
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Comparing Mediation Inferences and Explaining Away Inferenceson Three Variable Causal 
Structures

Permalink
https://escholarship.org/uc/item/9cz1x058

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors
Derringer, Cory J
Rottman, Benjamin M

Publication Date
2018

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9cz1x058
https://escholarship.org
http://www.cdlib.org/


Comparing Mediation Inferences and Explaining Away Inferences  
on Three Variable Causal Structures 
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Department of Psychology, University of Pittsburgh 

3939 O’Hara Street, Pittsburgh, PA 15260 USA 
 
 

Abstract 
People reliably make two errors when making inferences about 
three-variable causal structures: they violate what is known as 
the Markov assumption (mediation) on causal chains and 
common cause structures, and fail to sufficiently ‘explain 
away’ on common effect structures. Our goal for the present 
study was to quantitatively compare these two errors after 
subjects have learned the statistical relations between three 
variables using procedures designed to maximize the accuracy 
of their learning and inferences. Aligning with prior research, 
we found that subjects violated the Markov assumption, and 
did not sufficiently explain away. We also found judgments 
about mediation were worse than judgments about explaining 
away for one inference, but better for another, suggesting that 
people are not uniquely worse at reasoning about one structure 
than another. We discuss the results in terms of a theory of cue 
consistency. 

Keywords: causal learning; causality; causal structure; 
Markov assumption; explaining away 

Introduction 
Causal learning is a ubiquitous part of our everyday lives, 
from determining the efficacy of a new medicine to figuring 
out if our new diet/fitness routine is working. Further, often 
it is important to understand the causal structure and 
statistical relations among several variables in order to 
intervene effectively; if one knows that exercise only leads to 
weight loss because it creates a caloric deficit, one knows to 
avoid other activities that might negate that pathway (e.g., 
eating an extra helping of food). In the current research we 
examined how well people understand the statistical relations 
among different three-variable structures. Specifically, we 
compared the accuracy of judgments of P(X2|Y, X1) on 
mediation and common effect structures (Figure 1).  

Understanding how well people make this inference 
provides insight into how well people understand the 
differences in the multivariate distribution (the ways that all 
three variables are statistically related to each other) for 
different sorts of causal structures. In particular, the goal for 
this research is to understand if people have a specific 
difficulty understanding the multivariate distribution for 
some causal structures (potentially common effect structures) 
but are better for others (potentially mediation structures). 

                                                        
1P(X2=1|Y=1, X1=1) can be read as ‘the probability that X2=1 

knowing that Y=1 and X1=1. 

  
Figure 1: Examples of mediation (causal chain, common 

cause) and common effect causal structures. 

The Markov Assumption on Chain and Common 
Cause Structures 
An important feature of causal chain and common cause 
structures is that the middle variable Y blocks off any direct 
connection between X1 and X2. This feature, called the 
Markov assumption, means that once a learner knows the 
state of Y, X1 is no longer predictive of X2. For example, 
consider a chain in which exercise (X1) causes a caloric 
balance (whether caloric intake is greater or less than caloric 
expenditure) (Y), which influences body weight (X2). The 
probability of losing weight given that caloric intake is less 
than expenditure is high, regardless of exercise (because 
exercise only affects weight via caloric balance).  

People reliably violate the Markov assumption; they act as 
if X1 and X2 have a hidden connection beyond Y in a chain or 
common cause structure (e.g., Park & Sloman, 2013; Rehder, 
2014; Rehder & Burnett, 2005;  Rottman & Hastie, 2014; 
2016). The classic violation involves estimating that 
P(X2=1|Y=1, X1=1) > P(X2=1|Y=1, X1=0), when in reality they 
are equivalent.1 We call the chain and common cause 
‘mediation structures’ as they feature the same statistical 
relations between the variables (Steyvers et al., 2003).  

However, the violation of the Markov assumption, though 
reliable, is not always large. Rehder and Waldmann (2017) 
found mean differences between the two judgments of .06 
and .15 in two different conditions. Rottman and Hastie 
(2016) found differences of .19 and .13 in two studies. Park 
and Sloman (2013; Experiment 3) found some judgments that 
did not show violations (-01, .01) and some that did (.19, .21).  

