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Cluster expansions of multicomponent ionic materials: Formalism and methodology
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Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 8 July 2022; revised 5 September 2022; accepted 8 September 2022; published 12 October 2022)

The cluster expansion (CE) method has seen continuous and increasing use in the study of configuration-
dependent properties of crystalline materials. The original development of the CE method along with the
underlying mathematical formalism and assumptions was focused on the study of metallic alloys. Since then
the methodology has been actively and successfully used in the study of ionic materials as well. In this
work, we present a cohesive reformulation of the mathematical formalism underlying the CE method based
on a synthesis of its original formulation, several additions and extensions that have been proposed since,
and a revised representation of its constituent mathematical objects. We then proceed to describe some of the
formal implications of using the methodology for charge-neutral configurations in ionic systems. In particular,
we discuss the reduction of the size of configuration spaces and the resulting linear dependencies that arise
among correlation functions that span the larger unconstrained configuration space. Additionally, we explore
the effects of long-range electrostatic interactions. We also demonstrate how the previously proposed use of a
point electrostatic term successfully accounts for the majority of the longer-range electrostatic interactions, and
leaves the cluster expansion terms to capture mostly short-range interactions. Finally, we present and discuss a
variety of recently developed methodologies, including training structure selection, oxidation state assignment,
structure mapping, and regression algorithms, that are necessary to address these formal mathematical notions
for a practical implementation of the CE method in the study of multicomponent ionic materials.

DOI: 10.1103/PhysRevB.106.144202

I. INTRODUCTION

The cluster expansion (CE) method is used to represent
a coarse graining of materials properties of multicomponent
crystals based on the possible configurations of species over
the sites of an underlying disordered crystal structure. The
CE method coupled with Monte Carlo (MC) analysis has
become a standard computational tool used for calculating
thermodynamic properties of crystalline materials with site
disorder. By representing the formation energy in terms of
atomic configurations, thermodynamic properties can then
be calculated by sampling finite temperature states in MC
simulations [1–3]. The CE method was originally proposed
for the study of metallic alloys [4], subsequently extended to
multisublattice systems [2,5], and eventually introduced in the
study of oxides and ionic materials [6–10].

Since the focus in the original development of the
CE method formalism was on metallic alloys, several of
the nuances found in ionic systems (such as maintaining
charge neutrality and describing long-range interactions) were

*lbluque@berkeley.edu
†gceder@berkeley.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

not initially considered. The CE method for simple ionic
systems—such as CaO-MgO, which has binary configura-
tional degrees of freedom for isovalent cations only [11]—has
been shown to work well. However, there is increasing interest
in applying these methods to more complex systems. Typical
examples of such complex ionic systems include the recently
discovered class of disordered rocksalts (DRX) [12,13], par-
tially disordered spinels (PDSs) [14,15], and high-entropy
perovskites [16], among many other promising multicompo-
nent ceramic materials [17,18]. Specifically, DRX and PDSs
are an appealing set of potential cathode materials whose
systems generally involve a large number of components,
redox mechanisms that require explicit treatment of cations
with multiple oxidation states, and even anion disorder [19].
For these complex ionic materials, the CE and related lattice
methods are of utmost importance to computationally probe
relevant physics, such as ion percolation [20,21], short-range
order [22–25], and phase diagrams [19,26]. The inherently
large number of components that make these materials so
promising also implies the exploration of configuration spaces
with substantially larger dimension than that of binary or
ternary alloys and layered oxides.

In theory, the CE method can be used to represent func-
tions over a configuration space of arbitrary dimension. In
practice, several complexities arise when fitting CE models
for materials with high-dimensional configuration spaces. The
most significant complexity comprises the increasing gap be-
tween the polynomial growth in the number of expansion
basis functions within fixed radial cutoffs, and the number
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and supercell size of training structures that are needed for
successful training. Furthermore, first-principles calculations
used for training cluster expansions become more involved
as the complexity in the physical interactions among com-
ponents increases. More complex calculations can result in
additional difficulties such as insufficient training structure
sampling or poorly conditioned and/or unstable feature ma-
trices. To adequately fit cluster expansions for complex ionic
materials, these practical issues can be addressed at the sta-
tistical learning level by using appropriate sampling strategies
[1,27,28], regularized regression models [28,29], and possibly
hierarchical and/or grouping algorithms [30–32] in order to
obtain accurate and sparse CE models over high-dimensional
configuration spaces.

Moreover, learning CE models of complex multicompo-
nent ionic materials introduces an additional set of more
fundamental obstacles that are not present in the case of
metallic alloys. The most important difference arises from
the restriction to a configuration space of only charge-neutral
configurations, which implies satisfying composition con-
straints that often introduce linear dependencies between
expansion functions. Additionally, one needs to properly ac-
count for long-range electrostatic interactions, which has been
addressed to some extent by considering only structures with
low electrostatic energy [6]. Lastly, correct oxidation state
assignment of transition metal species with multiple oxidation
states is necessary to correctly capture relevant physics in
complex ionic systems [32].

In this work, we reformulate the mathematical formalism
of the CE method and introduce formal notions—which have
been largely absent in literature—that arise from its use in
ionic materials. We then outline relevant regression models
and auxiliary methodology to effectively address such impli-
cations in ionic systems and build sparse and accurate cluster
expansion models of multicomponent ionic materials. The
assortment of methodology presented is adapted and assessed
within the context of the configuration spaces of ionic ma-
terials, and includes established methods, recently published
methods by the same authors [31,32], and a handful of exten-
sions. The presentation is done with particular focus on the
use of the CE method to examine the high-dimensional con-
figuration spaces associated with material research of complex
ionic materials such as DRX and PDSs.

The paper is organized as follows: In Sec. II we cover the
general formalism of the CE method and its specific implica-
tions for configuration spaces of ionic materials. Specifically,
Sec. II A introduces the mathematical formalism used to rep-
resent configuration spaces and construct basis functions to
represent crystal-symmetry-invariant functions of configura-
tion. In Sec. II B 1 we describe the formal implications of
charge-neutrality constraints in configuration spaces. Addi-
tionally, we discuss the practical incorporation of long-range
electrostatic interactions into CE models. We then proceed to
discuss and describe auxiliary methods necessary to fit cluster
expansions of ionic materials using ab initio data in Sec. III. In
Sec. III A we describe methodology that we have found useful
for oxidation state assignment of systems that include species
with multiple oxidation states, structure mapping methods to
effectively include relaxed structures in training, and train-
ing structure sampling methods for improved accuracy and

stability of resulting CE models. We also briefly examine the
implications of having configurations that are inaccessible by
first-principles calculations due to mechanical and electronic
instabilities. Finally, in Sec. III B we provide an overview of
linear regression models with a particular focus on regression
models with structured sparsity. We have found structured-
sparsity regression models particularly useful when fitting CE
models of complex ionic materials.

Throughout Sec. III we provide various results illus-
trating relevant methodology using for the most part a
LiMnO2-Li2TiO3-LiF (LMTOF) disordered rocksalt material
as an example. The LMTOF rocksalt system comprises a
binary face-centered-cubic (fcc) anion lattice with O2− and
F− disorder, and a fcc cation lattice with Li+, Mn3+, and Ti4+

disorder. The ternary cation and binary anion disorder renders
the configuration space large enough to exhibit cluster expan-
sion complexities but still manageable to allow an efficient
exploration of the methodology covered.

II. THE CLUSTER EXPANSION METHOD

A. Mathematical formalism

We start by giving an exposition of the mathematical for-
malism of the cluster expansion method. In its full generality,
the CE method can be used to represent any scalar, vector,
or tensor material property as a function of configuration
[33–35]. We limit our exposition to only scalar properties—
specifically formation energies of materials systems.

The specific configuration of a crystalline system can be
captured by encoding the occupancy of each site in a multi-
component crystal structure using an occupancy string,

σ = (σ1, σ2, σ3, . . .), (1)

where each element of the occupancy string σi ∈ �i is an
element of a site space �i associated with a particular crys-
tallographic site. In the present case, �i represents the set of
allowed species on the ith site [36]. In a CE, the site spaces
associated with each site are usually not unique, and only a
few distinct site spaces are needed to represent the configura-
tion space of a real material; for example, ionic materials will
commonly have a site space for cation sites and a site space
for anion sites.

More formally, the occupancy string is an element of the
product space of all included site spaces in the fully disor-
dered structure. The product of site spaces in its most general
form is given by

σ ∈ �1 × �2 × �3 × · · · = �. (2)

The expression in Eq. (2) of the configuration space is
universal. Equation (2) includes single lattice structures, such
as simple alloys where all site spaces �i = � are the same,
as well as ionic structures where more than one unique site
space must be used to represent the configuration space. All
sites with the same associated site spaces are said to belong
to the same sublattice [37]. Specifically, the CE for an ionic
system with more than a single sublattice was referred to as
a coupled cluster expansion in its original development [7].
This scenario can be explicitly expressed by grouping equal
site spaces (i.e., those corresponding to distinct anion and
cation sublattices). For example, for an ionic system with one
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B
ΩB = {r = 0, g = 1}

A1

ΩA = {c = 0, b = 1, y = 2}

A2

A1

A2

B

(a)

(b)

FIG. 1. (a) Illustration of the configuration space as a hypergrid for the triangular figure shown on the left. The figure has two ternary sites,
A1 and A2, where the allowed species are represented by the colors cyan (c), blue (b), and yellow (y), and one binary site B with allowed species
red (r) and green (g). The vertex of the hypergrid corresponding to a specific configuration, σ = (blue b = 1, yellow y = 2, green g = 1), is
pointed out as an example of a point in the (A1, A2, B) configuration space. (b) An example for the configuration space of a two-dimensional
(2D) rocksalt material represented by the underlying disordered structure on the left. A few sample configurations over a supercell of 32 sites.
The hypergrid for this supercell would be in 32 dimensions and has two or three vertices per dimension depending on what type of site (cation
or anion) the dimension corresponds to.

anion and one cation sublattice, the configuration space can
be expressed as

� = (×i∈A�i ) × (×i∈C�i )

= �
NA
A × �

NC
C = �A × �C, (3)

where A and C denote the sites in the anion and cation sublat-
tices, respectively, and NA and NC refer to the number of anion
and cation sites in their respective sublattices.

The configuration space in Eq. (2) can be formally repre-
sented as a hypergrid. Figure 1(a) shows the configuration
space for a hypothetical finite three-site structure with two
ternary sites (A1, A2) and one binary site (B). The config-
uration space is depicted as the representative disordered
structure and the corresponding three-dimensional configu-
ration grid. Increasing the number of allowed species at a
site translates to adding vertices to the hypergrid along the

corresponding dimension. And adding more sites to the struc-
ture increases the dimension of the hypergrid, since the
dimension of the configuration space is equal to the number
of sites in the given system. For a structure with N sites
the configuration space corresponds to a hypergrid in N di-
mensions. Figure 1(b) shows the configuration space for a
rocksalt system as its underlying disordered crystal structure.
Figure 1(b) also shows four configurations for a supercell of
32 sites, which could be represented as particular vertices in a
32-dimensional hypergrid.

The CE method in its most general form is used to repre-
sent functions H (σ) over the configuration space (hypergrid)
� in Eq. (2),

H : � → R. (4)

The codomain of H in Eq. (4) does not need to be
R. In fact, as mentioned previously, CE models have been
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used to represent vector and tensor properties of materials
[33–35,38,39].

Furthermore, since the CE method is used to study crys-
talline materials, the method by construction ensures that the
functions represented are invariant to symmetry operations of
the underlying disordered structure,

H (Tπ (σ)) = H (σ ), (5)

where Tπ is a symmetry operation of the underlying disor-
dered structure, which is formally represented as permutations
of the elements of the configuration string σ.

