ω=1

(A.31)

0 = ω(5x3 + 3ω2x2 +
3ω4x

5
− ω

6

7
)
∣∣∣
Ω=1

(A.32)
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Solving (A.30) for x yields to the only feasible solution

x =
1

3
⇒ g(1) =

1√
3
≈ 0.577. (A.33)

The solutions of (A.31) are

x± = −1

9
±
√

1

81
+

1

15
=
±
√

32/5− 1

9
(A.34)

Since only positive roots are allowed, we get as the only feasible solution

g(3) =

√√
32/5− 1

3
≈ 0.412. (A.35)

Finally, the cubic equation (A.32) results in

5x3 + 3x2 +
3

5
x− 1

7
= 0 (A.36)

The solution of a cubic equation can be found in [125, p. 2.3.2] by calculating the discriminant

∆ = q2 + 4p3 with q =
2b3 − 9abc+ 27a2d

27a3
, p =

3ac− b2

9a2
(A.37)
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Let us identify a = 5, b = 3, c = 3/5 and d = −1/7, then we get

q =
6 · 9− 9 · 9− 27 · 52 · 1/7

27 · 53
= − 3

3 · 5 · 25
− 1

5 · 7
= − 32

25 · 35
(A.38)

∆ = q2 + 4

(
3 · 3− 9

9 · 52

)3

= q2 > 0 (A.39)

which indicates only one real-valued root, given by

x = α
1/3
+ + α

1/3
− −

b

3a
with α± =

−q ±
√

∆

2
=

{
0,

32

25 · 35

}
(A.40)

which computes to

x =

(
32

53 · 7

)1/3

− 1

5
=

(32
7

)1/3 − 1

5
⇒ g(5) =

√
(32

7
)1/3 − 1

5
≈ 0.363. (A.41)

A.3 Proof of Lemma 7

Although, this statement seems to be trivial, it is not straight forward to show. We will use

the quantization relaxation for the average distortion D in (3.9) to show that the N−level

parameter optimized quantizer has strictly smaller distortion than the (N − 1)−level op-

timized quantizer (3.10). We define, as in quantization theory, see for example [59], an

N−level quantizer for Ω, by a (disjoint) partition R = {Rn}Nn=1 ⊂ Ω of Ω and assign to

each partition region Rn a quantization-parameter point (qn, hn) ∈ Ω×R+. The assignment

rule or quantization rule can be anything such that the regions are independent of the value

of the quantization and parameter points. Minimizing over the quantizer, that is, over all

partitions and possible quantization-parameter points will yield to the parameter optimized

quantizer, which is by definition the optimal deployment which generate the generalized

Voronoi regions as the optimal partition (tessellation2). This holds for any density function

2Since we take here the continuous case, the integral will not distinguish between open or closed sets.
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f(ω) and target area Ω. To see this3, let us start with any quantizer (Q,h,R) for Ω yielding

to the average distortion

D(Q,h,R)=
N∑
n=1

∫
Rn
D(qn, hn,ω)f(ω)dω ≥

N∑
n=1

∫
Rn

(
min
m∈[N ]

D(qm, hn,ω)

)
f(ω)dω

=

∫
Ω

min
m∈[N ]

D(qm, hn,ω)f(ω)dω =
N∑
n=1

∫
Vn(Q,h)

D(qn, hn,ω)f(ω)dω (A.42)

where the first inequality is only achieved if for any ω ∈ Rn we have chosen (qn, hn) to be

the optimal quantization point with respect to D, or vice versa, if every (q, hn) is optimal for

every ω ∈ Rn, which is the definition of the generalized Voronoi region V (Q,h). Therefore,

minimizing over all partitions gives equality, i.e.

min
R
D(Q,h,R) = D(Q,h,V (Q,h)) (A.43)

for any (Q,h) ∈ ΩN×RN
+ . Hence, we have shown that the parameterized distortion quantizer

optimization problem is equivalent to the locational-parameter optimization problem

min
Q∈ΩN ,h∈RN+

min
R∈ΩN

D(Q,h,R) = min
Q∈ΩN ,h∈RN+

D(Q,h,V (Q,h)) = D(Q∗,h∗,V ∗). (A.44)

We need to show that for the optimal N−level parameter-quantizer (Q∗,h∗,V ∗) with V ∗ =

V (Q∗,h∗), we have µ(Vn) > 0 for all n ∈ [N ]. Let us first show that each region is indeed a

closed interval, i.e., V ∗n = [b∗n−1, b
∗
n] with 0 ≤ b∗n−1 ≤ b∗n ≤ A. By the definition of the Mbius

regions in Lemma 5, each dominance region is either a single interval (if it is a ball not

contained in the target region or a halfspace) or two disjoint intervals (if its a ball contained

in the target region), we can not have more than Kn ≤ 2N − 2 disjoint closed intervals for

each Mbius (generalized Voronoi) region. Therefore, the nth optimal Mbius region is given

as V ∗n =
⋃Kn
k=1 vn,k, where vn,k = [an,k−1, an,k] are intervals for some 0 ≤ an,k−1 ≤ an,k ≤ A.

3We use the same argumentation as in the prove of [34, Prop.1].
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Let us assume there are quantization points with disconnected regions, i.e. Kn > 1 for

n ∈ Id and some Id ⊂ [N ]. Then, we will re-arrange the partition V ∗ by concatenating the

Kn disconnected intervals vn,k to Rn = [bn−1, bn] for n ∈ Id and move the connected regions

appropriatly such that for all n ∈ [N ] it holds µ(Rn) = µ(V ∗n ) = bn − bn−1 and bn−1 ≤ bn,

where we set b0 = 0 and bN = A. For the new concatenated regions, we move each q∗n to

the center of the new arranged regions, i.e., q̃n = bn+bn−1

2
for n ∈ Id. If for the connected

regions n ∈ [N ] \ Id, the quantization point q∗n is not centroidal, by placing it at the center

of the corresponding closed interval, we will obtain a strictly smaller distortion by Lemma

