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ABSTRACT OF THE DISSERTATION

Understanding cellular function through the analysis of protein
interaction networks
by
Silpa Suthram
Doctor of Philosophy in Bioinformatics

University of California, 2008

Professor Trey Ideker, Chair

A major challenge of post-genomic biology is understanding the

complex networks of interacting genes, proteins and small molecules that give

rise to biological form and function. Advances in whole-genome approaches

are now enabling us to characterize these networks systematically, using

XVi



procedures such as the two-hybrid assay and protein co-immunoprecipitation
to screen for protein-protein interactions (PPI). Large protein networks are
now available for many species like the baker’s yeast, worm, fruit fly and the
malaria parasite P. falciparum. These data also introduce a number of technical
challenges: how to separate true protein-protein interactions from false
positives; how to annotate interactions with functional roles; and, ultimately,
how to organize large-scale interaction data into models of cellular signaling
and machinery. Further, as protein interactions form the backbone of cellular
function, they can potentially be used in conjunction with other large-scale
data types to get more insights into the functioning of the cell. In this
dissertation, I try to address some the above questions that arise during the
analysis of protein networks.

First, I describe a new method to assign confidence scores to protein
interactions derived from large-scale studies. Subsequently, I perform a
benchmarking analysis to compare its performance with other existing
methods. Next, I extend the network comparison algorithm, NetworkBLAST,
to compare protein networks across multiple species. In particular, to
elucidate cellular machinery on a global scale, I performed a multiple

comparison of the protein-protein interaction networks of C. elegans, D.
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melanogaster and S. cerevisize. This comparison integrated protein interaction
and sequence information to reveal 71 network regions that were conserved
across all three species and many exclusive to the metazoans. I then applied
this technique to the analysis of the protein network of the malaria pathogen
Plasmodium falciparum and showed that its patterns of interaction, like its
genome sequence, set it apart from other species.

Finally, I integrated the PPI network data with expression Quantitative
Loci (eQTL) data in yeast to efficiently interpret them. I present an efficient
method, called ‘eQTL Electrical Diagrams’ (eQED), that integrates eQTLs with
protein interaction networks by modeling the two data sets as a wiring
diagram of current sources and resistors. eQED achieved a 79% accuracy in
recovering a reference set of regulator-target pairs in yeast, which is
significantly higher performance than three competing methods. eQED also
annotates 368 protein-protein interactions with their directionality of

information flow with an accuracy of approximately 75%.
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1 Introduction

One of the most important consequences of the Human Genome
Project!? is the advent of a new field of biology called Systems Biology. The
“systems” approach involves understanding and analyzing all aspects of a
system (e.g whole cell system) simultaneously rather than studying them one
at a time. It has also led to the development of technologies that allow us to
measure levels of the underlying components on a very large scale®*. For
instance, advances in the microarray technologies let us determine the mRNA
expression levels of all the genes in any given species at the same time®. New
technologies such as chromatin immunoprecipitation with microarrays (ChIP-
chip) and protein binding microarrays (PBMs)*” have enabled us to discover
the transcription factor DNA interactions on a large scale. The availability of
such large quantities of data requires the generation of new methods to store,
analyze and understand them. As a result, inputs from various disciplines
such as computer science, statistics and mathematics are essential to a
“systems” approach of analyzing data. For example, the computer science
concept of “database” has been implemented to create the GenBank® to not

only store large amounts of genome sequence data that is being generated for



many species, but also provide a free publicly available resource that everyone
can access.

A major data set that has originated from the advances in high-
throughput technology is the large scale discovery of protein interactions
within a cell. Proteins regulate and mediate many of the processes in the cell.
In most cases, they act in concert with other proteins as part of pathways or
larger molecular assemblies called complexes. Thus to understand the
function of a protein, it is essential to learn all its associated interactions.
Extrapolating this idea, it is necessary to obtain an aggregate of all the protein
interactions in the cell to understand cellular behavior. Until recently, protein
interactions were mainly discovered by small-scale methods like GST pull
down? and FRET microscopy'. These reveal only a small number of protein
interactions in one experiment. Now, high-throughput techniques like yeast
two-hybrid!! and tandem affinity purification (TAP) followed by mass-
spectrometry'?, reveal protein interactions at the level of the whole species.
Large protein networks are now available for many species including, most
recently, the malaria pathogen P. falciparum®. These data also introduce a
number of technical challenges: how to separate true protein-protein

interactions from false positives!4; how to annotate interactions with functional



roles’; and, ultimately, how to organize large-scale interaction data into
models of cellular signaling and machinery'. In this dissertation, I try to
address some of these questions that arise in the analysis of protein interaction

data.

1.1 Generation and visualization of large-scale protein
interaction data

There are many methods to explore the enormous number protein
interactions within a cell. Here, I discuss two technologies, yeast-two hybrid
and Tandem Affinity Purification (TAP) followed by mass-spectrometry, that
have been used to generate the various large protein-protein interaction (PPI)

networks that are presently available!>17-20,

1.1.1 Yeast-two hybrid assay

The yeast two-hybrid (Y2H) assay utilizes the yeast cell to check
whether two proteins interact or not''. The main principle is to test whether a
downstream reporter gene is activated when a reconstituted transcription
factor binds to its upstream activation sequence (UAS). Generally, the
transcription factor consists of a DNA-binding domain (BD) and an activation

domain (AD) and both are essential for the activation of the reporter gene. For



many eukaryotic transcription factors, these two domains (AD and BD) are
modular. In other words, they only need to be in close proximity to function
properly and not necessarily be part of the same protein. Using this
hypothesis, in the Y2H assay, one of the proteins (A) to be tested is genetically
engineered to have the AD of the transcription factor and the other protein (B)
has the BD. Therefore, only when proteins A and B interact with each other,
the AD and BD will be in close proximity and the downstream reported gene
will be activated. Generally, the GAL4 AD and BD are used in the Y2H assay

and the reporter gene is LacZ. Figure 1.1 shows a schematic of this process.

1.1.2 Tandem Affinity Purification (TAP) followed by mass-spectrometry

The method of TAP followed by mass-spectrometry (I shall refer to this
method as mass-spectrometry from here on) discovers protein complexes
rather than binary protein interactions as in the case of Y2H'2. Specifically, a
TAP tag is inserted at the 3" end of the protein of interest (bait protein). The
protein is then immunoprecipitated invivo using an antibody against the TAP
tag, purified and checked for binding partners. Next, these protein assemblies
are separated using a denaturing gel electrophoresis and digested using

trypsin. The resulting peptides are then put through a mass-spectrometer in



order to identify the component proteins. Thus, the technique of mass-

spectrometry identifies groups of proteins bound to the bait protein.

1.1.3 Visualization of protein interaction networks

Protein-protein interaction networks are usually represented as a
network of nodes and links (see Figure 1.2) and, I will use this representation
throughout this dissertation. The nodes correspond to proteins, while the
links between them correspond to protein interactions. The protein
interactions obtained in an Y2H assay can easily be adapted to form a protein
network explained above. However, the mass-spectrometry experiment
provides a list of protein complexes rather than individual interactions.
Therefore, for each protein complex, I assume that there exist interactions
between all members of the complex. After this interpolation, it is easy to
abstract the protein complex as part of the protein network.

Many software tools have been developed to enable the visualization of

large-scale protein networks?-?. Cytoscape (www.cytoscape.org)® is one such

tool for modeling and comparing large-scale networks of molecular
interactions and combining them with expression and cellular perturbation

data. Originally developed as an open-source project by Dr. Trey Ideker and


http://www.cytoscape.org/

colleagues, it combines the ability to view and manipulate genome-sized
networks of cellular pathways and an extensible architecture such that new
analysis tools can be added dynamically. I use Cytoscape for visualizing all

the networks and results in the rest of the dissertation.

1.2 Overview of the dissertation

A major challenge of post-genomic biology is to understand how the
complex networks of interacting genes, proteins and small molecules give rise
to biological form and function. This issue is of immediate importance as the
amount of data on protein interactions is increasing rapidly (see Figure 1.3).
The wide variety and number of PPI networks motivate many questions like:
How do the networks organize into regulatory pathways and complexes to
accomplish various cellular functions? Are some of these modules also
present in other species and how does this translate to conservation of
function? Can the conservation of protein interactions be used to make
functional predictions? We are also interested in knowing if there exist
modules that are functionally important, but unique to a given species. These
modules are especially insightful when picking drug targets against

pathogenic species like Plasmodium falciparum.  Moreover, as protein



interactions form the backbone of cellular function, they can potentially be
used in conjunction with other large-scale data types to get more insights into
the functioning of the cell. All the above questions have prompted two
different approaches to analyze protein interaction data: comparative
network analysis and network integration. In this thesis, I present two studies
implementing the comparative network analysis approach. Later, I also
discuss another work incorporating the strategy of network integration.
Overviews of the three studies are explained in the following sections.

All the aforementioned questions can be addressed only if the
underlying protein interaction network is of good quality. Unfortunately,
large-scale protein networks, like other high-throughput data, has a lot of
false-positives'. Therefore, I begin this thesis by addressing the issue of noise

in large-scale protein networks.

1.2.1 Noise in the data

All large-scale measurements and particularly new technologies suffer
from a high level of noise. The high-throughput techniques of Y2H and mass-
spectrometry result in a considerable number of false-positive interactions.

These errors arise due to bias in the experimental conditions. For instance, in



a Y2H assay, if one of the proteins activates transcription on its own (auto-
activation), it will invariably lead to the inference that the interaction being
tested is true. Hence, tools are required to distinguish the false interactions
from the true ones. Recent years have also seen an increase in the
accumulation of other sources of biological data such as whole genome
sequence, mRNA expression, protein expression and functional annotation?®.
This is particularly advantageous as some of these data sets can be utilized to
reinforce true protein interactions while downgrading others. For instance,
true protein interactions have been shown to have high mRNA expression
correlation for the corresponding genes*. In Chapter 2, I propose a new
method to assign confidence scores to protein interactions. In addition, I also

benchmark this method with other existing methods.

1.2.2 Comparative network analysis

The first method of protein network analysis, called Comparative
network analysis, is akin to the genome sequence comparison methods.
Evolutionary conservation is a fundamental principle in biology that is widely
used to infer functional relationships among species. Conservation of

protein/gene sequences across species is used to make function and domain



assignments”. In the same vein, comparing protein interaction networks
across species will highlight evolutionarily conserved pathways and modules.
I address these questions in Chapter 3. First, I explain an extension of a
previous method?, NetworkBLAST, to align the PPI networks of two or more
species at a time. The method is then implemented to compare the protein
networks of yeast, worm and the fruit fly. The conserved modules obtained
are also used to make new functional predictions in the three species.
Moreover, this comparative method allowed us to make new protein
interaction predictions. In Chapter 4, I compared the protein network of the
malaria parasite, Plasmodium falciparum, across three other eukaryotes and not
only determined Plasmodium protein complexes that were conserved across
the species, but also modules that were unique to Plasmodium. This distinct set
of Plasmodium modules is an important resource in understanding the
Plasmodium system and could probably be used to find new drug targets

against the parasite.

1.2.3 Network integration

Next, I attempt to analyze the PPI networks using the second approach

called Network Integration. While comparative network analysis dealt with
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protein interactions spread across multiple species, network integration tries
to understand cellular function only in one species by combining additional
sources of information on the same set of proteins (genes). Network
integration of different sources of data has been used previously to discover
cellular machinery. For instance, Kelley et al.? has integrated protein-protein
interactions with genetic interactions in yeast to produce modules that were
enriched in both types of interactions. They found that most modules
contained genetic interactions across two pathways which shared
complementary function. This discovery underscores the value of combined
analysis of protein and genetic interactions.

In particular, in Chapter 5, I integrate the PPI network data in yeast
with expression Quantitative Loci (eQTL) data also in yeast to efficiently
interpret them. Genetic variation gives rise to changes in many quantitative
traits including gene expression. The technique of expression quantitative
trait loci (eQTL) investigates the interactions between genetic loci and the
changes in gene expression®3!. Specifically, a collection of genetically diverse
strains is used to establish correlations between a quantitative phenotype
(such as gene expression) and polymorphisms at a specific genetic locus. This

method allows the detection of loci and consequently, the genes contained in
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them that regulate the expression of the gene downstream. eQTLs can be
mainly divided into two categories, namely cis- and trans-eQTLs (or ‘local’
versus ‘distant’®>. The cis-eQTLs correspond to DNA variation in close
proximity to the target gene. It is assumed that in most cases, the cis-eQTLs
can be found in the transcriptional regulatory regions of the target gene. On
the other hand, trans-eQTLs are located far away from the target gene and are
more difficult to ascertain. I focus on understanding the nature of these trans-
eQTLs. A trans-eQTL imposes directionality of information flow from the
locus to the affected target gene. One might assume that transcription factors
(TFs) result in the strongest eQTL, since their effect on down-stream genes is
most immediate. However, in many cases eQTLs cannot be explained by such
simple TF — target relationships®. Hence, in order to fully comprehend the
mechanisms underlying significant trans-eQTLs one has to take into account
more complex, indirect interactions via sequences of protein-protein and

protein-DNA interactions+.
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Figure 1.1: Schematic of the yeast two-hybrid assay.
The reporter gene is activated only when the Activating Domain (AD) and

Binding Domain (BD) are in close proximity, which happens only when the
bait and the prey protein interact with each other.
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Figure 1.2: Network abstraction of large-scale protein interactions.

The nodes correspond to proteins and the links between nodes corresponds to
protein interactions. The figure has been drawn using the Cytoscape
software?.
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Figure 1.3: Increase in the number of protein-protein interactions.

The figure shows the rapid increase in the number of protein interactions over
the past few years. The data for the years 1999-2004 was collected from the
Database of Interacting Proteins (DIP)¥. The data for the year 2005 included
the protein-protein interaction network generated for Plasmodium falciparum
and human. The data for 2007 included the protein interactions curated by the
Human Protein Reference Database (HPRD).



2 Assigning confidence scores to protein interactions

Systematic elucidation of protein-protein interaction networks will be
essential for understanding how different behaviors and protein functions are
integrated within the cell. Recently, the advent of high-throughput
experimental techniques like yeast two-hybrid (Y2H) assays" and co-
immunoprecipitation (co-IP) screens'? has led to the elucidation of large-scale
protein interaction networks in different species, including S. cerevisiae
(yeast)!2171820 D). melanogaster (fly)*, C. elegans (worm)® and H. sapiens
(human)*#2.  These networks, while incorporating thousands or tens of
thousands of measured interactions, have so far only partially covered the
complete repertoire of protein interactions in an organism, and they have been
determined to contain a significant number of false-positive interactions
depending on the study'. However, recent years have also seen an increase in
the accumulation of other sources of biological data such as whole genome
sequence, mMRNA expression, protein expression and functional annotation.
This is particularly advantageous as some of these data sets can be utilized to

reinforce true (physical) protein interactions while downgrading others. For

15
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instance, biologically relevant protein interactions have been shown to have
high mRNA expression correlation for the proteins involved?.

As a result, many integrative bioinformatic approaches have been
developed to unearth true protein-protein interactions. These can be mainly
divided into two categories: (1) methods that assign reliability measurements
to previously observed interactions; and (2) methods that predict interactions
ab initio. For category (1), Deane et al.® and Deng et al.* introduced methods
to tackle the problem of assigning reliabilities to interactions using similarity
in mRNA expression profiles. Subsequently, Bader et al.* used additional
features of interacting proteins, including functional similarity and high
network clustering?, to assign confidence scores to protein interactions. For
category (2), Marcotte et al.¥, von Mering et al.*, Myers et al.* and Jansen et
al.®* were among the first to predict new protein interactions by incorporating
a combination of different features like high mRNA expression correlation,
functional similarity, co-essentiality, and co-evolution. These schemes
calculate a log-likelihood score for each interaction. As yet another approach
in this category, Qi et al.5! predicted new protein interactions using a method
based on random forests. Presumably, the relative performance of each of

these approaches versus the others involves a combination of factors such as
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the types of evidence used as inputs, the efficacy of each classification
algorithms, and the sets of true and false interactions used as gold standards
during training. Very recently, a second work by Qi et al.>? studied the effect
of the underlying classification algorithm by comparing the accuracies of
different classifiers such as naive Bayes, logistic regression, and decision trees.

In section 2.1, we first propose a new method to assign confidence
scores to protein-protein interactions obtained from high-throughput screens.
In the remaining sections, we perform a benchmarking analysis to evaluate the
published interaction confidence schemes versus one another. Rather than
isolate every factor that could influence a scheme’s performance, we take a
practical approach and evaluate the overall accuracy of each set of confidence
scores as reported in the literature and available from the authors” websites.
We limit ourselves to works that have assigned confidence scores to a
common set of experimentally-observed interactions in yeast; this includes all
of the category (1) schemes above, as well as the Qi. et al. scheme from
category (2). The remaining ab initio schemes are concerned with predicting
new interactions and do not assign confidences to those interactions that have
already been experimentally observed. We also assess the performance of a

“null hypothesis”, a uniform scheme that considers the same probability for
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all interactions. To compare the quantitative accuracy of the methods, we
examine the correlations between the confidence estimates and different
biological attributes such as function and expression. As a further comparison
criterion, we apply the signal processing concept of ‘Signal-to-Noise Ratio’
(SNR) to evaluate the significance of protein complexes identified in the
network based on the different schemes®. The discovery of these complexes
depends on the connectivity of the interaction network which, in turn, is

influenced by the underlying interaction probabilities®.

2.1 Estimation of interaction probabilities

We assign confidence values to protein interactions using a novel
logistic regression model. For a given species, our model represents the
probability of true interaction as a function of three observed random
variables on a pair of proteins. First, the number of times an interaction
between the proteins was observed experimentally. The number of
observations of a given interaction is an indicator of the reproducibility of an
interaction and is a good measure of the “truth” of an interaction. It has also
been used as a measure to predict interaction confidence scores previously*.