In the following sections, we present the formalism and
details involved in constructing the basis functions necessary
to represent the functions in Eq. (4) that satisfy the necessary
symmetry invariance.

1. Functions over single site spaces and configuration spaces

It has been shown in the development of the CE method [4]
and is generally known from discrete harmonic analysis [40]
that a basis for the function space over a product space can be
obtained by taking the tensor product of basis functions over
the single (site) spaces included in the product space.

Any linearly independent set of functions {φ0, . . . , φn−1}
of size equal to the dimension of the corresponding site space,
n = |�i|, constitutes a basis for the space of functions over a
single site space �i [40]. As such, any site function f (σi ) can
be expressed as

f (σi ) =
n−1∑
j=0

a jφ j (σi ), (6)

where a j are scalar expansion coefficients.
The three most common site basis sets used in the CE

method are the following: (i) polynomial [4],

φ j (σi ) =
{∑ j/2

k=0 ckσ
2k
i if j is even∑( j−1)/2

k=0 ckσ
2k+1
i if j is odd,

(7)

where the coefficients ck are chosen so that the basis is or-
thonormal; (ii) trigonometric or sinusoidal [2],

φ j (σi ) =
⎧⎨
⎩

1 if j = 0
− cos

(
π ( j+1)σi

ni

)
if j is odd

− sin
(

π jσi

ni

)
if j is even,

(8)

where ni is the number of allowed species on the ith site; and
(iii) indicator or occupation [41],

φ j (σi ) =
{

1 if j = 0
1σ j (σi ) if j > 0,

(9)

where 1σ j (σi ) are singleton indicator functions, 1σ j (σi ) = 1 if
σi = σ j and 0 otherwise.

The CE method as originally developed [4] involves an
orthonormal basis with respect to the following inner product:

〈F, G〉 = 1

|�|
∑
σ∈�

F (σ)G(σ ). (10)

In order to obtain an orthonormal cluster basis, it suffices
to make the sets of site basis functions orthonormal over their

corresponding site space �i [4,40] under an associated inner
product,

〈 f , g〉 = 1

|�i|
∑
σi∈�i

f (σi)g(σi ). (11)

We note that, from the given examples of site basis sets,
only the polynomial basis is orthonormal. The trigonometric
basis set is only orthogonal (not properly normalized) for site
spaces with more than two allowed species. The indicator
basis is not orthogonal whatsoever. Though orthonormality is
not necessary, orthonormal basis sets have convenient math-
ematical and theoretical properties that were discussed in the
original development of the CE method [4].

A basis for the function space over the product space �

is obtained by taking the tensor product of single site bases,
which in the present case is simply done by taking all possible
N-fold products of site-basis functions,

�α(σ) =
N∏

i=1

φαi (σi ), (12)

where α = (α1, α2, α3, . . .) is a multi-index where each entry
αi ∈ {0, . . . , ni − 1} labels the corresponding site basis func-
tion φαi for each site i with a total of ni allowed species, and
N is the number of sites.

By including the constant site basis function (φ0 ≡ 1) in
all site basis sets, the tensor product basis {�α} will have a
clusterlike structure [4,42], such that the products in Eq. (12)
reduce to terms that include only nonconstant site functions
acting over a given cluster of sites. We call these basis sets a
cluster basis. By using the multi-index α the clusters of sites
are also conveniently indexed by the sites in the support of the
multi-index (the support is defined as supp(α) = {i; αi �= 0}).
The process of constructing a cluster basis for the space of
functions over the configuration space depicted in Fig. 1(a) is
shown schematically in Fig. 2.

Using a cluster basis {�α} any function over configuration
space � can be expanded accordingly as

F (σ) =
∑

α

aα�α(σ), (13)

where the sum runs over all possible multi-indices α in
the Cartesian product of the sets of values each element
αi ∈ {0, . . . , |�i| − 1} can take (i.e., the number of distinct
site basis functions for each site). Written succinctly, α ∈
{0, . . . , |�1| − 1} × {0, . . . , |�2| − 1} × · · · . This Cartesian
product has an exponentially growing number of terms. When
fitting a CE in practice, the summation in Eq. (13) is truncated
by only considering a small set of cluster basis functions
with small support (commonly supp(α) � 5 is more than suf-
ficient) and that operates over clusters of sites within small
radial cutoffs in the underlying structure.

2. Symmetrically invariant functions over configuration spaces

Symmetry operations of the disordered crystal structure
are applied to configuration strings as the corresponding per-
mutation of site variables. Any such permutation must leave
the function value unchanged. In order to obtain symmetry
invariance, a basis of correlation functions is constructed from
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HB = L2(ΩB)

φ
(B)
0 ≡ 1

φ
(B)
1

×

HA = L2(ΩA)

φ
(A1)
0 ≡ 1

φ
(A1)
1

φ
(A1)
2

×

HA = L2(ΩA)

φ
(A2)
0 ≡ 1

φ
(A2)
1

φ
(A2)
2

=

HBA1A2
= L2(ΩB × ΩA × ΩA)

1
...

φ
(B)
1
...

φ
(A1)
1 φ

(A2)
1

...

φ
(B)
1 φ

(A1)
2 φ

(A2)
2

FIG. 2. Schematic illustrating the construction of a product basis from a set of site basis functions for functions over the configuration
space illustrated in Fig. 1(a). The construction of subsets of product basis functions from the corresponding site basis functions are depicted
with the colored arrows. The total number of basis functions for the product (configuration space) in this example is 18. The site spaces HA

and HA and the product space HBA1A2 are L2 Hilbert spaces over their respective domains.

a cluster basis set by applying the Reynolds operator [43,44],
i.e., performing a symmetry average. Correlation functions are
explicitly expressed by

�β (σ) = 〈�(σ)〉β = 1

Nσmβ

∑
α∈β

�α(σ), (14)

where β represents orbits of symmetrically equivalent multi-
indices—obtained from permutations of the multi-index
elements corresponding to the underlying crystallographic
symmetry. Nσ is the normalization size of configuration σ,
expressed in terms of the chosen normalization unit. A natural
unit for size normalization is a crystallographic primitive cell.
However, any unit cell choice is valid as long as it is used
consistently. The constant mβ is the multiplicity of the orbit β

per normalization unit.
A set of correlation functions represents a basis over a

symmetrically invariant function subspace of the whole func-
tion space over configurations. Therefore, any symmetrically
invariant function of a crystal’s configuration can be expanded
accordingly:

F (σ) =
∑

β

NσmβJβ�β (σ), (15)

where Jβ are expansion coefficients also known as effective
cluster interactions (ECIs).

For notation convenience, one can group the values of
all correlation functions for a specific configuration σ into a
correlation vector expressed as

�(σ) = [�0 ≡ 1,�β1 (σ),�β2 (σ), . . .], (16)

such that the expression for the cluster expansion in Eq. (15)
can be written as the vector dot product between �(σ) and J,

F (σ) = �(σ) · J, (17)

where we have implicitly accounted for the multiplicities of
each term mβ in the vector of expansion coefficients J.

For a finite or truncated cluster expansion, with only cor-
relations acting over a predefined and finite set of clusters, we
will write

F (σ) = �T
σ J, (18)

where �σ is a truncated correlation vector for occupancy σ; it
is implied that the coefficient vector is finite and of dimension
matching that of �σ .

B. Cluster expansions of ionic materials

In this section we introduce considerations for constructing
CE models specifically for ionic materials. A handful of im-
portant issues arise when using the CE method to fit properties
of ionic materials due mostly to the fact that species (ions)
are charged. The first issue involves long-range electrostatic
interactions, which has been addressed to some extent in the
literature [6,9,45]. The second issue, which to our knowledge
has not been formally addressed, relates to the composition
constraints that configurations of an ionic material must meet
in order to satisfy charge neutrality. Long-range electrostat-
ics and charge composition constraints considered together
produce another set of complications that includes species
oxidation state assignment, mapping highly relaxed structures
onto the fixed CE structure, and dealing with cluster config-
urations whose energy is inaccessible in density functional
theory (DFT) calculations.

1. Charge-neutrality constraints

Charge-neutrality constraints on composition can be ex-
pressed as a sum of the oxidation states associated with the
values of the elements in a configuration string in the follow-
ing manner: ∑

σi∈σ

z(σi) = 0, (19)

where z(σi) represents a mapping from the species represented
by the occupation variable σi to its corresponding oxidation
state.

Although Eq. (19) is straightforward, it has important
repercussions in both the formalism of the CE and in its prac-
tical application to ionic material systems with heterovalent
ions. Composition constraints formally change the domain of
valid configurations, such that the function space over the
configurations of a heterovalent ionic material system is not
the same as the product configuration space � introduced
in Eq. (2). More specifically, the configuration space �̂ of
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B
ΩB = {r = 0, g = 1}
zr = −2, zg = −3

A1

ΩA = {c = 0, b = 1, y = 2}
zc = 1, zb = 1, zy = 2

A2

A1

A2

B

A1

A2

B = 0

B = 1

FIG. 3. Illustration of the configuration space as a slice of the hypergrid for the triangular figure shown on the top. The figure has two ternary
sites A1 and A2 and one binary site B, and the labeled ternary sites and binary site have positive and negative oxidation states, respectively. The
charge-neutral slice of the original unconstrained three-dimensional (3D) grid is shown as the grid points intersected by the orange planes. The
2D figure depicts the constrained space where the occupation of the binary site is implicit given the occupations of the two ternary sites based
on charge-neutrality constraints.

an ionic material system is a set of slices of the product
configuration space—or equivalently a set of slices of the
configuration hypergrid, given as

�̂ =
{

σ ∈ � :
∑
σi∈σ

z(σi ) = 0

}
. (20)

By construction |�̂| � |�|. The constrained space �̂ is
equal to the unconstrained space only for cases where all
species associated with each sublattice in the system are isova-
lent; thus every point in the full configuration space is charge
neutral. Furthermore, since the total number of functions in
a product basis over � is precisely |�|, a set of product
basis functions is overcomplete for the function space over
the constrained configuration space �̂ of a heterovalent ionic
system. Consequentially, orthonormal or orthogonal CE basis
sets have no such orthogonality properties when restricted
to �̂.

Figure 3 shows an example of the configuration space
with composition constraints for the previously introduced
three-site system from Fig. 1(a). The composition constraints
considered in the example reduce the total number of con-
figurations in the unconstrained configuration space from 18
configurations to only 8 charge-neutral configurations. Addi-
tionally, since the configuration can be expressed by explicitly
specifying the occupation of two out of the three sites, the
configuration grid can be represented in a lower dimension as
shown. These observations extend to higher-dimensional con-
figuration spaces such that, when charge-neutrality constraints
are considered, the dimensionality of the constrained space is
effectively reduced, and the total number of configurations is
in most cases substantially reduced.

The overcompleteness of the CE for ionic materials does
not formally prevent its use, since the set still spans the
functions over charge-neutral configurations. However, since
it is overcomplete, the set of all correlation functions is not
linearly independent. The result is that the use of an overcom-
plete set to express functions over a configuration space with
composition constraints �̂ introduces linear dependencies be-
tween correlation functions. This implies that—in contrast to
systems without any active composition constraints such as
metallic alloys—material properties of ionic materials as a
function of their configuration do not have a unique cluster
expansion for a given set of CE correlation functions.

The simplest case can be illustrated by considering the
most trivial linear relation that arises among the constant and
single-site cluster functions only,∑

k

ρk�k (σ) + ρ∅ = 0, (21)

where the sum runs over all orbits k with single-site clusters
only, and the constants ρk can be obtained from the com-
position constraints in Eq. (19), the respective multiplicities
associated with each point function, and the particular choice
of site basis set used.