6. Hence, for the optimal quantizer, the quantization points must be centroidal and we can

assume q̃n = (bn + bn−1)/2 for all n ∈ [N ]. In this rearrangement, we did not change the

parameters h∗n at all. The rearranged partition R = {Rn} and replaced quantization points

q̃ = (q̃1, . . . , q̃N) provide the average distortion

D(q̃,h∗,R) =
N∑
n=1

∫ bn

bn−1

((q̃n−ω)2 + h∗2n )γ

h∗n
dω = 2

N∑
n=1

∫ bn−bn−1
2

0

(ω2 + h∗2n )γ

h∗n
dω (A.45)

where we substituted ω by q̃n−ω. Since the function (ω2 + h∗2n )γ is strictly monotone

increasing in ω for each γ > 0, for any n ∈ Id, we have

Dn(q̃n, h
∗
n,Rn) = 2

∫ bn−bn−1
2

0

(ω2 + h∗2n )γ

h∗n
dω <

Kn∑
k=1

∫ an,k−1−q∗n

an,k−q∗n

(ω2 + h∗2n )γ

h∗n
dω (A.46)

since the non-zero gaps in
⋃
k[an,k − q∗n, an,k−1− q∗n] will lead to larger ω in the RHS integral

and therefore to a strictly larger average distortion. Therefore, the points (q̃,h∗) with closed

intervals {Rn} have a strictly smaller average distortion, which contradicts the assumption

that (q∗,h∗) is the parameter-optimized quantizer (3.11). Hence, Kn = 1 for each n ∈ [N ]

and every γ ≥ 1. Moreover, the optimal quantization points must be centroids of the

intervals, i.e. x∗n = (b∗n + b∗n−1)/2.
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Now, we have to show that the optimal quantization regions V ∗n = {[b∗n−1, b
∗
n]}Nn=1 are not

points, i.e., it should hold b∗n > b∗n−1 for each n ∈ [N ]. If b∗n = b∗n−1 for some n, then the nth

average distortion Dn will be zero for this quantization point, since the integral is vanishing.

But, then we only optimize over N − 1 quantization points. So we only need to show that

an additional quantization point strictly decreases the minimum average distortion. Hence,

take any non-zero optimal quantization region V ∗n = [b∗n−1, b
∗
n]. We know by Lemma 6 that

the optimal quantizer q∗n for some closed interval V ∗n must be centroidal for any parameter

hn. Hence, if we split V ∗n with µ∗n = b∗n − b∗n−1 by a half and put two quantizers qn1 and qn2

with the same parameter h∗n in the center, we will get by using (A.46)

Dn1 +Dn2 =
1

h∗n

∫ b∗n−1+
µ∗n
2

b∗n−1

((qn1 − ω)2 + h∗2n )γdω +

∫ b∗n

b∗n−1+
µ∗n
2

((qn2 − ω)2 + h∗2n )γdω


Substituting qni − ω by ω, we get

=

∫ µ∗n
4

−µ
∗
n
4

(ω2 + h∗2n )γ

h∗n
dω +

∫ µ∗n
4

−µ
∗
n
4

(ω2 + h∗2n )γ

h∗n
dω (A.47)

= 2

∫ µ∗n
4

0

(ω2 + h∗2n )γ

h∗n
dω + w

∫ µ∗n
4

0

(ω2 + h∗2n )γ

h∗n
dω (A.48)

< 2

∫ µ∗n
4

0

(ω2+h∗2n )γ

h∗n
dω + 2

∫ µ∗n
2

µ∗n
4

(ω2+h∗2n )γ

h∗n
dω = 2

∫ µ∗n
2

0

(ω2+h∗2n )γ

h∗n
dω = Dn.

(A.49)

Hence, the average distortion will strictly decrease if µ∗n > 0. Therefore, the N−level pa-

rameter optimized quantizer will have quantization boundaries bn>bn−1 for n ∈ [N ].
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A.4 Proof of Theorem 3.1

We know by Lemma 7 that the optimal quantization regions are closed non-vanishing inter-

vals V ∗n = [b∗n−1, b
∗
n] for some b∗n−1 < b∗n with quantization points

q∗n = x∗n =
b∗n + b∗n−1

2
(A.50)

for n ∈ [N ]. Let us set µ∗n = b∗n − b∗n−1 for n ∈ [N ]. By substituting 2(x∗n−ω)
µn

= ω̃ and

h∗n = u∗nµ
∗
n

2
in the average distortion, we get

D(Q∗,h∗,V ∗) =
N∑
n=1

∫ b∗n

b∗n−1

((x∗n − ω)2 + h∗n
2)γ

h∗n

dω

A
(A.51)

=
N∑
n=1

∫ −1

1

−(µ∗2n ω̃
2/4 + u∗2n µ

∗2
n /4)γ

u∗nµ
∗
n/2

µn
2A

dω̃ =
1

22γ−1A

N∑
n=1

µ∗2γn ·
∫ 1

0

(ω2 + u∗2n )γ

u∗n
dω

where we used (A.50) to get for the integral boundaries 2(x∗n−b∗n−1)/µ∗n = 1 = −2(x∗n−b∗n)/µ∗n.

We do not know the value of u∗n and µ∗n but we know that µ∗n > 0 and
∑N

n=1 µ
∗
n = A by

Lemma 7. Furthermore, (A.51) is the minimum over all such µn > 0 and un > 0. Hence, it

must hold

D(Q∗,h∗,V ∗) =
1

22γ−1A
min
un>0

min
µn>0

A=
∑N
n=1 µn

N∑
n=1

µ2γ
n ·
(∫ 1

0

(ω2 + u2
n)γ

un
dω

)

=
g(γ)

22γ−1A
min
µn>0

A=
∑N
n=1 µn

N∑
n=1

µ2γ
n

where in the last equality we used Lemma 6. By the Hlder inequality we get for p = 2γ, q =

2γ/(2γ − 1),

N∑
n=1

µ2γ
n =

N∑
n=1

µpn =
N∑
n=1

µpn ·
( N∑
n=1

(1/N)q
)p/q
·N ≥

( N∑
n=1

µn
N

)p
·N =

(
A

N

)2γ

N
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where the equality is achieved if and only if µ∗n = A/N . Hence, the optimal parameter-

quantizer is the uniform scalar quantizer x∗n = (2n − 1)A/2N with identical parameters

h∗ = (A/2N)g(γ) resulting in the minimum average distortion (3.30).

Let us note here, that for identical parameters, the Mbius regions are closed intervals and

reduce to Euclidean Voronoi regions by Lemma 5, for which the optimal tessellation is known

to be the uniform scalar quantizer, see for example [59].

