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The human brain is an ongoing dynamic system not activated by experience but 

nudged from intrinsic activity into new network configurations during perception and 

learning. Ongoing neural activity during rest is assumed to reflect these intrinsic 

dynamics in a relatively closed system state. Traditionally, inter-regional connectivity in 

this system is measured by obtaining time-locked correlations in BOLD activity using 

fMRI. It is well documented, however, that neural activity unfolds across time and is not 

isolatent to some reference point.   

                This exploratory study is a theoretical analysis of how a lagged analysis of 

resting state dynamics in fMRI could represent persistent representations of knowledge in 

the neocortex. A novel procedure using both surface based maps and independent 

component analysis (ICA) is applied to a small group of 54 adolescents. The ICA 

methods appear to reveal lagged structures with different information than traditional 
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resting state analysis. The group level results are symmetrical between hemispheres and 

may represent high level perceptual systems.  

                The components obtained from this exploration are then used to attempt 

understand how these knowledge systems in neocortex frame mind-wandering frequency 

when reading aloud in a subset of 38 individuals. The results did not correlate with any 

known neural systems related to mind wandering, but the methods here are unique. One 

of the identified components shows significant difference in the lag structure of the 

occipital cortex as a function of mind wandering frequency during oral reading. This 

demonstrates that it may be worth exploring the timing in visual system to understand 

why individuals mind wander when reading aloud. Reverse inference is used to interpret 

results and suggest future approaches. 
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Introduction 

The ultimate goal of this document is to explore an fMRI approach to identify 

persistent neural representations of knowledge for readied skilled engagement with the 

environment. In this approach, knowledge is not a set of actions to be “activated” by 

context nor is it limited to qualitative experiences, but is ongoing system dynamics 

always ready and available to be nudged into heightened states of activation and 

simultaneously reliable and novel configurations. Importantly, this approach does not 

examine these traces in action, but instead asks the question of what system 

representations might be when not in action. We will end with an examination of how 

these persistent representations may enable mind wandering in an oral reading activity. 

Knowledge cannot just disappear when not in use. Knowledge must have a 

“persistent” representation to change a future “behavior or behavior potentiality” and for 

this potentiality to exist there must be some trace in the learner which can give weight to 

continued skill development even when that cognitive apparatus is not directly engaged 

(Shuell, 1986). Therefore, these sought representations are persistent in that they last 

beyond the immediate context of skill application and persist in the latent dynamics of 

neural activity. Part 1 of this document will establish the metatheoretical and neurological 

motivations for this exploration and how they inform an analytic neurosceintific 

methodology. In Part 2, we will apply this methodology to a group of adolescents and 

examine what may be group level representations of these system dynamics in this 

population. Finally, in Part 3, we will use the group neural representations of knowledge 

systems extracted in Part 2 to explore what might give rise to the specific behavior of 
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mind wandering while reading aloud. But, before we begin, a basic overview clarifying 

the focus and neurological methods and their application will be presented. 

While persistent representations exist in artifacts outside the individual in written, 

artistic, and other social tools, one place to examine these persistent representations is in 

the brain. Experience is written into the brain making it an artifact, albeit a living one, of 

persistent representations of knowledge. This approach is built on specific 

epistemological assumptions requiring the reader to recognize the brain as the location of 

knowledge, and it will therefore require an explication of the mind-brain relationship. 

Knowledge is not floating out in the ether in a Platonic sense (White, 1976), nor, it will 

be argued, is it a separable mysterious emergent level of cognition (Bunge, 1980) as an 

agent causing changes on the brain; knowledge is embodied and encultured and thus it 

leaves a print on concrete artifacts of the biological.  

One common way to observe knowledge would be to observe brain dynamics as 

they interact with the world. This would be a context dependent view of knowledge 

where knowledge is continually reconstructed with engagement with the external world. 

This approach is not denied here, but if rigidly adhered to also misses a key aspect of 

knowledge: knowledge must persist beyond experience. It may not be complete until it is 

engaged, but some representation, even if it is incomplete must exist in the learner. 

Here, knowledge will be examined in the awake but externally disengaged 

participant through magnetic resonance images (MRI). Wrapped in the humming magnets 

of the MRI, relatively motionless, awake but staring onto a blank screen, an individual is 

relatively disengaged from the world. With the important exception of personal history, 
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the individual’s body and embodied neurology become a relatively closed system when 

compared to the exposure to external events of daily life. In this situation we may observe 

more easily the representations we seek as the system is not strongly biased by external 

task demands. So, do we see a reduction in activity? Without active engagement with the 

world, does the brain shut down? 

Based on pop-culture representation of neurobiology one may be forgiven for 

believing that the brain adjusts its global activity when presented with external tasks as 

opposed to resting. However, only very negligible differences in metabolic processes of 

the brain are observed in changes between internally and externally focused attention 

states (Raichle, et al., 2001; Raichle & Gusnard, 2002). Neural activity does not depend 

on energetic input from the environment to drive activity, nor does the environment “flip 

a switch” to “turn-on” skilled engagement in neural regions that are currently "off". All 

neurons are in a constant state of activity, and this constant state of activity is essential for 

environment engagement; neural activity is not simply stopped nor is it dramatically 

reduced when individuals are disengaged with external processes. This dynamic ongoing 

activity is rooted in constant fluctuations in anatomical, electrical, and chemical 

dynamics in the brain. As will be discussed, while stochasticity plays a central role in 

learning, the resulting patterns are not random and they are governed by previous 

bidirectional influences which leave persistent representations in the hardwiring of the 

brain that we can indirectly observe. The brain is an active living system and the eddies in 

the system dynamics help us unveil the neural components of cognition and perhaps can 

even help us understand the relation between cognitive events. 
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It is the goal in this document to understand how these system dynamics can be 

observed and interpreted. Functional magnetic resonance imaging (fMRI) of resting 

individual across time will be the primary method of exploration here. It is theorized that 

this resting state fMRI (rs-fMRI) data can be analyzed in such a way as to reveal these 

latent dynamics representing persistent neural representations of knowledge for readied 

skilled engagement with the environment. In essence, the resting state scans are used to 

reveal modularity of thought (Fodor, 1983), but the modules of thought are not the 

traditional machines to be activates when needed; they are ongoing dynamics (Sporns, & 

Betzel, 2016). Identifying these systems may help us understand reasons that the mind 

wanders in specific circumstances. 

Overview of rs-fMRI analysis  

Before diving into the metatheoretical and neurological foundations establishing 

why these methods are appropriate, let me briefly introduce the neurological methods that 

we will be working towards throughout this document. While many neurological methods 

could be used to examine these persistent representations discussed here, I shall focus on 

the use of rs-fMRI to uncover these neural dynamics. However, fMRI is useful only 

through an understanding of what it might represent about the system components. By 

itself, it is only an indirect measure of magnetic resonance in tissues.  

While the fMRI signal is not completely understood, it relates to the oxygenation 

of blood supplying the nutrients for neuronal maintenance and development; the fMRI 

signal reveals system dynamics, albeit at a very gross high level. This results in some 

weakness in the MRI methodology. First, the fMRI does not directly record neural 
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activity but is thought to be a record of changes in blood oxygenation level affected by 

neural activity (Ogawa, Lee, Kay, & Tank, 1990). Secondly, the fMRI operates at a 

recoding scale much larger than the components it purports to measure. To give some 

idea of scale, the cerebral cortex (a thin layer covering the brain <4 mm thick) accounts 

for about 80% of the brain's weight and 20% of its neurons (Raichle, 2006). This 

neocortical region of 16 billion neurons is the region where the current analysis will be 

limited. In a single mm^2 of surface area in the cortex, we have approximately between 

100,000 and 150,000 cells and of these cells ~95,000 are neurons (Carlo, & Stevens, 

2013). For each neuron we have approximately 10,000 synapses and about 1 cm of 

myelinated axons (Schüz, & Palm, 1989). The methods described here attempt to 

maximize this resolution giving us just under 1 million neurons per data point. Secondly, 

the fMRI methods used here sample the data only every 2 seconds as compared to neural 

transmission which travels between 1 and 100 meters per second. At these scales is it 

worth it to examine neural data and is it useful to even discuss the neural level of 

representation?  

A useful analogy is a similar attempt to understand human society through the 

observation of the city lights of earth from space. As Charles Gallestel (2017) points out, 

observing a visual map of the world at night can tell us actually quite a bit about the 

connections between countries: lights coming from North Korea pale in comparison to its 

more developed southern counterpart reflecting the regions connectivity. Similarly, we 

can see the impact of historical events. Even after decades of normalization between East 

and West Germany, the city night lights still reflect their historical division. But although 
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city lights cannot tell us detail about a culture, there is still much to be gleaned about the 

relationship between regions. In a similar, vein we are going to be examining fMRI to 

attempt to revel the history and connections between brain regions; connections reflect 

learned experiences and developmental predispositions. But more specifically, we will 

examine how temporal dynamics of fMRI signal during rest reveal some of these 

properties.  

It is ideal to observe the ongoing system dynamics of the cortex when an 

organism simply rests (but does not sleep) for a period of time in the scanner. In recent 

years there has been a growth in the number of studies used to interpret this “default” 

mode of brain activity (Raichle et al., 2001). A casual search in PsychInfo (2007-2017) 

demonstrates demonstrates the rapid increase in recent years of research on “resting 

state” in neural dynamics: this can be seen in figure 1 limited to peer reviewed articles. 

This research is not the subject of fringe groups but is the core of analysis conducted by 

large international brain consortiums examining thousands of subjects such as in the 

Human Connectome Project (Van Essen et al., 2013). Analysis of this type of data is still 

only in its infancy, and methodological and philosophical problems are still being 

addressed, but the findings have been reported and robust. This analysis of default mode 

activity is thought to reflect the building blocks of cognition (Sporns, 2010), or as Luczak 

(2009) describes, resting state activity may reveal the “vocabulary” or “repertoire” of 

dynamic states available for skills such as perception and higher level cognitive 

processing. 
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Figure 1. Number of publications in PSYCHinfo which relate to fMRI and resting state.  
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Waves of thought. In general, data sets for this type of study involve several 

minutes of functional magnetic resonance images recorded while participants are not 

actively engaged in any outward task (historically this resting condition was a faulty 

control condition (Biswal, 2012). Following image capture and preprocessing to remove 

systematic noise, the fMRI images of the neocortex can be divided into regions and each 

region’s blood oxygen level dependence (BOLD) level changes over time can be 

represented graphically by a waveform 2. In this figure we can se a typical fMRI slice 

through the brain of one of the participants from the present study. The intensity of each 

colored square (or voxel) represents a comparative signal strength. The intensity of each 

voxel changes over time and this is represented as frames in the fMRI sequence. These 

types of waveforms are the observed signal in our analysis.  

Using these waveforms we make estimates of connectivity between regions. 

Comparing the waveforms from different regions, two analysis methods could be applied 

to uncover this interregional functional connectivity. These two analytical methods reveal 

potentially different emergent levels in the data: one involving time locked interactions 

and the other examining interactions delayed across time. Returning to figure 2, we could 

ask if region A and B are more correlated and thus more “connected” than region B and 

C. Neural connectivity in resting state fMRI data has traditionally been estimated by 

estimating these interregional correlations over time (Sporns, & Betzel, 2016).  

However, this assumes that synchronous activation between brain regions are the 

optimal indicators of connectivity. This does not take into account propagation of activity 

across the cortex through time. In figure 3, we can see, through visual inspection, that the 
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time series for region A and B are identical and C differs. In the standard correlation 

approach, C is deemed unrelated or minimally connected to A or B. Conversely, if we 

temporally “lag” time series C until it reaches maximum correlation with A and B we 

notice all three wave forms are nearly identical (Mitra, Snyder, & Hacker, 2014). The first 

approach emphasizes the magnitude of the connection as reveled though proposed shared 

synchronous activity; the second emphasizes the probable order and relative timing of 

that activity across the neocortex. Regions which are very tightly modular in a lagged 

fashion would eliminated in the standard correlation approach if we did not lag the series 

and thus interpreted as low connectivity between regions. We know that large neural 

systems do not work in a time-locked matter; and one intrinsic feature of the brain is 

sequential activation of regions which has been observed on the time scale of hundreds of 

milliseconds to minutes (Loveless, & Sanford, 1973). 
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Figure 2. Intensity Waveforms. The intensity at each point A,B,C on the cortex can be 
represented as a sequence of activations over time (frames).  
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Figure 3. Wave Correlations. These toy time series representing three neural regions 
illustrate two models of connectivity. In the correlation model A and B more strongly 
correlated but C is not. If, however, we allow C to shoot in time we notice that it too is 
correlated. In other words, C is likely active before A and B. (These models illustrate a 
point and perfect correlation is never truly found in neural data)  
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Data decomposition. An examination of these lagged time series involves an 

analysis of matrices which, using methods described later, exceed more than 350 million 

comparisons per participant. For interpretation and regression against behaviors this data 

set must be decomposed into interpretable components and simplified. The mere size of 

the data limits the possible comparisons due to current limits on computational power; 

specific analytic methods are appropriate for data sets of this size and their interpretation 

involves some explication. Attempts to simplify and find meaning in this data set will be 

the core of the analysis completed in Part 2. 

From neural systems to behavior. Finally, these persistent representations of 

knowledge found in resting state create a system structure that is responsible for certain 

behavioral outputs. A very standard approach observed in resting state data is to examine 

correlates with mind wandering (Smallwood, & Schooler, 2015) as this is a process 

observed during resting state. Research in mind wandering has demonstrated that there 

are many types of mind wandering and it is very context dependent (Smallwood, 2013). 

Therefore, we shall seek to explain both mind wandering in the context of oral reading as 

well as the behavioral features which accompany it in a specific population. This detailed 

description of the context is meant to frame the findings we will observe as we regress 

mind wandering against the discovered lag network representations seeking to understand 

how mind wandering is seated in neural systems of thought.  

Examination of the resting brain has been a rapidly growing and a fruitful area of 

neural methodology and although the methods used here are still young, it is hoped that 

through this exploration, suggestions will be made for future approaches. The limitations 
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are great but are also a great place to continue improving methods. It is hoped that this 

exploration can be coupled with future experimental investigations to help us unearth 

persistent neural representations of readiness for skillful engagement and stored 

knowledge. 

Let’s begin by diving deep into the philosophical and historical foundations that 

motivated the current exploration of fMRI image sequences during rest. An 

epistemological analysis is of central concern if we are to discuss mind in brain. If we are 

going to discuss neural activity as knowledge, pains must be taken to define our subject 

of study. This will be followed with a multilevel neurological justification of these neural 

dynamics from cells to cognition with specific attention to fMRI. Part 1 establishes the 

metatheory that motivates an interest in the methodologies which will be explored in Part 

2.  
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PART 1: Knowledge in the Brain 

Knowledge 

Before asking about neural representations of knowledge we need to address the 

deceptively simple question of how we are going to define “knowledge?” This paper 

assumes that an individual has “knowledge” of the world that affects their behavior and 

behavior potentialities. This knowledge is assumed to be dynamic and skillful, 

represented simultaneously at both behavioral and neurological levels. When talking 

about knowledge, memory, and skill, I am purposefully not making a distinction. All 

neurological representations are living things that are not static but dynamic, i.e., they 

change over time. These representations can vary in the sense of “dynamic skills” from 

perceptual skills to episodic memories and complex systems of skills such as how to 

engage in self regulation or be the leader of a nation (Fischer & Bidell, 2006; Fischer & 

Yan, 2002). As we will discuss, perception itself is a form of knowledge (Fischer & 

Bidell, 2006; Rock, 1985). Knowledge can be represented explicitly in the outward 

behavior of individuals or as implicit behavior not directly accessible to consciousness 

(Polanyi, 2009), or less commonly knowledge may also be represented in the persistent 

internal states of an organism and the behaviors of neurological systems. But, we can 

never measure knowledge directly, it must be measured through the behaviors of 

organisms, or the behaviors of biological systems within organisms. It is worth 

emphasizing that all measures of knowledge are indicators not direct measures. 

One common way to examine knowledge is through behavioral tests, surveys, 

observations, reflections, and interviews; often we confuse these as direct measures of 
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knowledge, but they are approximates that indicate knowledge; they are assumed to 

correlate with internal representations of knowledge. In other words, all these measures 

examine the behavioral output of a knowledge system, not the knowledge construct 

directly.  

Similarly, we might be able to examine the knowledge construct through changes 

in an organism’s biology. While this initially may seem less useful, it is not a novel idea. 

The first well known scientific evaluation of knowledge in this was in the historical work 

of classical conditioning experiments coming out of Ivan Pavlov’s research lab (Pavlov, 

1927). Changes in the knowledge system of an organism were approximated by 

measuring saliva. As the pairing of the unconditioned stimulus to the unconditioned 

response increased, it had a direct effect on the amount of saliva produced in Pavlov’s 

dogs. Alternative biological indicators are blood pressure changes, galvanic skin 

responses, pupil dilation, the blink response and more (Germana, 1968). Basically, some 

unconditioned response frequency is changed through experience and is conditioned to 

change its response rate in reference to a new conditioned stimulus. Change in the 

amount of saliva is an indicator that the internal knowledge state of the organism has 

changed; it is evidence they have learned something. This is also a type of connectionism 

building a connection between stimulus and response (Hebb, 1949). 

While the other biological indicators are often accessible measures of learning, we 

do not often think of brain states, as behaviors which can be measured. But, indeed the 

brain itself has a measurable response to changes in its environment. With learning, the 

brain “behaves” differently. Brain activity and structure is a similar indicator of changes 
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in knowledge states of an organism. Knowledge in the form of memories or skills is not 

only correlated with changes in external behavior, it is correlated with changes in brain. 

When skills are highly practiced and entrenched, they lead to observable differences in 

neural activity constrained by structural relations set up through previous experience 

(Tambini, Ketz, & Davachi, 2010).  

While in a behaviorist tradition, only changes in responses to environmental 

stimulus is measurable, more modern approaches assume that these changes are a result 

of changes to the intervening variable of the mind itself. The thesis I hope to convince 

you of though this section is that this knowledge is not only accessible in the environment 

where the skill was learned, but experiences leads to persistent dynamic changes in the 

brain; and, while BOLD responses can be evaluated as indicator variables they indicate 

brain activity which is the intervening variable of knowledge. 

Mind-Body Problem 

Today, it is uncontroversial to think of knowledge as represented in the mind of 

the individual, but if we are going to explore the neurology of knowledge we need to first 

spend some time examining the relationship between mind and brain. While knowledge 

is unquestionably represented in mind, whether mind is represented in brain is an 

important metatheoretical question that must be addressed as a foundation for what shall 

be discussed. Mind is not equivalent to behavior, nor is it equivalent to neurons. I shall 

now spend some time explicating aspects of this relationship. While a definitive answer 

to this question is clearly beyond the scope of the current paper, some metatheoretical 

assumptions made in this paper must be explained first as they are the grounding of this 
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research in this cognitive neuroscience of persistent representations of knowledge. 

Through the remainder of this chapter, I will attempt to outline this theoretical stance and 

leads the reader from cartesian dichotomies to an emergent complex systems view of the 

embodied and encultured mind in brain upon which the current research is built. This 

discussion will bring meaning to the neurological measures which will be proposed.  

What role does the mind play in the brain if it plays a role at all? This may seem 

like a dangerous place to begin, but understanding the role of the mind in neural 

dynamics is central to the cognitive neuroscience of education. As we shall see later in 

research of mind wandering it is equally important to critique the role of the mind as an 

agent in thinking if we are going to examine mind wandering, so understanding the 

perspective that mind is not an active agent on brain is central to any discussion of mind 

wandering. 

Based on my experiences working with and listening to educators, psychologists, 

and neuroscientists, no assumptions can be made about where one stands on the mind-

body problem. In fact, one often does not understand where they stand on the problem. It 

is not uncommon to hear at scholarly conferences how if one changes their thinking they 

can then change the wiring on their brain, or to hear that one's thinking is caused by a 

particular configuration of neural wiring. These types of comments are casually common 

by even plenary speakers at American Educational Research Association, Cognitive 

Neuroscience Society, International Mind Brain Education Society, Society for the 

Neurobiology of Language, and Society for Neuroscience annual or biannual meeting. 

Research methodology cannot stand on its own without a metatheoretical approach 
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describing how it is to be interpreted (Witherington, January 2014). And since we are 

looking for evidence of knowledge typically relegated to the mind through an analysis of 

neural activity, we must first outline what it means to look for mind in brain. 

Dualisms. The seventeenth century philosopher Rene Descartes shall act as our 

familiar foil to start this narrative because he clearly separated the mind from the body in 

what has become known as cartesian substance dualism. In his approach, the ethereal 

mind reaches into our physical world via the brain’s pineal gland1 pulling and pumping 

the sprits of the body: the disembodied soul acting as a puppeteer and observer acting on 

the passive machines of the physical world. “The mechanism of our body is so 

constructed that simply by this gland’s being moved in any way by the soul or by any 

other cause, it drives the surrounding spirits toward the pores of the brain, which direct 

them through the nerves to the muscles; and in this way the gland makes the spirits move 

the libs” (Descartes,1989). This is often referred to as substance dualism, where the mind 

and the body are made of different substances. While this colorful science fiction has 

been rightly rejected by modern science, the notion that the mind operates at a higher 

autonomous level directing the actions of the body is still very much accepted in some 

approaches to the psychology of learning. In these vertical approaches, the mind may be 

bound within the body, but it still holds an executive position where it drives (or at least 

plays an important role in) cognitive development through acting on the biology and the 

environment. In these approaches the mind drives the brain in a causal relationship. 

                                                
1 The pineal gland was assumed to be the seat of the soul because he wrongfully thought 

there was only one in the brain. 
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However, this is still an unacceptable dualism. So, it is from this approach that we begin, 

in reaction, to examine mind and brain in monisms. But, as we shall see, some attempts at 

monisms simply recapitulates earlier dualism under a new disguise.  

Monisms. One way to address the problems of dualism is to simply ignore or 

dismiss the parts we do not understand. Centuries earlier, Plato and his contemporaries 

proposed idealism which eliminated the biology of mind as worthy of study (White,1976; 

Bunge, 1980). All that existed was of the mind’s creation. Similarly there is the 

philosophy where all matter and mind are resultant manifestations of energies (Bunge, 

1980). These approaches are easily dismissed for their lack of clear grounding in 

scientific principles and being steeped in mysticism suggesting that the mind creates 

reality and all reality is thought. However two other types monisms must be addressed 

which are more accepted but equally problematic: all knowledge is behavior, all 

knowledge is brain. 

Early, attempts to empiricize studies of knowledge led to research in the area of 

human behavior, John Watson and B. F. Skinner transformed the individual into 

probability machines of behavioral output. While Watson decries the existence of mind at 

all (Watson, 1930), B.F. Skinner’s approaches to education viewed scientific exploration 

of the mind as a “fiction” or “illusion” ignoring any influence on the biological body or 

behavior (Skinner, 1974). It is simply denied the intervening variable as unnecessary to 

understanding knowledge. In their view, environment acted on behavior and determined 

behavior by changing behavior potentialities, the mind had little role, if any, in 

knowledge formation. Mind became epiphenomenal. The field of behaviorism completely 
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ignored the internal representations of mind or even the brain as viable material for the 

study of learning.  

While more empirically sound than Cartesian dualism or idealism, behaviorism 

simply ignored part of the problem. It left an open question of where the stored 

representation is and what its nature was, assuming that knowledge formation was simply 

the creation of deterministic influences from the environment. Behaviorism did not solve 

the theoretical hard problems, it chose to ignore them. Perhaps rightly so, all science must 

reduce, simplify, or model the problem temporarily in order to address it. This limiting of 

scope is, of course, one of the hallmarks of scientific research, however, complete 

dismissal is not necessary, as analysis methods can accept that we are only examining 

part of system without denying the existence of other parts.  

Clearly these approaches will give us no traction in searching for persistent 

knowledge in neurology and we have moved historically beyond this simplistic thinking. 

They did not search for knowledge representations; they only examined their behavioral 

output. They studied indicators of learning.  

From the other direction some neurologists worked on theories grounding in 

materialism beginning with the idea that all that exists is brain.  

Reductive materialism: mind does not equal brain. Similar to the behaviorism 

perspective, some have suggested that mind does not exist and that all that exists is the 

neurophysiology (Bunge, 1980). Since we are searching for knowledge in the neurology 

this approach has no use in the current analysis. But, what if we assume that mind is 

equal to the material? 
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While I will be reductive, I am not being ontologically reductive in the sense that 

all events including biological entities can be reduced into the component parts (Jones, 

2000). From this reductive ontological materialism approach, the mind is “nothing more” 

than cells, chemical reactions, and physics; by understanding these components we can 

understand how mind or knowledge emerges. This approach does not eliminate mind but 

assumes that the brain is equal to the mind, if we understand brain, we will understand 

mind. It holds that "every mental state (event or process) is a state (event or process) of 

the central nervous system or part of it" (Bunge, 1980, p. 6). In other words, the mind is 

organized like a computer. By understanding the components we can understand the 

function by simply adding up the components; a set of logical functions respond to 

external events and predictably interact to produce a behavior. Essentially, this approach 

says that understanding cells is not only necessary but also sufficient to explain the mind. 

This approach would suggest that neural or molecular representations are equal to 

knowledge.  

But, something is sorely missing in this approach, no one would realistically say 

that music is a collection of ones and zeroes because that is how a computer represents it; 

there is something more to music than this. This approach would ignore the perceptual 

experience dismissing it as an illusion it would also ignore the system of relations 

between neurons as something different and more than the components. A collection of 

neurons is not knowledge.  

To begin with, qualia are our experience of the world which while determined by 

neurological representations, they cannot be described by them. Simple example comes 
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from the perception of color which does not exist in the world but is constructed by the 

mind, however it is restricted by the biology. There is no blueness, or redness in the 

physical world, the physical representation of the color has no physical equivalent (Kay 

& McDaniel, 1978). Color is light represented in science as wave frequency; we do not 

see light waves. However, differences in the experience of color between individuals with 

different receptor types illustrates that color is a subjective experience of perception and 

not an objective property of the world (Bimler, Kirkland, & Jameson, 2004). We can 

clearly say that color is not equal to wavelength, because color is viewed differently 

based not only on your experience but also the distribution of rods and cones. There is a 

shared world, but not a shared perception. Our unique experiences and biology constrain 

our perception. Extreme examples can be seen in analysis of neural circuitry of 

synesthetes who differ in their neural architecture and thus perceive the world differently 

from a cross over in sense circuits: they see graphemes in different colors (Hubbard, 

Arman, Ramachandran, & Boynton, 2005). Or similarly, the perceptual apparatus of 

dyslexia (Serniclaes, Van Heghe, Mousty, Carré, & Sprenger-Charolles,2004) and autism 

(Mottron, Dawson, Soulieres, Hubert, & Burack, 2006) changes their perception and 

variation in their skilled interaction with the world. Through these studies we can see that 

the physical is necessary to understand the qualitative experience, but the qualitative 

experience is more than the sum of the physical components. We cannot work in a bottom 

up fashion to generate the qualitative experience, we must integrate the qualitative 

experience in our exploration. To explain the biological brain without the qualitative 

experience misses essential properties of the brain itself; however this also shows that 
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qualia are grounded the biology. All qualia can be partially observed in the biology which 

enable it. A description of complete knowledge would include these extended 

representations, but qualia cannot change without changing the neural foundations of it 

simultaneously. 

Furthermore, the reductive materialism approach asserts that the whole is equal to 

the sum of its parts. Beyond the qualitative experience, this is also a clear fallacy. As 

Mario Bunge (1980) points out "to say that the composition of a human society is a 

bunch of humans is to say that a society is nothing more than a set of its members” (p. 8), 

or put another way, a hurricane is no more than water and wind. This is clearly also not 

the case, the brain, like human society or weather patterns, is a system of components not 

just the components themselves. It is therefore clear that thinking of the set of neurons as 

equal to mind is not a useful approach.  

To both reject dualism and to embrace a holistic monism, new philosophies and 

ways of thinking had to be devised.  

A new monism: Phenomenology. While ontological reduction and monistic 

idealism rejected the body, and behaviorism and eliminative materialism rejected the 

mind, the reacknowledgment of the importance of the perceived experience in 

development was tackled in philosophy, particularly in the philosophy of 

phenomenology. A consensus began to emerge that the experience of the perceptual 

phenomena itself was worthy of scientific study, something lost in behaviorism and 

reductive materialism. But to be a subject of empirical study, the phenomena had to be 

tied down to the physical world and this was elegantly done through the work of Maurice 
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Merleau-Ponty (1996). As a pivotal figure in phenomenology, Merleau-Ponty discussed 

how examining the experience as a unit of analysis was essential to the scientific study of 

the mind. However, he went further than other phenomenologists, by saying that this 

experience was also grounded in the material world, in the biology of the body itself and 

through contiguous connection part of the brain.  