X Y X 

Common Effect Structure:

Mediation Structures:

X Y X

Causal Chain Common Cause

X Y X 1 2 1 2

1 2
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Explaining Away on a Common Effect Structure 
Common effect structures (e.g., Figure 1) differ from 
mediation structures in that it is no longer true that 
P(X2=1|Y=1,X1=1)=P(X2=1|Y=1, X1=0); instead, P(X2=1|Y=1, 
X1=1) < P(X2=1|Y=1, X1=0). For example, assuming that high 
exercise (X1=1) and low caloric intake (X2=1) both cause 
weight loss (Y=1), the normative relationship between 
exercise and caloric intake hinges on whether weight loss is 
known. If the state of Y is unknown, X1 and X2 are 
uncorrelated. However, because weight loss can be caused by 
either exercise or dieting, if Y=1 (a person is losing weight), 
then if they were not dieting, they probably were exercising, 
or vice versa: P(X2=1|Y=1, X1=1) < P(X2=1|Y=1, X1=0).  

Previous research has found that people have difficulty 
making explaining away judgments. Either the amount is 
insufficient –  the judgments of P(X2=1|Y=1, X1=1) are lower 
than P(X2=1|Y=1, X1=0), but not sufficiently lower – or the 
two judgments are not statistically different from each other 
on average, or sometimes the judgments of P(X2=1|Y=1, 
X1=1) are higher than P(X2=1|Y=1, X1=0). For example, in 
Rottman and Hastie’s (2016) Experiment 1, the normative 
difference – P(X2=1|Y=1, X1=0) - P(X2=1|Y=1, X1=1) – was 
.40, but there was no significant explaining away on average; 
the mean amount was -.01. In their Experiment 2, the 
normative amount was .67, and the mean amount of 
explaining away was significant but was only .17.  Rehder 
and Waldmann (2017) also found insufficient explaining 
away; the degree of explaining away was about .15 and .25 
in two conditions, whereas it should have been .46.  

Cue Consistency Theories 
One explanation for both the violations of the Markov 
assumption and poor explaining away is a theory we call “cue 
consistency”, which suggests  when more of the known cues 
are in state 1, the learner is more likely to infer that the 
unknown cue is 1, and when more of the known cues are in 
state 0, the learner is more likely to infer that the unknown 
cue is 0. Rehder (2014) called this an “associative bias.” 
Rottman and Hastie (2016) called this the “monotonicity 
assumption,” and Rehder and Waldmann (2017) called it the 
“rich-get-richer principle.” We think that all of these 
principles are essentially the same and we are using “cue 
consistency” to capture all of these meanings. 

Cue consistency can be thought of as systematically 
misunderstanding the multivariate structure among the three 
variables as being more similar to the bivariate structure 
among pairs of variables than it really is. This cue consistency 
principle explains why people tend to judge that 
P(X2=1|Y=1,X1=1) > P(X2=1|Y=1, X1=0) for the mediation 
structures even though they should be equivalent. The logic 
is that they think that X1 provides information about X2 like it 
does when judging the bivariate relation between the two.  

It also explains why people tend to insufficiently judge that 
P(X2=1|Y=1, X1=1) < P(X2=1|Y=1, X1=0) for the common 
effect structure. People tend to overestimate P(X2=1|Y=1, 
X1=1) or underestimate P(X2=1|Y=1, X1=0) or both. The logic 
is that even though X1 and X2 and unrelated in the bivariate 

relation, they are negatively related in the multivariate 
distribution. Cue consistency theories cannot explain all the 
known biases in judgments on three variables (Rottman & 
Hastie, 2016; Table 11), but are plausible explanations for 
some of the most studied biases including these.  

Open Questions 
Directly comparing the structures. Comparing the two 
prior sections on violations of the Markov assumption and 
insufficient explaining away, the violations of the Markov 
assumption are on the order of 0-.21; however some of the 
explaining away judgments were .30 or .40 less than they 
should have been, and there is other evidence of explaining 
away judgments significantly in the wrong direction 
(Rottman & Hastie, 2014). This raises the question of 
whether people understand common effect structures worse 
than mediation structures. If so, this finding would be 
important because it could be used to predict when people are 
especially likely to make poor judgments. To test this, we 
compared P(X2|Y, X1)  judgments on the two structures. 