A.5 Proof of Proposition 2

When there is only one FC, all APs transfer data to the unique FC located at q, and the

index map is simply given by T(n) = 1, n ∈ IA. The corresponding distortion is

D(P ,Q,RA,T) =
N∑
n=1

∫
RAn

[
‖pn − ω‖2 + β‖pn − q‖2

]
f(ω)dω.

Since

‖pn − ω‖2 + β‖pn − q‖2 = (1 + β)
∥∥pn − (ω+βq)

1+β

∥∥2
+ β‖ω−q‖2

1+β , (A.52)

we obtain

D(P ,Q,RA,T) =
1

1 + β

N∑
n=1

∫
RAn

((1 + β)pn − βq)− ω‖2f(ω)dω +
β

1 + β

∫
Ω

‖ω − q‖2f(ω)dω,

(A.53)

The first term in (A.53) is the distortion of a one-tier quantizer with linear transformation of

its reproduction points (AP locations). The minimum value of the first term is Dr(X
∗,R∗)

and can be achieved by choosing the optimal AP deployment P for any FC location q.

On the other hand, the second term in (A.53) is the distortion of another quantizer whose

reproduction point is the FC, and is independent of the choice of AP locations and partition

cells. In other words, the second term only depends on the FC location q. As a result,
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one can optimize (A.53) by finding the optimal q∗ to minimize the second term and then

calculate the optimal AP deployment P ∗ for q∗. By parallel axis theorem, the second term

achieves the minimum if and only if the FC is placed at the geometric centroid c =
∫
Ω ωf(ω)dω∫
Ω f(ω)dω

of Ω, which proves (i). The best possible distortion is then the summation of 1
1+β

Dr(X
∗,R∗)

and β
1+β

∫
Ω
‖ω−c‖f(ω)dω, which proves (iv). The two-tier quantizer achieves this minimum

when q∗ = c, x∗n = ((1 + β)p∗n − βq∗) , n ∈ IA, and RA = R∗, which proves (ii) and (iii).

A.6 Proof of Proposition 3

Let (P ∗,Q∗,RA∗,T∗) be an optimal solution for (4.7). As we show at the beginning of Sec.

4.3, given the optimal deployment (P ∗,Q∗), the optimal partition and the optimal index map

are, respectively, RA∗ = V E(P ∗,Q∗) and T∗ = TE
[P ∗,Q∗]. Thus, the optimal geometric cen-

troid and the optimal Lebesgue measure (volume) of RA∗ can be represented as cn(P ∗,Q∗)

and vn(P ∗,Q∗), where cn(P ,Q) =

∫
V En (P ,Q)

ωf(ω)dω∫
V En (P ,Q)

f(ω)dω
and vn(P ,Q) =

∫
V E
n (P ,Q)

f(ω)dω. Ac-

cording to the parallel axis theorem, given the optimal partition V E(P ∗,Q∗) and the optimal

index map TE
[P ∗,Q∗], the objective function in (4.7) can be expressed as

D
(
P ,Q,V E(P ∗,Q∗),TE

[P ∗Q∗]

)
=

N∑
n=1

∫
V E
n (P ∗,Q∗)

‖cn(P ∗,Q∗)− ω‖2f(ω)dω

+ ‖pn − cn(P
∗,Q∗)‖2vn(P ∗,Q∗)+

N∑
n=1

[
β‖pn − qTE

[P∗,Q∗]
‖2vn(P ∗,Q∗)

]
.

(A.54)

The partial derivatives of (A.54) are

∂D(P ,Q,V E(P ∗,Q∗),TE
[P ∗,Q∗])

∂pn

=2
[
(pn − cn(P ∗,Q∗)) + β

(
pn − qTE

[P∗,Q∗](n)

)]
vn(P ∗,Q∗), n ∈ IA,

and

∂D(P ,Q,V E(P ∗,Q∗),TE
[P ∗,Q∗])

∂qm
=

∑
n:TE

[P∗,Q∗](n)=m

2β (qm − pn)vn (P ∗,Q∗) ,m ∈ IB.

134



Since (A.54) is a convex function of P and Q, the optimal deployment (P ∗,Q∗) satisfies zero

gradient. Solving for p∗n and q∗m, we obtain

p∗n =
cn(P ∗,Q∗) + βq∗

TE
[P∗,Q∗](n)

1 + β
, n ∈ IA (A.55)

q∗m =

∑
n:TE

[P∗,Q∗](n)=m p
∗
nvn(P ∗,Q∗)∑

n:TE
[P∗,Q∗](n)=m vn(P ∗,Q∗)

,m ∈ IB (A.56)

Substituting (A.55) to (A.56), we have

q∗m =

∑
n:TE

[P∗,Q∗](n)=m cn(P ∗,Q∗)vn(P ∗,Q∗)∑
n:TE

[P∗,Q∗](n)=m vn(P ∗,Q∗)
,m ∈ IB. (A.57)

d(N,Ω)
(a)
=

N∑
n=1

∫
Rn

‖xn− ω‖2 dω

µ(Ω)
(A.58)

(b)
=

N∑
n=1

µ(Rn)

µ(Ω)
d(1, Rn) (A.59)

(c)

≥
N∑
n=1

1

µ(Ω)

µ(Rn)3

12
(A.60)

(d)

≥ 1

12µ(Ω)

(
N∑
n=1

µ(Rn)

)3

N−2 (A.61)

(e)
=
µ(Ω)2

12N2
, (A.62)

A.7 Proof of Theorem 4.1

Before we discuss the best possible distortion in the uniformly distributed 1-dimensional

space, we need to present the following concepts and Lemmas. Let µ(W ) be the (Lebesgue)

measure of the set W . Let d(N,Ω) = minx1,...,xN

∫
Ω

minn ‖xn − ω‖2 dω
µ(Ω)

be the minimum

distortion of the N -level one-tier quantizer for a uniform distribution on Ω ⊂ R.
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Lemma 11. We have d(N,Ω) ≥ µ(Ω)2

12N2 with equality if and only if ω is the union of N

disjoint intervals, each with measure µ(Ω)
N

.