To further illustrate these linear dependencies, consider the
constant and set of single-site correlation functions based on
site indicator functions for the system in Fig. 3. The resulting
linear constraint is

〈1r (σ)〉 − 〈1t (σ)〉 − 〈1b(σ)〉 − 1 = 0. (22)

The example constraint in Eq. (22) results in linear depen-
dencies that give rise to infinitely many expressions for the
same CE. This implies that, once a set of ECI coefficients
is obtained for a particular CE, the ECI can be transformed
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according to

J ′
∅ = J∅ − x,

J ′
r = Jr + x,

J ′
t = Jt − x,

J ′
b = Jb − x,

for any scalar x. The CE with transformed ECI represents
exactly the same function as the one with the original set of
ECI.

Additional linear dependencies exist among higher-order
correlation functions as well. Referring again to the finite
example in Fig. 3, the following linear relationships exist
among pair functions:

〈1r (σ)1t (σ)〉 − 〈1t (σ)1t (σ)〉 − 1
2 〈1t (σ)1b(σ)〉 = 0,

〈1r (σ)1b(σ)〉 − 〈1b(σ)1b(σ)〉 − 1
2 〈1t (σ)1b(σ)〉 = 0.

In order to remove the resulting linear dependencies, one
could in theory remove |�| − |�̂| functions to obtain a lin-
early independent set. However, for real bulk ionic systems,
obtaining analytical expressions for the linear relationships
among higher-order correlation functions may be too lengthy
of a task, let alone constructing an orthogonal basis set which
is far from trivial. Furthermore, it is not clear that removing
all linear dependencies is even necessary. The cluster basis
still spans the constrained configuration space, and the CE
method has been successfully used as is to fit properties of
ionic materials [8–10,19,21,46–50]. Indeed, the deleterious
effects of linear dependencies on ECI can be managed with
appropriate sampling strategies and choices of regularization
during fitting, as we describe in Sec. III.

2. Long-range electrostatic interactions

The physical nature of long-range electrostatic interactions
complicates a critical underlying premise of the CE method
under which truncation is justified by rapid decay of corre-
lations with respect to physical distance between sites. For
example, in the case of a system with only Coulomb inter-
actions on a rigid lattice, the terms of the CE can be easily
solved for analytically [6]. For the specific case of a binary
system with sites with either positive charge q+ or negative
charge q−, an expansion using a polynomial site basis will
have pair correlation terms with ECI given by

Ji j = κ (q+ − q−)2

4ri j
. (23)

The ECI for pair terms decays slowly as the underlying
Coulomb potential ∼r−1. This slow decay in theory requires
longer pair clusters to be included in a CE to correctly capture
the long-range electrostatic interactions.

It was demonstrated that when only structures with electro-
static energy below a prescribed energy cutoff are considered
for the simple binary system with only +q and −q charged
species, a CE with rapidly converging ECI can be obtained
[6]. Furthermore, such CE was shown to have low prediction
error for out-of-sample structures below the prescribed energy
cutoff [6]. This can be attributed to the locally neutral environ-
ments associated with low-electrostatic-energy structures [6].

For more complex ionic systems, such as those with
heterovalent species and/or cases including the effects of
structural relaxations, considering only low-electrostatic-
energy configurations and simply truncating the CE is usually
not sufficient to ensure accurate and sufficiently sparse CE
models with only short-range terms [45]. Even CE models
with acceptable cross-validation (CV) scores may result in er-
roneous MC sampling—such as states with unphysical charge
segregation—for large supercells when long-range interac-
tions are not correctly accounted for.

A very effective way to handle systems with strong elec-
trostatic interactions has been proposed and tested empirically
[45,51,52]. By including an electrostatic term along with the
CE Hamiltonian, a sparse and accurate CE model can be con-
structed much more reliably, and MC sampling is improved
by more accurately computing long-range electrostatics even
in large supercell sizes that were absent in the training set.
To do so, the CE and electrostatic interaction Hamiltonian is
expressed as the following mixture model:

H (σ ) =
∑

β

mβJβ�β (σ) + 1

εr
EC (σ), (24)

where EC represents the point electrostatic energy for a
Coulomb potential, which can be computed efficiently and
to high accuracy using the Ewald summation method [53] or
the fast multipole method [54]. The constant εr , which can be
interpreted as an effective dielectric constant, should be fitted
simultaneously by including the electrostatic term directly as
a feature in the regression problem.

To illustrate the shortcomings of a CE in capturing electro-
statics in heterovalent systems and the improvements obtained
when including an explicit electrostatic term, we carried out
several CE fits of a Coulomb electrostatic potential, as well
as a sum of a Coulomb and a Buckingham pair potential.
Both potentials were computed for a system with heterova-
lent (+1,+3 cation and −1,−2 anion) charges in a rocksalt
structure. Further details, parameters, and results of the cal-
culations are given in the Supplemental Material [55]. The
expansions used to fit the Coulomb potential included cor-
relation functions only (i.e., no explicit electrostatic term).
An expansion with correlation functions only and one with
correlation functions and an electrostatic term were used to
fit the Buckingham-Coulomb potential. All fits were carried
out including the constant term, all point correlations, and
various sets of pair correlations with increasing pair distance.
Fits were also done with three different training sets: one with
structures only up to 16 sites, another with structures up to
36 sites, and the last one with structures up to 64 sites. In all
cases, an out-of-sample set of structures with up to the same
number of sites used in training was kept for validation. An
additional set with structures up to 144 sites was used to test
the accuracy of extrapolated predictions to larger superstruc-
tures. For all the cases a total of 50 fits randomly shuffling
training and validation structures were carried out.

Figure 4 shows curves for the resulting prediction accuracy
metrics with their corresponding standard deviation for the
previously described fits. Based on Figs. 4(a) and 4(b), we
see that including longer-range pairs in the CE models with-
out explicit electrostatics monotonically improves prediction
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FIG. 4. Prediction accuracy metrics for CE fits of empirical pair potentials of heterovalent (+1, +3 cation) and (−1, −2 anion) charges
in a rocksalt structure. The metrics shown are root-mean-square error (RMSE) cross-validation score (CV), in-sample RMSE (in), and out-
of-sample RMSE (out) with supercells with the same number of sites as the listed training structure size, and extrapolation RMSE to larger
supercell sizes up to 144 sites (ext). Shaded areas denote ± one standard deviation for 50 different fits. (a) Accuracy metrics for CE fits of a
Coulomb potential only. (b) Accuracy metrics for CE fits of a Buckingham-Coulomb potential. (c) Accuracy metrics for a CE and electrostatic
model fits of a Buckingham-Coulomb potential.

accuracy for samples of similar sized supercells. However, the
extrapolation prediction of longer-period superstructures is
severely compromised. The extrapolation prediction accuracy
can only be reduced by adding pairs with distances up to those
sampled in the training set structures. Including pairs with
longer distances that are not present in the training set ruins
the extrapolation accuracy.

Figure 4 also shows that including larger-period super-
structures in training improves fits, as previously suggested in
similar work [45]. However, doing so, such that the resulting
CE converges to an acceptable level of accuracy, requires very
large (and in many cases prohibitively large) data sets that
must include large supercell structures. Furthermore, when
fitting CE models of ionic systems with more complex phys-
ical interactions in addition to long-range electrostatics, these
issues can become worse such that fitting a reliable cluster ex-
pansion that captures both short- and long-range interactions
is not straightforward.

In contrast, Fig. 4(c) shows fit metrics for the same
Buckingham-Coulomb potential as Fig. 4(b), but for a fit using
the CE with an explicit point electrostatic term computed
with the Ewald summation method. The results show that the

addition of the point electrostatic term in the CE substantially
improves the resulting accuracy. Furthermore, by setting the
cutoff for CE terms relatively shorter (�8 Å), the resulting
fit is substantially improved and has high prediction accuracy
even for longer-period superstructures. These results are also
consistent with previous results computed for a similar point
charge system with a spinel structure [45].

In addition, Fig. 5 shows prediction accuracy metrics and
the fitted value for the effective dielectric constant in terms of
the regularization hyperparameter. As the error in the fit con-
verges, the value of the fitted dielectric constant approaches
the true value used in the Buckingham-Coulomb potential,
meaning that the electrostatic interactions are exactly captured
by the electrostatic term, and the CE needs only to capture the
short-range Buckingham interactions.

In the case of this simple additive potential, the conver-
gence of the dielectric is only illustrative and the use of
regularization is actually not necessary since the fit converges
at the lowest values of the regularization hyperparameter. In
fact ordinary least squares (OLS) can be used to correctly fit
the Buckingham-Coulomb potential, since the short-ranged
Buckingham interactions can be almost exactly captured by
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FIG. 5. Prediction accuracy and value of fitted effective dielec-
tric constant vs Lasso regularization hyperparameter for a fit of a
Buckingham-Coulomb potential using a CE and electrostatic model.

short-range correlation functions, and the electrostatic energy
is exactly captured by the Ewald summation. Table I lists the
fitted dielectric values and accuracy metrics for the same CE
with point electrostatic term using OLS, Ridge regression, and
the least absolute shrinkage and selection operator (Lasso).

The results in Figs. 4 and 5 show convincing evidence
that including a point electrostatic term in a CE effectively
captures the long-range point electrostatics and allows the CE
to represent short-range interactions. While we cannot expect
to recover a true dielectric constant when using first-principles
calculations of a real material, it can be considered an effective
dielectric constant for the model. Furthermore, the addition of
the point electrostatic term has been shown to substantially
improve the stability and performance of a CE fit using DFT
energies, particularly for prediction values of longer-period
superstructures [45,52].

III. FITTING CLUSTER EXPANSIONS TO AB INITIO DATA

In theory, a cluster expansion as expressed in Eq. (15)
or Eq. (17) can exactly represent any function of configu-
ration if all expansion terms—which is infinitely many for
bulk systems—are included. In practice, a CE is truncated
and fit using a training set of representative structures and
energies calculated using first-principles methods such as
DFT. The general concept of using a least-squares regres-
sion to fit a CE was first proposed as the structure inversion
method [66]. More recently a variety of linear models with
different forms of regularization have been proposed in the
literature [28–30,42,67,68]. The general form of a regularized

regression optimization problem is

J∗ = argmin
J

||�J − E||22 + ρ(J), (25)

where � ∈ Rm×d is a correlation matrix (feature matrix)
where the rows are truncated correlation vectors �σ ∈ Rd

for m training structures. E ∈ Rm is a vector of calculated
energies for each of the m training structures. J, J∗ ∈ Rd are
vectors of the expansion coefficients (ECI times their orbit
multiplicities). The function ρ is a regularization term, which
usually involves a norm or pseudonorm of the coefficients J.

The overall process necessary to obtain a converged,
sparse, and accurate CE model for a complex ionic material
usually requires an iterative procedure. Figure 6 shows a gen-
eral workflow diagram of the steps necessary to successfully
fit a CE. Obtaining an adequate feature matrix � for a CE of
a real system, and in particular for a complex ionic system
such as a DRX or PDS multicomponent oxides, requires a
sequence of nuanced preparation steps that are still the subject
of active study. Additionally, the choice of the regularization
is of critical importance such that recovered ECI should in
principle follow predefined priors, sparsity patterns, and/or
hierarchical relations.