This could not be accomplished in previous studies because 
the normative judgments for the two structures were not 
equated. In Rottman and Hastie’s (2016) Experiment 1b, 
P(X2=1|Y=1, X1=1) was .75 for the mediation structures but 
.60 for the common effect so they could not be compared, and 
P(X2=1|Y=1, X1=0) was .75 for the mediation structures but 
1.00 for the common effect. Potentially some of the 
differences in these comparisons could be due to the fact that 
subjective experiences of probability do not map linearly 
onto objective probabilities (Tversky & Kahneman, 1992). 

In the current study, we created two different versions of 
the common effect structure and one version of the mediation 
structure, so all of the normative judgments needed for 
comparison are .80 to .83. In order to accomplish this, one of 
the inferences actually had to be .17, which we flipped to the 
upper half of the scale (.83) to compare with other judgments. 
Is cue consistency a bias of learning or judgment? Another 
important question is whether the biased inferences are 
merely due to a low-level bias at the time of judgment, or if 
this bias might actually arise through learning? We will lay 
out three (not mutually exclusive) possibilities of how such a 
cue consistency bias could play out. 

In some studies (e.g., Park & Sloman, 2013; Rottman & 
Hastie, 2016), all three variables had the same two possible 
states (e.g., all three variables could be high or low, which we 
represent as 1 vs. 0). In these studies, a reasoner could do a 
very simple and low level of perceptual matching: if Y=1 and 
X1=1, then probably X2=1 as well. 

In other studies, the states of the three variables are 
counterbalanced, such that the cue consistency bias can’t 
involve a simple perceptual matching. For example, Rehder 
and Waldmann (2017; also Rehder, 2014) used the following 
variables: high or low interest rates, small or large trade 
deficits, and high or low retirement savings. Furthermore, the 
stimuli were counterbalanced such that some subjects were 
told that low interest rates cause high retirement savings, 
others were told that high interest rates cause high retirement 
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savings etc. Suppose that a subject was told that high interest 
rates cause large trade deficits, which cause low retirement 
savings. In this case, the typical violation of the Markov 
assumption would be inferring that P(high interest rates|large  
trade deficits, low retirement savings) > P(high interest 
rates|large  trade deficits, high retirement savings). The 
violation goes against the simple perceptual matching, but 
instead follows which states are causally related. We still call 
this a cue consistency effect, but consistency refers to the 
believed causal relations rather than perceptual matching. 

When a study uses this counterbalancing, there are two 
ways that a bias could arise. First, the bias could arise if the 
instructions in the experiment tell subjects the causal 
relations (e.g., telling them that high interest rates cause large 
trade deficits, which cause low retirement savings). Second, 
even if subjects are not told the causal relations, the bias 
could arise if subjects learn the statistical relations from 
experience (e.g., high interest rates are correlated with large 
trade deficits, which are correlated with low retirement 
savings). Rehder and Waldmann (2017) compared conditions 
in which participants were told the relations and/or learned 
the relations from data; the inferences were most accurate 
(smallest violations of the Markov assumption, strongest 
explaining away) in the data-only condition suggesting that 
the bias might primarily arise from instruction.  

In the current study, we wanted to maximize the possibility 
that subjects would give accurate judgments, and minimize 
the possibility that they are biased by cue consistency. For 
this reason, subjects learned the statistical relations between 
the variables from experience, the states of the variables were 
counterbalanced so that there cannot be an overall perceptual 
effect of cue consistency, and subjects were not told the 
relations between the variables in instructions. This means 
that if they exhibit violations of the Markov assumption, it 
must arise from the learning process, and if they 
insufficiently explain away, this must have to do with 
incorrect or insufficient learning, not a simple perceptual bias 
or bias from the instructions. By setting up a situation to 
maximize the accuracy of judgments, we have a fairly pure 
comparison of mediation vs. common effect inferences. 

Method 

Participants 
Participants (n=230) were recruited via MTurk and were paid 
$3.00 for their participation. They were also paid bonuses for 
accurate judgments. All participants were located in the 
United States, had previously completed at least 100 tasks on 
MTurk, and had a task approval rate of at least 95%. The 
study took approximately 20 minutes to complete. 

