Lawrence Berkeley National Laboratory
Recent Work

Title
Measurement of the half-life of 79Se with accelerator mass spectrometry

Permalink
https://escholarship.org/uc/item/9cx3d199

Journal
Chinese Physics C, 38(10)

ISSN
1674-1137

Authors
Dou, Liang
Jiang, Shan
Wang, Xiao-Bo
et al.

Publication Date
2014-10-01

DOI
10.1088/1674-1137/38/10/106204

Peer reviewed
Measurement of the half-life of 79Se with accelerator mass spectrometry

To cite this article: Dou Liang et al 2014 Chinese Phys. C 38 106204

View the article online for updates and enhancements.
Measurement of the half-life of 79Se with accelerator mass spectrometry

DOU Liang(窦亮)1 JIANG Shan(姜山)1 WANG Xiao-Bo(王晓波)1,2 DONG Ke-Jun(董克君)1
WU Shao-Yong(吴绍勇)1 YANG Xu-Ran(杨旭冉)1 WANG Xiao-Ming(王小明)1
LAN Xiao-Xi(蓝小淅)1,2 XIA Qing-Liang(夏清良)1 HE Ming(何明)1,2

1 Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
2 College of Physics Science and Technology, Guangxi University, Nanning 530004, China

Abstract: The accelerator mass spectrometry (AMS) is an effective method for the determination of the half-life of long-lived radionuclides. In this paper, we report a method for measurement of the half-life of 79Se. The number of 79Se atoms was determined from measured 79Se/78Se absolute ratios with the AMS system at the China Institute of Atomic Energy and the decay rate of 79Se was determined by counting the emitted β-rays with a liquid scintillation spectrometer. The major improvements of our measurements include using the high abundance of an 79Se sample which was cooled for many years to exclude the interference of short-lived nuclides, the extraction of SeO$_2$ molecules, and the reduction of the detection efficiency of 79Se in the reference sample and the radioactivity of 79Se. Also, an AMS measurement of the absolute ratio of 79Se/78Se was developed to avoid systematic errors. The results show that 79Se/78Se is $(2.35\pm0.12)\times10^{-7}$ in the reference sample and the radioactivity of 79Se is (1.24 ± 0.05) Bq/g, so the half-life of 79Se is $(2.78\pm0.18)\times10^5$ a.

Key words: 79Se, half-life, AMS, attenuator

PACS: 21.10.Tg, 07.75.+h, 29.30.Kv DOI: 10.1088/1674-1137/38/10/106204

1 Introduction

As a very important long-lived radionuclide, 79Se is interesting in many research fields, such as the assessment of nuclear repository, nuclear waste disposal and management [1, 2] tracer techniques in vivo and astrophysics. Up to now, the half-life of 79Se has been estimated to be in the range of 10^4–10^6 a [3–6]. In 2002, Songshejiang and Ming He measured the half-life of 79Se with PX-AMS at China Institute of Atomic Energy (CIAE) [7]. The measured half-life of 79Se was $(2.95\pm0.38)\times10^5$ a, which has been accepted by the U.S. National Nuclear Data Center as the reference half-life of 79Se. However, a new value for 79Se’s half-life ($(3.77\pm0.19)\times10^5$ a) was determined by means of inductively coupled plasma mass spectrometry (ICP-MS) and liquid scintillation counting (LSC) on a sample source isolated from a nuclear reprocessing solution [8] and some German scientists got another value ($(3.27\pm0.08)\times10^5$ a) with a similar method [9]. In the study of Jiang and He, selecting CdSe as a sample of AMS and separating 79Se from 79Br with projectile X-rays detection (PXD) reduced the detection efficiency of 79Se. At the same time, some systematic errors were introduced into the ratio of 79Se/78Se when using the Faraday cup to measure the stable isotopes. On the other hand, no instrumental system presently available in ICP-MS is able to resolve all interferences in samples. In the above-mentioned study, for example, they just used a selective chemical separation procedure and electro-thermal vaporisation (ETV) coupled with ICP-MS to improve the selectivity for measurement, the 79Br background could not be measured directly, but was deduced from measured 80Br ions. In this work, a new method for the AMS measurement of the half-life of 79Se is developed at CIAE.

