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qSV wavefront triplication in a tranversely isotropic material
Michael Schoenberg and Thomas M. Daley, Lawrence Berkeley Lab, Berkeley CA 94720

Summary

Triplication of a wavefront, also classically known as bi-
refringence, can and does occur in transversely isotropic (TI)
media. With the growing interest in shear waves, and in par-
ticular, converted shear waves, it becomes necessary to study
this phenomenon, and the bright spots that accompany it. In a
plane that includes the medium’s rotational symmetry axis, there
may exist a range of angles within which the qSV wave, whose
polarization lies in that plane, may propagate at three distinct
velocities. The region of the qSV wave curve where this can oc-
cur always corresponds to the region of the qSV slowness curve
where the closed qSV curve about the origin is concave. When
the range of angles is small and the three arrivals are close to-
gether, the usual situation, the qSV wave within that small range
will be significantly brighter than in other directions. When the
range of angles is large, the two cusps of the wave surface, on
the borders of the region of triplication will both be bright spots.

The existence of the triplicating region, and its location and size
(in phase slowness angle space) depends on three dimensionless
parameters which themselves are functions of four stiffnesses
(normalized by density so they are of dimensionvelocity2),
which, in contracted Voigt notation, arec33 andc11, the squares
of the longitudinal wave speeds parallel and normal to the sym-
metry axis,c55, the square of the transverse wave speed along
the symmetry axis, and the enigmatic stiffness modulusc13
which does not correspond to the square of any particular wave
speed. But triplication can occur only when the medium’s
anisotropy is ‘far’ from elliptical, i.e., whenc13 is far from its
‘elliptical value’ of

√
(c11 − c55)(c33 − c55)− c55.

Triplication artifacts may sometimes be seen laboratory rock
physics experiments, and in long offset converted wave data,
long offset VSP’s, and cross-well seismic data. When it oc-
curs, the location of triplication related bright spots can provide
strong constraints on several of the parameter combinations of
the medium. Wave field snapshots of triplicating qSV wave-
fronts in a homogeneous TI medium are shown, as well as snap-
shots of the triplicating wavefront refracting across an interface
into an isotropic medium.

Preliminaries

With longer offsets, and with the use of shear sources in cross-
well surveys, it is to be expected that triplications will appear
more and more often in seismic data. The aim here is to explain
the conditions for qSV wavefront triplication in transversely
isotropic (TI) media, and to show the dependence of properties
of the triplicating region on certain combinations of elastic
moduli.

Let the 3-axis be the medium’s axis of rotational symmetry. With
no loss of generality, consider slowness curves and wave curves
in the 1,3-plane. An approach to the variety of ‘shapes’ of a
TI medium is as follows: consider a TI medium for whichc11,
c33 and c55 are known. These values determine the ‘anchor
points’ of the slowness and wave curves, the points at which
these curves intersect the coordinate axes. Two useful physically
appropriate (but not theoretically necessary) constraints are,

c55 < min[c11, c33] and c13 > 0 . (1)

The first of these requires the transverse wave speed in the co-
ordinate directions to be less than longitudinal wave speeds in
the coordinate directions; the second requires that a uni-axial
normal stress along the symmetry axis results in strain in the
opposite sense perpendicular to the symmetry axis (analogous
to positive Poisson’s ratio in an isotropic medium). Instead of
considering the variation ofc13 directly, it is useful to consider
variation in parameterE2, known as the ‘anellipticity’:

E2 ≡ (c11 − c55)(c33 − c55)− (c13 + c55)
2 .

WhenE2 = 0, the anisotropy of the medium is elliptical; in this
case, the qSV slowness and wavefront curves are circular; no
convex region, thus no triplication. There can be no triplication
even for non-elliptical anisotropy, if the anisotropy is ‘close’ to
elliptical. AsE2 increases becausec13 decreases from its zero
anellipticity value ofc130 ≡

√
(c11 − c55)(c33 − c55) − c55,

the slowness curve of the qSV slowness sheet, commonly called
the qSV sheet, pulls in (the plane wave becomes faster) between
the anchor points, until, for further increasing anellipticity, at a
certain angle from 3-axis, the curve becomes flat in a vertical
plane containing the axis of symmetry, i.e., the silhouette of the
axisymmetric ‘sphere-like’ closed surface has a point of zero
curvature. This flat spot, call it pointQ, is a point of ‘incipient
triplication’.