Second, the Pearson correlation coefficient of expression patterns of the
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corresponding genes. The similarity in the mRNA expression profiles has
been associated with biologically relevant PPIs*. Specifically, let x and y be
two m-long vectors of expression levels for two genes. The Pearson correlation

1 o —
EZH Xi yi - Xy

0,0,

where

coefficient between the two vectors is defined as p =

X,y are the sample means and c,,0, are the standard deviations of x and v,

respectively. Third, the small world clustering coefficient of the two proteins.
For proteins, v and w denote the sets of proteins that interact with them by
N(v) and N(w), respectively. Let N be the total number of proteins in the

network. The small-world clustering coefficient for v and w is:

IN(W) [} N=[N(v)]
log mindN@INW | N (W) | i

" i=|N (V)N (w)] { N J
| N(w)|

The clustering coefficient was suggested by Goldberg et al.% to account

C

for similarity in network connections. They also showed that higher values
for small-world clustering coefficient corresponded to biologically relevant
protein interactions.

According to the logistic distribution, the probability of a true

interaction Tw given the three input variables, represented by X=(X1,X2,X3), is :
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1
1+exp(-5, _Zﬂixi)

Pr(T,, | X) = , where f,..., 3, are the parameters

of the distribution. Given training data, one can optimize the distribution
parameters so as to maximize the likelihood of the data. To this end we used
the glmfit function of MATLAB%. The training data is determined based on
the species under consideration. Generally, two sets of gold standard training
data are required. The positive training data is a set of protein interactions
that are known to be true, while the negative training data is a set of protein

interactions that are known to be false.

2.2 Benchmarking analysis

Although large-scale protein interaction networks are being generated
for a number of species, S. cerevisiae is perhaps the best studied among them
and is associated with the largest variety and quantity of protein interaction
data. Hence, most of the interaction probability schemes have been developed
using the yeast protein interaction network as a guide. As the probability
schemes were previously computed for different subsets of yeast protein-

protein interactions, we compiled a test set of 11,883 yeast interactions
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common to all schemes. These yeast interactions were derived from both
yeast two-hybrid®* and mass-spectrometry-based'>!” screens.

In total, we considered seven interaction probability assignment
schemes, including Bader et al.%5, Deane et al.3, Deng et al.*, Qi et al.5! and our
model, descibed in the previous section called Sharan et al.>*. Bader et al.,
Sharan et al. and Qi et al. have assigned specific probabilities to every yeast
interaction, while Deane et al. and Deng et al. have grouped yeast interactions
into high/medium/low confidence groups. All of the above schemes define
and use some set of gold standard positive and negative interaction examples
for the probability estimation.

Bader et al. (BADER_LOW / BADER_HIGH)

As a gold standard positive training data set, Bader et al. used
interactions determined by co-IP, in which the proteins were also one or two
links apart in the Y2H network. The negative training data set was selected
from interactions reported either by co-IP or Y2H, but whose distance (after
excluding the interaction) was larger than the median distance in Y2H or co-IP
respectively. Using these training data, they constructed a logistic regression
model that computes the probability of each interaction based on explanatory

variables including data source, number of interacting partners, and other
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topological features like network clustering. We refer to this scheme as Bader
et al. (low) or BADER_LOW in our analysis.

Initially, the authors used measures based on Gene Ontology (GO)%*
annotations, co-expression, and presence of genetic interactions as measures to
validate their data. However, they also combined these measurements into
the probability score to bolster their confidence of true interactions. We
consider these new confidence scores in our analysis as Bader et al. (high) or
BADER_HIGH.

Deane et al. (DEANE)

Deane et al.® estimated the reliability of protein-protein interactions
using the expression profiles of the interacting partners. Protein interactions
observed in small-scale experiments that were also curated in the Database of
Interacting Proteins (DIP)¥” were considered as the gold standard positive
interactions. As a gold standard negative, they randomly picked protein pairs
from the yeast proteome that were not reported in DIP. The authors used this
information to compute the reliabilities of groups of interactions (obtained
from an experiment or a database). Higher reliabilities were assigned to
groups whose combined expression profile was closer to the gold standard

positive than the gold standard negative interactions. Specifically, reliabilities
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were assigned to the whole DIP database, the set of all protein interactions
generated in any high-throughput genome screen, and protein interactions
generated by Ito et al.’®.

Deng et al. (DENG)

Deng et al* estimated the reliabilities of different interaction data
sources in a manner similar to Deane et al.®*. They separately considered
experiments that report pair-wise interactions like Y2H and those that report
complex membership like mass spectrometry. Curated pair-wise interactions
from the literature and membership in protein complexes from Munich
Information center for Protein Sequences (MIPS)*”” were used as the gold
standard positive set in each case. Randomly chosen protein pairs formed the
gold standard negative data set. Reliabilities for each data source were
computed using a maximum likelihood scheme based on the expression
profiles of each data set. The authors evaluated reliabilities for Y2H data
sources like Uetz et al.?® and Ito et al.’®, and protein complex data sources like
Tandem  Affinity Purification (TAP)? and High-throughput Mass
Spectrometric Protein Complex Identification (HMS-PCI)”. In addition to
assigning reliabilities to each dataset, the authors also provided a conditional

probability scheme to compute probabilities for groups of interactions
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observed in two or more data sources. This calculation results in assigning a
high probability (0.99) to yeast interactions observed in more than 1 data
source. ~We use the probabilities generated by this method for our
comparative analysis.

Sharan et al. (SHARAN)

Recently, Sharan et al.** also implemented an interaction probability
assignment scheme similar to the one proposed by Bader et al. The scheme
assigned probabilities to interactions using a logistic regression model based
on mRNA expression, interaction clustering and number of times an
interaction was observed in independent experiments. Here, we use a
modification of this scheme, assigning probabilities to interactions based only
on direct experimental evidence. Specifically, interactions with at least two
literature references or those that had a distance < 2 in both the co-IP and Y2H
networks were defined as the gold standard positives. Conversely, proteins at
a distance > 4 in the entire network (after removing the interaction in question)
were defined as the gold standard negatives. Binary variables were used to
denote whether the interaction was reported in a co-IP data set, Y2H data set,

a small-scale experiment or a large—scale experiment. Interaction probabilities
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were then estimated using logistic regression on the predictor parameters
similarly to Bader et al.
Qietal. (QI)

In this study, the authors used interactions that were observed in small-
scale experiments and reported by either DIP or Bader et al. as their gold
standard positive training data®!. Randomly picked protein pairs were used as
the gold standard negative training data. The method incorporates direct
evidence such as the type of experiment used to generate the data and indirect
evidence like gene expression, existence of synthetic lethal interactions, and
domain-domain interactions to construct a random forest (a collection of
decision trees). The resulting forest is then used to calculate the probability
that two proteins interact.

Equal Probabilities (EQUAL)

Finally, we also considered the case in which all observed interactions
were considered to be equally true. We refer to this case as EQUAL in the
analysis.

A summary of all attributes used as inputs to the different probability
schemes is provided in Table 2.1. It should be noted that even though the

different probability schemes utilize some of the same types of inputs (e.g.,
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experiment type, expression similarity), they may incorporate these inputs in
different ways. For instance, both SHARAN and DENG use “experiment
type” as input, but SHARAN explicitly includes each type of experiment as a
separate indicator variable in its logistic regression function, while DENG
pools data from each experimental type and assigns a single confidence level
to the interactions in each pool.

We also compared global statistics such as the average and median
probability assigned by each scheme (see Table 2.2). We found that most
probability schemes had an average probability in the range of [0.3 - 0.5]. In
contrast, Deane et al. (DEANE) had a very high average and median
probability: over half of the interactions in the test set were assigned a
probability of 1. We also computed Spearman correlations among the different
probability schemes to measure their levels of inter-dependency (Table 2.3).
The maximum correlation was seen between BADER_LOW and
BADER_HIGH, as might be expected since both schemes were reported in the
same study and BADER_HIGH was derived from BADER_LOW. On the
other hand, Qi ef al. (QI) had very low Spearman correlation with any of the
probability schemes. The low correlation may reflect an inherent difference

between schemes that assign probabilities to experimentally observed
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interactions and ones that predict protein interactions ab initio. The
probabilities assigned by the schemes can be obtained from the

Supplementary website.

2.3 Quality assessment

One of the most objective ways to assess the performance of the
different confidence assignment schemes would be to compare their success at
correctly classifying a gold standard set of true protein interactions. However,
all of the schemes considered in this analysis had already used the available
gold standard sets of known yeast interactions in the training phase of their
classifiers and, consequently, assigned high confidence scores to them. As an
alternative approach, we employed five measures that had been shown to
associate with true protein interactions*3%% to gauge the performance of the
schemes. One caveat of this approach is that, in some cases, one of the
measures used to assess a scheme’s performance had already been used (in
full or in part) as an input to assigning its probabilities. To avoid circularity,
this measure was used only for gauging the performance of the remaining
schemes. For each of the five measures, two ways were used to estimate the

level of association: Spearman correlation and weighted average (see
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Methods). Importantly, by using the Spearman correlation coefficient, we are
in fact comparing how the schemes rank the interactions, not the absolute
scores that are assigned. Note that the EQUAL probability scheme results in

Spearman correlation of 0, by definition.

2.3.1 Presence of conserved interactions in other species

Presence of conserved interactions across species is believed to be
associated with biologically meaningful interactions®. As our benchmark, we
used yeast protein interactions that were conserved with measured C. elegans
and D. melanogaster interactions obtained from the Database of Interacting
Proteins (DIP)¥. An interaction was considered conserved if homologs of the
interacting yeast proteins were also interacting in another species. Homologs
were based on amino-acid sequence similarity computed using BLAST?, thus
allowing a protein to possibly match with multiple proteins in the opposite
species (if interacting yeast proteins were homologous to any pair of
homologs with an observed interaction, the yeast interaction was counted as
conserved). In particular, we allow interactions whose interacting proteins are
themselves homologs, but filter cases where both the interacting proteins

pointed to the same protein in the other species. We evaluated the weighted
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average and Spearman correlation between the probability assignment for
each yeast interaction and the number of conserved interactions across worm
and fly (0, 1, or 2). We used an E-value cut-off of 1X10* to make the
homology assignments (Table 2.4). We observed that SHARAN and
BADER_HIGH had the highest weighted average and Spearman correlation.
Not surprisingly, EQUAL had the lowest weighted average. Note that the
conserved interactions test is a very strong filter for true interactions as it
heavily depends on the level of completeness of the interaction networks of
other species being considered. However, as the underlying set of interactions
is the same across the different probability schemes, this filter affects all

schemes similarly.

2.3.2 Expression correlation

Yeast expression data for ~790 conditions were obtained from the
Stanford Microarray Database (SMD)‘!. For every pair of interacting proteins,
we computed the Pearson correlation coefficient of expression. We then
calculated the Spearman correlation and weighted average between the
expression correlation coefficients of interacting proteins and their

corresponding probability assignments in the different schemes (see Table 2.4
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and 2.5). We found significant association between expression correlations
and probabilities in the case of BADER_HIGH, BADER_LOW, QI and DENG.
This result is expected as these schemes, with the exception of BADER_LOW,
utilize expression similarity for interaction probability calculation.
Surprisingly, DEANE probabilities showed very little correlation with
expression, even though mRNA expression profiles were used as input in the
prediction process reflecting the difference in the way expression similarity is
incorporated in this method. In particular, DEANE is the only method where
expression similarity between two interacting proteins is taken into account as
the Euclidean distance between their expression profiles versus other methods
which incorporated the Pearson correlation coefficient of expression. On the
other hand, BADER_LOW had a higher Spearman correlation than SHARAN,
though both had very similar weighted averages and did not utilize

expression data in the training phase.

2.3.3 Gene Ontology (GO) similarity

As a first measure, we adopted the common notion that two interacting
proteins are frequently involved in the same process and hence should have

similar GO assignments®. The Gene Ontology terms are represented using a
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directed acyclic graph data structure in which an edge from term ‘a’ to term
‘b’ indicates that term ‘b’ is either a more specific functional type than term “a’,
or is a part of term ‘a’. As a result, terms that appear deeper in the graph are
more specific. Moreover, specific terms also have fewer proteins assigned to
them or their descendants.

Let “Pi” and “Py” be two proteins that have been observed to interact
with each other. To measure their functional similarity, we evaluated the size
(number of proteins assigned to the term), represented as “Si”, of the deepest
common GO term assignment (deepest common ancestor in graph) shared
between them. Thus, a smaller value of Sj indicates a greater functional
similarity between Pi and Pj. In addition, we also found that known yeast
interactions generally have lower values for Sj than random background (see
Figure 2.1). To ensure that higher values of our GO measure correspond to
higher performance (as is the case for other quality assessment metrics below),
we use the negative of Sj (or —Si) to represent the overall GO similarity.

Table 2.4 shows the relationship between GO similarity and the
interaction probabilities for each scheme. Of the schemes that did not use
functional annotations as inputs, DENG and SHARAN both had a very high

Spearman correlation with GO (with DENG slightly higher than SHARAN).
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However, one potential concern was that GO functional assignments could
incorporate evidence of co-expression which was used as an input by the
DENG scheme. This potential circularity can be addressed by use of the
partial correlation coefficient to factor out the dependency of GO on co-
expression (see Table 2.6). However, the partial correlation is almost certainly
an overcorrection since GO similarity and co-expression (and in fact any two
lines of evidence) are expected to have some correlation if they are both
predictive of true interactions. Regardless, with or without the correction,
DENG and SHARAN scored within 2% of each other; thus the two schemes

are practically indistinguishable by the GO metric.

2.3.4 Signal-to-Noise Ratio of protein complexes

Most cellular processes involve proteins that act together by assembling
into functional complexes. Several methods*¢¢ have been developed to
identify complexes embedded within a protein interaction network, in which
a complex is typically modeled as a densely-connected protein sub-network.
Recently, we showed that the quality of these identified protein complexes
could be estimated by computing their signal-to-noise ratio (SNR), a standard

measure used in information theory and signal processing to assess data
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quality (see Methods)®. Essentially, SNR evaluates the density of complexes
found in the protein interaction network against a randomized version of the
same network.

As the SNR is independent of the number of complexes reported, its
value can be directly compared across the different probability schemes. For
discovery of protein complexes, we applied a previously-published
algorithm> which includes interaction probabilities in the complex
identification process. SNR was then computed on the set of complexes
identified by each probability scheme. Results are shown in Table 2.7; out of

all of the schemes, DENG had the highest SNR of protein complex detection.

2.3.5 Conservation rate coherency

Interacting proteins have been shown to evolve at similar rates,
probably due to selection pressure to maintain the interaction over time®. For
every pair of interacting proteins, Pi and Pj, let “ri” and “1” be their respective
rates of evolution. We then computed a “conservation rate coherency score”

(CRyj) as the negative absolute value of the difference between the

evolutionary rates of the two corresponding genes: CRyj = —| 1i — 1rj |. The
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negative absolute value was used to ensure that higher values represent
higher performance, consistent with other metrics.

Evolutionary rates were obtained from Fraser et al.% and estimated
using nucleotide substitution frequencies. We calculated the Spearman
correlation between the values of CR for the interacting proteins and their
corresponding probability assignments in the different schemes (see Table
2.7). For all probability assignment schemes we obtained a statistically
significant correlation (p-value < 0.05) between the conservation rate
coherency scores and the corresponding probabilities, indicating that proteins
with high probability interactions tend to have similar conservation rates. The

highest correlation was obtained for DENG.

2.4 Discussion

A brief review of the performance results suggests that the DENG
method (Deng et al.) emerges as the clear winner, with top scores in three out
of four non-circular quality metrics. Comprising a ‘second tier’ are
BADER_HIGH, BADER_LOW (the two Bader methods) and SHARAN, which
perform very similarly across most metrics with some differences in

conservation coherency or gene expression (for which SHARAN performs
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better or worse, respectively). BADER_LOW, which considers experiment
type and interaction clustering as inputs, has a higher expression score than
SHARAN, which considers experiment type only, implying that interaction
clustering helps capture expression similarity. Interestingly, BADER_HIGH,
which incorporates more input attributes than BADER_LOW or SHARAN,
does not have substantially higher rankings. Thus, in this case, adding more
inputs to a probability assignment scheme does not appear to strongly
enhance its quality.

As for the remaining schemes with lower overall performance (DEANE
and QI), it is interesting to note that these were arguably the least and most
sophisticated schemes, respectively. The DEANE method relied on only a
single evidence type for assigning confidences, that of gene expression,
whereas it appears that other factors may have been more informative (Table
2.1). In contrast to DEANE, QI had the largest number of inputs for assigning
confidences and, among these, included data on both co-expression and
experiment type. However, it is well known that classifier accuracy can be
degraded by including many irrelevant input variables®, and perhaps this is
the reason for QI’s lower performance. As an alternative explanation, in Qi et

al.’s evaluation of classification schemes, they concluded that their method
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was very successful in predicting co-complex membership, but performed
poorly when considering physical interactions®. In our analysis, all
interactions (even co-complex membership) were treated as pair-wise protein
interactions, and this assumption may have contributed to the poor
performance of Qi et al. Certainly, their classification method was among the
most sophisticated of the schemes that we evaluated, and as such it is worthy
of future exploration (perhaps with different sources of input data) regardless
of its performance in the present study.

Finally, EQUAL almost always scored lowest, regardless of quality
metric. Thus, utilizing any probability scheme is better than considering all
observed interactions to be true or equally probable.

Beyond these broad rankings, is it possible to synthesize data from five
largely independent metrics to arrive at an overall quantitative index of
performance? As one approach, we normalized the scores for each metric as a
fraction of the best score achieved within that metric over all confidence
assignment schemes (i.e., for each metric, the highest score was fixed to 1 and
the scores of the remaining schemes were converted to fractional values
between 0 and 1). Table 2.8 summarizes the fractional scores for the six

probability schemes and five quality assessment measures. Note that
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expressing scores as fractional values is an intermediate normalization which
preserves the score distribution but compresses its range; although potentially
more informative than the non-parametric analysis above based only on
ranks, it must also be interpreted with more caution. However, in this case,
the fractional scores reinforce the findings reported above based on rank.

We have compared and contrasted seven probability assignment
schemes for yeast protein interactions. Surprisingly, Deng et al. performs
significantly better than others while being one of the least sophisticated. It
assigns discrete probability scores to large groups of interactions rather than
to individuals, and it inputs just two lines of evidence, experiment type and
expression similarity, rather than many. Generalizing these observations,
more complex approaches are so far unable to outperform simpler variants.
Thus, we arrive at a somewhat unexpected conclusion: At least in interaction

confidence assignment, sometimes less means more.