2 Determination of the absolute ratio of 79Se/78Se with AMS

2.1 Sampling

Our sample came from the purified selenium (enriched in 79Se to 57%) which was irradiated with the high neutron flux from the heavy water research reactor at CIAE in 2000. The 79Se/78Se ratio of the irradiated sample was calculated with the software ORIGEN to be $(8.21\pm1.28)\times10^{-5}$. After a short cooling, the sample...
was prepared by stepwise dilution with high-pure selenium dioxide (purchased from the Alfa Aesar Company with 99.999% purity) for some other experiments and the value for the $^{79}\text{Se}/\text{Se}$ ratio in the diluted sample was about the level of 10^{-7}. Before our experiment, the sample ($^{79}\text{Se}/\text{Se} \sim 10^{-7}$) had been cooled for more than a decade, and the interference of short-lived nuclides was negligible. For the stable beam current extraction of SeO_2^-, we used Ag_2SeO_3 as the target substance, and the conversion of Se to Ag_2SeO_3 was done by the same chemical process as our established method for measuring ^{79}Se with AMS [10].

2.2 AMS measurement

An AMS measurement was performed by the CIAE-AMS system. The sample of Ag_2SeO_3 was pressed into the standard NEC aluminum target holder and the mass ratio of Ag_2SeO_3 to Ag (conductive medium) turned out to be 1:30. SeO_2^- ions were extracted from an ion source, which resulted in an effective suppression of the ^{79}Br background by as much as five orders of magnitude compared to the injection of Se^-. Because the ratio of $^{79}\text{Se}/\text{Se}$ in the reference sample was about the level of 10^{-7}, ^{79}Br will no longer be an obstacle for this measurement.

$^{79}\text{SeO}_2^-$ ions were then selected by the injection system and injected into the accelerator. The negative molecular ions were accelerated by the tandem terminal voltage (7.95 MV). Stripping foil (3 μg/cm²) was employed to break up the molecular ions and to produce atomic ions with high charge states. The resulting positively charged ions were further accelerated by the same terminal voltage. A 90° double focusing high energy analyzing magnet was used to select $^{79}\text{Se}^{11+}$ with an energy of 93.2 MeV. After a switching magnet, the $^{79}\text{Se}^{11+}$ was transported to the AMS beam line, then the $^{79}\text{Se}^{11+}$ was selected by using a 15° electrostatic deflector and finally detected with a fully depleted gold silicon surface-barrier detector (FGSBD). The ^{79}Se optical guidance in the accelerator was simulated with a ^{78}Se beam with the same magnetic rigidity as ^{79}Se. The difference of the transmission efficiency in the AMS system between these two isotopes is mainly rooted in the stripping probability of foil. For the correction of transmission, ^{80}Se was selected to be another pilot of the ^{79}Se transmission.

Usually, the beam intensity of ^{78}Se and ^{80}Se are measured with a Faraday cup, and the count of ^{79}Se is measured with the FGSBD. This will cause a larger system error for the ratio of $^{79}\text{Se}/\text{Se}$ by using the different detection system [11]. One straightforward method for the determination of the absolute ratio is to measure the counts of ^{79}Se, ^{78}Se and ^{80}Se with the same FGSBD. However, due to the very strong beam intensity of the ^{79}Se and ^{80}Se, the detector can not be used to measure them directly. In order to reduce the counts to an accepted high counting rate for the detector, we chose the mass ratio of Ag_2SeO_3 to Ag, the tandem terminal voltage and the selection of charge states as above. We also installed two attenuators in the CIAE-AMS system. This was done to bring the intensity of the beam to a value which is compatible with the detector’s maximum counting rate. The attenuator consists of a perforated steel sheet. The holes are uniformly distributed on the sheet. The diameter of each hole is 50 μm and the distance between the holes is 1 mm. By locating the two attenuators at a distance of 5 m from each other and also separating them by one optic element, their effects are statistically independent and can be multiplied as a whole. One attenuator was installed just before the 15° electrostatic deflector. Another attenuator was installed 10 cm before the FGSBD. At these locations, due to the defining apertures and slits, the ion optics remain nearly unchanged for the different beam tunings.