Proof. Let x1, . . . , xN ∈ Ω, and R1, . . . , RN ⊂ R respectively denote the reproduction points

and the quantization cells of the optimal one-tier quantizer that achieves d(N,Ω). Note that

xn is the centroid of Rn. We have (A.62), where (a) follows since for any xn ∈ R, we have

d(1, Rn) =
∫
Rn
‖xn − ω‖2 dω

µ(Rn)
by definition, and (c) follows since for any W ⊂ R, we have

d(1,W ) ≥ µ(W )2

12
with equality if and only if W is an interval [126]. Also, (d) is the reverse

Hölder’s inequality, and (e) follows since
∑N

n=1 µ(Rn) = µ(Ω). Note that (c) is an equality if

and only if ωns are intervals, and (d) is an equality if and only if µ(Ωn) = µ(Ω)
N
,∀n. Therefore,

(e) can be achieved if and only if ω is the union of disjoint intervals with the same measure

µ(Ω)
N

.

Lemma 12. Let N and M be two positive integers such that N ≥M . We define a function

DLB(e1, . . . , eM) =

(∑M
m=1

(
β + 1

e2m

)− 1
2

)−2

with the domain Rc = {(e1, . . . , eM)|
∑M

m=1 em =

N, em ∈ N,∀m}, where β is a non-negative constant. Let Ma = (N mod M) and Mb =

M −Ma. Then, DLB(e1, . . . , eM) attains the unique minimum

Ma

(
β +

1

dN
M
e2

)− 1
2

+Mb

(
β +

1

bN
M
c2

)− 1
2

−2

(A.63)

where Ma of the ems are equal to dN
M
e and Mb of the ems are equal to bN

M
c. In particular,

when Ma = 0, DLB(e1, . . . , eM) attains the unique minimum
(
β
M2 + 1

N2

)
at
(
N
M
, . . . , N

M

)
.

Proof. Let e = (e1, . . . , eM) ∈ Rc, D
UB(e) =

∑M
m=1

(
β + 1

e2m

)− 1
2
. Minimizing DLB is equiva-

lent to maximizing DUB. Let i, j ∈ {1, . . . ,M} be two arbitrary indices. When ek,∀k 6= i, j

and γ = ei + ej are fixed, DUB only depends on the difference between ei and ej. Without
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loss of generality, suppose ei ≥ ej. Let δ = ei − ej, we have

D̃UB
ij (δ)=DUB

(
e1, . . . ,

ζγ+δ

2
, . . . ,

γ−δ
2

, . . . , em

)

=
∑
k 6=i,j

(
β+

1

e2
k

)− 1
2

+

(
β+

1(
γ+δ
2

)2

)−1
2

+

(
β+

1(
γ−δ

2

)2

)− 1
2

,

(A.64)

∂D̃UB
ij (δ)

∂δ
=

1

2

(1+β

(
γ+δ

2

)2
)− 3

2

−

(
1+β

(
γ−δ

2

)2
)− 3

2

 . (A.65)

Let g(y) = 1
2
y−

3
2 , y ∈ (0,∞), y(x) = 1 + x2, x ∈ [0,∞). Since ei and ej are non-negative

and ei ≥ ej, we have δ ≥ 0, γ ≥ 0, and then x1 = γ+δ
2
≥ γ−δ

2
= x2. Consequently,

y(x1) ≥ y(x2) > 0, and thus, ∂D̃UB(δ)
∂δ

= g(y(x1))− g(y(x2)) ≤ 0 with equality if and only if

δ = 0. Therefore, D̃UB
ij (δ) is a decreasing function for non-negative continuous δ.

Let e∗ = (e∗1, . . . , e
∗
M) , arg min

(e1,...,eM )∈Rc
DLB(e1, . . . , eM) be a minimizer of DLB on Rc, and

δ̂ , mini 6=j |e∗i − e∗j | be the minimum difference among e∗ms. Since e∗i s are positive integers,

we have δ̂ ∈ N. In what follows, we show that δ̂ ∈ {0, 1}. Suppose δ̂ ≥ 2. Then, we can find

two indices i, j ∈ {1, . . . ,M} such that δ = e∗i − e∗j ≥ 2. Let e′ = (e∗1, . . . , e
′
i, . . . , e

′
j, . . . , e

∗
M)

be a new solution where e′i = e∗i − 1, and e′j = e∗j + 1. We have δ′ = e′i − e′j = e∗i − e∗j − 2 =

δ− 2 < δ. Since D̃UB
ij (δ) is a monotonically decreasing function for non-negative continuous

δ, we have D̃UB
ij (δ′) > D̃UB

ij (δ) where δ′ and δ are non-negative integers. Thus, we have

DUB(e′) > DUB(e∗) which contradicts the optimality of e∗.

Therefore, δ̂ ∈ {0, 1}, and e∗ms can thus assume at most 2 distinct values. Suppose M1 of

the e∗ms are equal to h and M2 of the e∗ms are equal to h + 1, where h ≥ 0 is an integer. It

is self-evident that at least one of M1 or M2 should be positive. Without loss of generality,

suppose M1 > 0 and M2 ≥ 0. Since M1 + M2 = M and M1 > 0, we have 0 < M1 ≤ M and

0 ≤ M2 < M . From the equalities M1 + M2 = M and M1h + M2(h + 1) = N , we obtain

Mh + M2 = N . Solving the system Mh + M2 = N and 0 ≤ M2 < M , we have h = bN
M
c

and M2 = N mod M = Ma. Finally, using the equality M1 + M2 = M , we can determine

M1 = M − (N mod M) = Mb.
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Now, we have enough tools to derive the best possible distortion in the uniformly distributed

1-dimensional space. We have

D(P ,Q,RA,T) =
M∑
m=1

∑
n∈Nm

∫
RAn

(
‖pn − ω‖2 + β‖pn − qm‖2

)
dω

(a)
=

M∑
m=1

∑
n∈Nm

∫
RAn

(
1

1 + β

∥∥(1 + β)pn − βq− ω
∥∥2

+
β

1 + β
‖ω − q‖2

)
dω

(b)

≥
M∑
m=1

[
1

1 + β
d(Nm,Wm) +

β

1 + β
d(1,Wm)

]
µ(Wm)

µ(Ω)

(c)

≥ 1

12(1 + β)µ(Ω)

M∑
m=1

µ3(Wm)

(
β +

1

N2
m

)
(d)

≥ 1

12(1 + β)µ(Ω)