Stimuli and Design 
There were three sets of learning data: a mediation structure 
and two common effect structures (Table 1). These three 
datasets were chosen such that the key inferences (bold in 
Table 1) were all normatively between .80 - .83, so that they 
could be compared. In order to find datasets with these key 

inferences, we targeted certain parameters that we knew 
would produce inferences in this range. With a limited 
number of trials, the datasets cannot fit the parameters 
exactly. In Table 1, we listed the number of trials presented 
to participants, and the ideal number of trials if the parameters 
were followed exactly, to show the closeness of fit. 

The data for the mediation structure fit equally well with 
the chain or common cause structure, which is why we call it 
the more generic ‘mediation’ structure. The generative 
parameters for a common cause are P(Y=1) =. 5, P(X1,2 = 1 | 
Y = 1) = .85, P(X1,2 = 1 | Y = 0 ) = .15 , or  for a chain, P(X1 = 
1) = .5, P(Y = 1 | X1 = 1) = P(X2 = 1 | Y = 1) = .85, and P(Y = 
1 | X1 = 0) = P(X2 = 1 | Y = 0) =.15.  

The idealized Common Effect 1 parameters 
are P(X1=1)=P(X2=1)=.40, Power-PC causal strengths of .68 
(Cheng, 1997), with an unobserved background cause of 
probability .10. The idealized Common Effect 2 parameters 
are: P(X1=1)=P(X2=1)=.13, Power-PC causal strengths of 
.73, with an unobserved background cause of probability .06. 
In order to fit the parameters closely, the datasets had slightly 
different numbers of trials ranging from 55-58 (Table 1). 

 
Table 1: Learning Data and Key Inferences 

X1 Y X2 Mediation 
Structure 

Common 
Effect 1  

Common 
Effect 2  

Actual and (ideal) number of trials in learning data 
1 1 1 20 (19.9) 8 (8.0) 1 (0.8) 
1 1 0 4 (3.5) 9 (9.2) 5 (4.5) 
1 0 1 1 (0.6) 1 (0.8) 0 (0.1) 
1 0 0 4 (3.5) 4 (4.0) 2 (1.5) 
0 1 1 4 (3.5) 9 (9.2) 5 (4.5) 
0 1 0 1 (0.6) 2 (1.8) 3 (2.6) 
0 0 1 4 (3.5) 4 (4.0) 2 (1.5) 
0 0 0 20 (19.9) 18 (18.0) 39 (39.4) 
 Total: 58 (55) 55 (55) 57 (55) 

Key Inferences 
P(X2=1|Y=1, X1=1) .83 .47 .17→.83 
P(X2=1|Y=1, X1=0) .80 .82 .63 

Note. → means ‘recoded as.’ Bold highlight the key 
inferences in the range of .80 - .83. Ideal number of trials if 
the parameters were followed exactly in parentheses. 
 

The key inferences were calculated directly from the actual 
data subjects saw, not the idealized parameters. 

Each trial in the datasets described a fictional microbe. The 
microbes could have one of several sets of features (e.g., 
cytoplasm color, long or short cilia, and a circle or oval 
shaped nucleus). Overall, there were nine different types of 
variables grouped into three clusters of three, and two of the 
three clusters were randomly assigned to the datasets, and the 
three variable labels were randomly assigned to X1, X2,and Y. 

The matching of microbe features to variables in the causal 
structure was determined randomly for each participant. For 
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example, one participant might see a dataset in which 
cytoplasm color corresponds to X1, whereas for another 
participant that feature could correspond to Y in the 
underlying causal structure. Furthermore, the mapping of the 
color of the cytoplasm (blue vs. red) to 1 vs. 0 in Table 1 was 
random. Collectively, this randomization means that 
participants would not have a perceptual reason to infer a 
particular value for X1 given the perceptual states of Y and X2. 

Procedure 
Participants were told that they would be learning about the 
features of microbes (e.g., cilia length, cytoplasm color, 
nucleus shape). Their task was to figure out how the 
properties related to each other; they were not told if or how 
they were related. Participants learned about two datasets. (In 
reality, there was a fourth dataset designed for a question not 
analyzed here; all subjects learned about two of the four.) 
Each scenario (dataset) involved two phases. 

