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Abstract

Electrification and Automation of Mobility Infrastructure:
Unintended Consequences and Their Solutions via Connectivity, Modeling, and Control

by

Soomin Woo

Doctor of Philosophy in Engineering- Civil and Environmental Engineering

University of California, Berkeley

Professor Scott J. Moura, Chair

It is estimated that there were 1.3 billion vehicles in the world at the end of 2016, which is
almost two times more than the number of vehicles 20 years before. With the ever-growing
population of vehicles, transportation has caused many problems. It was the sector with
the most significant contribution to greenhouse gas emissions in the United States in 2019.
About 90% of the fuel burned in transportation is based on petroleum, a non-renewable
energy source. The transportation system is also unsafe. For instance, with 1.10 fatalities
per 100 million vehicle miles traveled in the United States in 2019.

To resolve these problems, significant innovations have been made in vehicle technology
via electrification, automation, and communication. For instance, electric vehicles (EVs)
can vastly reduce greenhouse gas emissions and utilize sustainable energy, such as solar-
generated electricity. Also, Connected and Automated Vehicles (CAVs) promise to improve
road safety, enhance traffic network performance, and increase fuel efficiency by safely driving
with smaller headways and smaller air drag.

As more vehicles adopt these advanced technologies, the urban system will find new oppor-
tunities and unintended consequences for the related infrastructure, such as the charging
facilities, the electrical energy grid, and the traffic network. In this dissertation, we iden-
tify some of these issues and enable vehicle electrification and automation technologies to
enhance the systematic performance of urban infrastructure through connectivity.

First, we investigate the problem of optimally planning an EV charging infrastructure, sub-
ject to the electrical grid pricing and the random charging demand. The facility planner faces
a trade-off problem, where the operator has to pay a high price to achieve a high quality of
service in charging EVs or pay a low cost but provide a low quality of service. We propose
a Pareto-optimal planning solution that uses demand management strategies and achieves a
higher quality of service at a lower cost.
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Second, we study the relationship between the electrical energy grid and the charging sched-
ule of an EV fleet on a large, regional scale. We identify the opportunities in shifting the EV
charging schedule both in time and space to benefit the grid operation in terms of the cost,
the renewable energy mix, and the greenhouse gas emissions. We evaluate the maximum
potential gain to the grid based on real data from the individual vehicles and the energy grid
operation. We recommend an optimal model to schedule the EV charging sessions.

Third, we analyze the balance between the operation of Connected Automated Vehicles
(CAVs) and the traffic network performance. We find that in mixed traffic of CAVs and
human-driven vehicles, naive operation strategies of CAVs can induce more lane changes
and create unnecessary congestion. We propose and validate an operation strategy for CAVs
that ensures the maximal performance of the traffic network while allowing the CAVs to
enjoy the benefits of automation and connection.
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Chapter 1

Introduction

1.1 Background

According to one study [1], the number of vehicles in the world has almost doubled every 20
years since 1976. At the end of 2016, it was estimated that there were 1.3 billion vehicles
in the world. With the ever-growing population of vehicles, however, came many problems.
First, transportation has caused severe damage to the environment. The transportation
sector contributed 28.6% to the total greenhouse gas emissions in the United States in
2019 [2], as shown in Figure 1.1. Over 90% of the fuel burned in transportation is based on
petroleum, i.e., gasoline and diesel [2]. The transportation sector exacerbates climate change,
inefficiently using non-renewable energy sources that are not sustainable. Second, though
the safety on the road is improving, the transportation system is still unsafe. For instance,
there were 36,096 motor vehicle traffic fatalities, and the fatality rate was 1.10 fatalities
per 100 million VMT in the United States in 2019 [3], as seen in Figure 1.2. To combat
these issues from transportation, great innovations have been made on vehicle technology
via electrification, automation, and communication.

Vehicle electrification can reduce the pollution from the transportation sector by pro-
ducing no greenhouse gas emissions at their pipes [5]. Initially, electric vehicles (EVs) have
been lagging in the market adoption due to the range anxiety issues [6], and a lack of re-
liable access to charging infrastructure [7]. However, the governments and industries have
put a joint effort to stimulate the adoption of EVs [8], installing charging infrastructure [9],
[10] and improving the charging performance and the driving range of EVs [11]. The EV
adoption is growing and will continue to grow. From 2013 to 2019, the number of passenger
EVs grew globally, largely contributed by China [4], as seen in Figure 1.3. By 2032, ‘30% of
all passenger cars worldwide are predicted to be EVs’ that may reduce the greenhouse gas
emissions with cleaner energy generation [12].

Also, vehicles have automated with advanced driving technologies and communication
capabilities. For example, Cooperative Adaptive Cruise Control (CACC) is an emerging
vehicle technology that brings the promise of greater road capacities without investing in
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Figure 1.1: Total U.S. Greenhouse Gas Emissions by Economic Sector in 2019, from [2]

the road infrastructure, such as additional lanes or ramp metering controllers [14]. It can
also improve fuel efficiency [15], [16], safety [17] and driver comfort [18]. A vehicle with
Adaptive Cruise Control (ACC) senses the relative speed and gap with its leader vehicle and
automatically adjusts its acceleration and speed to keep a safe gap. Vehicles with Connected
Adaptive Cruise Control (CACC), in addition to the ACC capability, can communicate
in real-time and high frequency with one another. Driving decisions, such as acceleration
and deceleration, are shared and executed automatically, which may avoid human error
in perception and reaction time. More importantly, this enables a reduction in headway
between CACC vehicles and allows them to form platoons that are tighter than humanly
possible, as shown in Figure 1.4. The reduction in headway will result in a higher capacity
of road network [13], as shown in Figure 1.5. We will call vehicles equipped with CACC as
Connected Automated Vehicles (CAVs).

However, vehicles are closely related to other urban systems, such as the energy grid, the
charging infrastructure, and the traffic network, as shown in Figure 1.6. Although electri-
fication and automation technologies can solve many problems, they can create unintended
problems if we neglect their impact on the connected systems. In the following, we motivate
some specific research questions.
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Figure 1.2: Fatalities and Fatality Rate per 100 Million VMT, 1975-2019, from [3]

1.2 Motivation

One problem that may arise from vehicle electrification is the increasing burden on the
electrical grid operation. More EVs increase not only the total demand to the electrical grid
but also the evening peak demand that ramps up quickly when the drivers charge their EVs
at home after work [20]. In California, an additional burden from the EV charging load
may be critical to the grid operation, which has a severe ramping not only from a surge of
demand but also an abrupt drop of solar generation in the evening, as shown in Figure 1.7.
It is often costly to upgrade the electrical grid infrastructure, and the grid operators face
challenges with the EV charging load, such as the congestion in generation and transmission,
the poor power quality with violation of voltage limits, the heavy loading on the network
assets, and more emissions from using fossil fuels [21]–[23].

Vehicle electrification can also add challenges in planning a charging infrastructure, which
must satisfy the demand of the increasing EVs, subject to the pricing schemes of the electrical
grid. To manage the extreme ramping of demand, the electrical grid operators give incen-
tives and penalties to their customers. They charge cheap Time-of-Use costs to encourage
electricity consumption during the low demand and impose demand charges to discourage
consumption during the high demand. However, these economic measures create challenges
in building and operating an EV charging infrastructure. To satisfy a peak demand to charge
EVs, a facility needs to build a large and expensive capacity to supply sufficient energy to
the EVs. Subject to the pricing by the grid, the facility needs to pay a high price to purchase
the necessary energy [24], [25]. Alternatively, a facility can build a smaller charging capacity
and use less electricity during the peak. However, this can result in an unreliable charging
service to the EVs as the facility may not satisfy the charging needs.

In addition, automating vehicles can create problems in the traffic network. The CAVs
can form a platoon with short headways, promising the benefits to the traffic flow capacity,
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Figure 1.3: Passenger electric car sales and market share in selected countries and regions,
2013-19 from [4]

energy efficiency, or driver comfort. However, at low CAV penetration, the CAVs will be
sparsely distributed on the road and diminish the probability of forming long platoons.
Therefore, the promised benefits are likely to be small. For instance, Figure 1.5 shows that
the flow capacity will increase at a slow rate up to the penetration rate of around 40%. Many
researchers propose to solve this issue by platoon organization strategies, where the CAVs
search for other CAVs on the road and change lanes if necessary to form longer platoons [26],
[27]. However, the induced lane changes can potentially disrupt the traffic flow and cause
more congestion [28]–[31]. In other words, a poorly designed operation strategy of the CAVs
can cause problems to the traffic flow.

1.3 Research Objective

The goal of this dissertation is to better understand several unintended consequences of
electrification and automation of mobility infrastructure and how to resolve these issues via
connectivity, modeling, and control from an economic and environmental perspective.
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Figure 1.4: Illustration of the Connected Automated Vehicles (CAVs) driving in a platoon
of shorter headways

Figure 1.5: Capacity Improvement with Increasing Penetration of CAVs from [13] (Vehicles
equipped with Cooperative Adaptive Cruise Control, or CACC, are CAVs)

1.4 Research Challenges

There are challenges in modeling and control of the mobility infrastructure with vehicle
electrification and automation due to the following reasons:

• Mobility infrastructure involves many factors, such as drivers, charging infrastructure,
energy grid, and traffic network. It requires an expert insight into the planning and
operation of the mobility infrastructure to identify the unintended problems of vehicle
electrification and automation.

• It is complex to model an optimization problem of multiple vehicles to improve the
infrastructure performance because each system is governed by its own physics. One
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Figure 1.6: Example of Interconnected Urban Systems with Vehicles

must carefully design the problem with appropriate assumptions, a meaningful objec-
tive function, precise decision variables, relevant parameters, and accurate physical
relationships.

• It is challenging to analyze the optimal result of controlling many agents in a large
system. A clear understanding of the relevant physical models is required to interpret
the results and discover meaningful findings.

1.5 Novel contributions

In this dissertation, a collection of research findings contributes to the current literature as
the following.

Pareto optimal planning of an EV charging facility (Chapter 2)

This chapter focuses on the facility manager’s perspective on an EV charging facility with a
given electrical grid and the random charging demand of EVs.

• We identify the trade-off between the quality of service in charging EVs and the plan-
ning and operation costs. For the first time in the literature, we resolve this problem
by planning a facility that achieves Pareto optimality with a high quality of service at
a low cost.
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Figure 1.7: An Example of Severe Ramping to a Peak Electricity Demand in California ISO,
Showing the Net Demand on September 29th, 2021 [19]. The figure shows a 3-hour average
ramp in the evening by about 13,060 Mega Watts, due to the peak demand and reduction
in the solar energy generation.

• We analyze the mechanism of demand management strategies, such as installing an
energy storage system and rescheduling the EV charging sessions, in achieving the
Pareto optimality.

• We model a robust optimization problem to plan an EV charging facility that considers
the stochasticity of charging demand.

Economic and environmental benefits of optimal EV charging to
the electricity grid (Chapter 3)

This chapter considers a fleet of EVs and their consumption in the energy grid on a large
regional scale.

• We optimally schedule the charging of EV fleet in terms of both the time and location,
for the first time in literature. The scheduling improves the electrical grid operation in
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terms of the operation cost, the renewable energy mix, and greenhouse gas emissions.

• We overcome the limitations of the current literature that heavily depend on the simu-
lated and aggregate data of EV charging demand by using the real driving and charging
data of individual EVs and the real grid operation data in California.

• We estimate the maximum potential gains and recommend an optimal scheduling
model for the best performance of the electrical grid operation.

Operation of CAV platoons for maximal traffic flow (Chapter 4)

This chapter studies the impact of a CAV operation strategy on traffic network performance.

• For the first time in the literature, we verify that the CAVs can disrupt the traffic flow
and create unnecessary congestion in mixed traffic with human-driven vehicles if they
follow a poor operation strategy to change lanes and form longer platoons with other
CAVs.

• We propose a CAV operation strategy with an awareness of the current traffic flow that
forms longer CAV platoons but prevents unnecessary congestion. We validate that the
proposed strategy can form longer platoons while ensuring a maximal traffic flow.
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Chapter 2

Planning of an Electric Vehicle
charging facility with Pareto
Optimality in Cost and Service
Quality

This chapter is based on the previously published article: Woo, S., Bae, S., & Moura, S. J.
(2021). Pareto optimality in cost and service quality for an Electric Vehicle charging facil-
ity. Applied Energy, 290(116779), 116779, https://doi.org/10.1016/j.apenergy.2021.
116779.

This chapter examines the problem of planning an Electric Vehicle (EV) charging facility
that provides a high quality of service in charging EVs and incurs a low cost to the facility
manager. This problem is challenging because a facility with a larger charging capacity
(hence better service quality) can be more expensive to build and operate. This chapter
contributes to the literature by planning an EV charging facility that overcomes this trade-
off and achieves Pareto optimality, i.e. a facility with a higher quality of service but at a
lower cost. We propose an optimization model to size an EV charging facility that minimizes
the facility cost and guarantees a high quality of service. To reduce the cost further and
negate the cost increase from quality service quality, we adopt demand management strate-
gies. Two strategies are explored, namely Stationary Demand Management (a local energy
storage system) and Mobile Demand Management (rescheduling charging sessions of EVs).
The proposed model produces a facility that guarantees a high quality of service in charging
EVs at a minimal cost. Stationary Demand Management can reduce the cost similarly to
Mobile Demand Management, while the latter can be more challenging in practice due to
the compliance issues and demand uncertainty of the drivers.

https://doi.org/10.1016/j.apenergy.2021.116779
https://doi.org/10.1016/j.apenergy.2021.116779
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Nomenclature

ESS Energy Storage System

EV Electric Vehicle

EV Electric Vehicle

LMP Locational Marginal Price

MDM Mobile Demand Management

MER Marginal Emission Rate

RE Renewable Energy

SDM Stationary Demand Management

CLMP(t, x) Locational marginal price at time t and node x in USD/kWh

CMER(t) Marginal emission rate at time t in tons ]of CO2E/kWh

CRE(t) Renewable energy ratio at time t, unitless

Eb,i Battery capacity in energy for vehicle i in kWh

Ef Final condition on the energy level required for vehicle i in kWh

Ec
i,k Energy consumption for the trip departing from the destination node k for vehicle i

in kWh

Edes
i,k Desired charging energy at the destination node k for vehicle i in kWh

Eini,i Initial energy level in the battery of vehicle i in kWh

Emax Maximum level of energy required for vehicle i in kWh

Emin,i Minimum level of energy required for vehicle i in kWh

Ki Number of locations that vehicle i visits over the optimization time horizon
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NEV Sample size of EVs

Pr,i Rated charging power of vehicle i in kW

Si(t) Parking status of vehicle i at time t, which equals 1 if parked and 0 otherwise

T ai,k Arrival time to the destination node k for vehicle i

T di,k Departure time from the destination node k for vehicle i

∆t Discrete time interval in hours

x̂i(t) The electrical grid node that the location of vehicle i belongs to

i Vehicle index, i ∈ [1, NEV ]

k Destination index, k ∈ [1, Ki]

n Number of EV chargers

b Scale factors for ESS units [scale]

Pc(i, t) Charging power for vehicle i at time t in kW

̂Jagg, LMP The total LMP cost from the LMP-minimizing solution for aggregate EVs

̂Jagg, MER The total MER from the MER-minimizing solution for aggregate EVs

Ĵagg, RE The total RE from the RE-maximizing solution for aggregate EVs

PEV (τ) Charging power to aggregate EVs [kW]

PB,C(τ) Power charged to ESS [kW]

PB,D(τ) Power discharged from ESS [kW]

PG,I(τ) Power imported from the grid [kW]

PG,D Power used for demand charge calculation [kW]

EEV (τ) Time-cumulative energy charged to aggregate EVs [kWh]

EB(τ) Energy level of ESS [kWh]

P ?
EV,min(τ) Power demand in charging EV aggregates, minimum to be satisfied [kW]

E?
EV,min(τ) Time-cumulative energy demand in charging EV aggregates, minimum to be

satisfied [kWh]

P ?
L(τ) Power demand from the building use [kW]
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P ?
EV, min, MDM(τ) Power demand in charging EV aggregates with mobile demand manage-

ment, minimum to be satisfied [kW]

E?
EV, min, MDM(τ) Time-cumulative energy demand in charging EV aggregates with mobile

demand management, minimum to be satisfied [kWh]

PL(τ) Expected value of P ?
L(τ)

σ2
PL

(τ) Variance of P ?
L(τ)

FE,τ (z) Empirical cumulative distribution of E?
EV, min, MDM(τ)

FP,τ (z) Empirical cumulative distribution of P ?
EV, min, MDM(τ)

F−1E,τ (τ)(αEV ) The inverse of FE,τ (z) at significance level αEV, i.e., the aggregate EV charging
energy demand at αEV-th percentile at time τ

F−1P,τ (τ)(αEV ) The inverse of FP,τ (z) at significance level αEV, i.e., the aggregate EV charging
power demand at αEV-th percentile at time τ

PEV,test,j(τ) EV charging power demand for operation simulation date i [kW]

PL, test,j(τ) Power demand from the building use for operation simulation of date i [kW]

bopt Optimized scale factors for ESS units [scale]

nopt Optimized number of EV chargers

EB,max Nominal ESS energy capacity per unit of ESS [14.0 kWh]

PEV, R Rated power of EV charger [2.33kW]

PG,I,max Power capacity for grid import [2000.0kW]

PB,max Nominal ESS power capacity per unit of ESS [5.0 kW]

αEV The percentile value of the EV charging energy, at which the EV charging facility
must satisfy [0.95]

αG, l The probability of the grid import power is above minimum, 0kW [0.95]

αG,u The probability of the grid import power is below the capacity, PG,I,max [0.95]

βB,i Initial ESS energy level ratio, [0.5%]

ηB,C ESS charging efficiency, [0.98%]

ηB,D ESS discharging efficiency, [0.98%]
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ηEV EV charging efficiency [0.89%]

bmax ESS scale maximum limit [scale/kWh]

cB Daily cost per energy storage system unit [0.066 USD /day/kWh]

cEV Daily cost of an EV charger [0.274 USD/day]

cG,D Demand charge cost, [19.0/30 USD/kW/day]

cI(τ) Time-of-Use electricity cost for time τ [USD/kWh]

dt Time interval, [1 hour]

τ Time step ∈ [1, T ] [hour]

T Number of time steps in a day [24 hours]

Ncross Sample size for cross validation [100 samples]

Ntest Number of dates tested for operation simulation [71 dates]

fCC Daily capital cost ($/day)

fOC Daily operation cost ($/day)

fTC Daily total cost ($/day)

fQoS Performance metric of quality of service in charging EVs (kW)

2.1 Introduction

Vehicle electrification is a potential solution to reduce greenhouse gas emissions from the
transportation sector [5]. To increase the market adoption of Electric Vehicles (EVs), it is
crucial to build EV charging infrastructure and supply the growing demand on EV charging
energy [9], [10], [32]. For instance, California needs to build around 78,000 Level 2 public
chargers by 2025 to meet their goal on zero emission vehicles [10]. There are two aspects to
consider in building EV charging infrastructure. On the one hand, the facility can be planned
to minimize the capital and operation costs. On the other hand, the facility can be planned to
achieve high quality of service in charging EVs and help alleviate the range anxiety of drivers
[7]. In this study, we define quality of service in terms of satisfying the charging demand.
The quality of service can be high when the facility has a sufficient charging capacity to
supply the stochastic charging demand in a robust fashion. For instance, the EV charging
demand can surge occasionally and a large capacity (with more chargers and/or at higher
charging power) to charge will be needed for a high service quality. However, achieving these
two goals may be challenging because a facility with a larger charging capacity (hence better
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service quality) can be more expensive to build and operate [24], [25], [33]. In other words,
a trade-off exists between cost and service quality.

To the best of authors’ knowledge, no study has examined and mitigated this trade-off.
Many solve the sizing problem of one or multiple EV charging facilities and analyze the
cost reduction from managing the energy demand; however, they do not investigate how to
reduce the cost while improving the quality of service [24], [25], [33]–[40]. To manage the
energy demand, some literature study the coordination of the EV charging schedule [33],
[36], [39], [40]. A paper [33] shows that the sizing cost is reduced by controlling the EV
charging schedule. In [36], the authors also show that the coordination reduces cost, while
satisfying the same charging demand. Similar results are shown in [39], where a penalty for
incomplete charging demand is included in the sizing problem. The authors in [40] confirm
that the control of charging schedule reduces cost in the real operation settings.

Some literature experiment with the plug-in states of EVs to chargers [34], [35] to manage
the energy demand and reduce cost, though missing analysis on quality of service. A paper
[34] analyzed the cost reduction with an ‘interchange’ algorithm to unplug the EVs that are
finished charging and use the available chargers for other demanding EVs. Another paper
[35] explores the probability of EVs leaving soon after charging completion and argues that
increasing the utilization rate of chargers lowers the facility cost. Some literature reduce the
facility cost by not only controlling the charge schedule but also using an energy storage
system to control the purchasing times of electricity [37], [38].

Despite the lack of research in enhancing quality of service with cost reduction, there
are a few papers that recognize the trade-off problem of cost and service quality [24], [25],
[33]. These papers measure the quality of service differently. In [24], the researchers showed
that unsatisfied charging load can be reduced with increasing planning costs. A paper [25]
showed the longer the time drivers spend for charging, the lower the cost, due to longer trips
to reach a charging facility and/or lower charging power. The authors in [33] show that the
controlled charging schedule can reduce the driver’s waiting time for charger availability and
the excess charging time over parking time, at lower cost in some cases.