(
M∑
m=1

µ(Wm)

)3( M∑
m=1

(
β +

1

N2
m

)− 1
2

)−2

(e)
=

µ2(ω)

12(1 + β)

(
M∑
m=1

(
β +

1

N2
m

)− 1
2

)−2

(f)

≥ µ2(ω)

12(1 + β)
min

N1,...,NM∈N∑M
m=1 Nm=N

(
M∑
m=1

(
β +

1

N2
m

)− 1
2

)−2

(A.66)

where (a) follows from (A.52), the first inequality follows from the definition of d(N,Ω), the

second inequality follows from Lemma 11, and the third inequality is the reverse Hölder’s

inequality. All these inequalities can be made tight with a specific choice of pn, qm, Wms

and Nms. In fact, by Proposition 3, (b) is an equality if and only if pn =
cn+βqT(n)

1+β
and qm is

the centroid of Wm, indicating (iii) and (v) in Theorem 4.1. Also, according to Lemma 11,

(c) is an equality if and only if Wm,m ∈ IB, are intervals, and Wm is uniformly divided into

Nm intervals. Therefore, (iv) in Theorem 4.1 is proved. According to the reverse Hölder’s

inequality, (d) is an equality if and only if ∃τ > 0, µ(Wm) = τ
(
β + 1

N2
m

)− 1
2
,∀m ∈ IB.

Moreover, the sum of these measures is µ(Ω), i.e.,
∑M

j=1 µ(Wj) = µ(Ω). Therefore, the

corresponding measure of the mth cluster region is

µ(Wm) =
Nm (1 + βN2

m)
− 1

2 µ(Ω)∑M
j=1Nj

(
1 + βN2

j

)− 1
2

. (A.67)
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Note that (e) is a function of (N1, . . . , NM) and (f) is just the minimum of (e). Therefore, the

last inequality is an equality when we properly select the variables N1, . . . , NM . Obviously,

the above equality conditions are compatible, i.e., all equality conditions can be satisfied

simultaneously. Therefore, (f) is an achievable lower bound, indicating the minimum distor-

tion. The last thing is to determine the optimal (N1, . . . , NM) that attains the minimum of

(e). By Lemma 12, (e) attains (f), if and only if Ma of the Nms are equal to dN
M
e and Mb

of the Nms are equal to bN
M
c. Substituting the optimal values for Nms to (e), we obtain the

minimum distortion formula in (4.17). Substituting the optimal values for Nms to (A.67),

we get (i) and (ii) in Theorem 4.1.

A.8 Proof of Lemma 8

Since PS(P ,RA) is the distortion of an N -level quantizer, we have PS ∈ [DR(N),+∞)

which is then the domain of the function A(S). Next, we justify the monotonicity of A(S).

Let F (S) be the set of the feasible solutions for the point (S,A(S)). Thus, the AP-Sensor

power function can be rewritten as A(S) = inf
(P ,Q,RA,T)∈F (S)

PA(P ,Q,RA,T). For any two

values S1 and S2 such that DR(N) ≤ S1 < S2, we have F (S1) ⊆ F (S2) and then A(S1) ≥

A(S2). In other words, A(S) is a non-increasing function. Note that DR(·) is a mean-square-

error distortion with continuous and differentiable source. Therefore, DR(·) is a strictly

decreasing function. Since N > M , we have DR(N) < DR(M). Now, we discuss the

values of A(S) on [DR(M),+∞). Let (X∗,R∗) = arg min(X,R)

∑M
n=1

∫
Rn
‖x − ω‖2f(ω)dω

be the optimal solution for the M -level one-tier quantizer. X∗ = (x∗1, . . . , x
∗
M) and R∗ =

(R∗1, . . . , R
∗
M) are, respectively, the optimal reproduction points and quantization regions.

Let P ′ = (x∗1, x
∗
2, . . . , x

∗
M , x

∗
1, . . . , x

∗
1) be a deployment including N points (APs), in which

the last N −M APs have the same location x∗1. Afterwards, we define R′A = R∗, Q′ = X∗,

and T′(n) = TE
[P ′,Q′](n) = arg minm ‖p′n − q′m‖. Substituting (P ′,Q′,R′A,T′) to (4.4) and

(4.3), we obtain PS(P ′,R′A) = DR(M) and PA(P ′,Q′,R′A,T′) = 0. In other words,

A(DR(M)) ≤ 0. On one hand, since A(S) is a non-negative non-increasing function, we
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have A(S) = 0 on [DR(M),+∞). On the other hand, by quantization theorem, when N

APs are placed at K distinct locations, where K ≤ M , we have PS(P ,RA) ≥ DR(M). In

other words, when PS(P ,RA) < DR(M), N APs have at least M + 1 distinct locations.

Under such circumstances, it is impossible to connect each AP to the FC with zero distance,

indicating that PA(P ,Q,RA,T) > 0. Therefore, we have A(S) > 0 on [DR(N), DR(M)).

A.9 Proof of Lemma 9

At the beginning, we prove (i), the domain of Â(S,RA) shown in the Lemma is correct. An

input (S,RA) belongs to the domain if and only if there exists a P such that PS(P ,RA) ≤ S.

When RA is fixed, the range of PS(P ,RA) is [H(RA),+∞), where H(RA) is the minimum

distortion of a one-tier quantizer with partition RA. Therefore, the domain of Â(S,RA) can

be represented as {(S,RA)|H(RA) ≤ S}. Next, we prove (ii), the value of Â(S,RA) on the

domain shown in the Lemma is correct. Note that one can simply achieve the minimum

AP-power 0 with Sensor-power DR(1) by placing all APs at the centroid of the target area.