In the learning phase, participants engaged in trial-by-trial 
learning of the three features. Subjects made predictions of 
each of the three features on each trial, which was intended 
to make the task engaging and to encourage learning. During 
each trial, participants were first shown a blank template of a 
microbe (a grey circle). They made a probability judgment 
about a target feature (Figure 2A). They were then shown the 
state of another feature and asked about the target feature 
again (Figure 2B). Finally, they were shown information 
about the third feature and asked about the target feature 
again (Figure 2C), and were given subsequent feedback about 
its state (Figure 2D). Though these judgments give us 
detailed measures of the progression of learning, we do not 
analyze these judgments in the current paper.  

 

 
 

Figure 2: Trial-By-Trial Prediction and Feedback in 
Learning Phase. 

 
After the learning phase, participants completed a test 

phase in which they made one-off judgments about microbe 
features. For example, participants might see a microbe with 

green cytoplasm and a round nucleus, and judge the 
likelihood that the microbe has short/long cilia. Participants 
made 11 judgments in this phase; in the current manuscript 
we focused on judgments of P(X2=1|Y=1, X1=1) and 
P(X2=1|Y=1, X1=0), and reported a few others as well. 

To encourage participants to engage with the task, 
participants also earned bonuses if they guessed within 5% of 
the normative answer on five randomly-determined trials in 
the learning phase of each scenario. Each bonus was worth 
five cents; so it was possible to earn up to 50 cents in bonus 
pay. Participants were told the number of bonus trials, but 
were not told which trials were scored for bonuses. 

Results 
We first looked at other judgments that subjects made about 
these structures to confirm that they were indeed learning the 
probabilistic relations. Table 2 shows that the judgments were 
in the correct direction (above .5), confirming that they 
learned. (Remember that subjects were not told which states 
of the variables were correlated with each other, so they could 
not just have made these judgments in the right direction by 
the instructions alone or by guessing.) The fact that the 
judgments are not as strong as they should be normatively fits 
with many prior studies (Rottman & Hastie, 2014). The 
degree of weakness is similar to prior studies, suggesting that 
learning was not worse in the current study. 
 
Table 2: Normative and observed probability judgments for 

basic inferences. 
Dataset Judgment Norm Mean (SD) 
Mediation P(Y=1|Xi=1) .83 .70 (.25) 
Mediation P(Xi=1|Y=1) .83 .73 (.22) 
Mediation P(Y=1|X1=1, X2=1) .95 .77 (.28) 
CE1 P(Y=1|Xi=1) .77 .63 (.25) 
CE1 P(Y=1|X1=1, X2=1) .89 .69 (.28) 
CE2 P(Y=1|Xi=1) .75 .76 (.22) 
CE2 P(Y=1|X1=1, X2=1) 1.00 .72 (.32) 

*Note: Xi denotes combined data for judgments that could 
apply to X1 or X2 
 

We then focused more closely on the two key inferences. 
Means of the judgments are reported in Table 3, and 
histograms are presented in Figure 3. Overall, consistent with 
Rottman and Hastie (2016), many of the distributions are 
quite spread out, and often exhibit peaks at 0, .5, and 1. 
Participants were able to learn the basic relations; some of the 
average judgments were clearly in the correct direction. 

 
Table 3: Normative and observed probability judgments for 

key inferences. 
 P(X2=1|Y=1, X1=1) P(X2=1|Y=1, X1=0) 
Dataset Norm Mean (SD) Norm Mean (SD) 
Mediation .83 .75 (.27) .80 .52 (.31) 
CE1 .47 .53 (.34) .82 .62 (.29) 
CE2 .17→.83 .66 →.33 (.32) .63 .55 (.36) 
Note: → means ‘recoded as.’ 

How likely is it that the microbe 
will have a CIRCLE / OVAL nucleus?

CIRCLE
 50%

OVAL
 50%

A

C D

This microbe has blue factor.

B

This microbe has blue factor.
This microbe has long cilia.

This microbe has blue factor.
This microbe has long cilia.

This microbe has an OVAL nucleus.

How likely is it that the microbe 
will have a CIRCLE / OVAL nucleus?

CIRCLE
 25%

OVAL
 75%

How likely is it that the microbe 
will have a CIRCLE / OVAL nucleus?

CIRCLE
 15%

OVAL
 85%

CIRCLE
 15%

OVAL
 85%

1625



For all inferential tests conducted below, when we 
compared two conditions, we conducted median split 
analyses because the distributions are not normal. We first 
calculated the pooled median judgment of the two conditions, 
and then tested whether the percent of judgments greater than 
the median was different across the two conditions, using a 
random intercept at the participant level and a random slope 
to allow the effect of the conditions to vary by participant.  