2.5 Methods

2.5.1 GO databases

The Gene Ontology annotations for yeast proteins were obtained from

the July 5%, 2005 download of the Saccharomyces Genome Database (SGD);


http://www.yeastgenome.org/
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the graph of relations between terms was obtained from the Gene Ontology

consortium (http://www.geneontology.org/).

2.5.2 Signal to noise ratio (SNR)

To compute SNR, a search for dense interaction complexes is initiated
from each node (protein) and the highest scoring complex from each is
reported. This yields a distribution of complex scores over all nodes in the
network. A score distribution is also generated for 100 randomized networks,
which have identical degree distribution to the original network. SNR is
computed using these original and random score distributions (representing
signal and noise, respectively) according to the standard formula® using the
root-mean-square (rms):

rms(original complex scores)

SNR =log,, ,
rms(random complex scores)

where rms(x, -+, ) = ﬁz x?

where M denotes the total number of complexes (in this case, equal to

the number of nodes) and xi represents the score of an individual complex.


http://www.geneontology.org/
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2.5.3 Weighted average

Z p; *m;
I=lN

zpi

i=1

The weighted average is given by WA = , where pi is the probability

of a given interaction and mi is the value of one of the five measures for the

interaction.
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Figure 2.1 Histogram of GO similarity scores.

(@) for the known yeast interactions reported in the MIPS database. (b) for
1,000 interactions generated randomly. These random interactions were
generated by picking pairs of proteins randomly from the set of interacting
proteins in yeast. It is evident from the two figures that true proteins
interactions (i.e known yeast interactions reported in MIPS) generally have
lower GO similarity scores than the background.
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Summary of input attributes for the different probability

schemes.
Experiment Number of | Protein Gene/ Tateractc Gene Fusion
Prob. Scheme Type Experimental | -DNA Protein Clustering SL" | GO" | DDI' | /Co-occur/
Observations |binding | Expression Nbrhd*

BADER_LOW X X X
BADER_HIGH X X X X X X

DEANE X X

DENG X X X

SHARAN X X

QI X X X X X X X X

EQUAL

*SL: Synthetic Lethal; GO: Gene Ontology; DDI: Domain-domain Interactions;
Nbrhd: Neighborhood

Table 2.2: Global properties of the probability assignment schemes.

Prob. Scheme Average Probability | Median Probability i I;::;nsz :;th
BADER_LOW 0.51 0.55 6,886
BADER_HIGH 0.48 0.50 5,896
DEANE 0.72 1.00 7,531
DENG 0.39 0.25 4,799
SHARAN 0.38 0.42 1,121
QI 0.46 0.47 4929
EQUAL 0.99 0.99 11,883
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Table 2.3: Correlation of different probability schemes.

BADER_HIGH | DEANE | DENG | SHARAN | OI

BADER_LOW 0.923 0.655 0.633 0.626 0.095
BADER_HIGH| 0.672 0.644 0.665 0.151
DEANE | 0.718 0.847 -0.090
DENG 0.680 0.185
SHARAN | -0.013

*p-values of all correlation measurements were significant (p-value < 2x101¢).

Table 2.4: Correlation of interaction probabilities with the GO similarity
measure, mMRNA expression correlation and interaction conservation.*

GO Annotation Coneetation Conservation
Prob. Scheme

SC WA SC WA SC# WA?
BADER_LOW 0.424 -5.850 0.185 0.494 0.132 0.147
BADER_HIGH 0.501 -5.680 0.223 0.503 0.136 0.158
DEANE 0.385 -5.910 0.016 0.481 0.098 0.139
DENG 0.490 -5.620 0.185 0.511 0.102 0.147
SHARAN 0.471 -5.710 0.050 0.492 0.134 0.158
QI 0.425 -6.040 0.269 0.495 0.080 0.125
EQUAL — -6.320 — 0.482 — 0.102

*Bold values indicate the scheme that performs the best. Italicized values
indicate potential circularity, i.e., schemes that use GO annotations or mRNA
expression profiles for confidence scoring that are similar to those used here
for comparative assessment. P-values for all the Spearman correlation
measurements are significant. SC: Spearman Correlation; WA: Weighted
Average.

* All measurements were done at an E-value cut-off of 1X1010.
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Table 2.5: Correlation of interaction probabilities with mRNA expression
correlation.*

R Expression Correlation

SC WA
BADER_LOW 0.185 (0.187) 0.494 (0.497)
BADER_HIGH 0.223 (0.221) 0.503 (0.505)
DEANE 0.016 (0.010) 0.481 (0.483)
DENG 0.185 (0.185) 0.511 (0.514)
SHARAN 0.050 (0.045) 0.492 (0.495)
QI 0.269 (0.274) 0.495 (0.499)
EQUAL — 0.482 (0.485)

*Ribosomal components are among the most co-expressed genes, and could
potentially lead to the observed relative importance of co-expression data. To
check for the effect of ribosomal proteins, we filtered the yeast interaction set
in our analysis to remove all ribosomal proteins and calculated the correlation
between co-expression and interaction probability. The values in brackets
correspond to the yeast interaction set which is filtered for ribosomal proteins.

Bold values indicate the scheme that performs the best. Italicized values
indicate potential circularity, i.e., schemes that use mRNA expression profiles
for confidence scoring that are similar to those used here for comparative
assessment. P-values for all the Spearman correlation measurements are
significant. SC: Spearman Correlation; WA: Weighted Average.
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Table 2.6: Effect of correlation between GO and mRNA expression.

Probability
Scheme GO (5pO)
DEANE 0.383
DENG 0.451

* SpC = Spearman partial correlation. Both schemes used expression as input
to assign confidence scores to protein interactions. The Spearman partial rank
correlation coefficient between two random variables A and X, given the fact
that both A and X are correlated to random variable Y, denotes the correlation
between A and X, when Y is kept constant. It is calculated as follows:

Fax — Pxy Fay

Ja-ri)a-r)

Faxy =

Here, rax, rxy and ravy represent the Spearman correlation coefficients between
A and X, X and Y, and, A and Y respectively. The significance level is given

by

1+r
Dy =1/24N —4In[ A”]

—Iax Y

Daxy has a normal distribution with zero mean and variance one. N
represents the size of the data set.
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Table 2.7: Associations of conservation rate coherency scores and SNR with
interaction probabilities.

Conservation
Prob. Scheme Coherency SNR
(SC*)
BADER_LOW 0.090 0.734
BADER HIGH 0.104 0.735
DEANE 0.113 0.537
DENG 0.141 0.950
SHARAN 0.126 0.742
QI 0.080 0.706
EQUAL — 0.657

* SC: Spearman Correlation. Bold values indicate the scheme which performs
the best. Note that conservation scores based on weighted averages were
omitted as they were very similar across the different confidence assignment
schemes.

Table 2.8: Fractional scores of the confidence assignment schemes in each
of the five quality measures.*

Gene Interaction Gene Conservation
Probability Scheme | Ontology |Conservation| Expression| SNR Coherency
(SC) (SC at 1x10°'%) (SC) (5C)
DENG: Deng et al. 1.00 0.76 — 1.00 1.00
BADER_HIGH:
Bader et al. (high) - i a et gied
BADER.LOW: Bader | 500 0.98 1.00 0.77 0.64
et al. (low)
jHARAN: RORanE 0.96 1.00 0.27 0.78 0.89
DEANE: Deane ef al. 0.78 0.73 — 0.57 0.80
QI: Qietal — 0.58 — 0.74 0.57

*Fractional scores are between [0,1] with 1 performing the best (indicated in
bold for each measure). Cells with a dash (-) indicate circularity, i.e., the
measures used as (full or partial) input to the corresponding probability
schemes. SC: Spearman Correlation; SNR: Signal to Noise Ratio.



3  Comparative network analysis

A major challenge of post-genomic biology is to understand the
complex networks of interacting genes, proteins and small molecules that give
rise to biological form and function. Advances in whole-genome approaches
are now enabling us to characterize these networks systematically, using
procedures such as the two-hybrid assay!’ and protein co-
immunoprecipitation® to screen for protein-protein interactions. To date,
these technologies have generated large interaction networks for bacteria”,

yeast 12171820 and, recently, fruit fly ¥ and nematode worm *.

The large amount of protein interaction data now available presents
new opportunities and challenges in understanding evolution and function.
Such challenges involve assigning functional roles to interactions!’; separating
true protein-protein interactions from false positives¥; and, ultimately,
organizing large-scale interaction data into models of cellular signaling and
regulatory machinery. We addressed the issue of distinguishing true
interactions from false in the previous chapter. In this chapter, we try to
concentrate on the questions of organizing the PPIs in regulatory modules. As

is often the case in biology, an approach based on evolutionary cross-species

47
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comparisons provides a valuable framework for addressing these challenges.
However, while methods for comparing DNA and protein sequences have
been a mainstay of bioinformatics over the past 30 years, development of
similar tools at other levels of biological information—protein
interactions?772, metabolic networks”” or gene expression data’®”® —is just

beginning.

Recently, Kelley et al. devised a method called PathBLAST? for
comparing the protein interaction networks of two species. Just as BLAST
performs rapid pairwise alignment of protein sequences?”, PathBLAST is
based on efficient alignment of two protein networks to identify conserved
network regions. In the rest of the chapter, we extend this approach to present
the first computational framework for alignment and comparison of more
than two protein networks. We apply this multiple network alignment
strategy to compare the newly-available protein networks for worm, fly and
yeast, and show that while any single network contains false-positive
interactions, embedded beneath this noise are a repertoire of protein

interaction complexes and pathways conserved across all three species.
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3.1 NetworkBLAST Algorithm

3.1.1 Network alignment graph

We developed a general framework for comparison and analysis of
multiple protein networks. The main goal was to identify protein sub-
networks that approximate a given structure and are conserved across a group
of k species of interest, where in the present study we focused on k=2,3. A
structure is specified as a property on the protein networks, e.g., being a path
(sequence of protein interactions modeling signaling pathways) or a clique (a
dense cluster of protein interactions modeling protein complexes), and sets
our expectations with respect to a sub-network that approximated that
structure. For instance, a sub-network that corresponds to a clique should

involve densely interacting proteins.

Conservation of a network structure requires the fulfillment of two
conditions: (1) the set of sub-network interactions within each species should
approximate the desired structure; and (2) there should exist a (many-to-
many) correspondence between the sets of proteins exhibiting the structure in
the different species, so that groups of k proteins, one from each species,

induced by this correspondence, represent k putatively homologous proteins.
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To capture these conservation requirements and to allow efficient search for
conserved sub-networks we define a network alignment graph that integrates
interactions with sequence information. Each node in the graph consists of a
group of sequence-similar proteins, one from each species; each link between a
pair of nodes represents conserved protein interactions between the
corresponding protein groups (Figure 3.1). The proteins are considered
homologous if their BLAST E-value? is smaller than 107 (corresponding to an
adjusted p-value of 0.01), and each is among the 10 best BLAST matches of the
other. A group of k distinct proteins, one from each species, comprise a node,
if the group cannot be split into two parts with no homology between them.
For k=2,3 this condition translates to the requirement that every protein in the

group has at least one homolog in the group. Two nodes (p,...p,) and
(q,...q,) in the graph are connected by an edge if and only if one of the
following conditions is true w.r.t. the protein pairs (p,,q,): (1) one pair of

proteins directly interacts and all other pairs include proteins with distance at
most two (indirectly connected through another protein) in the corresponding
interaction maps; (2) all protein pairs are of distance exactly two in the

corresponding interaction maps; or (3) at least max {2,k-1} protein pairs
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directly interact. Note that it may be the case that for some i, p;, =(;; we then

consider the pair (p,,q; )to have a distance 0.

A subgraph of the network alignment graph corresponds to a
conserved sub-network. For each species S, the set of proteins included in the
nodes of the subgraph defines the sub-network that is induced on S. The node
memberships define the homology relationships between the sets of proteins

of the different species.

3.1.2 A probabilistic model of protein sub-networks

In order to detect structured sub-networks, we score subgraphs of the
alignment graph which corresponds to collections of conserved sub-networks
in different species. Our score is based on a likelihood ratio model for the fit
of a single sub-network to the given structure. The log-likelihood ratios are
summed over all species to produce the score of the collection. In the

following we describe the likelihood ratio model.

Let G be the interaction graph of a given species on a set of proteins P.
Suppose at first, that we have perfect interaction data i.e., each edge in the
interaction graph represents a true interaction and each non-edge represents a

true non-interaction. To score the fit of a subgraph to a predefined structure
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we formulate a log-likelihood ratio model that is additive over the edges and
non-edges of G, such that high-scoring subgraphs would correspond to likely
structured sub-networks. Such a model requires specifying a null model and
a protein sub-network model for the node pairs. These models extend those
presented in Sharan et al.”? to account for any target structure, although in the
discussion below we concentrate on monotone graph properties: if a graph

satisfies it then it continues to satisfy it after adding any set of edges to it.

Let s be a target monotone graph property (e.g., being a clique), let
P'c P be a subset of the proteins, and let H be a labeled graph on P’ that
satisfies s. We define the two models as follows: the sub-network model, Ms,
corresponding to the target graph H, assumes that every two proteins that are
connected in H are also connected in G with some high probability f. In
contrast, the null model, Mn, assumes that each edge is present with a
probability that one would expect if the edges of G were randomly distributed
but respected the degrees of the nodes. More precisely, we let FC be the family
of all graphs having the same node set as G and the same degree sequence,
and define the probability of observing the edge (u,v) to be the fraction of

graphs in F¢ that include the edge. Note that in this way, edges incident on
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nodes with higher degrees have higher probability. We estimate these

probabilities using a Mote-Carlo approach as described in Sharan et al.”

Next, we refine the above models to the realistic case in which we are
give partial, noisy observations of the true interaction data. In this case, the
probabilistic model must distinguish between observed interactions and true
interactions. For ease of presentation we concentrate on the case that the
target structure is a clique (corresponding to a protein complex), but the
models generalizes to other structures as well. Let us denote by T the event
that two proteins u,v interact, and by Fw the event that they do not interact.
Denote by Ow the (possibly empty) set of available observations on the
proteins u and v, that is, the set of experiments in which an interaction
between u and v was or was not observed. Given a subset U of the nodes, we
wish to compute the likelihood of U under a sub-network model and under a
null model. Denote by O.the collection of all observations on node pairs in U.

Under the assumption that all pairwise interactions are independent we have:

Pr((0, | M,) HPr »

(u,v)eUxU

= [1[Pr(©, IT,.M,)Pr(T,, |M,)+Pr(0, | F,,.M,)Pr(F, |M,)]

(u,v)eUxu

[1lBPr0,, IT,)+@-B)Pr(0, |F,)]

(u,v)eUxu
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To compute Pr(O.|M») we must update the null model, which depends
on knowing the degree sequence of the interaction graph. We overcome this
difficulty by approximating the degree of each node I in the hidden interaction
graph by its expected degree, di. This refined model assumes that G is drawn
uniformly at random from the collection of all graphs whose degree sequence

is dy,...d,. This induces a probability p. for every node pair (u,v). Thus, we

have:

Pr(OU | M n): H[puv |:)r(ouv |Tuv )]+ (1_ puv) Pr(Ouv | I:uv)

(u,v)eUxU
Finally, the log-likelihood ratio that we assign to a subset of nodes U is

Pr(O, |M,)
LU)=log——2—L= log
( ) Pr(ou |Mn) (u,v%xu

APr(0,, IT,)+@-APr(0, |F,)
pUV I:)r(C)UV |TUV)+ (1_ pUV) Pr(ouv | I:UV)

3.1.3 Search algorithm

Using the above model, the problem of identifying conserved protein
networks reduces to the problem of identifying high-scoring subgraphs of the
network alignment graph. This problem is computationally hard”. Thus, we
present a heuristic strategy for the search problem.

We perform a bottom-up search for high-scoring subgraphs in the

alignment graph. The highest scoring paths with four nodes are identified
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using an exhaustive search. For dense subgraphs, we start from high-scoring
nodes (called seeds), refine them, and then expand them using local search.
Similar approaches based on local search were shown to work well in
analyzing high-throughput genomic data””.

In the first phase of the search, we compute a seed around each node v
in the alighment graph using two seeding methods. The first method greedily
adds p other nodes (p=3), one at a time, such that the added node maximally
increases the score of the current seed. Next, we enumerate all subsets of the
seed of size at least 3 that contain v. Each such subset serves as a refined seed.
The second seeding method computes the highest scoring path of four nodes
that includes v, and these four nodes serve as a refined seed.

In the second phase, we apply a local search heuristic on each refined
seed. During the local search we iteratively add a node, whose contribution to
the score of the current seed is maximum, or remove a node, whose
contribution to the current seed is minimum (and negative), as long as this
operation increases the overall score of the seed. Throughout the process we
preserve the original seed and do not delete nodes from it. For practical

considerations, we limit the size of the discovered subgraphs to 15 nodes. For
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each node in the alignment graph we record up to four highest scoring
subgraphs that were discovered around that node.

In the third phase, we use a greedy algorithm to filter subgraphs with a
high degree of overlap. We define two subgraphs as overlapping if one of the
following two conditions is satisfied: (1) their node intersection size over size
of the node union is greater than 80%; or (2) for each species separately, the
intersection over the union, computed on the subset of proteins from that
species that take part in at least one of the two subgraphs, is greater than 80%.
The algorithm iteratively finds the highest scoring subgraph, adds it to the
tinal output list, and removes all other overlapping subgraphs.

Finally, in order to evaluate the statistical significance of the identified
sub-networks, we compute a p-value that is based on the distribution of top
scores obtained by applying our method to randomized data. The
randomized data are produced by random shuffling of each of the input
interaction networks, preserving the degrees of the vertices. We also
randomize the homology relationships between the different proteins,
preserving the number of homologs for each protein. For each randomized
dataset, we build a network alignment graph and search for the highest

scoring sub-network of a given size. This process is then repeated a large
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number of times (usually 100 times). We then estimate the p-value of a
suggested sub-network of the same size, as the fraction of random runs in
which the output sub-network had larger score. We retain only sub-networks

at a 0.01 significance level.