Therefore, when x ∈ [DR(1),+∞), Â(S,RA) = 0. In what follows, we focus on the case

that x ∈ [DR(N), DR(1)). To calculate the value of Â(S) at (S,RA), we assume that the

AP cell partition is fixed as RA. Therefore, the centroid, cn =

∫
RAn

ωf(ω)dω∫
RAn

f(ω)dω
, and the volume

of RAn , vn =
∫
RAn

f(ω)dω, are constants. Since M = 1, the index map T(n) = 1,∀n ∈ IA,

is determined. Let q be the location of the unique FC. Therefore, the AP-power function

becomes

PA(P ,Q,RA,T) =

N∑
n=1

∫
RAn
‖pn − q‖2f(ω)dω

=

N∑
n=1

‖pn − q‖2vn =

N∑
n=1

‖pn
√
vn − q

√
vn‖2 = ‖p̃− q̃‖2,

(A.68)

and the Sensor-power function becomes

PS(P ,RA) =
N∑
n=1

∫
RAn
‖pn − ω‖2f(ω)dω = H(RA) +

N∑
n=1

‖pn − cn‖2vn

= H(RA) +
N∑
n=1

‖pn
√
vn − cn

√
vn‖2 = H(RA) + ‖p̃− c̃‖2,

(A.69)
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where p̃ , [p1
√

v1, . . . ,pN
√

vN ], q̃ , [q
√

v1, . . . , q
√

vN ], and c̃ , [c1
√

v1, . . . , cN
√

vN ].

Since H(RA) is a constant, (4.20) can be rewritten as

Â(S,RA) = inf
(p̃,q̃):‖p̃−c̃‖2≤S−H(RA)

‖p̃− q̃‖2. (A.70)

When q is fixed, one should minimize the distance of p̃ to the fixed q̃ subject to the

constraint that p̃ remain within a ball of radius-square S −H(RA) centered at c̃. A simple

geometric argument reveals that the optimal solution should then fall on a line between p̃

and q̃, i.e., p̃ = q̃+λc̃
1+λ

for some λ ≥ 0. Going back to the original variables, we have the

optimal AP locations pn = q+λcn
1+λ

, n ∈ IA. Substituting the optimal AP locations to (A.69),

the constraint in (A.70) becomes (1 + λ)2 ≥
∑N
n=1 ‖q−cn‖2vn
S−H(RA)

. Specially, when λ = 0, we have

pn = q,∀n ∈ IA. In other words, all APs are placed at the same location which is equivalent

to the scenario that only one AP is placed. Again, DR(1) is the minimum distortion for the

one-tier quantizer and then the minimum sensor power when only one AP is placed. Thus,

when λ = 0, we have PS ≥ DR(1). Since we only consider S ∈ [DR(N), DR(1)), to ensure

the constraint S ≥ PS , λ cannot be 0. Thus, the possible range of λ is (0,+∞).

On the other hand, T is determined and the constraint in (4.20) is independent of Q = {q}

so that Â(S,RA) can be rewritten as

Â(S,RA) = inf
(P ,Q,T):PS(P ,RA)≤S

PA(P ,Q,RA,T)

= inf
Q

inf
(P ,T):PS(P ,RA)≤S

PA(P ,Q,RA,T)

= inf
q

inf
λ:λ>0,(1+λ)2≥

∑N
n=1 ‖q−cn‖2vn
S−H(RA)

N∑
n=1

∥∥∥q + λcn
1 + λ

− q
∥∥∥2

vn

= inf
λ:λ>0,(1+λ)2≥

∑N
n=1 ‖q−cn‖2vn
S−H(RA)

inf
q
Z(q),

(A.71)

where Z(q) =
∑N

n=1 ‖
q+λcn
1+λ

− q‖2vn. In what follows, we attempt to find the optimal

q to minimize Z(q). Note that Z(q) is a quadratic function and convex. Therefore, the
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unique minimum is associated with zero-gradient. Since ∂Z(q)
∂q

= 2λ2

(1+λ)2

(
q −

∑N
n=1 cnvn∑N
n=1 vn

)
, we

obtain the optimal FC location q =
∑N
n=1 cnvn∑N
n=1 vn

=
∑N
n=1

∫
Ω ωf(ω)dω∑N
n=1 vn

= c, where c is the cen-

troid of the target region ω. Substituting the optimal q to (A.71), we get Â(S,RA) =

inf
λ:λ>0,(1+λ)2≥ J(RA)

x−H(RA)

λ2

(1+λ)2J(RA), where J(RA) =
∑N

n=1 ‖c − cn‖2vn. According to the par-

allel axis theorem, we have

DR(1) =
N∑
n=1

∫
RAn
‖c− ω‖2f(ω)dω =

N∑
n=1

‖c− cn‖2vn

+
N∑
n=1

∫
RAn
‖ω − cn‖2f(ω)dω = J(RA) +H(RA).

(A.72)

Therefore, Â(S,RA) can be rewritten as

Â(S,RA) = inf
λ:λ>0,(1+λ)2≥DR(1)−H(RA)

S−H(RA)

λ2

(1+λ)2

(
DR(1)−H(RA)

)
. Solving the inequality (1 +

λ)2 ≥ DR(1)−H(RA)
S−H(RA)

results in λ ≥
√

DR(1)−H(RA)
S−H(RA)

−1 or λ ≤ −
√

DR(1)−H(RA)
S−H(RA)

−1. Since λ > 0,

we have only one solution, i.e., λ ≥
√

DR(1)−H(RA)
S−H(RA)

−1. Since λ2

(1+λ)2 is monotonically increas-

ing, Â attains the minimum at λ =
√

DR(1)−H(RA)
S−H(RA)

− 1. Substituting λ =
√

DR(1)−H(RA)

S−H(RA)
− 1

to Â(S,RA), we prove (4.21).

A.10 Proof of Theorem 4.2

By Lemma 8, we know A(S) = 0 on [DR(M),+∞) and the domain of A(S) is [DR(N),+∞).

In what follows, we study A(S) on [DR(N), DR(M)). Let Â(S,RA) be the minimum AP-

power with the Sensor-power constraint PS ≤ S for the fixed AP cell partition RA when

M = 1. Therefore, when M = 1, minimizing the AP-power with the Sensor-power constraint

PS(P ,RA) ≤ S is equivalent to minimizing Â(S,RA) on its domain. According to Lemma 9,

the domain of Â(S,RA) is {(S,RA)|H(RA) ≤ S}. Therefore, the AP-Sensor power function

can be rewritten as
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A(S) = inf
(P ,Q,RA,T):PS(P ,RA)≤S

PA(P ,Q,RA,T)

= inf
RA:H(RA)≤S

inf
(P ,Q,T):PS(P ,RA)≤S

PA(P ,Q,RA,T)

= inf
RA:H(RA)≤S

Â(S,RA)

= inf
RA:H(RA)≤S

[√
(S −H(RA))−

√
DR(1)−H(RA)

]2

,

(A.73)

Note that RA affects A(S) merely via H(RA). Moreover, H(RA) is the minimum distortion

of the N -level quantizer with partition RA, and DR(N) is the minimum distortion of the

N -level quantizer over all possible partitions. Thus, H(RA) ≥ DR(N). Given the value of

S, to satisfy the inequality constraint H(RA) ≤ S, the range of H(RA) is then [DR(N), S].