Assessment of the Markov Assumption and 
Explaining Away 
Though the main goal for this research was to compare 
P(X2=1|Y=1, X1=1) and P(X2=1|Y=1, X1=0)2 judgments in 
mediation vs. common effect structures, we first compared 
them within a structure, as they have typically been studied.  

Focusing on the mediation structure, it is clear that the 
distribution for P(X2=1|Y=1, X1=1) is higher than the 
P(X2=1|Y=1, X1=0) distribution (Figure 3). We found a 
significant difference between the two judgments (B=2.41, 
SE=0.44, p<.001), evidence of a violation of the Markov 
assumption.3 Importantly, this must be a learning effect, not 
a perceptual similarity effect or an effect from the 
instructions. Imagine that for one subject, X2=1 means that 
the nucleus is an oval (not a circle), Y=1 means that the 
microbe is blue (not green), and X1=1 means that the cilia are 
long (not short). The fact that they gave higher judgments 
when X1=1 means that they learned the correlations between 
long cilia, blue, and oval, and that they overgeneralized these 
relations, believing that nucleus shape and cilia length were 
still correlated after controlling for the color. Another piece 
of supporting evidence is that the judgment of P(X2=1|Y=1, 
X1=1), which was .75 on average, is relatively close to the 
normative value of .83 (at least on the right side of .50). 

Did our subjects appropriately explain away? Within the 
Common Effect 1 structure, normatively the judgments of 
P(X2=1|Y=1, X1=0) should have been higher by .35 than those 
for P(X2=1|Y=1, X1=1). The difference was in the expected 
direction, but the mean difference was only .09; the median 
split analysis was not significant (B=-0.33, SE=0.29, p=.25). 
Within the Common Effect 2 structure, normatively the 
judgments of P(X2=1|Y=1, X1=0) should have been higher by 
.46 than those for P(X2=1|Y=1, X1=1), but the difference was 
only .03 (.55 vs. .52 in Table 3), and was not significant 
(B=0.51, SE =0.49, p=.30). This weak explaining away fits 
with prior research and with the cue consistency theory. 

Comparing the Mediation and Common Effect 
Structures 
Our primary goal was to compare P(X2=1|Y=1, X1=1) and 
P(X2=1|Y=1, X1=0) judgments across the two structures. We 

                                                        
2 Because of the symmetrical nature of our datasets (e.g., 

P(X2=1|Y=1)=P(X1=1|Y=1), we combined judgments about X1 and 
X2 and reported them as X2. (E.g., P(X2|Y,X1) includes P(X1|Y,X2).) 

3 One limitation is that the normative judgments for P(X2=1|Y=1, 
X1=1) is higher than P(X2=1|Y=1, X1=0): .83 vs. .80. We doubt this 
slight difference caused the large differences in the judgments.  

first compared the judgments of P(X2=1|Y=1, X1=1). For the 
mediation structure this was normatively .83, and for the 
Common Effect 2 structure it was .17; we flipped4 the 
judgments from the Common Effect 2 structure so they are 
comparable at .83. The judgments are considerably higher in 
the mediation structure (Figure 3). Due to order effects, we 
analyzed the data from the first scenario only, with the 
structure of the dataset as a between-subjects variable. 
Participants made higher (more accurate) judgments for 
mediation (M=.57) than Common Effect 2 datasets (M=.16), 
B=3.70, SE=1.07, p < .001. The mediation judgments were 
fairly good, but the common effect judgments were bimodal, 
with peaks at 0 and 1 (Figure 3).  

 
Figure 3: Histograms of participants’ judgments of 

P(X2=1|Y=1, X1=1) and P(X2=1|Y=1, X1=0) for all three 
datasets. Dashed line indicates normative judgment. 

 
To analyze the P(X2=1|Y=1, X1=0) judgments, we 

compared the Mediation vs. the Common Effect 1 structure, 
for which the normative judgments are .80 and .82, 
respectively. The judgments were significantly higher (closer 
to normative) for the Common Effect 1 dataset (M=.60) than 
the mediation dataset (M=.45), B=-0.70, SE=0.24, p=.004. 