The state-of-art literature does not investigate the problem of increasing cost with higher
service quality or suggest how a facility planner may achieve higher quality of service at
lower cost. This chapter contributes to the literature by 1) analyzing the Pareto frontiers
that quantity the trade-off between cost and quality of service and 2) identifying how demand
management shifts the frontiers towards lower cost and higher quality of service. We provide
an insight to facility planners to select demand management strategies that best meet their
needs on cost and quality of service.

In the following, we develop an optimization model to plan an EV charging facility that
minimizes the cost and guarantees a high service quality in charging EVs. The results show
that the proposed model can plan a facility with a high service quality to charge random
demand in a robust fashion. The results also show that increasing quality of service increases
the facility cost at optimum. So we analyze the Pareto frontiers in cost and quality of
service and test the impact of demand management strategies on these frontiers. We learn
that demand management reduces the optimal cost further at a given quality of service,
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by purchasing grid electricity at cheaper times, reducing the peak power of grid electricity
purchase, and building less chargers. With demand management strategies, a facility achieves
a higher service quality at a lower cost compared to a facility without the strategies.

The paper is organized as follows. Section 2.3 develops a robust sizing model to plan an
EV charging facility. Section 2.4 describes the research methodology for the performance
analysis of the robust sizing model and for the sensitivity analysis of demand management
strategies. Supplementary algorithms are proposed in this section, such as the baseline sizing
model to compare the robust model to and the simulation model of the facility operation.
Section 2.5 describes the data used in this chapter. Section 2.6 provides the results on
the robust planning model and on the sensitivity analysis with demand management. This
chapter is concluded with Section 2.7.

2.2 Context of EV Charging Facility

We focus on a single facility that provides charging service through multiple chargers, as well
as the building energy load. We explore two strategies of demand management:

• Stationary Demand Management (SDM) leverages the grid import cost with an Energy
Storage System (ESS). The ESS is strategically charged (from the grid) and discharges
to deliver electricity to minimize the electricity cost [37], [38], [41]. The discharging
is based on time-variant electricity tariffs, i.e., charging when the tariff is low and
supplying when the tariff is high, as well as on the demand charge, i.e. discharging
when the power demand is at its peak.

• Mobile Demand Management (MDM) leverages the EV charging load with flexibility
in charging schedule. While plugged in, EVs can be charged at any time until it is
unplugged, as long as the charging demand is met. Instead of charging immediately
upon arrival, an EV charging session may be deferred to alternative times with low
electricity tariff and/or at off-peak power demand. This can distribute the charging
sessions more evenly across time, which reduces the number of chargers to build as
well as the operation cost to charge, but remains at the same quality of service [33],
[36], [39], [40]

The aforementioned strategies help reduce both the operation cost with cheaper electricity
and the capital cost by installing fewer chargers.

Figure 2.1 illustrates the components of an EV charging facility considered in this chapter,
with arrows indicating the energy flow. The energy flow is balanced by the system operator
that connects the facility components. The facility draws energy from the grid and supplies
energy for the building load and the EV charging demand. The ESS stores energy and
discharges it to supply when needed. The system minimizes the capital cost by finding the
most economic sizing of the facility, while monetizing the unsatisfied demand. The capital
cost is reduced further when EVs are charged flexibly via MDM and require less chargers
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Figure 2.1: Illustration of an EV Charging Facility

to build. The system also minimizes the operation cost by finding the optimal schedule to
import energy from the grid. The operation cost is reduced further by leveraging the ESS
and charging flexibility, i.e. SDM and MDM.

The grid electricity import is subjected to the Time-of-Use (TOU) tariff and a constant
demand charge. EV chargers are installed at a fixed rated power. EV chargers are assumed
not to collect profit from charging EVs in this study to isolate the potential over-estimation
of profit in the planning process. In other words, the facility is planned conservatively, not
over-sizing for a potential charging demand that may lead to a large profit. An onsite ESS
is installed and its capacity degradation is not considered. The EVs do not discharge their
energy back to the facility. The facility does not export ESS energy to the grid.

2.3 Robust Sizing of an EV Charging Facility

From the system operator’s perspective, the primary goal of an EV charging facility is
to secure a high service quality by providing charging EVs as much as needed. However,
excessive installation of EV chargers may result in the unnecessary expenditure of capital
cost without enhancing the service quality. Therefore, it is important to estimate the level
of EV charging demand and decide how much of the demand the charging facility must be
designed for. In the following, we define the optimization variables and parameters, state
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the statistical assumptions, and develop a robust optimization model to find the facility size,
including the number of chargers and the battery size of local ESS.

Optimization Variables and Parameters

Recall that the system operator targets to minimize the capital and operation costs. Hence,
the optimization variables are those that that affect the capital investment and the facility
operations, colored in blue. The optimization variables include number of EV chargers n,
number of ESS units to be installed b, charging power to aggregate EVs PEV(τ), ESS charging
power PB,C(τ), ESS discharging power PB,D(τ), grid import power PG,I(τ), maximum of grid
import power used for demand charge calculation PG,D, time-cumulative charging energy to
EV aggregates EEV (τ), and energy level of ESS EB(τ).

The random parameters (colored in red and notated with ?) are given, including the min-
imum charging power to EV aggregates P ?

EV,min(τ), the minimum time-cumulative charging
energy to EV aggregates E?

EV,min(τ), and the building load P ?
L(τ). The deterministic pa-

rameters are given, such as costs (cEV , cB, cI(τ), cG,D), power efficiency (ηEV , ηB,C , ηB,D),
ESS unit capacity (EB,max, PB,max), rated power of EV charger (PEV,R, grid power limits
(PG,I,max), ESS installment limits (bmax), and levels of significance for statistics of random
variables (αEV , αG,l, αG,u).

Statistical Assumptions

We explain the statistical assumptions for the random parameters that will be used in the
proposal of a robust sizing model. The random power demand from the building, P ?

L(τ), is
assumed to follow a normal distribution, defined independently for each time step τ .

P ?
L(τ) ∼ N (PL(τ), σ2

PL
(τ)) ∀τ, (2.1a)

P ?
L(τ1)⊥P ?

L(τ2) ∀τ1 6= τ2. (2.1b)

The random demands of EV charging power and energy, P ?
EV,min(τ) and E?

EV,min(τ) re-
spectively, are assumed to follow empirical distributions. Their cumulative distributions are
defined respectively as FP,τ and FE,τ , independently for each time step τ .

P ?
EV,min(τ) ∼ FP,τ (z) = Pr(P ?

EV,min(τ) ≤ z) ∀τ, (2.2a)

E?
EV,min(τ) ∼ FE,τ (z) = Pr(E?

EV,min(τ) ≤ z) ∀τ, (2.2b)

P ?
EV,min(τ1)⊥P ?

EV,min(τ2) ∀τ1, 6= τ2 (2.2c)

E?
EV,min(τ1)⊥E?

EV,min(τ2) ∀τ1 6= τ2. (2.2d)
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For simplicity, it is also assumed that P ?
L(τ) is independent to the EV charging demand.

P ?
L(τ)⊥P ?

EV,min(τ) ∀τ, (2.3)

P ?
L(τ)⊥E?

EV,min(τ) ∀τ. (2.4)

Model Derivation

We derive our robust planning model for an an EV charging facility in the following. We
first describe the model with an objective function and constraints with uncertain variables,
but this form is unsolvable. Therefore, we use the statistical distribution from the previous
section to derive an expected value function for the objective function and second-order cone
expressions for the constraints with uncertain variables. The final solvable model is given in
Algorithm 1.

Objective Function

The objective of our sizing model is to minimize the expected value of the total cost, including
the capital cost of EV chargers and ESS and the operation cost, such as electricity cost and
demand charge. The cost is calculated in terms of a daily cost. The demand charge is
calculated base on the maximum power over 15-minute period. For simplicity, no interest or
present value is considered. Formally:

J = cBb+ cEV n (2.5a)

+
T∑
τ=1

[cI(τ)PG,I(τ)]dt (2.5b)

+ cG,DPG,D, (2.5c)

where (2.5a) represents the capital cost for EV charger and ESS installations, (2.5b) for
grid import cost, and (2.5c) for demand charge cost.

Constraints and Reformulations

The objective function J in (2.5) is linear with respect to the decision variables (b, n, PG,I(τ),
PG,D). However, the grid import power PG,I(τ) is coupled with the building load P ?

L(τ)
(which is a random parameter) due to the power balance between supply and demand. The
power balance equation can be expressed as:

PB,D(τ) + PG,I(τ) = P ?
L(τ) + PB,C(τ) + PEV (τ), (2.6)

where the left hand side shows the power supply from the ESS discharging and the grid
import, and the right hand side shows the power demand from the building load, the ESS
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charging, and the EV charging. The objective function (2.5) remains mathematically in-
tractable, due to its coupling to the power balance (2.6) with stochasticity.

The grid import PG,I is lower and upper bounded by its physical limitation by [0, PG,I,max]:

0 ≤ PG,I(τ) ≤ PG,I,max, (2.7)

but this constraint is also intractable due to its coupling to the power balance (2.6) in the
current form.

Therefore, we reformulate the power balance (2.6) and the coupled equations (2.5) and
(2.7) to make them tractable. We use the chance-constraint method in [42], given the
statistical distributions of random parameters described in Section 2.3. We denote level of
confidence on the grid import PG,I(τ) as αG,l for the lower bound and αG,u for the upper
bound. The level of confidence values represent the probability that the grid import power
is above 0kW and below the grid capacity of PG,I,max, respectively. Note that due to the
coupling of grid import power PG,I(τ) to EV charging power PEV(τ) shown in (2.6), the EV
charging power PEV(τ) can be limited by the grid capacity, PG,I,max.

The normal distribution of P ?
L(τ) is transformed into a cumulative standard normal

distribution, Φ. Re-expressing (2.6) in terms of PG,I(τ) and taking the upper and lower
statistical bounds using the level of significance gives (2.8) and (2.9).

Φ−1(αG,l) ·
√
σ2
PL

(τ) ≤ PB,C(τ) + PEV (τ) + PG,E(τ)− PB,D(τ) + PL(τ), (2.8)

Φ−1(αG,u) ·
√
σ2
PL

(τ) ≤ PG,I,max − PB,C(τ)− PEV (τ)− PG,E(τ) + PB,D(τ)− PL(τ). (2.9)

The objective function takes an expected total cost, by taking the expected value of grid
import PG,I(τ) in (2.6):

J =cB · b+ cEV · n

+
T∑
τ=1

cI(τ)[PB,C(τ) + PEV (τ) + PG,E(τ)− PB,D(τ) + PL(τ)]dt

+ cG,D · PG,D.

(2.10)

In addition to the power balance in (2.8) and (2.9), constraints on the power dynamics,
capacity limitation, and sizing variables are formulated:

EB(τ + 1) = EB(τ) +
[
ηB,C · PB,C(τ)− 1

ηB,D
PB,D(τ)

]
dt, (2.11)

EB(0) = βB,i[bEB,max], (2.12)

EB(T ) = EB(0), (2.13)

0 ≤ EB(τ) ≤ b · EB,max, (2.14)

0 ≤ PB,C(τ) ≤ b · PB,max, (2.15)

0 ≤ PB,D(τ) ≤ b · PB,max, (2.16)
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where (2.11) describes the power dynamics of ESS units with efficiency factors for charging
and discharging. Equation (2.12) and (2.13) define the boundary conditions to avoid a
myopic use of ESS units in the optimization. Equation (2.14), (2.15) and (2.16) describe
the energy capacity, charging power capacity, and discharging power capacity of ESS units
respectively, in terms of the ESS sizing variable, b. Note we assume a fixed ratio between
power capacity and energy capacity of ESS. The optimization variable b scales power and
energy capacity relative to nominal values, while keeping the energy-to-power ratio fixed.

For the EV charging dynamics, we consider cumulative energy consumption as a linear
function of charging power:

EEV (τ + 1) = EEV (τ) + dt[ηEV · PEV (τ)]. (2.17)

Other constraints for EV charging are formulated as:

EEV (0) = 0, (2.18)

P ?
EV,min(τ) ≤ ηEVPEV (τ), (2.19)

E?
EV,min(τ) ≤ EEV (τ), (2.20)

0 ≤ PEV (τ) ≤ n · PEV,R, (2.21)

where (2.18) sets the initial cumulative energy zero, (2.19) and (2.20) guarantee sufficient
charging supply for the demand and (2.21) constraints the number of EV chargers n to meet
the necessary EV charging power capacity. The parameter PEV,R in (2.21) can be various
charging powers, such as low-level chargers to fast chargers, expanding the range of charger
types to be considered in the planning. Note, the random variables P ?

EV,min(τ) and E?
EV,min(τ)

make (2.19) and (2.20) difficult to solve. Therefore, we reformulate these equations as chance
constraints.

With the empirical distributions (2.2a) and (2.2b), we can choose a level of significance to
represent probable values of charging power and energy demands. At a level of significance
αEV,lower, the power and energy demands can be expressed as F−1P,τ (τ)(αEV ) and F−1E,τ (τ)(αEV )
respectively. We plan the facility to guarantee such demands, by constraining the lower
bounds of power and energy delivery PEV (τ) and EEV (τ). Therefore, (2.19) and (2.20)
can be replaced by (2.22) and (2.23), respectively. These constraints, together with (2.17)
and (2.21), require the number of EV chargers to achieve a robust capacity to the random
demand at a percentile of αEV,lower.Note that (2.22) enforces the model to plan enough EV
chargers to satisfy the EV charging demand at αEV-th percentile all hours τ .

F−1P,τ (τ)(αEV ) ≤ ηEV · PEV (τ), (2.22)

F−1E,τ (τ)(αEV ) ≤ EEV (τ). (2.23)

The power value to calculate the demand charge cost is given in (2.24). As the objective
function considers an expected value of demand charge cost, (2.24) is similarly modified as
(2.25) without the variable PG,I(τ).
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PG,D ≥ PG,I(τ), (2.24)

PG,D ≥ PB,C(τ) + PEV (τ) + PG,E(τ)− PB,D(τ) + PL(τ). (2.25)

We consider a maximum limit for the ESS units to be built with a given parameter bmax

as (2.26). The facility planner may use this parameter bmax to reflect the physical constraints
for the ESS installment and the facility operator’s preference.

0 ≤ b ≤ bmax. (2.26)

Complete Formulation

The final model for robust sizing of an EV charging facility is organized in Algorithm 1 for
all τ = [1, ..., T ]. The number of EV chargers is a non-negative integer as (2.27) and (2.28).
The proposed robust sizing in Algorithm 1 is a convex problem of Integer and Second-Order
Cone Programming. The solution guarantees an optimal solution, if feasible.

Algorithm 1: Robust Sizing Model

Minimize (2.10),

Subject to (2.8), (2.9), (2.11), (2.12), (2.13), (2.14), (2.15),

(2.16), (2.17), (2.18), (2.21), (2.22), (2.23), (2.25), (2.26),

0 ≤ n, (2.27)

n ∈ Z. (2.28)

2.4 Methodology

In this section, we describe how we evaluate the proposed sizing model for a robust EV
charging facility. Supplementary models for this evaluation are provided, such as a baseline
sizing model and the simulation model for the facility’s operation. We also describe how we
conduct the sensitivity analysis of energy demand management on the facility performance,
giving us a clue how to overcome the trade-off between the cost and quality of service. We
explain how the Mobile and Stationary Demand Management strategies are implemented
and analyzed.
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Performance of the Robust Sizing Model

The proposed robust sizing model is evaluated in comparison to a baseline sizing model that
optimizes based on the expected values of random parameters. Since it is impractical to
test the performance of sizing models in the field, a simulation model is used to emulate
the daily operation of the facility. For brevity, a facility planned by the proposed robust
model and the baseline model are termed ’robust facility’ and ’baseline facility’, respectively.
The metrics on cost and quality of service evaluate the performance of robust and baseline
facilities. The results are cross-validated with 100 random samples of EV charging demand.
In addition, sample trajectories of power and energy in the robust and baseline facilities are
presented for detailed discussion.

We describe in the following the baseline sizing model, the operation simulation model,
the performance metrics of an optimized facility, and the cross-validation process to compare
between the robust and baseline sizing models.

Baseline Sizing Model

Algorithm 2 describes the baseline sizing model, which uses the expected values of the ran-
dom parameters. This model is inspired by the work in [43], which considers the operation
scenarios to plan a facility, for example the input data for energy use will take 3-day samples
each month. This model is applied in the open-source program, called Distributed Energy Re-
sources Customer Adoption Model (DER-CAM) from Lawrence Berkeley Lab. The building
power demand P ?

L(τ), minimum EV charging power E?
EV,min(τ), and minimum EV charging

energy P ?
EV,min(τ) are represented with their average values with PL(τ), F−1P,τ (τ)(αEV = 0.5),

and F−1E,τ (τ)(αEV = 0.5), respectively. The algorithm is expressed for all τ = [1, ..., T ]. The
proposed baseline sizing in Algorithm 2 is a convex problem of Linear Integer Programming.
The solution guarantees an optimal solution, if feasible.

Algorithm 2: Baseline Sizing Model

Minimize (2.5),

Subject to (2.11), (2.7), (2.12), (2.13), (2.14), (2.15), (2.16),

(2.17), (2.18), (2.21), (2.24), (2.26), (2.27), (2.28),

PB,D(τ) + PG,I(τ) = PL(τ) + PB,C(τ) + PEV (τ), (2.29)

F−1P,τ (τ)(αEV = 0.5) ≤ ηEV · PEV (τ), (2.30)

F−1E,τ (τ)(αEV = 0.5) ≤ EEV (τ). (2.31)
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Operation Simulation Model

Algorithm 3 describes the simulation model for an EV charging facility’s operation. Given
the ESS units and the number of EV chargers, bopt, nopt, the total daily cost is minimized by
controlling the operation variables for each day in the testing data set. The facility supplies
EV charging demand as much as the charging capacity allows without a cost-minimizing
behavior. When the demand exceeds the charging capacity, the EV charging demand is
unsatisfied and lost without queuing. The proposed baseline sizing in Algorithm 3 is a convex
problem of Linear Integer Programming. The solution guarantees an optimal solution, if
feasible.

Algorithm 3: Daily Operation Simulation Model

Minimize cB · bopt + cEV · nopt +
T∑
τ=1

dt[cI(τ) · PG,I(τ)] + cG,D · PG,D, (2.32)

Subject to (2.7), (2.11), (2.13), (2.17), (2.18), (2.24), (2.33)

PB,D(τ) + PG,I(τ) = PL,test,j(τ) + PB,C(τ) + PEV (τ), (2.34)

EB(i, 0) = βB,i[bopt · EB,max], (2.35)

0 ≤ EB(τ) ≤ bopt · EB,max, (2.36)

0 ≤ PB,C(τ) ≤ bopt · PB,max, (2.37)

0 ≤ PB,D(τ) ≤ bopt · PB,max, (2.38)

PEV (τ) = min(η−1EV · PEV,test,j(τ), nopt · PEV,R). (2.39)

Cross-Validation Process

The robust and baseline facilities are compared with cross-validation. The total dates of
EV charging demand data are randomly split into a sizing set (training) and a simulation
set (testing) in a 7:3 ratio, 100 times. For each training set, empirical distributions of the
EV charging demand is calibrated, i.e. (2.2a) and (2.2b). The robust and baseline models
use these distributions to find the optimal sizing of the facility. The charging demand of
multiple dates in the testing sets are used to simulate the robust facility and the baseline
facility. Algorithm 4 gives a pseudo-code for the cross-validation of robust and baseline
sizing. Note that for cross-validation, the maximum ESS units is set as bmax = 2.
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Algorithm 4: Cross-Validation of Robust and Baseline Sizing Models

Result: Power and Energy Trajectories of Simulated Operation, Total Daily Costs,
and QoS values

for i = 0; i < Ncross; i = i+ 1 do
Optimize a robust facility with Algorithm 1 as sample i ;
Optimize an baseline facility with Algorithm 2 as sample i ;
for j = 0; j < Ntest; j = j + 1 do

Simulate the robust facility for date j with Algorithm 3 ;
Simulate the baseline facility for date j with Algorithm 3 ;

end
Evaluate the robust facility of sample i with (2.42) and (2.43) ;
Evaluate the baseline facility of sample i with (2.42) and (2.43) ;

end

Performance Metrics

From the operation simulation results, the facility performance is evaluated on the daily
operation cost, daily capital cost, total daily cost and the quality of service in charging EVs
as fOC ($/day), fCC ($/day), fTC ($/day) and fQoS (kW), given in (2.40), (2.41), (2.42) and
(2.43), respectively.

fOC =
1

Ntest

Ntest∑
j=1

[ T∑
τ=1

cI(τ)PG,I,j(τ)dt+ cG,DPG,D,j

]
, (2.40)

fCC =
1

Ntest

Ntest∑
j=1

[
cBbopt + cEV nopt

]
, (2.41)

fTC = fOC + fCC. (2.42)

Equation (2.42) calculates the average daily cost, including the capital cost, electricity
cost and demand charge cost, over the simulated dates in the testing set.

fQoS =
1

Ntest

Ntest∑
j=1

[
1−

max
τ∈[1,T ]

[PEV,test,j(τ)− PEV,j(τ)]

max
τ∈[1,T ]

[PEV,test,j(τ)]

]
. (2.43)

Equation (2.43) for fQoS calculates the quality of service, by measuring how much charging
power is not satisfied by the facility’s physical capacity. Since the EV charging demand can
fluctuate largely throughout the day, it is crucial for the metric to capture the unsatisfied
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demand at its maximum. Equation (2.43) uses time variables, simulation date j ∈ [1, Ntest]
and hour τ ∈ [1, T ] for each date j. The fraction expression has two maximum expressions.
The maximum expression in denominator finds the maximum power demand in charging
over all τ in j, i.e. the hourly peak power demand of the date j. The maximum expression in
the numerator finds the maximum unsatisfied power demand in charging over hours all τ in
date j, i.e. the largest difference between the demand and supply of charging power during
the day. Therefore, the fraction evaluates the ratio of the maximum unsatisfied power to the
maximum charging demand. By subtracting 1 by this fraction, the expression inside the sum
measures the satisfaction of charging demand, i.e. the quality of service. The measurements
are averaged over all j.