3.2 Complexes conserved across multiple species

We applied the multiple network alignment framework (Figure 3.1) to
perform a three-way alignment of the protein-protein interaction networks of
Caenorhabditis elegans, Drosophila melanogaster and Saccharomyces cerevisiae.
These species span the largest sets of protein interactions in the public
databases to-date and, along with mouse, comprise the major model
organisms used to study cellular physiology, development and disease.
Protein interaction data were obtained from the Database of Interacting
Proteins® (February 2004 download) and contained 14,319 interactions among
4,389 proteins in yeast; 3,926 interactions among 2,718 proteins in worm; and
20,720 interactions among 7,038 proteins in fly. Protein sequences obtained
from Saccharomyces Genome Database®””, WormBase®, and FlyBase® were

combined with the protein interaction data to generate a network alignment of
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9,011 protein similarity groups and 49,688 conserved interactions for the three

networks.

The NetworkBLAST algorithm was then applied to find conserved
complexes across the three species. Since the search is guided by reliability
estimates for each protein interaction, we computed them for the protein
interactions in each species’ network using the method described in the
previous chapter. For gold standard positive training data, we used the
protein interactions from the Munich Information Center for Protein
Sequences (MIPS)” for yeast. These protein interactions are generally
considered to be true. On the other hand, there exist no accepted set of gold
standard set of protein interactions. Hence, we considered as interaction
between two proteins in worm or fly to be true if there exists an interaction
between their homologs in yeast in the MIPS dataset. To determine homology
between a pair of proteins, we used a strict threshold of 10 on their BLAST
E-value. We tried two choices of negative training data. The first considers
random pairs of proteins; the second, motivated by the abundance of false-
positives in the protein interaction data, considers random observed
interactions as true negatives. We performed five-fold cross-validation

experiments to evaluate the two choices. The latter generalized better to the



59

test data and was used in the rest of the study. We treated the chosen negative
data as noisy indications that the corresponding interactions are false, and
assigned those interactions a probability of 0.1397 for being true, where the
value of this parameter was optimized using cross-validation. Altogether we
collected 1006 postive examples and 1006 negative examples for yeast; 92
positive and 92 negative examples for fly; and 24 positive and 50 negative
examples for worm. Histograms of the interaction probabilities learned for

each species are presented in Figure 3.5.

Subsequently, a search over the network alignment identified 183
protein clusters and 240 paths conserved at a significance level of p<0.01.
These covered a total of 649 proteins among yeast, worm and fly.
Representative examples of conserved clusters and paths are shown in Figure
3.3. A database of all identified conserved clusters and paths, along with their

graphical layouts, is available at http://www.cellcircuits.org/Sharan2004/.

Figure 3.4 shows a global map of all clusters and paths conserved
among the yeast, worm and fly protein networks. The map shows evidence of
modular structure—groups of conserved clusters overlap to define 71 distinct
network regions, most enriched for one or more well-defined biological

functions. The largest numbers of conserved clusters were involved in protein
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degradation (green boxes at lower right), RNA polyadenylation and splicing
(blue boxes at lower left) and protein phosphorylation and signal transduction
(red boxes at upper right). Other significant conserved clusters were involved
in DNA synthesis, nuclear-cytoplasmic transport and protein folding. The
map also reveals conserved links between different biological processes, for
instance linking kinase signaling (red) to protein catabolism (green; lower

right) or to regulation of transcription (yellow; upper middle).

To validate our results, we compared these conserved clusters to
known complexes in yeast as annotated by the MIPS”. We only considered
MIPS complexes that were manually annotated independently from the DIP
interaction data (i.e., excluding complexes in MIPS category 550 that are based
on high-throughput experiments). Overall, the network alignment contained
486 annotated yeast proteins spanning 57 categories at level 3 of the MIPS
hierarchy. We defined a cluster to be pure if it contained three or more
annotated proteins and at least half of these shared the same annotation.
Ninety-four percent of the conserved clusters were pure, indicating the high
specificity of our approach, compared to a lower percentage of 83% when

applying a non-comparative variant of our method to data from yeast only
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(i.e., applying the same methodology to search for high-scoring clusters within

the yeast network only).

We further checked whether the conserved clusters were biased by
spurious interactions, resulting from ‘sticky” proteins that lead to positive two-
hybrid tests without interaction. Of 39 proteins with more than 50 network
neighbors, only ten were included in conserved clusters. These ten proteins
were involved in 60 intra-cluster interactions, 85% of which were supported
by co-immunoprecipitation experiments. This indicates that the clusters were

not biased due to artifacts of the yeast two-hybrid assays.

3.2.1 Three-way versus two-way network alignment

In addition to the three-way comparison, we also performed all
possible pairwise network alignments: yeast/worm, yeast/fly and worm/fly.
This process identified 220 significant conserved clusters for yeast/worm, 835
for yeast/fly and 132 for worm/fly. Several examples of these are shown in
Figure 3.9. Global overviews of the pairwise conserved clusters (similar to

Figure 3.2) are provided in Figures 3.5-3.8.

Analysis of the proteins shared among the different pairwise and three-

way network comparisons led to two general findings. First, the density and
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number of conserved clusters found in the yeast/fly comparison were
considerably greater than for the other comparisons, due to the large amounts
of interaction data for these species relative to worm (see Table 3.6 and Figure
3.10). Second, the worm/fly conserved clusters were largely distinct from the
clusters arising from the other analyses. For example, only 29% of the proteins
in the worm/fly clusters were assigned to conserved clusters in the three-way
analysis (135 out of 462). This observation is consistent with the closer
taxonomic relationship of worm and fly compared to yeast and the particular
selection of protein “baits” for the C. elegans protein-protein interaction screen:
roughly one quarter were specifically chosen to be metazoan specific, and

almost two-thirds had no clear yeast ortholog®.

3.2.2  Prediction of new protein functions

Conserved sub-networks that contain many proteins of the same
known function suggest that their remaining proteins also have that function.
Based on this concept, we predicted new protein functions whenever the set of
proteins in a conserved cluster or path (combined over all species) was
significantly enriched for a particular Gene Ontology (GO)® annotation

(p<0.01) and at least half of the annotated proteins in the cluster or path had
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that annotation. When these criteria were met, all remaining proteins in the
sub-network were predicted to have the enriched GO annotation (see

Methods).

This process resulted in 4,669 predictions of new GO Biological Process
annotations spanning 1,442 distinct proteins in yeast, worm and fly; and 3,221
predictions of novel GO Molecular Function annotations spanning 1,120
proteins. We estimated the specificity of these predictions using the technique
of cross validation, in which one hides part of the data, uses the rest of the
data for prediction, and tests the prediction success using the held-out data
(see Methods). As shown in Table 3.1, depending on the species, 58-63% of
our predictions of GO Processes agreed with the known annotations (see also
Tables 3.3 and 3.4). This analysis outperformed a sequence-based method of
annotating proteins based on the known functions of their best sequence

matches, for which the accuracy ranged between 37 and 53% (see Methods).

3.2.3 Prediction of new protein interactions

We also used the multiple network alignment to predict new protein-
protein physical interactions. We predicted an interaction between a pair of

proteins based on [1] evidence that proteins with similar sequences interact



64

within other species (directly, or via a common network neighbor) and,
optionally, [2] co-occurrence of these proteins in the same conserved cluster or
path. The accuracy of these predictions was evaluated using five-fold cross
validation, as described in the Methods section. In cross validation, strategy
[1] achieved 77-84% specificity and 23-50% sensitivity, depending on the
species for which the predictions were made (see Table 3.2 and 3.5). These
results were highly significant for the three species. Combining both
strategies [1] and [2] resulted in eliminating virtually all false positive
predictions (specificity>99%), while greatly reducing the number of true
positives, yielding sensitivities of 10% and lower (see Table 3.2). Given the
elevated specificity of the combined strategies, we were able to predict 176
new interactions for yeast, 1,139 for worm and 1,294 for fly with high
confidence. Thus, although protein interactions have been used previously to
predict interactions among the orthologous proteins of other speciesi’,
screening these against conserved paths and clusters markedly improves the
specificity of prediction. The complete list of predicted protein interactions is

provided on our website.

To further evaluate the utility of protein interaction prediction based on

network conservation, we tested experimentally 65 of the interactions that



65

were predicted for yeast using the combined strategies [1] and [2] above
(Figure 3.4a). The tests were performed using two-hybrid assays''*’, which
are based on a reporter gene that is transcriptionally activated if the two tested
proteins (bait and prey) can physically interact (see Methods and Figure 3.4b).
Five of the tests involved baits that induced reporter activity in the absence of
any prey (Figure 3.4c). Of the remaining 60 putative interactions, 31 tested
positive (more conservatively, 19 out of 48—see Figure 3.4) yielding an overall

success rate in the range of 40-52%.

3.3 Discussion

3.3.1 Comparison to existing methods

Kelley et al.® previously developed pairwise network alignment
algorithms that were used to detect linear paths and Sharan et al.”? found
dense clusters that are conserved between yeast and the bacteria H. pylori. The
multiple network alignment scheme that we have presented here is an
extension of these earlier approaches to handle more than two species.
Additional advantages of the current approach over the previous ones are: [1]
a unified method to detect both paths and clusters, which generalizes to other

network structures; [2] incorporation of a refined probabilistic model for
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protein interaction data; and [3] an automatic system for laying out and
visualizing the resulting conserved sub-networks. A related method that uses
cross-species data for predicting protein interactions is the interolog
approach’'78: a pair of proteins in one species is predicted to interact if their
best sequence matches in another species were reported to interact. In
comparison, our proposed scheme can associate proteins that are not
necessarily each other’s best sequence match. This confers increased flexibility
in detecting conserved function by allowing for paralogous family expansion
and contraction, or gene loss. Since conservation is evaluated in the context of
a protein interaction sub-network and not independently for each interaction,
the high specificity of the resulting predictions can be maintained (see below

section “Validation of predicted interactions”).

3.3.2 Best BLAST hits may not imply functional conservation

Frequently, the network alignment associates sequence-similar proteins
between species even though they are not each other’s best sequence match.
For instance, the conserved network region in Figure 3.2[h] suggests that the
worm protein exc-7 plays the same functional role as yeast Pabl and fly

CG33070 (BLAST E-value ~ 10°*?) based on the conserved interactions with
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Asc1/F08G12.2/Rackl (yeast/worm/fly), Rnal5/Unc-75 (yeast/worm) and
T01D1.2/Tbph (worm/fly). However, CG33070 is only the fifth best BLAST
match in fly overall (the best being CG3151 at E-value = 10°”°). Overall, out of
679 protein triples aligned at the same position within a three-way conserved
cluster, only 177 contained at least one pair of best sequence matches; out of
129 additional triples in conserved paths, only 31 contained best sequence
matches. Clearly, in some cases the best matches are not present within
conserved clusters due to missing interactions in the protein networks of one
or more species. However, it is unlikely that true interactions with the best-
matching proteins would be missed repeatedly across multiple proteins in a
cluster and across multiple species. These observations suggest that protein
network comparisons provide essential information about function

conservation.

3.3.3 Functional links within conserved networks

Conserved network regions enriched for several functions point to
cellular processes that may work together in a coordinated fashion. Due to the
appreciable error rates inherent in measurements of protein-protein

interactions, an interaction in a single species linking two previously unrelated
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processes would typically be ignored as a false positive. However, an
observation that two or three networks reinforce this interaction is
considerably more compelling, especially when the interaction is embedded in
a densely-connected conserved network region. For example, Figure 3.2[h]
links protein degradation to the process of poly-A RNA elongation. Although
these two processes are not connected in this region of the yeast network,
several protein interactions link them in the networks of worm and fly (e.g.,
Pros25-Rack1-Msi or Pros25-Rack1-Tbph). These findings are consistent with
previously-documented association of proteasomes with mRNA binding
proteins, although the exact nature of this association has been
controversial®#. A related functional link between the proteasome and
nucleic acid synthesis was detected in our earlier network comparison of yeast

and the bacteria H. pylori*.

As another example, Figure 3.9[1] shows a worm/fly conserved cluster
for which ~40% of the proteins have no significant yeast ortholog (BLAST E-
value >0.01). The cluster links functions such as proteolysis (Pros25, Pros28.1,
Pas-1-7), actin binding (Cher,W04D2.1), ion transport (CG32810, C40A11.7,
C52B11.2) and axon guidance (Fra). Taken together, these functions suggest a

role for this cluster in growth cone formation during axon guidance.
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Guidance of axons to their synaptic targets is an initial step in the
development of the central nervous system® and is mediated by special
compartments called growth cones at the tips of the extending neurites.
Formation of growth cones is induced by elevated levels of Ca* ions, which
trigger local proteolysis and restructuring of the actin cytoskeleton®. Thus, as
implicated by our findings, axon guidance requires synergy between
proteolysis, actin binding and ion transport within an intricate network of

protein interactions.

3.3.4 Validation of predicted interactions

Our two-hybrid tests of predicted interactions yielded a success rate in
the range of 40-52%. These results are satisfactory for three reasons. First, the
performance is clearly significant compared to the chance of identifying
protein interactions at random (0.024%, estimated from an earlier two-hybrid
screen? of 192 baits x 6000 preys that yielded 281 interacting pairs). Second,
two-hybrid analysis is known to miss a substantial portion of true
interactions!; this is particularly likely in our case where protein pairs were
checked in only one orientation of bait and prey. For instance, two of the pairs

that tested negative (YJRO68W-YOR217W; YBL105C-YHRO030C) have been
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shown to interact genetically in synthetic-lethal screens”, suggesting a
possible physical interaction as well. Third, predicting interactions using a
multiple network alignment approach compares favorably to previous
approaches based on conservation of individual protein interactions. For
instance, in Mathews et al.”! the interolog approach was applied to a set of 72
reported interactions in yeast, predicting 71 new interactions in worm. Seven
of the predicted worm interactions tested positive using a two-hybrid assay
(10%), while 19 of the previously-reported yeast interactions (26%) retested
positive. Considering only the worm interactions that were predicted based on
the 19 confirmed interactions in yeast, six of these tested positive, upper
bounding the prediction accuracy at 31%. In tests of 145 additional
predictions, 28 were confirmed, obtaining an overall accuracy of 16%. Similar
results were obtained in a subsequent study by Yu et al.®, where the accuracies

of the interolog approach and an extension of it were estimated at 30-31%.

3.3.5 Conclusion

Nearly all comparative genomic studies of multiple species have been
based on DNA and protein sequence analysis. Here, we transcend that

framework by presenting a comparative study of the protein-protein
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interaction networks of three model eukaryotes. These comparisons show
that many circuits embedded within the protein networks are conserved over
evolution, and that these circuits cover a variety of well-defined functional
categories. Since measurements of protein interactions tend to be noisy and
incomplete, it would have been difficult if not impossible to find these
mechanisms by looking at only a single species. Moreover, many of these
similarities and the network connections they imply would not have been
suggested by sequence similarity alone, as the proteins involved are
frequently not best sequence matches. The multiple network alignment also
allows us to ascribe new functions to many proteins and predict previously
unobserved protein-protein interactions. Comparative network analysis is

thus a powerful approach for elucidating network organization and function.

3.4 Methods

3.4.1 Scoring functional enrichment

Protein pathways and complexes were associated with known
biological functions using the Gene Ontology annotations (GO; May 2004
version)®. Since the GO terms are not independent but connected by an

ontology of parent-child relationships, we computed the enrichment of each
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term conditioned on the enrichment of its parent terms as follows. Define a
protein to be below a GO term ¢ if it is assigned or any other term that is a
descendent of t in the GO hierarchy. For each pathway or complex (specifying
a set of proteins) and candidate GO term we recorded the following
quantities: (1) the number of proteins in the sub-network that are below the
GO term; (2) the total number of proteins below the GO term; (3) the number
of proteins in the sub-network that are below all parents of the GO term; and
(4) the total number of proteins below all parents of the GO term. Given these
quantities, we computed a p-value of significance using a hypergeometric test.
The p-value was further Bonferroni corrected for multiple testing. All terms

assigned to at least one protein in the set were tested.

3.4.2  Prediction of protein functions

We used the inferred pathways and complexes for predicting novel
protein functions. A conserved complex or pathway in which many proteins
are of the same known function predicts that the remaining proteins in the
sub-network will also have this function. Based on this concept, we predicted
new protein functions whenever the following four conditions were satisfied:

(1) the set of proteins in a conserved complex or pathway (combined across all
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species) was significantly enriched for a particular GO annotation (p<0.01); (2)
at least five of the proteins in the sub-network has this significant annotation;
(3) these proteins accounted for at least half of the annotated proteins in the
sub-network overall; and (4) the annotation was sufficiently specific (at GO
level four or higher). For every species, all remaining proteins in the sub-
network were then predicted to have the enriched GO annotation, provided
that at least one protein from that species has the enriched annotation.

This process resulted in 4,669 predictions of new GO Biological Process
annotations spanning 1,442 distinct proteins in yeast, worm and fly; and 3,221
predictions of novel GO Molecular Function annotations covering 1,120
proteins across the three species. We tested the accuracy of our predictions
using the technique of cross-validation: we partitioned the set of known
protein annotations into 10 parts of equal size. We then iterated over those
parts, where at each iteration we hid the annotations that were included in the
current part, and used the remaining annotations to predict the held-out
annotations. For each protein, we predicted at most one function-that with the
lowest p-value. The prediction was considered correct if the protein has some
true annotation that lies on a path in the gene otology tree from the root to a

leaf that visits the predicted annotation. As shown in Tables 3.4 and 3.5,
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depending on the networks and species being compared, 33-63% of our
predictions were correct. In particular, our predictions of GO Biological
Process using the three-way complexes and pathways achieved success rates
of 58% for yeast, 59% for worm and 63% for fly.

We further compared the performance of our function prediction
procedure to a simpler prediction process, in which a protein with one or
more known functions predicts that its best sequence match in another species
has at least one of those functions. For each pair of species yeast/worm,
worm/fly and yeast/fly, we used proteins in the first species to predict the
function of their best BLAST matches in the second species; the success rates
achieved in this process were 36.5%, 40% and 53%, respectively. Even though
the annotation using best BLAST matched predicted multiple functions per
protein, only one of which had to match a true annotation, the results
achieved in the process were comparable to those achieved using pairwaise
alignment graphs and inferior to those achieved with thee-way alignment (see
Table 3.4). This comparison demonstrated the superiority of an approach that

takes into account the interaction data.