Letting θ be the angle the slowness vector, call itξ, makes with
the symmetry axis, and lettingφ be the angle the outward nor-
mal to the slowness curve (which is the physical direction of
the group velocityvg) makes with the symmetry axis, then at
point Q, dφ/dθ = d2φ/dθ2 = 0. For all other points, the
slowness curve is convex, implying thatdφ/dθ > 0. Further
increase in anellipticity results in pointQ bifurcating into two
points of zero curvature, call them pointsA andB, characterized
by dφ/dθ = 0, see figure 1. At point A,φ has a relative max-
imum, and at point B, a relative minimum. These then are the
cusps of the triplicating wavefront shown in figure 2. Between
these points is a region for whichdφ/dθ < 0, a region of con-
cavity of the slowness curve. Thus, as one moves along the slow-
ness curve from the symmetry direction (θ increasing from 0),
the angleφ specifying the direction of the group velocity also
increases from 0, until pointA is reached. After this point, since
dφ/dθ < 0, increasingθ results in decreasingφ, until pointB is
reached, whereφB < φA, as seen in figure 2. Now continuing
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Fig. 1: Slowness curve for a triplicating TI medium. Dimensionless
parameters, equation (3), areγ = 1/3, εP = 1/6 and relative anellip-
ticity, E2/[(1− γ)2 − ε2

P ] = 7/12.

to increaseθ results inφ increasing, passing the value ofφA, and
further until asθ → π/2, alsoφ → π/2. The angular region
defined byφB < φ < φA is the physical region of triplication.
The concave region defined byθA < θ < θB in figure 1 is the
region in the slowness domain which corresponds to the outer
(faster) edge of the triplicating region seen in figure 2. The full
slowness region corresponding to all group velocity vectors be-
tweenφB andφA is the region betweenBx andAx in figure 1.

Triplication appears also when anellipticity is sufficiently nega-
tive, i.e., whenc13 is larger than its zero anellipticity value. In
that case, triplication appears along the 3-axis, when

c13 >
√
c11(c33 − c55)− c55 ,

and along the 1-axis, when

c13 >
√
c33(c11 − c55)− c55 .

However, negative anellipticity is not the usual case in sedimen-
tary basins and it cannot occur in a the medium that is long
wavelength equivalent to fine isotropic layers, see (Schoenberg,
1994). For a detailed analysis of negative anellipticity triplica-
tion, see (Schoenberg and Helbig, 1997).

The qSV dispersion relation and group velocity

The qSV dispersion relation in polar coordinates, which is the
larger solution of the general qP-qSV dispersion relation, a
quadratic equation onξ2, with coefficients that are functions of
θ, may be written,

FqSV = c55ξ
2 − 1

fqSV (cos 2θ)
= 0 , (2)

where

fqSV (u) =
1

2γ
[ (1− εPu+ γ)−√

(1− εP u− γ)2 − E2 (1− u2) ] .
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Fig. 2: qSV wavefront curve for a triplicating TI medium. Dimension-
less parameters are the same in Figure 1.

Here, the dispersion relation is expressed in terms of three con-
venient dimensionless parameter combinations,

γ ≡ c55
(c11 + c33)/2

, εP =
(c11 − c33)/2

(c11 + c33)/2
,

E2 =
E2

[(c11 + c33)/2]2
. (3)

γ is analogous to the square of the ratio of shear to compres-
sional wave speeds in an isotropic medium.εP is a symmetric
way of making dimensionless the difference between the squares
of the longitudinal wave speeds along the coordinate axes. Note
that 1 − εPu − γ > 0 for anyu, 0 ≤ u ≤ 1, from the first
constraint of (1). Also note thatfqSV (±1) = 1.