In this section we will first briefly describe the training
data preparation and preprocessing necessary to obtain an
appropriate training set (�, E ). In particular, we will briefly
introduce structure sampling methods geared to obtain well-
conditioned feature matrices. We also touch on methodology
to effectively assign oxidation states in ionic systems us-
ing DFT magnetic moment results. We additionally describe
structure matching methodology to account for large structure
relaxations that commonly occur in ionic materials systems
that include both oxidation states and vacancies. We also
discuss the effects and offer practical solutions for handling
systems with physically inaccessible configurations, such as
those that undergo substantial relaxation and can no longer be
mapped to the underlying disordered structure.

Lastly, we provide an exposition of penalized regression
algorithms that yield sparse solutions and can be used to suc-
cessfully fit CE models of complex ionic materials with a large
number of active components. We particularly emphasize
those that yield models with structured sparsity by including
group regularization and/or hierarchical constraints. We have
found that a structured sparsity regression paradigm yields
more robust, accurate, and sparse models compared to stan-
dard Lasso-based fits.

The methodology discussed here is not meant to be exhaus-
tive or conclusive. More so, it represents methodology that
can be further optimized, but that we have found particularly
effective in dealing with the aforementioned challenges that

TABLE I. Fitted dielectric constant and accuracy metrics in meV/f.u. using ordinary least squares (OLS), and Ridge and Lasso regression.
The exact dielectric value in the model is 4.5.

Regression Fitted dielectric CV score In RMSE Out RMSE Extrapolation RMSE

OLS 4.494 NA 0.235 0.242 0.365
Lasso 4.543 0.372 0.297 0.347 0.343
Ridge 4.502 0.314 0.263 0.272 0.337
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FIG. 6. General workflow diagram depicting the necessary steps
required to generate and prepare training data and successfully fit a
converged, sparse, and accurate CE of a complex ionic material.

occur when fitting CE models over high-dimensional configu-
ration spaces, particularly in high-component ionic materials.

A. Training data generation and preprocessing

1. Training structure sampling

Sampling of representative training structures is a critical
step to obtain useful CE models. Ideally structure sampling
can cover all of the relevant areas of configuration space—
areas such that CE predictions are interpolating rather than
extrapolating. However, completely covering all relevant ar-
eas of very large configuration spaces is usually not possible.

The vast majority of all possible configurations tend to
be concentrated at particular correlation function values [69].
These have been previously named majority structures. And
structures far from those correlation values have been named
minority structures [69]. The values of orthogonal correlation
functions concentrate at the origin for uniformly sampled con-
figurations in systems without any composition constraints.
This has been well known in studies of metal alloys [69].

However, this is not the case in ionic systems because charge-
neutrality constraints reduce the number of allowed points in
configuration space as detailed in Sec. II B 1. Instead, corre-
lation functions in ionic systems, or more generally systems
with composition constraints, will concentrate at different val-
ues based on the particular set of constraints.

Figure 7(a) shows the number of structures in the LMTOF
system at two correlation values for a set of charge-neutral
and a set of unconstrained (including charged) uniformly
random sampled structures. The vast majority of structures
are concentrated around particular correlation values [yellow
pixels in Fig. 7(a)]. Additional correlation sample values for
a sinusoid and indicator basis as well as sampling details are
described in the Supplemental Material [55]. These distribu-
tions of correlation function values can differ substantially
between the case of unconstrained and constrained configu-
ration spaces. The highly biased distribution of correlation
functions in ionic systems, which results in higher coher-
ence or similarity between correlation functions, should be
considered when using structure sampling mechanisms that
have been developed considering unconstrained configuration
spaces only [1,27,28,67,69,70].

Structure sampling approaches generally depend on the
relationship between the number of structures, m, and the
number of correlation functions, d , that will be used in fitting
a CE model. Based on the relationship between m and d (i.e.,
the shape of the correlation matrix �), the linear system in
Eq. (25) can be categorized as an overdetermined problem
(m > d) or an underdetermined one (m < d). For an ionic ma-
terial, the full linear system is always underdetermined, but,
based on the cluster cutoffs used to truncate the expansion, the
resulting linear system can be made overdetermined. Structure
sampling methods and their mathematical rationalization dif-
fer accordingly based on the relationship between m and d .

Most theoretical properties as well as the practical stabil-
ity of regression depend on the correlation matrix � being
full rank, rank(�) = min{m, d}. In other words the rank is
equal to the number of columns for the overdetermined case
(when m > d), and it is equal to the number of rows in the
underdetermined case (when m < d). We briefly discuss the
two situations and how they pertain to structure sampling
of ionic materials. Figure 8 shows two flow-charts depicting
established training data sampling processes used to fit a CE
using an overdetermined and underdetermined (compressive
sensing) linear system respectively.

For the overdetermined case, a full-rank matrix is one in
which the sampled values for each correlation function (i.e.,
feature vectors) are linearly independent. For any finite set of
samples there is likely to be a combination of intrinsic linear
dependencies (those introduced in Sec. II B 1) and insuffi-
cient sampling that contribute to rank deficiencies in �. Rank
deficiency can be further aggravated by configurations with
energies that are inaccessible to first-principles calculations,
which we address in more detail in Sec. III A 4. Furthermore,
based on the aforementioned effects of charge-neutrality con-
straints, obtaining a full-rank overdetermined feature matrix
in ionic systems is technically never possible (unless, as
previously mentioned, correlation functions that give rise to
intrinsic linear dependencies are removed). Appropriate sam-
pling should seek to minimize the former effects and improve
the overall rank of the correlation matrix.
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(a) (c)

(b)

FIG. 7. (a) Histograms of uniformly random sampled structures in terms of a pair �p and triplet �t sinusoid basis correlation values
for charge-neutral configurations only and unconstrained (any possible) configurations. (b) Gram matrices (coherence) for random sampled
structures and Gaussian sampled sinusoid site basis correlation vectors for a LMTOF system using the following cutoffs: 7 Å for pairs, 5 Å
for triplets, and 5 Å for quadruplet clusters (only a subset of the total 994 correlation functions are shown for better visualization). (c) An
illustration of orbit submatrices making up a correlation matrix. Orbit submatrices correspond to all correlation functions that act over the
same set of symmetrically equivalent clusters, as depicted by the schematic triplet cluster below. Orbit submatrix rank deficiency for a set of
sampled correlation vectors for the LMTOF rocksalt system.

In overdetermined cases, even though m > d , the rank(�)
can be smaller than d . Under such circumstances, the rank(�)
can be increased by adding more structures to cover a wider

range of correlation values and/or by including additional
correlation functions that introduce new linearly independent
features. In simple systems this can minimize the rank defi-

FIG. 8. (a) Sampling procedure for overdetermined problems, including initialization of inputs for DFT calculations, fit of the CE model,
convergence checks, and addition of probe (additional) structures [27]. The probe structures are selected by maximizing the reduction of
leverage score (uncertainty) between previous set S and new set Ŝ. (b) Sampling procedure for the compressive sensing cluster expansion. In
such a procedure, structures are selected by selecting correlation vectors σ that most closely align with uniformly random vectors over the
hypersphere �π [28].
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ciency up to only the trivial linear dependency between point
functions from the constraint of charge neutrality, but for
more complex high-dimensional systems this procedure may
not be tenable based on the large number of structures that
would be required to appropriately sample the fast-growing
charge-constrained configuration space.

Nevertheless, overdetermined penalized linear regression,
in particular variants of the Lasso (�1-norm regularization),
with rank-deficient matrices still yield valid solutions with
which useful CEs can be constructed. As explained previ-
ously, the solutions will be degenerate (i.e., certain linear
transformations of the estimated ECI will represent the exact
same CE) [71,72], but this degeneracy is not by itself a prac-
tical point of concern. Instead the focus of structure sampling
should be on improving the predictions and variances for a
fitted CE for any acceptable estimates of ECI.

To simplify our analysis of prediction variance, we assume
that a fitted CE model is fitted with an overdetermined, full-
rank correlation matrix and captures the real target energy as
follows:

E(σ) = �T
σ J + ε, (26)

where E(σ) is the real energy, and ε is a random error with
heteroskedastic uncorrelated variances, cov(ε) = s2I .

Under the assumptions above, the variance of the predicted
energy by a CE fitted with least-squares regression can be
expressed as [1,27,29]

Var[ECE(σ)] = s2�T
σ (�T �)−1�σ, (27)

where s2 represents the variance from intrinsic noise in the
DFT calculations for a given population of structures, and �σ

is the truncated correlation vector for the particular occupancy
σ used in prediction. The expression above can be adjusted for
penalized regression models under a Bayesian interpretation
[29]. However, for the purpose of our current explanation,
Eq. (27) is sufficient.

According to Eq. (27), the average variance for predicted
energies is given as

〈Var[ECE(σ)]〉 = σ 2

|S|
∑
σ∈S

�T
σ (�T �)−1�σ

= σ 2

|S| trace(H ), (28)

where S is the number of training structures. H =
�T (�T �)−1� is the so-called hat matrix [73], and its diago-
nal elements Hii are the predicted variances for a particular
structure, which are also known in the statistics literature
as leverage scores. The leverage score ranks the uncertainty
of the corresponding probe occupancy σ into high-leverage
or low-leverage points according to regression diagnostics
[74]. A handful of methods for structure sampling have been
proposed that seek to minimize the average leverage score,
or equivalently maximize the reduction in average predicted
variance, for each additional structure included [1,27,29].
These methods can lead to improved robustness and accuracy
in CE fits of ionic systems.

For the underdetermined linear regression case (m < d),
obtaining a full-rank correlation matrix is much more straight-
forward. An underdetermined system has full rank when all

correlation vectors (rows of � are linearly independent), as
opposed to linearly independent correlation functions. In such
a case, maximizing the rank(�) � m instead requires obtain-
ing m structures with linearly independent correlation vectors.

Since there are more unknowns than samples, sampling
and regression for an underdetermined CE system is suitably
addressed within the framework of compressive sensing (CS).
As revealed by previous studies, a CS approach to cluster
expansions can result in accurate and sparse solutions of
ECIs using a relatively small amount of DFT measurements
compared to the number of correlation functions (m  d)
[28,75]. However, the necessary structure sampling for classi-
cal CS that maximizes the probability of accurate coefficient
recovery has strict requirements based on the coherence—a
measure of the degree of similarity—among the sampled cor-
relation functions [67,76].

It is well known that certain probabilistic sampling meth-
ods will yield feature matrices that satisfy these requirements
with high probability [28,76]. Sampling methods resulting in
correlation matrices appropriate for CS have been proposed in
the context of the CE method for metallic alloys. Specifically,
correlation matrices appropriate for CS can be obtained by
sampling correlation vectors that are random and independent
and identically distributed (i.i.d.) over the unit hypersphere
[28,67].

However, charge-neutrality constraints and strong electro-
static interactions complicate such random sampling in ionic
systems. As an illustration of this, two normalized Gram
matrices G = �T � for the first 200 correlation functions
from a set of 994 are shown in Fig. 7(b) for sinusoid basis
correlation functions of a LMTOF system. The left-hand ma-
trix corresponds to low-electrostatic-energy enumeration for
cells up to 64 atoms, and the right-hand matrix corresponds
to structures with correlations as close as possible to i.i.d.
random vectors on the unit hypersphere. The i.i.d. sampling
was done according to the method from Nelson et al. [67]
from a pool of 1251 structures of supercell sizes up to 144
sites. The elements Gi j of Gram matrices are the dot product
of sampled correlation function values i and j, which measure
the level of coherence between correlation functions i and
j. High coherence or similarity between sampled correlation
functions is visualized as the off-diagonal yellow pixels. From
left to right, although a slight decrease of the coherence
values between sampled correlation vectors is successfully
obtained, the maximal coherence, which is often taken as
the coherence value for the full matrix, remains unchanged,
and the coherence is likely too high to reliably use CS re-
covery of ECIs. The comparison indicates that generating
structures to obtain correlation matrices that approximate i.i.d.
random matrices may not be an effective way to minimize
the coherence for classical CS. The full Gram matrices for
all 994 correlation functions are shown in the Supplemental
Material [55].