75

3.4.3 Prediction of protein interactions

We also used the alignment graph and the computed sub-networks to
predict protein interactions. @ We experimented with several ways of
predicting interactions. The simplest criterion that we tested is to predict as
interaction between two proteins whenever there were two nodes in the
alignment graph that contained them, such that for at least I of the species, the
two respective proteins included in those nodes has distance at most 2 within
that species’ interaction graph. We tried both /=1 and /=2 and tested our
predictions using 5-fold cross-validation.

We defined the training interaction data for the cross-validation
experiments as follows: we considered the n highest scoring interactions in
each species as positive examples, and the n lowest scoring interactions as
negative examples. To avoid bias toward interactions within dense network
regions due to their high clustering coefficient, we recomputed the reliabilities
of the protein interactions excluding the clustering coefficient from the model.
We removed from the training data interactions that were used for estimating
the interaction probabilities; we also removed protein pairs that were not
included in the alignment graph being analyzed. At each iteration of the

cross-validation experiments we hid one fifth of the interactions (both
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positives and negatives) and used the remaining data for prediction. Since
yeast and fly networks were considerably richer we used n=1500 for these two
species and n=500 for worm.

We applied this strategy to the three-way alignment graph and to the
three pairwise graphs. For yeast, [=2 gave the highest success rates (percents
of correct predictions) in cross-validation; for worm and fly /=1 yielded the
highest success rates. Denote by TP, FP, TN and FN the numbers of true
positives, false positives, true negatives and false negatives, respectively. The
sensitivity of the predictions, which is defined as TP/(TP+FN), varied between
19-50%; the specificity of the predictions, TN/(TN+FP), varied between 78-
94%. In addition, we also computed the hypergeometric p-value for the
results, defined as the probability of choosing at random (without
replacement) (TP+FP) balls that are labeled negative, so that at least TP balls
are positive. In all cases our prediction accuracy was highly significant. The
results of the cross-validation experiments are summarized in Table 3.3.

Next, we tested the utility of using information on inferred complexes
and pathways in improving the accuracy of the predictions. By adding the
requirement that two proteins in a predicted interaction are included in an

inferred complex or a pathway, we eliminated virtually all false positives,
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although at the price of greatly reducing the percent of true positive
predictions. The performance of this inference strategy for three-way
alignment graph is summarized in Table 3.3.

Based on the high specificity achieved in the cross-validation
experiments, we applied our approach to predict novel protein-protein
interactions using more stringent criteria described above. We computed a
ranked list of predictions by collecting evidence on each predicted interaction
as follows: we evaluated the probability that the interaction map of each
species induces on the predicted interaction, and combined these into an OR
probability for the interaction. That is, if the probability assigned by species I
to the interaction is pi, then the probability that we assign to the interaction if

p=1-II,1-p;). The computation of the probability p: assigned to an

interaction in a single species was based on the two proteins that participated
in the nodes of the alignment graph w.r.t. which the interaction was predicted.
If these proteins were observed to interact, we used their probability of
interaction as pi. If the distance of the two proteins in species I interaction map
was 2, we computed pi using an OR probability on all paths of length 2
between the two proteins, similar to Kelley et al.?8. Otherwise, we assigned pi=

0.
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3.4.4 Automatic layout of conserved complexes

We developed a plug-in for cytoscape® to automatically layout
collections of conserved complexes for visual inspection. An ideal layout has
two properties: (1) within a given complex, nodes do not overlap; and (2)
nodes that are connected by an edge are located in close proximity. Laying
out several conserved complexes imposes as additional constraint, namely,
homologous proteins should be located in analogous positions in their
respective species’ complexes. The first two constraints are well addressed by
existing graph layout strategies. One such strategy is Kamada and Kawai’s
layout algorithm®. In this scheme, each edge is modeled as a spring which
exerts a force attracting its endpoint nodes. In addition, all nodes exert a
repulsive force to discourage overlap. Given this framework, an ideal layout
is one with the lowest possible energy as determined by the forces exerted in
the system. In order to satisfy the additional constraint imposed by the
conserved complexes, we modify the basic scheme. First, edges are added
between all pairs of homologous proteins. Then, the repulsive forces between
nodes in distinct complexes are eliminated. After applying the force directed

layout, each complex is overlaid with homologous proteins in similar
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locations. These individual complexes are then separated to yield side-by-side

layouts of conserved complexes.
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Table 3.1: Cross-validation for protein cellular process prediction.

80

Species #Correct #Predictions Success  rate
Yeast 114 198 58
Worm 57 95 60
Fly 115 184 63

For each species the table lists the number of correct predictions, the total
number of predictions and the success rate in ten-fold cross-validation.

Table 3.2: Cross-validation results for protein interaction predictions.

Species Sensitivity Specificity p-value Strate
Yeast 50 77 1.1e-25 [1]
Worm 43 82 le-13 [1]
Fly 23 84 5.3e-5 [1]
Yeast 9 99 1.2e-6 [1]+[2]
Worm 10 100 be-4 [1]+[2]
Fly 0.4 100 0.5 [1]+[2]

For each species the table lists the specificity and sensitivity of the predictions
in five-fold cross validation, the significance of the results and the prediction

strategy (see text).
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Table 3.3: Expanded cross-validation results for protein interaction
predictions.

Species TP FN TN FP | Sensitivity Specificity | p-value

Yeast-Worm 51 149 287 18 |26% 94% 1.30E-13
Yeast-Worm 42 48 29 5 47% 85% 1.30E-13
Yeast-Fly 77 311 624 42 | 20% 94% 1.30E-14
Yeast-Fly 67 88 101 28 | 43% 78% 3.90E-14
Worm-Fly 37 161 133 16 |19% 89% 3.00E-04
Worm-Fly 49 141 126 15 |26% 89% 1.40E-08
Yeast-Worm-Fly 117 117 262 80 |50% 77% 1.10E-25
Yeast-Worm-Fly 54 72 53 12 | 43% 82% 1.00E-13
Yeast-Worm-Fly 54 182 178 33 | 23% 84% 5.30E-05
(*)Yeast-Worm-Fly | 20 214 339 3 9% 99% 1.20E-06
(*)Yeast-Worm-Fly | 13 113 65 0 10% 100% 6.00E-04
(*)Yeast-Worm-Fly | 1 235 211 0 0.40% 100% 5.00E-01

Entries are: the alignment graph used for predicting interactions for the
species that appears in bold-type: overall numbers of true positives (TP), false
negatives (FN), true negatives (TN), and false positive (FP) predictions;
specificity and sensitivity of the predictions; and a hypergeometric p-value of
the results. An asterisk denotes that the predictions were made by further
requiring the two proteins to be included in a conserved sub-network.
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Table 3.4: Expanded cross-validation results for predicting GO Biological

Processes.
Species #Correct #Predictions Success rate
Yeast-Worm 93 216 43%
Yeast-Worm 54 121 45%
Yeast-Fly 280 637 44%
Yeast-Fly 208 517 40%
Worm-Fly 22 55 40%
Worm-Fly 34 67 51%
Yeast-Worm-Fly | 114 198 58%
Yeast-Worm-Fly | 57 95 60%
Yeast-Worm-Fly | 115 184 63%

Entries are the alignment graph used for predicting functions for the species
that appears in bold-type; the number of correct predictions; the total number

of predictions; and the success rate.

Table 3.5: Cross-validation results for predicting protein GO Molecular

Functions.

Species # Correct  # Predictions Success rate
Yeast-Worm 61 179 34%
Yeast-Worm 40 118 33%
Yeast-Fly 171 488 35%
Yeast-Fly 156 402 39%
Worm-Fly 37 64 58%
Worm-Fly 31 61 51%
Yeast-Worm-Fly 79 162 49%
Yeast-Worm-Fly 51 103 49.50%
Yeast-Worm-Fly 77 149 52%

Entries are: the alignment graph used for predicting functions for the species
that appears in bold-type; the number of correct predictions; the total number

of predictions; and the success rate.
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Table 3.6: Protein coverage by complexes and pathways.

Species # Proteins  # Proteins in sub-networks Coverage
Yeast-Worm 765 271 35%
Yeast-Worm 536 204 38%
Yeast-Fly 1,494 790 53%
Yeast-Fly 1,559 778 50%
Worm-Fly 852 246 29%
Worm-Fly 1,131 291 26%
Yeast-Worm-Fly | 801 219 27%
Yeast-Worm-Fly | 551 190 34%
Yeast-Worm-Fly | 911 240 26%

For each alignment graph and each species (appearing in bold-type), given are
the number of distinct proteins for this species in the corresponding alignment
graph, the number of proteins that are covered by significant complexes and
pathways, and the percent of coverage.
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Figure 3.1: Schematic of the multiple network comparison pipeline.

Raw data are preprocessed to estimate the reliability of the available protein
interactions and identify groups of sequence-similar proteins. A protein group
contains one protein from each species and requires that each protein has a
significant sequence match to at least one other protein in the group (BLAST
E-value <107; considering the ten best matches only). Next, protein networks
are combined to produce a mnetwork alignment, which connects protein
similarity groups whenever the two proteins within each species directly
interact or are connected via a common network neighbor. Conserved paths
and clusters identified within the network alignment are compared to those
computed from randomized data, and those at a significance level of p<0.01
are retained. A final filtering step removes paths and clusters with greater
than 80% overlap.
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Figure 3.2: Representative conserved network regions.

Shown are conserved clusters [a-k] and paths [I-m] identified within the
networks of yeast, worm and fly. Each region contains one or more
overlapping clusters or paths (see Figure 3.3). Proteins from yeast (orange
ovals), worm (green rectangles) or fly (blue hexagons) are connected by
direct (thick link) or indirect (connection via a common network neighbor;
thin link) protein interactions. Horizontal dotted gray links indicate cross-
species sequence similarity between proteins (similar proteins are
typically placed on the same row of the alignment). Automated layout of
network alignments was performed using a specialized plug-in to the
Cytoscape software? as described in Methods.
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Figure 3.3: Modular structure of conserved clusters among yeast, worm and
fly.

Multiple network alignment revealed 183 conserved clusters, organized into
71 network regions represented by colored squares. Regions group together
clusters that share >15% overlap with at least one other cluster in the group
and are all enriched for the same GO cellular process (p<0.05 with the
enriched processes indicated by color). Cluster ID numbers are given within
each square; numbers are not sequential due to filtering. Solid links indicate
overlaps between different regions, where thickness is proportional to the
percentage of shared proteins (intersection /union). Hashed links indicate
conserved paths that connect clusters together. Labels [a-k],[m] mark the
network regions exemplified in Figure 3.2.
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[a] Pred. Interactors Pos. Score | Pred. Interactors Pos. Score

YDLZ216C YOR261C A1 7 YER165W YMR116C C10
YER1E5W YIROOIC A2 + YFROS2W YOLOZBEW C11 7
YJROBEW YOR21TW A3 YALOOSC YER1O7C €12
YARD18C YKRO3EC A4 YHROZ0C YJLOOIW D1 +
YER165W YOL123W A5 YGL18OW YGR253C D2
YILOOTC  YOR259C  AS + YELO37C YLLO34C D3
YDR384W YILOOTC AT a YBLO45C YOL123W D4 7
YILO81C  YOL123W AB YELOM13W YGR253C D5
YER165W YHRO85W A9 YDL126C YELO37C D6 +
¥ILO33C YMROO1C A10 7 YJL1B4C YPLOZIC D7
YGRO4OW YLR24BW A11 7 YBRIGOW YJL164C D8
YILOOTC  YKL145W A12 + YGLO4EC YOR117TW D9 +
YDR523C YLR42sw B1 2 YDR129C YDR3I8BW D10 +
YELO37C YOR258C B2 ? YILOG1C  YLR116W D11
YGR135W YOLO38W B3 ? YCLO11C YHROBEW D12
YGR135W YOR362C B4 + YER133W YKL166C E1 +
YGR1ISW YMR314W BS  + YGRO4OW YJL128C  E2 ?
YMR314W YPR103W B a YPL140C YPROS4W E3 a
YBLO32W YER165W BT YGL1SBW YLR362W E4
YGR135W YGR253C B8 YBLOMGBW YJL128C  ES ?
YJLODIW YMR314W B9+ YDL224C YILOBIC  EB +
YDLO2SW YOR117W B10  + YLR248W YLR3G2ZW E7
YMR3I14W YOR1S7C B11 ? YDLO2OW YMR216C E8 +
YFROS2W YGLO11C B12 7 YBL10SC YHRO30OC E9
YFROS2ZW YMLOS2C €1 ? YDRATTW YLR113W  E10
YOL147W YPL14OC C2 YHROOSC YILO4BW E11 +
YGRO92ZW YOR02TW C3 YGRO92W YHROZ0C E12
YBLO32ZW YHROSSW C4 YDLO2OW YPROSAW  F1 a
YFROS2W YGR138W €5 + YILO33C YLR10BC F2
YBLO1EW YBR160W C6 YGR136W YILO33C F3
YFRO52W YOR362C C7 + YBLO1BW YDR47YW F4 +
YOLOOTW YDLO2SW C8 YDRS23C YOR1STC FS +
YILOBIC YJRO45C C9

Figure 3.4: Verification of predicted interactions by two-hybrid testing.

[a] 65 pairs of yeast proteins were tested for physical interaction based on their
co-occurrence within the same conserved cluster and the presence of
orthologous interactions in worm and fly. Each protein pair is listed along
with its position on the agar plates shown in [b] and [c] and the outcome of
the two-hybrid test. [b] Raw test results are shown, with each protein pair
tested in quadruplicate to ensure reproducibility. Protein 1 vs. 2 of each pair
was used as prey vs. bait, respectively. [c] This negative control reveals
activating baits, which can lead to positive tests without interaction. Protein 2
of each pair was used as bait with an empty pOAD vector as prey. Activating
baits are denoted by “a” in the list of predictions shown in [a]. Positive tests
with weak signal (e.g., A1) and control colonies with marginal activation are
denoted by “?” in the list; colonies D4, E2 and E5 show evidence of possible
contamination and are also marked by a “?”. Discarding the activating baits,
31 out of 60 predictions tested positive overall. A more conservative tally,
disregarding all results marked by a “?”, yields 19 out of 48 positive
predictions.
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Figure 3.5: Histogram of probabilities assigned to experimentally observed
interactions.
(a) fly, (b) worm and (c) yeast.
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Figure 3.6: Modular structure of conserved complexes between yeast and
worm.

The overview graph represents 220 conserved protein complexes. Each link
indicates an overlap between complexes, where thickness is proportional to
the percentage of shared proteins (Jaccard measure of intersection over union).
Colors highlight complexes that are significantly enriched for proteins
involved in the same GO cellular process (p<0.05, corrected for multiple
testing). Complexes grouped into a single square share > 15% overlap with at
least one other complex in the group, and are all of the same significant
cellular process.
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and fly.

The overview graph represents 835 conserved protein complexes.
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Figure 3.9: Conserved pathways among yeast, worm and fly.

Proteins from yeast (orange ovals), worm (green rectangles) or fly (blue
hexagons) are connected by links representing protein-protein interactions.
Dotted gray links indicate sequence similarity.
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Figure 3.10: Comparison of 2-way anf 3-way complexes.
Shows are Venn diagrams depicting the relationships between the computed
2-way and 3-way complexes in terms of the number of distinct protein that are

included in each set of complexes.



4  Comparative network analysis of the protein
network of the malaria parasite Plasmodium falciparum

With the recent accumulation of protein interactions in public
databases, cross-species comparisons are becoming critical for analyzing the
large networks formed by these interactions to delineate protein function and
evolution®. At a fundamental level, protein networks can be compared to
identify “interologs”, i.e. interactions that are conserved across species®.
Beyond comparison of interactions individually, methods such as
PathBLAST*#5* create a global alignment between two protein networks to
identify dense clusters of conserved interactions, suggestive of protein
complexes. Such comparative approaches are important because they can
tease conserved components of cellular machinery out of a highly connected
network and increase overall confidence in the underlying interaction
measurements.

Plasmodium falciparum is the pathogen responsible for over 90% of
human deaths from malaria®. As such, it has been the focus of a major
research initiative, involving complete DNA sequencing of the genome®,

large-scale expression analyses” 2, and protein characterization of its lifecycle
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stages®. The Plasmodium genome sequence is relatively distant from those of
most other eukaryotes, with more than 60% of the 5,334 encoded proteins
lacking significant sequence similarity to other organisms®. To systematically
elucidate functional relationships among these proteins, a large two-hybrid
study has recently mapped a network of 2,847 interactions involving 1,312
proteins in Plasmodium'. This network adds to a growing collection of
available interaction maps and raises questions about whether the divergence
of Plasmodium at the sequence level is reflected in the configuration of its
protein network. Here, we examine conserved structures between the
Plasmodium protein network and those of model organisms and show that its
patterns of interaction, like its genome sequence, set it apart from other

species.

4.1 Cross-species comparison of the Plasmodium protein

network

4.1.1 Data sources

We assembled protein-protein interaction networks for Plasmodium
falciparum®, the budding yeast Saccharomyces cerevisiae”’, the nematode worm

Caenorhabditis elegans®, the fruit fly Drosophila melanogaster®, and the bacterial
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pathogen Helicobacter pylori® in the context of the Cytoscape network
visualization and modeling environment®. Annotation and amino-acid
sequence of each interacting protein in Plasmodium was obtained from
PlasmoDB*. To obtain data for other species, we downloaded interactions
from the Database of Interacting Proteins (DIP)¥” as of December 2004. The
yeast interactions were attributed to a combination of two-hybrid studies'®%,
co-immunoprecipitation studies'>'’, and classical small-scale experiments.
Interaction sets for worm, fly, and bacteria were each drawn from single two-
hybrid studies®#47. Corresponding protein sequences were obtained from the
Saccharomyces Genome Database®”, WormBase®, FlyBase?®!, or The Institute for

Genomic Research (TIGR)%, respectively.

4.1.2 Comparative analysis of the Plasmodium PPI network

We compared the protein-protein interaction network of Plasmodium
reported by LaCount et al. to protein networks for the budding yeast
Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans, the fruit fly
Drosophila melanogaster, and the bacterial pathogen Helicobacter pylori.
Surprisingly, pair-wise alignment of these networks using NetworkBLAST>

revealed that Plasmodium had only three conserved complexes with yeast



97

(Figures 4.1a-c) and had none with any other species. However, yeast, fly, and
worm shared substantial numbers of conserved complexes with each other
(Figure 4.2a). For instance, yeastand fly had the highest degree of
conservation with 61 conserved complexes.