In terms of the dispersion relationF (ξ) = F (k/ω) = 0, group
velocity is,

vg ≡
dω

dk
= −∇kF

∂ωF
= −

(1/ω)∇ξF

−(k/ω2)·∇ξF
=

∇ξF

ξ·∇ξF
. (4)

Since group velocity is parallel to the gradient ofF which is al-
ways normal to contour lines ofF , and the slowness curve is a
contour line ofF (i.e.,F = 0), group velocity is always normal
to the slowness curve. Note thatξ·vg ≡ 1, which is the defin-
ing relation for the wave and slowness curves (or surfaces) to be
polar reciprocal to one another. For the derivation of results con-
cerning triplication, the critical expression is for the qSV group
velocity in polar coordinates,

vg =
1

ξ

[
eξ +

eθ

ξ

∂FqSV

∂θ
∂FqSV

∂ξ

]
=

1

ξ

[
eξ − eθ

f ′qSV (u)

fqSV (u)
sin 2θ

]
,

(5)
whereeξ andeθ are the unit vectors parallel toξ and normal to
it in the θ direction, respectively, and′ refers to differentiation
with respect tou = cos 2θ. Consequently,

tan 6 (v̄g, ξ̄) = tan(φ− θ) = −
f ′qSV

fqSV
sin 2θ , (6)
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is the needed relationship betweenφ andθ to decide if the slow-
ness surface is convex (dφ/dθ > 0) or concave (dφ/dθ < 0).

Positive anellipticity wave front triplication

Except for the rather uninteresting case whenc11 = c33, i.e.
εP = 0, in which case the slowness curve is symmetric about
theθ = π/4 direction, one doen’t know before hand the angle
of incipient triplication. Following the very clever derivation by
Peyton (1983), one finds, at incipient triplication, relations for
slowness angle,

cos 2θQ = sin 2δQ =
εP

1− γ ≡
c11 − c33

c11 − c33 − 2c55
, (7)

whereδQ = π/4− θQ, and for magnitude of the slowness,

c55ξ
2
Q =

1− γ√(
E2

trip

)2
/4γ2 + E2

trip/γ + ε2P

, (8)

which is in terms of the unknownE2
trip. For c11 > c33, εP is

positive, and thusδQ is positive so pointQ is closer to the 3-
axis than the 1-axis; whenc11 < c33, εP is negative, and point
Q is closer to the 1-axis.

Substituting the values of equations (7) and (8) into dispersion
relation (2) gives a cubic equation on the value ofE2

trip. The ap-
propriate root of that equation is,

E2
trip = 2

(
1− 2

3
γ + γ2 − ε2P

)
sin

(
2ψ

3
+
π

6

)
−(

1 +
2

3
γ + γ2 − ε2P

)
, (9)

where

cosψ = −

√
(1− γ)2 − ε2P

[
1− γ2 − ε2P

][√
1− (2γ/3) + γ2 − ε2P

]3
. (10)

A plot of E2
trip/[(1 − γ)2 − ε2P ] (which isE2

trip normalized by
E2|c13=−c55 , the largest valueE2 can attain) as a function ofγ
for fixed εP , shows thatεA is relatively insensitive toεP and is
almost linearly dependent onγ. Thus, for clarity, it is useful to
form a new parameter,K, given by

K ≡
E2

trip

γ [(1− γ)2 − ε2P ]

≡

(c11 − c55) (c33 − c55)− (c13 trip + c55)
2

(c11 − c55) (c33 − c55)
2c55

(c11 + c33)

(11)

which is plotted in figure 3 as a function ofγ for six values of
εP : 0, 1/12, 1/6. 1/4, 1/3 and 5/12. As can be seen from the
figure, parameterK is almost constant, with values confined to

the small range between 4/3 and about 3/2, over a wide range of
γ andεP . In the limit asγ → 0,

E2
trip

γ [(1− γ)2 − ε2P ]
→ 4

3

√
4− 3ε2P − 1

1− ε2P
,

and for the six values ofεP given above, this result for vanish-
ingly small γ yieldsK = 4/3, 1.336, 1.343, 1.355, 1.372 and
1.396, respectively.