This approach is central to thinking about knowledge as persistent in the biology 

of brain. It includes in the knowledge phenomena, the sensory experience whether 

directly or indirectly experienced. Using this philosophy as grounding, we will go further 

and move beyond our traditionally defined body into abstract emotion, concrete tool use, 

and cognitive tool use as parts of this persistent knowledge framework, finally integrating 

the non experienced or tacit knowledge as it was envisioned by Merleau-Ponty's 

contemporary Michael Polanyi. As we shall see in the following paragraphs these 

phenomenologies of mind cumulatively give us a foothold in the biological allowing us 

to perceive a unity of mind and body. 

More than I see. A crucial point that phenomenologists made was that perception 

as an element was persistent and real outside the physical representation of the perceived 

and only in the perceptual apparatus of the observer. Using the classic example of the 

Müller-Lyer Lines (figure4 ), Merleau-Ponty (1996) pointed out that the illusion as a 

persistent entity did exist. An illusion is not something that does not exist, it exists 

simultaneously both in the mind and physically in the body. In this example outward 

directed arrows on edges appears to compress the length of the line when compared to the 

same line with inward facing arrows at the edges. While one could always measure the 
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lines and show that they were the same length, perception always overpowered empirical 

knowledge and the illusion persisted. Therefore the illusion must be somehow grounded 

in our perceptual apparatus. Illusions must not come from the world, but from our 

internal knowledge.  

Additionally, this quality of experience was extended to the edges of visual field. 

The world does not cease to exist beyond our visual perception. The edges of the visual 

field are in fact not perceivable because the mind continues to represent the external 

world beyond the visual field. Knowledge of the world persists beyond our sensory 

apparatus. What is not observed through the eyes still exists in perception, although it is 

outside of attention, and is real in the sense that it is experienced; we experience 

ourselves in the world not trapped in our visual field. The state of the organism 

represented in the brain affects what is seen or perceived. Merleau-Ponty gets into the 

mind through perceptual experience.  

Here we begin to understand what persistent representation in mind or brain may 

mean. Skills and memories exist and directly influence our perception. Classically, this 

represents the top down component of classic cognition theories (Mechelli, Price, Friston, 

& Ishai, 2004). To ground this idea further in biology, Merleau-Ponty brought our 

attention to the phantom limb phenomena. 

The body inside. Having been a physician in the war, Merleau-Ponty was familiar 

with the phenomena of phantom limb. In the absence of an amputated limb, a patient still 

perceived the limb. Thus similar to the line illusion the representation, the experience 

persisted beyond its external representation. While a man with a missing arm could 
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clearly see that the arm was not there, he nonetheless perceived it to still be a part of his 

body and to feel pain. Perceptions were persistent beyond direct experience. The body, 

was mapped onto the brain. When the limb ceased to exist, its neural representation in the 

brain remained. Representations of body and world persist past direct experience.  

While Merleau-Ponty is primarily concerned with conscious experience, we shall 

briefly dwell on the phantom limb phenomena because it gets to the core of persistent 

representations of knowledge. Experience maps the body onto the brain where 

representations of experience persist. This phenomenon has been explored in depth by V. 

S. Ramachandran and his colleagues (Ramachandran, Rogers-Ramachandran, & Cobb, 

1995). The new body needed to be remapped onto the brain. While phantom legs were 

compensated for due to their continued use, the phantom arm remained a problem and 

only through repeated training of the perceptual apparatus was the missing limb mapped 

onto the cortex (Ramachandran, Stewart, & Rogers-Ramachandran, 1992). It is only after 

repeated attempts to use the limb are met with inconsistent feedback that the sensory and 

motor cortices remap this region (Yang et al.,1994). The mental representation of self as 

body is clearly grounded in the neural networks of the brain. 

The world inside. But, this representation is importantly not limited to gross body 

anatomy, the senses are similarly maps of the world. We know that information enters 

through the various sensory organs, it is transduced into neural signal and somehow 

represented on the cortex. We actually have a strong understanding of this transduction 

process and the senses happen to be mapped onto the brain for the most part, in a 

topographically consistent way. The sense of hearing is mapped in a tonotopic map where 
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similar frequencies are represented near each other (Wessinger, Buonocore, Kussmaul, & 

Mangun, 1997; Formisano et al., 2003; Evans, Ross, & Whitfield, 1965), the visual 

system is mapped across the occipital lobe in a way that preserves relative size and space 

from the visual fields and retinotopic organization of rods and cones on the eye (Gardner, 

Merriam, Movshon, & Heeger, 2008); the motor, proprioceptive, and touch senses are 

mapped across the sensory cortex in a way that preserves the map of the body in a 

familiar homunculus with representation area correlating with the degree of sensory or 

motor specificity in the body region (Penfield & Boldrey, 1937; Metman, Bellevich, 

Jones, Barber, & Streletz, 1993). Thus the brain has ways off representing the outside 

world. The outside world persists in the brain. But the brain is not simply a cartographer, 

these maps are then associated with each other in association cortex allowing us to 

perceive complex relationships and emotional action sequences (Damasio et al., 2000).  

While easy to see the physical environment is mapped into the brain, what about 

the narrative aspects of self, the emotional grounding of self. Hanna and Antonio 

Damasio and their colleagues (Damasio et al., 2000; Bechara, Damasio, & Damasio, 

2000) describe the body map in the brain, but include the physiological aspects of 

emotion demonstrating that the emotion is a physiological sequence of activities that we 

perceive as our feelings. Emotional actions consists of a physiological response to the 

world or internal states. One highlighted region of cortex which represents the body states 

is in the insula, the state of viscera, pulse and other internal factors are perceived through 

the posterior insular cortex while anterior regions interact with other neural systems to 

assist in the perception of feeling these emotions (Craig, 2002; Damasio et al., 2000; 
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MacDonald, Leary, 2005; Immordino-Yang, McColl, Damasio, & Damasio, 2009). Thus, 

the physical as well as the emotional body is represented in the brain. We perceive the 

world through our body. As the body moves through the environment it is changed 

usually in less drastic ways than losing a limb, but nonetheless, it is changed. These 

movements are represented in the brain mapping the environment through the body onto 

the brain. Thus from Merleau-Ponty to the Damasios, the embededness of the mind to the 

embodied brain is accepted as a modern neuroscientific fact. 

Existing without direct experience. Returning to our idea of persistence, this 

mapping does not cease to exist when the region is not in use, and importantly neither 

does the activity of the region. This mapping of the body is preserved across time. It is 

integrated into an image of self (Damasio, 2010); it allows for the recreation of 

experiences outside their original contexts. I can close my eyes and imagine, I can day 

dream, I can dream. These decontextualized experiences are only possible because our 

internal representations of sensation are constructed as part of memory and creativity 

(Farah, 1988). I can see and feel without my sensory apparatus because my mind persists 

beyond external experience it is in the biology. Qualia do not require external sensation; 

they require internal representation. 

However, we need to account for the fact that the body is extended beyond flesh. 

The blind man’s cane, the painter’s brush, the mathematician’s formulas, and the writer’s 

text are all internalized and represented in the mind and the brain. We feel the edges our 

cars when we drive as the blind many feels the edges of the cane. Vygotsky may envision 

these as extensions of mind through external tool (Vygotsky, 1997), but implicit in this 
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approach is that the external tool needs to be internally mapped. The outside world is 

remapped on the cortex through the association of sensory maps. A number of linguistic 

theories indeed ground the symbolic aspects of language in the basic sensory experience 

which eventually becomes part of the perceptual apparatus itself (Lakoff, 2012). As a side 

note, we may even examine this literally as we literally integrate human and machine we 

take advantage of this plasticity and are able to implant controls for robotic arms in the 

brain, and the brain then automatically generates a map of the additional limb based on 

experience (Davis et al., 2016). These external devices and tools are not solely external. 

The ways we interact with them become part of our mapping system (Obayashi et al. 

2001; Farnè, Serino, & Làdavas, 2007).  

Thus the body and its extensions into the environment is “minded” through the 

senses, but once the body is minded in the brain, these representations become part of the 

individual’s brain’s functional anatomy. Returning to Merleau-Ponty, the existing 

biological representations are a primary tool for perception. The phenomenology of mind 

is recapitulated on the biology of brain which we use to perceive. Perception is clearly 

not a bottom up process and at the very least involves a two way interaction between 

environment and brain. However, the minimal adjustments to neurology from experience 

indicate the vast majority of representation is top-down, as we shall discuss below. 

Representations of the world and our interaction with it are persistently represented in the 

cortex. 

Literally removing knowledge. It is also of no argument that when parts of the 

neural apparatus are lesioned, knowledge of the abstract skills is also lost. The literature 
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for this is rich and I will not address this ad nauseam here, except to mention the simple 

ideas that lesions in lead to the loss of memories, skills and self. The most obvious of 

which are loss of memories or abilities to generate new memories though neurological 

damage to the hippocampus but also association cortex that plays a role in the memory 

reconstruction (Scoville, & Milner, 1957). The classic cases of language skills after 

lesions or strokes affecting language related areas of cortex resulting in a loss of reading, 

speaking, understanding skills just to name a few (Caramazza, & Berndt, 1978). There 

should be no doubt that the mind and skill persist in the anatomy of the brain. If 

knowledge is destroyed in the brain, it is lost unless other regions or external resources 

work together to reconstitute it; but, in this sense, the knowledge is new, not rebuilt from 

some abstract separate mental phenomena.  

These neurologically grounded phenomenologies give us a space for persistent 

representations of knowledge. Thus, Merleau-Ponty gives us a more acceptable monism. 

The mind is not separate from the brain but intrinsically connected and the nature of 

minded knowledge necessarily involves neurological representation. 
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Figure 4. Müller-Lyer illusion. The top line is the same length as the bottom line but 
persistent representations in our mind do not allow us to perceive this even though we 
may measure the two lines and know the truth.  
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Not conscious knowledge is still knowledge. All of this discussion recognizes 

conscious perception as representing knowledge, but for these perceptions to be possible 

they must be accessible and available. But what of that knowledge which is not brought 

to conscious awareness. In the present exploration we are searching for latent persistent 

representations of knowledge. By their very nature these are assumed to be outside 

conscious awareness. Because I do not actively think of a paint brush does not mean I do 

not have knowledge of painting at that time. Knowledge does not arrive deus ex machina 

as needed. Unnoticed and unperceived storage of information is still knowledge. I am not 

always aware of my limbs nor is the amputee, but the persistent representations remain 

beyond my conscious awareness (Ramachandran, Stewart, & Rogers-Ramachandran, 

1992). This is an essential question considering the current analysis searches for these 

persistent representations which cannot all be simultaneously perceived and in fact some 

are imperceptible.  

Much of our bodily changes go unnoticed. This unnoticed change also becomes 

part of our knowledge what Michael Polanyi (2009) called tacit knowledge. In 

accordance with Merleau-Ponty’s principles, Polanyi emphases the importance of tacit 

knowledge. Not only was the knowledge the we could grasp in our conscious awareness 

important for our engagement in the world, so was the knowledge gained beyond 

awareness. Examples were skills such as riding a bike or walking which do not require 

conscious awareness but are still essential in our engagement of the world. These are 

skills that can be engaged without conscious awareness. In fact, these unconscious or 

tacit representations are appropriately not minded, to mind them might distract from other 
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essential tasks, too much attention to the motor details of skiing reduce our performance 

and attention to other important environmental signals (Wulf, McNevin, & Shea, 2001). 

Too much attention to the tones of singing in trained singers reduces their ability to sing 

(Atkins, 2017). Our knowledge thus extends beyond the conscious to that which is 

enacted beyond awareness.  

But, lets not stop there. What is not conscious does not need to be engaged in the 

moment. As mentioned above these representations of knowledge have persistent form. 

Knowledge is not something only engaged in the moment, but something that is ready to 

engage. We need to rapidly switch tasks when the opportunity presents itself and we can 

only do so if there is an existing representation to switch to. There is some previous 

experience which has been imprinted on the brain and is active that enables the specifics 

of our engagement.  

At the moment you may be saying that this does not address the idea that 

knowledge is always dynamic and active. Knowledge could be stored in non-dynamic 

ways in the cortex such as in an inactive web of interactions that lay dormant until they 

are needed. It is however very clear that knowledge is not simply written and stored in 

the brain in files that can be accessed later. Even when knowledge is not engaged its 

nature and content change because systems of knowledge are always adjusting. 

Instability of knowledge. Taking the example of memory, Elizabeth Loftus and 

colleagues (Loftus & Loftus, 1980; Loftus & Pickrell, 1995; Colins & Loftus, 1975 ) has 

convincingly shown how memories are not recalled but are reconstructed. If knowledge 

was stored and static then eyewitness testimony would accurately capture actual events, 
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however, eyewitness testimony is notoriously unreliable. This is not only due to 

differences in the encoding of the memory because given time the same memory will 

change. The flashbulb memory experience has similarly been shown to be unreliable and 

also alter over time although our confidence that it is unchanged appears high: memories 

of thousands of individuals who observed the terrorist attacks on 9/11 in New York 

reveled that changes continued to happen to stories for at least a year before the memory 

stabilized (Hirst et al., 2009). There are also no known cases of memetic memory 

(photographic memory) as all those who believe they have it are unable to reproduce the 

experience under experimental conditions (Gray & Gummerman, 1975; Patihis, 3013; 

LePort, 2012).  

A second example is the activity of skill learning. It is well documented in 

learning theory that a practiced skill changes even when the learner engages in a different 

intervening task. Some simple skills such as finger tapping tend to improve after a break 

or sleep with no practice (Fischer, Hallschmid, Elsner, & Born, 2002) . All evidence 

points to the idea that outside the actual learning conditions the motor or cognitive 

sequences resonate in the mind outside active experience. Running a rat though a maze 

and recording the sequence of neuronal activity in the hippocampus (a region of the brain 

with spatial maps) results in patterned sequences which reflect the movements in the 

maze itself (Ji, & Wilson, 2007). We shall return to this idea later when we dive into the 

neurology, but it is clear that a model where skills or memories are discrete and 

experience dependent misses this temporal aspect of knowledge.  
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There is strong theoretical reasoning therefore to examine persistent 

representations of knowledge in the brain and to assume that this knowledge is an active 

representation even when it is not engaged. Knowledge is not a static representation it 

lives.  

Transition to levels. To make statements about brain activity as representing 

mental activity we need to unify rather than just show a strong relationship between mind 

and brain. But, in doing so, as mentioned above it is not useful to simply state that mind 

is brain in the reductive materialism sense. The mind needs to somehow exist with the 

brain. We want to maintain that "every mental state (event or process) is a state (event or 

process) of the central nervous system or part of it" (Bunge, 1980, p. 6), but we also want 

to exert the idea that understanding the neural components is insufficient to 

understanding the brain. Something qualitatively different from brain emerges with the 

neural architecture. And thus, it is necessary to turn to a theory of emergence. But, to 

dismiss emergence as magic and mysticism (Gallistel, March 2017) depends on the 

grounding we use.  

To elucidate the topic of emergence as a theory for mind brain relations, lets 

continue with Polanyi who pointed to the importance of “levels” of representation. While 

I shall not stay with his explanation because it remains a dualism of a new kind, however 

it is a convenient place to begin to make the relationship clear and set up the terms of 

engagement which we will resolve. 
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Mind from brain. As I mentioned above, without careful attention, dualism can 

reemerge in our understanding of the brain. But this new dualism seems to suggest a 

different relationship. The mind emerges as if secreted from neural interaction. It then is 

often acceptable dualism used by various approaches to discuss neuroscience. 

Mentalism: Mind constrains brain. As we discussed above, the 

phenomenological view suggests that experience is tightly bound to brain but we have yet 

to describe this relationship, if neural events are not the same as experience, how do we 

define them? Polanyi began bringing into this discussion the idea of “levels” . This is not 

levels of complexity or scale but levels which each have their own laws or rules which 

them must follow; levels are qualitatively different. If we allow mind and body to exist in 

different qualitative levels this proposes a way to think about mind and brain as in some 

way separate influences on each other. It becomes important when discussing 

neurological representations of skill to examine what influences neurological 

representations. It is a possibility that mind “emerges” from the complex interactions of 

the brain. If we allow this supposition, it is possible to think about these different levels 

having influence on each other. Lets hold on to this idea of a moment as it is currently a 

very popular way of thinking about mind-brain interaction.  

So, what is meant by different levels of organization? Polanyi and others have 

attempted to start this discussion for the physical world. At different levels of 

organization and complexity different qualitative properties appear to “emerge”. In the 

simplest sense, water molecules have hydrogen bonding at room temperature that leads to 

the viscosity of liquid, but this bonding does not create the shape water takes when it fills 
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a flask in a bottom-up fashion (Polanyi, 2009). Rules at the microscopic level do not 

dictate the behavior of water at the macroscopic level. While hydrogen bonding explains 

the relationship between molecules, it does not dictate shape water takes as it entered a 

flask; the flask is what dictates the shape that the water takes. The flask acts as what 

Polanyi terms the boundary condition to the overall shape of the water.  

In an attempt to be theoretically exact and perhaps to ground the social sciences in 

the philosophical foundations of the physical sciences, Polanyi explains the boundary 

condition as taken from mathematics and physics: it is the space in which a differential 

equation is applicable. This differential equation constrains the potentially limitless and 

infinite degrees of freedom available to some system. In other words, unbounded by other 

rules, water molecules could take any possible shape at the macro level. In a weightless 

environment they would float and only be constrained by their hydrogen bonds, in a 

vacuum, they are likely to spread out in a random way only following rules of diffusion. 

The flask, gravity and environment thus, act as a boundary condition for the shape of the 

fluid, it reduces the degrees of freedom in the shape that the liquid can take in a particular 

environment.  

Polanyi extends this discussion to include the tool maker and inventor as the 

boundary condition for the material world. Physical properties of metal allow it to be 

molded by humans, humans act to constrain the behavior of the metal, limiting the 

degrees of freedom. No one would seriously question the qualitative assumption that the 

man and the metal or the flask and the water are in some sense separate. However, he 
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proposes that this same relationship exists between a machine and its parts; bringing us 

closer to a mind brain comparison. 

Metal does not form gears, the boundary conditions set by the human allow for 

the formation of gears. Once molded into gears and the gears are arranged, another 

relationship emerges, that between the machine and its parts. Now, we move into the 

clearest connection Polanyi makes with mind brain relationship. The function of a clock 

constrains the possible arrangement of the parts which make it. The time keeping 

function is an emergent property not found in the gears and not found in the metal, and 

this time keeping property constrains the possible arrangement of gears. While the gears 

make the machine possible, the function of the machine “constrains” the possible 

functional relationship among the parts to perform a purpose. If the clock ceases to 

function, it ceases function as a clock. According the Polanyi, this is not dissimilar to the 

relationship between genetics and the organism (an analogy we will return to shortly); 

evolution constrains degrees of freedom in genetics. Without boundary conditions the 

possibilities are infinite; life is governed by boundary conditions. Each level alone has 

infinite possibility: the metal has infinite possibilities of form, the gears have infinite 

arrangement of possibilities, and genes have infinite ordering possibilities, but external 

forces at a different level of control can limit the boundary conditions for the level. 

Importantly, “No level can gain control over its [own] boundary conditions … a higher 

level can come into existence only through a process not manifest in the lower level, a 

process which thus qualifies as emergence” (Polanyi, 2009, p. 45) and this emergent level 

can then exert control through constraint over lower levels. It is in a similar fashion that 
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the mind is said to emerge from arrangements of neurons, and Polanyi and others have 

suggested that this emergent level of representation constrains the possible organization 

of the neural machinery and mind controls brain.  

It would be radical material reductionism if we were to say that the simplest rules 

govern the highest level, and as Polanyi noted the laws are different at different levels. 

What happens at the chemical level does not govern all activity at higher levels. “A set of 

conditions is left undetermined by the laws of nature” (Polanyi, 2009, p. 40) The basic 

idea is that for one level to set the marginal conditions for the lower level it cannot be 

predetermined by the rules governing that lower level. A new set of rules must exist at 

this higher level. This new set of rules is said to emerge in the sense that they were not 

there as predetermined in the lower level. “Within an organism, each higher principle 

controls the boundary left indeterminate by the next lower principle it relies for its 

operations on the lower principle without interfering with its laws and because the higher 

principle is logically unaccountable in terms of the lower it is liable to failure by 

operating through it” (Polanyi, 2009, p. 49) . So according to Polanyi, while the higher 

levels are dependent upon the lower levels, they are not deterministically resultant from 

them. This emergentist form of dualism helps alleviate us from the tension of some 

magical thinking and removes tension from radical reductionism. And thus the pendulum 

swings back in the dualistic direction. 

However, it still does not deal with the theoretically hard problem. The governing 

rules simply emerge at the boundary between levels; higher levels constrain lower levels, 

but how did they emerge, in the first place? This question is not addressed by Polanyi, he 
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simply leaves it here. There is a type of dualism that results from his argument that is not 

resolved. Mario Bunge (1980) describes this as epiphenomenalism where the brain in a 

way secretes the mind that can then influence the brain. The lower levels somehow 

secrete a qualitatively different higher level phenomena that then govern lower level 

phenomena or as Polanyi puts it, set the boundary conditions. Each concentric level is 

treated as a closed system with a clear causal direction: higher levels control lower levels.  

While it is clear that emergence, must play some role in moving from neural 

actions to qualia, this dualistic type of emergence gives us little theoretical traction. We 

know changes in brain states accompany changes in the emergence of mind, we also 

know changes in mind accompany changes in brain states. Causal direction is often 

unclear between these levels. It is to this causal question that we shall now turn. We shall 

also dive briefly into genetics as an example of problems with traditional ideas of causal 

direction in biology which directly relate to the examined relationship.  

In the current paper, we are exploring ways to observe knowledge in brain. If we 

allow the mind to cause changes in brain or the brain to cause changes in mind then it is 

unclear what we are observing. This is of particular interest in the resting brain. One 

could make the argument that the resting brain dynamics are simply the result of the brain 

being manipulated by the mind when one allows their mind to wander; when the mind 

wanders it takes control. I will not be making this claim. Therefore, before moving 

further, causal direction must be addressed. 

Eliminate causal direction. Alluded to by Polanyi is the idea of determinism from 

bottom up influences, but he never clearly explains a method of emergence that can result 
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in controlling levels. The current paper makes no causal claims of relationships (and in 

fact denies a causal relationship between them) but, to better understand mind-brain 

relationship we need to explore this concept in more detail.  

Let’s temporarily assume the theoretical distinction Polanyi sets up separating 

mind from body in levels of influence. If we accept this dichotomy, in the methods that 

follow, we need to ask, are we studying mind or brain. If observe neural dynamics at rest, 

are we simply observing the influence of the mind on the neural dynamics? What we 

have discussed so far is directional from neural complexity to the emergence of mind and 

then from mind to the neural components themselves. However, this issue of causal 

direction assumes a cause-effect relationship. This was once assumed to exist in genetics 

or environment which predetermined our development including but not limited to 

neurological development. While this nature vs nurture debate has long since been 

dismissed it is worth examining how it dealt with causality because this gives us some 

tools to interpret the mind-body causality relationship. 

Simplistic understandings of genetics are that they are “blue prints” to 

development; this is the most basic causal argument in development and biology. The 

doctrine says genes are arranged in codons these codons encode amino acids that then 

build proteins that build the body. There is no stricter example of bottom up approach in 

biology. If we could only understand the genetic code, we could predict development. 

From the opposing perspective the behaviorists believed that an understanding of the 

environment led to a determined behavioral outcome. Watson famously said "Give me a 

dozen healthy infants, well-formed, and my own specified world to bring them up in and 
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I'll guarantee to take any one at random and train him to become any type of specialist I 

might select — doctor, lawyer, artist, merchant-chief and, yes, even beggar-man and 

thief, regardless of his talents, penchants, tendencies, abilities, vocations, and race of his 

ancestors" (Watson 1930, p. 104). Neither of these approaches answered questions of 

development. Instead it has become clear that a different form of causality and 

determinism was warranted. 

In an attempt to deal both with the deterministic aspects of genetics and integrate 

the influence of the environment, Waddington (1942) attempted to deal with the 

trajectory of development by proposing the metaphor of the epigenetic landscape where 

genes interacted with the environment to carve out a figurative trough along the slope of 

life where one’s development would continue down this trough and become entrenched 

unless some event shook up the landscape allowing development to take an alternative 

path (figure 5 a and b). The landscape itself it built through genes, but multiple paths are 

possible. Genes and experience helped us lay down a developmental path giving us 

choice points in development. While attempting to deal with the gene-environment 

interaction it was still far too deterministic to agree with emerging evidence. Thus there 

was not enough evidence to simply say that genetics led to possible futures. However, it 

does give us a way to think about neural systems for learning. As time progresses, those 

systems become canalized or entrenched. As we will discuss below, this approach also 

complements dynamic systems perspective where the system is sensitive to initial 

conditions and small differences early in development lead us down paths which are 

persistent with time. 
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Gilbert Gottlieb (1991) then proposed a new way of thinking about the interaction 

across levels in development. Essentially a description of causal influences as 

bidirectional and coactional. Genes did not only influence development but were 

influenced by experience. Across time, all levels of complexity from genes to 

environment influenced each other through adjacent levels of complexity. Notice this 

description of levels is not the same as that proposed by Polanyi. Within the individual 

another type of connection is hierarchically organized, but this hierarchy is still dynamic. 

Gotlib clearly illustrated that even from the genetic level development is not 

predetermined. From genetic to cellular to whole brain to environment there is 

bidirectional causality where all levels codetermine adjacent levels across time (see 

figure 5 c). This logic allows us to move to the mind-brain relationship. We cannot state 

that the brain changes behavior without simultaneously stating that the behavior changes 

the brain. This is true at the genetic level as well; we cannot develop proteins without 

changing the genetic material itself (Grigorenko, Kornilov, & Naumova, 2016). The 

expressions of proteins in the environment interact with genes to wrap them in different 

ways allowing for further gene expression. 

To further illustrate this lack of genetic determinism, in recent years, extensive 

work on the human genome has demonstrated that the genome is changed through 

experience and in fact there may be epigenetic changes in the individual that are 

transgenerational (Ridley, Frith, Crow, & Conneally, 1988). Meaning that changes in the 

genome do not just go from mother to daughter based on amniotic experience, but also 

are carried to granddaughter in the genome . Additionally, current work in the area of the 
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Baldwin effect describes genetic-environmental interactions that are passed as memory 

engrams through the generations (Tonegawa, Pignatelli, Roy, & Ryan, 2015). These 

engrams are stored in cellular connections which are inherited and this inheritance can 

change in a transgenerational way. Thus, there is plenty of emerging evidence that 

knowledge structures in the form of engrams while inheritable are malleable and both 

genetics and environment play a role in emerging systems of knowledge storage. 

This cocausal approach means that we need to think about any neuroscientific 

findings as part of a system. No single level causes something to happen at another level: 

“behavioral (or organic or neural) outcomes of development are a consequence of at least 

two specific components of coaction (e.g., person–person, organism–organism, 

organism–environment, cell–cell, gene–gene, nucleus–cytoplasm, sensory stimulation–

sensory system, activity–motor behavior). The key concept to understand is that the cause 

of development (what makes development happen) is the relationship between the two 

components, not the components themselves. Genes in themselves cannot cause 

development any more than environmental stimulation in itself can cause development.” 

(Gottlieb, 1991, p. 423).  

Social cognitive theory directly borrowed these ideas from biology in the work of 

Albert Bandura (2001). In his approach internal factors, environmental and behavioral 

factors are acted cocausaly on development of self. However from this self, Bandura 

allowed hierarchical influence of the emerging self to direct the biological. “Cognitive 

processes are emergent brain activities that exert determinative influence” (Bandura 

2001, p. 4). Bandura’s “agentic” perspective of self allows for the emergence of mind 
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from biology through interaction with the environment which can then influence the 

biology. However, while Bandura clearly explicates the cocausal and bidirectional 

influence creating self, there is never any clear explanation for how self is represented in 

the brain or even how it is represented in the interactions. Instead, it appears to be 

magical and thus we have the reemergence of dualism.  

So, from Polanyi we saw a causal direction which was resolved into a dynamic 

perspectives of development. But, we still have different levels of complexity and 

different rules governing these levels. Bandura separated the “levels” conceptually in a 

triadic model. However, this still remains problematic. This assumes that behavior and 

mind are separable; we shall now call into question this separability with a final approach 

for an acceptable form of emergentism that allows us to think about mind-brain in a 

scientifically useful way. 
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Figure 5. Development and cause. (A and B) The epigenetic landscape of Waddington. In 
A we see the entrenched valleys as possible directions for development and in B we see 
Waddington’s theoretical foundation as genes and environment interactions pulling at that 
landscape and forming entrenchments for the marble of life to run down. (C) 
Bidirectional Influences. The influence is not unidirectional from genes to behavior nor 
from behavior to genes, but simultaneously in all directions. Levels influence each other 
bidirectionally and cocausaly. 
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Seperability dissolved. One may rightly ask at this point, is it not acceptable to 

assume that mind brain relations are cocausal and bidirectional? Then we can understand 

mind from changes in brain or understand brain from changes in knowledge and end this 

metatheoretical discussion. But simply accepting this and moving on would drastically 

limit the interpretability of the methods presented here. But, beyond that, they are 

theoretically insufficient. If knowledge and brain are separate levels that leads to the 

assumption that while they can influence each other, they can also change independently. 