Nonetheless, in a recent study we have found that for
underdetermined systems in CEs of ionic materials, the over-
complete nature of the correlation basis can be leveraged
under a newer variant of CS that relies on redundant expansion
terms [77]. This form of CS with redundancy can be used
to fit sparse and accurate CEs even with highly coherent
sampling [75].
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FIG. 9. (a) The magnetization distribution of Mn calculated with GGA+U in the system of Li1.2Mn0.6Nb0.2O2.0. The valence of each
Mn atom is determined by the onsite Bohr magnetization μB. From the histogram, we can manually estimate the boundary for Mn4+/3+

and Mn3+/2+ classification to be 3.6μB and 4.2μB. (b) The magnetization distribution of Mn calculated using the strongly constrained and
appropriately normed (SCAN) density functional in the system of Li-Mn-O-F; a more continuous distribution is observed. The boundary for
Mn4+/3+ and Mn3+/2+ classification is 3.22μB and 4.08μB, determined by Bayesian optimization via Gaussian processes.

Though it is hard to obtain a full-rank feature matrix
for overdetermined systems, or a low-coherency matrix for
compressive sensing in an overdetermined system, it is still
feasible to obtain accurate and well-converged CE models by
also relying on appropriate use of structured sparsity regular-
ization. By classifying correlation functions into groups based
on the unlabeled clusters over which they operate, the corre-
lation matrix can be analyzed in terms of orbit submatrices.
An orbit submatrix of a given correlation matrix is made up
of all the column vectors that correspond to the same orbit of
unlabeled clusters (i.e., the same orbit of geometric figures).
Figure 7(c) shows a schematic illustration of a correlation
matrix and its orbit submatrices. For such regularization,
structure sampling should strive to keep the orbit submatrices
of the training correlation matrix � full rank or as close to
full rank as possible. Without full-rank (or near-full-rank)
orbit submatrices grouped regularized regression may result
in poorly conditioned problems and nonunique solutions. In
cases where this is unavoidable, group-level and within-group
regularized regression, such as using the sparse Group Lasso
or Ridged Group Lasso, can be used to help avoid degenerate
solutions [32,78,79]. Figure 7(c) also shows the orbit rank
degeneracy, defined as one minus the ratio between the sub-
matrix orbit rank and the total number of correlation functions
in the orbit, for a set of structures of the LMTOF system. In
this example only 3 of 248 orbits show a small amount of
rank deficiency (�25%), which is sufficient to obtain accurate
fits with grouped regularization as detailed in Sec. III B. We
address this structured sparsity paradigm and methodology
that enables it in more detail in Sec. III B.

2. Oxidation state assignment

In ionic materials containing heterovalent transition met-
als, it is necessary to assign formal valence to ions, since
the same ion can behave differently when it has a different
valence. For instance, according to crystal field theory, va-
lence electron d filling of the transition metal–oxygen states
is one factor controlling whether a transition metal ion prefers

tetrahedral or octahedral coordination. Furthermore, size and
charge effects can cause metal ions to have different kinds
of short-range order [22]. This thermodynamic preference
arising from different formal valence necessitates treating ions
with heterovalent oxidation states as different species.

However, in determining the formal valence of an ion, the
DFT charge density on a metal cannot be directly used as
it is invariant to the valence state due to hybridization with
the anion [80]. Instead, we can rely on the magnetic moment
for a given metal site to assign a formal charge and can
either use the sum of s, p, and d local orbital contributions
or the individual d-orbital contribution to assign this charge
state. This local contribution can be obtained by integrat-
ing the spin-up minus spin-down magnetic moment around
each atom.

Figure 9(a) presents a histogram of the magnetic
moments on the ions in structures with composition
Li1.2Mn0.6Nb0.2O2.0, by taking the sum of s-, p-, and d-orbital
contributions. In this example, the values ≈3.6μB (differen-
tiates Mn4+ from Mn3+) and ≈4.2μB (Mn3+ from Mn2+)
have enough separation in the magnetic moments to clearly
delineate oxidation states.

In other cases, the separation of oxidation states is not
as obvious. For example, the histogram of the Mn d-orbital
magnetic moment in the Li-Mn-O-F system [32] is shown in
Fig. 9(b). It is not straightforward to define cutoff values to
classify the different Mn oxidation states. In this case, one
can use black-box optimization approaches (such as Bayesian
optimization via Gaussian processes [81]) to assign oxidation
states that are optimally consistent with a maximal number of
charge-neutral structures.

More specifically, the loss function for Bayesian oxidation
state assignment can be formulated as the sum of the absolute
value of each structure’s charge, taken over all structures in
a DFT computed data set. The loss function depends on a
black-box function f , which is the mapping function between
any local magnetic moment for a metal to its formal valence.
The exact form of f is neither known nor differentiable, but
it depends solely on the magnetic moment upper cutoff for
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TABLE II. Magnetic moments for Mn in three configurations of Li7Mn7O12F2 calculated with DFT-SCAN [82], and sorted into their
oxidation states as determined by Bayesian optimization. The d-orbital magnetic moments and energy above hull (eV/atom) are listed.

Configuration Mn2+ Mn3+ Mn4+ Energy above hull (eV/atom)

A 4.207, 4.26, 4.31 3.602, 3.629, 4.017 2.916 0.133
B 4.169, 4.208, 4.264, 3.615, 3.65, 3.982 3.217 0.137
C 4.169, 4.278, 4.33, 4.366 4.07 2.703, 2.974 0.157

each different metal species of interest. For the data set used
in Fig. 9(b) the function is f (c1, c2, c3), where c1, c2, and c3

are three upper magnetic moment cutoffs for Mn2+, Mn3+,
and Mn4+. After black-box optimization, the upper cutoffs,
corresponding to a minimal loss of structures with nonzero
total charge for a given DFT data set, can be used to assign
the formal valence for any structure.

Table II additionally shows three configurations of
Li7Mn7O12F2, with oxidation states assigned using the re-
cently published Bayesian optimized solution [32]. The
cutoffs are 3.228μB (differentiating Mn4+ from Mn3+) and
4.0815μB (differentiating Mn3+ from Mn2+).

Configurations A and B both have three Mn2+, three Mn3+,
and one Mn4+. It is less straightforward to determine where
the Mn3+ and Mn2+ cutoff lies for configuration A because
4.017μB is closer to the magnetic moments assigned to Mn2+

atoms (4.207μB, 4.26μB, 4.31μB) than to the moments as-
signed to Mn3+ atoms (3.602μB, 3.629μB). Using Bayesian
optimization circumvents this complication.

Interestingly, within configuration B the magnetic mo-
ments are more clearly separated, as the ranges of magnetic
moments for Mn2+ and Mn3+ are notably less than that for
configuration A, but this is not associated with a lower energy
since configuration B is 4 meV/atom higher in energy. Con-
figuration C has an entirely different set of charge orderings
(four Mn2+, one Mn3+, and two Mn4+) which can be recog-
nized and assigned by the algorithm.

This optimization approach to assign charge states was
successfully used in other chemical systems, including
Li-Mn2+/3+/4+-Ti-O [83] and Li-V4+/5+-O [84], further
supporting how Bayesian optimization can find nontrivial so-
lutions for charge-state assignments onto magnetic moments
and increase efficiency of using DFT-calculated configura-
tions to train ionic CE.

3. Structure mapping

In practice, DFT calculations performed to obtain a set of
training structures for a CE involve calculations for structures
that have different supercell sizes and shapes. In many avail-
able packages [3], initial structures of the ab initio calculations
are generated from the cluster expansion, the occupancy
strings are obtained from the cluster-expansion-generated ini-
tial structures, and the energies (or other properties) are
obtained from relaxation of the ionic and electronic structure.
However, doing so requires that the relaxed structure still
corresponds to the occupancy string from which the initial
unrelaxed structure was obtained. In many cases encountered
in ionic systems, ions relax too far away from their initial
site, such that reassigning them to sites corresponding to the
unrelaxed initial structure is infeasible. This is especially no-

ticeable in systems containing vacancies, which allow atoms
to relax towards the vacant lattice site. This is also common
in structures with large electrostatic or repulsive interactions
because the strong interactions often force ions to maximize
the distance between the interacting ions.

In cases where the structure relaxation is significant, con-
verting the relaxed structure itself (after ab initio relaxation) to
an occupancy string is a more appropriate way to capture the
configurational energy landscape. A practical implementation
of this requires a mapping between sites of the underlying
disordered crystal structure and the training structure that
has been relaxed by first-principles calculations. We call the
ordered structure that has been appropriately mapped to the
rigid lattice the refined structure. This mapping can then be
used to construct the corresponding configuration strings σ

for the relaxed structures. A schematic illustration of the rela-
tionship between the initial, relaxed, and the refined structures
is shown in Fig. 10.

Formally, the procedure of structure mapping for purposes
of the CE method can be stated as follows. We represent the
disordered structure (that represents the domain of the CE) us-
ing a set of lattice vectors LU = [�l1 �l2 �l3] and a set of fractional

FIG. 10. Schematics of an input structure corresponding to an
occupancy string σ, the resulting relaxed (DFT-calculated) structure,
and a refined structure. The refined structure is represented by the
sites of the relaxed structure mapped to the locations of the sites
of the rigid disordered structure underlying the CE. The different
colors represent multiple species on the lattice. The empty boxes are
explicit representations of vacancies (which in the CE are treated as a
species). (a) An example case where the refined structure effectively
maps back to the initial structure and occupancy string. (b) An
example case where the refined structure does not correspond to the
initial structure or occupancy string due to substantial relaxation.
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coordinates PU = {�pi, . . . , �pNU | �pi ∈ [0, 1]3} for NU sites. To
each site we assign a site space �i. Similarly, for a given
ordered structure, we label the set of fractional coordinates
PQ for NQ sites, and refer to the corresponding set of lattice
vectors as LQ. Each site in the ordered structure is occupied
by a specific species σi. A supercell of the disordered prim-
itive cell must be obtained to enable a one-to-one mapping
between the sites of an ordered structure and the sites of the
corresponding supercell of the disordered structure. We write
the lattice vectors of this supercell LUQ. The number of atomic
sites, or equivalently the set of fractional coordinates PUQ of
the disordered supercell, must be the same as in the ordered
structure |PUQ| = |PQ|. Having obtained the disordered super-
cell LPQ, a map between the sites PQ of an ordered structure
and the sites PUQ of the appropriate disordered supercell is
represented by the following bijection:

A : PQ → PUQ such that σi ∈ �A(i) ∀i ∈ {1, . . . , NQ}. (29)

The map A can be practically established within reasonable
tolerances for structural deformations of the lattice LQ. In
practice, performing these two steps (finding the disordered
structure supercell, and finding the map between sites of
the ordered structure and the disordered supercell) requires
a crystallographic structure matching algorithm, such as the
StructureMatcher in the pymatgen library [85]. A handful of
other effective algorithms for crystallographic matching are
freely available [86–88].

However, most approaches treat the inputs of allowed tol-
erances for all sites on equivalent grounds. For many ionic
systems, and in particular those including vacancies, cations
tend to undergo larger displacement than anions during DFT
relaxation. Usually the anion sublattice undergoes less dis-
tortion and, as a result, can be more easily mapped with the
predefined primitive cell. This practical observation can be
revealed by comparing the drift force in DFT outputs for
cations and anions, respectively. As a result structure map-
ping methods may fail for many ordered structures that may
still have well-defined structure mappings A. One method
for correcting this during mapping involves first performing
a search over varying lattices to map the relaxed anions to
the fixed anion sublattice sites within a fractional tolerance.
Subsequently, cation centers within anion polyhedra (based on
the relaxed anion-to-anion lattice site mapping) can be used to
map the cation sublattice sites [32].