In any event, in terms ofK which can be recovered from fig-
ure 3, the value ofc13trip for incipient triplication is given, from
equation (11), by

c13trip

c55
=

√
(1−Kγ) [(1− γ)2 − ε2P ]

γ
− 1

=

√
(1−Kγ) (c11 − c55) (c33 − c55)

c55
− 1 .

(12)
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Fig. 3: Almost constant parameterK, the relative anellipticity at incipi-
ent triplication divided byγ, as a function ofγ, for values ofεP .

Numerical modeling and discussion

Figures 4 and 5 show snapshots (calculated from staggered grid
finite difference code) of the wave field generated by an explo-
sive point source in a TI medium with specific density 1 and
with density normalized elastic moduli given byc11 = 3.5,
c33 = 2.5, c55 = 1.0 andc13 = 0.25, units in (km/s)2. These
give rise to dimensionless parametersγ1/3, εP = 1/6 and rel-
ative anellipticityE2/[(1 − γ)2 − ε2P ] = 7/12 as given in the
caption of figure 1.

For those anchor points, the value ofK (from figure 3 is 1.405,
giving a value of relative anellipticity at incipient triplication of
0.468 < 7/12 so this medium has a triplicating qSV wave front.
This is seen in figure 4, a snapshot of the wave field’s horizontal
particle velocity at 100 ms. The compressional and shear wave
speeds in the 3-direction are

√
2.5 ∼ 1.581 and 1 km/s, respec-

tively. The point source is located 150 m above an isotropic half-
space so the compressional wave has just reached the interface.
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The triplications of the qSV wave front are clear and relatively
bright, the shape the same as that given in figure 2, although the
region of triplication is so small that individual arrivals are not
discernible.

The isotropic medium below the interface has specific density 1
and compressional and shear wave speeds of

√
3 ∼ 1.732 and 1

km/s, respectively. Figure 5, a snapshot at 250 ms, shows bright
spots on the qS→ S wave front, in the isotropic medium, as well
as the edges of the qS→ P converted wave.

Fig. 4: Snapshot at 100 ms of the particle velocity in the 1-direction
of the wavefield due to an explosive point source in a TI medium with
parameters as given in figure 1.

Conclusions

Triplication of the qSV wave front is by no means a ubiquitous
phenomenon. Yet it does occur in various situations. Strict cri-
teria for the occurrence of triplication has been given in terms
of the range ofc13 as a function of the other relevant elastic
stiffnesses. This has been approached, for positive anellipticity
media, by finding the required value of anellipticity, related to,
but a symmetric version of,εT − δT (where superscriptT refers
to Thomsen (1986) parameters), needed as a function of, primar-
ily, γ, the ratio ofc55 to the mean ofc11 andc33, and, weakly, of
εP , the symmetric version ofεT . Symmetric parameterization is
necessary since the occurrence of the phenomenon depends on
the values ofc11 andc33 in a symmetrical fashion.

Because of the small range ofK in figure 3, a reasonable rule
of thumb is thatK is within 3% of 1.39, and most likely, con-
siderably less, so that any positive anellipticity earth material
with known anchor points will triplicate, or not, depending on

whether or not its value ofc13/c55 is less than, or greater than√
(1− 1.39γ) [(1− γ)2 − ε2P ]

γ
− 1 .

Note that forγ ∼ 1/3, an actual error of 3% would cause an
error of only about 4% inc13.

Fig. 5: Snapshot at 250 ms after the source which is located 150 m above
an underlying halfspace of an isotropic medium of specific density 1,
compressional speed 1.732 km/s and shear speed 1 km/s.

The bright spots associated with triplicating wave fronts are also
of interest, as they could confuse the picture one tries to form of
bright spots associated with reflectivity. However, the detection
of qSV triplicating wavefront bright spots will also give infor-
mation as to the shape of the slowness surface of the medium
in which the triplicating wavefront occurs, from an estimate of
anellipticity to an estimate of the difference betweenc11 andc33
just from knowing the angular location of the triplicating region.
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