Two pilot beams, ^{78}Se and ^{80}Se, were used for checking the influence of these attenuators. In the first step, the two attenuators were retracted and the relevant settings for the optimal transmission efficiency (from the Faraday cup in the low energy terminal to the target Faraday cup) for the ^{78}Se and ^{80}Se pilot beams were respectively obtained (Table 1).

<table>
<thead>
<tr>
<th>parameters</th>
<th>^{78}Se</th>
<th>^{80}Se</th>
</tr>
</thead>
<tbody>
<tr>
<td>isotopes</td>
<td>78Se</td>
<td>80Se</td>
</tr>
<tr>
<td>implanting ions</td>
<td>$^{78}\text{SeO}_2^-$</td>
<td>$^{80}\text{SeO}_2^-$</td>
</tr>
<tr>
<td>beam intensity in the low energy terminal(LET)</td>
<td>11 nA</td>
<td>24 nA</td>
</tr>
<tr>
<td>tandem terminal voltage</td>
<td>8.05 MV</td>
<td>7.85 MV</td>
</tr>
<tr>
<td>charge states</td>
<td>11+</td>
<td>11+</td>
</tr>
<tr>
<td>beam intensity in the target</td>
<td>0.24 nA</td>
<td>0.41 nA</td>
</tr>
<tr>
<td>stripping efficiency</td>
<td>2.96%</td>
<td>2.43%</td>
</tr>
<tr>
<td>the total transmission efficiency from the LET to the target</td>
<td>0.198%</td>
<td>0.155%</td>
</tr>
</tbody>
</table>

We define the transmission efficiency of ^{78}Se from the LET to the target as follows:

$$Te(78\text{Se}) = \frac{\text{Beam intensity of }^{78}\text{Se in the target}}{\text{Beam intensity of }^{78}\text{Se in the LET}} \times 11 \times 100\% .$$ \hspace{1cm} (1)
Where 11 is the charge states of 78Se and the transmission efficiency of $T_e(^{78}$Se) = 0.198% was obtained. We also measured the total transmission efficiency of 80Se with the same method and $T_e(^{80}$Se) = 0.155% was obtained. The total transmission efficiency can be described as follows:

$$T_e(\text{Se}) = \eta_{\text{Se}_{\text{strip}}} \times \eta_{\text{Se}_{\text{Rtran}}}$$

where $\eta_{\text{Se}_{\text{strip}}}$ is the stripping efficiency of Se and $\eta_{\text{Se}_{\text{Rtran}}}$ is the revised transmission efficiency of Se. By using the date in Table 1, the $\eta_{^{78}$Se}_{Rtran} = 6.69$% and $\eta_{^{80}$Se}_{Rtran} = 6.38$% were obtained, which means the total transmission efficiency for 78Se over the whole AMS system could be obtained by interpolation between the $\eta_{^{78}$Se}_{Rtran}$ and $\eta_{^{80}$Se}_{Rtran}$. The total transmission efficiency of $T_e(^{78}$Se) = 0.175% was obtained (Eq. (3))

$$T_e(^{79}$Se) = $\frac{\eta_{^{78}$Se}_{\text{strip}} \times \eta_{^{78}$Se}_{\text{Rtran}} + \eta_{^{80}$Se}_{\text{Rtran}}}{2}$$

where $\eta_{^{78}$Se}_{\text{strip}} = 2.68$% was measured by WINBEAM 1.3.0. After that, the two attenuators were inserted, the 78Se and 80Se were measured with the FGSBD, and the mean value of 80Se/78Se = 1.65 ± 0.05 was obtained (Fig. 1). After the correction of the total transmission efficiency:

$80Se/78Se = (80Se/78Se)$_{\text{target}} \times T_e(^{78}$Se) / $T_e(^{80}$Se),

the revised ratio of 80Se/78Se = 2.11 ± 0.06 was obtained. As we know, the natural abundance ratio of 80Se/78Se is 2.09, which means that the two attenuators did not cause the difference of ion beam transport for 78Se and 80Se. Our method of absolute determination with AMS is reasonable.