Effective structure mapping methods allow practical calcu-
lations of the minimum or relaxed energy landscape in terms
of atomic configuration. However, it is well known—and
has been numerically quantified—that the extent of struc-
tural relaxations affects the number of correlation functions
required to obtain a robust and well-converged CE [89].
Rigorous quantification of strain and a corresponding met-
ric for structure mapping may prove very useful to further
establish a formal understanding of the effects of structural
relaxations in the CE method. The majority of available
crystallographic matching algorithms lack a rigorous quantifi-
cation of the strains and symmetry breaking involved. This has
only been recently addressed in a newly proposed matching
algorithm [88], where cost functions for lattice strain and

FIG. 11. Illustration of feature matrix � with inaccessible (non-
sampled) configurations using an indicator basis. The red columns
represent the correlation functions that are covered by DFT calcu-
lations, while the gray (shaded) columns represent the inaccessible
atomic configurations (e.g., the blue sites are occupied by high-
valence transition metals such as Nb5+ and Mo6+, which have
strong repulsion in one tetrahedron and cannot be well evaluated via
DFT). The blue row represents the correlation vector of one specific
structure.

atomic displacement are constructed for scale-invariant geo-
metric distortions and symmetry-breaking distortions.

4. Physically inaccessible configurations

When fitting a CE model of a complex ionic material, there
will usually exist configurations that cannot be reached due to
convergence issues in DFT calculations. There are two main
categories of configurations that can be inaccessible to DFT:
geometrical inaccessibility and charge-valence inaccessibility.

Geometrical inaccessibility occurs when the DFT-relaxed
structures drift far from their original lattice sites and cannot
be correctly mapped. Although Sec. III A 3 addresses some
ways to find mappings when the cations relax substantially,
large anion drift can make the mapping impossible. Consider,
for example, anion drift that destroys the fcc anion framework
of a rocksalt. Although the initial configuration may have been
in the rocksalt configuration space, the resulting relaxed struc-
ture no longer is. This becomes a very notable problem when
considering configurations with a large number of vacancies.

Charge-valence inaccessibility happens when the DFT-
relaxed configuration can be appropriately mapped back to a
lattice model with oxidation-assigned ionic species; however,
charge transfer prevents specific oxidation states for particular
configurations of the predefined lattice model. This happens
mostly in transition metal oxides when the valence of the
transition metal cannot be well assigned and results in non-
charge-balanced configurations. This can also be the result
of internal charge transfer in configurations with very high
electrostatic energy.

The efficiency of structure sampling is thus reduced de-
pending on how many physically inaccessible states occur in
the sampled training configurations. For example, as shown
in Fig. 11, the blue sites in the cluster figures are occupied
by high-valence transition metal (such as Nb5+ and Mo6+),
which have strong repulsion in a single tetrahedron. Such fea-
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tures cannot be appropriately computed by DFT calculations.
The effect on sampling is most clear when using an indicator
basis, since this will result in a void correlation function in the
feature matrix �. The void correlation function manifests it-
self as a column with all elements equal to zero. This happens
since no information has been obtained for those particular
configurations, such that this correlation function is rendered
uninformative and should be removed prior to fitting. For CE
models with orthogonal correlation functions, the effect man-
ifests itself more subtly. In the orthogonal case, inaccessibly
states will manifest as linear dependencies or equivalently
rank deficiency of the corresponding orbit submatrix.

Such inaccessibility can further induce configuration sam-
pling problems in Monte Carlo simulations. This occurs
because the CE model, fitted as described above, has no in-
formation regarding the ECIs associated with the inaccessible
high-energy configurations. Consider the case in which a con-
figuration with one or more inaccessible features lies close
in configuration space to a low-energy configuration (i.e.,
a few MC steps away). The configuration with inaccessible
features may be accepted since its energy will be incorrectly
predicted. The end result is that unfavorable configurations
can be incorrectly sampled in MC and will distort ensemble
statistics and computed thermodynamic properties.

To resolve this issue, one should include as many config-
urations to reduce the number of undersampled correlation
functions. However, since inaccessible states are in principle
caused by DFT instability, undersampled correlation func-
tions may remain. We suggest two approaches that are useful
to deal with the remaining inaccessible sampling issues. First,
the ECI can be regularized with more importance given to
those corresponding to lower degree clusters (such as pairwise
interactions). This can be achieved by using hierarchy con-
straints or groupwise regularization as detailed in Secs. III B 3
and III B 2, respectively. These fitting strategies are effective
when the configuration energy can be well depicted by cor-
relations of clusters with small support; therefore, void or
undersampled correlation functions for clusters with larger
support will contribute minimally to the total energy.

If the resulting CE model still underpredicts the energy
of configurations that are likely to be high energy, rejection
of these configurations can be easily achieved in MC. The
rejection can be done by including a cluster indicator function
of the orbit β associated with such inaccessible atomic config-
urations. The probability evaluated in Monte Carlo simulation
that guarantees the rejection of inaccessible configurations is

p ∝ exp

(
− 1

kBT

(
ECE +

∑
β∈void

M · 1β

))
, (30)

where ECE is the CE energy evaluated with actual ECIs, M
is a large positive number, and 1β is the indicating function
of orbit β. Since the cluster indicator function will only be
nonzero when the specific inaccessible cluster configuration
is present, all other configurations that do not include such
configuration will not be affected. However, this approach
requires practitioners to explicitly detect the inaccessible con-
figurations in the first place.

B. Linear regression models

Although the use of regression for estimating ECI in
the original structure inversion method [66] was based on
ordinary least squares, currently some form of regularized
regression is almost always used and necessary in practice.
Regularized models can be derived and/or interpreted under
a Bayesian framework, such that the choice of regularization
function is based on the assumed prior distribution of ECI
[29,90]. Apart from a possible Bayesian motivation, there are
three main reasons motivating the use of regularization in
linear regression and particularly for learning CE models.

The first reason, as the name regularization suggests, is for
improving the stability of the solution to small disturbances of
the sampled correlation functions. Regularization prevents the
linear system from being close to singular. Due to sampling
complications previously discussed, correlation matrices can
be poorly conditioned. Regularization directly improves the
condition number such that more numerically stable solutions
can be obtained [90].

The second purpose of regularization is that of shrink-
age, which entails forcing solutions to have small norm. The
motivation for seeking regularization and shrinkage can be
succinctly summed up in the bias-variance trade-off, where
introducing a regularization term will increase the model
bias—or its flexibility to represent the training data—but
lower the model variance and as a result yield more stable
model coefficients [90]. The bias-variance trade-off usually
leads to better out-of-sample prediction accuracy at the cost
of lowering in-sample prediction accuracy; in other words, it
prevents overfitting.

The third reason motivating regularization involves feature
selection. The use of specific sparsity-inducing norms for
regularization results in feature selection by shrinking coef-
ficients for less important features to zero. This allows to fit
sparser and simpler CE models in one shot. Although there
exist other methods for feature selection that do not rely on
regularization [91,92], feature selection by regularization is
now overwhelmingly used over other methods for fitting CE
models [1,28,29,93].

We provide an overview of the different types of regular-
ized linear regression models of the form given in Eq. (25),
which is reproduced below for readability:

J∗ = argmin
J

||�J − E||22 + ρ(J).

In the vector of expansion coefficients, J, J∗ ∈ Rd , the mul-
tiplicities for the actual ECI are usually treated implicitly as
J = (J0, mβ1 Jβ1 , . . . , mβd−1 Jβd−1 ). However, the ECI can be fit-
ted directly by accounting for the multiplicities in the feature
matrix instead. The function ρ is a regularization term, which
usually involves a norm or pseudonorm of the coefficients
J. The coefficient for the data offset, or formally the empty
cluster ECI, is commonly not penalized in the regularization
[29,90]. Additional constraints can be added to the optimiza-
tion problem in Eq. (25), such as cluster hierarchy constraints
[30,94] or constraints to preserve certain configurations as
ground states [94].

The focus of the remainder of this section will be mainly on
the choice of regularization function ρ(J) and the use of linear
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FIG. 12. Venn diagram summarizing mathematical properties
of solutions of regularized regression models used to fit cluster
expansions.

constraints. We provide context and motivation for their use
based on physical arguments and the mathematical structure
of the resulting regression problem. We refer the readers to
the references noted herein for further details on mathematical
formalism and algorithmic implementations for the various
regularization functions described.

Figure 12 shows a Venn diagram with several regularized
regression models. All regression models involve regulariza-
tion and shrinkage solely by the use of norm regularization.
The vast majority of regression models used for fitting CE
models also involve feature selection. Lastly, a subset of
regression models additionally result in solutions with struc-
tured sparsity, such that additional heuristics and/or model
assumptions can be guaranteed.

We highlight methods that produce results with struc-
tured sparsity, where additional structure in the resulting
coefficients can be obtained by using group norms and/or
by including linear constraints in the regression optimiza-
tion problem. We describe previously proposed methods and
extensions for structured sparsity based on hierarchical re-
lations between fitted coefficients [30,68]. In addition, we
explore methodology to obtain solutions where coefficients
are grouped by the orbits of site clusters over which the
corresponding correlation functions act on. We emphasize
the use of structured-sparsity fits, since we have found it to
yield sparser and more accurate CE models for complex ionic
systems compared to models with unstructured sparsity.

1. Sparsity-inducing regularization norms

In order to understand the properties of solutions for re-
gression solutions with regularization norms, it is important
to consider the geometry of each norm, especially the con-
vexity and singular points of their norm balls, i.e., their level
sets ||J||p = k for any constant k. The solution geometry
for regularized regression and the norm balls in R3 for the

regularization norms that will be described here are shown in
Fig. 13.

Shrinkage can be understood as arising from the mono-
tonically increasing nature of the regularizing norm. This
means that the level sets for any of the norm balls depicted
are physically larger for increasing values of the norm (with
the exception of the �0 pseudonorm). Hence the norm pe-
nalization will tend to drive solutions closer to the origin
compared to the ordinary least squares solution. Shrinkage
and regularization can be obtained with any norm even if its
norm ball is smooth everywhere. For example, the �2 norm
used shown in Fig. 13 used for regularization and shrinkage in
Ridge regression has a norm ball that is smooth everywhere.

On the other hand, feature selection from regularization
can only be obtained by regularizing with nonsmooth norms.
Feature selection occurs only when the elliptical level sets
(isosurfaces) of the least-squares objective in Eq. (25) impinge
on singular points (sharp edges or vertices) of the norm ball
for the regularization term used. Solutions for problems using
nonsmooth norms will appear with very high probability at
a singular point [95]. This behavior yields sparse solutions
precisely because many elements of the solution vector are
exactly zero at those singular points. This solution geometry
is shown in R3 for the case of the Group Lasso in Fig. 13(b),
where sections of the isosurfaces of the least-squares objective
are shown in different colors. Additional norms with differ-
ent feature selection properties are also shown in Fig. 13(a),
where one can observe that sharp edges and vertices occur at
axes and/or planes spanned by the axes.

To further understand feature selection into a regression
problem it is useful to introduce the �0 pseudonorm shown
in Fig. 13, which can be formally defined by the limiting
procedure [96]

||J||0 = lim
p→0

||J||p
p = |{i, : Ji �= 0}|.