Sensitivity Analysis on Demand Management

We explore the energy demand management strategies to reduce the facility cost (especially
the demand charge cost), while maintaining a level of service quality. Traditionally, the
utility companies impose a demand charge cost on the customers to reduce the demand
peaks, economize their grid operations, and improve the grid service quality. However, the
EV charging demand can surge during the day [44] without consideration to the power peaks
in grid import because the demand charge is not internalized to the EV drivers. Therefore,
we target to manage the peak in grid import and reduce the cost. In the following, we
describe the two strategies for demand management to experiment in this chapter.

Stationary Demand Management (SDM)

Stationary Demand Management (SDM) installs ESS units that decouple the facility’s energy
demand peak and the grid import peak. Regardless of the energy demand, the ESS units can
store energy from the grid when it is cheap and flexibly discharge it to supply the demand.
The facility can use the stored energy instead of grid import energy during the demand peak
and reduce the demand charge cost. The effect of SDM is observed by comparing different
maximum limits for the ESS, bmax = [2, 10]

Mobile Demand Management (MDM)

Mobile Demand Management (MDM) flattens the peak of total EV charging demand by
rescheduling the individual charging sessions. This can achieve a similar effect of the grid
network flattening the demand peak with the demand charge ,i.e. the facility can reduce the
operation cost from power surge and avoid building an excessive charging capacity. [45].

We use a heuristic model to reschedule individual EV’s charging demand. When a subject
EV arrives at the charging facility, its charging session is scheduled based on its known
departure time, charging power, energy demand, and the current total demand on charging
power at the facility. The charging demand of other EVs in the future is assumed unknown.
The subject EV is scheduled to charge when the current total demand so far is the smallest
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within its parking duration, but it is scheduled to charge its desired energy by its departure.
The total demand accumulates with this decision. Once a vehicle starts charging, there is
no break in charging within the charging session. The power demand with MDM is the total
charging demand after rescheduling for all EVs that arrive at the facility in a day, notated
as P ?

EV,min,MDM(τ). This is integrated and cumulatively summed to produce the cumulative
energy demand, E?

EV,min,MDM(τ). Note that only the EV charging demand is rescheduled,
not the building energy demand. The effect of MDM is observed by comparing different EV
charging demands, i.e. [P ?

EV,min, E?
EV,min] or [P ?

EV,min,MDM , E?
EV,min,MDM ].

Sensitivity Analysis

To evaluate the effect of SDM and MDM on facility sizing performance, three parame-
ters are explored as a sensitivity analysis. First is the maximum ESS units allowed to
build, which helps evaluate the effect of SDM, bmax = [2, 10]. Second is the EV charg-
ing demands for MDM, [P ?

EV,min, E?
EV,min] or [P ?

EV,min,MDM , E?
EV,min,MDM ], which helps

evaluate the effect of MDM. Third is the level of significance in EV charging demand,
αEV = [0.05, 0.10, ..., 0.90, 0.95], which results in different qualities of service in charging
EVs. The resulting facility sizing is evaluated via the operation simulation in Algorithm 3
with a high level of EV charging demand at 95th percentile.

2.5 Data

We consider a workplace EV charging facility. We use real-world data on workplace EV
charging demand, office building energy demand, and electricity tariff for businesses. We
describe the data in the following and other parameters are provided in the Nomenclature.

EV Charging Demand

The EV charging demand is represented by the Adaptive Charging Network data from
January 1st 2019 to September 9th 2019, collected from the California Institute of Technology
(CalTech) campus garage in Pasadena, California [46]. The data describes individual EVs
in terms of their time of connection and disconnection to the charger and the total energy
delivered. We process the data to aggregate the total power and cumulative energy delivered
to the EVs in 15-min increments with an assumption of constant charging power. From this
original demand, rescheduled charging demand with MDM is produced.

Figure 2.2 shows the original data and the rescheduled data with MDM in terms of the
aggregate power at 15-min intervals. Each line represents each date in the sample. We
observe that MDM reduced the peak of power demand with a flatter trend throughout the
day. The MDM algorithm does not change the total energy demand.
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(a) Original Demand (b) Demand with MDM

Figure 2.2: EV Charging Demand Trajectories for Sample Dates (California Institute of
Technology (CalTech) Campus Garage in Pasadena, California, from 2019/1/1 to 2019/9/9):
the left plot shows the original demand and the right plot shows the result from mobile
demand management on the original demand

Building Energy Demand

The building energy demand is represented by the data from Lawrence Berkeley Lab Building
74 in California from January 1st to September 9th, 2014 [47]. Figure 2.3 shows the mean
daily power use plus and minus one standard deviation.

Electricity Cost

We consider a Time-of-Use energy tariff and a demand charge on peak power. The Time-
of-Use energy tariff, cI(τ) (USD/kWh), is represented by the rates for businesses in summer
from PG&E in California as shown in Fig. 2.4 [48]. The demand charge is assumed as a
constant, cG,D = 19.0 USD/kW per month.

2.6 Results

In this section, we evaluate the performance of the robust sizing model compared to the
baseline sizing model. The results show that the robust facility produces a higher quality of
service than the baseline facility, but incurs in a larger cost due to constructing and operating
a larger charging capacity. To overcome this trade-off, we analyze how demand management
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Figure 2.3: Building Energy Demand from Sample Dates (Lawrence Berkeley Lab Building
74, California, from 2014/1/1 to 2014/9/9): µ denotes the mean value and σ denotes the
standard deviation

Figure 2.4: Time-of-Use Electricity Price

strategies impact the planning and operation of an EV charging facility. The results show
that when Stationary and Mobile Demand Managements are applied to a robust facility, it
overcomes the trade-off and achieves a higher quality of service at a lower cost, compared to
a robust facility without these strategies.

Performance of the Robust Sizing Model

Table 2.1 shows the sizing and operation results of the robust and baseline sizing models,
averaged over the cross validation sample of size Ncross = 100. The robust facility builds more
chargers (shown with nopt) than the baseline facility, ensuring a larger capacity to supply
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Table 2.1: Cross Validation Results of Optimal Sizing and Operation Simulation (Note fOC,
fCC, and fCC are in units of ($/day))

Model
Average over Ncross samples

nopt bopt fOC fCC fTC fQoS

Robust 31.5 2 257.1 7.0 264.1 0.9963
Baseline 20.5 2 254.0 4.6 258.6 0.9054

the random EV charging demand. For both robust and baseline facilities, the ESS units are
planned at the maximum limit, bopt = bmax = 2, because ESS units facilitate flexible grid
import and reduce cost. The robust facility has a larger operation cost than the baseline
facility because more chargers satisfy more demand, importing more energy for the EVs.
With the capital cost of a larger facility, the robust facility has a larger total cost (shown
with fTC computed in (2.42)) than the baseline facility. However, we observe that the daily
operation cost (shown with fOC) is much larger than the daily capital cost (shown with
fCC). In other words, operation is the major component (above 95 %) of the total cost.
This validates the need to economize the facility operation, as we will achieve with SDM and
MDM in the following section.

The quality of service in charging EVs, fQoS, is larger in the robust facility than the
baseline facility. Therefore, fQoS of the robust facility is around 9% higher than that of the
baseline facility. To visualize why this occurs, please refer to Fig. 2.5 with sample trajectories
of power and energy during simulated operation. The left column shows the robust facility
and the right column shows the baseline facility. The top figures show that the robust facility
satisfies most of the EV charging demand, whereas the baseline facility cannot satisfy some
EV demand due to its limited charging capacity (around 40kW).

Note that the operation simulation does not allow charging demand to queue, i.e. when
demand cannot be served immediately, then it is considered lost. So the charging demand
in the baseline facility becomes unsatisfied; as shown with unsatisfied cumulative energy
indicated by the gap between the two curves in the right middle figure of Fig. 2.5. Therefore,
fQoS of the baseline facility is often lower than that of the robust facility, as shown in Fig. 2.6.

The trade-off between quality of service and increasing cost is illustrated by the bottom
row in Fig. 2.5. If a small capacity ESS is installed, then both facilities have no choice but to
import grid power following the peak of EV charging demand, indicated by PG,I,j(τ). How-
ever the grid import peaks higher for the robust facility than the baseline facility, resulting
in a larger demand charge on top of the larger energy cost. Moreover, we realize that the
peak charging demand only lasts a short period of time. This means that for the robust
facility, much of the charging capacity is not used most of the day. Instead of supplying
energy simply as demanded, if the facility can be proactive in managing the demand and
make the planning and operation more economical, the trade-off with increasing cost may
be reduced. The next section analyzes the impact of demand management strategies on an
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Figure 2.5: Sample Trajectory of EV Charging Operation with Robust and Baseline Sizing
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])

EV charging facility.

Sensitivity Analysis on Demand Management

Figure 2.7 presents how a robust facility with demand management strategies perform better
than a facility without strategies, in terms of both the cost and quality of service. The total
cost as fTC is on the x-axis and the quality of service as fQoS on the y-axis. Four scenarios of
demand management are evaluated. “None” indicates the scenario with original EV charging
demand and the maximum ESS units allowed to be built as bmax = 2. “MDM” indicates the
scenario with rescheduled EV charging sessions (therefore with flattened charging demand
as in the right figure of Fig. 2.2). “SDM” indicates the scenario with a larger maximum ESS
units allowed to be built as bmax = 10. “MDM and SDM” indicates the scenario with both
rescheduled EV charging sessions and a larger maximum ESS size allowed to be built. Each
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Figure 2.6: Quality of Service (Cross-Validation of 100 samples with unique demand scenar-
ios)

data point shows the results of varying levels of significance, αEV . A facility sized with a
smaller αEV (from (2.22) and (2.23)) yields a smaller fQoS, so the left-most point in each
scenario is the result with αEV = 0.05 and the right-most point is the result with αEV = 0.95.
Note the result with αEV = 0.5 with scenario “None” is approximates of the baseline sizing
model in Table 2.1, which is based on average values of EV charging demand. The result
with αEV = 0.95 in scenario “None” corresponds to the robust sizing result in Table 2.1.

First from the graph we notice that the facility improves the quality of service with a
larger cost. Moreover, increasing the cost has an increasing marginal return on the quality
of service, i.e. the quality of service improves at an increasing rate as the cost increases.
This means that the trade-off between the cost and quality of service is in the favor to build
a larger facility. Second, a facility implemented with both MDM and SDM achieves the
highest quality of service at a given cost, i.e. the “MDM and SDM“ scenario has Pareto
optimality to any other scenario in terms of cost and quality of service. Implementing no
demand management has the poorest quality of service at a given cost. It is interesting that
at a high service quality, the SDM scenario and MDM scenario have similar costs and service
qualities. This means that the system operator may choose any of the two strategies to enjoy
a similar cost reduction at high service quality. When it is difficult to reschedule EV charging
sessions due to issues in driver compliance [49] and uncertain mobility demands, a larger ESS
can be installed to result in a similar cost reduction. The capital investment of ESS (SDM)
poses a solution to potential issues in operational investment of rescheduling EV charging
(MDM). Also, if it is challenging to install ESS units (SDM) for instance due to limited
physical space, rescheduling EV charging (MDM) can result in a similar cost reduction.

In addition to the finding above, Figure 2.7 also exemplifies how the proposed algorithm
can help the facility planner to finalize the facility size by selecting the level of significance
in charging demand αEV. With the figure’s visualization of facility performance, the facility
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Figure 2.7: Pareto Curves of Cost and Quality of Service

operator can choose the level of significance that best suits her business needs. For instance,
it is possible that a charging facility is in high competition with neighboring facilities and the
operator desires an expensive but a high-quality facility. The facility operator may choose
a sizing result with a high level of significance that corresponds to a desired level of service
quality and cost.

Also, we see that the finding from Section 2.6 agrees with the results in Fig.2.7, i.e., a
robust facility builds a larger charging capacity, increasing the quality of service and the
cost. Please refer to Table 2.2, which supplements Fig.2.7. For each demand-management
scenario, the robust sizing with αEV = 0.95 results in more chargers and larger fQoS and fTC

than the baseline sizing approximated with αEV = 0.5. Therefore, Fig.2.7 show the results
with αEV = 0.95 to be higher in fQoS and fTC than the results with αEV = 0.5 in Fig.2.7.
Note that for all scenarios and sizing models, the optimal solutions produce the ESS units
to be built at the maximum limit, bopt = bmax, where bmax = 2 for cases without SDM and
bmax = 10 for cases with SDM.
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Table 2.2: Baseline and Robust Sizing Results with Stationary and Mobile Demand Man-
agement Strategies

Item Sizing
1 Demand Management Scenario

None MDM SDM MDM and SDM

nopt
B 21 12 21 12

R 32 21 32 21

bopt
2 B 2 2 10 10

R 2 2 10 10

fQoS
B 0.7 0.6 0.7 0.6

R 1.0 1.0 1.0 1.0

fTC ($/day)
B 365.5 329.5 352.8 321.8

R 390.0 373.9 372.4 362.9

To further explore how SDM and MDM reduce the cost, sample power trajectories over a
day are analyzed; refer to Fig. 2.8. The four columns show the trajectories for the scenarios of
“None”, “SDM”, “MDM”, and “SDM and MDM” as explained above, respectively. The top
figures show the input data of EV charging demand for planning, indicated by PEV,test,j(τ).
For scenarios with MDM, the charging demand has a reduced peak power but same total
energy. Since this figure shows robust facilities planned with αEV = 0.95, almost all EV
charging demands are met, indicated by coinciding lines of PEV,test,j(τ) and PEV,j(τ). The
bottom figures show trajectories of operation power.

Compared to the scenarios without any demand management (“None”), both SDM and
MDM similarly reduce the peak of grid import power (shown with PG,I,j(τ)). The scenario
with SDM shows that the grid import peak is reduced by discharging the ESS, shown with
PB,D,j(τ). The scenario with MDM shows that the grid import peak is reduced by flattening
the peak of EV charging demand, shown shown with PEV,test,j(τ) on the top. Although the
total energy of grid import is the same, both SDM and MDM reduce the demand charge by
reducing the peak power import from the grid. Moreover, both SDM and MDM avoid high
Time-of-Use tariff and reduce the energy cost by discharging the ESS energy or removing the
charging sessions, respectively. Although SDM and MDM use inherently different mecha-
nisms, they both reduce demand charge and energy cost and result in similar cost reductions
as seen in Fig. 2.7. Note that the last column in Fig. 2.8 shows that implementing both

1B: Baseline sizing approximated with αEV = 0.5, R: Robust sizing with αEV = 0.95
2The optimal solutions produce bopt at the maximum limit, bmax for all results, i.e., (bmax = 2 without

SDM and bmax = 10 with SDM)
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Figure 2.8: Sample Operation Trajectory with Mobile and Stationary Demand Management
(αEV = 0.95)

SDM and MDM decreases the grid import peak the most, reducing the cost the most.
In addition, we find that a facility with MDM uses the chargers more efficiently than

without MDM, which is intuitive as they satisfy the charging demand with less number of
chargers. Fig. 2.9 shows sample trajectories of the charging capacity sitting idle without
charging EVs as Pidle(τ) = noptPEV,R − PEV(τ). The solid line is the idle capacity without
MDM (“None”) and the dotted line shows one with MDM. The facility without MDM has
a larger charging capacity (74.56kW = PEV,R · 32 chargers) than a facility without MDM
(48.93kW = PEV,R · 21 chargers), where we assumed PEV,R = 2.33kW . However, the facility
without MDM uses its capacity only for a short period of time and most capacity is idle for
a longer period of time, compared to the facility with MDM.

2.7 Conclusion

To increase the market adoption of electric vehicles, it is critical to plan an EV charging
facility that provides energy to EVs at a low cost with high quality of service. An EV
charging facility can be planned with a larger capacity for high quality of service; however,
this increases cost. To overcome this trade-off between the cost and quality of service, We
propose a solution to plan an EV charging facility that achieves high quality of service at
a reduced cost. This chapter proposes a robust optimization model to minimize the cost
and guarantee high quality of service. To reduce the cost further, two strategies of demand
management are explored - namely Stationary Demand Management (installing ESS) and
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Mobile Demand Management (rescheduling EV charging sessions).
The findings of this chapter are highlighted as follows. The proposed robust model for

facility sizing guarantees high quality of service in charging EVs at a minimal cost. A facility
with demand management strategies achieves high quality of service but at a lower cost,
achieving Pareto optimality to a facility without demand management strategies. A facility
with either ESS units or rescheduled EV charging demand can reduce the cost similarly at
high quality of service. If it is challenging to reschedule the EV charging sessions in practice,
the system operator can install a larger ESS to enjoy a similar cost reduction to rescheduling
the charging demand. Similarly, if it is technically difficult to install an ESS, the facility
operator can reschedule the EV charging sessions instead.

To improve this research further, the planning and operation simulation models can
be modified to consider the EV charging demand in individual vehicle level, instead of an
aggregate level. For instance, we can model the queuing process of EVs arriving, waiting for
an available charger, charging, and leaving. This may optimize the number of chargers more
accurately. Also, the analysis on demand management strategies can be more comprehensive.
For the impact of SDM on the facility, we explored only two values for the maximum ESS
units to be built bmax = [2, 10]. However, it is possible that the cost does not decrease further
with an ESS sizing above a certain level and this cut-off point for the diminishing return
may depend on how the EVs shift their charging (MDM) [37]. Future research can explore
the impact of SDM on the facility sizing in more detail by experimenting various values of
bmax.

For MDM, we assume perfect success of rescheduling EV charging sessions. In reality,
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MDM can have numerous challenges to reschedule with issues in compliance, awareness,
uncertainty, and incentives. In addition, rescheduling of charging sessions may influence the
facility performance. Rescheduling EV charging sessions can be modeled as a coupled prob-
lem with the facility planning problem for better rescheduling, facility sizing, and operation.
Therefore, the effect of SDM and MDM on the facility must be thoroughly investigated for
optimal and practical application. Other possible improvements on the planning model in-
clude the consideration of ESS degradation, maintenance costs of the facility, and various
charger models with different charging power rates.
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Chapter 3

Economic and Environmental Benefits
for Electricity Grids from
Spatiotemporal Optimization of
Electric Vehicle Charging

This chapter is based on the previously published article: Woo, S., Fu, Z., Apostolaki-
Iosifidou, E., & Lipman, T. E. (2021). Economic and environmental benefits for electricity
grids from spatiotemporal optimization of electric vehicle charging. Energies, 14(24), 8204,
https://doi.org/10.3390/en14248204.