If we think about the flask containing water many aspects of the flask can change 

independently of changes in the water. If we think of knowledge independently of brain, 

then the knowledge should be able to change independently of the brain. Or the biology 

of the brain could change independently of the knowledge. If this is the case, then our 

behavioral or biological indicators of knowledge are not useful measures of knowledge. It 

is of great theoretical importance therefore that we make some effort to dissolve the 

separability. 

Emergentist psychoneural monism. In our final exploration into the mind-body 

problem we shall use the taxonomy of the mind-body problem proposed by Mario Bunge 

(1977) which is useful in positioning ourselves within this subject matter. We have 

dismissed the substance dualisms where the mind and the brain are separate substances 

which are not grounded in empiricism, we have similarly dismissed monisms of idealism 

and radical determinism. And finally, we have pointed to a more acceptable reemergence 

of dualism which problematically still relies on a supervenience of the emergent mind 
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over the brain. We then addressed causal direction finding that perhaps mind and brain 

interactions are bidirectional. But still, this assumes some separability. 

Here we shall use Bunge’s postulates to take the ideas of emergence one step 

further than what we saw in Polanyi. These postulates are foundational to our argument 

and part of the separation of the two methods to be described later. The views here boil 

down to emergentist psychoneural monism. There are three postulates proposed by 

Bunge (1980) which will be ascribed to here: 

(1) “All mental states, events, and processes are states of, or events and processes 

in, the central nervous system” (p. 506). The mind does not lie outside the brain, nor is it 

the result of the brain, it is equal to the processes and events of the embodied brain. 

(2) “These states, events and processes are emergent relative to those of the 

cellular components of the CNS” (p. 506). The cellular components do not individually 

represent mind. They are emergent, but not emergent “from”, they are emergent “with”; it 

is not that something new emerges from them it is more aptly put that something new is 

emergent from their organization into systems. But remember that emergent in this case is 

not separate or secreted. 

(3) “The so-called psychophysical relations are interactions between different 

subsystems of the CNS or between them and other components of the organism” (p. 506) 

The mind is in the relations. It cannot be pointed to as any particular component but a 

system of components. This could also be seen as what Bandura was going for in Social 

Cognitive theory where the mind emerged as a level from the triadic relations, however 

he fell short of psychoneural monisms when he stated that this emergent property causes 
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changes. In other words his agentic theory is in opposition to these three postulates a 

whole. Importantly, this does not allow the “executive system” to act as a controller of 

the mind. The executive faculties of mind are a component not separate from it. 

If we accept the above postulates then we can begin to think of neural events as 

psychological events and talk about “psychological events without leaving the biological” 

(Bunge, 1980, p. 506). Assuming these postulates we can now discuss psychological 

events as occurring on a neurological level without assuming a metaphor. We can say that 

cell assemblies, discussed below, do the thinking. It is important to note that minds are 

“not a supra organic level because they form no level at all” (p. 508). 

Knowledge in active neural systems. I will be discussing neural events as 

psychological events, but importantly I am not saying that neurons or the material brain is 

equal to mind; a picture of the brain, no matter what its resolution, is not a picture of the 

mind. I am saying that the mind or knowledge is in the ongoing dynamic relations 

between elements in the system at all levels.  

This is a repetition of similar observations made by Gottlieb above “the cause of 

development (what makes development happen) is the relationship between the two 

components, not the components themselves” (Gotlib, 1991, p. 423). But, to think of 

them as cocausal from this perspective is equally flawed. They are not separate levels that 

act on each other they are a system. Psychological events lie in the relations between 

components of the system of neurons not in the neurons themselves or in the mind as a 

separate level. 
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Along these same lines, understanding the physical aspects of the connections 

between neurons does not tell us about the behavior of the system. These types of 

reductionistic approaches have met with failure and demanded reinterpretation. In 

parallel to the human genome project where a complete map of the genome tells us little 

about development, we have found that a map of neurons and their connections does not 

explain behavior. The complete mapping of the 302 neurons and the 7,000 connections in 

c-Elegans worm has not explained its behavior not its learning (Bargmann, & Marder, 

2013). As mentioned above, the genome changes with development and the genome and 

environment simultaneously influence and change each other. However we need to even 

make one more stipulation. The same neural networks with identical connections can 

have radically different behavioral results. Thus connections by themselves are not 

sufficient, we need to understand the flow of informations through these connections; 

small molecular changes even in social hierarchy of organisms can result in the same 

circuit resulting in radically different changes in behavior (Yeh, Musolf, & Edwards, 

1997). The whole is not more than the sum of its parts it is the dynamic relations between 

its parts. The task then becomes one of understanding those relations. Approaches that 

examine these relations across time is one approach to get at this aspect.  

What emerges is not something wholly new, but a level of organized complexity 

which has different properties from its component parts. However, it is essential to 

recognize that is still tethered to these component parts and thus changes in the 

component parts will exhibit different emergent properties for the system. In a sense, 

under an emergent materialism or psychoneural monism approach one can still "hope to 
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'reduce' the molar properties of the brain to the properties of its micro components and 

there links" (Bunge, 1980, p.205) and by doing so we are not dismissing or explaining 

away the mind.  

Knowledge as an aspect of mind is also an aspect of neural systems. Knowledge 

is the temporal relation between components of the system but it is constrained by the 

components themselves. It is constrained by the brain and by the environment from 

cocausal influence. Now that I have laid down the metatheoretical approach necessary to 

understand this search for knowledge as it is seated in the brain, it is time to understand 

the neural system itself. As we shall see, this approach itself is still grounded in the 

anatomy of individual neuron, and synaptic structure. Bunge allows us to ground these 

ideas, but one more element is necessary.  

Based on our arguments from phenomenology above, an additional postulate is 

added. All mental states (those of consciousness, tacit knowledge, and knowledge) are 

omnipresent. "Mental states are a subset … of brain states” (Bunge, 1980, p.22), but we 

add here based on the above analysis of the persistence of knowledge that knowledge, 

conscious, tacit, or outside current access is represented in these brain states; knowledge 

is beyond conscious mind or mental states. As an extreme example, an individual with 

locked-in syndrome where the individual is completely paralyzed but conscious still 

retain knowledge (Smith & Delargy, 2005). But how this is done will become clear in the 

upcoming discussion of biological foundations of knowledge. This paper assumes that all 

of these are represented by dynamic states of the central nervous system. The state of 

knowledge is represented in the ongoing dynamics of the central nervous system .  
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We shall now, in this spirit, examine what features of the physiological system 

allow for brain states and allow for knowledge to be stored. Neural components at the 

microscopic level constrain the observable dynamics at the macroscopic level. The 

microscopic will therefore also constrain the phenomenological.  

Knowledge in Brain Dynamics 

Appropriate level of analysis. The current approach will be to address the 

system at multiple levels simultaneously through interpretation of the indicator variables 

deduced from the fMRI signal.  

The greatest question in cognitive neuroscience these days is what is the 

appropriate level of analysis? The international effort to map the human brain depicts this 

problem well. Some researchers are literally mapping every dendrite and glial cell 

connection preserved in individual brains (Helmstaedter, 2013), at the other end we are 

examining global interactions between regions that are similar across thousands of 

participants (Marcus et al., 2013).  

While we must limit our analysis to the methodological limits of our chosen 

instruments and background. It is equally important to note what those instruments 

assume at a system wide level. As opposed to the approaches taken by behaviorists or 

idealists, this next section will attempt to do some evidence based reduction. Current 

science limits the representations of mind at the molecular level and takes it to the 

societal level. Brief mentions will be made to respect these extremes, but the core of our 

methodology lies somewhere between the structure of individual neurons and whole 

brain interactions.  
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What may initially appear reductive is multilevel and inclusive. It should be clear 

by the end of this discussion that knowledge is represented across levels from molecular 

to social and any artificial isolation for empirical reasons is a theoretical convenience and 

not reflective of reality.  

Reactive or active? At this point, it is essential to describe what tools the brain 

has for these persistent neural representations. The point here is to see how neural 

representation enables persistence of representation to understand how we can probe this 

information using rs-fMRI. As mentioned above, it is unfortunately common to think of 

the brain as reactionary. As if it lays dormant until stimulated by the environment or as 

dualists would see it, stimulated by the spirit. This thinking has led to the unfortunate 

cultural belief that we only use a small percentage of our brain daily or that only specific 

neural regions are engaged during tasks. Nothing could be further from the truth. All 

regions of the brain are in constant activity and all regions of the brain are involved in all 

activity as they are parts of extended networks and establish a neural context.  

One possibility for this misunderstanding may come from contrasts in fMRI 

studies. In a typical study the BOLD activation is represented in a subtractive method. 

The individual engages in two different tasks and the significant difference in BOLD 

activation between these tasks results in a map representing the differences between two 

states. However, the common misunderstanding is that this difference represents the 

activations necessary for task completion; if neural engagement was limited to only these 

regions many of the tasks would not be completed. While differential activations in these 
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regions appears necessary for task differentiation, it is clearly not sufficient for task 

engagement.  

The entire network is necessary for each and every task, no regions are dormant in 

the brain until the right experience presents itself. Activity across the entire brain sets the 

context for every neural interaction. Furthermore, without activity connection between 

neurons disconnect and whither away, while new connections are always being made, 

their persistence is activity dependent (Hua, & Smith, 2004). Activity is intrinsic to the 

whole system and its elements. And, it is this constant activity that stores knowledge and 

which we shall probe. But, lets begin with a brief overview of how the brain is organized 

this will inform not only the theory but the methods to be applied. At the macroscopic 

level the brain has shown both remarkable preservation of functional specialization but 

also remarkable variability and plasticity. 

Modularity. We shall begin with an illustrative look at locationism from the 

findings in the major language associated regions of the bran. The 1860s was a 

revolutionary time in neuroscience especially in the advancement of ideas concerning 

localization of function. Language difficulties resulting from brain damage known as 

aphasias lead to remarkable discoveries. Paul Broca discovered that a patient with 

localized damage to the ventroposterior region of the frontal lobe had lost his ability to 

speak (Lazar, & Mohr, 2011). He then evaluated the autopsies of 12 other patients who 

were known to have lost similar language function and as predicted they suffered damage 

to the same region which he confirmed. In the following decades, following Broca’s 

work, Karl Wernickie appeared to have discovered a similar region responsible for speech 
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reception a well as semantic processing (Boller, 1978). While originally identified in the 

superior-posterior temporal lobe, the region historically moved from further superior 

regions all the way to the temporal pole; this reflected both the lack of clear definition, 

but also some methodological problems which were actually very informative (Mesulam, 

Thompson, Weintraub, & Rogalski, 2015; Mesulam, 2015, October). Shortly after 

Wernickie's discovery Lichtheim (1885) proposed one of the first extensive wiring 

diagrams of language regions of the brain using that wring diagram to predict that there 

would be similarly specialized areas as well as yet unidentified disorders of language. He 

proposed the idea that if connections between these regions in the white matter of the 

brain were broken specific types of aphasia could be accounted for because information 

could not move between these regions. 

This type of thinking lead to dominant locationist paradigm and the field of 

phrenology (Anderson, 2014), this approach was quickly dismissed but we still work 

within its thinking. Locationism has some truth but is incomplete (Pessoa, 2012).  

While the locationist perspective had been dominant it is not without problems. 

While Broca's area has been robust, the findings of this kind of research is often 

misinterpreted. We find, for example, that in a population Broca's area appears very 

localized, however when examining individuals, the distribution of function associated 

with Broca's area is more diffuse, involving both hemispheres and wider regions of the 

cortex (Lindenberg, Fangerau, & Seitz, 2007). However, the central hub for Broca's area 

remains consistent.  
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Wernickie's area has been another story altogether. Marsel Mesulam (2015) points 

out that damage to Wernickie's area proper results in a variety of inconsistent language 

deficits involving semantic and word comprehension. More consistently damage to the 

temporal pole and adjacent regions resulted in word loss. It was found that damage to 

Wernickie's area proper often involved damage of the underlying fiber tracts which 

connected regions of the temporal lobe with more anterior regions such as Broca's area. 

Sentence processing as a whole involves much more of the cortex and has not been 

sufficiently pinned down at this point; it likely involves the entire system as language is 

based on many levels of understanding (David, Lakoff, & Stickles, 2017; Lakoff, 2012).  

In any case, the lesion studies have shown that some very specific skills such as 

phoneme recognition and production can be shown to have localization in specific 

regions, but most language disorders involve multiple regions and general large swaths of 

cortex. The general ideas behind Lichtheim's models are robust, there appears to be a 

sequence of processing units that when connections are disrupted result in predictable 

shortcomings in language function.  

An interesting point to which we will return was Lichtheim's insight that perhaps 

the network had a hierarchical modular structure. At one level of analysis the nodes 

appear to work as coherent units, but if we zoom into the individual nodes in a network, 

they also have an internal modular structure where each module has a coherent function. 

This would not be confirmed for may decades. 

This classic findings of localization have been repeated with other functions and 

as mentioned in the previous chapter, the sensory cortices are very reliably reproduced 
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across subjects. Interestingly, these sensory cortices appear to respect topological 

boundaries consistent across individuals. The neocortical folding patterns in sensory areas 

are more consistently found across individuals and the folding patterns of association 

areas show greater variability (Van Essen, 2002; Van Essen, Drury, Joshi, & Miller, 

1998), even between identical twins (Botteron et al., 2008). The further we move from 

these primary sensory cortices, the more problems we have as association areas are more 

variable and act as hubs integrating many sensory and other association areas (Van Essen, 

Glasser, Dierker, Harwell, & Coalson, 2011). 

Regardless of this known short coming, there is great consistency in functional 

localization and folding patterns for some basic skills (Van Essen, Glasser, Dierker, 

Harwell, & Coalson, 2011). Thus is would be best in our approaches to understand 

function to attempt to align these folds regardless of brain size or other dimensions. The 

locationist hypothesis has features which are fairly robust. 

However, in Karl Lashley argued against the locationist perspective when he 

suggested that the amount of damage was more important to memory and complex 

cognitive skills than damage to a specific region (Lashley, 1929). He ablated regions of 

rat cortex and put them in situations where they had to run through a maze to get to food. 

He discovered that it was not the specific region which mattered but instead the extent of 

the damage. This approach became what is known a equipotentiality and mass action. 

Lashley proposed that with small localized damage, the brain was capable of 

compensating by utilizing cortex elsewhere as a mediator. For this to happen, learning 

must be distributed and it must also be degenerate, meaning there are multiple ways to 
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get at the same skill (Price, & Friston, 2002; Edelman, & Gally, 2001). This does not 

deny localization, but generalized learning requires an interaction of many network 

components. Cognition is a brain wide function not a regional function.  

Currently we accept models which are somewhere in between. Specific skills 

appear to be highly localized but also recruit extensive regions of the cortex. From both a 

learning perspective and an evolutionary perspective this makes sense. Of central interest 

in learning theory is the ability to generalize beyond the context of learning (Edelman, & 

Gally, 2001). If a single path or pattern was responsible for storing knowledge, then the 

brain could not handle variation in context. Similarly, if there is damage due to stroke or 

traumatic brain injury skills would be lost and the ability to recreate or preserve the skill 

would be lost. And we know that even losing the majority of one hemisphere can result in 

neural reorganizations of necessary skills (Immordino-Yang, 2007). We cannot simply 

just connect distal regions of the network if no connection exists. 2There must be some 

existing framework allowing for neural reuse and generalization. 

Network configuration. There is no doubt that the brain works in a network type 

fashion: there are regions of highly localized specialization which are interconnected. 

Implicit in this type of organization is a specific type of network connectivity. While at 

one time it was thought that the brain was organized in random network configurations, it 

has become clear that this is not the way it is organized. A random or orderly network 

organization would result in much larger brains with wasted material and energy 

                                                
2 This degeneration hypothesis must necessarily include external connections. Tools out 

in the world can facilitate connections between brain regions. 
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resources (Raichle & Gusnard, 2002); the amount of energy required to run such a 

network would likely cook the brain (Tomás, March 2017).  

Watts and Strogatz (1998) examined a promising network type that is found in 

many biological systems but also shows great benefit in many other network ranging 

from power-grid construction to disease proliferation models. Between completely 

random and completely organized is a system with very high levels of clustering. This 

type of network is known as a “small-world” network and it has the benefit of reducing 

material costs, increasing signal processing speed, synchronizability, and computational 

power. Small-world networks have the feature that they have a preference for a high 

number of short paths between near processing units and less paths between clusters. 

While early models were done with the connectome of the c-elegans, these patterns were 

also found in the mammalian brain (Bassett & Bullmore, 2006). It is easy to imagine how 

this might account for the modularity we see in the human brain.  

What is more is that this small-world network configuration in the brain appears 

to be fractal in nature. Just as Wernickie and Lichtheim suggested, the brain can be said 

to consist of interconnected modules and within those modules are modules also 

preferring short path lengths and if we increase the resolution we see the same pattern 

preserved (Bassett, Meyer-Lindenberg, Achard, Duke, & Bullmore, 2006). This gives us 

some interesting features to work with when conducting analysis. While fMRI has 

relatively high spatial resolution compared to other methodologies, it has relatively low 

spatial resolution when compared with neurons. Understanding that the structure of the 

network is hierarchically modular, fractal and small-world we can make some judgments 
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at this level of analysis that are not invalidated by scale. However, these judgments may 

be unique to scale.  

Thus, what we are left with is a neural structure with network organization in a 

small-world configuration. It has both local modularity and flexibility. Its fractal 

organization allows for analysis at multiple levels. Importantly, studies from aphasia have 

shown us that the networks have sequential features after processing is completed or 

partially completed in one module, connections long distance connections with other 

regions are essential for sequential, parallel and hierarchical processing of information.  

Locations of modules. While it is clear that some modularity is driven by genetic 

and developmental factors, much of neural organization is left to experience. Much of the 

flexibility in neural architecture is in the association cortices and our abnormally large 

neocortex, but as we discussed above with amputees and individuals with missing 

cortical tissue, the brain is incredibly flexible and allows for reorganization after injury.  

Why are some places localized? While we discussed above that the system itself 

favors small-world network organization and thus modularization, we need to ask why in 

general the system reliably organizes some modules into the same locations across 

subjects. 

Why are more complicated skills localized? Language works as a great example 

for localization of function. It is no coincidence that Broca's area is directly adjacent to 

the region of the motor strip associated with the articulators of speech, however this may 

not be the driving force of localization. A hypothesis put forth o evolutionary grounds is 

the neural reuse hypothesis (Anderson, 2010). Which basically says that evolutionarily 
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some regions are hardwired and new skills use those regions because those regions 

specialize in the necessary basic skills. For example, Broca’s area may have some basic 

use in hierarchical relationships such as the hierarchy of actions needed for grasping and 

action preparation and sequencing (Thoenissen, Ziles, & Toni 2002; Nishitani, 

Schurmann, Amunts, & Hari, 2005), action recognition (Decety et al. 1997). More 

evolutionarily recently the visual word form area reliably activated in reading letters and 

words utilized previous visual regions important for visualization of specific shape types 

and probabilistic learning now necessary for letter and character recognition (Dehaene, & 

Cohen, 2007). 

Why do they tend to fall on the convolutions of the brain? An interesting mystery 

has been to understand why modularity tends to follow the convolutions of the cortex. 

While no conclusive answer is present at the moment, Van Essen (1997) has proposed 

that part of the factor leading to convolutions is axonal tension. The cortex folds as it 

grows within the skull but if modularity has already begun to develop there will be 

greater tension on the short connections within a module. Regions of low axonal tension 

may be more likely to fold inward allowing their axons to wrap across the internal 

surface of the fold, while regions of high tension will tend to fold outward maintaining 

the close intra modular connections.  

Interestingly, the use of resting state data has further confirmed much of these 

findings. If we examine which regions are coactivated during resting state, we find that in 

fact modules themselves tend to activate was a whole we also find that these correlations 

also appear to respect the folding in the cortical surface which also respect white matter 



62 

tract anatomy following Van Essen’s approach to cortical folding (Van Den Heuvel, 

Mandl, Kahn, Pol, & Hilleke, 2009).  

Neural components. To understand these high level interconnectivities we need 

to dive into the cellular components that make up the system. As mentioned above, while 

the smallest components of the network show different qualitative properties than the 

emergent structure of the network, the features of these small components allow the 

particular emergent structure to exist.  

In an independent but parallel line of work to the modularity debate discoveries 

were benign made at the level of the neuron. In the 1870s the neuron doctrine was 

developing from staining techniques which allowed the detailed observations of neural 

structure. The inventor of this staining technique enabling the visualization of neural 

fibers believing them to be not only interconnected but continuous. This theory known as 

the reticular formation theory posited that the brain was one continuous net of these 

fibers.  

The work of Ramon y Cajal in his intricate drawing s of neural slices showed the 

web of connections seen in this network.3 It became a contentious matter as to whether 

these connections between neurons were continuous. The infamous debate between Golgi 

who believed the networks continuous and Cajal who believed they were separated by a 

synapse was not resolved until the 1950s when electron microscopes gave us the first 

detailed images of the synapse (De Carlos & Borrell, 2007). We now accept the synapse 

                                                
3 His illustrations became some of the most important and prophetic documents in early 

neuroscience as he observed details only reveled much later. This is also an amazing example 
where science and art meet as his observational studies were also beautiful. 
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as a physical structure at the junction of two neurons which binds neuronal connections 

making connections between neurons contiguous, but not continuous; this is known as 

the neural doctrine.  

In his study of neural morphology, Ramon y Cajal generated basic conservation 

laws which became the foundation of modern graph theory and neuroscience. He 

conjectured that the neuron wiring was based on the conservation of space, time and 

material. So, even at the level of the individual neuron it was theorized that networks 

were constrained into particular configurations preserved in small-world networks which 

had not yet been discovered. Both macro and microscopic analysis came to similar 

conclusions. The brain is a network of connections with preference for local modularity 

and few long distance interconnections, and processing is likely done locally and then 

spread to more extended parts of the network. 

Neocortical structure. While cellular organization across the brain is an intense 

and interesting area of study, the current methodology is limited to only that thin layer of 

cortical tissue on the outside of the brain. As it turns out, the cellular organization allows 

us to make specific interpretations concerning the propagation of signals in rs-fMRI.  

The cortex is broadly made up of seven layers of neurons (Shepherd, 2003). These 

neurons are organized perpendicular to the surface with their cell bodies in the cortex. 

The most common type of neuron here is the pyramidal neuron. It’s typical shape 

involves a small number of long dendrites reaching toward the outer surface of the cortex 

were it is branched into thousands of smaller arborations making local connections other 

dendrites both of the same and different cells. Below the cell body is the axon which 
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stretches into and makes up the white matter of the brain creating the tracts that connect 

modules and connect the cortex with the deep structures of the midbrain, not addressed in 

this study. The more superficial layers tend to be excitatory and they tend to be the layers 

that are represented in Ca+ imaging methods during rest. And these Ca+ images tend to 

correlate with patters of activity in rs-fMRI (Mao, Hamzei-Sichani, Aronov, Froemke, & 

Yuste, 2001). Thus while obviously not excluded, the inhibitory regions of the cortex are 

under represented in the cortical surface imaging in rs-fMRI (Raichle, 2015).  

Another interesting feature of these layers of neurons is that they tend to be 

organized in columns. The organization of the columns is highly variable, but in general 

they can show functional distinctiveness and may map directly onto the sensory apparatus 

in a topologically consistent way. One of the clearest examples of this is in whisker 

studies of mice on what is known as the barrel cortex (Lübke & Feldmeyer, 2007). Each 

whisker appears to have a specific column of cells in the cortex that is relatively 

independent and separated from its neighboring columns. A similar organization is seen 

in humans and is reflected in maps described earlier (tonotopic, somatic and motor body 

maps, visual maps to name a few) (Mountcastle, 1997). This columnar organization is 

also essential for processing different types of visual information such as edges and 

directional motion (Hubel & Wiesel, 1962). Again we notice the small world architecture 

as these column show mush higher local connectivity and limited long distance 

connectivity.  

Because we are focusing on signal propagation through the network of the brain, 

let’s take a moment and discuss the various ways signals are propagated through neural 
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units. The most prominent method known is the action potential. A signal is received 

from incoming dendrites; if the sum of these incoming signals exceeds a specific 

threshold when they meet at the axon hillock, the cell depolarizes sending a signal down 

the length of its axon stimulating the release of neurotransmitters at the terminal buttons 

of the dendrites which trigger similar reactions in cells downstream (Shepherd, 2003).  

As the signal travels down the axon it generates an electrical current on the 

external surface of the membrane (Taylor & Dudek, 1984). Excitatory synaptic input at 

the apical dendrites results in a negative polarity and the further down the axon a positive 

potential occurs. This creates an external DC current on the surface of the neuron. It is 

this current that EEG studies take advantage of. There are two important points to discuss 

here. First this electrical current allows for indirect ephaptic interactions and an action 

potential is not necessary for the current.  

A ephaptic connection results when adjacent neurons change their own current not 

in response to the signal propagating from the input apical dendrites but when their own 

environmental conditions are changed as a result of neighboring currents. These 

neighboring currents allow for a lower threshold for stimulation in neighboring cells that 

may more easily result in action potentials in parallel fibers. Secondly, this current is 

present even when threshold is not reached and the neuron does not fire. Small electrical 

changes in the dendrites travel down the dendrite before exiting the axon hillock. These 

excitatory post synaptic potentials (EPSPs) are not sufficient on their own to generate an 

action potential but their shared input can be summed either across space or time and 

result in slow waves of excitation that are measurable at the scalp (Shephard, 2003).  
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Thus, signal propagate through the cortex through action potentials, haptic 

connections and EPSPs all of which affect the current in the surrounding tissue as well as 

the excitability of the neurons making it easier for a neuron to overcome threshold. When 

threshold is reached at the axon hillock, an action potential is sent down the axon through 

the white matter to other cortical or subcortical regions. All of these processes require the 

use of chemical resources and thus they all affect the BOLD response in fMRI. It is also 

becoming clear that BOLD response in resting state is the result of regional cortical 

excitability and not only action potentials, a point we will return to shortly.  

There is some relevance of this in fMRI methodology to be discussed below. 

Adjacent cells tend to interact even when not connected, but the foundation of 

connections is from direct interaction. In general, activity tends to move through these 

elementary units in one direction.4 The interpretation of the data entails that we 

understand the anatomical orientation of these units. But before this discussion, lets 

examine briefly the role that the neuron has played and continues to play in one of the 

most influential models of learning in neurons.  

Hebb. Now that we have briefly introduced the neural structure of the brain, lets 

examine how this system can learn and store knowledge. The basic idea of learning is 

that there is a change in behavior or behavior potentiality as evidenced by a change in a 

stimulus-response relationship. As mentioned above, this must involve some persistent 

change in the knowledge structure and therefore the systems of neural tissues in the brain. 

                                                
4 This is not to say signals do not move in the opposite direction. Backpropagation of 

neural signals is common especially in the dendritic arborizations, as described above. 
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The neuron as a foundational element of learning was suggested even by those who first 

observed the cell structure. Ramon y Cajal pointed out that the structure of the neuron 

must be related to this capacity for the neuron to learn (Cajal, 1995). But the learning 

sciences in the Untied States took the path of behaviorism and the neurology of learning 

was seen as largely unimportant in the process. Both approaches were born from 

connectionist ideologies but each represents a different path from this perspective. 

Early connectionism acknowledged but denied the importance of neuronal 

connections. At its core, any connectionism argument deals with changing in the strength 

of connections as a result of experience. Edward Thorndike pushed the focus in the 

direction of the behavior: stimulus and response. The focus on learning still retained its 

source in neuroscience with ideas of conduction unit, “the neuron, neurons, synapse, 

synapses, part of a neuron, part of a synapse, parts of neurons or parts of synapses—

whatever makes up the path which is ready for conduction” (Thorndike, 1914, p. 54). But 

the specific mechanisms were unimportant. Instead general laws of behavior describing 

how repeated action, pleasurable action, and pleasurable results of action were likely to 

result in increased future potentialities for the behavior. The connection was between the 

“The connection of a certain act with a certain situation and resultant pleasure” became 

strengthened meaning the behavior was more likely to be repeated (Thorndike, 1914, p. 

8).  

This approach was then dissolved in the development of classic strict behaviorism 

of John Watson. The focus then squarely put the science of behaviorism in the elicitation 

and prediction of observable behaviors. Connection dealt with the stimulus and the 
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response to that stimulus. The connection was stronger when the behavior was more 

likely in the presence of the stimulus. B.F. Skinner continued this approach taking the 

connection now to the realm of the response and the reinforcer, but there was still an 

avoidance of the internal mechanisms of learning. Learning was a statistical process 

looking at the increased frequency of a behavior. In essence, behaviorist emphasized the 

strengthening of connections between some stimulus and some observable behavior 

response could over time to the strengthening of the connection between them; the 

intervening variable of the physiology was of little interest (Skinner, 1950). Donald 

Hebb, on the other hand brought that physiology central, specifically examining 

connectionism with the neurological intervening variable. 