The �0 norm essentially counts the number of nonzero co-
efficients in a vector [97] and so is a direct measurement of
sparsity. However, the regression problem with �0 regulariza-
tion is nonconvex, which is a direct result of the nonconvexity
of the �0 norm ball shown in Fig. 13(b). As a result, obtaining
solutions constitutes a complex combinatorial search and is in
general an NP-hard problem [98].

The most common approach to obtain an approximate
solution to �0 regularized regression is to solve the corre-
sponding convex relaxation of the problem by replacing the
�0 norm with an �1 norm [99]. Such a feature selection can
be thought of as a convex relaxation of �0 selection. Linear
regression using an �1 norm for regularization is known as
the least absolute shrinkage and selection operator (Lasso)
[100]. The Lasso has become a popular and efficient method
for fitting sparse cluster expansions [28,67,75]. However, the
Lasso has some notable limitations that include its lack of
strict convexity and selection irregularity. In addition, the
Lasso can have reduced prediction performance (compared to
the Ridge) in cases with highly correlated features [101]. We
have found that these issues can be practically addressed, and
more robust and often sparser solutions can be obtained by
using structured-sparsity-based regression.
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(a) (b)

FIG. 13. (a) Sparse regression solution geometry for vector J ∈ R3 using Group Lasso. The ellipsoids are isosurfaces of the least-squares
solution error. The solution to the regularized regression problem in Eq. (25) in this figure is the point on the vertical axis where an ellipsoid
isosurface contacts the unit norm ball. In the case shown, the solution will only include one nonzero element. (b) Unit norm balls for the
solution vector J corresponding to each of the regularization models described. Feature selection occurs when the OLS problem level sets
contact singular points of the corresponding norm ball. The figure for the �0 pseudonorm is actually for a small value of �p, p → 0 and not
exactly zero. When the value of p = 0 exactly, the surface becomes six singular points only at values of ±1 along each of the axes.

Several other regression models and algorithms such as the
elastic net, stepwise regression, genetic algorithms [91], least
angle regression, and automatic relevance determination [93]
have been used to successfully fit CE models. The majority of
these models, however, have only been developed for feature
selection in overdetermined systems. Furthermore, we have
found that Group Lasso variants and �0�2-norm regression
models that result in structured sparsity are more reliable and
yield robust, sparse, and accurate CE models of complex ionic
materials. After describing these structured-sparsity models,
we illustrate the performance of these regression algorithms
using the LMTOF disordered rocksalt system.

2. Orbit group sparsity

Selecting ECI based on grouping correlation functions by
the orbits of site clusters over which they operate is a judicious
form of structured sparsity for CE models. For any underly-
ing disordered structure with three or more allowed species
per site, the CE basis will have more than one correlation
function acting over any orbit of symmetrically equivalent
site clusters. This is illustrated schematically for a template
rocksalt system in Figs. 14(a) and 14(b). Figure 14(a) shows a
graphical representation for a triplet correlation function. The
color labels represent function indices (the nonzero entries
of a multi-index α). Figure 14(b) shows schematics for all
symmetrically distinct correlation functions that operate over
the orbit of site clusters represented by the colored sites. This
corresponds to all the symmetrically distinct labelings of site
functions over the sites of the cluster shown. This underlying
structure of a multicomponent CE can be used to motivate
feature selection by grouping ECI by orbits of site clusters and
regularizing all functions that act on the same input variables
together. This so-called orbit group regularization is shown

schematically in Fig. 14(c), where the circled figures represent
groups g of correlation functions. This approach to structure
sparsity is mathematically and physically motivated to regu-
larize over group correlation functions that represent a single
multiple-body term in the expansion.

Orbit group sparsity can be achieved using Group Lasso
regression [102]. The Group Lasso regularization problem is

J∗ = argmin
J

||�J − E||22 + λ
∑
g∈G

√
|g||Jg||2, (31)

where G is a set of groups of ECI indices g (grouped by orbits
of site clusters as previously described). Jg ∈ R|g| is a vector
of only the ECI in group g. The scaling

√|g| is commonly used
to consider all groups equally regardless of size; however,
other weighting schemes can be used [72].

The Group Lasso behaves similarly to the Lasso, but fea-
ture selection occurs in groups, such that all coefficients in
a group are zero or all are nonzero. This can be visualized
considering the corresponding norm ball in Fig. 13, where
the two grouped variables—which would correspond to the
ECI of correlation functions in the same orbit group—have a
continuous (circular) locus of singular points. In order for the
Group Lasso to have unique solutions, each group must be full
column rank [78]. As previously discussed, this represents an
additional metric to consider during structure selection.

A further extension of the Group Lasso that allows for in-
group sparsity, called the Sparse Group Lasso [79,103], can
yield results with improved sparsity and provide within-group
regularization. In Sparse Group Lasso, an �1 norm over all
coefficients is added to the �2 norm over groups as a convex
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FIG. 14. Schematic illustrations of correlation functions, orbit groups of correlation functions, and structured sparsity by orbit groups for
a template disordered rocksalt structure. The site coloring in the images represents nonconstant site functions. In the illustration there are two
types of site spaces, one with four allowed species (three nonconstant site functions) and another with three allowed species (two nonconstant
site functions). (a) Schematic of a triplet correlation function. (b) Illustration of an orbit group of triplet correlation functions. (c) Illustration
of orbit group regularization by grouping correlation functions that act over the same orbits of site clusters. g labels the group of correlation
functions. Each circled figure in the sum represents a different group of correlation functions, analogous to the one shown in (b). G is the set
of all orbit groups considered in the expansion.

combination to the regularization term:

J∗ = argmin
J

||�J − E||22

+ (1 − α)λ
∑
g∈G

√
|g||Jg||2 + αλ||J||1. (32)

Intuitively, the Sparse Group Lasso combines both the reg-
ular Lasso and the Group Lasso, as seen in both the curved
edges on a group plane and the sharp vertices on all axes in
the respective norm ball in Fig. 13(b). Within-group sparsity
can be particularly useful for large complex cluster expansion
models where charge-neutrality constraints and inaccessibly
configurations give rise to suborbit matrix rank deficiency.
For cases of complex systems where orbit rank deficiency is
difficult or impossible to address with sampling alone, the �1

penalization at the individual correlation level yields an ad-
ditional level of regularization that improves the conditioning
of the overall regression problem [32]. �2 penalization within
groups has also been proposed for this reason [78].

Furthermore, the Sparse Group Lasso may yield even
sparser solutions for similar levels of accuracy compared
to the Group Lasso, and as a result models can have

better MC sampling performance. Furthermore, using itera-
tively reweighted versions (also known as adaptive versions)
[104–106] of generalized Group Lasso regression models can
result in substantially sparser CE models for the same level of
accuracy. Further details of adaptive regression and improved
sparsity in fits can be found in the Supplemental Material [55].
In Sec. III B 5 we show how the adaptive Group Lasso and es-
pecially the adaptive Sparse Group Lasso result in models that
have high accuracy and surpassed levels of sparsity compared
to Lasso-only solutions.

3. Hierarchically constrained sparsity

Another compelling form of structured sparsity in-
volves establishing hierarchical relations between correlation
functions. This can be used to enforce physically motivated
heuristics, such as the inclusion of correlation functions over
larger clusters only if correlation functions over all subclusters
are included [1,30,31,68,107]. We have investigated two dif-
ferent forms of hierarchically constrained sparsity that prove
to be quite effective for fitting CE models of complex ionic
materials.
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(a) (b)

FIG. 15. Schematic illustrations of hierarchically constrained sparsity for a template rocksalt structure. The site coloring in the images
represents nonconstant site functions. In the illustration there are two types of site spaces, one with four allowed species (three nonconstant
site functions) and another with three allowed species (two nonconstant site functions). (a) Hierarchical relations for a specific quadruplet
correlation function and all its possible factors. (b) Hierarchical relations between groups of correlation functions acting over the same orbits
of quadruplet clusters and all correlation function groups acting over the orbits of subclusters of the quadruplet cluster.

The first involves imposing hierarchical constraints be-
tween higher-degree correlation functions and their lower
degree factors. Higher-degree correlation functions are only
allowed to have nonzero coefficients if all of their lower-
degree factors do so too. This form of structured sparsity
is shown schematically in Fig. 15(a), where the constraints
between correlation functions and their factors are represented
by edges connecting them. This form of hierarchically con-
strained sparse regression has been recently applied for fitting
CE models of ternary alloys and disordered ionic materials
[30,31,68].

In the alternative form of hierarchy constraints, correlation
functions are grouped by their associated orbits of site clusters
(as described for orbit group regularization in Sec. III B 2). In
this case, the hierarchical constraints are between the groups
of correlation functions. A group of correlation functions
acting over the same orbit of clusters can only have nonzero
coefficients if all the groups of correlation functions that act
over the orbits of all subclusters have nonzero coefficients
as well. This form of structured sparsity is essentially the
combination of hierarchical constraints and the orbit group
structure previously introduced. A representation of this hier-
archy structure is shown in Fig. 15(b) as a graph representing
the hierarchical relations between orbit groups of correlation
functions. To the best of our knowledge, this regression model
has not been previously used for fitting CE models [108]. We
show in Sec. III B 5 that this structure-sparsity form yields
solutions that are competitively accurate and better aligned
with physical heuristics at the cost of lower sparsity due to
the more restrictive hierarchical constraints that are imposed.

Hierarchically constrained sparsity can be obtained by
using an extension of the Group Lasso that allows for overlap-

ping groups—known as the Overlap Group Lasso [109]—and
casting the problem in terms of auxiliary variables [30].
Additionally, using a regression algorithm with a convex com-
bination of �1 and �0, linear constraints can be added as a way
to obtain weakly hierarchically constrained sparse solutions
[68]. A related variant using �2�0 regularization allows strict
enforcement of hierarchical constraints while still resulting in
suitably sparse solutions [31]. The �0�2-regularized regression
problem is

J∗ = argmin
J

||�J − E||22 + αλ||J||0 + (1 − α)λ||J||2,
(33)

where the regularization hyperparameter α ∈ [0, 1] is
constrained to lie between zero and one.

The �0-regularized regression problem in Eq. (33) is an
NP-hard problem, but suitable near-optimal solutions can
be found for moderately sized CE models (up to 500 ECI)
using mixed-integer quadratic programming (MIQP). This
transformation of the regression problem into MIQP is also
what allows the introduction of hierarchical constraints as
linear constraints on auxiliary slack variables. The problem
in Eq. (33) transformed to MIQP takes the following form:

min
J

JT �T �J − 2ET
S �SJ + αλ

∑
zβ + (1 − α)λJT J

such that Mzβ � Jβ

Mzβ � −Jβ

zβ ∈ {0, 1},
(34)

where zβ is a slack variable that describes whether a correla-
tion function �β is active (zβ �= 0) or inactive (zβ = 0).
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The introduction of cluster hierarchy constraints corre-
sponding to those depicted in Fig. 15(a) to the �0 norm with
MIQP is straightforward. Since zβ ∈ {0, 1}, such hierarchical
constraints can be expressed in terms of the slack variables zβ

as

zβ � zγ , ∀α(β ) ⊂ α(γ ), (35)

where β and γ are function cluster orbits, and the notation
α(β ) ⊂ α(γ ) indicates that for any function cluster α(β ) ∈ β,
there exists a function cluster α(γ ) ∈ γ such that α(β ) is a
subcluster of α(γ ). A function cluster with multi-index α(β )
is a subcluster of another function cluster with multi-index
α(γ ) if all the nonzero entries of α(β ) are contained in α(γ ).