In this chapter, we address the problem of estimating the potential economic and environ-
mental gains for utility grids of shifting the electric-vehicle (EV) charging time and location.
The current literature on shifting EV charging loads has been limited by real-world data
availability and has typically therefore relied on simulated studies. Collaborating with a
large automobile company and a major utility grid operator in California, we use actual EV
operational data and grid-operation data including locational marginal prices, marginal grid
emission rate data, and renewable energy generation ratio information. With assumptions
about the future availability of EV charging stations, we estimate the maximum potential
gains in the economic and environmental performance of the electrical-grid operation by
optimizing the time and location of EV charging. For the problem of rescheduling the charg-
ing sessions, the optimization models and objective functions are specifically designed based
on the information available to the energy system operators that influence their economic
and environmental performance like grid congestion, emissions, and renewable energy. The
results present the maximum potential in reducing operational costs and marginal emissions
and increasing renewable energy use in the utility grid by rescheduling the EV charging load
with respect to its time and location. The analysis show that the objective functions of
minimizing the marginal cost or the marginal emission rate performed the best overall.

https://doi.org/10.3390/en14248204
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Nomenclature

ESS Energy Storage System

EV Electric Vehicle

EV Electric Vehicle

LMP Locational Marginal Price

MDM Mobile Demand Management

MER Marginal Emission Rate

RE Renewable Energy

SDM Stationary Demand Management

CLMP(t, x) Locational marginal price at time t and node x in USD/kWh

CMER(t) Marginal emission rate at time t in tons ]of CO2E/kWh

CRE(t) Renewable energy ratio at time t, unitless

Eb,i Battery capacity in energy for vehicle i in kWh

Ef Final condition on the energy level required for vehicle i in kWh

Ec
i,k Energy consumption for the trip departing from the destination node k for vehicle i

in kWh

Edes
i,k Desired charging energy at the destination node k for vehicle i in kWh

Eini,i Initial energy level in the battery of vehicle i in kWh

Emax Maximum level of energy required for vehicle i in kWh

Emin,i Minimum level of energy required for vehicle i in kWh

Ki Number of locations that vehicle i visits over the optimization time horizon
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NEV Sample size of EVs

Pr,i Rated charging power of vehicle i in kW

Si(t) Parking status of vehicle i at time t, which equals 1 if parked and 0 otherwise

T ai,k Arrival time to the destination node k for vehicle i

T di,k Departure time from the destination node k for vehicle i

∆t Discrete time interval in hours

x̂i(t) The electrical grid node that the location of vehicle i belongs to

i Vehicle index, i ∈ [1, NEV ]

k Destination index, k ∈ [1, Ki]

n Number of EV chargers

b Scale factors for ESS units [scale]

Pc(i, t) Charging power for vehicle i at time t in kW

̂Jagg, LMP The total LMP cost from the LMP-minimizing solution for aggregate EVs

̂Jagg, MER The total MER from the MER-minimizing solution for aggregate EVs

Ĵagg, RE The total RE from the RE-maximizing solution for aggregate EVs

PEV (τ) Charging power to aggregate EVs [kW]

PB,C(τ) Power charged to ESS [kW]

PB,D(τ) Power discharged from ESS [kW]

PG,I(τ) Power imported from the grid [kW]

PG,D Power used for demand charge calculation [kW]

EEV (τ) Time-cumulative energy charged to aggregate EVs [kWh]

EB(τ) Energy level of ESS [kWh]

P ?
EV,min(τ) Power demand in charging EV aggregates, minimum to be satisfied [kW]

E?
EV,min(τ) Time-cumulative energy demand in charging EV aggregates, minimum to be

satisfied [kWh]

P ?
L(τ) Power demand from the building use [kW]
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P ?
EV, min, MDM(τ) Power demand in charging EV aggregates with mobile demand manage-

ment, minimum to be satisfied [kW]

E?
EV, min, MDM(τ) Time-cumulative energy demand in charging EV aggregates with mobile

demand management, minimum to be satisfied [kWh]

PL(τ) Expected value of P ?
L(τ)

σ2
PL

(τ) Variance of P ?
L(τ)

FE,τ (z) Empirical cumulative distribution of E?
EV, min, MDM(τ)

FP,τ (z) Empirical cumulative distribution of P ?
EV, min, MDM(τ)

F−1E,τ (τ)(αEV ) The inverse of FE,τ (z) at significance level αEV, i.e., the aggregate EV charging
energy demand at αEV-th percentile at time τ

F−1P,τ (τ)(αEV ) The inverse of FP,τ (z) at significance level αEV, i.e., the aggregate EV charging
power demand at αEV-th percentile at time τ

PEV,test,j(τ) EV charging power demand for operation simulation date i [kW]

PL, test,j(τ) Power demand from the building use for operation simulation of date i [kW]

bopt Optimized scale factors for ESS units [scale]

nopt Optimized number of EV chargers

EB,max Nominal ESS energy capacity per unit of ESS [14.0 kWh]

PEV, R Rated power of EV charger [2.33kW]

PG,I,max Power capacity for grid import [2000.0kW]

PB,max Nominal ESS power capacity per unit of ESS [5.0 kW]

αEV The percentile value of the EV charging energy, at which the EV charging facility
must satisfy [0.95]

αG, l The probability of the grid import power is above minimum, 0kW [0.95]

αG,u The probability of the grid import power is below the capacity, PG,I,max [0.95]

βB,i Initial ESS energy level ratio, [0.5%]

ηB,C ESS charging efficiency, [0.98%]

ηB,D ESS discharging efficiency, [0.98%]
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ηEV EV charging efficiency [0.89%]

bmax ESS scale maximum limit [scale/kWh]

cB Daily cost per energy storage system unit [0.066 USD /day/kWh]

cEV Daily cost of an EV charger [0.274 USD/day]

cG,D Demand charge cost, [19.0/30 USD/kW/day]

cI(τ) Time-of-Use electricity cost for time τ [USD/kWh]

dt Time interval, [1 hour]

τ Time step ∈ [1, T ] [hour]

T Number of time steps in a day [24 hours]

Ncross Sample size for cross validation [100 samples]

Ntest Number of dates tested for operation simulation [71 dates]

fCC Daily capital cost ($/day)

fOC Daily operation cost ($/day)

fTC Daily total cost ($/day)

fQoS Performance metric of quality of service in charging EVs (kW)

3.1 Introduction

Electric vehicles (EVs) are now proliferating in major automobile markets around the world.
Despite the environmental benefits of EVs for air quality, greenhouse-gas emissions, and hu-
man health [50], EVs can add significant electrical loads and cause potential negative impacts
for electrical-grid operations, such as grid congestion, violations of voltage limits, and heavy
loading of network assets (e.g., distribution transformers) [21], [22]. EV load is not char-
acterized only by the time of the day that takes place but also by geographical location
and the specific section of the distribution grid where the load is connected. Therefore, EV
charging solutions that are based on both time and location can be important to potentially
reducing the impacts of EVs on the grid. Managing the timing and location of EV charg-
ing is becoming increasingly possible as the battery capacity of EVs grows larger, and also
because personal vehicles including EVs spend most of the time parked and have large time
windows in which to charge. In this study, we address the problem of estimating the max-
imum potential gains in terms of economics, the integration of renewable energy sources,
and greenhouse-gas emission reductions for electrical-grid operators in shifting the time and
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location of charging EVs based on a real-world study. For background, there is a large body
of research that optimizes EV charging to improve the performance of electrical-grid oper-
ation. Optimal charging schedules for EVs can improve various aspects of grid operations,
such as reducing costs, emissions, peak loads, power losses, and integration of renewable
energy sources [51], [52]. However, there can be trade-offs between improving one aspect at
the expense of another. For instance, EV-charging schedules that target nighttime charging
to reduce electricity costs can result in higher emissions of carbon dioxide [53]. Additionally,
attempts to optimize overnight EV charging with respect to a time-of-use pricing regime can
increase the curtailment of renewable energy [23]. In the current literature, it is not clearly
identified which performance metric of the grid operation one must target in optimizing the
EV charging so that the grid performance improves holistically without foregoing another.

In addition, some studies use performance metrics that are not easily measurable or
directly useful on the grid operators. For instance, Kara et al. [54] optimized EV charging
by shaving the peak demand; Tarroja et al. [55] shifted the charging load to hours with high
renewable generation; and Jian et al. [56] filled the valley and shaved the peak of the energy
demand. However, managing EV charging with these objectives may not lead directly to cost
reduction, emission reduction, or an increase in renewable energy use. These performance
metrics will be easier to use in practice if the values are easily measurable and immediately
useful to the grid operator.

Additionally, most of the literature has been limited in studying optimal charging at fixed
locations, i.e., changing the charging time or charging power within each plug-in session to
improve the operation of the electrical grid [23], [52], [54]–[59]. However, there is a significant
benefit to relocating charging sessions as well, for example, from the home to the workplace
so that EVs charge midday and use solar energy [44]. Szinai et al. [23] also found that
there is only little value in smart charging at fixed locations at workplaces because people
often charge at home. Therefore, we investigate the benefit of optimal EV charging by not
only shifting the time of charging within each plug-in session but also choosing the charging
location across the places that the vehicle visits. Expanding the solution space of charging
decisions in both time and space allows us to enhance the benefits in optimal charging.

With EV-charging control, many studies attempt to estimate potential improvements to
electrical-grid operation. However, most studies depend only on aggregated or simulated data
on the driving and charging demand of EVs because real data for individual EVs are scarce.
Examples of studies that use aggregate data include the work by Kara et al. [54], which
uses the aggregate charging demand of the EVs and the “load flexibility” of EVs, i.e., the
ratio of charging time to the parking time, to estimate the maximum benefit in shaving
the demand peak. Similarly, Teng et al. [57] used an aggregate EV-charging demand and
aggregate flexibility to estimate the reduction in grid operation cost, though the demand
and flexibility values were calculated from individual EVs and their mobility constraints.

Examples of studies that simulate the driving and charging of EVs based on the United
States National Household Travel Survey include the work by Tarroja et al. [55], which
calculated the reduction in emissions and fuel for the vehicles on the road and estimated
the increase in renewable energy use. Forrest et al. [58] used the survey data to simulate
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EVs and estimate the economic and environmental value of renewable-energy integration.
Van Triel and Lipman [52] simulated EVs and grid operation based on the survey data
and calculated the reduction in renewable energy curtailment and consequently avoided
installment of the energy storage system. Other interesting examples of simulation studies
include Jian et al. [56], who simulated the charging load of millions of EVs and estimated
the peak energy demand with EV charging management. Szinai et al. [23] simulated the
detailed travel and charging demand of EVs with an agent-based model called BEAM and
a grid-operation model called PLEXOS and estimated the maximum benefit in reducing the
cost and the renewable energy curtailment with EV-charging management.

In this chapter, we present an analysis based on the actual driving and charging behavior
of hundreds of EVs operating in the San Francisco Bay Area in California. We collaborate
with an automobile company (BMW North America LLC, Woodcliff Lake, NJ, USA), a grid
operator (Pacific Gas and Electric Company or PG&E, San Francisco, CA, USA), a grid-
services company (Olivine Inc. Berkeley, CA, USA), and an energy data-analytics company
(Kevala Analytics, San Francisco, CA, USA). We combine grid data for corresponding lo-
cations and times, along with the real-world data for driving and charging individual EVs.
With this rich set of data, we estimate the electrical grid benefit from optimal charging as
realistically as possible. The grid data include the locational marginal price (LMP), the
marginal-emission rate (MER), and the renewable-energy (RE) ratio, which are measurable
to grid operators. The data used in the analysis are explained in more detail in Section 3.3.

Our contribution to the current knowledge in EV charging and its benefit to the electrical-
grid operation is threefold. First, we identify and recommend an objective function to
optimize EV-charging sessions so that the grid operation can improve holistically in terms of
operation costs, greenhouse-gas emissions, and renewable energy integration. These objective
functions are developed based on measurable and immediately useful values to the grid
operator. Second, we develop an algorithm that optimizes both the time and location of
charging individual EVs to enhance electrical-grid operation. With assumptions on charging
compliance, data availability, and perfect knowledge, we estimate the maximum benefit
that the algorithm can bring in reducing the operation cost, reducing the greenhouse gas
emissions, and increasing the renewable energy usage. Third, we overcome the limitations
in simulating and aggregating the behavior of EVs by using the real driving and charging
data of individual EVs and grid-operation data in California. This allows us to realistically
estimate the benefit of optimal charging to the grid operation.

Our research is presented as follows. In Section 3.2, we describe three performance metrics
of electrical-grid operation based on the LMP, the MER, and the RE ratio, for which EV
charging was optimized. We propose two optimization models: (1) a fixed-Location model
to schedule only the time to charge EVs and (2) an inter-location model to schedule both
the time and location to charge EVs. These two models can solve objective functions for
the three performance metrics. We also describe how we evaluated the performance of the
optimization models. In Section 3.3, we describe the real data from California used in
this research, namely, the telematics data of individual EVs on driving and charging and
the operational data for the local electrical grid. We also briefly explain how the data
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were processed for this research. In Section 3.4, we verify the fixed-location model and the
inter-location model with sample trajectories of charging power for individual vehicles and
validate the model performance in terms of the electrical-grid operation for charging a fleet
of EVs. We estimate the maximum gain to electrical-grid operation from controlling EV
charging time and location, in terms of cost savings, emission reductions, and renewable-
energy usage. Finally, we compare the performance of six cases (two optimization models
and three objective functions) and recommend a policy that can reduce grid operation cost
and greenhouse gas emissions and increase the usage of renewable energy. Future work is
described in Section 3.5 and the chapter is concluded in Section 3.6.

3.2 Methodology

We propose two optimization models to schedule the charging time and location of EVs and
explain how we evaluate the performance of optimization models in generating benefits to the
electricity-system operator. We first describe three metrics, namely, the locational marginal
price (LMP), the emission rate, and the renewable-energy ratio, to reflect the economic and
environmental performance of the local electrical grid. We use these metrics to develop the
objective functions and propose two optimization models to solve them. These are the fixed-
location model and the inter-location model. We then describe the methodology to conduct
a case study of real EV drivers in California to evaluate the potential benefits to the system
operator in optimizing the EV charging schedule.

Performance Metrics of Electrical Grid

We choose the LMP, the MER, and the RE percentage to evaluate grid performance be-
cause they are measurable values by the grid operator. We use the LMPs as defined by
the transmission system operator of California, the California Independent System Operator
(CAISO). LMP is the marginal cost of delivering the energy in units USD per MWh, com-
monly understood as the wholesale electricity cost, and it is used to control electricity grid
congestion and to optimize power flow [60]. CAISO sets LMPs at nodes, including schedul-
ing points, and aggregated pricing nodes. The distance between the nodes can be from less
than a mile to several miles. The LMP value changes for each node and each time inter-
val and shows inter-location variations based on the marginal cost of energy, power losses,
and grid congestion. In this study, the LMP metric is used independently of the distribution
grid and its components (distribution transformers). An example of an hourly LMP trend
at a node is shown in Figure 3.1. The figure shows that there is a sharp increase in pricing
in the morning before work hours and in the afternoon when people return home. We define
a parameter for LMP, CLMP(t, x), as the locational marginal price at time t and node x,
converted to USD per kWh.

For the emission rate, we use the MER of greenhouse gases in California. The MER is
the rate of emissions that are produced when additional load is added and new generation
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Figure 3.1: Example of locational marginal pricing, the marginal-emission rate, and the re-
newable ratio (2017/11/2, LMP node ID: BAYSHOR2-1-N001, SubLAP: PGSF).

subsequently comes online. The MER is expressed as the marginal emissions in units of tons
of CO2E/MWh. This greenhouse-gas-intensity metric was extracted from the 2019 avoided-
cost calculator (ACC) model, developed by E3 consulting. Figure 3.1 shows an example
of the MER values; these change over time and location. However, we assume these are
independent of the location due to the data availability. Similar to the trend of LMP, there
are two peaks: one in the morning and another in the afternoon. We define CMER(t) as the
marginal emission rate at time t, converted to tons of CO2E/kWh.

As for the renewable energy (RE) ratio, we use the data provided by PG&E indicating
the unitless ratio of the generated RE. This provides the RE ratio for each hour that does
not change with location within the PG&E service territory. An example of the hourly
RE ratio is shown in Figure 3.1. The RE ratio has a different trend from LMP and MER,
with one peak that appears around noon through early afternoon when solar energy is largely
generated. The RE ratio is low during the evening and before sunrise. We define CRE(t) as
the RE ratio at time t, without units.

Note that in the following formulation of the optimization models, we assume the knowl-
edge of values for CLMP(t, x), CMER(t), and CRE(t) at all times and locations, where vehicles
are present over the optimization time window.
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Optimization Models

In this section, we first describe the vehicle, time, and location notation. We propose the
fixed-location model and the inter-location model to schedule the charging of individual
EVs, as well as the three objective functions for each model. We also explain the evaluation
method of the proposed models.

Notation

First arrival
𝑘! = 1,𝑡 = 𝑇!,#$

Time 𝑡

First departure
𝑘! = 1,𝑡 = 𝑇!,#%

Second arrival
𝑘! = 2,𝑡 = 𝑇!,&$

Second last departure
𝑘! = 𝐾! −1 , 𝑡 = 𝑇!,'!(#

%
Final arrival

𝑘! = 𝐾!, 𝑡 = 𝑇!,'!
$

Final departure
𝑘! = 𝐾!, t = 𝑇!,'!

%

First energy consumption 
for the first trip, 𝐸!,#)

Energy consumption 
for the (𝐾! − 1)th trip, 𝐸!,'!(#

)

Desired charging energy 
at the first location, 𝐸!,#%*+

Desired charging energy 
at the final location, 𝐸!,'!

%*+

Initial energy 
level, 𝐸!,!,!

Nomenclature
• 𝑖 ∈ 1, 𝑁!" : vehicle index, where 𝑁!" is the sample size of EVs
• 𝑘# ∈ 1,𝐾# : destination index of 𝑖-th vehicle, where 𝐾# is the total number of destinations of the vehicle
• 𝑇#,%& , 𝑇#,%' : 𝑖-th vehicle’s arrival time to the 𝑘-th destination and departure time from the 𝑘-th destination, respectively
• 𝐸#(#,#: 𝑖-th vehicle’s initial energy level 
• 𝐸#,%')* : 𝑖-th vehicle’s desired charging energy at the 𝑘-th destination
• 𝐸#,%+ : 𝑖-th vehicle’s energy consumption in the trip from the 𝑘-th destination

Figure 3.2: Notations to Describe the Multiple Destinations for a Vehicle

We define vehicle index i ∈ [1, NEV ], where NEV is the sample size of EVs. We define
the destination index that vehicle i visits as k ∈ [1, Ki] over the optimization time horizon.
For each vehicle i, its battery capacity in energy is assumed as Eb,i. For each destination k,
a tuple of parameters are known: (T ai,k, T

d
i,k, E

des
i,k , E

c
i,k), which are the arrival time to the node,

the departure time from the node, the desired charging energy at the node, and the energy
consumption for the trip departing from the node, respectively. These notations are shown
in Figure 3.2 with arrivals and departures of a vehicle i over time t. Note that the energy
consumption to the first location in the sample is disregarded, and the initial energy level
Eini,i is evaluated at the arrival of the first location. Note that we assume the parameter
tuples shown in the graph to be known. If there is no information of final departure, we
assume that its time coincided with the final arrival and that the final desired charging
energy is zero.
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In addition, we define a binary parameter to indicate the known information on the
parking status as Si(t), which equals 1 if the vehicle i is parked at time t and 0 otherwise.
Additionally, for each time step t, the electrical grid node that the vehicle’s location belongs
to is expressed as x̂i(t). We assume that only Si(t) · x̂i(t) is known; in other words, we know
the grid node that the vehicle is connected to, only if it is parked.

Fixed-Location Charging Optimization

The fixed-location model schedules the charging time of an individual EV at a given location,
by exploiting the variation in the LMP, the MER, and the RE ratio over time. The model
assumes that the EV can charge at various power levels under its physical capacity once it
is plugged in. The EV may not start to charge immediately upon plugging in, but it can
also defer its charging during the plugging session. The model requires the provision of the
demanded energy at each destination. The model is applied for all destinations of all EVs in
the sample, and the total gains in the LMP, the MER, and the RE were computed for the
aggregate EVs.

Three optimization problems are given below. We minimized the LMP cost in units of
USD as shown in (3.1a), minimized the MER metric in units of tons of CO2E as shown
in (3.1b), and maximized the RE in units of MWh as shown in (3.1c). The optimization
variable is the charging power at each time step, Pc(i, t) for vehicle i in units of kW. The
optimization time t ranges over [T ai,k, T

d
i,k] with a discrete interval of ∆t = 1 hour.

min
Pc(i,t)

JLMP,i,k, where JLMP,i,k = ∆t

T d
i,k∑

t=Ta
i,k

Pc(i, t) · CLMP(t, x̂i(t)), (3.1a)

min
Pc(i,t)

JMER,i,k, where JMER,i,k = ∆t

T d
i,k∑

t=Ta
i,k

Pc(i, t) · CMER(t), (3.1b)

max
Pc(i,t)

JRE,i,k, where JRE,i,k = ∆t

T d
i,k∑

t=Ta
i,k

Pc(i, t) · CRE(t). (3.1c)

To constrain the physical charging capacity of vehicles, we constrain the charging power,
Pc(i, t) by the rated charging power of the vehicle i, Pr,i. We also model the desired charging
energy, Edes

i,k , during the stay at location k. The constraints for the fixed-location optimiza-
tion are given below:
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0 ≤ Pc(i, t) ≤ Pr,i, (3.2)

Edes
i,k ≤ ∆t

T d
i,k∑

t=Ta
i,k

Pc(i, t). (3.3)

As a simplification, we assume there is negligible energy loss in charging. Since the opti-
mization problem is linear and convex, the optimization result is globally optimal. We use
the constraints (3.2) and (3.3) to solve three optimization problems in terms of LMP, MER,
and RE, by choosing (3.1a), (3.1b), or (3.1c), respectively. We apply this optimization prob-
lem to each parking instance of individual EVs in an optimization horizon. The performance
of the fixed-location model can be expressed as the following:

̂Jagg, LMP =

NEV∑
i=1

Ki∑
k=1

JLMP,i,k

(
argmax
Pc(i,t)

JLMP, i,k

)
, (3.4a)

̂Jagg, MER =

NEV∑
i=1

Ki∑
k=1

JMER,i,k

(
argmax
Pc(i,t)

JMER, i,k

)
, (3.4b)

Ĵagg, RE =

NEV∑
i=1

Ki∑
k=1

JRE,i,k

(
argmax
Pc(i,t)

JRE, i,k

)
, (3.4c)

where (3.4a), (3.4b) and (3.4c) evaluate the total minimized LMP cost, the total mini-
mized MER, and the total maximized RE ratio, respectively, on aggregate EVs over a given
optimization horizon. We assume that the change of charging schedule in individual EVs do
not affect the LMP, MER, and RE.

Inter-location Charging Optimization

The inter-location model expands the feasible solution set from the fixed-location model by
scheduling not only when to charge but also where to charge among the locations that the
EV parks. This model assumes that, in the future, every destination that an EV visits
has a charger available to use. The inter-location model exploits the LMP, MER, and RE
values that vary over time across multiple locations that the vehicle visits. This model finds
the optimal time and location to charge, while satisfying the energy needs to drive between
the locations, a minimum and maximum energy level for each vehicle, and a final condition
for the battery state-of-charge level at the end of the optimization horizon. The model is
applied for all EVs in the sample and the total gains in the LMP, the MER, and the RE are
computed for the aggregate EVs.