The relatively low similarity between the Plasmodium network and
those of other eukaryotes suggested that it encodes important functional
differences worthy of further investigation. As an alternative explanation, it
was possible that differences in the number of complexes were related to
network size. Thus, in addition to searching for conserved complexes, we
investigated whether the observed similarities and differences were reflected
in the probability of conservation of each protein interaction individually
(Figure 4.2b). For each pair of species, a protein-protein interaction was
considered “conserved” if both proteins had homologs that interacted in the
opposite species (BLAST E-value <1x104, normalized for genome size). A
global pair-wise similarity metric was then defined as the overall fraction of
interactions that were conserved, restricted to proteins with at least one
homolog in the opposite species.

Figure 4.2c expresses the pair-wise interaction similarities as a

phylogenetic tree drawn using the method of Kitsch?”. This tree was relatively
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robust to sampling errors as determined by bootstrap analysis: 86.2% of trials
placed Plasmodium as an outgroup relative to yeast, worm, and fly. Among
the three model eukaryotes, yeast and worm were closest based on interaction
similarity (Figure 4.2b) while yeast and fly were closest based on conserved
complexes (Figure 4.2a). This discrepancy was likely due to network size or
coverage. Nonetheless, the particular phylogenetic placement of Plasmodium
was consistent across both analyses and with the accepted taxonomical
relationships among these species as established by morphological and
sequence comparisons®.

A second possibility for the low similarity of the Plasmodium network to
other species was that its interaction network had been measured
predominantly among proteins expressed in the asexual stages of the parasite
(see LaCount et al.””). There are two ways in which this sampling could affect
network similarity. First, it was possible that a high (low) level of mRNA
expression increases (decreases) the number of interactions identified for the
corresponding proteins and thus alters the topology of the Plasmodium
network relative to other species. To investigate the potential relationship
between protein interactions and mRNA expression, we plotted the number of

interactions of each protein in the Plasmodium network as a function of its
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mRNA expression level. Plasmodium genome-wide expression data were
obtained from Le Roch et al”> which includes experiments from the
erythrocytic (asexual) stages as well as the mosquito salivary-gland sporozoite
stage and the sexual gametocyte stage. As shown in Figure 4.5, we found no
relation between the number of protein interactions and expression level (in
any stage). Thus, the bias in protein sampling does not appear to affect the
specific topology of the network. Second, it was possible that proteins from
asexual stages tended to have lower similarity across species than did other
stages of the Plasmodium life cycle. In fact, we found that the Plasmodium
interaction set was enriched for proteins with homologs in other species and
that all five protein interaction networks were enriched for yeast homologs in
particular (Table 4.1 and 4.2). Such enrichment was observed even in worm,
for which baits were explicitly selected to be non-homologous to yeast’. This
effect is in need of further study, but might indicate a bias of the yeast two-
hybrid system in measuring interactions among yeast homologs, since all two-
hybrid constructs must be expressible in the yeast cell.

A final possibility was that the Plasmodium network might have a
substantially higher proportion of false-positive interactions relative to the

networks of yeast, fly, and worm. Lacking a “gold standard” set of true
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interactions, we characterized the relative quality of the Plasmodium network
by examining: (1) its global topological properties, and (2) the signal-to-noise
ratio of its protein complexes. Several common topological measures”® were
computed on each network, including the average number of interactions per
protein (average degree), the average shortest path length between proteins,
and the average clustering coefficient (Table 4.1). The number of interactions
per protein in the Plasmodium interaction network followed a scale-free
distribution, similar to other networks (Figure 4.3a). @ Moreover, the
Plasmodium network was never the outlier in any of the various
measurements, suggesting that its global organization was consistent with the
others.

Next, we applied the PathBLAST procedure to identify dense
interaction complexes within each species independently. A total of 29 single-
species complexes were identified for Plasmodium, three of which are shown in
Figures 4.1d-f. This number was the median of the range observed over the
five species (Table 4.1). Single-species complexes were used to assess the
overall quality of each network by computing their signal-to-noise ratio
(SNR), a standard measure from information theory and signal processing®.

SNR was computed by comparing the scores of complexes identified in the
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observed versus random interaction data for each species (see Methods).
Plasmodium, worm, and fly had very similar SNR values (Figure 4.3b), while
SNR of the yeast network was slightly higher and that of the H. pylori network
slightly lower. The network distances of Plasmodium versus yeast, worm, or

fly do not appear to depend on SNR.

4.1.3 Analysis of conserved and distinct complexes in Plasmodium

Analysis of the three conserved and 29 Plasmodium-specific protein
complexes suggests new functional predictions for Plasmodium proteins. For
instance, the conserved protein complex shown in Figure 4.1a predicts that the
proteins PF10_0244 and MAL6P1.286 may play previously uncharacterized
roles in endocytosis. The counterpart of PF10_0244 in the yeast network,
Edel, localizes to the cortical patch” of the cell membrane at sites of polarized
growth and appears to be involved in endocytosis'®. Myo5 and Myo3, yeast
counterparts of MAL6P1.286, are class I myosins that also localize to actin
cortical patches!®® where the calmodulin protein Cmd1 has been implicated in
the uptake step of receptor-mediated endocytosis'®. Taken together, this
evidence suggests a role for this complex in calmodulin-mediated endocytosis.

Calmodulin inhibitors have been shown to attenuate growth'® and
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chloroquine extrusion (effecting drug resistance)'™ in malarial parasites, and
endocytosis has recently been linked to the mechanism of anti-malarial drugs
including chloroquine and artemisin!®. The proximity of calmodulin to the
formation of endocytic vacuoles in Plasmodium provides for a discrete
hypothesis linking endocytosis, drug resistance, and drug mechanism of
action.

The conserved complexes shown in Figures 4.1b,c contain yeast
proteins involved in the unfolded protein response (UPR) pathway in the
endoplasmic reticulum, which is linked to increased chaperone production,
proteosomal degradation and specific gene expression changes'®.  The
proteins Rptl-5 comprise the regulatory subunit of the proteasome (Figure
4.1b). Rpt3 interacts with Lhsl, which is regulated by the UPR pathway!?.
These proteins are connected to a mesh of mitogen-activated (MAP) and
serine/threonine kinases associated with maintenance of cell wall integrity; it
is possible that these kinases also transmit signals to the mini-chromosome
maintenance (MCM) complex as part of the UPR. Interestingly, the MCM
complex links many of the same kinases as the UPR in both species. Whether
these connections are coordinated with or independent of the unfolded

protein response remains to be investigated.
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Within the 29 Plasmodium-specific complexes, chromatin remodeling
was a prominent function, as shown in Figure 4.1e. This complex involves the
chromatin-remodeling protein ISWI (MAL6P1.183) interacting with a
nucleosome assembly protein (PFI0930c)'®. PF11_0429 has a PHD domain
and PFL0130c has an HMG domain, both postulated to be involved in the
remodeling process!®”. Together, these known functions suggest that other
proteins in the complex, such as PF08_0060, PFB0765w, and PFL0625¢, also
participate in chromatin remodeling. For instance, although PFL0625c is
annotated as a translation initiation factor, its yeast homolog has been found
in complex with histone acetyltransferases!?. Of the 29 complexes distinct to
Plasmodium, three have the further distinction that the majority of their
proteins have no homologs in human or yeast (at a BLAST E-value <1x102).
One such example is shown in Figure 4.1f. Six of the 13 proteins in this
complex have predicted trans-membrane domains®. PF14_0678 is a 35 kDa
exported protein located at the membrane of the parasitophorous vacuole of
the infected erythrocyte!®. The remaining proteins in this complex are
unannotated due to lack of homology with other organisms. The complex in
Figure 4.1d suggests a link between translation (several translation initiation

factors and ribosomal subunits) and exported proteins involved in cell
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invasion. The latter proteins include MSP1, MSP9, several rhoptry proteins
and antigen 332, associated with cytoadherence'!. MSP9 (PFL1385c) is central
to this complex.

An important question regarding the 29 Plasmodium-specific complexes
is whether these complexes are truly unique to the pathogen or, alternatively,
scored just below the significance threshold in other species despite having
homologous proteins and protein interactions. To investigate this question,
Table 4.5 lists the number of Plasmodium proteins covered by the Plasmodium-
specific complexes that had homologs in yeast, fly and/or worm. Also listed
are the number of interactions within each complex that are conserved across
species (BLAST E-value < 1x10#). From the table, it is apparent that although
the complexes unique to Plasmodium have a number of proteins with
homologs across species, these homologs have very few interactions
conserved. Hence, we conclude that these complexes are not seen in yeast,
worm or fly, at least in the interaction networks that are currently available. It

is not the case that these complexes scored just below a threshold cutoff.

4.1.4 Distribution of GO Cellular Components across species.

Several cellular components that we expected to be present, such as the

proteasome, were missing from the set of complexes conserved between
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Plasmodium and other species. To investigate this issue, we plotted the
distributions of known functional annotations (Gene Ontology Cellular
Component Level Three)*® among Plasmodium proteins, protein interactions,
and conserved interactions (Figure 4.4 and 4.6; note that a protein or an
interaction can participate in multiple categories). Considerable fractions of
all three datasets were associated with intracellular organelles, membrane-
bound organelles, or the cytoplasm (Figure 4.4a). Other cellular components,
such as the membrane and extra-organismal space, were represented among
proteins and interactions but to a lesser extent among conserved interactions
(Figure 4.4b). Many membrane-associated components were also reported in
the 29 Plasmodium-specific complexes and are suggestive of machinery unique
to the organism. Finally, components such as the proteasome and
cytoskeleton were represented among proteins but were absent from the
interaction set and hence not found as conserved interactions or complexes
(Figure 4.4c). Interactions among proteins in these components may have yet
to be uncovered. These observations are reinforced by a complementary
analysis of the functional distributions of yeast, worm, and fly (Figure 4.6).
For instance, a set of interactions among membrane proteins is found in all

networks, and this set is typically conserved across yeast/worm/fly, but the
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membrane interactions set in Plasmodium shows no homology to other species
(compare blue to red bars). Extra-organismal proteins and protein
interactions are much more abundant in Plasmodium than in other species
(especially yeast and fly; a few are conserved between Plasmodium and worm).
Accordingly, the functional categories listed in Figure 4.4b are of interest as
potentially containing protein interactions that are unique to the pathogen,
especially considering that many of the proteins known to participate in
pathogenesis and cellular invasion come from these categories. Categories in
Figure 4.4c were represented in the Plasmodium genome but generally absent
from its interaction network, indicating possible false negatives. In Figure 4.6,
we can see that some of these categories, such as proteasome and cytoskeleton,
are in fact well represented in the protein networks of yeast, worm, and fly.
On other hand, the 43S preinitiation complex is absent not only from the
network of Plasmodium, but the other three networks also. This functional
complex may have therefore been consistently missed by two-hybrid

experiments.

4.2 Discussion

In summary, we have characterized conserved patterns of interaction

between the network of Plasmodium falciparum and those of other species and
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reported the specific network regions that are conserved. All of the examined
networks contain dense complex-like structures of interactions, some of which
are shared by yeast, worm, and fly but not Plasmodium. These relationships
are not clearly related to noise or bias in the Plasmodium interaction set. Some
of the observed differences are almost certainly due to incomplete coverage in
one or more networks: for instance, the present Plasmodium interaction set is
focused on the asexual lifecycle stages. Nevertheless, our comparison reflects
the relative degree of similarity between the different networks. These
differences are observed even when considering only those genes that are
homologous across species.

It is generally expected that conserved genes retain their functions and
interactions. From this comparison, a different principle emerges:
conservation of specific groups of related genes does not necessarily imply
conservation of interaction among those genes. Further studies may
distinguish the true differences from those related to network coverage and,
ultimately, direct new pharmaceuticals to the protein complexes unique to this

parasite.
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4.3 Methods

4.3.1 Identification of conserved and species only complexes

Identification of protein complexes was performed using the
PathBLAST family of network alignment tools, as previously described®.
Briefly, these methods integrate protein interaction data from two species with
protein sequence homology to generate an “aligned network”, in which each
node represents a pair of homologous proteins (one from each species) and
each link represents a conserved interaction. The network alignment is
searched to identify high-scoring subnetworks, for which the score is based on
the density of interactions within the subnetwork as well as confidence
estimates for each protein interaction (see below). The search is then repeated
over 100 random trials, in which the interactions of both species are arbitrarily
reassigned while maintaining the same number of interactions per protein,
resulting in a distribution of random subnetwork scores pooled over all trials.
Dense subnetworks that score in the top fifth percentile of this random score
distribution are considered significant and reported as “conserved
complexes.” The search for “single-species complexes” is identical to the

search for conserved complexes except that an individual protein network is
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searched instead of the network alignment. This process identifies dense

subnetworks constrained by the interactions of one species rather than two.

4.3.2 Interaction confidence scores

We estimated the probability that each measured protein interaction is
true using a logistic regression model based on mRNA expression correlation,
the network cluster coefficient, and the number of times the interaction had
been experimentally observed (see Chapter 2). For yeast, worm and fly,
mRNA expression data was obtained from the Stanford Array Database® as of
5/01/2004. Expression correlation among P. falciparum genes was estimated
from 48 arrays of mRNA expression collected across the different lifecycle

stages by Bozdech et al.*%.

4.3.3 Phylogenetic tree construction

The Kitsch algorithm (provided by the PHYLIP package® assumes the
presence of an evolutionary clock and is based on pairwise distances between
species, which were computed as follows. For each pair of species, an
interaction between proteins 2 and b was considered “conserved” if both
proteins had sequence-similar counterparts a” and b’ (BLAST E-value < 1x10%)

that interacted in the opposite species. A pairwise similarity between
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networks was computed as sz = (citcz2) / (t1+t2), where ¢ is the number of
conserved interactions and ¢ is the total number of interactions in species 1 or
2, respectively (with all interactions restricted to the set of proteins with
homologs in the opposite species). Pairwise network distance was then
defined as 1 —s2. The resulting phylogenetic tree reported in Figure 4.2c is the
consensus over 10,000 bootstrap simulations. Values of ¢ and t for each
network are listed in Table 4.3.
4.3.4 SNR of protein complexes

Signal to noise ratio (SNR) is a standard measure used in information
theory and signal processing to assess data quality. We compute SNR of the
single-species complexes as follows. The search for dense interaction
complexes is initiated from each node (protein) and the highest scoring
complex from each is reported (see the PathBLAST section above). This yields
a distribution of complex scores over all nodes in the network. A score
distribution is also generated for 100 randomized networks which have
identical degree distribution as the original network. SNR ratio is computed
from these original and random score distributions (representing signal and
noise, respectively) according to the standard formula® using the root-mean-

square (rms):
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rms(original complex scores)
rms(random complex scores)’

SNR =log,, with rms(x) =

2|~
L=

and where xi is the score of a complex and M is the total number of complexes.

4.3.5 Simulating false-positives and negatives in protein networks

The percentage of false positives and false negatives in each interaction
network was increased (Figure 4.3b x-axis) by randomizing the interactions in
the network, keeping the degree distribution fixed. At each iteration, two
interactions were selected (at random, say ‘a-b” and ‘A-B’) and their targets
exchanged, creating new interactions (‘a-B” and ‘A-b’). The shuffling was
performed only if the newly created interactions did not already exist in the
original network. When choosing an interaction partner at random (as above),
there is a far greater chance that the resulting unobserved interaction does not
occur in vivo (false positive) than vice versa (true positive). Therefore, each
time a “true” edge is moved during randomization, the shuffling process
replaces the true edge with a false negative and, the vast majority of the time,
creates a false positive edge in its place. This process of network
randomization simultaneously introduces both types of errors (conversely,

reassigning a “false” edge has little effect on either measure).
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Decay of certain global properties and signal to noise ratio (SNR)® was
recorded during this process. @ We calculated the average clustering
coefficient”®, and the overlap of the data set with previously established
domain interactions''?2. Domain overlap was calculated as the fraction of
interactions whose interacting proteins had domains that interact as defined in

the Pfam database. These measurements are shown in Table 4.4.
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Table 4.1: Topological properties of protein interaction networks.

Avg. Average Num. Yeast # Single
Num. of Proteins Avg. Shortest Clustering Homologst Species
SPECIES Intrxns Covered Degree Path  Coefficient*™ (p-value) Complexes
S.cerevisiae | 1,410 4389 453 412 0.193 - 145
(DIP)
S.cerevislae: | 4.4 1345 216 695 0.049 -- 66
(Uetz)
P. falciparum 2,847 1,312 4.35 4.20 0.032 286 (2x10-133) 29
D. melanogaster | 20,720 7.038 5.89 4.70 0.019 2,429 (2x10-209) 296
C. elegans 3,926 2,718 2.89 5.10 0.031 673  [4x10°19) 12
H. pylori 1,465 732 400 4.5 0.063 143 (1x1072) 21

*Unlike other networks which are generated from single two-hybrid studies,
the network of yeast interactions in DIP¥ consists of many experiments and
experimental types. A separate analysis is included considering only data
from a single two-hybrid screen by Uetz et al®.

**The clustering coefficient measures local density of the network around a
protein and is computed as previously described®.

*Yeast homologs are determined using a conservative BLAST E-value
threshold of <1E-10. The p-values score the significance of enrichment for
yeast homologs within the set of proteins covered by each interaction
network, using the hypergeometric test. These enrichments are significant
over a broad range of E-value thresholds (data not shown).
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Table 4.2: The Plasmodium network is enriched for proteins that have
homologs in other species.

P. falciparum / P. falciparum / P. falciparum /
C. elegans D. melanogaster S. cerevisiae
Conserved
Plasmodium Proteins
BLAST E-value < 2169 2520 2177
1x10E-4)
Conserved
Plgsmoc!mm Prc:tems 714 857 737
in the interaction
network
Hyper-geometic p- 197 E-28 1.33 E-47 297 E-35
value

Table 4.3: Comparison of number of conserved interactions across species.