Fitting CE models using the MIQP paradigm that sat-
isfy correlation function hierarchical constraints has been
shown to result in faster-converging, robust, and more
physically accurate models for some disordered materials
[31,68]. Applying these types of hierarchical constraints using
the Overlap Group Lasso has also been shown to yield robust
and accurate CE models for refractory ternary alloys [30].
We corroborate these results in Sec. III B 5 for small- and
medium-sized models (<500 correlation functions). How-
ever, for larger models, obtaining near-optimal solutions to
�0-regularized problems may become too computationally in-
tensive even with state-of-the-art integer solvers [31].

4. Hyperparameter selection

The regularized regression models introduced have at least
one hyperparameter associated with the regularization term,
and models that mix more that one norm, such as the �2�0

or Sparse Group Lasso, have two hyperparameters. Selecting
appropriate hyperparameters is critically important since the
hyperparameters control the importance given to a regulariza-
tion term and consequently the amount of shrinkage and/or
feature selection. As a result, the hyperparameters strongly
affect the resulting prediction accuracy. The standard way to
determine these hyperparameters is by using cross-validation
(CV) optimization.

Determining a hyperparameter value using CV optimiza-
tion involves minimizing a CV score, most commonly the
root-mean-square error (RMSE), with respect to the relevant
hyperparameter. CV involves splitting the available training
data randomly into k sets of equal size. Subsequently k fits
are computed using the data from all combinations involving
k − 1 sets. The CV score is the average RMSE for all k fits
computed with respect to the kth set that was not included in
each fit. When using k sets, the procedure is called k-fold CV,
and the most commonly used values of k are 1, 5, and 10. For
k = 1 the procedure is known as leave-one-out CV (LOOCV),
and its use in learning CE models has been extensively dis-
cussed [1,70].

Choosing the number of folds for CV is a choice left to the
practitioner, and there are no hard rules on which and when to
choose a particular value of k. Nevertheless, we can say that in
general smaller values of k tend to produce models with lower
bias (and higher variance) and may have a tendency to ex-
hibit overfitting. Larger values of k will show lower variance
but higher bias which may affect overall model performance,
particularly considering the fact that training data for CEs is

FIG. 16. CV score regularization paths for Sparse Group Lasso
fits of an LMTOF rocksalt system. The top plot shows the path for a
fit using pairs up to 7 Å, triplets up to 4.2 Å, and quadruplets up to
4.2 Å. The bottom plot shows the path for a fit using pairs up to 7 Å,
triplets up to 5.6 Å, and quadruplets up to 5.6 Å.

expensive and often scant. A good recommended compromise
for the number of folds is 5 or 10 [92].

In addition, we emphasize what is known as the one-
standard-error rule [92], because it is particularly applicable
to CE fitting. The one-standard-error rule states that when
choosing a hyperparameter with feature selection (sparsity)
as one of the goals, it is recommended to choose the largest
value of the hyperparameter for which the CV RMSE is within
one standard deviation of the minimum CV RMSE [92] and
results in better sparsity. The reason behind this is that the
hyperparameter value that minimizes CV error optimizes for
prediction accuracy but not for feature selection, and a suffi-
cient reduction in model complexity may be well worth the
cost in terms of a slightly larger CV RMSE.

Figure 16 shows the regularization paths for two fits of the
LMTOF system using Sparse Group Lasso regression with
different sets of cutoffs. The mean CV score is shown in
blue, and the standard deviation is shaded. The minimum CV
score is marked in yellow, and the corresponding standard
deviation region is marked with dashed lines. According to the
one-standard-error rule, the models that should be chosen are
marked with a red star. Although the one-standard-error rule
by itself should not be taken as a definitive rule for CE model
selection, it serves as a general guidance for practitioners to
select models that are both accurate and parsimonious, rather
than solely optimizing CV score at the cost of sparsity. This
is particularly important to keep in mind for the common CV-
plateau scenario, which is present in the top plot of Fig. 16. In
systems exhibiting a CV plateau the CV minimum can often
occur at hyperparameter values far into the plateau region, and
as a result using the hyperparameters for the CV minimum
results in models with severely compromised sparsity and
only marginal improvements in CV score compared to those
obtained following the one-standard-error rule.
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FIG. 17. Fitted LMTOF CE accuracy metrics and resulting
model sparsity using Lasso and structured-sparsity-based regression
algorithms: A-, adaptive variants; L, Lasso; GL, Group Lasso; SGL,
Sparse Group Lasso; OGL, Overlap Group Lasso. All fits shown
were done using correlation functions for cluster size cutoffs of 7,
4.2, and 4.2 Å for pair, triplet, and quadruplet clusters, respectively,
using a primitive cell of the rocksalt structure with lattice parameter
a = 3 Å.

5. Fits of a LMTOF system

CE fits of the LMTOF disordered rocksalt system were
computed using standard Lasso and the structured sparsity-
based regression models previously introduced. All fits
include an explicit electrostatic term as expressed in Eq. (23),
which is computed using the Ewald summation method. We
compare the resulting model prediction accuracy, sparsity, and
ECI structure of the various fits using a training set of DFT
calculated energies for 983 structures with supercells up to
72 atoms. An additional test set of 247 structures of supercell
sizes 128 and 132 atoms is used for validation. Additional de-
tails of the DFT training structure calculations and CE fitting
are reported in the Supplemental Material [55].

Figure 17 shows prediction accuracy metrics for fits using
each regression model with cluster size cutoffs of 7, 4.2, and
4.2 Å, for pair, triplet, and quadruplet clusters, respectively.
Fits were carried out using a sinusoid site basis and an indi-
cator site basis. Hyperparameter tuning curves for the various
regression models are reported in the Supplemental Material
[55]. Fits with different cutoffs which show similar trends as
those shown in Fig. 17 were also computed and the results are
reported in the Supplemental Material [55]. From the results
in Fig. 17 we see that all regression models yield similar
levels of predictive accuracy. However, although all regression
models achieve some degree of feature selection (the total
number of correlation functions in the truncated correlation
matrix was 143), Sparse Group Lasso and �2�0 regression are
the most effective in reducing the total number of features
required to achieve similar levels of accuracy. This is further
evidenced in the Supplemental Material [55] by the additional

fits we calculated for different sets of cluster cutoffs. We make
note specifically that Overlap Group Lasso has the worst per-
formance in feature selection due to the restrictive hierarchical
constraints imposed, as described in Sec. III B 3.

Figure 18 shows the resulting sets of fitted ECI for each
regression model using sinusoid and indicator site basis sets.
Although we will not attempt to make statements regarding
the interpretability of the fitted ECI values, there are some
notable observations and trends regarding Fig. 18. First, fits
with an indicator site basis tend to result in higher overall
ECI magnitudes regardless of the regression model used.
This can be attributed to the lack of orthogonality at the
site-basis level and, as a result, the higher coherence values
of sampled correlation values. However, structured sparsity
models on average result in lower-magnitude ECI compared
to the Lasso. Furthermore, although the solutions obtained
with these regression models are not unique, the different
models tend to identify a few apparently important correla-
tion functions, in particular short-range pair correlations and
some larger-diameter triplet correlations. Lastly, hierarchy-
based regularization, and in particular the orbit-level hierarchy
implemented with the Overlap Group Lasso, results in ECIs
that much better align with physical intuition and heuristics
(i.e., decay with physical distance and cluster size), albeit, for
overlap group Lasso, this occurs at the cost of obtaining less
sparse models as previously discussed.

All in all, the results from the fitted expansions for the
LMTOF system shown in Figs. 17 and 18 and the accompany-
ing results in the Supplemental Material [55] demonstrate how
expansions with structured sparsity have similar or improved
levels of accuracy as those from the Lasso, and additionally
tend to have higher sparsity and trends in the resulting ECI
that much better aligns with physical priors and heuristics.

IV. CONCLUSION

We have given a revised and extended presentation of
the mathematical formalism of the CE [4] method integrated
with the extension to multiple sublattice systems [7]. We
have further described the formal implications of using the
formalism for configuration spaces with charge-neutrality
constraints, particularly those with heterovalent cations and
anions. Charge-neutrality constraints give rise to the linear
dependencies between correlation functions which essentially
render the full set of CE correlation functions overcomplete
for the space over charge-neutral configurations. We also
showed how including an explicit point electrostatic term
effectively captures long-range electrostatic interactions al-
lowing correlation functions with short associated cluster
diameters to capture short-range interactions more effectively
[45,52].

In addition, we provided a cohesive overview of data
preparation methodology and regression algorithms that are
useful to successfully fit CEs of complex multicomponent
ionic materials. In particular, we explicitly addressed some of
the differences and nuances of applying structure sampling
and structure mapping to complex ionic systems—which
have been largely unaddressed in the literature. We also
briefly described methods and issues arising from oxidation
state assignment and physically inaccessible configurations
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FIG. 18. Fitted LMTOF effective cluster interactions using adaptive Lasso and structured sparsity-based regression algorithms: A-,
adaptive variants; L, Lasso; GL, Group Lasso; SGL, Sparse Group Lasso; OGL, Overlap Group Lasso. All fits shown were done using
correlation functions for cluster size cutoffs of 7, 4.2, and 4.2 Å for pair, triplet, and quadruplet clusters, respectively, using a primitive cell of
the rocksalt structure with lattice parameter a = 3 Å.

that commonly arise in ionic systems. Finally, we described
regularized linear regression models and placed particular em-
phasis on models resulting in structured sparsity. We showed
how structured sparsity is an effective way to address the
theoretical and practical nuances that occur in complex ionic
materials and results in more robust models that can also have
higher sparsity compared to the commonly used Lasso model.

Overall, successful CE fits of complex ionic materials re-
quire careful evaluation of the discussed implications, such
as long-range electrostatics and charge-neutrality constraints,
as well as effective management of the effects that arise
in applications, namely, linear dependencies, large structural
and/or electronic relaxations, and inaccessible configurations.
This requires selection of the appropriate sampling methods
based on the end purpose of the CE, the regression model,
and regularization that will be used in the fit. In particular,
structured-sparsity regression models that allow the introduc-
tion of mathematically or physically motivated constraints
result in more robust and sparse CE models than those fitted

with simpler algorithms such as the Lasso. We have dis-
cussed two recently proposed structured-sparsity paradigms
and appropriate regression algorithms to implement them. For
correlation and/or orbit-level hierarchy constraints the �2�0

[31] or the Overlap Group Lasso algorithms can be used.
For smaller systems (up to ∼500 ECIs), the former has been
shown to yield fast-converging and physically accurate CE
models [31]. However, due to its NP-hard nature, applying it
to larger models is inefficient. In such cases the Overlap Group
Lasso can be used to implement hierarchical constraints [30],
which as a convex problem scales more favorably to larger
problems. We have further described Group Lasso and Sparse
Group Lasso implementation of orbit group regularization,
where all ECIs for correlation functions that act over the same
clusters of sites are penalized together. This form of structured
sparsity has also been shown to give accurate and highly
sparse CE models, which we illustrated in the current work,
and has also been effectively used to fit one of the largest CE
models to date [32].
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This work is an exposition of the formalism of the cluster
expansion with a focus on the nuances of its application to
ionic systems. Similarly, the work provides an overview of
state-of-the-art methodology for constructing CE models of
complex multicomponent ionic materials. Even in the wake
of the explosion of machine learning interatomic potentials,
the CE method remains a critical tool for the study of atomic
configuration phenomena due its simplicity and amenability
to MC sampling. Further development of advanced structure
sampling and fitting techniques in the CE method beyond
those discussed here is imperative to permit its success-
ful use in the computational study of multicomponent ionic
materials.

The source used to construct all cluster expansions is im-
plemented in the Statistical Mechanics on Lattices (SMOL)
package [110]. Implementations of all regularized regression
models used are available at [111]. An implementation of the
Bayesian charge assignment can be accessed at [112].
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