Three objective functions are proposed. We minimize the LMP cost in USD as shown in
(3.5a), minimize the greenhouse gas emission in unit of tons of CO2E as shown in (3.5b),
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and maximize the RE ratio of energy generation provided to charge the vehicle as shown in
(3.5c).

min
Pc(i,t)

JLMP,i, where JLMP,i = ∆t

T d
i,Ki∑

t=Ta
i,1

Pc(i, t) · CLMP(t, x̂i(t)), (3.5a)

min
Pc(i,t)

JMER,i, where JMER,i = ∆t

T d
i,Ki∑

t=Ta
i,1

Pc(i, t) · CMER(t), (3.5b)

max
Pc(i,t)

JRE,i, where JRE,i = ∆t

T d
i,Ki∑

t=Ta
i,1

Pc(i, t) · CRE(t). (3.5c)

The optimization problems in (3.5) are similar to those in (3.1); however, they are differ-
ent in the optimization time range. The inter-location problem spans multiple locations that
each vehicle visits, i.e., for vehicle i, the optimization searches a solution from the arrival
time at the first location, T ai,1 until the departure time of the final (or Ki-th) location, T di,Ki

.
The optimization variable is the charging power at each time step t for vehicle i, Pc(i, t).

The inter-location model limits the charging power by the rated charging power, Pr,i, and
also by its parking status Si(t). Refer to (3.6) below where the charging power is forced to
be zero when the vehicle is on the move, i.e. Si(t) = 0.

0 ≤ Pc(i, t) ≤ Si(t) · Pr,i. (3.6)

The model also develops a schedule to satisfy the necessary energy for the trips and to
maintain the energy level of EV to being within in a given range, [Emin,i, Emax,i]. We assume
Emin,i = 0.10·Eb,i and Emax,i = Eb,i, respectively. At arrival to each destination after the first
destination, we check that the vehicle’s initial energy level Eini,i and the cumulative charging
energy satisfy the cumulative energy consumption as shown in (3.7). For all q = 2, ..., Ki−1,

Emin,i ≤ Eini,i + ∆t

Ta
i,q∑

t=Ta
i,1

Pc(i, t)−
q−1∑
p=1

Ec
i,p ≤ Emax,i. (3.7)

This constraint provides a minimum energy to the vehicle for the duration of the upcom-
ing trip. For instance, at arrival to the second destination (q = 2), the sum of initial energy
level, the cumulative charging energy at the first location, and the energy consumption to
the second location must be within the range, [Emin,i, Emax,i].

Energy level is also checked at all departures; refer to (3.8). For all q = 1, ..., Ki − 1,
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Emin,i ≤ Eini,i + ∆t

T d
i,q∑

t=Ta
i,1

Pc(i, t)−
q−1∑
p=1

Ec
i,p ≤ Emax,i. (3.8)

This constraint prevents the vehicle from charging over its battery capacity. For instance,
at departure from the first destination (q = 1), the sum of initial energy level and the
cumulative charging energy at the first destination must be in range [Emin,i, Emax,i] as Ec

i,0 =
0,∀i. At departure from the second destination (q = 2), the sum of initial energy level, the
cumulative charging energy, and the cumulative energy consumption to the second location
must be in range [Emin,i, Emax,i].

We also enforce a final condition for the battery energy level to be at least 50%, i.e.,
Ef = 0.50 ·Eb,i, to prevent the solution from depleting the EV energy by the final time step,
as below:

Eini,i + ∆t

T d
i,Ki∑

t=Ta
i,k

Pc(i, t)−
Ki∑
k=1

Ec
i,k ≤ Ef . (3.9)

Here again, we assume there is negligible energy loss in charging. Since the optimization
problem is linear and convex, the optimization result is globally optimal. We use the con-
straints (3.6), (3.7), (3.8) and (3.9) to solve three optimization problems in terms of LMP,
MER, and RE, by choosing (3.5a), (3.5b), or (3.5c), respectively. We apply these optimiza-
tion problems to each individual EV over a time period, such as one month. In other words,
we optimize from the arrival time at the first destination to the departure time from the last
destination within a month for each vehicle. The performance of the inter-location model
can be expressed as the following:

̂Jagg, LMP =

NEV∑
i=1

JLMP, i

(
argmin
Pc(i,t)

JLMP, i

)
, (3.10a)

̂Jagg, MER =

NEV∑
i=1

JMER, i

(
argmin
Pc(i,t)

JMER, i

)
, (3.10b)

Ĵagg, RE =

NEV∑
i=1

JRE, i

(
argmax
Pc(i,t)

JRE, i

)
, (3.10c)

where (3.10a), (3.10b) and (3.10c) evaluate the total minimized LMP cost, the total
minimized MER, and the total maximized RE ratio, respectively, on aggregate EVs. We
assume that the change of charging schedule in individual EVs do not affect the values of
LMP, MER, and RE.



CHAPTER 3. SPATIOTEMPORAL OPTIMIZATION OF ELECTRIC VEHICLE
CHARGING 51

Performance Evaluation

We have thus proposed two optimization models and three objective functions to solve for
each model. We first present the detailed results of each model in minimizing the LMP
cost, i.e., solving (3.1a) and (3.5a). We validate each model with the sample trajectories of
charging power for an individual vehicle. We evaluate the performance of both models by
analyzing the EV sample size (veh), the total parking hours (veh-hrs), the total charging
hours (veh-hrs), the total hours with change in charging status (hrs), the total change in the
LMP cost (USD), and the average change in the LMP cost (USD/veh-hr).

The total parking (or charging) hours are computed as the sum of parking (or charging)
hours of all vehicles in the sample. We use the term “idle” to describe the charging status
of vehicle that is parked but not charging. The total hours with the change in charging
status calculates the sum of hours such that the vehicle’s charging status is different in the
optimization result from the actual data. For instance, there is a 1-hour change in status if
a vehicle was charging from 8:00 a.m. to 8:30 a.m. (or up to 9:00 a.m.) in the actual data,
but the optimization result recommends it to be “idle.” The total change in the LMP cost
is the optimized LMP cost (the values of (3.4a) or (3.10a)), subtracted by the total LMP
cost in actual data. The total change in the LMP cost is negative when LMP costs are saved
with optimization. The average change in the LMP cost is the total change in the LMP cost,
divided by the total parking hours in the actual data.

Additional analysis is performed for the inter-location model results by grouping them
based on various destinations. These include anonymized home locations, “away” locations
(destinations other than the home locations), and two regional units called sub-load aggre-
gation Points (SubLAPs). The SubLAP regions are defined by CAISO to aggregate demand
response and other distributed sources and to define a basis for congestion revenue and ca-
pacity planning [61]. The SubLAP map of California can be found in [62]. With the analysis
of SubLAPs, we show the load shifting potential and benefits based on the local aggregation
areas. The results for LMP savings are further analyzed for the hourly variation in a day.

Next, we analyze the performance of different objective functions by comparing the results
of the fixed-location model to solve the three problems in (3.1) and the results of the inter-
location model to solve the three problems in (3.5). We analyze the total LMP cost ((3.4a)
and (3.10a)), the total MER ((3.4b) and (3.10b)), and the total RE ((3.4c) and (3.10c))
and recommend an objective to implement in more generally optimizing EV charging in
electricity system operation.

Please note that the proposed optimization models are solved in Python, using an open-
source modeling package called CVXPY [63].

3.3 Data

The main project data consist of actual vehicle telematics data from EVs, along with op-
erational data for the electrical grid in California and the PG&E service territory. This
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allows us to estimate the economic and environmental benefits of load shifting in an ideal
case, despite the strong assumptions of optimization, such as knowledge of vehicle arrivals,
departures, and energy demand. Below, we describe the vehicle telematics data and the grid
operational data, such as the LMP, the MER, and the RE, and we also briefly explain the
pre-processing of the vehicle data.

Data Description

We use telematics data from approximately 300 BMW electric and hybrid vehicles, whose
drivers participated in this phase of the research project. The individual EV data describe
the following anonymized types: the vehicle ID, the vehicle model, timestamps (for park-
ing/charging events), the state of charge in the battery, the connection status of the vehicle
to a charger, the vehicle location, and the odometer reading. The time period of data used
for this analysis was from 10 November 2017 to 30 November 2017. BMW provided the in-
formation for battery capacity and the rated charging power for each vehicle model, as well
as the anonymized home locations for each vehicle ID. The sample vehicles included BMW
models i2, i8, and iPerformance, whose nominal rated charging powers ranged from 3.6 to
7.4 kW. The histogram for the actual charging power from the data is shown in Figure 3.3.
The actual charging power deviates from the nominal charging power value; however, we
used the nominal values for the rated charging power in (3.2) and (3.6).
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Figure 3.3: Histogram of Actual Charging Power in the Sample

We obtained the day-ahead prices for the LMP data for the locations and times of parking
sessions in the EV data. Each vehicle location given in latitude and longitude is matched
to an LMP zone, the regional unit for which the LMP value is defined. The matching and
gathering of LMP data were processed with an application programming interface tool by
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Kevala Analytics. Since LMP zones represent much larger geographic regions than the point
values of latitude and longitude, the proposed models require much less precision for the
location data. This may alleviate the privacy and accessibility issues with vehicle-location
data for this type of analysis.

Due to data constraints, we obtained data of the MER and the RE ratio in different years
to the driving data and the LMP data. We obtained the MER prediction values for every
hour in 2019 from the ACC model. Data for the RE ratio for the total generated energy for
every hour in 2018 were obtained from PG&E. The MER and the RE ratio do not include
geographical information. Though it is possible that the MER and the RE ratio values may
change in trend, we tried our best to match the time periods of the driving data and LMP
data by using the time period from 10 November 2019 to 30 November 2019 for MER and
the time period from 10 November 2018 to 30 November 2018 for the RE ratio.

Data Processing

The actual EV telematics data include anomalies, such as departure time before arrival
time and negative values for the charging energy. These data, as well as data for vehicles
that left California for any or all of the time period used, were excluded from the analysis.
The percentage of the raw data that passed these criteria was 69.3%, i.e., the total vehicle-
hours observed in the raw data and the processed data were 135,075 veh-hours and 93,576
veh-hours, respectively. For the fixed-location model, the desired energy at destination k,
Edes
i,k , was the actual charging energy at destination k in the data.

However, this actual charging energy was not used for the inter-location model. Instead,
the energy consumption from the k-th destination to the next destination, Ec

i,k, was used.
For the inter-location model, we processed the data to only contain the vehicles that have
state-of-charge values at arrival always less than or equal to the state of charge values at
the time of the previous departure. This is because if the state of charge is higher at arrival
than at the previous departure, the charging energy demand is calculated as negative.

This anomaly can occur because some charging sessions are missing in the data. Not all
parking instances are collected in the data, since the GPS tracking devices turn off when
vehicles are on the move, and the vehicles may park inside some parking structures, where
the GPS readings are unavailable. It is also possible that some plug-in hybrid EVs are
charged during driving due to using gasoline and powering the vehicle generator. After this
cleaning criteria, a data set with parking hours of 63,411 veh-hours was available for the
inter-location model.

Data Flow

Based on the proposed models and the real data of the EV telematics and the utility grid
operation, we optimize the time and location of the EV charging sessions through the data
flow shown in Figure 3.4. First, the EV telematics data are processed to meet the optimiza-
tion model requirements as described in Section 3.3, based on the EV parameters, such as
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the rated charging power and battery capacities for each vehicle model. This processing out-
puts the clean data of parking and charging instances that can be used for the optimization
with information on the time, the location, the battery state of charge, the original charging
power and energy, and the transmission node connected to the parking location.

Second, the utility grid data on the LMP, the MER, and the RE are filtered according to
the time and transmission nodes of the parking and charging instances. This helps reduce the
memory required for computation because only a small subset of the available grid data can
cover the times and locations present in the telematics data. Third, the parking and charging
instances and the filtered grid data are used to solve the optimization problems proposed in
(3.1) or in (3.5). Finally, the optimal results were outputted in terms of the optimal charging
time, power, and energy. For the inter-location model, the charging location was also found.
The final result also included the optimal grid performance for the aggregate EVs.

Data processing by the optimization 
model requirement

EV telematics data and EV parameters Utility grid data 

Parking and charging instances
• Time
• Location
• Battery State of Charge
• Original charging power and energy
• Transmission node 

Optimal results
• Optimal charging time, power, and energy
• Optimal charging location for the inter-location model
• 𝐽!"",$%&" ,𝐽!"",%'(" ,𝐽!"",('"

MERLMP RE

Utility grid data filtering

Solve the optimization problem of 
the fixed-location model or the 
inter-location model

Data ResultAlgorithm 

Figure 3.4: Data flow of the EV-charging optimization.

3.4 Results

In this section, we verify the fixed-location and inter-location models with sample trajectories
of charging power of individual vehicles. We evaluate the two models based on the resulting
locational marginal price cost, marginal emission rate, and renewable-energy ratio and show
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that the inter-location model brings greater benefit to the electricity system operator than the
fixed-location model. Additionally, we analyze the optimization performances among three
objective functions and make a recommendation for the energy system operator to use.

Fixed-Location Model of Charging Optimization

We verify the optimization results of the fixed-location model, as shown in Figure 3.5, which
shows the sample trajectories of charging powers of one vehicle in the actual data and the
optimization result. The x-axis shows time; the left y-axis shows the charging power in kW;
and the right y-axis shows the given LMP values in USD per MWh. The red dotted line plots
the actual charging power in the data; the red continuous line plots the LMP-minimizing
charging power; and the blue thick line plots the actual LMP values at the vehicle’s current
node during those hours CLMP(t, x̂i(t)). The figure shows one parking session in the optimized
result, which lasted from 2 November 2017 12:00 a.m. to 11:00 p.m.. In the actual data, the
vehicle charged from midnight to 7:00 a.m. at 1.75 kW, though the LMP increased sharply
in the morning around 5:00 a.m.. The optimization result recommends charging at hours
with low LMP values, this being early in the morning around 2:00 to 3:00 a.m. and around
11:00 a.m. to 5:00 p.m. The total charging energy in the optimal solution is the same as the
actual charging schedule.

Figure 3.5: Sample Trajectories of Charging Powers in the Original Data and the Fixed-
Location Model Solution

Table 3.1 presents the statistics of fixed-location results with LMP minimization, in terms
of the total, home locations, and “away” locations. The statistics on total parking hours and
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Table 3.1: Fixed-location Result with LMP Minimization

Item Total Home Away

EV Sample Size (veh) 245 196 138

Total parking hours (veh-hr) 93,576 72,170 21,406

Total parking hours, where charging occurred (veh-hr) 55,819 48,099 7,720

Total charging hours (veh-hrs) 15,383 12,867 2,516

Total hours with a change in charging status due to
optimization (veh-hrs)

12,374 10,608 1,766

Total change in LMP cost (US dollars, optimal - actual cost)
for 30 days of sample

-236.8 -205.8 -31.1

Average change in LMP cost 1 (US dollars/veh-hr) -0.0025 -0.0029 -0.0015

total charging hours are the same in the original data and optimal results, as only the charg-
ing hours within each parking session are altered. Note that, on average, vehicles charge
only 8.7% of the time in a day (15, 383 veh-hrs divided by 245veh·24h/day·30days). Only
27.6% of the parking hours was used for charging (15,383 veh-hrs divided by 55,819 veh-hrs).
This shows that there is ample flexibility for the EV drivers to choose the charging sched-
ule; however, the vehicles mostly charge outside the optimal hours. The optimal charging
schedule is different from the actual data by 12,374 veh-hrs, which constitutes 80.4% of the
total charging hours of the vehicles.

By significantly adjusting the charging hours, the LMP cost is reduced by USD 236.8
dollars for the fleet over a month. This is a significant savings, considering the relatively
small level of the LMP cost (generally less than USD 100 per MW) and the small fleet size
(245 vehicles in this case). This monthly savings can scale up directly if the number of
participating EVs grows, where there are already more than 1000 times this many EVs in
California with 256,000 registered in 2018 [64]. The LMP saving can also be calculated as
USD 0.0025 /veh/hr on average; in other words, there is an average gain of USD 0.0025 in
LMP savings for each hour that one vehicle staid in the system (or USD 0.06 for each day
of one vehicle).

Analyzing the results in home and away locations separately, we see that the majority of
the LMP cost reduction occurs at home, contributing to around 86.9% of the savings. One
reason for this is because the vehicles park and charge more at home than away, so more
adjustments are made to the charging schedule at home. Another reason is because the LMP
peaks in the morning and the afternoon when people are primarily at home, so rescheduling
charging powers at home brings benefits at a greater margin than at other locations.

1The denominator is the total parking hours, for instance 93,576 veh-hrs for the total.
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Inter-location Model of Charging Optimization

We verify the optimization result of inter-location model with Figure 3.6, which shows the
actual and optimal charging power levels and LMP values for two consecutive parking events
of one EV. The vehicle parks from 7PM to 6AM in the first parking session as shown on the
top graph, drives for two hours, and parks from 8AM to 4PM in the second parking session
as shown in the bottom graph. The axes and legends are similar to Figure 3.5.

Figure 3.6: Sample Trajectories of Charging Powers in the Original Data and the Inter-
Location Model Solution
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Table 3.2: Inter-location Result with LMP Minimization

Item Total Home ‘Away’ PGP22 PGSI3

EV sample size (veh) 224 173 211 109 4

Total parking hours actual data (veh-hrs) 63,411 48,522 14,889 21,429 577

Total charging hours,
actual data / optimized result (veh-hrs)

10,456
/ 3,812

8,605
/ 2,644

1,851
/ 1,168

3,833
/ 1,208

42
/ 44

Total charging events,
actual data / optimized result (events)

2,277
/ 1,818

1,706
/ 1,151

571
/ 667

752
/ 584

12
/ 17

Average charging power,
actual data / optimized result (kW)

2.3
/ 5.6

2.1
/ 5.6

3.4
/ 5.7

1.9
/ 5.5

6.8
/ 6.2

Total hours with change in charging
status due to optimization (veh-hrs)

12,944 10,309 2,635 4,621 86

Total change in LMP cost
(US dollars, optimal cost - actual cost)

-369.5 -325.4 -44.1 -117.4 -7.1

Average change in LMP cost4

(US dollars/veh-hrs)
-0.0059 -0.0067 -0.0030 -0.0055 -0.0123 5

We see that the inter-location model can schedule charging across multiple parking loca-
tions and hours, potentially recommending charging at locations and hours for lower LMP
values. As seen in the top graph, the vehicle originally charged from midnight to 3:00 a.m.,
when the LMP cost was low. However, the model recommends that the vehicle be charged
only shortly to exploit the lowest LMP cost at 2:00 a.m. in the first parking location, shifting
the rest of the charging demand to the second parking location from 11:00 a.m. to 2:00 p.m.,
where the LMP cost was even lower for a longer period of time. Note that the optimization
model has a hard constraint to meet the driver mobility needs. The model also ensures that
the vehicle’s state of charge is above a minimum level, Emin,i, at all times.

Table 3.2 presents the statistics for the inter-location model results with LMP mini-
mization. The results are presented for the total, home locations, away locations, and two
SubLAP regions. First, in total, we see that we had a smaller sample size of data for the
inter-location model than for the fixed-location due to the data processing explained in Sec-
tion 3.3. This suggests that, in practice, inter-location optimization will be more challenging

2Sublap example 1: Peninsula and Bay Area (PGP2)
3Sublap example 2: Sacramento and Sierra (PGSI)
4The denominator is the total parking hours in actual data, for instance 63,411 veh-hrs for the total.
5Though this result is presented for completeness, note that the sample size is only 4 vehicles and this

result does not carry statistical significance.
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than fixed-location optimization because of the data requirements for sequential and multi-
location data. Additionally, the optimal solution charges vehicles at a lower number of hours
and charging sessions, and the average charging power increases, compared to the actual be-
havioral data. This is because the optimization attempts to exploit lower-cost LMP hours
by using its maximal charging power and avoids higher-cost LMP hours by reserving from
charging. Therefore, the optimization result tends to decrease the total charging hours with
more frequent charging instances and a higher average charging power.

Similar to the fixed-location model, the results shows a significant need to reschedule the
charging sessions for better operation of the grid. The charging status changed from “idle”
to “charging” or vice versa by the amount of 12,944 veh-hrs, which is even greater than the
original charging duration of 10,456 veh-hrs. With this impact, the average LMP cost can
be reduced by USD 369.5 dollars in total for 224 vehicles in a month, or USD 0.0059 per
veh-hr. On average, the inter-location model produces about 2.36 times more LMP savings
than the fixed-location model. This is because the inter-location model gives more freedom
to reschedule the charging sessions and explore lower-cost LMP periods. In this model,
the vehicles are recommended to change the charging hours, as well as the charging locations.

The results are compared for the home and ‘away’ locations in the third and fourth
columns of Table 3.2. Since the drivers tend to park and charge longer at home, the total
parking and charging hours are much larger at home than away, as well as the number of
total charging events. However, the optimal solution reduces charging hours and charging
sessions more significantly at home than away, possibly because the vehicles are located away
from home (such as workplaces), when the LMP values are low during the day. We see that
there is a larger LMP saving at home than ‘away’, first because there are originally more
charging loads at home but also because the charging load is removed from home and added
to the ‘away’ locations.

Different SubLAPs also experience different results from optimization, as exemplified in
the last two columns of Table 3.2. Among the 12 SubLAPs, PGP2 is a SubLAP around
the San Francisco Peninsula area with the largest reduction in LMP cost and PGSI is a
SubLAP around Sacramento, California, with the smallest reduction of LMP cost. Though
the LMP values are not significantly different among the SubLAPs at the same hours, the
total charging load can be very different among the SubLAPs. For instance, the actual
charging energy is 7,418.6kWh in PGP2, much larger than 285.9kWh in PGSI, during the
optimized time period. A larger LMP savings is expected to occur in regions with larger
charging loads.