4 If the variables were present vs. absent, then perhaps it would 
not make sense to flip them because the prospect theory probability 
weighting function is not symmetric around .5 (Tversky & 
Kahneman, 1992). However, in this study, the “lower” vs. “upper” 
half of the scales indicates higher/lower likelihoods for circle/oval 
nucleus, or long/ short cilia (Figure 2), so they are symmetric. 
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Across these two comparisons, sometimes judgments on 
the Common Effect structure look better than the mediation 
structure, and sometimes the reverse happens. There is no 
evidence that reasoning about one structure is uniquely bad. 

Discussion 
There were two main findings. First, we again found 
violations of the Markov assumption and insufficient 
explaining away. These findings fit with the cue consistency 
theory that subjects overestimate P(X2=1|Y=1, X1=1)  and 
underestimate P(X2=1|Y=1, X1=0). However, in the current 
study the Markov violation arises because of learning, not in 
spite of it. Because the variables each have different states 
(e.g., long/short cilia, circle/oval nucleus), subjects must 
learn the correlations between the variables. They still violate 
the Markov assumption in the expected direction based on the 
bivariate relations, which implies that this effect is learned. It 
does not arise from prior knowledge, perceptual features, or 
instruction. Markov violations have also been found in 
studies that give subjects causal structures without learning 
data (e.g., Park & Sloman, 2013); causal knowledge and 
learning are each individually sufficient to yield this error.  

Second, we found that judgments about common effect 
structures are sometimes better and sometimes worse than 
mediation structures; people are not uniquely bad at common 
effect structures, as one might think based on previous work. 

It can be useful to consider which judgments are fairly 
normative, and which are especially bad, in order to 
problematize the bad judgments. The P(X2=1|Y=1, X1=0) 
judgment was decent for the common effect, but was way too 
low for the mediation structure. This finding, that 
P(X2=1|Y=1, X1=0) is more problematic than P(X2=1|Y=1, 
X1=1) for violations of the Markov assumption, fits with 
Rottman and Hastie’s (2016; Figure 3) results. In contrast, 
P(X2=1|Y=1, X1=1) was especially problematic for the 
common effect. Previous research could not assess this; in 
prior studies (e.g., Rottman & Hastie, 2016), P(X2=1|Y=1, 
X1=1) and P(X2=1|Y=1, X1=0) were normatively in different 
parts of the probability scale and could not be compared.  

These findings suggest that subjects’ accuracy of inference 
is not determined by the inference question, nor the structure 
(the statistical relations), but by an interaction of the two.  

One misinterpretation of these results, which we hope to 
head off, is that subjects did not learn in the CE2 condition. 
Though the distributions for CE2 in Figure 3 are spread out, 
there are clumps at 0 and 1, suggesting that some subjects 
believed the variables were related; if not, presumably they 
would answer near the middle of the scale to reflect 
uncertainty. Further, subjects learned the bivariate relations 
(Table 2). The difficulty is with the multivariate relations. 

We have several future directions. First, a unique aspect of 
our design is that subjects made trial-by-trial predictions 
about each variable in the learning phase. We intend to 
develop learning models to explore how their difficulty with 
multivariate judgments could be tied to difficulty learning. 

Second, it is unknown whether the current findings apply 
beyond certain probability ranges (around .83). The findings 

may change in different areas of the probability scale. 
Additionally, we only examined structures with symmetric 
parameters. 

Third, Rehder and Waldmann (2017) presented evidence 
that multivariate inferences are worse when subjects know 
the causal structures that generated the data as opposed to not 
knowing the causal structures. It would be interesting to 
compare the current study to a similar one in which subjects 
know the causal structures; this would allow us to assess the 
degree of bias introduced by knowing the structure, and if 
different structures introduce different amounts of bias. 

The current work explores how well people make 
inferences on three-variable causal structures, and allows for 
comparisons across structures by equating the normative 
judgments in the probability space. We found evidence that 
cue consistency effects can explain violations of the Markov 
assumption and insufficient explaining away. Further, we 
found that people are not worse at reasoning about some 
structures than others, but their accuracy also depends on the 
inference being made. This highlights the complexity of 
causal inference: people are sensitive to the learning data, but 
are also biased, and the bias interacts with the learning data.  
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