In the 1940s Donald Hebb reintroduced the role neuronal interaction played in 

learning. He attempted to make the theoretical jump from the cellular to the behavioral 

suggesting ways in which the neuronal structure and function supported learning and 

knowledge storage. Hebb’s approach was still a form of connectionism, but instead of 

linking simple stimulus and response connection he described a connectionism between 

the smallest units: "The connections serve rather to establish autonomous central 

activities which then are the basis for further learning" (Hebb, 1949, p. XIX). It is this 

postulate of autonomous central activity which would stand as the basis for learning. 

Notice however that Hebb does not refer to static structure he refers to “activity.”  

Too often Hebb’s approaches are reduced to theories of single neurons learning, 

however, Hebb's approaches were squarely at the level of the neuronal population. Some 

may consider his approaches reductionistic, but his argument, while based on the 
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microscopic level respects system dynamics while maintaining the centrality of the 

neuron in the behavior of the system. He is thus satisfying out approach established by 

Bunge in emergent psychoneural monism while rejecting ontological reduction, we are 

still embracing epistemological reductionism; here Hebb attempted to integrate the 

microscopic to explain learning, not explain it away (Bunge, 1980).  

Neurophysiological postulate. At a very basic level Hebb’s approach has been 

paraphrased as “neurons that fire together wire together.” This basic postulate has, for 

their most part, withstood the test of time with only minor modifications (Sejnowski, 

1999). In the "neurophysiological postulate" the persistent representation is in the 

strength of the connection between neurophysiological units. Strength being defined as a 

physical change in the units such that the firing of one unit would likely be coincident 

with the firing of another. In Hebb’s words, “When an axon of cell A is near enough to 

excite cell B and repeatedly or persistently takes part in firing it, some growth process or 

metabolic change takes place in one or both cells such that A’s efficiency, as one of the 

cells firing B, is increased." (Hebb, 1949, p.62) Note that Hebb does not limit nor suggest 

that this approach to learning occurs at the level of the single cell, instead in Hebb’s 

words the process is assisting or "taking part in” the activation of another neuron. There 

was clear acknowledgement of the system wide interactions necessary for the formation 

of neural connections although the functions of the single cell were essential. Importantly, 

the post synaptic neuron was not simply caused to fire by a presynaptic neuron, but there 

was simultaneous and precisely timed activity in the post synaptic neuron that permitted 

this interaction.  
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This idea was based on the principle of coincident detention; two events which 

occurring at the same time would result in structural changes. But for this to happen, both 

the pre and post synaptic cell would need to be simultaneously depolarized. The signal 

did not move from cell A to B until repeated simultaneous stimulation of both A and B. 

This approach requires some mechanism whereby the post synaptic cell would be 

depolarized without a signal from cell A.  

The basic idea is that the system will separately activate each cell. When the post 

synaptic cell is depolarized from an independent incoming signal, this will trigger an 

action potential or a EPSP which will make it easier for even weak inputs from the 

presynaptic cell to influence the post synaptic cell. If this happens repeatedly, molecular 

changes take place at the synapse which make it easier for the cells to fire together for 

time periods from hours to days even if no additional action is taken (Bliss and 

Collingridge, 1993). This is known as long term potentiation (LTP). With continual 

reinforcement the connection is maintained.  

This process is made possible through back propagation, while the cell generally 

prefers to depolarize from dendrites to soma and the axons, there is no reason it cannot 

happen in the opposite direction and this appears to be a frequent process. Through this 

process, the depolarization (usually sub-threshold) moves toward the apical ends of the 

dendrites and in sense prepares them for incoming signal (Stuart, Spruston, & Hausser, 

1999; Hausser, Spruston, & Stuart, 2000). In other words backpropagation prepares the 

connections for learning. 
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Because we are assuming we are examining indicators of pyramidal neuron 

activity in the cortex, this back propagation is core to our understanding the signal. They 

serve to integrate the arborations of the dendrites in the cortex and therefore serve the 

function of the Hebbian synapse connecting cortical cells. This back propagation serves 

many other functions but the combination of back propagation and Long Term 

Potentiation are just two of the neuronal tools that support the foundations of the hebbian 

synapse in learning.  

Cell assembly. While the cell offers the necessary ingredients for learning, Hebb 

did not assume that complex learning was the result of individual cells, instead he 

focused his theory on populations of cells. The source of learning was more appropriately 

represented at the level of the neuronal assembly. These were tightly associated neurons 

"a diffuse structure comprising cells in the cortex and diencephalon ... capable of acting 

briefly as a closed system, delivering facilitation to other … systems" (Hebb, 1949, p. 

xviii). His suggestion was that over time the activity in a single assembly would build its 

excitation though recurrent connections which could then facilitate the connections 

between assemblies. Experience changed the connection weights between the elements of 

assemblies, but also changed the connection weights between assemblies. Similar to the 

other approaches we examined, these assemblies were fractal and small world in nature. 

Assemblies were highly interconnected regions with comparatively few connections 

between them. Many small assemblies connected to make larger assemblies. For Hebb, 

the assembly was the building block of knowledge structures and the basic perceptual 

element.  
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These neuronal assemblies acted as modules whereby recurrent activity would be 

propagated thorough tightly bound members continually strengthening their connections. 

An essential component of this idea was that these units became linked by their shared 

activity over time but were not activity dependent. Thus, at this point we are very clearly 

straying from S-R theories. Recurrent connections offer a type of connectionism which 

occurs in these temporary “closed systems” (Hebb, 1949). They are not dependent on 

external activity, but they represent the history of that portion of the network in a trace or 

memory. These assemblies are a type of persistent representation of knowledge.  

Phase sequence. Finally, the coordination of these assemblies resulted in a phase 

sequence which unfolded across time far exceeding the activity of the single neuron 

components. Recurrent connections could now account for activities unfolding across 

hundreds of milliseconds and across many assemblies lasting multiple seconds. He went 

as far as to suggest in the vein of emergent psychoneural monism that “A series of such 

events constitutes a ‘phase sequence’ the thought process" (Hebb, 1949, p. xviii). Hebb 

suggests that "the train of thought is a phase sequence" (p.100). Each perceptual event is 

a sequence of unfolding neurological events in which successive recurrent activity grows 

to include additional cell assemblies. The phase sequence was important in skill and 

thought processes, but it was not triggered by the environment. Instead in Hebb’s 

approach, the phase sequence was a slight restructuring of ongoing activity that would 

result in a temporary sequence allowing the organism’s behavior to adapt. Repeated 

activity in an assembly and between them would lead to the fascination of future 
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activities. The organism would, through experience, develop a system which was readied 

for skilled engagement with the environment. 

In other words, all knowledge and representation is dynamically unfolding over 

time, not a snapshot state of the network and not synchronized activity. Knowledge is a 

living and dynamically developing system. But the intermediate levels of the assembly 

alone did not contain thought in the larger conceptual sense; thought unfolds it does not 

exist as images. This approach recapitulated from the discussion above is often lost in 

explanations of the Hebbian synapse. Hebb did not assert that the association led to static 

representation and thus in this way he was not an associationist. The argument against 

associationist in memory formation has gained steam in recent years from the work of 

many including Charles Gallistel who asserted the now well documented approach that 

memory is not about associations but about conveying information forward into the 

indefinite future. This recurrent loop type of storage was further supported by the theories 

of Elman (1990) who furthered the argument that recurrent loops and activity can push 

information forward in time allowing the processing of sentences and narratives (J. 

Elman, classroom talk at UC Riverside, 2017). 

One clear example of the neural activity unfolding over time is in the perception 

of single words. A remarkable study examining written word perception unveiled reliable 

patterns of neural activity for single word reading stretching more than half a second 

(Woodhead et al., 2012; Dhond, Witzel, Dale, & Halgren, 2007). Demonstrating the 

interaction of bottom up and top down mental processes as we see early activation of 

occipital lobe followed by frontal lobe activity and temporal lobe activity which returns 
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the volley to the occipital region completing one interaction of a perceptual loop. This 

would be a clear example of the phase sequence described by Hebb. And applying 

models based on Hebb’s approach Elman suggests that with this recurrent activity 

pushing information forward through time we not have the ability to string words into 

sentences, to tell stores, and carry on conversations over our lifetimes.  

Temporal. Time was a crucial aspect of Hebb's approach. While coincident 

detection was important for building connections, the reciprocal connections that resulted 

from coincident connections would lead to building of activity over time within and then 

between assemblies. This allowed for the temporal aspect of thought and action. The 

combination of the assembly and the phase sequence demonstrate the unfolding of 

activity over time. Remembering that even perception is a skill "perception of a simple 

pattern is not a single lasting state, terminated by an external event, but a sequence of 

states or processes" (Hebb, 1949, p. 99). These processes were ongoing and reverberation 

never ceased. The perceptual process “does not arouse inactive tissue but feeds into an 

activity that is already going on" (Hebb, 1949, p. 121). Perception in this sense utilizes 

existing neural activity and does not generate activity from some base inactive state. This 

ongoing neural activity now well documented was intrinsic to the brain. The term " 

intrinsic organization of cortical activity is so called because it is opposed to the 

organization imposed on the cortex by sensory events" (Hebb, 1949, p. 121). It is the 

systems activity when that system acts as in a more closed situation.  

Anticipating the future methods to observe the actions of the resting brain as a 

relatively closed system, he suggested moments in sleep and infancy. We now know that 



75 

intrinsic activity is ongoing and highlighted in resting but wakeful state regardless of age. 

Intrinsic activity during sleep involves different processes because low threshold Ca+ 

bursting gives rise to synchronized activity during sleep (low threshold Ca+ bursting is a 

process that leads to rhythmic bursting of specific cells which are often ~100ms in length 

close to the time scale we see in resting state scans) (McCormick & Bal, 1997). It is 

perhaps more important to the current theory that this changes the system dynamics of the 

brain and when we sleep we are not in readied state for skilled engagement. While Hebb 

proposed ideas of observing the brain during a relatively closed experience, sleep or 

infancy were not appropriate places to explore this. It may be, that the resting state we 

observe during rs-fMRI is in fact this state Hebb described to understand ongoing neural 

dynamics emergent from intrinsic assembly and phase sequence activity. 

Problems. Hebb’s approach to learning has many problems but overall it has 

withstood the test of time (Sejnowski, 1999). An argument against thinking of system 

dynamics as the place for stored information is in recent studies of the memory engram 

and that it might actually be encoded at the level of the individual neuron (Johansson, 

Jirenhed, Rasmussen, Zucca, & Hesslow, 2014). One of the core processes to learning the 

learning of an expectation time between a stimulus and a reinforcer expectation. It 

appears that the neural system can train the spike timing of individual neurons and in this 

way the individual neural stores knowledge in the form of timing or even delayed 

response. By stimulating parallel fibers in the cerebellum at both the efferent and afferent 

ends, the timing of responses could change. The memory engram for spike timing was 

recorded in the molecular makeup of the synapse itself. Thus knowledge was represented 
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at not simply the neural level, but at the molecular level not only in the entire system but 

also isolated in the smallest molecular components of the system and directly dictate 

interspike interval a form of information storage. However, information about interspike 

interval stored at the synapse may lead to the timing of phase sequences making these 

approach not incompatible. It may lead to the extended temporal pattern of activity 

proposed above. At the time of writing this dissertation these questions are still very 

much alive and in their height of debate.  

While this continues to be of import and may revolutionize the way we think 

about the stage of knowledge, the general heuristics established by Hebb remain strong 

and establishing these molecular memory engrams is still a representation of wider 

system dynamics (Tomás, March 2017).  

Change is intrinsic and important for learning. The above approach also 

depends on not just a system with neurons interconnected, but neurons which are literally 

in constant motion permitting the possibility of connections. Neurons cannot just build 

connection when needed from nothing. The system must have a way to keep its hardware 

in flux allowing for learning to take advantage of new potential connections beyond just 

changes in synaptic strength. 

The ongoing changes in neural populations are an intrinsic feature of the brain. 

Often, the public over simplifies neural plasticity suggesting that the developing brain is 

plastic only in early years and the anatomy increasingly fixed over time. While it is true 

that the gross anatomy becomes somewhat entrenched, at the micro level, this network 

remains active and continually populated by new neurons. Neurogenesis, the process of 
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growing new neurons, persists through the life span. The older ideas that we grow all the 

neurons we will ever need was overturned in the 1960s by Altman (1962) who discovered 

that the hippocampus, an important memory region of the brain, continues to grow new 

neurons throughout the lifespan a feature previously thought to only exist in non-

mammalian species. Then axonal elongation throughout the life span (Lynch, Deadwyler, 

Cotman, 1973) . Neurogenesis increases in old age and injury as the brain adapts to 

changing conditions (Eriksson et al., 1996); we see regular neurogenesis in the 

hippocampus, a crucial memory region in the brain and along the surface of the fluid 

filled ventricles whereby the new neurons begin this migration to their cortical homes 

(Parent, J. Vexler, Gong, Derugin, & Ferriero, 2002). Neurogenesis appears likely to also 

increase in environments with increased complexity and enrichment such as those which 

offer additional cardiovascular exercise (Clemenson, Deng, & Gage, 2015). Damage or 

environmental conditions also appears to "awaken" neural progenitor cells allowing them 

to migrate to needed regions throughout life (Alunni, & Bally-Cuif, 2016). The simple 

fact that we can recover from stroke, that we can generate new connections to control 

implants, and that we can reorganize our sensory motor strip after amputation shows how 

flexible the system is, but these are longer term changes in the brain usually take hours, 

days, or years. Can morphology of the brain change on a smaller time scale important for 

learning? 

Changes in the brains hardware continue at a far smaller scale than the neuron. An 

important discovery while observed by Ramon y Cajal and painstakingly down into his 

diagrams has not been revisited until current methodologies allowed increased 
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magnification, tiny appendages on the surface of apical dendrites in the cortex are an 

important source of variation permitting learning (Yuste, 2010). These spines develop at 

a stochastic rate across the dendrites, although the average rate of development varies 

based on brain region and they are highly motile. The number of spines at any particular 

time are dependent on a number of factors but a single neuron can have its dendrites 

covered with more than 200,000 spines at any moment. These spines are very dynamic 

structures. Through the molecular actions of actin engines, the surface of dendritic 

membranes is extruded into the extracellular space with finger-like filopodia which sway 

in the neural matrix as flexible and temporary extensions. Without the necessary 

reinforcement, these fingers retract back and are reabsorbed into the neuron. However, if 

repeatedly stimulated by neural impulse as a result of back propagation or developed 

connections, the appendages are loaded with the cellular soup of molecules necessary to 

engage connection and maintain stability with neighbors. Once established, they are 

resistant to elimination and have been directly observed to sustain their connections on 

the scale of months and years (Knott, & Svoboda, 2005; Segal, 2005; Yang, Pan, & Gan, 

2009). The stability of these spines is either strengthened or weakened based on the cell’s 

firing rate and electro chemical activity along that section of cell. If a cell fires and 

another cell with an adjacent filopodia or dendrite fires, this sets off a sequence of 

molecular transformations that affect the actin and myosin (skeletal elements of cells) in 

the spine stabilizing or destabilizing the structure. In the absence of a signal from cell 

activity the cytoskeletal elements breakdown and the spine is reabsorbed. Based on 
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activity in that network the newly born appendage is either reabsorbed or structurally 

reinforced. 

It is interesting to note that behaviorism’s emphasis on variability in behavior as a 

core principle for learning and development is recapitulated at this microscopic level. 

Random variation with selection seems to be a law of all biological systems and behavior 

is just one more extension of this system.  

Because the growth of these spines is stochastic, the growth process is not driven 

by learning, only the maintenance is driven by learning. Thus this process of spine 

development helps to ensure variability allowing learning to take place along new routes. 

This natural selection of spines gives a persistent landscape of connections resulting from 

learned skill while maintaining ongoing variability necessary for further adaptation and 

engagement with the environment. 

The time frame of spine development is crucial. The spines appear to come and go 

on a minute by minute basis. They are sensitive to molecular changes that happen in the 

time span of seconds and slow hormonal changes. Additionally, spine development is 

associated with events known to affect the rate of behavioral learning such as hormonal 

changes (Woolley, & McEwen, 1993), diet (McCutcheon, 1998), exercise (Pysh, & 

Weiss, 1979), time of day (Maret, Faraguna, Nelson, Cirelli, & Tononi, 2011), and 

exposure to stress (Radley, 2005). It has been suggested that the spines themselves may 

serve as the source of short term and working memory (Goldman-Rakic, 1995) and when 

preserved through repeated activation and necessary molecular changes transform into 

strong long term memory connections (Yang, Pan, & Gan, 2009).  
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Intrinsic activity. In addition to the ongoing structural activity, there is patterned 

neural activity that is endogenous to the neural units themselves. This is one source of 

ongoing rhythmic dynamics in brain activity. When separated from the network these 

neurons and interneurons continue to pass electrical signal down their axons and through 

dendritic arborizations at a rate intrinsic to the neuron and defined by their morphology 

and chemical composition. In this way, even individual neurons separated from a network 

contain information in the classical sense. What is important is not whether the neuron is 

active or not during a task, but the changes in rate of activation during a task. It is also of 

note that when connected to a network this activity pushes through the network in 

feedback cycles maintaining strength of holistic brain activity over time even during rest 

and sleep.  

As mentioned above, Hebb proposed that endogenous activity is the default state 

of the brain. But where does this endogenous activity come from? How does the system 

maintain the dynamics of subsystems over time? How does it push forward stable 

representations of learned skills and existing knowledge? Structural connections must not 

only be made, but hey must be maintained. In addition to ongoing reciprocal activation 

reverberating through the neural system, the patterned activity at the level of the neuron 

may serve as just this tool necessary to give us ongoing stability in system dynamics. 

Neural songs. It appears that neurons have a song to sing. Importantly, this song 

is not a consistent rhythm and maintain a specific repetitive timing, but does have 

patterned behavior in the form of small sequences (or motifs) which reoccur. There are 

moments when the same song is repeated by different groups of neurons but then these 
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same groups may drift to different neural songs (Ikegaya,Aaron, Cossart, Aronov, Lampl, 

Ferster, & Yuste, 2004). The songs appear to move between assemblies in the sense that 

one assembly correlates highly with one group and one point and then with another group 

at another point. These patterned activities give a foundation for activity covariation 

storing information. 

One question would be whether these songs are the result of recurrent activity 

moving through the network or if they are intrinsic to some neurons. Using calcium 

imaging on slices of mouse neocortex Mao, Hamzei-Sichani, Aronov, Froemke, & Yuste 

(2001) noted that there was temporally precise spiking among neurons. After applying a 

glutamatergic blocker to the tissue, which disallowed excitatory signals to move between 

cells, a number of cells still continued to conduct action potentials. Interestingly they 

found that this “autonomous activity became more regular” in the absence of network 

connections. The authors also speculated that because the autonomous cells in the cortex 

had long distance connections directly to subcortical structures, they may play a role in 

synchronizing the system dynamics. In other words there are dynamics at the cell level 

that would never allow the system as a whole to reach equilibrium. 

This activity spreads across the cortex in waves of activity. What is more is that 

this endogenous activity in sensory areas is only mildly modulated during sensation. One 

may think that the visual world drives neural representations, however Fiser, Chiu, & 

Weliky (2004) found that the ongoing dynamics of visual cortex are only weakly 

modified from visual information. This suggests that perception is largely driven by the 

state of the brain prior to visual stimulation, that our changes in perception reflect very 
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small modulations of ongoing activity. These ideas give even more weight to the ideas 

proposed by Merleau-Ponty (1996) in that perception is a skill based on previous 

experience and endogenous activity. 

Further analysis of these spontaneous dynamics in isolated tissue samples has 

demonstrated there seem to be patterns of UP and DOWN states whereby the region of 

cortex tends to be more depolarized and more excitable during UP states. During these 

UP states the temporal dynamics appear to be predictable and depolarization spreads in a 

stereotyped pattern across the cortex (Harris, Csicsvari, Hirase, Dragoi, & Buzsaki, 2003; 

Luczak, Hackett, Kajikawa, & Laubach, 2004; Harris, 2005). These patterns in awake 

cortex greatly reflect similar patterns during sensory input, there is also pattern which is 

unrelated and yet recurrent and endemic (Luczak, Barthó,& Harris, 2009). And finally, 

these patterns appear to also be related to a gating of perceived sequences generating a 

prediction by putting some neural sequences into an UP state based on previous 

experience while simultaneously putting unrelated sequences into a DOWN state 

(Luczak, Barthó,& Harris, 2009; Buczak, Bartho, & Harris, 2013). In an analysis of 

visual cortex of cats Amos Arieli (1995; 1996) found that the spontaneous firing of cells 

in the visual cortex when there was no visual stimuli closely matched those when a visual 

stimuli was present (Kenet, Bibitchkov, Tsodyks, Grinvald, & Arieli, 2003). Together, 

these and a growing body of studies suggest that at the level of the individual neurons 

sequences of endogenous activity in the cortex reflect history of activations, make 

predictions, and have unique sequences all of which happen when no sensory input is 

present.  



83 

How do we explain this endogenous activity in the neurons? It appears that two 

main theories are likely to interact to give us a full explanation. The cells themselves are 

morphologically shaped in such a way that it affects this spike timing. Even the thickness 

of dendrites affects their physiological properties (Mason, & Larkman, 1990). Even if we 

just assume this activity is intrinsic to the neuron it is modified by changes in the system. 

Connections between it and other neurons result in structural changes which will affect 

the timing of the neuron, but also allow extended networks to take advantage of the 

timing of the neuron’s spike timing. 

Secondly, we can account for this endogenous activity as a trained set of previous 

experience at both the cell and the system level (although cell morphology is also a result 

of experience). As mentioned above the information stored at the level of the synapse as 

proposed by Gallistel (2017, March) allows for just such a situation. But, the recurrent 

activity model proposed by Hebb and Elman also give a place to store such information. 

In either method endogenous activity reflect persistent representations of knowledge in 

the brain reflecting the history of the organism.  

Timing. Before diving into fMRI methodology, a brief mention of timing is 

necessary. While the action potential takes only fractions of a second, shared patterns of 

activity have been measured to lag across time from seconds to minutes and perhaps 

longer. This is partially accounted for in Hebb’s theory through the idea of phase 

sequences and in Elman’s approach to recurrent activity. Fast communication between 

neurons in local neuronal assemblies process information before an output pattern is 

carried via long distance connections to other regions.  
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Something as simple as reading a word unfolds over several hundred 

milliseconds. Activity that moves across the cortex in more complex tasks such as word 

or image recognition can take as long as 700 ms (Woodhead et al., 2012; Dhond, Witzel, 

Dale, & Halgren, 2007) . But even more basic skills such as perceiving an object has 

variation in the sequence of processing (Pessoa, & Adolphs, 2010). This scale is at such a 

large time window that it is easily experienced.  

We can easily perceive the passage of time in neural processing when we might 

go for a jog or a walk and see what appears to be a snake out of the corner of our eyes 

only to notice a fraction of a second later that it was actually a twig. We notably take a 

second to react. These faster processing speeds allow for immediate reaction but slower 

processing speeds allow us to further process the information at a deeper semantic level. 

Perception appears to involve multiple waves of processing over a variety of time scales 

(Pessoa, & Adolphs, 2010).  

For the most part, it is these higher cortical processes which unfold over a longer 

period of time that are of interest when we are thinking about learned skills in the 

classical sense. This is not to deny that faster timescales are equally important in skill 

representation but they will not be observable in the current methodology. 

Slow cortical potential. But, what might we be observing rs-fMRI? There has 

also been a large history of evidence demonstrating that cycles of cortical excitability 

take place over long periods of time. The cellular dynamics described above enable the 

generation of what Birbaumer (1990) and Raichle (2009) call the slow cortical potential 

(SCP). As mentioned above, the activity of neurons results in a shift in electrical current 
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which can be recorded from the scalp using EEG. It has been known for some time that in 

the EEG wave there are slow negative fluctuations which exist on the time ranges greater 

than half a second and these appear to correlate with behaviors and cognitive skills. 

Since the early days of research using electroencephalogram, researchers have 

observed spontaneous slow wave fluctuations in the EEG signal. The EEG signal is the 

result of Local Filed Potentials (LFP)(Shephard, 2003). The orientation of neurons in the 

cortex is perpendicular to the surface. This means that as an action potential moves down 

the neuron it creates a net positive electrical field at the surface of the cortex and a net 

negative in the deeper layers. As mentioned above these electrical currents also result in 

ephaptic responses in neighboring neurons making them more likely to fire from lower 

incoming signals. Now, an important feature of these slow cortical potentials is that they 

are the result of net negatives recorded at the scalp ( known as sinks as opposed to 

sources of electro negativity). What could be the cause for these findings? 

As mentioned above we also discussed that backpropagation along the apical 

dendrites along with LTP reduced the threshold for possible signal transmission; the 

apical dendrites are prepared for learning. Likely populations of neurons are involved in 

this process resulting from a summation of Excitatory Post Synaptic Potentials (EPSP) 

resulting in a net negativity in the dendritic arborizations (Raichle, 2010). It is also likely 

that when the EPSPs are not due to summation they may also be due to extremely slow 

EPSPs ranging from multiple seconds to minutes. Sustained input to the neurons with 

apical dendrites in the superficial layers lead to the summations and subsequent 
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depolarization of the apical dendrites and entrainment of local populations giving rather 

large electronegative responses recorded in the LFP.  

A number of theories have examined the possible role of the SCP. Birbaumer et al. 

(1990) theorizes that these slow wave fluctuations may actually act as a filter to help deal 

with central problems in Hebb's model of neural assembly entrainment. The reciprocal 

excitation in neuronal assemblies described by Hebb, while amplifying the neural signal, 

if left unchecked would lead to uncontrolled excitability and seizures , but if these are 

associated with fluctuations in the excitability of other cell assemblies this would break 

the uncontrolled excitation by stochastically breaking up the signals from neuronal 

assemblies. This would allow for the repetition of motifs and not result in a constant 

increase in activity in recurrent networks. 

But, more important to current theoretical question is an examination of the SCPs 

relationship to cognitive processes. In task paradigms, SCPs tend to be associated with 

the time period between a primary and secondary stimulus. In other words one stimulus 

acts to orient the organism to pay attention for a change in some other stimulus.  

A real life example of this is offered by Raichle (2009): stopping your car at a red 

light results in motor preparation for the behaviors associated with a green light. 

However, these slow cortical potentials also have spontaneous activity. 

Those spontaneous activity act to prepare the organism for environmental 

engagement. This has typically been shown in experiments where stimuli are occur on 

timing with the naturally emerging UP and DOWN states. The results are then compared. 

It has been found that when there is a significant negative related event in an UP state, 
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subjects complete the task significantly faster and with less errors. Additionally this is 

associated tightly with topographic locations on the cortex which have been previously 

associated with the task of interest. Thus, these spontaneous fluctuations may create 

preparatory states for engagement with different stimuli.  

Further supporting this, Walter and colleagues (1964) associated the cortical 

negativity after a priming event with a second stimuli. He termed this the Contingent 

negative variation and this is a well-documented effect in priming. Later, this CNV as it is 

associated with motor activities was located BA 6, the premotor cortex, through an MEG 

study. These waves also appear to be modality specific and Gillard (1977) identified a 

wave associated with auditory stimulus while a separate wave was associated with an 

orienting wave otherwise known as an expectancy wave or readiness potential (Loveless 

Sanford, 1973).  

Summary of anatomy section. We began our discussion with an approach to 

interpreting neural activity as representative of mind and stored knowledge. Once we 

accepted emergent psychoneural monism as a way to interpret the mind-brain interaction, 

we sought to examine the neural systems which enables the learning and storage of 

persistent representations of knowledge as activity. 

We have seen that the brain has a modular structure that respects small-world 

architecture at the macro and microscopic scales. This small world architecture leads to 

the natural emergence of modules which allow for local computations and specialization. 

Evolutionarily older sensory regions of the brain show very little variation between 

individuals and this shared representation constrains the possibilities for organization of 
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learned skills and evolutionarily more recent modules. Modules are relatively fixed 

between individuals due to a combination of evolutionary processes such as neural reuse 

and physical axonal tensions in the brain. These locations are fixed through a 

bidirectional and cocausal interaction of genetics with environment. 

We then examined how Donald Hebb laid a foundation for a neural model of 

learning where experience could change the organization of neurons in the cortex leading 

to cell assemblies and larger phase sequences which would correlate with skill sequences 

and knowledge.  

Finally, we examined how the neural architecture itself not only stores 

information in physical connections, but that these physical connections allow patterned 

information transfer across the cortex in the form of action potentials, EPSPs and 

ephaptic connections. The electrical flow of information through the cortex is also not 

tied only to experience but has strong endogenous activity. This endogenous activity 

changes minimally with experience but it also persists outside the actual experience. The 

fMRI signal correlates well with LFP and therefore EPSP activity in dendritic 

arborizations. This activity may act to keep the organism prepared for environmental 

interaction. It appears likely that perception and therefore learning involves minute 

adjustments of this endogenous activity.  

We have examined this activity at the level of the neuronal assembly but also as 

small as spines on dendritic arborizations in the cortex. If the system is so robust and 

resistant to change, how can it adjust to environmental conditions and is it possible for 

these microscopic changes to change the dynamics of the entire system to adapt to the 
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environment. To address this potential problem we will briefly turn to study of system 

dynamics.  

System dynamics. While we shall not dive deep into system dynamics it offers a 

way to pull back and interpret large scale changes in complicated systems.  