Therefore, the AP-Sensor power function can be rewritten as

A(S) = inf
y:DR(N)≤y≤S

Ã(S, y), (A.74)

where Ã(S, y) =
[√

(S − y)−
√

(DR(1)− y)
]2

. When S 6= y, we have

∂Ã(S, y)

∂y
= −2 +

S +DR(1)− 2y√
(S − y)(DR(1)− y)

. (A.75)

Extending (S +DR(1)− 2y)2, we get

(S +DR(1)− 2y)2= ((S − y) + (DR(1)− y))2

=(S − y)2 + (DR(1)− y)2 + 2(S − y)(DR(1)− y)

>4(S − y)(DR(1)− y)=
[
2
√

(S − y)(DR(1)− y)
]2
.

(A.76)

Again, we only consider the region [DR(N), DR(1)), indicating DR(N) ≤ S < DR(1).

Taking the constraint DR(N) ≤ y ≤ S into consideration, we have y ≤ S < DR(1).

When y 6= S, the term S+DR(1)−2y√
(S−y)(DR(1)−y)

is positive. Therefore, we have ∂Ã(S,y)
∂y

> 0,∀S ∈

[DR(N), DR(1)) and S 6= y. Therefore, when y ∈ [DR(N), S), Ã(S, y) is increasing and has

its unique minimum at y = DR(N). Taking the case S = y into account, we have A(S) =

min(Ã(S,DR(N)), Ã(S, S)). After straightforward calculation, we get Ã(S,DR(N)) < Ã(S, S)
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when x ∈ [DR(N), D̂R(1)). Therefore, in order to minimize Ã(S, y), y should be minimized

to DR(N). In other words, the AP-Sensor power function on [DR(N), DR(1)) can be rewrit-

ten as (4.22), which is a convex function. In sum, the AP-Sensor power function is convex

on the domain [DR(N),+∞).

A.11 Proof of Lemma 10

Lemma 10 focuses on homogeneous MWSNs where ηn = η, ξn = ξ, and γn = γ, ∀n ∈ IΩ. Let

P0 = (p0
1, . . . ,p

0
N) and P∗ = (p∗1, . . . ,p

∗
N) be the initial and the optimal sensor deployments

in an MWSN with performance function (5.4) and constraints (5.8), respectively. For con-

venience, let IΩ be the set of all sensors, S(P) be the set of sensors that can communicate

with the AP when the sensor deployment is P, and Nn(P) be Sensor n’s neighbors given de-

ployment P. S(P) is also referred to as the backbone network in Section 5.1. In Lemma 10,

we assumed that P0 provides a fully connected network, i.e., S(P0) = IΩ. Now, we assume

that the optimal deployment is associated with a disconnected network, i.e., S(P∗) 6= IΩ.

In this case, we can find a sensor, n ∈ S(P∗), such that one of its neighbors in the initial

deployment, m ∈ Nn(P0), is not in the final backbone network, m /∈ S(P∗). An alternative

point is defined as

p′m = p0
m + min

(
0, ‖p∗n − p0

m‖ −Rc

) p∗n − p0
m

‖p∗n − p0
m‖
. (A.77)

Replacing p∗m by p′m, we get an alternative deployment P′ = (p∗1, . . . ,p
′
m, . . . ,p

∗
N). Next,

we check if P′ satisfies the network lifetime constraints (5.8). First, since sensors m and n

are neighbors, we have ‖p0
m − p0

n‖ ≤ Rc. Second, following the constraints (5.8), we have

‖p∗n − p0
n‖ ≤

γ
ξ
. Third, using the triangular inequality, we have ‖p0

n − p0
m‖ + ‖p∗n − p0

n‖ >

‖p0
m−p∗n‖. Combining the above three inequalities, we obtain ‖p∗n−p0

m‖ < Rc+
γ
ξ
. According

to (A.77), p′m is placed between p∗n and p0
m, and the moving distance is

‖p′m − p0
m‖ = min

(
0, ‖p∗n − p0

m‖ −Rc

)
<
γ

ξ
. (A.78)
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Thus, the deployment P′ satisfies the network lifetime constraints.

In what follows, we verify that P′ provides a smaller distortion compared to P∗. The distance

between p′m and p∗n can be calculated as

‖p∗n − p′m‖ = ‖p∗n − p0
m‖ − ‖p′m − p0

m‖ =


‖p∗n − p0

m‖, if ‖p∗n − p0
m‖ ≤ Rc

Rc, otherwise

, (A.79)

which means ‖p∗n−p′m‖ ≤ Rc. In other words, when the deployment is P′, Sensor m connects

with n and then should be taken into the calculation of distortion (5.4). In our model, sensors

are initially deployed in the target region ω, i.e., p0
n ∈ ω, where ω is a convex region [32].

Moveover, it is self-evident that the optimal sensor locations are also in the target region,

i.e., p∗n ∈ ω,∀n ∈ IΩ. By properties of a convex region, any point between p∗n and p0
m should

be in the target region, e.g., p′m ∈ ω. Therefore, Sensor m is associated with a non-empty

MWVD V H
m (H(P′)) = {ω|ω ∈ ω, ‖ω − p′m‖ < ‖ω − p∗i ‖,∀i ∈ S(P′)i 6= m}. The difference

between the distortions at P′ and P∗ lays on V H
m (H(P′)) and can be calculated as

D(P′)−D(P∗)=

∫
V H
m (H(P′))

η‖ω−p′m‖2f(ω)dω−
∑

n∈S(H(P∗))

∫
V H
m (H(P′))

⋂
V H
n (H(P∗))

η‖ω−p′m‖2f(ω)dω

=

∫
V H
m (H(P′))

η

(
‖ω − p′m‖2 − min

n∈S(P∗)
‖ω − p∗n‖2

)
f(ω)dω < 0

(A.80)

Consequently, P′ is a better solution than P∗, which contradicts our assumption4.