The hourly variation in LMP savings is depicted in Figure 3.7. The LMP cost in the
optimal solution is larger than in the actual data from 9:00 a.m. to 2:00 p.m., because the
charging load is in these hours with low LMP values (California has high solar-energy genera-
tion and relatively low LMP costs in this period). The optimal solution suggests suppressing
the charging of EVs when drivers are home from 3:00 p.m. to 8:00 a.m. the next day, and the
LMP cost is greatly reduced in the afternoon. As a net outcome, the LMP saving from 3:00
p.m. to 8:00 a.m. is larger than the LMP increase from 9:00 a.m. to 2:00 p.m.
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Figure 3.7: Hourly Variation in Total Change in LMP Cost
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their Economic and Environmental Performance (Percentage Difference)

Optimization With Various Objectives

We present a comprehensive analysis of the proposed models and objective functions to
reschedule EV charging sessions and to improve electricity system operation. Figure 3.8
shows the results of the fixed-location and inter-location models with the three objective
functions. (For the detailed results, refer to Table 3.3 in the Appendix The results are
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shown as a percentage difference relative to the actual data. For instance, the percentage
difference of the actual data from the LMP optimized result was calculated as (3.11), where
Jactual, LMP is the actual total LMP cost in the data.

∆LMP =
̂Jagg, LMP − Jactual, LMP

Jactual, LMP

· 100% (3.11)
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Figure 3.9: Optimal Charging Power of Various Objective Functions (Inter-location Model)

Next, we extend the comparison of the fixed-location and inter-location models from
the previous section to two additional objective functions, i.e., minimizing the MER and
maximizing the RE. Figure 3.8 shows that the inter-location model reduced the MER and
increased the RE to a greater extent compared with the fixed-location model. However,
the inter-location model will be more challenging to implement in practice than the fixed-
location model because the inter-location model makes more assumptions, such as the avail-
ability of sequential data for a vehicle’s multiple destinations, accurate prediction of the
vehicle’s energy consumption, and successful relocation of charging sessions. Though the
fixed-location model brings a smaller benefit than the inter-location model in theory, its
easier implementation may result in better performance than the inter-location model in
real-world settings.

We also compare the performance of the LMP, MER, and RE objective functions. For each
optimization model, we observe that minimizing the LMP and the MER resulted in a similar
performance in the LMP, the MER, and the RE. This is understandable from Figure 3.1,
where the LMP and the MER have a very similar pattern over a sample day. Note that the
RE value is relatively high at the start of the evening peak for LMP and MER. For instance,



CHAPTER 3. SPATIOTEMPORAL OPTIMIZATION OF ELECTRIC VEHICLE
CHARGING 62

the RE ratio is around 0.3 to 0.6 from around 4:00 to 6:00 p.m. when the LMP and MER
values are rapidly increasing. Therefore, maximizing the RE induces a substantial charging
load during the peak hours of the LMP and the MER. Additionally, we see from Figure 3.8
that the RE-maximized solution increases the RE more than other solutions but does not
largely improve the LMP or MER. This is understandable by observing Figure 3.9, where
the optimal charging power to maximize the RE shows a different pattern to the charging
powers to minimize the LMP or the MER. For instance, the RE-maximizing charging power
is high at around 5 kW on average from 5:00 to 7:00 p.m., and the LMP-minimizing and
MER-minimizing charging powers are much lower at below 3 kW. The start of the evening
peak is a conflicting period because RE usage can be maximized with more charging but at
a higher cost with rapidly increasing LMP and MER values. We observe that the fixed-
location result for maximizing the RE results in a small increase in the LMP cost and a
negligible increase in the MER.

Policy Implications

Based on these results, we make a recommendation on the design of an EV-charging reschedul-
ing program that improves electrical-grid performance. Currently the system operators for
electricity generation, transmission, and distribution are subjected to various regulations
and policies. For instance, California’s Renewables Portfolio Standard (RPS) regulates the
renewable energy procurement (in terms of delivered energy in watt-hours) to be at least
60% of the total energy by 2030 for “all electric load serving entities” [65]. Additionally,
major electric power-generators in California must participate in California’s Greenhouse
Gas Cap-and-Trade Program to control their climate-related pollutants [66].

Among the various motivations for the grid-operators to optimize EV charging, we rec-
ommend programs for rescheduling EV charging focusing on grid congestion and cost (with
respect to the LMP values) or to the emission level (with respect to the MER values) be-
cause they not only reduce marginal costs and emissions but also increase renewable usage.
When renewable energy is maximized, it can induce more charging load at the start of peak
hours with rapidly increasing demand, high grid congestion, and high marginal emission
rates. Maximizing renewable energy in optimal EV charging can bring a substantial benefit
to certain operators subjected to control their RE use; however, it can increase the burden
on controlling grid congestion and emissions. Note that the renewable energy use can be
increased with deployment of energy storage system, though it is more costly to upgrade
grid infrastructure in this way than through controlled EV charging [23].

Assuming that the regional grid operation stays unaffected by the EV charging demand
and rescheduling, we estimate the maximum improvements for the grid operation for about
250 EVs in Tables 3.1 and 3.2. As EV charging operation solutions scale much higher in
the future, however, relative to the goal of California in deploying 5 million zero-emission
vehicles by 2030 [67], the optimal EV charging can bring more benefits to the grid, but the
large demand of charging will clearly affect grid operations, potentially in profound ways
as highlighted by the large-scale simulation studies cited above. Extending this work to
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use growing amounts of real-world data to further evaluations of mass-scale EV charging
optimization for improving the grid performance is the subject of future work.

In addition, we note that the current time-of-use (TOU) rate for EVs provided by PG&E
for residential customers is not perfectly aligned with various goals of grid operation, such as
reducing cost, reducing emissions, and increasing the use of renewable energy. For instance,
on the PG&E “EV-B” plan in April 2021 [68], the energy cost is most expensive during the
peak period at USD 0.56 per kWh from 2:00 p.m. to 9:00 p.m. However, this period may
overlap with some hours with relatively low marginal cost, low marginal emissions, and high
renewable energy around 2:00 p.m. to 4:00 p.m. (shown in Figure 3.1). Under some condi-
tions, grid operators may thus want to vary particularly the start time and also potentially
the end times of peak TOU pricing periods during certain seasons with the potential to more
fully maximize the benefits of EV charge timing to grid operations.

3.5 Future Work

Potential future work on this topic is as follows. First, this analysis does not explore the
impact of shifting EV charging loads for the residential and workplace utility customer bills.
For instance, utility demand charges (peak usage charges applied to commercial customers)
can be impacted for EV-charging facility operators when loads are shifted across time and
space. It is possible that the peak power and demand charges would increase due to a
higher peak power of charging facilities, making the facility operator worse off, while the
energy system operator is made better off. A potential negative effect on the electrical grid
customers must be evaluated and solved, possibly with adjustments to the TOU energy and
power pricing from the utilities.

Second, the impact of optimal EV charging on the electrical grid from a mass-scale level
of implementation is not analyzed here, though several other studies have done this with
simulations of a large EV fleet projected in the future. Utility grid performance can be
affected by shifting the charging loads of a large fleet of EVs, expected in the future where,
for instance, California has a goal of achieving 5 million zero-emission vehicles by 2030 [67].
In future work, the sample of individual EVs can be increased to reflect larger EV populations
in the future. The EV charging can be optimized, and the grid performance can be evaluated
with electrical-grid-operation simulators such as PLEXOS at the transmission level and/or
PyDSS at the distribution level, accounting for additional grid factors such as changes in
generation dispatch and power-quality issues, related to the large amount of load that can
then be shifted on a regional basis.

Third, the analysis estimates the upper bound on the benefits to the electrical grid,
but the lower bound is also important to better understand and advertise an optimal EV
charging program. In other work, we have analyzed cases with current constraints on away-
from-home charging, but in the future we expect EV-charging availability in between the
current levels and the ubiquitous availability of charging assumed here. Further, the various
factors that influence the success rate of optimal EV charging can be analyzed, such as driver
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compliance with the optimal charging schedule, uncertainty in driver response to their future
trip plans, uncertain energy consumption during trips (due to speed, hills/grades, etc.),
uncertain availability of chargers due to driver queuing, the potential impact of “power
split” multi-port chargers, and mechanical or point-of-sale system failures. In future work,
these factors can be parameterized to help further estimate the lower bound of the benefits.
Behavioral surveys and focus groups and analysis of pilot studies on smart charging [69]
can be used to better understand driver behavior and motivations in accepting a proposed
optimal EV-charge-scheduling program. Additional key behavioral factors include driver
adherence to planned departure times, driver propensity to plug in even when charging is
not necessarily needed, and the statistical likelihood of sudden unplanned trips where the
vehicles are unexpectedly disconnected.

3.6 Conclusion

In this research, we estimate the maximum potential gains to electrical-grid operators in
shifting the time and location of charging a sample group of EVs. We fill a gap in the litera-
ture by proposing optimization models that schedule not only the time but also the location
to charge the individual EVs among the locations that they visit. The models are applied to
three objective functions, based on the easily measurable and immediately meaningful values
to the grid operator, including the locational marginal price cost, the greenhouse-gas emis-
sion rate, and the renewable-energy ratio. This work overcomes the limitations of simulating
or aggregating the driving and charging of EVs commonly found in the literature by using
real data on a sample of individual, household-based EVs. Collaborating with an automobile
company, a grid operator, and two grid-services and energy data-analytics companies, this
research uses the driving and charging data of real individual EVs and the electrical grid
data in the San Francisco Bay Area in California.

The results of the analysis shows a greater value in optimizing both the time and the
location of charging EVs (inter-location model) than optimizing only the time of charging
EVs (fixed-location model). However, the fixed-location optimal charging will be easier to
implement in practice due to a simpler data requirement and a higher success rate from less
uncertainty in trip demand and charging-schedule compliance. From the realistic estimation
of the maximum benefits from optimal EV charging, it is recommended that grid operators
consider the use of objective functions to reduce operational costs or marginal emission
rates. These objective functions reduce grid operational costs and greenhouse-gas emissions,
and they also increase renewable-energy usage. We do not recommend the maximization of
renewable energy as a primary objective function as it can induce a higher load at the start of
the evening peak, where renewable-energy generation is still high but where the energy load
is ramping up with high marginal operation costs and emission rates. For the future work,
the impact of shifting the EV-charging loads can be evaluated in terms of the residential
and workplace utility bills for customers and the electrical grid performance. In addition,
the lower bound of the benefits to the electrical grid from the optimal EV charging can be
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Table 3.3: Comprehensive Comparison of Optimization Models and Objective Functions on
their Economic and Environmental Performance

Model Optimization
Performance Metric

Total LMP cost
(US dollars)

Total MER
(tons/kWh·kWh)6

Total RE
(kWh)

Fixed
Location

None (Actual Data) 1,892,127.3 22,851.2 18,540.4

LMP Minimized
1,583,195.0
(-16.3%)

19,619.4
(-14.1%)

21,458.7
(15.7%)

RE Maximized
1,928,675.7
(1.9%)

22,931.8
(0.4%)

25,156.9
(35.7%)

MER Minimized
1,633,163.7
(-13.7%)

18,822.2
(-17.6%)

21,354.1
(15.2%)

Inter
-Location

None (Actual Data) 1,211,738.6 14,492.2 11,987.8

LMP Minimized
762,861.9
(-37.0%)

10,051.2
(-30.6%)

17,871.8
(49.1%)

RE Maximized
1,146,037.2
(-5.4%)

12,728.3
(-12.2%)

24,745.9
(106.4%)

MER Minimized
839,052.8
(-30.8%)

8,781.6
(-39.4%)

17,277.6
(44.1%)

estimated.

Appendix

Table 3.3 presents the detailed results of the fixed-location and inter-location models that
optimize three objective functions, corresponding to Figure 3.8. Note that in the table, the
performance metrics are the total resulting LMP cost, MER, and RE delivered. This result
calculates the total values for optimizing the charging of approximately 250 EVs after a data
cleaning process. To find the results per vehicle-hour, divide the results by the total parking
hours of EVs in the data, which is 93,576 veh-hrs for the fixed-location results and 63,411
veh-hrs for the inter-location results.

6The MER parameter CMER(t) is given as rate in tons/kWh, which indicates how much tons of emission
will be produced per kWh when an additional load is given to the system. We calculate the ‘total MER’ as the
MER value multiplied by the charging energy in kWh. The limitation of this approach is the underestimation
of marginal emission, as the MER value may increase as more load is given to the system.
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Chapter 4

Flow-Aware Platoon Formation of
Connected Automated Vehicles in a
Mixed Traffic with Human-driven
Vehicles

This chapter is based on the previously published article: Woo, S., & Skabardonis, A.
(2021). Flow-aware platoon formation of Connected Automated Vehicles in a mixed traf-
fic with human-driven vehicles. Transportation Research. Part C, Emerging Technologies,
133(103442), 103442, https://doi.org/10.1016/j.trc.2021.103442.

Connected Automated Vehicles (CAVs) bring promise of increasing traffic capacity and en-
ergy efficiency by forming platoons with short headways on the road. However at low CAV
penetration, the capacity gain will be small because the CAVs that randomly enter the road
will be sparsely distributed, diminishing the probability of forming long platoons. Many
researchers propose to solve this issue by platoon organization strategies, where the CAVs
search for other CAVs on the road and change lanes if necessary to form longer platoons.
However, the current literature does not analyze a potential risk of platoon organization in
disrupting the flow and reducing the capacity by inducing more lane changes. In this re-
search, we use driving model of Cooperative Adaptive Cruise Control (CACC) vehicles and
human-driven vehicles that are validated with field experiments and find that platoon orga-
nization can indeed drop the capacity with more lane changes. But when the traffic demand
is well below capacity, platoon organization forms longer CAV platoons without reducing
the flow. Based on this finding, we develop the Flow-Aware platoon organization strategy,
where the CAVs perform platoon organization conditionally on the local traffic state, i.e., a
low flow and a high speed. We simulate the Flow-Aware platoon organization on a realistic
freeway network and show that the CAVs successfully form longer platoons, while ensuring
a maximal traffic flow.

https://doi.org/10.1016/j.trc.2021.103442
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4.1 Introduction

Cooperative Adaptive Cruise Control (CACC) is a vehicle technology that brings promise
of greater road capacities and improved energy efficiency without investing on the road
infrastructure, such as additional lanes or ramp metering controllers. Vehicles equipped
with this technology are henceforth termed Connected Automated Vehicles, or CAVs for
short. These vehicles monitor their speeds and gaps relative to their lead vehicles, and
automatically adjust their motions in response. Moreover, CAVs can communicate with
others of their kind nearby in real time and at high frequencies. With this communication,
vehicle accelerations, lane-change maneuvers and other driving decisions can be shared across
vehicles without the perception errors and reaction times associated with human drivers.
These capabilities enable smaller vehicle headways than were previously possible (and thus
larger road capacities) [14] and smaller air drag, improving energy efficiency [15], [16], [31].
Note that the present research focuses on freeway setting to study the traffic impact of CAVs
forming platoons without interruptions, such as signalized intersections.

: CAV : Non-CAV

: In platoon

Figure 4.1: Challenges of CAVs at Low Penetration

Capacity gains are likely to be small, however, when the market penetration of CAVs is
low in the early stage of implementation [13], [14], [70]. The sparse distribution of CAVs that
randomly enter the road diminishes the probability of a CAV immediately following another
of its kind, as shown in Figure 4.1. This introduces challenges when trying to form long
platoons of CAVs so as to diminish the average headway in a traffic stream. To overcome
this challenge, the CAVs can maneuver to organize the relative positions to each other on
the road. The CAVs may have non-CAVs between them in the same lane or the CAVs may
be in different lanes. A CAV can maneuver to follow another by accelerating, decelerating,
or changing lanes. Then the gap between the consecutive CAVs must be reduced to form
a platoon. In this present research, a term platoon organization is defined to describe the
strategies for CAVs to maneuver on the road to form longer platoons.

Platoon organization has two potential impacts to the traffic. On the one hand, it can
increase the number of CAVs in platoon, reducing the headways within the platoons and
increasing the traffic capacity. On the other hand, it can induce more lane changes on the
road that may disrupt the roadway flow [28]–[31]. In other words, it is possible to negate the
gain in capacity from longer platoons by the flow disruption from the induced lane changes.
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If platoon organization worsens capacity, it will be unfair for the society to suffer a lower
capacity, while the drivers in CAVs enjoy the platooning benefits, such as fuel efficiency and
driver comfort [15], [16], [31]. Unfortunately, no literature has analyzed the traffic capacity
under platoon organization, considering the impact of lane changes.

Many researchers propose to promote CAVs to form longer platoons with dedicated lanes
for CAVs, where only CAVs are allowed to travel in the designated lanes and increase the
probability of forming a platoon. However, their results on capacity vary. Some argue that
traffic capacity increases with platoon organization, but do not consider the realistic impact
of lane changes [26], [27]. Ghiasi et al [26] analytically calculate that the capacity increases
with dedicated lanes for CAVs, using a Markov Chain model. However, they assume that
the CAVs enter the road already formed in longer platoons on the dedicated lanes and do
not describe the impact of lane changes in capacity analysis. Hua et al [27] use Cellular
Automata model to show that the traffic capacity increases for all levels of CAV penetration
with dedicated lanes for CAVs, however the lane change model is simple and does not model
its flow disruption.

Some do not model the disruptive impact of lane changes, but still show that the capacity
can drop at low CAV penetration because the dedicated lanes for CAVs are under-saturated
[71]–[74]. Talebpour et al [71] show that the throughput is smaller at low CAV penetration
but higher at high CAV penetration, if the CAVs optionally use the dedicated lanes for
CAVs. However, they use a game-theory based lane change model, which is to be calibrated
in future research [75]. Chen et al [72] analytically calculate that the capacity decreases
at low penetration with dedicated lanes for CAVs, but capacity increases if the dedicated
lanes are optional for the CAVs. They use a formulation derived from a single-lane capacity,
recommending a future study to consider the effect of lane changes in the formulation. Ye et
al [73] show that throughput decreases in free-flow but increases in congestion at low CAV
penetration, though their model does not describe the realistic impact of lane changes, such
as the stochastic reaction of vehicles upstream of a lane-changing vehicle. Ma et al [74] show
that the dedicated lanes for CAVs decrease capacity at low CAV penetration but increases
it over 40% CAV penetration. However, they use modified Cellular Automata with a simple
assumption for the CAVs to change lanes in a ’cooperative and instantaneous’ manner.

Some model the impact of lane changes realistically, however do not analyze the traffic
capacity under platoon organization [76], [77]. Zhong et al [76] use a CACC model (E-IDM)
and a lane change model (MOBIL) that describe the flow disruption of lane changes. Xiao
et al [77] implement an extensive model of lane change behavior [78], [79] and simulate a
mixed traffic of CAVs and non-CAVs on a freeway network. However, the analysis on traffic
capacity is missing. At low CAV penetration, both studies report poorer traffic performance
with dedicated lanes for CAVs because those lanes are under-saturated. The dedicated lanes
will be more saturated at higher CAV penetration, however both studies only use the same
demand for all CAV penetration levels and do not analyze the traffic flowing at capacity at
high CAV penetration. Note that Xiao et al [77] observed speed reduction in the dedicated
lanes for CAVs due to the lane changes to enter and exit the dedicated lanes.

To the best of our knowledge, it is still unclear if and how platoon organization increases
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or decreases the traffic capacity in a mixed traffic of CAVs and non-CAVs. To answer this
question, we must analyze the traffic capacity, considering the impact of lane changes and
using a platoon organization strategy that can saturate all lanes. Finally, it is necessary to
design an operation strategy for CAVs to form longer platoons, while ensuring a maximal
traffic flow.

In this chapter, we contribute to the current literature by revealing that platoon organi-
zation can reduce capacity and create congestion, by inducing lane changes that disrupt the
flow. We use a driving model for CACC vehicle that is empirically verified from the real world
data and conduct a sensitivity analysis on platoon organization at various traffic demands.
We learn that when the demand is below capacity, platoon organization forms longer CAV
platoons but does not reduce the flow. Based on this finding, we propose the Flow-Aware
strategy of platoon organization that forms longer CAV platoons and ensures maximal traffic
flow without a capacity drop. We validate the Flow-Aware strategy by simulating it on a
realistic freeway network.

This chapter is structured as follows. In Section 4.2, we describe the microscopic traffic
model to evaluate the traffic performance that considers the flow disruption of lane changes.
We also propose a sample strategy of platoon organization that fully saturates all lanes at
capacity. In Section 4.3, we present a preliminary study to validate that platoon organization
can drop the traffic capacity with more lane changes. The main experiments include the
sensitivity analysis on platoon organization at various flow levels and the validation of the
performance of the Flow-Aware Platoon organization strategy. In Section 4.4, we describe
the sensitivity analysis method, propose the Flow-Aware platoon organization strategy, and
explain how we validate the Flow-Aware strategy on a freeway network. In Section 4.5,
we present the results of the sensitivity analysis and show that the Flow-Aware strategy
produces longer platoons without flow disruption. In Section 4.6, we highlight the findings
and discuss the shortcomings of this chapter. Supplementary materials are given in the
Appendix.