As we have mentioned throughout, the brain is in constant state of activity. It is 

made up of millions of small components which interact to generate system wide trends 

and eddies which may last second, minutes, or even days. There is no doubt that the brain 

is a complex system and it is therefore appropriate to think about it in terms of complex 

system dynamics. 

The study of complex systems involves the study of open systems with many 

interacting parts resulting in nonlinear dynamics and emergent system wide properties 

(Strogatz, 2014). Complex systems although built from their parts are not reducible to 

them. The patterns of activity are not in any one element, but in the dynamic ongoing 

change generated by component interaction. These systems also show the ability to learn 

from experience. Finally, complex systems have a specific property of sensitivity to 

initial conditions observable in the brain in the context of learning and the primacy of 

early development. Overall there is no doubt that the brain is just such a system.  

What is important to us is that complex systems have a feature known as 

attractors (Lorenz,1969). These are states which the system will return to after 

perturbations. The stochastic nature of some neural dynamics and bombardment from 

external inputs will likely perturb the system configuration however the system will 

return to its original more stable state after these perturbations. This changes our concepts 
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from the environment driving behavior to the environment “nudging” behavior (Thaler & 

Sustain, 2008). This feature also helps the system recover from injury as it exhibits 

degeneracy. Complex systems also have the feature that multiple attractors are likely 

throughout the system and the dynamics likely roll between a variety of stable states.  

In the current model these stable states represent a neural readiness for 

engagement with the world in the form of patterned negative potential in dendritic 

arborizations on the neocortex. This neural readiness is in the form of persistent 

knowledge structures representing the history and development of the organism. Larger 

and more apparent patterns likely reflect less specific knowledge and as we zoom into the 

fractal structure of the brain higher resolution likely reflect more specific knowledge.  

The current effort is to examine these attractor states as representative of 

persistent knowledge and readiness to engage with the world. It is in the dynamics of the 

complex system that I am assuming these persistent knowledge representations exist. And 

these dynamics exhibit multiple attractor states which are marginally stable but 

observable (Sporns, 2010, p. 1631).  

To capture the features of this dynamic system we shall be using fMRI and a 

methodology which purports to capture the temporal and topographic dynamics of the 

brain when it is at rest, specifically by examining its lag structure. 

We shall now turn to a detailed examination of fMRI, rs-fMRI and lag structure 

analysis which will prepare the methods which will be examined in detail during Part 2. 
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fMRI analysis 

First let’s examine why we are choosing to use fMRI to capture this persistent 

representation of knowledge in system dynamics. As described in detail above the 

cellular dynamics and learning mechanism present in the cortex lead to system behavior 

which is observable in SCPs. These slow cortical potentials are strongly associated with 

the fMRI signal but there are additional reasons for examining this data with fMRI.  

Most obviously, fMRI is noninvasive and allows for comparatively high 

resolution data without the need to open the skull. As mentioned above, however, the 

typical resolution is still limited to thousands of neurons. The processing methods in Part 

2 attempts to improve this resolution using surface based methods. Sadly, however, the 

temporal resolution is limited typical temporal resolution is every 1 - 3 seconds. While 

the current study uses images taken every two seconds due to the longitudinal nature of 

the larger study in which this is seated, most standard machines in research now allow .8 

second images getting closer to the range we are interested in. Again, we attempt to 

overcome this method using interpolation techniques. Finally, resting state data has 

become a standard procedure in fMRI collection techniques and is fairly easily collected 

for a variety of developmental and clinical populations. The establishment of online data 

bases in recent years allow for the analysis of large data sets with minimal collection 

costs (Van Essen, 2013). In future work the procedures applied here with a small 

population of 51 participants will be extended to data bases holding scans for thousands 

of participants and the methods are easily scalable. Finally, the images collected from 

fMRI are fairly easy for the general population to interpret with minimal training. This 
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was of central concern to me as I work with educators who have a general interest in how 

the brain works and with minimal training they can begin to interpret findings.  

To be clear, fMRI does NOT record neuronal activity. Functional Magnetic 

Resonance Imaging (fMRI) indirectly measures metabolic activity in brain regions to 

infer changes in neuronal activity in that region. This inference originates in the principle 

of functional hyperemia, in which increases in neural activity are accompanied by 

regional decreases in blood oxygenation and nutrients and a subsequent increase in blood 

flow (Roy & Sherrington, 1890). While the specific mechanisms of this process are still 

being debated (Drake & Iadecola, 2007; Raichle, 2015a; Raichle & Gusnard, 2002), there 

is no question that a strong coupling between these processes exist (P. T. Fox & Raichle, 

1986). The fMRI scanner takes advantage of this knowledge by indirectly measuring the 

regional amount of deoxygenated hemoglobin in the blood. Basically, the fMRI scanner 

releases a magnetic gradient pulse that briefly aligns the spin of hydrogen atoms in the 

tissues. When the pulse releases, the atoms relax to their previous aligning with the 

scanner’s static magnetic field and in the process affect radio waves that the scanner 

equipment converts into regional value changes (Lauterbur, 1973; Mansfield & 

Maudsley, 1976). While oxygenated hemoglobin does not disrupt this signal, 

deoxygenated hemoglobin becomes paramagnetic and each deoxygenated hemoglobin 

acts as a tiny magnet affecting the spin of hydrogen atoms in the surrounding tissue and 

disrupting the signal; this measurement is called the blood oxygen level dependence 

signal (BOLD signal) (Ogawa, Lee, Kay, & Tank, 1990). Thus, the differing amount of 

deoxygenated hemoglobin disrupt the signal to varying degrees and we can get a proxy of 
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changes in percentage of deoxygenated hemoglobin by measuring this signal disruption. 

As the amount of deoxygenated hemoglobin in a region increases, the BOLD signal 

decreases. As increased blood flow to a region displaces the deoxygenated hemoglobin 

with oxygenated hemoglobin, the deoxygenated hemoglobin in that region decreases and 

BOLD signal increases; more oxygen increases the signal and less oxygen decreases the 

signal.  

This principle of hyperemia then states that regional differences in BOLD signal 

correlate with neural activity in those regions: relative increases in BOLD signal is 

indicative of relative increases in neural activity. What drives the use of this methodology 

in the current analysis of slow changes in cortical activity is not action potentials. It so 

happens that the BOLD signal correlates better with local field potentials than spiking 

output of a region and is therefore inclusive of sub-threshold input and other changes to 

local electrical potentials (Logothetis, Pauls, Augath, & Trinath, 2001). As mentioned 

above, these SCPs are likely the result of entrained learned sequences which represent the 

cortical dendritic organization and connectivity. 

Standard functional contrasts are only part of the picture. In a traditional 

event-related fMRI study a simple task, such as moving the right index finger, is done by 

the participant and images of BOLD activity are taken every couple seconds. The three 

dimensional brain images completed during these tasks are then subtracted from images 

taken during some control condition such as rest or more appropriately a control task 

such as left finger tapping. In essence, the average value for each voxel (a 3 dimensional 

volume element usually around a cubic 2 mm) during one task is subtracted from the 
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average value of a corresponding voxel during another task. The difference between these 

images should reveal the functional localization of the neural activity associated with the 

task. As Raichle (2015) states, this leads to a view of the brain as “reflexive, primarily 

driven by the momentary demands of the environment” (p. 2). In other words, the brain is 

too often thought of as reacting to environmental stimuli as opposed to being nudged by 

the environment into different functional configurations. But, the regional increase in 

blood flow rarely exceed 5% of resting state blood flow (Raichle & Mintun, 2006). In 

fact, although the brain typically weighs 2% of our body weight but accounts for 20% of 

the energy our body consumes, cognitive effort does not increase heart rate, respiration 

rate, or blood pressure even when engaged for hours on end, unlike the effects of most 

physical activities (Sokoloff, Mangold, Wechsler, Kennedy, & Kety, 1955). This massive 

energy consumption by the brain that has not been attributed to tasks is referred to by 

Raichle and his team as the brain’s “Dark Energy” (Raichle, 2010; 2015). This is a rather 

fitting allusion to the dark energy of the universe, which while accounting for most of the 

universe’s mass and structure is unseen. Even though this insight is not new, the vast 

majority of studies have been event-based. 

The brain’s “dark energy” patterns. In a seminal study to understand if this 

“dark energy” has structure, Biswal (1995) asked his subjects to “refrain from any 

cognitive, language, or motor tasks as much as possible” while BOLD signal recordings 

were taken for 2-8 minutes (Biswal & Yetkin, 1995, p. 537). A subsequent second task 

was 20s bilateral finger tapping alternated with 20s rest. As expected, bilateral motor 

cortex was activated during the finger tapping. But, when no action was being performed, 
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these regions also showed a great degree of temporal correlation (>.35) at low frequency 

oscillations (<.1 Hz) even after removing other physiological components. The identified 

regions contrasted to other work on imagined movement and they were highly correlated 

between individuals indicating it was not likely from imagining the finger tapping task. 

This correlated resting state activity between regions was suggested to be reflective of 

intrinsic connectivity between cortical regions (Biswal, Kylen, & Hyde, 1997). These 

correlations are thought to result from functional connections between large scale 

functional assemblies of neurons which may be dynamically reorganized while 

performing a task (Bressler, 1995). Correlated signals between motor regions occurred 

along with the task timing, but importantly, the signals in overlapping regions were also 

correlated at low oscillatory frequency during rest.  

A strong limitation of Biswal (1995), however, was that this particular study 

examined only a narrow slice of motor cortex. Refining the methods Xiong, Parsons, 

Gao, & Fox (1999) examined the entire brain for voxels which correlated with a region of 

interest. This allowed them to determine not only connectivity between two regions but 

also which areas coactivated with the region of interest (once again, a region of motor 

cortex). They were able to identify a high degree of qualitative overlap between the 

regions they identified and those identified by previous studies examining anatomical 

analysis of connectivity. They also determined that whether or not the task-induced 

activation occurred before the resting state activation, and despite between group 

variations on expectancy for upcoming task, resting state networks were not significantly 

different. They make the assumption that this connectivity is the result of “spontaneous 
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firing … followed by regional cerebral blood flow … [and] specific brain area affects 

remotely located neurons … through efferent output” (p. 151). 

Defining connectivity. These seminal studies began an era of research on resting-

state activation patterns which is characterized by assumptions about connectivity 

rejected in the coactivated cortical regions. Because the term “connectivity” can be and is 

frequently misunderstood, it must be explicitly addressed here.  

Three types of connectivity measures are typically used in the literature: 

functional, structural, and effective connectivity. The first of these will be the basis of 

addressing the research questions of the current study but it is important to define this 

type of connectivity in relation to the other two types of connectivity restricting any 

interpretations of the findings. While the term “functional connectivity” is sometimes 

mercurial in the literature, the community has settled on a definition offered by Karl 

Friston in 1993. Functional connectivity is defined as “temporal correlations between 

spatially remote neurophysiological events” (Friston et al., 1994, p. 58). (Of course 

correlations are only standardized covariance and so this definition works equally well 

with covariance which will be relevant below). It does “not provide any direct insight 

into how these correlations are mediated” (Friston et al., 1994, p. 58). Functional 

connectivity can be described as covariance or correlation between voxels, averaged 

regions of interest, between regionally dispersed systems, and it may be a first order 

correlation within a subject over time or averaged across subjects. Functional 

connectivity is simply operationalization of correlations. However, functional 

connectivity is used to make inferences. The general inference is that regions which are 
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more correlated are more integrated. It is possible to think of correlated activation as 

brain states.  

While functional connectivity has no assumption of causality, “effective 

connectivity” implies causation, it relies on “some model of influence one neuronal 

system exerts over another” (Friston et al., 1994, p. 68). It is important to note that the 

present exploration does not make such claims. As we will see below, the models 

suggested do examine a sequence of events, but this sequence of events is not considered 

causal in nature, we will only be exploring the degree of integration between spatially 

and temporally distinct regions of BOLD activation.  

Secondly, functional connectivity does not imply anatomical connectivity. 

Anatomical connectivity often implies direct connection between regions. Two regions 

can be functionally connected which could mean that they have direct connections; 

conversely, this could also imply that these two regions are anatomically connected to a 

third region which synchronizes their activity, or yet another possibility is that each 

regional subsystem is time locked to external events which result in their coactivation. Of 

course it is likely that as we follow connections through neural networks ad infinitum we 

will most likely find disparate connections between regions, but these long distance 

connections are often too weak to consider connected in any practical sense, bit they are 

likely not meaningless (Sporns & Betzel, 2016).  

I want to make clear that functional connectivity in the study in Part 2 addresses 

temporal ordering, but does not imply causality. We are only examining the neocortical 

surface but it is the subcortical structures along with the fiber tracts which act as 
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mediators and allow for casual interpretation. No causal activity is therefore applied in 

this study. 

All this being said, functional connectivity has often coincided with both effective 

and anatomical connectivity. It is to these examples that I will now turn. 

Resting state networks. As has been clearly established by now, when a subject 

is at rest (not engaging in any external tasks) the brain does not simply shut down, it is 

dynamic and active. Various regions show connectivity and if we use independent 

component analysis on activations across time for various regions, networks of 

functionally connected regions emerge. One particular network has stood out and been 

extensively researched. It was found that when a subject is at rest, a particular network of 

brain regions tends to be up-regulated while other networks show a decrease in 

activation. This network has been dubbed the default mode network (DMN). When 

describing network connectivity a number of measures can be used which essentially boil 

down to two basic measures: how interconnected elements internal to the network are, 

and how much the network activation is differentiated from the components of other 

networks (Bullmore & Sporns, 2009; Friston, Kahan, Razi, Stephan, & Sporns, 2014; 

Rubinov & Sporns, 2010; Sporns, 2011). Intrinsic network connectivity for the DMN has 

been related to mind-wandering (K. C. R. Fox, Spreng, Ellamil, Andrews-Hanna, & 

Christoff, 2015), meditation (Brewer, Worhunsky, & Gray, 2011; Tang, Hölzel, & Posner, 

2015), creativity (Beaty, Benedek, Kaufman, & Silvia, 2015; Gotlieb, Jahner, Immordino-

Yang, & Kaufman, 2016), autobiographical thinking (Spreng & Grady, 2010; Utevsky, 
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Smith, & Huettel, 2014), distractibility in ADHD (Fassbender, Zhang, Buzy, & Cortes, 

2009), and working memory (Piccoli et al., 2015) among many others.  

However, the DMN is not the only connectivity that is apparent during the resting 

state. One common approach to understanding this functional connectivity has been the 

use of Independent Component Analysis. This method is similar to principal component 

analysis, but because the distribution of signals in the brain is non Gaussian, ICA is the 

appropriate method (Beckmann & DeLuca, 2005). When conducting ICA the number of 

components extracted is determined by the researcher and some of these components 

appear to correlate with task based networks involving visual areas or sensorimotor 

networks (Beckmann & DeLuca, 2005). By increasing the number of components “sub 

network connectivity” can be differentiated. Extending the work of Biswal who showed 

correlations during active engagement in a task are maintained during resting state, Smith 

et al. (2009) conducted an image-based activation network analysis of thousands of 

activation maps from the BrainMap database. They then took these results and compared 

them to the ICA resting state results of 36 participants. By first partitioning the variance 

into 20 components they were able to show that the activation maps from functional 

studies grouped into the 20 components in a way that made theoretical sense. When 

diving further into the data with a 70 component model, they were able to show 

increasing parcellation of the functional data and this increased parcellation corresponded 

in an interpretable way to the functional data. However, those attributed to noise also 

were broken into the various components of noise such as movement direction, 

cardiovascular activity, and external noise form the machine. Task based activation 
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networks mirrored resting state networks and reflected a hierarchical arrangement of ICA 

analyses. They conclude that “the full repertoire of functional networks utilized by the 

brain in action is continuously and dynamically ‘active’ even when at ‘rest’” (S. M. Smith 

et al., 2009, p. 13040). This resting activity has been termed “resting state networks” 

although it must be remembered that these are functional networks and not neural 

networks proper. 

Functional networks are not neural assemblies. Even though it has been 

repeatedly discussed in the literature, too often functional connectivity is seen as actual 

neural connectivity in the physical sense. As mentioned above, functional connectivity 

does not imply this (Friston, 2011). However, the general idea is based n the idea of 

recurrent connections between neurons in the Hebbian sense (Park & Friston, 2013). It is 

interesting to note that even though these networks have been referred to as the 

“alphabet” or “repertoire” of brain states (Sporns, 2010), it is clear that they do not 

operate as assemblies in a phase sequence during functional interaction with the world 

(Park & Friston, 2013). 

Furthermore, not all connections between brain regions are recurrent, so this 

classical measure using correlation will necessarily not capture strong connections that 

are not recurrent (Douglas, & Martin, 2007). But, even those recurrent connections are 

not time locked. The entire idea of recurrent networks is they can provide feedback to the 

system and adjust weights across time (Edelman, & Gally, 2001; Hebb, 1949). If all 

connections were recurrent and synchronous then there would be an unlimited increase in 

activity through feedforward and feedback excitability resulting in seizure (Traub, & 
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Wong, 1982). Clearly, synchronized activity cannot be only measure of connectivity. If 

fact, as we shall discuss below appearance of synchronized activity may result in both 

false positives and false negatives in regard to connectivity. As I have discussed above, 

neural activity, even during resting state is a sequence of activity across the cortex and 

patterns propagate across the cortex in a similar fashion to what Hebb described as a 

phase sequence, they do not shift on and off. 

Physiological noise in resting-state networks. One criticism of resting state 

networks that has been leveled is that these low frequency fluctuations actually reflect 

cardio vascular information and not neural dynamics. It is clear that some of the temporal 

dynamics of this signal are clearly a result of this (Beckmann & DeLuca, 2005; Di 

Martino et al., 2008). However, it has been clear this can only account for some of the 

correlated signal variance and physiological noise can be separated as an independent 

component. The concern is that respiratory and cardiovascular cycles are aliased on the 

fMRI signal when the TR is longer (i.e., 2-3 seconds) giving the illusion that neural 

activity in different regions is synchronized. Utilizing Independent Component Analysis 

Beckman (2005) conducted fMRI scans of the motor cortex at both a low of TR 120 ms 

and a TR of 3 seconds. Sampling at the higher rate allows for the decomposition of the 

signal into a larger range of frequencies and reduces aliasing. Being that resting state 

fluctuations are identified as lower than .1 Hz and cardiovascular fluctuations are usually 

around .3-1 Hz at larger TR aliasing is possible. Using the smaller TR, Beckman (2005) 

was able to show that low frequency fluctuations observed oil rs-fMRI are clearly distinct 

from respiration and cardiovascular activity.  
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In addition to this important finding, Beckman (2005) also was able to identify 8 

prominent networks in the low frequency signal fluctuations which appeared to have 

interpretable functional significance. Importantly, this method was able to separate 

signals with spatial overlap.  

Some studies have interpreted these networks to be the result of mind wandering 

(Mason et al., 2007), however the dynamics of resting state networks appears to endure 

during sleep and show increased fluctuations at these low frequencies of interest (<.05) 

(Fukunaga et al., 2006) and in monkeys when they are under anesthesia (Vincent, Patel, 

Fox, Snyder, & Baker, 2007b). This further highlights the idea that these resting state 

network dynamics endure and represent relatively stable neural configurations within and 

across individuals. 

Does mind wandering drive resting state findings? Now we return to concepts 

mentioned in the first section of the text. Remember that at minimum neural activity is 

cocausal and bidirectional. The mind and biology are simultaneously creating each other 

and if this is the case, then the discussion of causal direction is mute because there is not 

one. However, we are taking a more extreme view in this paper, that of emergent 

psychoneural monism. In this case the actions of the mind represent the system 

configuration in the brain. In other words mind wandering is a part of the system of mind 

at that moment. Secondly, the mind wandering phenomena is but a small fraction of the 

neural activity at that time. It reflects where system dynamics are made conscious. While 

all neural events during the resting state reflect mind wandering, if we ask participants 

what they mind wander about after the resting state, it only reveals the fraction of 
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dynamic knowledge at that moment that reflects not only conscious but also remembered 

experiences. Mind wandering reflect only a set of the knowledge system unfolding during 

resting state.  

As a final point, we may experience different degrees of control over mind 

wandering while in the scanner, but that does not tell us anything more than our mind 

wandering experience included feelings of perceived control.  

Lag Structure 

Standard resting-state network analysis examines the time locked correlations 

(zero-lagged) in activation between neural regions, however, one problem emerges from 

this research that is seldom addressed. Knowledge is not a brain state, but a process 

which spans time (Marinkovic, Dhond, Dale, Glessner, & Carr, 2003); thus, some of 

these resting-state studies may be missing measures of connectivity if they only look at 

coactivation patterns occurring at zero-lag. Let’s return to figure 3: notice that in a 

standard zero-lagged analysis region C was not interpreted as functionally connected to 

either region A or B. However, if we allow for a time lagged analysis and shift the time 

series for region C back by 3 seconds, regions A, B, ad C are now perfectly correlated in 

activity. A zero-lagged analysis does not allow us to see this relationship. It should be 

noted that our toy-model is extremely oversimplified. In actual neural data the signals 

contain considerably more noise and will never reach this level of correlation. There are 

also additional restrictions on time shifts like that above.  

While it may be that at one level of analysis zero-lagged networks represent a true 

emergent property representing one type on neural interaction, it may be more likely that 
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cognitive tasks which have a clear temporal sequence may be better illustrated if we 

could examine network connectivity that unfolds across time especially on larger 

timescales such as those found in reading. Emerging methodologies have begun to 

examine this issue by searching for maximal coactivations between brain regions across 

time (Chang & Glover, 2010; Mitra, Snyder, & Blazey, 2015a; Mitra, Snyder, & Hacker, 

2014; Schneider, Havenith, & Nikolić, 2006a). These studies have found highly reliable 

patterns in these lagged analysis, but the zero-lagged networks appear to not be a 

component of the these lagged patterns. Zero-lagged networks seem to be a predictable 

emergent structure from lagged network interactions, but are not found to be a component 

of lagged network dynamics (Mitra, Snyder, & Blazey, 2015a). In other words, we cannot 

simply seek zero-lagged structures and look at their sequential interaction; zero-lagged 

networks emerge from the interaction of lagged structures.  

These lag structures appear to correlate with differences in behavioral variables. 

In 2015 Mitra and colleagues used the lagged network analysis methodology to examine 

group differences between individuals with autism and those with typically development 

(Mitra, Snyder, & Constantino, 2015b). This study followed the procedures outlined in 

Mitra (2014), but used a significantly smaller sample size of including 2 groups of 23 

individuals. Using this smaller groups size, group differences were still robust.  

While Mitra et al’s (2014; 2015a) analyses included whole brain coverage, these 

methods are not limited to whole brain analysis as they were originally developed for 

understanding the order of activation between neurons within incomplete networks 

(Nikolić & Nikolić, 2007; Schneider, Havenith, & Nikolić, 2006b). And in actuality 
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observation of any complex dynamic system will result in observing only a subset of the 

network. The brain itself is a subset of the body and the body a subset of the 

environmental interactions (Beer, 2000). Additionally, as mentioned above, the brain is 

fractal in its organization. Thus, these methods could theoretically be imposed on regions 

or selections of the brain. 

Lag structure analysis. Recently Mitra, Snyder, Hacker, and Raichle (2014) 

addressed a major problem with resting state connectivity studies. An assumption behind 

resting state connectivity studies has been that neural region activity in resting state 

networks is exactly synchronous. A number of human and animal studies have 

demonstrated that this is not necessarily the case (Majeed & Magnuson, 2009). It is 

probable that activation in one region lags temporally behind but is synchronous to 

another region when we correct for the temporal lag. In other words, while a standard 

resting state analysis examines the correlation across all approximately 210 images 

during a 7-minute period, there may actually be a temporal shift between regions that this 

type of analysis would not capture.  

Mitra et al. (2014) attempted to deal with this theoretical problem by obtaining 

resting state scans of 692 participants. The participants were then randomly divided to 

seven cohorts to test whether consistently lagged networks could be identified across 

groups. To summarize their analysis approach, the images were divided into 6 mm cubic 

regions of cortex. A time series of activation was extracted for each region. Using a cross 

covariance function, all possible time series were then compared and temporally shifted 

to maximize covariance. To obtain temporal accuracy better than the 2 second TR, the 
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covariance function was parabolically interpolated (see figure 4). The lags reveled by this 

method typically did not exceed .5 seconds, but are clearly slower than neural 

conduction. Covariance was used as opposed to correlation to retain information and 

resist the possibility of multiple extrema in cross covariance which is also rare given that 

neural data is aperiodic. Form this covariance analysis, an antisymmetric matrix is 

constructed representing the proposed delay between any two neural regions. This “Time 

Delay” matrix is then tested for significant transitivity. This matrix is then converted to a 

covariance matrix representing the standardized variance of lags within the time delay 

matrix. After this, PCA was applied to the matrix along with an amplitude weighted 

matrix to determine the percentage of bold signal accounted for by each principle 

component (this is completed on each subject). When projected onto the cortex, this then 

gives an image of regional covariance across time.  

The zero-lag networks found in standard resting state analysis do not appear to 

exist as units at any points in the lag structure maps. However, lag structure maps can be 

used to predict standard resting state networks. This suggests that zero-lag resting-state 

networks are an emergent property of lagged networks and lagged networks are not 

emergent from zero-lagged resting-state networks. These resulting lagged structure were 

reliably reconstructed in all cohorts.  

In a later paper, Mitra et al. (2015a) expanded upon this approach using PCA to 

extract a number of specially overlapping “lag threads”. In this study 1,376 individuals 

were used and when randomly separated into cohorts, the results were reproducible 

indicating that lag networks are a fundamental property of neural organization. Overall a 
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number of lag threads were discovered which uniquely produced standard zero-lag 

resting state networks, but were not uniquely predictable from zero-lag resting state 

networks. They hypothesized that one of these lag structures may represent top down 

influences while another may represent bottom up processes in cognition. They suggest 

that with refined SNR techniques and/or a smaller number of ROIs, lag structure 

identification may be reproducible on smaller scales.  

Finally, a smaller group of participants was used to examine lag thread differences 

in autistic vs typically developing individuals (Mitra, Snyder, & Constantino, 2015b). In 

this study, lag structure was used to examine between group differences as well as predict 

specific behavioral attributes. Each group consisted of 23 individuals. Significant 

differences were described in the lag structure between groups. For example, typically 

developing adults showed later placement of the frontal polar region in the lag structure 

than individuals with autism. Similarly the putamen was earlier in the lag structure for 

individuals with autism than it was for typically developing adults As far as behavioral 

differences, the relative lateness of the frontopolar region correlated (r=-0.82) with scores 

on an attention task; and the relative lateness of the putamen in individual’s lag structures 

correlated (r=-0.65) with repetitive behavior. This demonstrates that the methods are 

applicable to smaller groups to determine group differences and correlate individual 

behavioral scores with individual lag structure elements.  

Summary. In Part 1 we developed a theory of knowledge representation in 

dynamic system activity in the brain. We established the approach of psychoneural 

monism whereby the we can speak about neural event as psychological events without 
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relying in dualisms or ontologically reductive monisms. Knowledge was defined to 

include the inclusive category, of skills, memories, perceptions, conscious awareness, 

tacit knowledge, and knowledge not in action. While we recognized that knowledge 

involves a qualitative aspect we conceded that even the qualitative is grounded in the 

neurological and we can epistemologically reduce the knowledge to the neurological as 

long as we recognize this is only part of the knowledge experience; there must be a 

neurological foundation in the brain even if this foundation consists of partial networks to 

be completed by environment interactions.  

Having established this metatheoretical approach we then examined how the brain 

is structured and how this structure supports knowledge retention. We examined a 

foundational theory of Donald Hebb in how the brain can learn and store representations. 

His theory was examined in a way to demonstrate that knowledge was not stored in 

connections but in the ongoing activity of populations of cells in a network. He proposed 

the idea of the cell assembly and the phase sequence which offered explanations to 

temporal dimension of knowledge storage in neural networks.  

Having established this learning theory, we then examined the modular structure 

of the brain. The brain is organized in a system of hierarchically arranged fractal modules 

allowing for examination at a variety of levels. It tends to organize itself into small world 

networks which represent modules with a variety of functions that all depend on a similar 

analytic substrate. Because of environmental, physical, and genetic interactions, these 

modules tend to align on the cortical folding of the brain which is remarkably consistent 

between individuals, but also very diverse in the association areas.  
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This system of neurons and modules was shown to be very active throughout life. 

It was not only active electrochemically, but undergoes a continual process of 

neurogenesis, as well as axonal and dendritic formation. At an even more microscopic 

level we examined how thousands of spines are constantly emerging and either retaining 

their connections through activity or being reabsorbed. Spine production and retention is 

activity dependent. All of these changes can account for neural development throughout 

the lifespan allowing learning on scales from seconds to years.  

These structural changes are important for the reverberating activity in the brain 

that is ongoing. We examined how some cells have a patterned song they sing through 

interspike interval timing variation in the form of motifs. These cells are active even 

when isolated from other neural tissue and may very well be a motor along with recurrent 

activity that maintain networks over time in stable active attractor states capable of 

learning and persisting. 