Species 1 Species 2
Comparison Total Total
Species 1 / Species 2) Interactions h (] Interactions t C2
P. falciparum / §. cerevisiae 2,847 488 45 14,319 1,524 79
P. falciparum [ D.
melanogaster 2,847 801 50 20,720 1,446 67
P. falciparum [ C. elegans 2,847 392 23 3,926 324 32
P. falciparum / H. pylori 2,847 8 0 1,465 78 0
C. elegans [/ S. cerevisiae 3,926 454 121 14,319 2,670 284
Z. elegans / D.
melanogaster 3,926 1,111 152 20,720 3,745 201
S. cerevisiae [ D.
melanogaster 14,319 6,178 565 20,720 3,183 392
H. pylori / C. elegans 1,465 17 1 3.926 9 1
H. pylori / D. melanogaster 1,465 80 2 20,720 49 3
H. pylori / S. cerevisiae 1,465 77 2 14,319 154 2

t1 = Species 1 interactions whose proteins have homologs in species 2.
c1 = The subset of interactions from t: that are conserved with interactions in
species 2.
t2 = Species 2 interactions whose proteins have homologs in species 1.
c2 = The subset of interactions from ¢: that are conserved with interactions in
species 1.



Table 4.4: Decay of global properties with increase in randomization.

L
Species Randomizations F’:}:ﬁif{: Avg. Clustering % Intr covered
per Interaction — Coefficient by Domain Intr

P. falciparum 0 0 0.032 0.59
P. falciparum 0.01 9.45 0.031 0.55
P. falciparum 0.1 48.16 0.028 0.38
P. falciparum 1 86.46 0.027 0.29
P. falciparum 10 95.58 0.027 0.27
P. falciparum 1000 97.32 0.027 0.25
S. cerevisiae 0 0 0.193 4.78
S. cerevisiae 0.01 9.4 017 4.59
S. cerevisiae 0.1 44 97 0.0864 3.08
S. cerevisiae 1 85.8 0.0314 1.86
S. cerevisiae 10 97.37 0.025 1.06
S. cerevisiae 1000 98.46 0.0248 0.9
S. cerevisine (Uetz ef al.) 0 0 0.049 5.94
S. cerevisine (Uetz et al.) 0.01 9.74 0.041 5.52
S. cerevisine (Uetz et al.) 0.1 55.9 0.015 3.35
S, cerevisiae (Uetz et al.) 1 95.6 0.005 1.32
S. cerevisine (Uetz et al.) 10 99.25 0.0049 1.18
S. cerevisiae (Uetz et al.) 1000 99.2 0.0049 1.19
D. melanogaster 0 0 0.019 0.16
D. melanogaster 0.01 9.6 0.015 0.12
D. melanogaster 0.1 45.69 0.0132 0.09
D. melanogaster 1 86.85 0.0126 0.05
D. melanogaster 10 98.41 0.0103 0.04
D. melanogaster 1000 99.2 0.0103 0.037
C. elegans 0 0 0.031 1.12
C. elegans 0.01 9.84 0.032 1.04
C. elegans 0.1 51.4 0.034 0.73
C. elegans 1 87.4 0.029 0.475
C. elegans 10 95.2 0.02 0.29
C. elegans 1000 98.3 0.017 0.17
H. pylori 0 0 0.063 1.98
H. pylori 0.01 13.74 0.033 0.34
H. pylori 0.1 55.04 0.04 0.23
H. pylori 1 92.9 0.048 0.069
H. pylori 10 96.64 0.049 0.045
H. pylori 1000 96.64 0.049 0.05
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Table 4.5: Conservation statistics of Plasmodium-specific complexes.
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Pla:;)neocciifrit:: m Total # | # proteins conserved in Total # # interxns conserved in
mplex proteins "yegst ’ Worm ] Fly Interactions | Yeast ‘ Worm ‘ Fly
1 15 12 10 12 48 2 0 0
2 15 10 11 9 27 0 0 ]
3 15 11 10 11 25 0 0 0
4 15 8 8 7 26 0 0 0
5 15 9 8 8 30 ] 0 0
6 15 8 6 11 28 ] 0 0
7 15 8 8 10 27 0 0 0
8 15 9 10 10 25 0 2 0
9 15 9 8 o 27 0 0 2
10 15 9 ? 10 27 0 0 0
11 15 10 Q 10 29 0 0 0
12 15 8 5 7 27 0 0 0
13 15 10 ? 9 35 0 1 0
14 15 10 7 11 31 1 0 0
15 15 9 9 12 33 1 0 0
16 15 9 6 8 33 0 0 0
17 15 8 8 8 60 1 1 2
18 15 9 8 10 28 0 0 0
19 15 12 7 8 29 0 0 0
20 15 6 7 8 30 0 0 0
21 15 6 6 9 32 1 0 0
22 15 8 8 ) 29 0 0 0
23 15 12 8 10 29 0 0 0
24 15 5 4 7 29 2 0 0
25 15 11 10 11 30 0 0 ]
26 15 8 8 9 30 | 0 0
27 15 12 11 10 27 1 0 0
28 15 8 8 8 28 0 0 0
29 15 8 ? 10 31 0 0 ]
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Figure 4.1: Conserved and distinct complexes within P. falciparum.

Panels (a-c) show the three conserved complexes identified between P.
falciparum and S. cerevisine. Orange vs. green nodes correspond to P. falciparum
vs. S. cerevisiae proteins. Solid links represent direct interactions, while dashed
(indirect) links represent interactions mediated by one other protein. Grey
dashed lines connect sequence-similar proteins across the two species. Panels
(d-f) show three representative complexes found within the P. falciparum
network only. Cream-colored nodes denote Plasmodium proteins without
human homologs (using a permissive BLAST E-value threshold < 1x10? to
allow for distant homologs).
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Figure 4.2: Network similarity across five species.

Panel (a) displays the results of all pair-wise PathBLAST comparisons. The
number of conserved complexes is shown for each pair of species (yellow).
The Wilcoxon rank-sum p-value (green) represents the significance of the
distribution of all complex scores versus the distribution of complex scores
found in equivalent random networks. In panel (b), the interaction-by-
interaction similarity between networks is reported as both fractional values
(yellow) and percents (green). Panel (c) displays the phylogenetic tree
constructed using these similarities. Percentages indicate the reproducibility
of each branch during bootstrap analysis.
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Figure 4.3: Properties of the protein interaction networks of five species.

(a) Scale-free network behavior is shown in a manner similar to Barabasi et al.*8
The linear fit is for Plasmodium only. (b) Dependence of signal to noise ratio
on error rate. Each network was modified by randomly shuffling from 0 to
100% of its protein interactions to simulate the addition of false positives and
negatives. The subsequent decrease in SNR, converging to SNR=0 at 100%
noise, validates that each network contains a substantial fraction of true
positive interactions. In addition to the high-throughput networks in this
study, a literature-curated network (S. cerevisine physical interactions
according to the MIPS¥) is provided as a positive control. Similar trends are
observed for the average clustering coefficient and the percent of interactions
covered by established protein-domain interactions (Table 4).
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Figure 4.4: Functional roles among Plasmodium proteins (green), protein
interactions (blue) and conserved interactions (red).

The histograms show the distribution of GO Cellular Component assignments
over all annotated Plasmodium proteins or interactions. Interactions are
considered “annotated” if the interacting proteins share the same GO category
(these interactions are listed in Table 6). For conserved interactions, the
percentages in each category are cumulative over the three pairwise
comparisons of Plasmodium versus the other three eukaryotes yeast, fly, or
worm. Note that a protein or interaction can participate in multiple
categories.
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Figure 4.5: Number of interactions per protein versus mRNA expression
level.

Absolute expression levels were obtained from Le Roch et al.2, which includes
experiments from the erythrocytic asexual stages (blue diamonds), the
mosquito salivary-gland sporozoite stage (red squares) and the sexual
gametocyte stage (green triangles). No significant correlation was observed
for any stage.
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Figure 4.6: Gene Ontology (GO) enrichment among cellular components in
yeast (a), worm (b) ,and fly (c).

These histograms are complementary to Figure 4.4 and indicate the
representation of common cellular components in each species’ genome
(green), set of interactions (blue), conserved interactions (red), and conserved
complexes (yellow). The percentages of conserved interactions are combined
over the separate pairwise comparisons for each species (eg. in panel [a], data
from yeast vs. worm, fly or Plasmodium comparison was used). Note that a
protein or interaction can participate in multiple categories.
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5 Network Integration: An efficient method for
interpreting eQTL associations using protein networks

The technique of expression Quantitative Trait Loci (eQTL) is becoming
increasingly widespread for revealing the genetic loci in control of specific
changes in gene expression®3!. eQTLs are a variant of the more basic concept
of Quantitative Trait Loci, which measures the association between a
quantitative phenotype (such as height and weight) and a panel of
polymorphic genetic markers distributed across the genome!®. For the special
case of eQTL analysis, the phenotype of interest is a gene expression level
measured with DNA microarrays®. Since a microarray monitors expression
levels of all genes, separate statistical tests are performed to compute scores of
association of each genetic marker with each gene expression level.

Two of the core challenges®* in understanding and explaining eQTL
associations are:

Fine Mapping: Due to the spacing of genetic markers and/or linkage
disequilibrium, several genes can reside near each marker. Typically, no more

than one of these genes is responsible for the observed expression phenotype.
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Identifying the true causative gene requires additional data, since all genes at
a locus are indistinguishable based on the eQTL measurements alone.

Lack of mechanistic explanation: A gene-phenotype association
typically lends little insight into the underlying molecular mechanism for the
association.

Several bioinformatic approaches have been proposed recently to
address these two issues?336114115 For the problem of “fine mapping”, the
main bioinformatic focus has been on predicting which genes within a given
locus are the true regulators of expression of the target phenotype. For
instance, Kulp and Jagalur'* sought to infer the true causal genes using a
Bayesian network model constructed from expression correlations detected
within the eQTL profiles.  Another powerful approach has been to
complement eQTLs with data on physical molecular interactions. Tu et al.3
modeled each eQTL association as a sequence of transcriptional and protein-
protein interactions that transmits signals from the locus to the affected target.
This method is promising since it prioritizes candidate genes by their network
proximity to the affected target gene and also provides a model of the
underlying regulatory pathways. In addition, assembly of protein interaction

networks is a burgeoning area in genomics and the amount and quality of
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protein interaction data are rapidly improving. Therefore, integrating eQTL
data with additional independent information may significantly reduce the
noise and improve the statistical power of the analysis'*.

Here, we describe a new integrative approach (named ‘eQTL Electrical
Diagrams’ or eQED) which also combines eQTL data with protein interaction
networks but predicts the true causal gene at each locus with substantially
higher accuracy than the previous method. eQED models the flow of
information from a locus to target genes as electric currents through the
protein network. Currents can be simulated simultaneously for all loci
influencing a target, allowing multiple loci to reinforce each other when they

fall along a common regulatory pathway.

5.1 “Electric circuit” analysis of eQTLs

5.1.1 Definition of terms

In what follows, the genes near a polymorphic genetic marker are
called candidate genes, and the genes with an associated change in expression
are called targets. The particular candidate gene that is truly responsible for
the downstream change in expression of a target is called the true causal gene.

Collectively, the set of candidate genes near a marker define a locus. Finally,



127

the proteins and their interactions in the protein network are referred to as

nodes and edges respectively.

5.1.2 Open problems motivated by previous method

For a given locus and associated target, the Tu et al. method works by
executing a random walk through the protein network starting at the target.
At every step of the walk, the next edge to be followed depends on its
predefined weight (see Methods). The walk ends when it reaches one of the
candidate genes in the locus. The random walk is repeated 10,000 times, and
the candidate gene that is visited most often is predicted to be the true causal
gene. Figure 5.1A shows a sample network, while Figure 5.1B shows a sample
random walk on this network according to the Tu et al. approach. Gene L3 is
visited most often and, hence, is reported as the causal gene.

Given that the protein network is large, many random walks must be
executed in order for the predictions to be accurate. Moreover, a single
random walk from the target to any candidate gene may require many steps.
These two issues can lead to random walk simulations that last a prohibitively
long time. In Tu et al., the authors make a key approximation which allows

them to achieve feasible simulation times: they constrain the path taken by
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each random walk to be acyclic (i.e., no genes can be revisited). As a
consequence, many walks result in “dead ends” unable to reach any candidate
gene, but all walks are at least relatively short. This “greedy” approximation
may lead to different predictions from typical random walk models''” which
may affect their accuracy. In addition, since biological networks are scale-
free!8, they contain a large number of dead ends (i.e., nodes with a single
edge). The many dead ends greatly reduce the absolute number of visits to
the candidate genes, thereby reducing the overall confidence in the final

causal gene prediction for a given number (e.g. 10,000) of walks.

5.1.3 The eQED model

The eQED approach seeks to address the above open problems by
replacing the random walk model with a framework based on electric circuits.
There is considerable prior work establishing the equivalence between electric
networks and random walks (see Methods). The eQTL associations and the
corresponding protein network are abstracted as an analog electric circuit
model grounded at a given target gene. The weights on the edges of the
molecular network are modeled as conductances (1/resistance) in the electric

circuit. The p-values of association between each genetic locus and expression
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of the target are modeled as independent sources of current. An electric
circuit abstraction is constructed for every locus-target association (which we
call the single-locus model, Figure 5.1C). Further details of the model are
provided in the Methods section.

After solving the circuit for currents, the causal gene is predicted as the
one with the highest current running through it. Analyzing the network as an
electric circuit provides a deterministic “steady state” solution, in contrast to a
stochastic random walk. Moreover, the number of dead-end nodes in the
network does not affect the final result as the total current through them is

always zero (Figure 5.1C).

5.1.4 Application to eQTL associations in yeast

As a proof of principle, we applied the eQED approach to analyze the
results of a genome-wide eQTL study in yeast by Brem et al.*. This study
reported associations between 2,956 genetic markers and 5,727 gene
expression levels measured across 112 yeast strains (Methods). All
locus / target pairs with a gene association p-value < 0.05 were considered;
within this set, we selected only those loci containing more than one candidate

gene (i.e., for which the true causal gene was ambiguous). At the same time,
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we assembled a pooled interaction network consisting of 17,171
transcriptional and protein-protein interactions reported in previous large-
scale studies (Methods). Given this network, the set of locus / target pairs was
further filtered to include only those loci for which at least two of their
candidate genes had at least one transcriptional or protein-protein interaction,
yielding a total of 131,863 locus / target pairs. The single-locus model of eQED
was applied to each locus / target pair, and a causal gene prediction was made
in each case. This step-by-step procedure is diagrammed in Figure 5.2.

To estimate the accuracy of the predictions, we compiled a set of “gold
standard” cause-effect pairs from two large gene knockout expression
profiling studies in yeast, Hughes et al."® and Hu et al.'®, as well as from a
gene over-expression study by Chua et al’?l. In these studies, strains
harboring a single gene knockout or over-expression construct (the “true
causal gene”) had been analyzed using whole-genome microarrays to identify
a resulting set of differentially-expressed genes (the “targets”). We filtered
these three data sets to include only those causal gene / target pairs that were
present in the molecular network used by eQED and for which the causal gene
was associated with the target gene at p < 0.05 in Brem et al. (see Methods).

The resulting gold-standard set contained 548 causal gene / target pairs.
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Table 5.1 reports the number of correct predictions of the causal gene
for each method. The single locus model of eQED correctly predicted 392 of
the 548 gold standards (72% accuracy). In comparison, the approach by Tu et
al. achieved 50% accuracy. Both methods performed substantially better than

random selection of a gene at a locus, which achieved 22% accuracy.

5.1.5 Combining multiple loci

In our model, given a target gene and a corresponding significant
marker, there exists only one causal gene. However, in eQTL studies, the
expression level of a target gene typically has significant associations with
more than one marker (and thus more than one causal gene). If these causal
genes fall along common regulatory pathways, considering multiple loci
together in the same eQED model might increase our confidence in the causal
gene predictions. Motivated by these considerations, we explored a second
circuit model, called multiple-loci e€QED, in which currents were included for
all significant loci associated with a target (see Methods). For example (Figure
5.1E), let the target T associate significantly with two loci. In the single-locus
model, we would investigate the two associations separately, but in the

multiple loci model their information is processed as a single circuit. Figure
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5.1F shows a schematic of the multiple-locus model from Figure 5.1E. For
each locus considered, the causal gene is predicted as the one having the
highest current flowing through it.

The accuracy of the multiple-loci eQED model was estimated using the
same gold-standard data set used for the single-locus model. As shown in
Table 5.1, the multiple-loci model boosted prediction accuracy substantially
over the single-locus case (80% versus 72%). Combining information from all
significant loci for a given target also reduces computation time, as all loci are

processed in a single eQED simulation instead of multiple runs.

5.1.6 Predicting the direction of signaling along protein interactions

A direct consequence of the electric circuit model is that the currents on
the wires of the network suggest a direction of information flow in the
biological system. In the case of transcriptional interactions, the current is
restricted to flow from the transcription factor to the regulated gene, and not
vice versa (Methods). In contrast, the direction of information flow along
protein-protein interactions is not predetermined, since the underlying
biochemical measurements typically report only whether an interaction exists,

not its functional consequences. Therefore, for protein-protein interactions in
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particular, eQED provides a means of predicting the direction of signal
transmission.

Multiple-loci eQED induces a current on each protein-protein
interaction in the network. Repeated application over all targets yields a
distribution of current values for each interaction. This distribution can be
analyzed to determine whether the current is predominantly positive or
negative (prior to the analysis positive and negative directions of flow are
defined arbitrarily for each interaction). We evaluated three simple methods
for summarizing this distribution of currents, by using either (1) the most
extreme current; (2) the sum of currents; or (3) the skewness of the current
distribution. Each of these three methods yielded a single value per
interaction whose signs were interpreted as the predicted directions and
whose magnitudes could be used to rank the predictions in order of
confidence.