The attenuation coefficient of the attenuator was determined as follows:

$$A_e(^{78}$Se) = $\frac{N_1(^{78}$Se)}{N_2(^{78}$Se)},

where $N_1(^{78}$Se) and $N_2(^{78}$Se) are the counts of 78Se at the condition of retracting and inserting the attenuator, respectively. We repeated the measurement of $N_1(^{78}$Se) and $N_2(^{78}$Se) for 6 times in each of the beam intensities, which was chosen in the LET (there are 5 different beam intensities at the same terminal voltage). The results are shown in Fig. 2. An attenuation coefficient of 108.0 ± 1.0 was obtained.

After the system was checked with 78Se and 80Se, the 79Se was measured with the FGSBD when the two attenuators were being retracted, and then the 78Se was measured with the same detector after inserting the two attenuators. The ratio of the counting rate for 79Se and 78Se was obtained. The results are shown in Fig. 3. The mean value of 79Se/78Se is (1.02 ± 0.04) × 10^{-2}. After considering the attenuation coefficient, total transmission efficiency, and natural abundance of 78Se,

$79Se/78Se = (79Se/78Se)$_{\text{target}} \times 23.78\% \times T_e(^{78}$Se) / $T_e(^{79}$Se),

Fig. 2. The attenuation coefficient of the attenuator.

Fig. 3. The measured value of 79Se/78Se in the sample.
where 23.78% is the natural abundance of ^{78}Se. Introducing errors of the natural abundance of ^{78}Se, the total transmission efficiency of ^{79}Se and ^{78}Se. The absolute ratio of $^{79}\text{Se}/\text{Se}= (2.35 \pm 0.12) \times 10^{-7}$ in the sample was obtained. We also measured the concentration of total selenium in the sample with atomic absorption spectrometry and the result is 8764 μg/ml.

3 Determination of the decay of ^{79}Se

^{79}Se decays by β^--emission with a maximum energy of 150.7 keV and no γ-emission. The decay rates of ^{79}Se in the samples were determined by counting emitted β^--rays with an A317001 liquid scintillation spectrometer at CIAE. The quenching and counting efficiency were checked by using a standard solution of ^{14}C, the decaying β^--rays of which have almost the same energy (156 keV) as that of ^{79}Se. In view of the low ^{79}Se activity, a background correction was performed with a blank sample (solution of H_2SeO_3), which was prepared with the same chemical procedure as the ^{79}Se sample, but with no ^{79}Se added. We used a 1.03209 g blank sample and a 0.96122 g reference sample ($^{79}\text{Se}/\text{Se}= (2.35 \pm 0.12) \times 10^{-7}$, the same sample as we measured above) for the measurement. The room temperature was 24 °C, relative humidity was 50%, and the time of detection was 600 minutes. The uncertainty of the determination of decay rates was about 2.4%, mainly coming from counting efficiency calibrated with a standard ^{14}C solution. Considering the recovery efficiency of ^{79}Se for making the Ag_2SeO_3 sample and statistical uncertainty, the uncertainty of the decay rate for the Ag_2SeO_3 sample was 4%. The decay rate of ^{79}Se in the sample was (1.24 ± 0.05) Bq/g.

4 Results and discussion

Considering the total amount of selenium in the sample and combining the decay rate with the ratio of $^{79}\text{Se}/\text{Se}$, the half life of ^{79}Se can be deduced by the relationship:

$$\frac{dN}{dt} = -\lambda N(t),$$

where $\frac{dN}{dt}$ is the decay rate, $N(t)$ is the number of ^{79}Se at the time t, $\lambda=\ln2/T_{1/2}$ is the decay constant, and $T_{1/2}$ is the half-life. The half-life of ^{79}Se is deduced to be $(2.78 \pm 0.18) \times 10^5$ a and the relative standard deviation is 6.5%. This result is similar with the value of $(2.95 \pm 0.38) \times 10^5$ a (Jiang and He et al., 2002). Compared with the previous method, the uncertainty from the ^{79}Br isobaric background and systematic errors of different detectors is negligible and the detection efficiency of FGSBD is better than PXD. So, the relative standard deviation of the half-life of ^{79}Se is reduced from 12.9% to 6.5% in our measurement. In view of the general difficulty to know all systematic uncertainties correctly, we want to do an independent half-life measurement in the future.

References