This ongoing activity spreads across the cortex in the form of EPSPs which are 

sub-threshold back propagation along the dendritic arborization. This activity results in a 

negative potential recorded at the scalp with EEG which is well aligned with fMRI 

recordings offering us a noninvasive way to approximate these network dynamics. This 

activity appears to be preparatory for environmental engagement and when networks are 

in UP states response timings for those associated activities is reduced. 

When an individual is at rest and relatively isolated from daily activities, these 

aperiodic oscillations can be recorded in the fMRI machine. These resting state fMRI 

recordings give us a window into observing the system dynamics that may store 
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knowledge and the ongoing dynamics is what stores knowledge in a persistent yet 

flexible form.  

Two approaches to rs-fMRI were examined. Time locked correlations is the 

traditional measure of this activity, but it is problematic. It assumes that neural activity 

within a network is recurrent and this recurrent activity is synchronous. As was 

demonstrated throughout this text, networks are often strongly linked but show a 

propagation of activity across the cortex and recurrent activity itself also tends to be 

sequential not synchronous. It is for this reason that perhaps a lagged network analysis is 

a more accurate way of depicting knowledge storage in network dynamics. A series of 

studies conducted by Mitra, Raichle and colleagues revealed the reliability of this 

analysis technique and that it indeed can be used to analysis differences between 

populations.  

In Part 2 we will attempt to examine this lagged network structure at the group 

level with a small group of adolescents. We will apply a novel analytical method to 

examine the structure respecting cortical folding and extract hidden signals in the lag 

representation. This approach is still exploratory and therefore we will use some reverse 

inference to determine what these high level structures might represent as far as 

knowledge in the brain.  
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PART 2: Group Level Representation of Lagged Activity 

Part 2 addresses the application of the methodology and theory described and 

contextualized in Part 1. The overarching goal of this section is to describe the generation 

of the time delay (TD) matrix which represents lagged relationships between neocortical 

regions. Using this matrix, we will then order it along traditional 0-lag networks to see if 

specific traditional networks act as independent units in the lag structure;  it may be the 

case that traditional 0-lagged networks show a lagged relationship to one another. 

Subsequent to generation of this matrix, two procedures will be used to extract 

information from this matrix allowing us to visualize the lagged relationships between 

regions. These data decomposition techniques will include the use of matrix projection 

for high level average latency representations and independent component analysis (ICA) 

to explore the unique independent networks in the data. Along the way a number of 

decisions were made regarding the processing of the data and we shall explore the 

potential impacts of these decisions in turn.  

In the process of constructing these group level representations, we will also 

generate the means to build regressors to use against behavioral variables which will be 

described in detail in Part 3. It is hoped that the methodologies presented here could be 

extended to any set of behavioral variables which represent broad knowledge structures 

or situated behaviors framed by them.  

Novel Approaches to Lag Analysis 

A number of approaches to lag network analysis are presented. The processes 

outlined in Mitra et al.(2014; 2015) was conducted on very large groups 692 and 1376 
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individuals respectively. Lag threads were identified using PCA in Mitra et al.(2015), 

however there was not a transparent way to use these lag threads as regressors with 

individual level variables. In an effort to develop a methodology which will allow the use 

of regression techniques, a significant amount of noise had to first be removed from the 

data. Our theory developed above also suggests a limiting of the analysis to the 

neocortex, thus allowing the use of surface analysis techniques that may correlate with 

preparatory activity in dendritic arborizations. 

Cortical folding. Brain sizes and cortical fold locations vary significantly 

between subjects (Botteron et al., 2008) even though the functional alignment with 

folding patterns may remain relatively consistent. This is a significant source of noise 

which can theoretically be removed if we align subjects using cortical folding topography 

instead of relying primarily on affine transformations of voxel representations, thus 

analysis is limited to surface representations. Being that Part 1 indicated that rs-fMRI has 

shown strong correlations with slow cortical potentials, limiting analysis to neocortical 

tissue is theoretically grounded, although it differs markedly from the approach taken by 

Mitra et al.(2014, 2015a, 2015b); the reasoning will be explained below. 

Limitation to neocortex. We have built a theory in Part 1 which focusses 

primarily on the neocortex and pyramidal cells as sources of learning and knowledge 

representation. While we know for a fact that learning and knowledge storage involves 

deeper cortical structures (Immordino-Yang, & Yang, 2017; Pessoa, 2009, 2013), this 

paper does not yet deal with how knowledge is represented in these structures and how 

this might reflect on changes in the fMRI signal. For example the subcortical nuclei are 
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not arranged in columns with dendritic arborizations across the surface, so it is unknown 

if signal would correlate similarly with the slow cortical potentials described above. 

Additionally, the procedures described below to remove additional noise and improve 

alignment are based on 2D vertices on surface meshes, and subcortical structures are 

represented as 3D voxels: comparisons of 2D vertex areas and 3D voxel volumes will 

require further modeling to determine the appropriate comparison ratio. Interpretation of 

fMRI findings in these structures would be important but difficult to interpret using the 

above approaches and analysis of these structures needs to be the result of future 

exploration. 

Additionally, we have excluded analysis of the cerebellum. We could apply 

similar methodologies and the cortical folding of the cerebellum can now easily be 

modeled. However, the fact that the cerebellar cortex consists of a single layer instead of 

multiple layers of neurons at the surface as well as the fact that cerebellar neurons have 

been shown to have different rhythmic output than their input make this structure difficult 

to model using the lagged relation methods (Johansson, Jirenhed, Rasmussen, Zucca, & 

Hesslow, 2014). Furthermore, Mitra (2014, 2015) found that the cerebellar contribution 

to lag structure was minimal; however, this is likely a weakness of the methods and not a 

feature of the cerebellum. Here we shall unfortunately continue the trend of ignoring this 

important structure. Future studies will need to be conducted to integrate cerebellar lag 

structure with neocortical lags.  

As such, the current analysis is limited to neocortex. However, examining part of 

a network does not invalidate the results. Understanding network dynamics here is 
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assumed to have contributions from both cerebellar and subcortical structures, thus the 

analysis is assumed to already have the extended network data represented in the 

neocortical lag structure. To analyze an open network such as the brain we are always 

assuming there are external features which influence the network even when we limit 

network analysis. We are examining a subset of the system which will reflect the open 

nature of the system from neural regions not included as well as body and environment 

(Sporns, 2010).  

What follows is an attempt to discover and interpret group level lagged structure 

of the neocortical tissues from 51 self-identified bilingual adolescents. While the results 

may extend beyond this group, no assumptions of generalizability outside the specific 

identifying characteristics of this populations are made.  

Methods 

Participants. The data used in the present analysis were collected as part of a 

study led by Dr. Mary Helen Immordino-Yang and Dr. Xiao-Fei Yang at the University of 

Southern California’s Brain and Creativity Institute. It is funded by a National Science 

Foundation CAREER Award (#11519520) to Mary Helen Immordino-Yang. The original 

study purpose was to examine social-emotional development in adolescents. A subset of 

individuals from this study were selected for the current study based on quality and 

completeness of data collected. 

The group level analysis involved 51 participants who were self-reported healthy 

right-handed individuals with normal to corrected vision and normal hearing. All 

participants were self-identified fluent bilinguals of Chinese, Philippine or Latino decent. 
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All were born in the United States. Their ages ranged from 15 to 20 (m=17.31, SD 1.11) 

years. All participants were neurologically normal with no reported psychiatric or 

neurological disorders. None reported being under the influence of psychotropic drugs. 

Ethnic makeup consisted of (25) Latinos, (2) Filipino, (3) Korean, and (24) Chinese. 

There were (21) boys and (33) girls recruited from a series of schools in the Los Angeles 

area. These are represented in table 1. 
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Bilingual status.  All participants were self-reported bilinguals; however, the 

influence of bilingual or language status is not analyzed in the current study. Given the 

large literature on multilingual brain development, it is acknowledged that bilingual 

experiences and differing language experiences affect brain development as well as a 

number of cognitive factors this will undoubtedly have unknown impact on current 

results. General resting state data has found some differences in traditional resting state 

measures of bilinguals (Grady, Luk, Craik, & Bialystok, 2015; Berken, Chai, Chen, 

Gracco, & Klein, 2016); but, in these studies the overall representations of traditional 

resist state networks was still preserved with only minor variation. In reference to lagged 

analysis, no study to date has been conducted using this methodology which also 

accounted for bilingual status. With specific attention to mind wandering, however, there 

has been no difference based on bilingual status observed even when executive function 

improves (Shulley & Shake, 2016). In regards to traditional resting state measures related 

to reading and language status, Zhang et al. (2014) found no relation of rs-fMRI networks 

with the identity of first language spoken or with bilingual status. The self-reported 

bilingual status is listed here only for the sake of completeness, but there is no reason to 

assume that it affects or does not affect the outcome any more than we could equally 

control for socio-economic status, gender, or any other categorical variable known to 

correlate with neurological differences. This is a limitation of the current study in that it 

cannot be extended beyond this population except to other self-reported bilinguals. No 

tests of bilingual reading or spoken language skill was used to further determine bilingual 

fluency. 
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Procedure. As mentioned above, the tasks used for the present analysis were part 

of larger longitudinal study of adolescent emotional development; all participants 

underwent the same procedure for the first part of the day. A smaller group of 38 

participants was given a series of reading tasks which will be described in Part 3; 

however, these tasks were all given after the fMRI session and so will not affect the 

group level analysis. The general schedule for each participant involved an at-home 

survey, before a full day of experimental participation. A maximum of two participants 

were run on the same day. 

Early in the day measures not used in the current study were taken: 2 hours of 

emotional-induction interviews, 1 hour personal interviews, 1 hour of cognitive tasks 

(some of which were used in the behavioral study described in Part 3) and 1 hour of 

psychophysiological tasks. There is ample evidence that tasks preceding the acquisition 

of resting state affect resting state analysis (Stevens, Buckner, & Schacter, 2009; 

Tambini, Ketz, & Davachi, 2010; Gregory et al., 2014); however, sharing the same tasks 

throughout the day should remove, not add, noise to the current analysis as they shared 

very similar experiences and ate a similar diet the day of the testing. The order of the 

other tasks was not in a consistent sequence, but this was not addressed in the current 

study. It is acknowledged, however that systematic noise related to our behavioral 

variable measurements may be a result of the extensive morning interviews, but this was 

unavoidable in the current data collection. 

The relevant reading task to be discussed in Part 3 was administered around 2 

hours after the fMRI scanning which took place around mid-day. The day of the 
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procedure, each participant arrived at 9 am and the procedure ended around 6 pm. 

Participants were given lunch and paid for their participation. 

Neuroimaging instructions. Neuroimaging was acquired around midday 

following the procedures discussed below. During the resting state scan, the participants 

were told to “feel free to let their mind wander” but to keep their eyes open. The resting 

state scan took 7 minutes. All participants use here reported remaining awake during the 

resting scan although no eye tracking or similar procedure was applied to verify their 

report. Being that open vs. closed eyes influences both 0-lag and lagged resting state 

fMRI results Mitra et al. (2014), this is a potential shortcoming of the current approach. 

Neurological Measures 

The acquisition and processing of the rs-fMRI involved a number of choice points 

described below. These processes were used to reduce the noise in the resulting group 

level time delay (TD) and 0-Lag matrices. As mentioned above all processes were limited 

to neocortical tissue. 

Image acquisition. Brain imaging data were collected at the Dana and David 

Dornsife Neuroimaging Center at USC. Whole brain images were acquired using a 

Siemens 3 Tesla MAGNETON TIM Trio scanner with a 12-channel matrix head coil.  

Functional resting state scans were acquired using a T2weighted Echo Planar 

(EPI) sequence (TR = 2 s, TE = 30 ms, flip angle = 90◦, acquisition matrix: 64 × 64, FOV 

= 192 mm) with a voxel resolution of 3 × 3 × 4.5 mm. Forty-one continuous slices were 

used to acquire data from the whole brain and brain stem per image. Two hundred ten 

images were acquired and the first four were discarded to allow for signal normalization.  
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Anatomical images used for alignment to cortical features were acquired using a 

magnetization prepared rapid acquisition gradient (MPRAGE) sequence (TI = 900 ms, 

TR = 1950 ms, TE = 2.26 ms, flip angle = 7◦) with an isotropic voxel resolution of 1 mm; 

160 slices were acquired to cover the whole brain, dimensions: 256 × 256 × 160. 

Preprocessing images for surface based analysis. Prior to transformation from 

3D voxel based to 2D surface based, the functional images are preprocessed using 

standard preprocessing procedures. 

Anatomical file preprocessing: MNI volume to surface. The structural and 

functional data were processed using the FreeSurfer (http:// surfer.nmr.mgh.harvard.edu) 

version 4.5.0 software package. Free-Surfer constitutes a suite of automated algorithms 

for reconstructing accurate surface mesh representations of the cortex from individual 

subjects’ anatomical images and the overlay of fMRI on the surfaces for group analysis.  

FreeSurfer identifies the edge of the white matter and the pial surface (or the 

boundary edge of the grey matter). Using the 3 dimensional image the pial surface is 

transformed into a series of vertices of roughly equal distance around the surface of the 

entire cortex. This surface map follows the sulci (valleys) and gyri (mountains) of the 

folded cortex. Connections between adjacent sets of vertexes map the curvatures across 

these gyri and sulci. This information is then used to inflate the brain so that all cortical 

features are visible on the surface. This appears as a topology map of the brain with 

different colors indicating the sulci and gyri. This inflated version is then further 

transformed into a sphere. The result is a topology map of the brain that can be compared 

to an average brain map. Each subject’s spherical topology of the brain is then warped so 
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that the sulci and gyri are optimally mapped onto the average brain (supplied with the 

FreeSurfer software). The major topological landmarks are consistent between brains, but 

their exact location, thickness, and size vary between individuals. By aligning the brains 

of all participants to this average brain, comparisons in activation and anatomy are more 

likely to correlate with similar topological regions between individuals. The 

transformations from each participant’s voxel based image to the surface based image are 

saved, allowing for comparison between participants. 

For the current study, the average brain map is divided into 20,484 vertices of 

which only 18,715 are relevant because the remaining are excluded portions used only to 

close the gap in the mesh where non neocortical tissue is present. For each hemisphere 

the cortical mask is ~102,871 mm^2, this is approximately 10 mm^2 for each vertex, 

when the mesh is aligned half way though the grey matter perpendicular to the surface. 

Although this may seem large, it is comparable to the voxel size which was 3x3x4.5 

which if perfectly aligned with cortical folding a single face would be between 9 and 13.5 

mm^2. Thus, the current method retains approximately the same scale but likely has an 

increase in accuracy as it obtains averages across the remapped surface. While it would 

be preferable to increase the resolution, computational limitations restricted current 

analysis to 18,715 vertices. 

Resting state functional file preprocessing: Volume MNI space. The functional 

files, in this case, 210 resting state images taken 2 seconds apart were also preprocessed 

to surface based representations to maximize registration between subjects of similar 

functional regions. 
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Template and skull stripping. The functional image taken at the middle time point 

is used as a template for registration to the anatomical image. The portion of the image 

representing the skull, sinuses and the non-brain tissue is stripped from the functional 

images resulting in an image consisting only of the contiguous spatial region containing 

the brain. 

Intensity normalization. From this brain mask, 3 outer voxels are eroded and a 

mean activation level is calculated for all voxels inside this boundary at every time point 

then multiplied by 100. The intensity of each functional image across the time course is 

scaled to have the same mean activation level retrieved in the step above. This accounts 

for scanner drift (Smith et al., 1999). Subsequently the whole brain average activation 

level is stored as a waveform with 210 values each representing the average activation 

level at that time point. This will be used as a regressor during analysis. 

Registration. The images are then registered to the anatomical image across six 

degrees of freedom. Basically, the middle time point three dimensional image volume is 

shifted along and rotated around the x, y and z axis to best align with the anatomical 

image (affine transformations). These changes are translated to the other functional 

images in the sequence. This allows for the transfer of intensity values directly to the 

vertices which were mapped in the processing of the anatomical image. 

Motion correction. Each of the remaining functional images for the participant are 

then rotated and shifted to match the middle image. The changes made to the other time 

points are recorded as 6 waveforms which can be used as regressors to remove any 

intensity changes which correlate with head movement. 
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Slice timing correction. The scanner samples the 3D volume by taking 41 images 

of the head from crown to neck. This process takes 2 seconds during which the scanner 

takes images from crown to base of skull with a space between each slice, then 

immediately repeats the process interleaving scans between each of the previous 

measured layers. Values for adjacent voxels between slices are then interpolated. This 

process is standard and necessary, because of the time it takes to go through the entire 

brain twice during one interleaved scan. Each image collected thus represents an average 

across the two second time period during which the image is acquired. 

Anatomical covariates. A mask is generated for the white matter and for the 

ventricles of the brain from the anatomical image (these are non-targeted tissues). The 

barriers of each of these is eroded by three voxels and then the average for each time 

point for the white matter and separately for the ventricles is recorded. This results in two 

waveforms. Activation in the white matter and cerebrospinal fluid (CSF) is assumed to 

not represent cortical activity and any patterns found in these regions is of non interest 

where they may influence the intensity of the cortical strip. Therefore these are later 

regressed from signal in cortical tissue. We do not average the voxels in this region, but 

use principle component analysis to generate 5 principle components of these regions of 

non interest to remove the maximum variance in these tissues from the cortical signal 

(Van Dijk et al., 2010). Breathing and heart rate variance can be approximated and 

removed utilizing the white matter mask as a covariate. 

Whole-brain average as a regressor. While an average intensity is often taken for 

the entire brain as a regressor, this process is controversial and was not performed here. 



124 

Using the whole brain intensity as a regressor artificially inflated the correlations as well 

as often results in the creation of an artificial anticorrelation between identified networks 

that are a result of the preprocessing and not intrinsic to the data (Fox, Zhang, Snyder, & 

Raichle, 2009). Mitra et al. (2015) examined this process on lagged structure and found it 

did not influence the lagged structure significantly, however, our methods here vary and 

as such we will avoid the procedure due to potential problems. Breathing and heart rate 

influences are further assumed to be removed by the band pass filtering at .01 and the 

regression of the CSF and white matter masks.  

Resampling onto surface map. All functional processes up to this point have been 

conducted with voxels in a volume, these were all standard practices. The analysis 

conducted here is completed on a 2D surface model of the cortex. Utilizing the pial and 

white matter boundaries identified above, the value of the BOLD signal at the 

perpendicular midpoint between these maps is recorded as the BOLD value for the 

associated vertex. The initial mesh is of higher resolution than the one used for data 

analysis allowing for more accurate alignment with cortical folds. The original mesh used 

for resampling is 132,246 vertices per cortical mask per hemisphere. 

Smoothing. To increase the signal to noise ratio, the value of vertices are 

smoothed by a 5 mm diameter Gaussian kernel. What this means is that if we take a 

single vertex we replace the value of the vertex by averaging it with the surrounding 

vertex. As we move further from a vertex the surrounding vertices have less influence on 

this average. Notice that one problem we are avoiding by smoothing in 2D space is that 

with standard 3D smoothing the diameter of that sphere will cross into non-cortical tissue 
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(Glasser et al., 2013). Additionally, in areas where the cortex folds upon itself surface 

areas of two adjacent gyri may come very close. The smoothing sphere in 3D space may 

actually be averaging areas of cortex that are very far from each other along the cortical 

surface. The strength of free surfer is that it first computes the surface model of the brain 

and only then smooths across the surface, but the reader is reminded that a kernel of 5 

mm is not equivalent in 2D and 3D tissue representations. Because we are using a high 

resolution surface map, we do not smooth any further as this would defeat the purpose. 

The main purpose of smoothing at this high resolution is to average out any noisy 

vertices which might not match the surrounding tissue. 

Resulting regressors. At the end of the neurological preparation for functional 

files, we have the object of measurement which is the BOLD activation at the location of 

each vertex. Each vertex has a waveform showing activation fluctuations over time. 

Additionally, we have a number of additional regressors in the form of waveforms: 5 

principle components of white matter activation, 5 principle components of cerebrospinal 

fluid activation, 6 degrees of freedom for motion correction, and 1 representing the 

intensity normalization.  

Using a linear model to predict the recorded waveform for each vertex along these 

17 regressors we retain the residual for each vertex as our signal of interest. 

Bandpass filtering. As mentioned in Part 1, the signal of interest only occurs 

within a specific bandwidth. Therefore, band pass filtering is conducted on each vertex to 

remove all signals higher than 0.1 Hz. This increases the likelihood that breathing and 
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heart rate are excluded in the data as well as removing any fluctuations at the higher rate 

that are not associated with resting state scans. 

The resulting mesh of left and right hemisphere cortical surface is 264,492 

vertices with accompanying location matched across subjects. This mesh is then 

decimated to 18,715 waveforms which is the base data for the current analyses.  

0-lag map generation. A zero lagged analysis is a simple correlation measure. 

Each vertex is compared to every other vertex in a correlation matrix using a two tailed 

Pearson's correlation due to the importance of both positive and negative correlations. 

While standard methods involve the masking out of some correlations if they are below a 

certain threshold (Rubinov, & Sporns, 2010), this was not done here because we are not 

making an assumption that they represent connectivity. The matrix is only being used as a 

comparison to the lagged structure. Indeed there are some arguments that masking should 

not be done because even very small correlations may represent true relationships and 

there is no clear reason to remove these relationships unless we are trying to use graph 

analytic methods (Rubinov, & Sporns, 2010).  

After generation of a 0-lag correlation matrix for each individual, these matrices 

are stacked resulting in a 18,715x18715x51 matrix. The next step was to identify and 

remove 0-lag value outliers across subjects. A basic approach using Tukey fences was 

applied. For each cell in the 18,715x18715 matrix values greater than 1.5 times the inter 

quartile range across subjects for that cell were removed before averaging (Tukey, 1977, 

p. 43-44).  
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Averaging along the third dimension was then conducted such that each cell 

represented the average correlation value for that vertex comparison across all 

participants. This gives us the group level correlation map.  

Lagged map generation. In general, lag map construction followed the process 

described by Mitra et al. (2014). This method is also diagramed in Appendix A. However, 

the process of outlier identification, setting limits for the cross covariance function, and 

problems with values landing on limits was not discussed in detail. Thus, some effort is 

made here to describe the process for dealing with these parameters. 

Limits and missing values. Cross covariance is used as opposed to cross 

correlation because cross covariance allows for the later recovery of signal amplitudes, 

but it also is less likely to exhibit multiple equal peaks. When applying a cross covariance 

function to determine lag, two time series are essentially slid past one another until their 

covariance is maximized. This process was shown graphically in figure 3. This process 

results in a function similar to the one seen in figure 6. In the process of obtaining the lag 

value, the cross covariance function is applied, then the local maximum or minimum is 

identified. A parabolic interpolation curve is then applied to this point along with point 

immediately preceding and following this point. After interpolation a new maximum or 

minimum is then identified and recorded. The interpolated time point of this maximum or 

minimum is representative of the theoretical lag between the two time series.  

When identifying limits for the cross covariance function and interpolating values 

two main problems presented themselves. While Raichael and Mitra discuss the limit of 5 

seconds there is no clear theoretical reason for doing so. Setting this limit created two 
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problems. First was what to do with instances where the peak was determined to be at the 

boundary and second was how wide to make the boundary.  

In the process of determining the lag relationship between 2 vertices the cross 

covariance would most often result in clear maximums or minimums. However, in a 

subset of cases the maximum or minimum covariance was at the edge of the lag window 

as shown in figure 7. In this case interpolation was not a reasonable procedure and 

dealing with limits had to be done in other ways. If we interpret the more extreme lags as 

noise then the choice was simply to remove the point.  

However, it was also possible that values at these extremes were meaningful as 

they neared a true lag relationship. While it initially seems strange to think about 

measuring neural signals multiple seconds apart, there is no theoretical reason this could 

not be the case. As was made clear in the Part 1 a slow cortical potential may in fact 

occur even minutes before the signal continues, however, we limited our analysis to those 

occurring with lags on the order of a few seconds because this allows for the use of many 

more data points in the analysis. To explore this idea, the lag times were simply replaced 

with the maximum or minimum lag value (e.g. -5 or 5 seconds). This obviously led to a 

stacking of values at the extremes resulting in a histogram with three peaks: minimums, 

maximums, and at zero. This was a useful tool to examine the influence the lag window 

size played on the data structure. Through repeated modeling, it was found that 

expanding the window from 5 to 10 seconds had a greater effect on reducing the size of 

these peaked tails but minimal effect on the number of values at the center; this also 

rapidly increased processing time. This suggested that if limits were set to 5 seconds a 
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higher covariance could be calculated beyond the 5 second window, but the highest 

covariance was still near 0. When shortening the window to 2 seconds there was a large 

increase in both tails and the center.  

Then an examination of the accompanying amplitude matrix which contained the 

covariance values associated with each lag metric was conducted. Computation of a TD 

matrix with a 10 second sliding window showed that the covariance amplitude trailed off 

dramatically the further from the center the metric was taken.  

Neither of these approaches offered a definitive answer as to the best approach. 

Determinations of lag window were then based on theoretical and practical reasons. 

Computing the covariance at larger sliding windows was computationally more intensive 

and yielded little gains. A window of 2 seconds would have agreed with the finding that 

Mitra and Raichle have suggested that the majority of lags lie within this small window, 

however, it may also be removing important information. Being that this is exploratory it 

was desirable to err on the side of including too much rather than too little information. 

The smaller the window, the more information was removed. Therefore, the sliding 

window was limited to 5 seconds paralleling Mitra et al. (2014). Extreme values were 

replaced with the maximum or minimum lag assuming this may approximate a true lag.  

Additional analysis needs to be conducted to determine what the appropriate 

window size would be but this is a question for further research. Upon reflection, it may 

be useful to determine the primary, secondary , and tertiary covariance peaks, and to map 

these for comparison. I will return to the question of what to do with the extremes when 
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we discuss independent component analysis (ICA) because the requirements of ICA 

created additional problems that had to be resolved.  
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Figure 6. The covariance function generates a unique peak which can be interpolated 
using a parabolic function between measured time points for increased temporal 
resolution.  
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Figure 7.  The covariance function may at times rise to the limit of the lagged window. 
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Group TD matrix. In the analysis which follows the construction of a group level 

TD matrix was required. In both the ICA and PCA methods, one possible approach was 

to stack the subjects’ TD matrixes vertically along the second dimension and then run 

PCA or ICA on the resulting large matrix allowing for preservation of the subject level 

representations in the results (Beckmann, Mackay, Filippini, & Smith, 2009). However, 

this was not only computationally limiting, attempting to run ICA or PCA on a matrix 

which would be 954,465 rows 18,715 columns it may also identify differences between 

subjects and not assist in the construction of a shared group level representation. 

Therefore, stacking the TD matrices for each subject along the third dimension (resulting 

in a 18,715x18,715x51) and then averaging across this dimensions was the preferred 

methodology resulting in an abstract average subject. This approach was suggested by 

Svensén, Kruggel, and Benali (2002) but was warned against due to the need for temporal 

and spatial alignment. All participants were recorded using the same time period and the 

surface based methods lead to superior topological alignment and so this method was 

justified. 

Stacking participants in this way also enabled additional methods for data clean-

up. For each lag value comparing two vertices the SD was computed across all subjects. 

This resulted in a Standard Deviation Matrix representing the variation across TD 

matrices. The standard deviation was 1.30 seconds (SD=.76). 

The next step was to identify and remove TD value outliers across subjects. A 

basic approach using Tukey fences was applied. For each cell, values greater than 1.5 
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times the inter quartile range for that cell were removed before averaging (Tukey, 1977, p 

43-44).  

This approach increased the likelihood that extreme values that were noise 

mentioned above were not being entered into the group level representation. If participant 

values were near 5 seconds and data replacement at limits replaced some values with a 

value of a 5 second lag these would still be counted. If however most participant values 

were near 0 for that participant then the 5 second replacement was removed.  

The result of this process was a 18,715 x 18,715 matrix that represented the group 

average with no missing values.  

0-Lag and TD comparison. To compare the 0-lag and lagged maps the resulting 

18,715x18715 matrices were then sorted according to masks generated from Yeo et 

al.(2011) and then sorted based on the number of negative values in the map. This 

allowed for a visual comparison. The seven component resting state network map was 

used. Strong modularity would result in relatively similar colored blocks of cells along 

the diagonal representing the different networks.  

As a reminder, in the computation of the TD matrix, we interpolated the time of 

maximum covariance using parabolic interpolation across three values. If the two times 

series are correlated, then they will show a maximum covariance at zero with both the 

first and last time points of roughly equal intensity. Highly correlated regions would show 

similar structure in both the 0-lag and the lagged representations. 
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Results and Discussion 

Overall interpretation of the TD matrix. First we need to remind the reader 

what the TD matrix actually represents; an extracted region of the matrix is shown in 

figure 8. It is an antisymmetric matrix with zeros along the diagonal. Each row and 

column represent vertices on the cortex; there are 18,715 vertices in our analysis 

therefore the matrix is 18,715 x 18,715. Each cell in the matrix represents the temporal 

ordering of the two compared vertices where the covariance function is maximized. 