To assess the performance of directionality prediction, we once again
compiled a set of gold-standards, consisting of protein-protein interactions for
which the signaling directions are known. A total of 408 gold-standard
interactions were obtained, including 103 signaling interactions recorded in

the Kyoto Encyclopedia of Genes and Genomes (KEGG)'?? or the Munich
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Information center for Protein Sequences (MIPS)¥, as well as the 305 highest-
confidence kinase-substrate interactions reported in a systematic analysis of
phosphorylation by Ptacek et al.'?. Figure 5.3A shows the accuracy of the
three methods at recapitulating the known directions of signaling. Although
the “sum of currents” method yielded very high accuracy (>80%) for the 40
highest-ranking predictions, the “most extreme current” method retained
moderate accuracy (generally >75%) out through the best 80 predictions
(corresponding to the largest area under the curve). In contrast to these first
two methods, the third method based on “skewness” was not an accurate
predictor of directionality.

Based on this analysis, we used the “most extreme current” method to
predict directionality of information flow for all protein-protein interactions in
the eQED network. We made a total of 368 predictions with absolute most

extreme current >= 623, corresponding to the 75% accuracy mark above.

5.1.7 Prediction of requlatory pathways

The currents computed by eQED provide an estimate of the influence
of each protein interaction on the regulation of the target gene. To reveal how

individual high-current interactions might assemble into regulatory pathways,
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we sought to connect each causal gene to its target by finding an optimal path
through the network, defined as the shortest route with the highest total sum
of currents across its interactions. The union of all optimal paths leading from
each predicted causal gene into a given target reveals its regulatory network.
We also filter the regulatory network to include only those PPIs which have a
predicted direction of influence (see previous section). Figure 5.3B-D shows
the regulatory network obtained for three example target genes: HMG2,
ARG5/6, and AAD15. Although the causal genes are often at the head of each
path comprising the regulatory network, in some cases a path contains a chain
of causal genes in series. For instance, both ARO80 and RLR1 associate
significantly with the target ARG5/6 and share the same regulatory pathway.
This is a direct consequence of integrating the information about all significant
loci when running eQED (multiple-loci model). As a result, the casual genes
not only reinforce each other but also increase the overall confidence of the

underlying regulatory network.

5.1.8 Application to gene-association studies in human

During the past few years, a substantial body of eQTL data has been

generated in higher eukaryotes, including a number of studies in mouse and
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Arabidopsis thaliana (see www. genenetwork.org). Large eQTL studies are now

also available for humans'>12. All of these datasets associate genetic loci with
gene expression levels without explicitly identifying the causal genes at each
locus, raising the important question of whether they could be identified using
an integrative network-based approach such as eQED.

As for human, a network-based analysis of eQTLs will require a
substantial database of protein-protein and transcriptional interactions. In
terms of protein-protein interactions, several large networks have recently
been mapped for humans*#*'?, The remaining hurdle is therefore the
availability of large-scale measurements of transcriptional interactions.
Although no systematic study has yet been published, several such efforts are
underway using systematic chromatin immunoprecipitation experiments in
human cell lines and in-vitro technologies such as the protein binding
microarray (PBM)°. As these networks become available, the success of eQED
in yeast suggests that it may also provide a powerful means for identifying
human disease genes and their associated transcriptional regulatory pathways

in higher eukaryotes.


http://www.webqtl.org/
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5.2 Materials and Methods

5.2.1 Electric circuits and random walks

There is considerable literature establishing the analogy between
random walks and electric networks!712812_ In particular, Doyle and Snell'"”
showed that there always exists a random walk equivalent of linear electrical
circuits. Random walks on a network can be abstracted as a Markov chain
and consequently, be represented using a transition state matrix. Consider an
electric network E where the conductance on an edge (x,y) is represented by
Cw. A random walk can then be defined on E, which has the transition state

probabilities:

C
P, = C—Xy whereC, = ZCxi and N(x) is the set of neighbors of x in the

Y X ieN(x)
network.

Since an electric network is a connected graph, it is possible to travel
between any two states. A Markov chain with such a property is known as an
ergodic chain. For an ergodic chain represented by the transition matrix P,
there exists a fixed vector w = (w1, w2 ..., ws)T, such that wP=w, where w;j

represents the steady-state proportion of times the walker remains in state j.
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In the case of random walks derived from electric networks, it can be shown

that:

w; = C% oowhereoC =) C, 000

An ergodic chain is called time-reversible ifw,P,, =w P, . Thus, in the

case of the random walk derived from an electric circuit,

C C C C C
w. P ¢ ik e “=w.P

_ X Ty _ y y
o _Zcxlcx ZCX ZCV ZCYICV n
X X y y

As a result, the random walk P is also time-reversible. Finally, using
the above properties we can show that when a unit current flows into an
electric network at node “a” and leaves at node “b”, then the amount of
current through any intermediary node or edge is proportional to the
expected number of times a random walker will pass through that node or
edge [see Doyle et al.''” for details].

We demonstrate this equivalence using the sample network of Figure
5.1A. Figure 5.1C is the electric network model of the sample network. Here,
we add a new node L which is connected to all the candidate genes in the
locus. The edges connecting L to L1, L2 and L3 have infinite conductance and

for all purposes, L is no different from any of L1, L2 or L3. The conductance



139

on the remaining edges is equal to their weight in the sample network. The
target gene T is treated as “ground” for the electric network. There is an
independent source of current sending 10,000 A of current into the network at
L. We solve the network using Kirchhoft’s law and Ohm’s Law'® to get the
currents through each edge and node. Figure 5.1D shows the sample network
represented as a random walk derived from the electric network of Figure
5.1C. The random walk is repeated 10,000 times. The number of times each
edge and node was visited in the random walk converges to the amount of
current through those edges and nodes in the electric network (Figures 5.1C

and 5.1D).

5.2.2 eQTL Associations

Yeast eQTLs were obtained from Brem et al.3°, consisting of whole
genome expression data for 112 yeast strains, which were genotyped across
2,956 genetic markers. Genetic similarity between strains, referred to as
population substructure, can lead to false-positive relationships where the
observed phenotype correlates well with the phylogenetic relationships
between the strains and the markers do not predict phenotype beyond the

phylogeny. We corrected for the population substructure problem using the
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method of Zhao et al.’®. The resulting marker-gene associations were
converted to gene-gene associations by assigning genes to their nearest marker
(within 10 kb) on the genome. Finally, all genes assigned to the same marker

were defined to belong to the same locus.

5.2.3 High-confidence physical interaction network

PPI interactions were obtained from a modified form of the STRING
database (Search Tool for the Retrieval of Interacting Proteins, version 6.3)%,
extended to incorporate additional information on potential interactions.
STRING reports a confidence score for each protein interaction based on
numerous experimental and computational evidences. We implemented a
naive Bayes classifier which takes the STRING score as one line of evidence.
As a second line of evidence, we incorporated quantitative genetic interactions
from Collins et al.’®> who analyzed double-mutants to detect both aggravating
and alleviating genetic interactions. Genetic interactions may also be used as
indirect predictors of physical protein interactions*!®*. As a third and final
line of evidence, we used recently published protein interaction data!?>'3 that
were not included in the 6.3 version of STRING. For fitting the parameters of

the model, a positive training set of 11,814 distinct interactions was created
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from pairs of proteins falling within known pathways recorded in the Kyoto
Encyclopedia of Genes and Genomes (KEGG)'? as well as from small-scale
binary physical interactions and protein complexes from the Munich
Information center for Protein Sequences (MIPS)”. The negative training set
of 35,676 interactions was obtained by randomly pairing proteins. We filtered
the top 22,428 interactions with log-likelihood scores (LLS) > 3.0.

Pooling with Transcriptional Interactions

A pooled molecular interaction network was constructed by merging
the above protein-protein interactions (PPIs) with transcription factor-DNA
interactions (TF-DNA) obtained from Beyer et al.'5. This study combined
several lines of evidence in a Bayesian framework to assign LLS to each TF-
DNA link. The 11,513 TF-DNA interactions with LLS > 3.0 were included in
the final set.

To ensure that all interactions in the network (PPI and TF-DNA)
represented physical binding events (as opposed to functional linkages), we
required that each included interaction has been reported in at least one
experiment indicating direct physical interaction between the proteins. In
addition, to enrich for interactions within regulatory pathways, the network

was restricted to regulatory proteins. We included proteins that were
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assigned to the following MIPS categories: (1) regulation of glycolysis and
gluconeogenesis, (2) regulation of electron transport and membrane-
associated energy conservation, (3) regulation of respiration, (4) regulation of
energy conversion / regeneration, (5) regulation of DNA processing, (6)
mitotic cell cycle and cell cycle control, (7) transcriptional control, (8)
regulation of splicing, (9) translational control, (10) protein fate (folding,
modification, destination), (11) regulation of metabolism and protein function,
(12) cellular communication and signal transduction mechanism (13) cell
rescue, defense and virulence, (14) cellular sensing and response to external
stimulus, (15) cell fate, (16) development (systemic), and (17) cell type
differentiation.  Altogether, the final pooled network consisted of 4,466
proteins and 17,171 non-redundant interactions.
Network filtering based on target-gene

In this study, we analyze transcriptional regulation of the target gene.
For that purpose, we make the assumption that the expression of the target
gene is modulated by the causal gene through a transcription factor of the
target gene. Hence, for every target gene we filter the high confidence
network such that the target gene is connected to the rest of the network

through TF-DNA interactions only. As some of the target genes in the Brem
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study do not have TF-DNA edges, we cannot use our approach to analyze
them. This reduced the number of target genes that were analyzed in this
study to 3,711.

Tu et al®* weighted each node in the network using the mRNA
expression correlation between the node and the target gene. We use the same
idea; however, in our framework weights are most naturally placed on edges
as opposed to nodes. The weight on each edge (u,v) is defined to be the
average mRNA correlation of u and v with the target gene. Thus, our
approach is meant to model as closely as possible the scheme of Tu et al. and

differs only in that weights are placed on edges versus nodes.

5.2.4 eQED Model

The eQED model used in this paper utilizes the relationship between
electric circuits and random walks (see previous sections). The exact
equivalence between electric circuits and random walks follows only when the
network under consideration is completely undirected. However, in our
study we also use directed edges (TF-DNA interactions) and consequently, we
employ a heuristic motivated by the undirected case. Specifically, let S(N,E)

represent the molecular interaction network (N being the set of genes in the
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network and E being the set of interactions. Let C(e) denote the conductance
on edge ¢, while I(L) represents the independent input current at locus L. Let
d. be a new variable associated with the directed edge e and let D c E be the

set of all known directed edges in the network.

Objective: Min > (d(u,v) - (V (u) -V (v))

(u,v)eD
Vu,veg D:1(Uu,v)=CU,v)x(V(U) =V (V)i @)
VU,VeD:TU,V) =C(U,V) X AU V) ueiiiiiiieiiieiee e (2)
VLD T(UV) =0 (3)
V(U,v)eD:d(U, V)2 (V(U) =V (V)i (4)
V(U,V) €D d(U,V) 0. (5)

where u and v are any nodes in the network and t is the target gene
and, V is voltage on the nodes of the electric circuit. Here, equations (1) and
(2) are derived from Ohm’s law which states that the current flowing through
any two points is directly proportional to the voltage difference and the
conductance between them. Further, equation (3) corresponds to Kirchoff’s
current law in electric circuit theory which states that the total sum of current
through any point in the circuit is zero'®. The wires of a simple resistive
circuit (as shown in Figure 5.1C) do not have explicit directionality, such that

current can flow in either direction. However, the molecular network used in
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this study includes TF-DNA interactions that, by definition, transmit signal
from the transcription factor to the DNA and not vice versa. Electrical circuits
account for directed links by using diodes, which constrain current to flow in
one direction only. Equations (4) and (5) are constraints to ensure that the
current only flows in the correct direction on known directed edges. For
instance, let (1,v) be a directed edge with the signal going from u to v. If V(u) >
V(v), then to minimize the objective function, d(u,v) will take the value (V(u)-
V(v)). As a result, the equation becomes same as (1). However, if V(u) < V(v),
then due to (5), d(u,v) will be equal to 0, implying that there is no current on
that edge. We implemented the above linear programming approach in

Matlab® using the MOSEK package Version 5.
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Table 5.1: Causal gene prediction accuracy.

Number of Correct

Method Predictions
Random 118
Tu et al. 262
Shortest Path™ 351
eQED (single locus) 392
eQED (Multiple

loci) 438

All predictions were against a gold standard data set of 548
causal gene-target pairs compiled from yeast gene-expression
knockout studies by Hughes et al.'® and Hu et al.’® and a gene

over-expression study by Chua et al.'?!.

" A naive method in which the causal gene is selected to be the
gene in the locus that is connected by the shortest path to the

target.
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[A] Sample Network [B] Tu et al. [C] eQED Single Locus Model
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Figure 5.1: Examples of the electrical circuit approach and the eQED model.

[A] Sample network. [B] The “greedy” random walk approach by Tu et al.
[C] The single locus model of eQED. Gene T in the blue hexagon is the target
gene. The locus marked by the red box, containing candidate genes L1, L2
and L3, associates significantly with the target T. The numbers next to the
locus genes corresponds to the number of times the gene was visited in the
random walk approaches or the amount of current through them in the
electric circuit approach. [D] The random walk derived from [C]. [E] The
sample network with two significant loci. [F] The multiple loci model of
eQED.



Marker to target-gene eQTL Create physical interaction network with
associations from Brem ef al. protein-protein interactions from STRING

database and TF-DNA interactions from
Beyer et al. (2008)

define a locus.

Generate source to target gene
associations by assigning genes
to their nearest marker. Filter to include only high confidence
Genes assigned to one marker interactions.

Repeat for
every target -<
gene.

Figure 5.2:

N

(1) Filter the network to be specific for the target gene of interest.
(2) Assign the edge weights based on expression correlation with
the target gene.

(3) Identify the set of loci that associate significantly (p=0.05)

with the target gene.

(1) Generate electric circuit abstraction of the network.

(2) The input currents into each locus are proportional to the p-value
of association with the target gene.

(3) Solve the electric circuit using Kirchhoff's and Ohms' Laws.

(1) Identify the causal gene in each locus as the gene with the
maximum current flowing through it.
(2) Identify the corresponding causal pathways.

Flowchart of the eQED method.
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Figure 5.3: Inferred pathways and directionality prediction.
[A] The accuracy of the direction prediction methods. The “gold” standard
set of protein interactions were ranked according to the different metrics and,
the ranks in each approach was plotted as the x-axis. [B-D] The regulatory
networks for three example target genes. The nodes colored in shades of red
correspond to predicted causal genes. The intensity of color corresponds to
their p-value of association with the target.
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6 Conclusion

The amount data on protein interactions has been growing steadily.
Figure 1.3 shows a graph of the vast increase in the number of protein
interactions since 1999. In fact, the number of species for which large-scale
protein network data is now available is also large. Simultaneously, high-
throughput technology has resulted in other large-scale data such as
generation of large scale generation of genetic interaction data'¥, protein-DNA
binding data’ and genome wide association data'®. The availability of these
vast amounts of data, each addressing a different aspect of the cellular
function in various species, calls for a comprehensive approach to analyzing
them. As protein networks form the backbone of the all mechanisms within a
cell, the focus of this dissertation was to get a better understanding of cellular
function through the analysis of protein networks.

Most high-throughput methods contain a considerable number of false-
positives. Therefore, I first addressed the issue of noise in the large-scale
protein interaction networks in Chapter 2. Specifically, I generated a new
method to assign confidence scores to protein-protein interactions and

benchmarked our approach against existing methods.
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As is often the case in biology, an approach based on cross-species
comparisons provides a valuable framework for analyzing protein networks.
I used this method to compare the protein networks of the three model
eukaryotes and also the parasite Plasmodium falciparum in chapters 3 and 4.
This approach was very fruitful as I was able to identify regulatory pathways
and modules that were conserved between them. In addition, the conserved
modules were also used to make new predictions of cellular function and
protein interaction. These results are available online along with other

modules generated by different algorithms at http://www.cellcircuits.org/!*.

In chapter 5, I used the strategy of network integration in order to
understand the functioning of the yeast cell. I combined the knowledge of the
protein network with that of eQTL data available for yeast to explain the

observed gene expression associations.

6.1 Future directions

Cross-species sequence comparison has been the mainstay of genome
analysis’®. In contrast cross-species network analysis is still in its infancy. The
method of NetworkBLAST suggested in chapter 3 compares protein networks

across three species successfully. However, this method becomes


http://www.cellcircuits.org/
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computationally intensive when comparing more species simultaneously.
Further, the scoring model used in NetworkBLAST is simple. I envision that
better scoring models such as that of Koyuturk et al.'** could be applied which
take into account the evolution of protein networks similar to evolutionary
models such as the Jukes-Cantor Model used in sequence analysis.
Currently, there are few models that describe how protein networks evolve
and what principles guide the loss or gain of interactions'¥2!43. In particular,
Andreas Wagner and colleagues have developed a model of evolution of a
single interaction network!#®.  Their model includes duplication and
divergence events affecting the yeast protein interaction network. Such
models of network evolution will be important for identifying regions of the
network that are more adaptable to change due to environmental pressure.
They may also help in designing better therapeutics by targeting regions of
the protein network that are conserved in general categories of pathogens but
are absent from the human host.

High-throughput technologies generate large measurements for many
different aspects of cellular function. Analyzing them comprehensively using
network integration provides a clearer picture of the entire system.

Integration of different sources of information has been primarily used for the
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inference of protein networks. For instance, Jansen et al.*® and Lee ef al.'** used
a probabilistic method to combine various data types (such as mRNA
expression, phylogenetic profiles) to predict new protein interactions in yeast.
In these methods, the data types being integrated are all shown to be
correlated to true protein interactions. However, the main drawback of these
methods is that they assume that each dataset is independent of the others.
Therefore, new methods need to be developed that can predict new protein
interactions by also accounting for the correlations between the different data
types. Another exciting direction for such network integration techniques is
to predict new protein interactions which can then be used to direct new
large-scale experiments such as yeast two-hybrid.

Network integration of fewer data sources has been used previously to
generate models of cellular machinery. For instance, Tan et al.'*® integrated
protein network and transcription factor-DNA interactions to find protein
complexes that were not only regulated by common transcription factors, but
also conserved between yeast and fly. I also applied the idea of network
integration to identify causal genes by combining yeast eQTL data with
protein interactions. With the availability of new sources of data, these

methods of integration have to be updated and improved. Finally, one of the
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main aims of systems biology and bioinformatics, in general, is to identify
plausible drug targets for various diseases. The technique of network

integration provides an exciting tool to tackle this issue.
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