4.2 Research Approach

In this work, we will conduct experiments to evaluate the impact of CAVs under platoon
organization on traffic capacity and develop CAV operation strategy that forms longer pla-
toons and ensures a maximal traffic flow. Although the CAVs are not readily available in
real settings, their driving behavior has been modeled via small scale experiments [80]–[83].
We will use the driving models to simulate the mixed traffic of CAVs and non-CAVs. The
following describes four features of a traffic model that this research requires to emulate pla-
toon organization in a mixed traffic with CAVs and non-CAVs. The traffic models from the
current literature are classified based on the four features and we will select one model to be
used in the present study. In addition, we develop a sample strategy of platoon organization
that saturates all lanes at capacity at all CAV penetration rates, eliminating the factor on
capacity drop from unsaturated lanes.
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Table 4.1: Literature on Microscopic Simulation of Mixed Traffic

Publications
Mixed Traffic of
CAVs and Non-CAVs

Microscopic
Model

Lane Change
Model

Calibration with
CAV Experiments

[26], [72], [86], [87]X

[88], [89] X X

[90] X X X

[13], [79] X X X X

Microscopic Traffic Model

We need four features in a traffic model to emulate platoon organization. First, the model
needs to describe mixed traffic composed of CAVs and non-CAVs at various penetrations
of CAVs. Second, the model needs to be microscopic so as to depict the detailed operation
of platoon organization, such as the number of CAVs in platoon. Third, the model needs
to describe the impact of lane changes on roadway flow. Fourth, the model needs to be
calibrated with experiments involving CAVs.

The current literature on traffic models for the mixed traffic is organized according to
the four features in Table 4.1. Among them, the model in [13], [79] for mixed traffic satisfies
the model requirements of the present study. Note that this model was calibrated for human
and automated driving behaviors in [80], [84] and the lane change model for human drivers
was calibrated in [85]. This present work uses the model in [13] as it is an improved model
from [79]. Table 4.2 provides a list of parameters to be used in simulations from the model
in [13], used in the current study. In this chapter, we simulate the traffic using Aimsun with
external behavior enabled by MicroSDK.

Note that in this model, simulated drivers in CAVs change lanes manually because we
assume the CAVs are equipped with CACC, which automates the car-following maneuvers
but not the lane-change maneuvers. The model assumes that CAVs have a weaker motivation
for discretionary lane changes than human drivers do because the CAVs prefer to stay in
a platoon than to seek higher speeds. Note that when the brake is applied manually, the
automatic car-following mode of a CAV is deactivated immediately and reverts to the manual
driving mode. Additional description of the model is given in the Appendix.

Platoon Organization Strategy

We develop a platoon organization strategy called pseudo dedicated (PD) lane, to avoid
under-saturating a particular lane at high flow, which occurs with dedicated lanes for CAVs
at low CAV penetration. Similar strategies have been proposed in the literature that allow
both CAVs and non-CAVs on particular lanes [71], [72]. Figure 4.2 explains the PD lane
strategy in comparison to the dedicated lane for CAVs.
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Table 4.2: Microscopic Driving Parameters

Parameters Non-CAV CAV

Average Reaction Time 1.2s 0.4s

Average Headway 1.25s 0.6 - 1.1s [80]

Minimum Space Gap 1.5m 1.5m

Average Maximum Acceleration -4m/s2 -4m/s2

Average Maximum Deceleration 1.5m/s2 1.5m/s2

Vehicle Length 4m 4m

Average of
Maximum Desired Speed

110km/h 110km/h

Inter-platoon gap NA 1.5s

Maximum Number of Vehicles
in a Platoon

NA 10

The left figure shows the dedicated lane for CAVs, where only CAVs are allowed to
travel on a dedicated lane. At low penetration, the dedicated lane will not be saturated
and worsen capacity.1 To isolate the effect of inefficient lanes in capacity estimation, the
dedicated lane strategy is not used in this present study. In the pseudo dedicated (PD) lane
strategy shown in the right figure, CAVs are motivated to maneuver into the PD lane for
platoon organization, but non-CAVs are not banned from it. As the penetration increases,
non-CAVs will naturally move away from the PD lane as more CAVs start to crowd it and
travel slower than other lanes. We assume that due to the higher probability of forming long
platoons, the CAVs have a stronger motivation to stay in the PD lane than the non-CAVs.
This strategy thus guards against under-utilization of the lane at low market penetration of
CAVs.

Throughout this study, we define baseline capacity, as the traffic capacity of a given
penetration rate of CAVs that do not perform platoon organization. We assume that a CAV
can change a lane when it is the leader of a platoon. If a follower in a platoon were to change
a lane, it must brake and split from its present platoon before the lane change. When a
CAV immediately follows another CAV, it automatically starts to form a platoon. Note that
we acknowledge a potential error in simulating the platoon organization with an assumption
that the CAVs change lanes manually by the human drivers. Future work to improve this
issue is described in Section 4.6 Discussion.

1The dedicated lanes for CAVs also pose an equity issue because a portion of public road is allocated
only to people who can afford expensive CAVs [76].
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4.3 Preliminary Study: Capacity Drop with Platoon

Organization

This section describes a preliminary study to test if platoon organization can drop capacity
by inducing lane changes to disrupt the flow. We simulate the traffic on a homogeneous
road segment, comparing the capacity with and without platoon organization. The results
validate that when the CAVs change lanes to organize platoons, the traffic flow is reduced
and the bottleneck capacity drops.

Detector

5km 1km 2km

Origin
link

Control
Section 

Figure 4.3: Homogeneous Road Segment
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This simulation experiment uses a 3-lane homogeneous road segment; refer to Figure 4.3.
After the first stretch of 5km, CAVs execute the PD lane strategy in the control section of
1km. As the PD lane strategy allows both CAVs and non-CAVs, the PD lane is not regulated
by infrastructural measures (like egress and ingress points) but by the lane targeting behavior
of the CAVs. In the control section, the CAVs in short platoons change lanes to the PD lane
to form longer platoons. CAV penetration levels are tested from 0 to 100% at increments
of 25%. Vehicles are generated according to a Poisson process of a traffic demand rate and
vehicle types are decided with Bernoulli trials with the probability of CAV type as the CAV
penetration.

The simulation procedure is as follows. First, the baseline capacity is estimated for each
CAV penetration level without platoon organization. To estimate the baseline capacity, the
traffic demand to the origin link as shown in Figure 4.3 is increased until a queue forms in
the link. The baseline capacity is measured as the maximum sustained flow discharged from
the queue over a 60-minute period, at the flow detector shown in Figure 4.3. Second, the
capacity of a bottleneck that forms in the control section under the platoon organization
strategy is estimated for each penetration level of CAVs. For one hour, an input flow that
produces the baseline capacity flow is used. The first 20 minutes is used as a warm-up period
to create a stationary flow. In the next 40 minutes, the PD lane strategy is implemented
in the control section and a queue forms in the control section. The bottleneck capacity is
measured after the warm-up period for the 40-minute period as the maximum sustained flow
discharged from the queue, measured at the flow detector.

Figure 4.4 shows the capacity with and without platoon organization as functions of
CAV penetration. The baseline capacity without platoon organization is shown in a black
solid line, which increases slowly at low CAV penetration up to 50% and increases rapidly
at higher penetration. We see that platoon organization worsens the capacity, as shown
in a red dotted line. At 25% CAV penetration, the PD lane strategy produces a capacity
(around 1800 vph/lane) even less than the baseline capacity at 0% penetration (around
2000 vph/lane). This means that capacity with CAVs under platoon organization can be
worse than the capacity with no CAVs. At 50% CAV penetration, the PD lane results in a
capacity around 2000 vph/lane, similar to the baseline capacity at 0% penetration. In other
words, the PD lane can cancel the capacity improvement from having CAVs comprise half
the vehicles on the road.

This negative effect of platoon organization on traffic capacity can be interpreted with
queuing theory, which tells us that the output rate of a closed system is bounded by its
input rate regardless of the dynamics in the system. We can define our closed system as
the homogeneous road segment in Fig. 4.3, with one input and one output. Applying the
theory to our experiment, it is impossible for the CAVs to increase the discharge flow (i.e.,
output rate) further than the input flow of baseline capacity (i.e., input rate), no matter
how they maneuver on the road (i.e., platoon organization). Therefore, platoon organization
cannot improve the capacity further than the baseline capacity. This must be true for any
design of the closed system, whether it is a homogeneous road segment or a freeway network
with multiple entrances and exits. Furthermore, the theory explains the capacity drop under



CHAPTER 4. FLOW-AWARE PLATOON FORMATION OF CONNECTED
AUTOMATED VEHICLES 74

1500

1750

2000

2250

2500

2750

3000

3250

3500

0 25 50 75 100

C
ap

ac
ity

 (v
ph

/la
ne

)

CAV Penetration (%)

Baseline (No Platoon Organization)
Platoon Organization (PD Lane)

Figure 4.4: Capacity for Varying Market Penetrations of CAVs

platoon organization. When a system is at capacity, the output rate is bounded by the service
rate. If the service rate decreases, the output rate decreases. Applying to our experiment, the
platoon organization reduces the service rate by inducing more lane changes and inefficiently
using the road. Therefore, the discharge flow (i.e., output rate) decreases. There is a need to
prevent capacity drop under a naive implementation of platoon organization but still provide
platooning benefits to the CAVs.

4.4 Methodology

In this section, we describe the methodology of the two following experiments. We first
conduct a sensitivity analysis on platoon organization with various levels of traffic demand,
which provides the evidence for proposing the Flow-Aware strategy of platoon organization.
The Flow-Aware strategy of platoon organization ensures a maximal traffic flow and forms
longer CAV platoons. Next, we validate the performance of the Flow-Aware strategy on a
simulated freeway network.

Sensitivity Analysis on Traffic Demand

The sensitivity analysis explores how platoon organization impacts the traffic performance
under various levels of traffic demands. We use the homogeneous road segment in Fig. 4.3,
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where the CAV penetration is fixed at 50% and input demands are tested at 1000, 1500,
2000, and 2500 vph/lane. The traffic is simulated for an hour. For the first 20 minutes, no
platoon organization is implemented as a warm-up period. For the next 40 minutes, the PD
lane strategy is be implemented in the control section. The simulation results are compared
in terms of the average number of lane changes, the average platoon length, the platooning
probability, and the discharge flow, which are all measured after the first 20 minutes.

We define the platoon length, Li(τ), as the number of CAVs in a platoon that the i-th
CAV is a member of at time τ . The average platoon length, L̄, is defined as the following:

L̄ =

∑NCAV

i=1 max
τ
{Li(τ)}

NCAV

, (4.1)

where NCAV is the total number of CAVs that travel the network. The average platoon
length computes the average of the maximum platoon lengths experienced by individual
CAVs. Note that a CAV has Li(τ) = 1 if it is not connected to any other CAVs at time τ .

We also define the platooning probability, PP, as the probability that a CAV is ever in a
platoon with other CAVs as the following:

PP = P(max
τ
{Li(τ)} > 1), ∀i ∈ [1, NCAV]. (4.2)

We calculate the average number of lane changes as the total number of lane changes that
occur in the network, divided by the total count of vehicles including CAVs and non-CAVs.
The discharge flow is measured at the flow detector.

Flow-Aware Platoon Organization

We propose the Flow-Aware strategy of platoon organization that forms longer platoons of
CAVs but ensures maximal traffic flow. The main idea is for the CAVs to execute platoon
organization conditionally on the traffic state. Since the traffic demand may be difficult to
monitor in practice, we use speed and count to estimate the traffic condition and determine
whether platoon organization is allowed. We do not enforce a specific location or time for
the CAVs to change lanes for platoon organization, which is often how the ingress and egress
points of special purpose lanes are operated. Instead, we determine if the traffic can absorb
the disturbance from lane changes, based on the constant thresholds of flow and speed as ρq
(vph/lane) and ρv (km/hr), respectively.

Under the Flow-Aware strategy, a CAV gathers the average flow and speed measurements
from the detectors nearby, as q̄ and v̄, respectively. The CAV evaluates the condition in
Equation (4.3) to check if the flow measure is lower than the threshold and the speed measure
is higher than the threshold.

{q̄ < ρq} ∧ {v̄ > ρv}. (4.3)
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If the condition is satisfied, we assume that the traffic can ‘handle’ disturbances like lane
changes and the CAV performs platoon organization, such as the PD lane strategy.

Note that when the threshold values, ρq and ρv, are poorly calibrated, the Flow-Aware
strategy may induce lane changes in traffic with high demand and create unnecessary con-
gestion. As the CAV penetration increases, the flow threshold, ρq, can be increased because
the capacity improves with more CAVs and traffic can absorb more shock at a given demand
level. Also the threshold values must be calibrated for different road networks as their ge-
ometries and capacities vary. For the freeway network studied in this chapter, we calibrated
the values of ρq and ρv for each CAV penetration rate by trial and error. We have reduced ρq
and increased ρv so that an increase of lane changes does not decrease the network discharge
flow significantly.

Validation of Flow-Aware Platoon Organization on Freeway

Calvin Road (PM 290)

Stockton Boulevard (PM 291)
Mack Road (PM 292)

Florin Road (PM 294)

47th Avenue (PM 295)
MLK Jr Boulevard (PM 295)
Fruitridge Road (PM 296)

12th Avenue (PM 297)

Traffic Direction

Elk Grove Boulevard
(PM 287)

Laguna Boulevard
(PM 288)

Sheldon Road (PM 289)

Figure 4.5: Simulated State Route 99 in Sacramento, California (PM: Post-mile)

We test the Flow-Aware platoon organization strategy proposed in Section 4.4 by sim-
ulating it on a realistic freeway network and evaluating if the strategy ensures a maximal
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traffic flow and forms longer CAV platoons. We use the freeway network shown in Fig. 4.5.
This freeway network is the State Route 99 in Sacramento, California, covering the North-
bound 10-mile (approximately 16-km) corridor. It starts at Elk Grove Boulevard and ends
at 12th Avenue, including 16 on-ramps and 11 off-ramps. The network originally includes
High-Occupancy Vehicle lanes, however we exclude them in this chapter to isolate their effect
on the capacity analysis. The traffic is simulated from 5AM to 9AM as the morning peak
typically lasts from 6:30AM to 9AM. Bottlenecks recurrently form in the network, including
one downstream of Elk Grove Boulevard due to high traffic demand. The free flow speed is
around 105km/h for the freeway.

We assume that on the freeway network, detectors are installed around 50 meters up-
stream of all on-ramps and off-ramps, as well as around 50 meters downstream of all on-
ramps. The detectors aggregate data in 5-minute intervals and broadcast the latest infor-
mation on the vehicle count and speed. The CAVs can gather information from detectors
located within 1 to 2km range. This allows the CAVs under the Flow-Aware strategy to
evaluate the local traffic condition with Equation (4.3) and perform platoon organization
accordingly. We also assume detectors to be installed at the end of each exit of the freeway,
including the off-ramps and the main lanes after 12th Avenue, to collect the total discharge
flow of the freeway network.

We test the CAV penetration from 0 to 100% at increments of 20%. At each entrance
to the freeway, vehicles are generated according to a Poisson process. At each exit of the
freeway, vehicles depart the freeway as Bernoulli trials with a departure rate depending on
the exit. We simulate three cases - the traffic without platoon organization as a baseline,
the traffic with the PD lane strategy from Section 4.2 with no consideration to the traffic
condition, and the traffic with the Flow-Aware strategy from Section 4.5 with PD lane.

There is no rigidly defined sections of ingress and egress to the PD lane because the
PD lane allows both CAVs and non-CAVs. In the original PD lane strategy, the CAVs
consider the leftmost lane of entire freeway as the PD lane. This strategy is an example of
a naive platooning operation of the CAVs. In the Flow-Aware PD lane strategy, the traffic
condition in Equation (4.3) flexibly limits the execution of platooning maneuvers of CAVs.
This strategy is an example of a platooning operation that controls the CAVs with awareness
to the traffic flow.

The simulation procedure is as follows. First, we find the baseline demand for each
CAV penetration level without platoon organization. We increase the network demand by
scaling it with a constant factor, which we call demand scale, until the speed contour shows
the recurrent bottlenecks of the freeway network. Second, we use the baseline demand
to simulate the network traffic under the PD lane strategy and the Flow-Aware PD lane
strategy, at each CAV penetration rate. The results are compared in terms of the network
discharge flow, average number of lane changes, and average platoon length. The network
discharge flow is measured as the sum of discharge flows measured at the detectors on the
end of each freeway exit. Note that we analyze the results for each CAV penetration rate
(not between different penetration rates), because the baseline traffic is simulated at different
demand scale for each penetration rate.
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4.5 Results

In this section, we find that at a low demand the CAVs can form longer platoons without
reducing the discharge flow under platoon organization. Therefore, the Flow-Aware strategy
conditions the CAVs to perform platoon organization only under a low demand condition
so that the output flow does not drop with the induced lane changes. We confirm the
performance of the Flow-Aware strategy of platoon organization by simulating the traffic
on a realistic freeway network. We show that the Flow-Aware strategy ensures a maximal
traffic flow and enhance CAV platooning performance.

Sensitivity Analysis on Traffic Demand

Table 4.3: Platoon Organization at Various Traffic Demands (Homogeneous Road in Fig.
4.3, CAV Penetration of 50%)

Traffic
Demand
(vph/lane)

Average Number
of Lane Changes
(count/veh) 2

Average
Platoon Length,
L̄, (CAV count)

Platooning
Probability,
PP

3

Discharge Flow
(vph/lane)

B PO B PO B PO QB QPO ∆ 4

1000 0.05 0.49 2.6 5.0 0.73 0.89 1006.3 1006.7 0.04%

1500 0.07 0.51 3.0 5.1 0.74 0.89 1483.4 1478.3 -0.34%

2000 0.05 0.53 2.8 5.1 0.74 0.89 1961.7 1924.6 -1.89%

2500 0.04 0.56 3.3 5.4 0.78 0.91 2260.6 2045.0 -9.54%

B: Baseline, PO: Platoon Organization, QB: Baseline discharge flow, QPO: Discharge flow
under PO

We analyze the traffic performance at various traffic demands under the PD lane strategy
on a homogeneous road segment at CAV penetration of 50%. Table 4.3 presents the average
numbers of lane changes, average platoon lengths, platooning probability, and the discharge
flows at various traffic demands. Note that without platoon organization, a demand of
2,000 vph/lane results in a high but free flow. Without platoon organization, a demand

2Note that the number of lane changes increase both for CAVs and non-CAVs.
3Note that the platooning probability PP around 0.75 in the baseline makes sense for the baseline traffic

of 50% CAV penetration. Here is a simple explanation. Denote the CAV penetration rate as PCAV. Then
the platooning probability, Pp can be expressed as the probability that given the subject vehicle is a CAV,
its leader and/or follower vehicle is a CAV, i.e., Pp = 1 − (1 − PCAV)2. For PCAV = 0.5, Pp = 0.75. The
simulation well approximates this probability.

4Note that ∆ =
QQO −QB

QB
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Figure 4.6: Speed Contours (Freeway Network in Fig. 4.5, CAV Penetration of 40%): the
PD lane strategy reduces the speed significantly from the baseline, whereas the Flow-Aware
strategy with PD lane does not.

at 2,500 vph/lane results in the capacity flow. We see that at all demand levels, platoon
organization induces more lane changes (with higher average numbers of lane changes in the
third column) and enhances platooning performance (with higher average platoon lengths in
the fifth column and higher platooning probability in the seventh column). However, platoon
organization affects the discharge flow very differently depending on the traffic demand; refer
to the last column of Table 4.3.

At low demands (1,000 to 1,500 vph/lane), more lane changes under platoon organization
do not change the discharge flow significantly. At moderately high demand (2,000 vph/lane),
the lane changes under platoon organization breaks down the traffic and reduces the discharge
flow by 1.89%. At a high demand (2,5000 vph/lane), the discharge flow reduces significantly
by 9.5%. Therefore, platoon organization can be used when there is low demand, where the
disturbance from lane changes can be absorbed easily. At a moderately high demand (2,000
vph/lane), platoon organization can also break down the traffic and cause a bottleneck. At
a high demand, platoon organization is ill-advised. The Flow-Aware platoon organization is
designed with this mechanism by estimating the traffic demand based on speed and count
measurements and elongating the platoon lengths without flow disruption.

Flow-Aware Platoon Organization on a Freeway Network

We emulate the traffic on a freeway network to validate the strategy of Flow-Aware platoon
organization. We assume that the CAVs perform PD lane strategy when the condition in
Equation (4.3) is met at any post-mile of the freeway. We first validate the traffic simulation
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Figure 4.7: Ratio of CAV Flow to Total Flow (Freeway Network in Fig. 4.5, CAV Penetration
of 40%): the PD lane strategy distributes the CAVs to the leftmost PD lane regardless of
the traffic condition, whereas the Flow-Aware strategy with PD lane only does so in a free
flow.

with Fig. 4.6, which shows three speed contours for the baseline, the PD lane strategy, and the
Flow-Aware PD lane strategy at 40% CAV penetration. The simulation time is on the x-axis
and space on the y-axis with detector index of an increasing number downstream. We observe
that bottlenecks form in the baseline due to traffic demand larger than the network capacity.
The PD lane strategy induces lane changes of CAVs regardless of the traffic condition and
reduces speed significantly compared to the baseline. However, the Flow-Aware PD lane
strategy results in a speed contour very similar to the baseline, indicating that the speed is
not reduced significantly due to the platoon organization.