Along the diagonal are zeros, because each vertex is perfectly aligned with activity in that 

same vertex across time. The antisymmetry comes from the fact that if vertex A reaches 

maximum covariance with vertex B after a positive shift in time of .45 seconds, then it is 

necessarily true that from the other perspective vertex B is maximally aligned with A 

when we shift the time series of A back .45 seconds. It simply depends what our reference 

point is. 

Now, let’s reinterpret this matrix such that the columns represent regions and each 

row now represent a temporal relationship of these regions to the region represented by 

that row. We could reorder this row to help conceptually from lowest to highest, and now 

it would represent a timeline of activations relative to the vertex identified by the row. 

This is demonstrated graphically in figure 9. As mentioned above, the maximum value in 

the matrix is +5 and the minimum is -5. 

A thread according to Mitra (2015) was a metaphor for the parallel running 

processes in a computer; in other words, the several programs which are running at the 
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same time. The concept of a Lag thread referred specifically to the principle component 

representation of variance in the TD matrix rows.  

Sticking with this terminology, I will refer to the individual rows as micro-

threads. It is worth reminding the reader that these are comparative terms not absolute 

terms. A micro-thread refers to an individual row in the TD matrix while a thread 

represents a deconstruction of the matrix into larger representative components. However, 

remember that a single row represents a vertex which is equal to thousands of neurons, so 

the scale is not absolute. Overall each thread or micro-thread represents separate parallel 

sequences of activity that spreads across the cortex. They are always unidirectional and 

cannot return to a single location more than once. Threads also do not represent the 

magnitude of activation, nor do they represent the magnitude of the covariance; these are 

further interesting areas of study not discussed here but clearly relevant and important 

work. 

Because each thread represents a sequence of activity for each vertex on the 

cortex these can be mapped onto the brain in a way that allows us to visualize the 

topography of the activation. This could be done for each micro thread, but the use of 

18,715 brain images is of questionable use. Secondly, each micro thread likely included 

noise and signal shared with other micro-threads; this will be dealt with below.  
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Figure 8. The TD matrix is antisemetrical and has zeroes along the diagonal. 
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Figure 9. The amplitude of the signal for the solid line represents the first column of the 
previous TD matrix. If multiplied by a constant, as in done in ICA, the relative lag 
between the regions is the same, but the absolute lag changes as can be seen in the dotted 
line. The dashed line demonstrated that multiplying a micro-thread by a negative result in 
a reversal of the lagged sign. This is important because ICA does not respect the sign or 
amplitude of the source data. The points along the x-axis represent vertices on the brain; 
their order is irrelevant. 
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Relationship between lag structure and 0-lag structure. As mentioned above, 

resting state analysis has traditionally identified networks as spatially and temporally 

distinct. In other words, RSN were thought of as assemblies which work as a unit with 

extensive recurrent activity. If this was the case, then relationships between networks 

would be separated in time such that one network would reliably be earlier or later and all 

the units of that network would share a relatively short period of time.  

If these networks acted as unified processing units, we would expect vertex 

relations to be isolatent or in a similar time range within the network. The values within 

blocks along the diagonal would include a restricted range in the lag representation and 

the range between lag structures would only minimally overlap, if they act as a unified 

network or use the coupling technique described in Part 1.  

A second part of the RSN network theory is that the networks are not only 

internally isolatent but there is a difference in between network latency. Each network 

should be temporally isolated from the other networks. If this is the case then the off 

diagonal blocks of the matrix should systematically vary from zero.  

Assuming these two ideas is central to some arguments relating behavioral 

variables to network structure. Anticorrelation between networks is often thought to 

reflect that they are not simultaneously active an important feature described above and 

further below in our discussion of mind wandering. It has also been theorized that the 

degree of correlation within a network shows how that network works as a unit similar to 

a neuronal assembly. Thus, in this approach, the internal integrity of the network is 

assumed to correlate with efficient network functioning.  
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Alternatively, if intra-network latencies are large and inter-network latencies are 

zero, then the above approach is an inappropriate interpretation of the data. This was the 

case in analysis done on Mitra et al. (2015) which was reliably reproduced by the authors. 

This same approach is tested here with our smaller group of 51 participants. 

First establishing that traditional zero lag networks can be produced in the current 

population showed the correlation matrix representing the Pearson’s correlation between 

each vertex. The table is first sorted by number of negative correlation values per row and 

then sorted by resting state networks following Xu (2107), as expected the network 

shows a high degree of modularity. At zero-lag the networks appear to be internally 

highly correlated.  

However, in figure 10, we have reordered the TD matrix representing lagged 

relations in a similar way first by negative lags and the by traditional RSN.  

As can be seen, the diagonal elements are not internally isolatent nor are the off 

diagonal blocks differing from zero. This supports the findings of Mitra et. al. (2015) 

finding that the traditional interpretation of resting state networks as assemblies or 

cohesive processing units is lacking. 
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Figure 10. The blocks along the diagonal do not appear to be earlier or later on average 
than other blocks along the diagonal. If they were, they would exhibit different ranges of 
lag between them. Also, it appears that within the traditional 0-lagged networks there is 
the full range of lagged values that can be found in the entire TD matrix. 
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Discussion. How can this be explained? Remember that we obtained a cross 

covariance function for each time series. Let’s say we shift two time series past each 

other and we get the covariance at a shift of -2, 0, and 2 seconds. If the two-time series 

are acting as a time-locked unit, then the cross covariance at -2 and 2 seconds should be 

equal; and if they are equal, the local minimum or maximum after interpolation should be 

at 0. If the maximum or minimum cross-covariance is anything other than zero, then they 

are either acting in sequence or they are unrelated. Figure 10 shows that within a network 

there are relatively few vertices with a temporal lag of zero. The distribution of the cells 

within traditional networks recapitulates the distribution of the cells in the entire TD 

matrix.  

Although I will not go into testing these specific relations here, Mitra et al. (2015) 

point out some specific reasons this may be the case. First, and importantly, they 

demonstrated through that traditional networks can uniquely be reconstructed from lag 

networks, however the reverse is not true. This suggests that RSN are an emergent 

property from lag networks which are a more fundamental representation of neural 

activity. This does not invalidate RSN research, it only affects the interpretation. 

Mitra suggests that the traditional resting state networks represent regions which 

represent “one way streets” or regions in which the dominant motif only goes in one 

direction. A motif is a sequence that has a stereotyped sequence that is found repeatedly; 

for example, if the sequence A-C-B is repeatedly found, this this is a motif. A one-way 

street means there are less reciprocal interactions within regions and the signal traverses 

the region mainly in one direction.  
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It appears that within traditional networks one-way streets predominate and 

between networks interactions are predominantly reciprocal. Mitra then ran simulations 

to test this finding that the apparent synchrony in RSNs can be uniquely predicted from 

lag network representations. However, lag network representations could not be uniquely 

generated based on the apparent synchrony found in 0-lag network representations. It is 

therefore their conclusion that lag structure is a more fundamental representation of 

neural relationships than the synchronous representations and resting state networks 

represent regions where one way streets are predominant.  

Topographic representations. Having established that lagged network 

representations are a more fundamental representation of neural dynamics than 0-lag 

representations, we will now examine the group level data using three methodologies: 

projection, principle component analysis, and independent component analysis. Each of 

these methods represents a different aspect of the data and allows for limited 

interpretations. These will be discussed in turn.  

Projection. The simplest high level representation of lag structure is the one-

dimensional lag projection vector. Operationally, this involves the averaging of all lag 

values in a row giving us the average lag for each vertex. We could then arrange the 

vertices by their average lag values to determine which ones tend to be earlier and which 

tend to be later on average. This was shown in figure 10.  

The projection method was developed for use with analysis of individual neurons 

examining peak off sets which were less than 2 milliseconds, but the authors suggest that 

this method is transferable to larger networks at various time scales. When examining a 
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population of neurons these offsets can be added to represent the relative firing time of 

the individual neuron to all other neurons in the data set. Some important caveats are 

listed for this method which was developed by Schneider, Havenith, and Nikolić (2006). 

The authors note that this is not a property of the neuron itself but is related to the 

functional stimulation, the behavior of the organism, and the environment which it is in. 

The projection vector is a property of the system we are examining, not the individual 

neurons or in this case the neuronal populations. This also has the same shortcoming of 

any averaging in that a value near zero could mean it tends to be sequentially active in the 

center of all sequences or it could be very early half of the time and very late the other 

half of the time.  

This projection matrix is constructed using the group representation TD described 

above. The results of this vector are then topographically represented on the cortex in 

figure 11.  
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Figure 11. Projection matrix representing the lag of various regions on average. 
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Figure 12. The various traditional resting state network boundaries. Note that they do not 
overlap with the regions in the projection map representing different lags. 
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Results. Overall, there are some immediately relevant findings from this 

procedure. At the group level, first, it is notable that there is great inter hemispheric 

symmetry at the gross level. The map also appears to respect some major landmarks. 

Lateral maps. Along the borders of the Central Sulcus as vertices approach the pre 

and post central gyrus the regions tend to be activated earlier on average. This has 

functional significance considering these borders represent body maps of both movement 

and sensation respectively (Penfield, & Boldrey, 1937). Secondly we see early average 

activation of the insula which typically is associated with sensation from the viscera and 

internal body and the perception of emotional feelings (Immordino-Yang, McColl, 

Damasio, & Damasio, 2009). Interestingly the inferior and superior temporal regions are 

also early, these are typically associated with semantics and word meaning as well as 

auditory perception in the posterior regions (Mesulam, Thompson, Weintraub, & 

Rogalski, 2015). As would be expected the occipital cortex also shows early activation 

Mitra et al. (2015). These sensory regions are prominent in perception and imaginary 

visualization (Farah,1988; Kosslyn, Ganis, & Thompson, 2001). Interestingly a small 

region of the occipital pole is much later, if this is not noise, then one possible 

explanation is the recurrent activity in the occipital region where later visual regions 

continually feed back to the primary visual cortices might result in an on average later 

activation of this region. In any case these primarily sensory regions are clearly 

emphasized in the projection map as having early activation. 
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This indicates that perhaps these high level maps represent knowledge as 

described in Part 1 at the level of perception and general trend for the direction of 

information to move from perceptual regions toward higher abstract association cortices.  

Medial maps. Switching to the medial surfaces, we can immediately notice that 

the cingulate gyrus tends to have earlier activation on average as well as the medial 

regions associated with body representations as was found on the lateral surface (McKay, 

Evans, Frackowiak, & Corfield, 2003).  Also notice that the anterior regions of the middle 

frontal gyrus appear early as well as the orbital frontal cortex.  

It is clear that while many of these regions are respecting the sulci and gyri of the 

brain there is still variation within these regions. Overall the topographic modularity is 

preserved in the lag structure. Also, the representation is similar across hemispheres and 

it respects the cortical folding.  

Thus, there is plenty of evidence to suggest that we are not simply observing 

noise. 

Resting state network comparison. Agreeing with the previous analysis, it is 

immediately obvious from an overlay of traditional resting state networks that the lag 

structure does not respect traditional resting state boundaries. In other words regions 

which are typically associated with the same network show the entire range of lag values. 

This is clear in the 7 component model as seen in the overlays in figure 12.  

A benefit of using this projection technique is that it can easily be used to 

compare groups of subjects as Mitra et al. (2015) did in their evaluation of typical 

developing vs those diagnosed with autism spectrum disorder. Keeping in mind the 
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limitations above that this represent global system dynamics and ignores how some 

regions could be differentially early or late depending on the threads selected, this is easy 

to apply to any group of subjects across a behavioral variable as we will apply it in Part 3. 

A clear limitation of this method is that it does not pull out the parallel processing 

of information which is of course essential to time series analysis. If we find differences 

at this level it will represent differences in regions that tend to be early or late but not 

regions that are both early and late equally across micro thread representations.  

Singular value decomposition. While the projection map can be telling and has 

been used in Mitra (2015) to compare individuals with autism and typically developing 

individuals, it is very obvious that there is substantially more information in the group 

level TD matrix. For example, averaging across rows loses the information that a vertex 

may be early in some instances and later in others; information which is in the TD matrix. 

Therefore, the matrix must be decomposed into a set of “threads” which represent the 

data in the matrix at a higher level.  

The first approach was to use singular value decomposition (SVD). This was 

attempted here to repeat the findings of Mitra where principle component analysis was 

used, however SVD was used which gives us the same mathematical results as a PCA but 

is more easily computed on larger data sets (Wall, Rechtsteiner, & Rocha, 2003). The 

underlying assumption is that by using SVD each thread will represent the maximum 

shared variance in the TD matrix across micro-threads.  

In Mitra’s 2015 study threads were identified through the process of principle 

component analysis. The output of the PCA were thread representations. Each thread 
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represented the variance accounted for by rotating the matrix in hyperspace to obtain 

linear equations weighting each thread’s representation across the cortex. While this 

approach has shown gross stable patterns maintained across many individuals, it 

represents a different level of complexity than what we will be examining here.  

The PCA Mitra et al. (2015) conducted was performed on a TD matrix averaged 

across individuals, thus, removing individual variance. The goal was to determine global 

patterns shared across individuals and and representative of brain processes.  

Another way of thinking about this is that the threads represent shared neural 

representations of persistent knowledge. Threads accounting for more variance represent 

the highest level representations of knowledge likely dealing with perception or gross 

level processes that are shared across many activities. The components accounting for 

less variance may represent more specific representations of knowledge or skills.  

Analysis. Two problems emerged immediately. First, SVD is based on shared 

variance. Each component attempts to explain the maximum amount of variance with a 

set of linear equations. Each additional component adds another portion of shared 

variance until the number of components equals the number of predictors. Selection of 

important principle components is usually done using methodologies similar to scree plot 

which select only those components which explain the most variance.  

When computed in the current data set no inflection point was clear in the results. 

The only component which existed before the inflection point explained only 0.004% of 

the variance. The method overall for this size of data set was therefore not useful. It may 
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be because the data itself is too noisy or it may be due to the number of regions being 

represented.  

It is interesting to note that other simulations run on a further decomposed mesh 

of vertices only including 5,124 vertices did result in points of inflection, however this 

low resolution image was abandoned because each vertex represented a very large swath 

of cortex. This lower model is presented in figure 13, but as can be seen very low levels 

of variance are explained.  

Additionally, in PCA or SVD, a problem emerges if we wanted to compare thread 

representations between individuals. The component representation would different for 

each individual. Thus PC 1 is not the same as PC1 in another subject. Similar networks 

across individuals may account for different amounts of variance between those 

individuals. Thus PC 1 accounting for the most variance in the first participant may 

actually be equivalent to PC 200 in another individual. One way to solve this would be to 

do a visual analysis of the components, but this proved to be impractical because there 

are no previous standards for lag structure and it was unclear which components were the 

same between individuals.  

While a nested model may give us more information, this mode of exploration 

was abandoned. The relationship between PCs is also difficult to interpret. It was at this 

point that I turned to a different methodology to decompose the data. 

Initial attempts to decompose such matrices into a minimal number of 

interpretable components were taken by Raichael and Mitra 2015. They applied principle 

component analysis to a voxel wide representation of the whole Brian including 
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cerebellum. Principle component analysis essentially rotates the matrix as to extract 

maximally orthogonal signal. There will always be as many resulting components as 

there are columns in the matrix. To reduce the dimensionality of the data Mitra and 

Raichle used the obtained Eigen values from each of the components ordered by their 

amount of variance explained. Using scree plot methodology 7 components were 

extracted and explained approximately 20% of the data. However, in the interest of 

maintaining special resolution the current methodology is working with a much larger 

matrix.  

To reduce the dimensionality of the of the current data PCA was similarly applied. 

An average matrix was constructed by stacking 49 participants and averaging across the 

same cell. However, when PCA was applied to the resulting matrix, only one component 

could feasibly be retained before the inflection point. This single component accounted 

for .004% of the data. Successive components accounted for .001% additional variation 

in the data. It was unclear what this single component might represent. First of all, the 

obvious issue is that applying PCA to this data set and removing all components after the 

inflection point would simplify the data in a way that is not particularly useful. To use 

only one component is to remove most of the variation, not to better understand the 

structure of the data. It is also possible that the single extracted component is systematic 

noise. Furthermore, traditional singular value decomposition does not have a 

straightforward method to reconstruct the signal from each individual.  
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Figure 13. A scree plot of the PCA with the explained percent of variance on the y-axis. 
Notice the very small amount of variance explained. Because of this minimal variance 
and other factors described in the text, the PCA method was abandoned 
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Independent component analysis. The final approach used to reduce the data into 

interpretable threads was ICA. This is a novel application of ICA for a number of reasons 

and therefore some extensive explanation is needed to describe what motivated the 

analysis method as well as the interpretability of the results.  

Goals of ICA. As a possible solution to extracting meaningful signal from the TD 

matrix a novel application of independent component analysis is proposed. ICA has a 

long history of extracting a small number of linearly mixed signals from mixed signal 

input. The classic example of ICA is the extraction of unknown independent audio signals 

from recordings which mix those signals in separate recording devices; this is known as 

the “blind source separation problem”. 

Independent component analysis is typically used for source signal separation. 

The observed values are assumed to not represent the “true’” values. Instead, the 

observed values are seen as a mixture of information from unobservable sources 

(Hyvärinen, Karhunen, & Oja, 2004). The goal is to find the mixing matrix that allows us 

to recover the unobservable sources. In other words, the observed variables are the 

product of the unobservable and the mixing matrix. We shall return to the details in a 

minute, but let’s examine a classic example and then how it might apply to the TD matrix 

of current interest.  

One of the key assumptions of ICA is that the source signals are independent. 

While neural events are never truly independent, we are making this assumption because 

we want to identify maximally differentiated patterns in the data set. These recovered 

systems are independent in the sense that they share more within than they do outside, but 
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they are still theoretically connected. Here we shall accept this assumption, although 

acknowledging that it is problematic. This assumption has also been violated when ICA 

has been applied to traditional 0-lag networks, but the assumption is not violated in the 

sense that we are searching for signal with maximum independence. Statistically, the 

sources are assumed to be relatively less Gaussian than the mixture of signals. This is in 

accord with the central limits theorem which says that signal mixtures are more Gaussian 

than the sources from which they are composed.  

ICA background. The most common way of describing the ICA methodology is 

with signal recovery from a number of audio recordings (Hyvärinen, Karhunen, & Oja, 

2004). Imagine 3 individuals in a room speaking: these are the sources which are 

independent. They are represented by independent sound waves which are not observed 

but assumed to exist. Recording devices or microphones are placed around the room, and 

critically, the number of them must match or exceed the number of source signals. So, 

let’s assume that there are 4 microphones. Each microphone will record a mixture of the 

three voices if they are all speaking simultaneously. The recordings result in a sound 

wave that is a more complex mixture of some of the source sound waves. Individuals 

closer to one microphone will be represented differently in the recording. Each 

individual’s voice is less Gaussian than the mixture of their voices. Independent 

component analysis takes advantage of this property of the mixture and recovers the three 

voices by seeking the mixing matrix though a learning algorithm which maximizes 

statistical independence.  



156 

Each of these audio signals could be represented as a vector of different 

frequencies in n discrete time bins. Arranging the four separate m vectors into a so called 

mixed matrix x of dimensions m x n. This mixed matrix is assumed contain information 

to extract a signal matrix s. The signal matrix must be no larger than m x n. More 

accurately the mixed matrix (x) is assumed to be the linear combination of the true signal 

matrix (s) and an unmixing matrix (A). This is represented in in the following equation: 

X=As 

The goal of ICA is to find an unmixing matrix A which will satisfy the 

transformation between the mixed and signal matrices. A critical aspect of A is that the 

columns are linearly independent. This independence is stronger than simply not 

correlated. This matrix is also an invertible multiplier allowing this matrix to be 

independent of the particular mixture which constructed it. This allows us to use the 

matrix to reconstruct signals from similar mixtures. Importantly, while there is an upper 

limit to the number of signals which can be extracted from x (they may not exceed m), 

there is no lower bound. The various methodologies of ICA will allow for the amazingly 

accurate solutions to this equation allowing for the extraction of each speaker’s voice if 

only three components are selected, but then if we add the allowable 4th component 

background noise can be extracted independently. If we add additional microphones 

additional sources of noise can be extracted, but through the addition of still more 

microphones different aspects of the separate speakers’ voices can be extracted.  

To solve this equation, we need a measure of independence. The typical measure 

of independence is entropy. A uniform distribution has maximum entropy. This process 
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involves the maximization of individual entropy while minimizing mutual information 

and thus maximizing the joint entropy (Bell & Sejnowski, 1995). Another way of framing 

this is to say that the goal is to minimize the information redundancy between the signals. 

The Gaussian distribution is by definition of maximum entropy.  

Roughly speaking, entropy is a measure of disorganization or chaos in a system. 

The more organized the system the lower the entropy (higher negentropy). More 

organized systems show less normal distributions. Their outcomes are more predictable. 

The more random the system or the more normally distributed, the less predictable the 

outcome. As a note, this is also true of kurtosis. More peaky kurtosis is representative of 

higher predictability, values are more predictably in a smaller range. The goal of reducing 

entropy in each signal then is to search for increased predictability in that set.  

Negentropy can mathematically represented as J(y)=H(ygaussian)-H(y) where 

ygaussian is a normal distribution sampled from the covariance of y. When comparing 

components, we want to minimize the redundancy between components making them 

each contain the maximal amount of information while minimizing the multiple 

information. To do this we want to generate an unmixing matrix where the sum of the 

negentropy of all the components is maximized and the components are also 

decorrelated. When negentropy is maximized the resulting component will represent 

signals embedded in the mixtures which are independent.  

The contrast function chosen utilizes the log of the hyperbolic cosine to determine 

the contrast between components. This approach has been tested on a variety of real 

world and simulated data sets and appears robust (Hyvarinen, 1999).  
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There are various methods of ICA, Fast ICA methodology developed by 

Hyvarinen (1999, 2001) then uses a fixed point algorithm to iteratively find the best fit 

which maximizes the contrast function. Fast ICA method first estimates the unmixing 

matrix until a component of maximum entropy can be removed. Then the process is 

repeated on the remaining mixed signal until the requested number of components has 

been satisfied. 

ICA varies from PCA because ICA attempt to make the resulting source signals 

independent and non Gaussian. It has been shown in comparisons of PCA and ICA for 

voices and image reconstruction that PCA does not in fact separate the signal into 

independent sources, instead it separates the signal into new mixtures which represent 

variance in the data (Hyvärinen, Karhunen, & Oja, 2004). In the voice example, PCA 

would extract new voices which represent the variance in the mixed signal. In an image 

example the so called Eigen faces are produced which represent mixtures of features an 

therefore each is a face unto itself. Conversely, in ICA the separate voices, noise in 

microphones, and background noise are each separated. In visual ICA facial features 

become independent components, and for neural studies signals originating from specific 

regions are extracted. 

Application of ICA to TD Data. Some stretching of the mind is necessary to draw 

an analogy to the current data set. Each row in the TD matrix is not independent, it is 

assumed to be a mixture of signal from a particular neural region, as mentioned above, 

the data is assumed to have noise which is shared but also each micro-thread is assumed 

to reflect some influence from other micro threads. In our case, the original 
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“microphone” was the voxel. After removing potential noise sources and interpolating 

across the cortex we may now imagine that each vertex on the surface of the cortex is a 

recorder. But, the analogy is not this simple.  

The data were then processed to discover the temporal relationships between 

vertices. We now have a different type of source. Each row represents a temporal 

sequence with respect to a vertex represented by that row. Each row now is a signal 

representing temporal and spatial aspects of the original signal. Mathematically, we still 

have the same situation, however. We are assuming based on the theory outlined earlier 

that there are temporal sequences shared between neural regions. To keep this parallel to 

the audio example given above, each row can still be visualized as a wave. However, the 

peaks and valleys of the wave now represent a temporally early or late dimension. 

Although not typically represented this way, a single row in the TD matrix can be 

represented as a wave as in figure 9. However, the values along the x-axis have no 

particular important order. They no longer represent time, but now represent spatial 

relationships.  

This point may seem counter intuitive, but as long as we maintain the same x-axis 

order of neural regions ICA will still apply. This has been easily demonstrated in the 

spatial analysis of images where the 2D image can be broken into pixels and then 

unfolded into a single vector of pixels which can similarly be represented by a wave 

where peaks and valleys represent lightness and darkness of the image (Hyvärinen, 

2013). The way we unfold the image is immaterial as long as we unfold all images the 

same way and then reconstruct the image respecting the original sequence. ICA will find 
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patterns in the data that respect paired relationships based on the intensity values but the 

order is immaterial. Remember the order along the x-axis in this neural analysis is not 

time. The x axis represents location in vertices and the intensity represents time. 

However, the equation does not know the location of the vertices; therefore, any spatial 

results will reflect shared sources of independent signal, not shared location. The 

equation does not know the location of vertices. 

Application of ICA to current TD matrix. As the theory goes above, we are 

searching for relatively persistent patterns of neural activity which represent knowledge 

in the broad sense. An additional assumption is that brains developing in similar 

environments, with relatively similar genetic makeup (as compared to other species), and 

forming in relation to the needs of survival in a shared world and similar bodies will 

result in canonical organizations that maximize adaptability. In other words, there are lots 

of shared patterns in our brains in spite of our many differences. But, differences in the 

factors leading to brain development and learning will result in measurable differences in 

the expression of these canonical patterns.  

By applying ICA to the TD we wish to uncover these sequences as relatively 

independent sources. Additionally, we want to be able to reconstruct the process for each 

individual so we can compare across individuals in Part 3. 

Representing the current group, it would have been better not to average the 

participants to generate a group level TD matrix. It is preferable, instead, to concatenate 

the participant TD matrixes along the m dimension and then run ICA on the resulting 

rectangular matrix (Erhardt, Rachakonda, Bedrick, Allen, Adali, & Calhoun, 2011). In 
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this concatenation approach, each individual is represented and the unmixing matrix and 

signal matrix could have been deconstructed into portions representing each individual 

(Svensén, Kruggel, & Benali, 2002). However, because a decision was made to preserve 

the spatial resolution, the resulting mixed matrix representing the stacked TD matrices is 

18,715 x 917,035. This proved to be computationally prohibitive during implementation; 

however, this should be considered in future modeling.  

The first task is to recover these sources in a way that we can compare the 

components across individuals. Two main approaches have been used to deal with this 

both of which involve a dual regression methodology. The group’s data are combined 

either through concatenation all subjects or stacking and averaging the subjects (Svensén, 

Kruggel, Benali, 2002). In the concatenation approach the TD are stacked as if they were 

all from one individual. Thus, our mixed signal matrix for the 51 subjects is 18,715 

columns representing the neural regions, and 917,035 rows (18,715 rows x 51 

individuals) representing the sequences. A second approach is to average all 51 TDs 

resulting in a matrix 18,715 x 18,715. There are costs and benefits associated with each. 

As mentioned above, the construction of a group level through vertical stacking 

results in a matrix which requires more computational power than currently available. 

But, unlike PCA stacking the individuals in this way will not result in components being 

pulled out according to variance. Instead independent components would be removed and 

this would be a more powerful method if there were not current computational limits.  

Therefore, the averaging method was used with Tukey fences as described above 

to start with a group level TD matrix with minimums and maximums of -5 and +5 
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seconds. Using ICA it is additionally not an option to remove values if we chose to do so. 

ICA requires a complete matrix. This process was still computationally intense therefore 

it was completed using external web servers available for research purses at Amazon Web 

Services.  

One of the strengths of the ICA approach is that the resulting unmixing matrix can 

be used to separate components in appropriately matched systems. In other words, the 

resulting matrix can be used on a novel set of data with similar noise and signal 

properties. In the case of fMRI we are talking about similar machines, locations, and age 

group etc. Reconstructing the latent signal involves solving for s in the equation given 

above. Because we are using a reduced model of components where m<n A is not square, 

therefore the matrix has no true inverse. Therefore, an application of the methods 

described in Penrose (1955) were used to generate a pseudoinverse using least squares 

methodology. The Penrose pseudoinverse of A is utilized to be an appropriate solution to 

solving for s.  

Our first step in ICA is therefore to compute A for our full data set. Once the 

group level unmixing matrix is constructed we can then use that matrix to reconstruct 

individual components and regress them across some behavioral variable. It is worth 

noting that these ‘dual regression’ models have been used for fMRI resting state 

traditional lag structure but not for the current TD matrix.  

Decisions then needed to be made to decide how many components to extract. 

There is no accepted way to determine the number of components as this is not a similar 
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procedure to accounting for differing amounts of variance. We are looking for 

independent signals, not signals that maximize variance explained.  

How many components? What is the correct number of components? 

Remembering that neural activity and structure follows a highly repetitive fractal nature 

while maintaining a small-world architecture, there is some degree of arbitrariness to the 

number of components to extract. We extract the number of components we would like 

based on the resolution we desire. An analogy can be made with human social networks. 

