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Feasibility study of a new RF coil design for prostate MRI

Seunghoon Ha1, Werner W Roeck1, Jaedu Cho1, and Orhan Nalcioglu1

1 Tu & Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences,
University of California, Irvine, USA

Email: seunghoh@uci.edu

Abstract. The combined use of a torso-pelvic RF array coil and endorectal RF coil is the current
state-of-the-art in prostate MRI. The endorectal coil provides high detection sensitivity to acquire
high-spatial resolution images and spectroscopic data, while the torso-pelvic coil provides large
coverage to assess pelvic lymph nodes and pelvic bones for metastatic disease. However, the use
of an endorectal coil is an invasive procedure that presents difficulties for both patients and
technicians. In this study, we propose a novel non-invasive RF coil design that can provide both
image signal to noise ratio and field of view coverage comparable to the combined torso-pelvic
and endorectal coil configuration. A prototype coil was constructed and tested using a pelvic
phantom. The results demonstrate that this new design is a viable alternative for prostate MRI
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1. Introduction
In magnetic resonance imaging (MRI), the detection sensitivity of a radiofrequency (RF) loop coil
dependents on the distance of the organ to the coil, as well as the coil’s shape, size, and orientation. The
closer the RF coil is placed to the region-of-interest (ROI), the better the signal-to-noise ratio (SNR) of
the resulting MR image (Hayes and Axel 1985). Thus instead of using a general-purpose RF coil (e.g. the
cylindrical birdcage coil), dramatic improvements in image quality can be achieved by utilizing an array
of loop coils configured for the specific anatomy of interest. The loop coils can be designed and
positioned to be as close to the ROI as possible to achieve the maximum SNR.

The torso-pelvic receiver array coil is one such example of tailoring the design for a specific
anatomy, in this case the overall pelvic region which includes the prostate. However, the internal position
of the prostate, and the distance to the external coils limits its detection sensitivity. As such, prostate MRI
using only the torso-pelvic coil lacks sufficient SNR to visualize transcapsular tumor spread or seminal
vesicle involvement, resulting in a decrease in staging accuracy and specificity (Fütterer et al 2007,
Heijmink et al 2007). To address the SNR requirements for prostate MRI, an endorectal coil can be
utilized instead. This coil is placed internally in close proximity to the prostate, resulting in a substantial
increase in the SNR from the prostate. However due to its limited field-of-view (FOV) and non-uniform
sensitivity, the endorectal coil can be used in combination with the torso-pelvic coil to provide full
coverage of the pelvic region. This approach provides the high SNR of the prostate along with a large
FOV to evaluate the pelvic lymph nodes and pelvic bones for metastatic disease. The combination of
endorectal and torso-pelvic coils is the current state-of-the-art approach for prostate MRI (Turkbey et al
2009).

Despite the improved image quality, the use of an endorectal coil is an invasive, highly
uncomfortable procedure that requires a specialized technician to properly position the device and
carefully monitor RF heating. Its discomfort for patients and difficulty for technicians poses a significant
limitation that impedes the widespread use of prostate MRI. The development of a non-invasive RF coil
that provides comparable SNR to the endorectal coil would greatly contribute to the realization of the full
clinical potential of prostate MRI. To this end, we investigated the design of a new diaper-shaped array
coil (henceforth referred to as the “diaper coil”) for significantly improving the image SNR and
uniformity of the prostate region. A prototype coil was constructed on an acrylic frame and evaluated by
3T MR imaging of a pelvic phantom. Imaging was also performed using a commercial 6-channel torso-
pelvic array coil and single-loop endorectal coil for comparison.

2. Materials and Methods
2.1 Diaper RF Coil Design and Construction
To test the efficacy of this design concept, we constructed and tested a five-segment prototype as shown
in figures 1(a-b). The bottom of the array consists of a butterfly-shaped loop coil (width = 80 mm, length
= 150 mm) orientated parallel to the x-y plane such that it generates a B1

- field along the y-axis. A pair of
loop coils (width = 130 mm, length = 80 mm) inclined 12 and 30 degrees about the x-axis were
positioned on opposite sides of array to form the diaper shape. The coils were made from copper PCB
traces (width = 5 mm, thickness = 34 µm) and positioned with optimum overlap to minimize mutual
coupling between adjacent elements (Roemer et al 1990).
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Figure 2. Circuit diagram of the diaper array coil and isolation measurement table between coil
elements.

To interface the array coil with the MRI scanner, we prepared five coaxial cable (length = λ/2)
and connector assemblies each containing a cable balun tuned to 127.7 MHz. For each assembly, one
cable end was soldered to the capacitive matching circuit of one coil element and the other end was
connected to the coil interface box. Eight LNAs with 25 dB gain, 0.4 dB noise figure, and 5±1 Ω input
impedance tuned to 127.7 MHz were also mounted in the coil interface box. Identical LNAs were
employed for the torso-pelvic and endorectal coils. The low input impedance of the LNAs effectively
work in conjunction with an individual coil’s matching/decoupling circuit to eliminate residual magnetic
fields induced in neighboring coil elements, thus further reducing mutual coupling. The coil interface box
also provided the voltages (-5V) and currents (150 mA) that drive the PIN diode in each active
decoupling circuit.

2.2 Experimental Setup
The performance of the diaper coil was compared to a commercial 6-channel torso-pelvic array coil (USA
Instruments, Inc.; Aurora, OH) and endorectal coil (Medrad, Inc.; Indianola, PA) though the imaging of
an in-house-built pelvic phantom as shown in figures 3. The torso-pelvic coil consists of 6 non-
overlapping rectangular loops (width = 125 mm, length = 235 mm). Three loops are placed above the
patient, while 3 loops are positioned below the patient, providing coverage of 395 mm along the x-axis
and 180 mm along the y-axis. The endorectal coil consists of a single rectangular loop (width = 30 mm,
height = 80 mm) formed by a thin copper strip (width = 2 mm, thickness = 34 µm). The pelvic phantom
was constructed using acrylic for the oval cylinder (width =300 mm, length = 300 mm, height = 190 mm)
to mimic the abdomen and hollow polypropylene balls for the bladder and prostate regions. A hollow
polypropylene ball to model the bladder (diameter = 100 mm) and a smaller hollow polypropylene ball to
model the prostate (diameter = 35 mm) were positioned within the cylinder to mimic human anatomy
(Schulte et al 2006, Standring et al 2008, Yokochi et al 1978).
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5. Conclusion
In this note, we proposed a new RF coil design for prostate MRI consisting of a diaper-shaped array of
receiver coils placed around the anteroposterior region of the inferior pelvic abdomen and rectum. MRI
experiments using a phantom demonstrated that the non-invasive diaper coil can provide image SNR and
FOV coverage comparable to the torso-pelvic and invasive endorectal coil combination currently used in
clinical practice. This validation justifies further investigation and modification of our design concept to
perform imaging on human subjects after receiving appropriate institutional approvals.
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