We also observe the distribution of CAVs across the lanes under platoon organization
with Fig. 4.7 to validate the simulation further. The figure describes the traffic with 40%
CAVs in the section immediately upstream of the second on-ramp at Florin Road (shown
in Fig. 4.5) or around the detector index 22 (shown in Fig. 4.6), where a bottleneck queue
reduces the speed significantly. In Fig. 4.7, the x-axis is the simulation time, the y-axes for
the top figures show the CAV flow ratio, i.e., the ratio of the flow of CAVs to the flow of all
vehicle types, and the y-axes for the bottom figures show the speed per lane. The lanes are
differentiated by the shade, where the lightest line corresponds to the leftmost (or PD) lane.
The baseline, the PD lane strategy, and the Flow-Aware PD lane strategy are shown on the
left, the center, and the right, respectively.

The baseline results on the left column show that when this section is in a bottleneck
queue from around 80 minutes to 170 minutes, the CAVs are more concentrated on the right
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Figure 4.8: Increase of Lane Changes and Platoon Lengths without Flow Disruption under
Flow-Aware Platoon Organization
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lanes than the left lanes. The CAVs make up about 80% in the rightmost lane, whereas they
make up about 20% in the leftmost lane. This is possibly because the human driven vehicles
have moved toward the leftmost lanes to avoid the conflict with the on-ramp merging flow.

The results under PD lane strategy on the center column show an opposite distribution
of CAVs across lanes to the baseline results. The CAVs are highly concentrated in the
leftmost PD lane all throughout the simulation. With the naive implementation of the PD
lane strategy, the CAVs join the PD lane regardless of the traffic condition. This cause a
longer duration of congestion.

The results under the flow-aware PD on the right column are interesting, as the distribu-
tion of CAVs are similar to the PD lane during free flow, but similar to the baseline during
congestion. During free flow (when speed is around 100km/h), the CAVs concentrate on the
leftmost PD lane as the traffic condition in Equation (4.3) is met and their maneuvers do
not disrupt the flow. During congestion (from around 80 minutes to 170 minutes), the CAVs
refrain from platoon organization because the condition in Equation (4.3) is not satisfied.
The CAVs concentrate higher in the right lanes like in the baseline case. Because of the
restricted lane changes to the PD lane under congestion, the queue is dissipated at a similar
time to the baseline.

We evaluate the traffic performance under the Flow-Aware platoon organization in com-
parison to the baseline and the PD lane strategy with Fig. 4.8. The detailed values for
the figure are found in Table. 4.4 in the Appendix Section 4.6. Three figures present the
average number of lane changes, average platoon length, and the network discharge flow, as
functions of CAV penetration rates. At each penetration rate, the solid black bar shows the
baseline result, the blue dotted bar shows the PD lane result with no condition on traffic,
and the red dashed bar shows the result of Flow-Aware strategy with PD lane. Note that
there is no result for the PD lane strategy and the Flow-Aware PD lane strategy for 0% and
100% CAV penetration rates because no CAV needs to be organized for longer platoons.
The average platoon length is not applicable at 0% CAV penetration. The demand scales
are 100%, 100%, 110%, 117%, 125%, and 127% for CAV penetration rates of 0%, 20%, 40%,
60%, 80%, and 100%, respectively.

The top figure in Fig. 4.8 shows that more lane changes are induced under both PD lane
strategy and the Flow-Aware PD lane strategy, compared to the baseline. The PD lane
strategy naively induces more lane changes than the Flow-Aware strategy, without checking
on the flow conditions. The middle figure in Fig. 4.8 shows the PD lane strategy increases the
platoon length the most, but the Flow-Aware PD lane strategy also significantly increases
the average platoon length (by 8 to 20% as shown in Table. 4.4).

The bottom figure in Fig. 4.8 shows the network discharge flow. Compared to the baseline,
the PD lane strategy significantly reduces the network flow (up to 7% at 80% as shown in
Table. 4.4). However, the Flow-Aware PD lane strategy does not decrease the network flow
significantly (only up to 0.1% as shown in Table. 4.4). The Flow-Aware PD lane strategy
successfully forms longer platoons while ensuring the maximum level of traffic flow. In
other words, the CAVs can form longer platoons without trading off the level of traffic flow.
Agreeing with the preliminary analysis in Section 4.3, platoon organization does increase the
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network flow further than the baseline.
Note that the network discharge flow in the baseline is lower at 100% than at 80%. Under

the current simulation settings, the CAVs form and remain in a platoon if possible. The
preference of CAV drivers to choose between forming a platoon and traveling in a faster lane
is not well modeled or calibrated in this study; please refer to future work in Section 4.6)
Discussion. At full CAV penetration, the CAVs form platoons soon after entering from the
on-ramps because they find other CAVs immediately and stay in platoon on the right main
lanes. So the highly dense traffic on the right lanes create conflicts with other merging flows
downstream, resulting in a lower discharge flow than 80% CAV penetration. This issue is
out of scope for the current study, as we compare the baseline at each CAV penetration rate,
not across different penetration rates. However, please refer to [91] for further investigation
on the need for a merging assistance system for a mixed traffic with CAVs and non-CAVs.

4.6 Discussion

In this chapter, we examine the potential problem of disrupting the traffic flow and causing
unnecessary congestion with a naive platooning operation of CAVs. At low penetration, the
CAVs will not deliver a large gain in the traffic capacity and the fuel economy because they
are likely to form only few, short platoons. The CAVs can operate under a platoon organiza-
tion strategy, where they can maneuver to follow other CAVs on the road by changing lanes
and form longer platoons. However, a poorly designed strategy of platoon organization can
deteriorate the traffic capacity by inducing lane changes that disrupt the flow. We explore
this issue by implementing the realistic driving models of CACC and human-driven vehicles,
which are validated by field experiments and model the disruptive effects of lane changes.
The key findings from this research are as below.

• CAVs can form longer platoons by platoon organization, but may induce more lane
changes on the road. At low traffic demand, the induced lane changes do not affect the
traffic performance significantly as the traffic flows below capacity. However at high
traffic demand, the induced lane changes can drop the capacity and create unnecessary
traffic congestion.

• We propose the Flow-Aware strategy of platoon organization as a solution to enhance
CAV platooning without degrading the traffic performance. Under the strategy, we
estimate if the traffic can absorb the disturbances from additional lane changes by
measuring the local flow and speed. If flow is below and speed is above the given
thresholds, the CAVs execute platoon organization. If not, the CAVs refrain from pla-
toon organization and avoid traffic disruption. We simulate the Flow-Aware strategy of
platoon organization on a realistic freeway network (State Route 99 in California) and
show that CAVs under this strategy indeed form longer platoons with no disruption
to the traffic flow.
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• The traffic capacity cannot increase further by forming longer CAV platoons on the
road and reducing the headways within the platoons. Based on the queuing theory, an
output flow is bounded by the input flow in a closed system. However, the input flow
is composed of CAV platoons that are not longer, as platoon organization is yet to be
performed. Therefore, the output flow is bounded by the input flow, i.e., the capacity
cannot increase further by the maneuvers of CAVs on the road.

The CAVs may be motivated to form longer CAV platoons regardless of the capacity
increase, due to the energy efficiency improvement [92]. There is an ongoing research to
validate the improvement of energy efficiency in passenger vehicles by driving in platoons.
For instance, Altinisik et al experimented with a platoon of two passenger cars and found
a significant reduction in air drag in the leading vehicle [15]. Kaluva et al computed that
a longer platoon reduced the average air drag coefficient of the platoon, saving energy [16].
Also, Liu et al show that vehicles driving in connectivity can improve traffic stability and
fuel efficiency [31]. To facilitate the formation of long CAV platoons in a mixed traffic, we
advocate for the Flow-Aware strategy of platoon organization to be implemented.

We believe our work can improve. In this study, we assume that lane changes are executed
manually by human drivers in CAVs. It may be difficult for human drivers to implement
the Flow-Aware strategy of platoon organization, which is based on the measurement of the
local traffic condition. Because we do not know how well the human drivers will execute the
platoon organization strategy, the estimated traffic performance may be biased. This bias can
be overcome by assuming that the lane changes will be automated in the future and applying
a model for the automated lane changing to execute the platoon organizations strategy.
There is an on-going research on the lateral controller for automated vehicles. Although most
works focus on safety and efficiency [93], some develop automated lane change controllers
that consider the traffic flow. For instance, Wang et al [94] propose a centralized controller
for cooperative lane changes that explicitly models the movement of vehicle upstream in the
target lane. Their controller reduces the braking and waiting times of upstream vehicles
following the lane-changing vehicle. The model for automated lane changing can replace the
human-driving model for lane changing and better estimate the traffic impact of platoon
organization.

Also, we lack the model to capture the preference of CAV drivers in choosing between
traveling in a long CAV platoon or traveling in a faster lane without a platoon. It is possible
that the adjacent lane of a CAV presents a higher probability of forming longer platoons,
but flows at a lower speed than the current lane. It is also possible that the adjacent lane of
a CAV flows faster than the current lane, but the CAV is travelling in a platoon already. In
this chapter, we assume that under the PD lane strategy, the CAVs change lanes to reach
the PD lane regardless of the speed difference between the current lane and the target lanes
(although if the target lane is very crowded, the CAV is less likely to succeed in joining
the target lane). A proper model of the CAV behavior in choosing between driving in a
platoon and driving faster will better estimate the induction of lane changes under platoon
organization. However, we would like to note that the Flow-Aware PD lane strategy is
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designed with a condition of the local speed in Equation (4.3). A CAV performs platoon
organization only when all lanes have a very high speed (above 90km/hr in this chapter).
Therefore, the lack of a preference model between a longer platoon and a faster speed plays
an insignificant role in the validation results of the Flow-Aware strategy.

There are many ways to improve the Flow-Aware strategy of platoon organization. First,
we calibrated the threshold values, ρq and ρv, in Equation (4.3) by trial and error. We used
only one value of flow threshold (vph/lane) for the entire network at a given CAV penetration,
though the shock of lane changes may be absorbed differently at locations with various road
geometries. Future research can design methods to calibrate the thresholds in a systematic
manner that can be applied to various roads geometries.

Second, we assumed the availability of local measurements on vehicle count and speed
and used these data to evaluate the condition in Equation (4.3). In practice, such data may
not be available so that the CAVs need to use other sources of data to find if local traffic
can absorb the shock of more lane changes. It’s also possible that more sophisticated data
will be available, such as individual vehicle data like gap, acceleration, and desired lane to
travel. Different sources of data can be used to represent the traffic state for the Flow-Aware
strategy of platoon organization with improved formulation of the condition in Equation
(4.3).

Third, we can add sophistication to the Flow-Aware strategy, for instance by developing a
learning controller that better models the complex dynamics of how a lane change can impact
the traffic flow. The algorithm can model the traffic flow outcome of a lane change given
various states measured by the sensors in CAVs, such as current gap, speed, acceleration,
lane, and platoon length. This controller can replace the heuristic condition developed in
the Equation (4.3) and perhaps allow a longer platoon length than the Flow-Aware PD
lane strategy. A useful resource is ‘Flow’, an open-source deep learning platform developed
in University of California, Berkeley, which supports microscopic traffic simulation as an
environment [95].

In addition, the evaluation of the energy efficiency with platoon organization is missing
in this chapter. It is possible that platoon organization will improve the energy efficiency
of individual CAVs, while they systematically deteriorate the energy efficiency by creating
congestion. If so, the Flow-Aware strategy must be implemented not only to ensure maximal
traffic flow but also to avoid energy inefficiency as a whole. Future research must investigate
the energy efficiency trade-off between individual vehicles and the traffic system under various
operation scenarios of CAVs.

Appendix

The Microscopic Traffic Model

This section briefly describes the microscopic traffic model from [13] used in this study.
The model has car-following algorithms and the lane-change algorithms. The car-following
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algorithms are defined separately for human driving and automated driving with CACC.
The algorithm for human drivers calculates the desired acceleration as the minimum of three
values – acceleration from Newell’s simplified car following model [96], Intelligent Driver
Model’s free flow acceleration [97], and Gipps acceleration with safe distance [98]. The
algorithm for automated vehicles calculates the acceleration from a model calibrated with
experimental data of production vehicles instrumented with CACC [84].

The lane-change algorithms in this model are similar for human driving and automated
driving with CACC because the CACC does not provide automation for lane-changing task.
In other words, human drivers in both CACC and non-CACC vehicles perform lane-change
movements manually. However, the motivation for discretionary lane changes are different
between the human driver and the CACC vehicles. The CACC vehicles is assumed to have
a stronger motivation to stay in a platoon than to seek for higher speeds. In addition, the
algorithms can emulate the complex lane-change behaviors, such as anticipatory lane changes
in response to a slow speed downstream, cooperative behaviors to slow down to increase a
gap for the lane-changers, and recovery responses after letting in a lane-changer with smaller
reaction times and headway.

Supplementary Results on Flow-Aware Platoon Organization

Table. 4.4 presents the detailed results visualized in Fig. 4.8. PD indicates the PD lane
strategy without considering the traffic state. Flow-Aware PD indicates the Flow-Aware
strategy of PD lane that considers the traffic state by condition in Equation (4.3).

5In parenthesis is the percentage difference to the baseline result, i.e., (Current result - Baseline) /
Baseline · 100%.
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Table 4.4: Increase of Lane Changes and Platoon Lengths without Flow Disruption under
Flow-Aware Platoon Organization (Supplementary Result to Fig. 4.8)

CAV
(%)

Network
Demand
Scale
Factor

Test
Case

Network
DischargeFlow
(vph) 5

Average
Number of
Lane Changes
(count/veh)5

Average
Platoon
Length,
L̄,
(CAV count)5

0 100% B 10,675.8 2.40 NA

20 100%
B 10,687.3 2.35 1.87

PD 10,675.8 (-0.1%) 3.40 (+45.0%) 4.47 (+138.9%)

FPD 10,687.8 (+0.0%) 2.58 (+9.7%) 2.25 (+20.0%)

40 110%
B 11,739.8 2.40 3.28

PD 11,402.0 (-2.9%) 4.90 (+103.9%) 6.81 (+107.2%)

FPD 11,733.8 (-0.1%) 2.93 (+22.0%) 3.94 (+20.0%)

60 117%
B 12,449.3 2.15 4.27

PD 11,780.3 (-5.4%) 5.55 (+157.6%) 7.12 (+66.6%)

FPD 12,446.8 (-0.0%) 3.06 (+42.2%) 4.98 (+16.6%)

80 125%
B 13,347.0 2.03 5.97

PD 12,378.8 (-7.3%) 5.24 (+157.9%) 7.78 (+30.4%)

FPD 13,356.8 (+0.1%) 2.66 (+30.9%) 6.47 (+8.5%)

100 127% B 13,069.0 1.82 7.55

B: Baseline, PD: Pseudo dedicated lane strategy, FPD: Flow-Aware pseudo dedicated lane
strategy
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Chapter 5

Conclusions

This dissertation explores critical problems from developing technologies without considering
their impact on other related systems. Specifically, we identify the potential problems from
vehicle electrification and automation in the energy grid, the charging infrastructure, and
the traffic network. We propose the solutions by analyzing the real-world data, developing
optimization models, and simulating the operation of mobility infrastructure. We show that
our solutions help the infrastructure perform better with advanced vehicle technologies. We
summarize the contributions of this dissertation as the following.

5.1 Research Contributions

This dissertation addresses three unintended problems from vehicle electrification and au-
tomation on the mobility infrastructure and proposes solutions via connectivity, modeling,
and control.

Pareto optimal planning of an EV charging facility

In Chapter 2, we solve a challenging problem of planning an electric vehicle (EV) charging
facility to simultaneously enhance the quality of service in charging and reduce the capital
and operation costs. We develop a robust optimization model to find the sizing of a charging
facility that can reliably satisfy the random charging demand. We study the impact of two
demand management strategies, a local energy storage system and a rescheduling method of
the EV charging sessions, to reduce the time-varying cost of the electrical grid consumption
that penalizes a high demand peak. We analyze the complex relationships among the EV
charging schedule, the capital and operation costs of the facility, and the electrical grid
pricing and explain how to achieve the Pareto optimality in the service quality and the cost
in planning an EV charging facility.
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Optimal EV charging for electric grid benefits on a regional scale

In Chapter 3, we estimate the maximum potential gains to the electrical grid operation from
managing the charging schedule of an EV fleet on a large regional scale. Our approach is novel
in that we shift the charging sessions not only in time but also in the location. We propose
the optimization models to reschedule various performance metrics of the grid operation,
such as the cost, the renewable energy mix, and the greenhouse gas emissions. We estimate
the gains to the electrical grid using the real driving and charging data of individual vehicles
and the real grid operation data in the San Francisco bay area, California. We recommend
an optimal rescheduling solution for the grid operators.

Platooning operation of CAVs for traffic flow performance

In Chapter 4, we identify a potential problem of disrupting the traffic flow by naively oper-
ating the Connected Automated Vehicle (CAV) platoons in mixed traffic with human-driven
vehicles. This problem is critical as most literature recommends a CAV operation strategy
without investigating its impact on the traffic flow. We study various strategies to form CAV
platoons and simulate their impact on the traffic flow using a microscopic driving model and
realistic parameters. We validate that the CAVs can severely disrupt the traffic flow and
cause unnecessary congestion by changing lanes to form long platoons. We propose an ef-
fective strategy for CAVs to be ‘aware’ of their current traffic conditions regarding flow and
speed measurements and form long platoons accordingly. We conclude that this flow-aware
operation strategy forms longer CAV platoons while ensuring a maximal traffic flow.

5.2 Future Research

We believe that the research in this dissertation can be extended. In the following, we explain
the possible next steps in detail.

Incorporation of human behavior

It is important to understand human behavior and its uncertainty for successfully imple-
menting the proposed algorithms.

• In Chapters 2 and 3, we assume the perfect compliance of drivers to rescheduling the
EV charging sessions in time and the location. Due to this unrealistic assumption,
we may be overestimating the benefits of rescheduling to the charging infrastructure
and the energy grid. There is an ongoing study on modeling and inducing a desirable
behavior, such as [69]. Modeling the human behavior will help parametrize the success
in rescheduling the EV charging sessions and estimate the impact of rescheduling more
accurately.
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• Human behavior is also critical when modeling the CAVs and their impact on the
traffic. Although the CAVs can automate driving maneuvers, such as car-following
and lane changes, it is uncertain how the humans in the CAVs and the human drivers
around CAVs will respond to such maneuvers. The humans in the CAVs may override
the automated controls due to personal preference or unexpected risk. Human drivers
may also exhibit different behavior around CAVs than around other human drivers.
In Chapter 4, we use the most realistic models of CAVs and human drivers from the
literature. However, we assume that people will prefer to travel in a long CAV platoon
to enhance fuel efficiency and driving comfort. People may prefer specific lanes and
behave differently in real life. We must improve the modeling of human behavior as
CAVs grow in the market.

Modeling of the future infrastructure

This dissertation evaluates the impact of vehicle electrification and automation on the mo-
bility infrastructure, which is assumed to remain the same. However, the infrastructure may
evolve as the mobility paradigm shifts.

• In Chapters 2 and 3, we assumed the operating conditions of the energy grid, such as
the electricity pricing, renewable energy mix, and greenhouse gas emission rates, to
remain constant. If the EVs become more widely adopted with an energy load that
can significantly change the shape of the current demand, the energy grid may react
to such change. The grid operator may impose a different business model or a pricing
scheme specifically for the EVs or even upgrade the infrastructure. We must explore
how the energy grid operators plan to adjust to the load to depict the interaction
between the grid and the EV population on a mass scale and accurately estimate the
impact of vehicle electrification on the energy grid.

• In Chapter 4, we assume that the transportation infrastructure and driving policies
remain unchanged regardless of the increase in Autonomous Vehicle (AV) population
on the road. However, there is an extensive discussion on building the infrastructure
and policies that can facilitate the safe and efficient implementation of AVs [99], [100].
We do not know how the future traffic network will look like, especially as we already
see some differences in the planning and expectations across cities on how the AVs
will shape our future [101]. For instance, most cities (64%) in the US did not have
any transportation plans related to AVs by January 2019, whereas San Francisco had
a transportation plan in 2017 that incorporates AVs to achieve various goals, such as
increase of street safety and mitigate traffic congestion [101]. Therefore, we must pay
close attention to how the AVs are implemented and strategically plan the operation
strategies of AVs accordingly to achieve safety and efficiency.
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Assessment of practical challenges

It is critical to assess the practical challenges of implementing the proposed algorithms in
this dissertation.

• In Chapter 2, we omit the discussion on the difficulty of installing local energy storage
in an EV charging facility, though certain physical limitations on the electrical setup
must exist on site.

• In Chapters 2 and 3 we do not explore the practical tasks in rescheduling of EV charging
sessions. There are many issues to discuss, such as designing the driver’s interface
for informed decisions and choosing the type of device to use for active engagement
with the drivers. The legal agreements are also critical to consider, for instance, to
compensate for a failure to meet a charging demand and protect drivers’ privacy with
shared information.

• In Chapter 4, we do not explain how the drivers in CAVs will perceive or accept the
lane change controls on a freeway. To implement a CAV operation strategy, one must
decide whether to display the information on a vehicle console, use an audio message,
or share the CAV control information with other vehicles.
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strained programming and its applications to energy management”. In: Stochastic
Optimization—Seeing the Optimal for the Uncertain (2011), pp. 291–320.

[43] Christian Milan, Michael Stadler, Gonçalo Cardoso, and Salman Mashayekh. “Mod-
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