A.12 Proof of Theorem 5.1

Let R∗ = (R∗1, . . . ,R∗N) be the optimal partition and I∗ be the optimal backbone network.

For simplicity, let c∗n =
∫
R∗n

ωf(ω)dω∫
R∗n

f(ω)dω
and v∗n =

∫
R∗n
f(ω)dω be, respectively, the geometric

4Remark: In this proof, we ignore two special cases: (i) p′m is placed on top of another sensor, i.e.,
p′m = p∗i , i 6= m. In this case, p′m should be moved towards p0

m a little bit to avoid overlap without breaking
the constraints, and then we will have the same contradiction. (ii) After replacing p∗m by p′m, more than one
sensor joins the backbone network. In this case, the distortion at P′ will be further reduced, and therefore
we will have the same contradiction.
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centroid and the Lebesgue measure (volume) ofR∗n, ∀n ∈ IΩ. Let m ∈ I∗ be a specific sensor

in the backbone network, P∗. First, we assume that other sensor locations, {p∗n}n∈(IΩ−{m}),

are known, and then derive the constraint for p∗m. Since I∗ is the backbone network, we

have5. p∗m ∈ Dm (P∗, I∗)
⋂
Wc (P∗, I∗). Moreover, since Sensor m should satisfy the energy

constraints (5.8), we have p∗m ∈ B(p0
m,

γm
ξm

). In summary, Sensor m’s location is restrained

by

Dm (P∗, I∗)
⋂
Wc (P∗, I∗)

⋂
B
(
p0
m, Rc

)
= Fm (P∗, I∗)

⋂
Wc (P∗, I∗) . (A.81)

Second, the minimum distortion can be rewritten as

D(P∗)=
∑
n∈I∗

∫
R∗n
ηn‖p∗n − ω‖2f(ω)dω (A.82)

=

∫
R∗m

ηm‖p∗m − ω‖2f(ω)dω +
∑

n∈(I∗−{m})

∫
R∗n
ηn‖p∗n − ω‖2f(ω)dω (A.83)

=ηm‖c∗m−p∗m‖2v∗m+

∫
R∗m
ηm‖c∗m−ω‖2f(ω)dω +

∑
n∈(I∗−{m})

∫
R∗n
ηn‖p∗n − ω‖2f(ω)dω,

(A.84)

where the third equation follows from the parallel axis theorem. Given the optimal partition

R∗ and optimal locations {p∗n}n∈(IΩ−{m}), the second and third terms in (A.84) are constants.

Therefore, p∗m should be a minimizer of the first term with the constraint (A.81), i.e.,

p∗m= arg min
pm:pm∈F(P∗,I∗)

⋂
Wc(P∗,I∗)

ηm‖pm − c∗m‖2v∗m. (A.85)

The equation (A.85) implies that the optimal solution should minimize the distance to c∗n

within F(P∗, I∗)
⋂
Wc (P∗, I∗). In what follows, we discuss 3 different cases of c∗m.

(a) If c∗m ∈ [F(P∗, I∗)
⋂
W (P∗, I∗)], we have p∗m 6= c∗m because p∗ ∈ [F (P∗, I∗)

⋂
Wc]. How-

ever, replacing p∗m by c∗m, one can get a better solution P′ =
(
p∗1, . . . ,p

∗
m−1, c

∗
m,p

∗
m+1, . . . ,p

∗
N

)
which not only follows the energy constraints but also provides a smaller distortion. As a

5The definitions of Dm (P, I) and W (P, I) and their relationships to backbone network are already
provided in Section 5.2
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result, c∗m ∈ [F(P∗, I∗)
⋂
W (P∗, I∗)] is an impossible case for the optimal deployment. In

other words, we have the condition

c∗m /∈
[
F(P∗, I∗)

⋂
W (P∗, I∗)

]
(A.86)

Since MWVD is the optimal partition, we have R∗ = V H(P∗) and then

c∗m =

∫
V H
m (P∗)

ωf(ω)dω∫
V H
n (P∗)

f(ω)dω
= cm(P∗),∀n ∈ IΩ. (A.87)

Moreover, the backbone network I∗ is a function of deployment P∗ and can be represented

by

I∗ = S(P∗). (A.88)

Substituting (A.87) and (A.88) to (A.86), we get condition (i).

(b) If c∗m ∈ [F(P∗, I∗)
⋂
Wc (P∗, I∗)], Sensor m should be placed at c∗m, i.e., Replacing c∗m

by (A.87) , we get the first case in condition (ii).

(c) If c∗m /∈ F(P∗, I∗), a simple geometric argument reveals that the optimal solution should

be on the boundary of F(P∗, I∗). Therefore, the optimal location can be represented as p∗m =

arg min
q∈∂[Fm(P∗,I∗)

⋂
Wc(P∗,I∗)]

‖q−c∗m‖. Replacing c∗m and I∗ by (A.87) and (A.88), respectively,

we get the second case in condition (ii).

A.13 Proof of Theorem 5.3

Let Pk =
(
pk1, . . . ,p

k
N

)
and Pk =

(
pk+1

1 , . . . ,pk+1
N

)
be the current and next sensor deploy-

ment. Let m and n be two sensors such that they are MST neighbors at Pk. Then, the dis-

tance between pkm and pkn is no larger than the communication range Rc, i.e., ‖pkm−pkn‖ ≤ Rc.

According to the definition of semi-desired region (5.19), we have Ds
m(P) ⊂ B

(
pkm+pkn

2
, Rc

2

)
and Ds

n(P) ⊂ B
(

pkm+pkn
2

, Rc
2

)
. Moreover, m and n move within their semi-desired regions,

i.e., pk+1
m ∈ Ds

m

(
Pk
)

and pk+1
n ∈ Ds

n

(
Pk
)
. Thus, both pk+1

m and pk+1
n lie in the circle
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B
(

pkm+pkn
2

, Rc
2

)
. Therefore, the distance between pk+1

m and pk+1
n is no larger than the commu-

nication range, i.e., ‖pk+1
m −pk+1

n ‖ ≤ Rc. In other words, Sensors m and n are still connected

with each other after the relocation. Consequently, the network at Pk+1, G
(
Pk+1

)
, retains

all edges in the MST at Pk, indicating that the network, G
(
Pk+1

)
, is fully connected.
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