Is there a clear line between what is a community, group or culture? We could examine a 

school, a system of schools or students within a school, the boundaries are artificially 

constructed by the researcher using landmarks. Similarly, language studies pose a similar 

problem because the difference between languages, dialects, and idiolects is by no means 

clear cut and are clearly social constructs for the convenience of allowing us to examine 

language at a level we feel is appropriate to our study. The same applies here to neural 

activity. While standard resting state networks have been identified, nothing makes these 

networks ideal or isolated except that we deem them so for further analysis and have 

agreed upon appropriate levels of division. In actuality they have also been compared to 

other measures such as structural measures to determine their validity but early attempts 

had no priori assumptions. 

Returning to the idea of how many components to extract, we could extract a 

number of components that are equal to the number of supplied mixtures. However, this 

is not particularly useful from a conceptual perspective. It is desirable to extract a number 

of components which can be represented in such a way as to organize them in a 
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hierarchical manner which we will attempt to do later. However, as mentioned above, 

using ICA on dense neuroimaging data (and this is clearly dense) Beckman et al. (2009) 

extracted between 45 and 125 components from traditional resting state data and them 

organizes them hierarchically. Either one of these extremes is far below the number of 

mixed signals, but there is a tension on both sides. Extracting too few components we 

may miss the necessary granularity to see within group differences. Extracting too many 

components will likely result in more noisy and uninterpretable components of which the 

validity will be highly questionable. Being that this procedure has not been attempted on 

this data set, we will make 4 different maps and then based on the interpretability of those 

maps compare components to our behavior variable. The numbers are somewhat random 

here but will double from 5 to 80 (5, 10, 20, 40, 80). However, in the reverse inference 

and the later regression of the results we will concentrate on the 5 component model 

because this is exploratory and because neural activity is fractal, this will still represent 

an interpretable level but better reveal hidden structure than the projection process used 

above. 

Another alternative is to run ICA on each individual and then compare the 

components or use a clustering algorithm to find the most similar components between 

individuals (Esposito et al., 2005). The main problem is that this method results in 

different ordered components and because of variations in the mixing of the components 

between individuals the extracted components may not align because different algorithms 

may be optimal for extracting components among noise in each participant. Additionally, 

noise may be handled differently in different participants. Because of these 
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complications, this method was not attempted here. While this method may be ideal for 

understanding the individual, it lacks the generality required to compare between groups.  

ICA interpretation. The results of the ICA cannot be interpreted the same as the 

projection vector nor the same as threads in a PCA or SVD analysis.  

In ICA a multiplier is sought that would satisfy the equation such that statistical 

independence between the resulting components is maximized. This causes two problems 

with interpretation. The multiplier does not respect true amplitude of the signal nor does 

it respect the sign. This limits the information we can get from the ICA. Figure 9 offers 

some illustration of the concepts.  

(1) First, the amplitude of the resulting source represents the relative timing of the 

units at different locations. We can multiply the signal by a positive constant and this will 

result is a spreading of the signal across time as in but will not change the relative timing 

of the regions. Any manipulation of the signal with a multiplier will result in some loss of 

information. We can still make comparisons but the actual timing is lost.  

(2) Another problem with any multiplier is the sign of the multiplier. If the signal 

is multiplied by a negative number, it will essentially change the direction of the time 

series. However, the relative timing of regions will still be maintained in the absolute 

sense. The relative temporal distance between any regions will be maintained but the 

directionality will be unclear. Additional work will need to be conducted to interpret the 

correct direction. However, we will use the projection matrix to set a direction for easier 

reverse inference.  
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(3) Finally, the result will have a zero mean for every component. This will result 

in a shifting of the time series, but the relative position of the units in time will not be 

affected. This shifting does not affect the interpretation of the data in any way because 

each lag thread is essentially a time series of activation. As long as the association 

between a region and a value is maintained across instances, the columns may be put in 

any order and the information will be preserved. These points are important and I shall 

return to them later. They also illustrate some of the limitations of the current 

methodology. 
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Figure 14. Demonstration of lag relationship between regions. A. Represents the situation 
in the projection vector. Regions have clear order. Positive correlations go in the direction 
of the time arrow. B. In the situation with ICA correlations represent the distance from 
some region, C. 
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Results. Once the method of data cleaning of the lagged representations was 

determined, ICA was completed on 5, 8, 10, 20, 40 and 80 components. Determining the 

number of meaningful components is a judgment call as described above. There is no 

theory driving these particular numbers. Increasing the number of components results in 

finding more source signals many of these may be the result of noise or portions of larger 

lag networks. Due to the interpretability the 5 component model was used in all further 

analysis although the output of the various number of components is included for the 

interested reader in Appendix E.  

When reconstructing the signal, it is customary to add the mean for each signal 

back into the result, however the mean was left separate so that each component could be 

similarly visualized. Because we are looking at relative timing of regions visualization 

converted the resulting component signal into a z-score representation with the limits set 

to positive and negative 1.5 standard deviations from a mean of zero. Each of these 

components is also illustrated across time in a video located in the supplementary 

material. 

Effects of Lag Limits. An initial simulation for 10 component models was used to 

evaluate the effect of lag limits on the resulting component structure. In this simulation 

all subjects were averaged across respective cells. The resulting components were then 

projected onto the cortex. A visual inspection of the resulting matrices shows both 

matrices have similar component structure. Choosing between a 8 and 10 second lag had 

minimal impact on the components. Keep in mind that in figure 16 the same components 

may be negative copies of each other, this is not a result of the lag limit difference, but a 
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feature of ICA which was described above. As can be seen the general shape and 

distribution of the components was minimally changed.  

Results. Interpretation and reverse inference is limited to the 5 component model. 

The results of the ICA on a 5 component model can be viewed in figure 15. A possible 

approach to trying to classify these components is in their limits. Where does the thread 

begin and where does it terminate? What follows is a post hoc attempt to explain these 

threads. An individual with different training may see different patterns in the data that 

explain the observations; however, this is an attempt to begin classification. It is 

acknowledged that much more work is necessary to verify these additionally a larger data 

set is necessary to deduce the reliability of the component extraction. 

Component 1. Component 1 appears to deal with body representations as initial 

activations and then at the other end is defined by the precuneus, and the inferior parietal 

gyrus, both association areas; but the precuneus is particularly important in complex 

social emotions and representations of self..  

The motor strip (Penfield, & Boldrey, 1937), represented prominently here is 

early in the lagged sequence which may indicate the prominence of this in the later 

regions. This indicates that in this particular thread information in the sensorimotor 

regions may drive information processing in other abstract regions.  

The inferior parietal gyrus and the inferior temporal regions come later and 

primarily concern semantic information and object recognition respectively. The inferior 

parietal gyrus also focusses on working memory and a variety of other association and 

abstract functions. Interestingly the superior parietal gyrus is also early. This region is 
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associated with mental manipulation of information (Koenigs, Barbey, Postle, & 

Grafman, 2009) including tasks such as mental rotation (Parsons, 2003). It does not 

appear to be associated with other types of working memory involving rehearsal or 

retrieval or long term memory. Additionally, this region is associated with body 

representations and maintaining memory of those representations (Wolpert, Goodbody, & 

Husain, 1998). In general, it also associates sight and action as in tasks like reaching and 

goal processing (Desmurget, Epstein, Turner, Prablanc, Alexander, & Grafton, 1999).  

This component seems to represent the position and movement of one’s body 

through space perhaps as a metaphor for more abstract processes. Motor tasks and 

peripheral attention regions of visual cortex are early whereas abstract regions such as 

reasoning in frontal cortex and representations of self in the precuneus and inferior 

parietal areas associated with working memory are later. This might help represent a 

source for embodied representations of knowledge grounding abstract thinking in 

physical interactions (Lakoff, 2012). 

Component 2. The predominant feature of this component is the insula which 

appears as an entire unit to be activated early compared to other regions. The posterior 

central sulcus also appears to have early activation which is importantly associated with 

the abdominal region, but not the motor aspect of it. The cingulate appears activated early 

here as well. In this thread motor and memory regions are later. 

The anterior superior region of the precuneus is activated early immediately 

following activation of the insular regions. The various regions of the insulation also deal 

with cognitive monitoring of emotions and the timing of the anterior insula in emotional 
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perception may vary based on culture as suggested in (Immordino-Yang, Yang, & 

Damasio, 2014). 

 The wave of activity in the precuneus is particularly interesting and is shown in 

detail in figure 17. This anterior superior region is earlier and is typically associated with 

more physical attributes such as admiration for a skill and compassion for physical pain. 

Later regions of this component involve the activation of the posterior inferior precuneus 

which deals with more abstract representations of self-including admiration and 

compassion for social pain (Immordino-Yang, McColl, Damasio, & Damasio, 2009). 

Immordino-Yang et al. (2009) also described the timing between these two regions as 

physical aspects of emotions may be processed faster than the social aspects of emotions. 

Interestingly the inferior temporal shows significant early activation. This region 

is associated with rapid object identification and semantics (Grill-Spector, Knouf, & 

Kanwisher, 2004). Without subcortical region information it is difficult to tell, but this 

thread suggests that it may include rapid identification of objects and internal body states 

which would be relevant for perceiving feeling. The frontal regions and the sensory and 

motor cortices appear mottled at best and do not as a whole come early or late. 

The insula and the fusiform face area have also been differentially associated with 

the subconscious processing of fearful faces (Pessoa, 2013; Pessoa & Adolphs, 2010). In 

any case, this component suggests that emotion and reaction to emotionally laden objects 

may be driving the start of this process. A more detailed examination including 

subcortical analysis might give additional insight. 
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One possibility is that this thread is associated with emotional processing. Early in 

the thread we see bilateral insular response at both the anterior and posterior ends, this 

coincides with activation in what may be the fusiform face area and anterior cingulate. 

This activation then spreads throughout these regions and throughout the process we see 

anterior superior precuneus activation spread toward the inferior posterior region. Just 

such a sequence may be associated with subconscious processing of visual stimuli for an 

emotional response ending in a feeling. 

Component 3. The third component immediately appears to reflect visual 

processing demonstrating both a ventral and dorsal stream as suggested by (Goodale, & 

Milner, 1992). The ventral stream dealing with the “what” and the dorsal stream dealing 

with the “how”. Of particular importance is the early occipital pole. Notice that for the 

other 4 components the occipital pole is late compared to the surrounding visual cortex. 

The occipital pole is often associated with visual processing at the fovea and deals with 

fine grained detail. 

What is particularly interesting here is that the ventral pathway appears to have 

faster relative timing than the dorsal pathway, exactly what the theory would predict. 

Also, we note that the ventral pathway moves activity into the premotor regions 

predictably skipping the lateral parietal regions. This is suggesting of known anatomical 

connectivity between these regions (Goodale, & Milner, 1992; de Schotten, Urbanski, 

Valabregue, Bayle, & Volle, 2014). This dorsal pathway was suggested by the theory to 

involve the “how” of visual perception predicting the ways we may interact with the 

world. All other regions appear later and are not interpreted. 
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Component 4. This component is not quite as clear to interpret. The occipital 

region with the exception of the occipital pole appears early. In this sequence the 

temporal lobe is later as well as regions of the frontal lobe. Of particular interest is the 

predominance of the medial regions of the occipital lobe. There is also early activation in 

the posterior part of the insula and the inferior portion of the pre-central sulcus. This 

region is immediately between Broca’s region and the sensory portion of the central 

gyrus associated with the mouth and larynx. These are necessary both in oral and silent 

reading as phonemes are represented as motor movements.  Observing activation in the 

precuneus, we see simultaneously activation in the anterior and posterior regions which 

then moves more central to the structure. The meaning of this particular thread is elusive 

but it likely has something to do with secondary visual processing. 

Component 5. This is the noisiest component and may therefore may be too noisy 

to interpret, however, overall there appears to be earlier frontal regions including anterior 

insula and earlier parietal regions including broad activation in the precuneus. A broad 

thought may be that these regions are associated with cognitive control and abstract 

thought. Early anterior cingulate also is associated with management of cognitive 

resources and conflict resolution (Koechlin, Basso, Pietrini, Panzer, & Grafman, 1999; 

Koechlin, Basso, Pietrini, Panzer, & Grafman, 1999). This representation may therefore 

vary most with abstract thinking such as math working memory and other abstract 

cognitive skills. The early frontal region activation may demonstrate a more top-down 

typically associated with frontal regions and executive control (Howerter, & Wager, 

2000). 
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Overall. The overall finding here is that these components repeat the cortical 

folding patterns, but they are also very symmetrical between hemispheres. This indicates 

that what is being observed is likely not noise. The main findings here are not in any way 

conclusive but an approach to classification which may be useful in hypothesis testing 

when associated with particular components as we shall see below.  
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Figure 15. 5-component model of lagged structure 
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Figure 16. These are representations of the same component with four different lag limits 
set. As can be seen, the component structure remains robust although at 10 second it 
begins to get additional noise. Also, as explained above the flipping of some values is the 
result of ICA not the lag limit. The sign of the component is not interpretable. 
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Figure 17. This is an example of a motif. The yellow is the leading edge of the time 
sequence. The Precuneus is outlines in dark blue. The time series appears to go across the 
precuneus in the same direction regardless of lag component identity. Note superior 
anterior precuneal activation at z=0.002 then the lag sequence continues into the posterior 
cuneus from 0.004 to 0.02. 
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PART 3: Mind Wandering in Behavior and Brain 

This final section attempts to apply the methodology devised above to understand 

how the lag components from the projection and 5-component models, which are thought 

to represent high level persistent knowledge structures such as perceptual processes, 

might frame mind wandering while reading aloud. While a number of behavioral 

variables exist in the data set, mind wandering has been a task that has shown robust 

correlations with resting state. So it is here that we will attempt to apply the model. As we 

shall see our neurological findings do not correlate with any typically identified mind-

wandering regions nor do they correlate with regions associated with reading. However, 

the literature summarizing reading and mind wandering in resting state networks will be 

presented below if for nothing more than to point out that lagged network analysis may 

unearth new relations. The methods here continue to be exploratory and the behavioral 

methods are also attempting to represent a specific phenomenon, mind-wandering while 

reading aloud. It is hoped that both behavioral and neural analysis will offer fuel for 

novel hypotheses using this method in conjunction with other more tested methodologies.  

Mind Wandering 

Our thoughts dynamically interact with both environment and internal states as 

we move between the continuum of shifting our attention by “looking in” or “looking 

out” (Immordino-Yang, Christodoulou, & Singh, 2012). While “looking in” can be a 

positive and useful skill as is found in constructive internal reflection (Immordino-Yang, 

Christodoulou, & Singh, 2012) or positive constructive daydreaming (McMillan, 

Kaufman, & Singer, 2013), sometimes those thoughts are decoupled from our external 
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experience in a detrimental way and pull us away from the focus of our current executive 

goals reducing our performance toward the task to which we are supposed to attend 

(McVay & Kane 2009, 2011; Mrazek et al. 2012; Unsworth & McMillan 2013). It is this 

second aspect of mind wandering that will be the focus here. Specifically, we will be 

examining this perceived intrusive form of mind wandering in the context of oral reading.  

This seemingly trivial place to examine mind wandering has important 

educational and practical considerations. It is not uncommon to experience a loss of 

attention while reading silently to ourselves (Smallwood, 2011). Several pages into a 

novel or expository text, we may suddenly become aware that our attention has drifted. 

This can happen even more frequently when reading becomes automated because 

automated tasks increase the frequency of off-task thoughts as do reductions in perceptual 

load (Forster, & Lavie, 2009). Thus paradoxically, as fluency in skill increases 

opportunities for decreased attention to the task are present. This is problematic because 

while attending to simple tasks may require little attention, reading without attending to 

content will not lead to comprehension. When we notice our attention drifting, reading 

aloud is one popular way to reassert this attention. The assumption being that increased 

attention is required for one to read aloud.  

Specifically, one role of reading aloud has been used as a tactic to help students 

maintain attention to text when they are struggling with mind wandering (Rasinski, 

Padak, McKeon, Wilfong, Friedauer, & Heim, 2011); it is also assumed that prosody in 

the oral reading patterns can be used to scaffold the reader helping to syntactically chunk 

(Kuhn, & Schwanenflugel, 2010), interpret the emotional content (Binder, Tighe, Jiang, 
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Kaftanski, & Qi, 2013) and hierarchical arrangement (Van Dijk & Kintsch, 1983) of the 

text they are reading. However, recent research has suggested that reading aloud does not 

always decrease mind wandering and may in fact increase its frequency (Franklin, 

Mooneyham, & Baird, 2014).  The current exploration may reveal some behavioral and 

neural differences between individuals that may account for the degree of mind 

wandering during oral reading. 

There is a rich literature describing the construct of mind wandering including its 

behavioral and neurological foundations. First it is essential to point out that mind 

wandering is not equivalent to external distraction. When engaging in mind wandering 

there is often a decrease in the neural response to audio and visual distractors (Barron, 

Riby, Greer, & Smallwood, 2011; Smallwood, Beach, Schooler, & Handy, 2008), thus 

the phenomena is often termed self-generated thought because it appears to come from 

within the individual (Smallwood, & Schooler, 2015). However, framing mind wandering 

as self-generated also is a bit extreme. It appears more likely that mind wandering is the 

result of dynamic interaction between the environment and the brain. Specific contexts do 

lead to an increased probability of mind wandering.  

Causes of mind wandering. The causes for mind wandering are unclear. It could 

involve a failure of executive control (Kane, et al., 2007, Kane, & McVay, 2012), 

differences in cost and values associated with a task (Klinger, 2013), or the ease at which 

we perform the task (Levinson, Smallwood, & Davidson, 2012), or even the extreme 

difficulty of the task (Feng, D’Mello, & Graesser, 2013). Alternatively, mind wandering 
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may emerge as a result of intrinsic brain states (Mason et al., 2007), which are likely 

repertoire of tools available for skills engagement with the world (Sporns, 2013). 

Executive control. Failure of executive control may be a significant source of 

mind wandering when external tasks are cognitively demanding either because of 

difficulty or sustained attentional demands. The general idea is that there is a limited 

amount of executive resources, often associated with working memory, and as the skill 

becomes more difficult or sustained, these resources are diminished and less resources are 

available to keep the mind on task (Feng, et al., 2013). However, it must also be noted 

that all working memory tasks are simultaneously tests of mind wandering. Mackay 

found that individuals who mind wander more also score lower on working memory tasks 

(McVay, & Kane, 2012). The causal direction is not clear. It may be that those who mind 

wander more may do so during executive skills tasks and thus their scores are lower or 

even a third mediating variable that affect both. Mind wandering may therefore be 

independent of executive control, but we lack the current instruments to separate the two. 

Low task demands. Conversely if the tasks demands are low, mind wandering 

may also be more frequent (Feng, et al., 2013; Levinson, Smallwood, & Davidson, 2012) 

. This is likely due to the automaticity of simpler tasks. Interestingly individuals with 

higher executive control tend to mind wander more frequently in these conditions 

suggesting there is some separability of the executive control and mind wandering 

(Levinson, Smallwood, & Davidson, 2012). Enabling mind wandering during simple 

tasks offers some clear advantages. For example, if we are driving we can then shift our 

attention from the process of attending to shifting gears and the movement of our feet on 
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the pedals and instead engage in observation of the traffic and potential dangers. 

However, the downside is that in the case of a car we can automate all aspects of driving 

and then focus on phone calls, texting, or daydreaming without paying attention to life 

threatening situations. Similarly, if a reading task is easy then we can free up out mind to 

not focus on the decoding task itself but on the imagery the task evokes. In this way mind 

wandering while reading can be useful for the individual as long as that process is 

monitored. 

Yet a third possibility is that more complex tasks of reading such as syntactically 

parsing, hierarchically structuring the text, and even processing the text’s emotionality 

may become similarly automated allowing for a subconscious processing of the text 

allowing the mind to wander, but leaving the reader thinking they have not been paying 

attention. Overall, it is clear that in the process of reading, the skill level of the individual 

interacts with text difficulty to produce mind wandering experiences related to difficulty 

or ease. 

Emotional states. Internal states of the individual may also result in increases in 

mind wandering frequency. Clues to this come from the content of off task mind 

wandering episodes. Most mind wandering appears to involve reflections about self and 

these tend to have negative affect such as rethinking a mistake or evaluating previous 

social engagements (Smallwood, Fitzgerald, Miles, & Phillips, 2009). This approach 

suggests that it is not the features of task difficulty but that the emotional state the reader 

brings to the task be intrusive (Smallwood, & O'Connor, 2011). Extreme cases of this are 

in rumination found in individuals with dopaminergic disregulation disorders such as 
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anxiety, depression and schizophrenia (Curci, Lanciano, Soleti, & Rimé, 2013; Deng, Li, 

& Tang, 2014; McGhie, & Chapman, 1961; Ottaviani et al., 2015). It is unclear what 

causes these thoughts except that they seem to spontaneously emerge from the individual 

in inopportune times causing the mind to wander off task. It is also clear that this is an 

endemic feature of mind wandering and not just a clinical problem. These negative 

emotional states associated with mind wandering appear also more common in cases 

which highlight stereotype threat (Mrazek, et al., 2011). Putting someone in a state that 

makes them think about themselves in a disheartening way could move their mind into 

ruminative behaviors. 

However, emotionality of the text may also be a feature of the mind wandering 

experience (Bal, & Veltkamp, 2013). When reading a text, the individual may become 

emotionally aroused by events in the text. The events in the text may also remind the 

reader of events in their lives which arouse emotions (Smallwood, & O'Connor, 2011). 

An interaction with the text results in an internally aroused state which could interfere 

with attentional processes. This is vaguely parallel to the well-known Yerkes-Dodson 

curve (Teigen,1994), which broadly suggested that arousal and performance followed an 

inverted-U curve where extreme high or low arousal would lead to poor performance. As 

one increases in energy there is a sweet spot of best cognitive performance. If the text is 

too emotive or the individual is too aroused, this may reduce the cognitive performance 

and lead to attentional lapses (Lenartowicz, Simpson, & Cohen, 2013). This includes the 

influence of arousing substances such as caffeine (Watters, Martin, & Schreter,1997). 

However, the reverse is also true where boredom appears associated with mind 
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wandering (Baird, Smallwood, Schooler, 2010). As the mood changes as a function of 

life or task context there is a change in the frequency of off task thoughts. 

Temporal attention. The time traveling aspect of mind wandering also gives us 

some important clues to its causes. While individuals may be distracted by thoughts of 

the past as mentioned above, they may also be distracted by thoughts of the future 

(Klinger 1984, 2013). When cognitive tasks are low there is a prevalence of future related 

thought (Iijima, & Tanno, 2012). In either simple or complex tasks there is the idea of 

competing goals (Unsworth, & McMillan, 2013). The current task may not be important 

for accomplishing other goals such as a test later in the day, the need to use the restroom, 

or preparing for a date. These future goals unrelated to the task itself can be a clear 

distraction from maintaining attention. Additionally, the task itself may offer competing 

goals. The reward of task completion vs task performance is in the same vain as intrinsic 

vs extrinsic motivation (Unsworth & McMillan, 2013). In keeping with this approach, the 

oral reading may involve multiple goals: complete the task as quickly as possible, make 

sure the oral performance sounds good, or comprehend the text, just to name a few. It 

may even be that the way we teach reading where individuals can read aloud without 

comprehension check may encourage the separation of these goals. We have all had the 

experience of waiting for our turn to read aloud and the need to perform socially may 

exceed the need to understand. 

Intrinsic neural states. While this external and internal state interaction may 

account for increased frequency of mind wandering, the persistent patterns of knowledge 

in the brain create conditions for any of the above approaches to mind wandering to 
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occur. This is not in conflict to what is mentioned above but changes the focus from a 

skill based approach which examines behavior performance to a neurological approach 

which examines neurological foundations for skilled interactions. In this approach there 

is a persistent neural pattern that is common among all those who mind wander more. 

The history of the individual may build neural systems that facilitate mind wandering 

during oral reading. If this is the case, then these systems should be observable in the 

resting brain. 

Neural associations with mind wandering. As mentioned above the study of the 

default mode network has been core to examining this phenomenon. Typically, the focus 

has been on using 0-lag correlation studies to examine how well the components of the 

DMN correlate with each other and conversely how much they anticorrelate with other 

attention networks. In this framework the DMN is the network responsible for mind 

wandering and when it is internally cohesive and comparatively more active, then mind 

wandering is also present (Christoff, Gordon, Smallwood, Smith, & Schooler, 2009). 

Additionally, self-reported frequency of mind wandering correlates with connectivity 

within the DMN (Kucyi, & Davis, 2014), where the less distinct the attentional and DMN 

are from each other, the more likely the individual will mind wander. It is notable that 

within-network connectivity in resting state scans negatively correlates with greater 

visual imagery and internal language use. This is similar to the process of mind 

wandering (Doucet et al., 2012). 

However, this type of research has unfortunately led to focusing on the DMN and 

neglecting other brain regions. Most studies appear to use regions in the DMN as regions 
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of interest, thus excluding other regions. A metastudy addressing this very issue examined 

other regions associated with mind wandering using task based paradigms. Differential 

neural recruitment during mind wandering extends beyond the DMN as it is classically 

defined. Fox, Spreng, Ellamil, Andrews-Hanna and Christoff (2015) examined other 

neural regions identified in mind wandering studies. Their study examined 24 studies 

which employed experience sampling, or retrospective analysis involving questionnaires 

which could be used to explore the previous mind wandering experience. To 

operationalize mind wandering, comparisons were made with high vs. low spontaneous 

thought frequency. They confirmed in their meta-analysis a bias toward only examining 

the DMN ROIs which often limited possible findings. The results indicated that 13 

regions were reliably associated with the mind wandering experience. This included all 

classical DMN regions and additionally the dorsal anterior cingulate cortex, right 

dorsolateral/rostrolateral prefrontal cortex, left ventro lateral prefrontal cortex, secondary 

somatosensory cortex, left temporopolar cortex, left mid insula, and left lingual gyrus. It 

is unclear if lateralization is an important feature of these findings or simply the more 

statistically significant finding.  

However, none of these studies examine the lagged structure of the brain that may 

correlate with mind wandering. In fact, some of these studies make the faulty assumption 

that the DMN acts as a unit and look at its connection with other networks over time 

when examining connections. The DMN and the Salience or Attentions network 

anticorrelation has been predictive of mind wandering while reading (Smallwood, 2013). 

Additionally, Beaty, Benedek, Kaufman, & Silvia (2015), suggesting that the DMN and 
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the Salience Network couple more efficiently in creative individuals. Research examining 

these networks in goal-directed cognition proposes similar coupling mechanisms (Spreng, 

Stevens, Chamberlain, Gilmore, & Schacter, 2010). This is based on the very precarious 

assumption described above in Part 1 that neural networks work together only in a time-

locked manner as if they are neuronal assemblies in a task. However as described above, 

networks may also, and in fact are likely, to act in cascading or sequential manners with 

high correlations lagged across time that do not respect classical resting state connectivity 

boundaries. The present analysis seeks to examine just such a correlation based on the 

findings in the previous section. 

DMN components. Because consistent representation of the DMN was found to 

be implicated in mind wandering studies, it is worth breaking down the components as 

they are classically described (Greicius, Krasnow, Reiss, & Menon, 2003). The DMN 

consists of regions which tend to show strong within-network connections which tend to 

be non-reciprocal. To avoid confusion we will henceforth refer to the DMN as Default 

mode Regions. A medial temporal subset involves regions which are differentially 

recruited in other tasks requiring prospective and retrospective thinking about self, as 

well as constructions of mental scenes. A second subgroup, the dorsal regions have been 

associated with tasks requiring social judgements, social perspective, or social 

imagination (Immordino-Yang, McColl, Damasio, & Damasio, 2009; Yang, Bossmann, 

Schiffhauer, Jordan, & Immordino-Yang, 2012; Spreng, & Grady, 2010). A major hub 

linking these regions is the medial prefrontal cortex as well as the posterior cingulate 

cortex. 
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Other cortical regions. A number of regions outside the traditional Default Mode 

Regions have also been identified and been thought to indicate network coupling (Uddin, 

Clare Kelly, Biswal, Xavier Castellanos, & Milham, 2009). Primarily among these is 

another set of regions that have been termed the Parietal Control Network. As the theory 

goes this control network flexibly couples with the DMN to assist in the strategic 

switching emphasis of internal vs external focus. However, if we recognize these 

traditional resting state networks not as networks but regions with strong internal 

connectivity which is non reciprocal then this interpretation falls apart.  

Fox, Spreng, Ellamil, Andrews-Hanna and Christoff (2015) described some of the 

possible reasons for other regions being implicated in mind wandering. The insula and 

somatosensory areas reliably also appear in studies of mind wandering. It may be that 

these regions often being associated with internal body states may account for the fact 

that sometimes mind wandering can be stimulated by physical changes in the body like 

those which are emotional. The inclusion of the insula in mind wandering is particularly 

important when we examine the role the insula pays in perception of emotional and social 

pain (Eisenberger, Lieberman, & Williams, 2003; Straube, & Miltner, 2011), features 

associated with mind wandering contents. The lingual gyrus of the occipital lobe has also 

been associated with mind wandering and has been attributed to visualizing (Ganis, 

Thompson, & Kosslyn, 2004). The authors also point out that the temporal polar cortex is 

also differentially engaged and while being associated with mentalizing, is also 

associated with word retrieval (Mesulam et al.2013). Considering much of mind 

wandering often involves internal voice this is not surprising. Overall, it is clear that mind 
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wandering, like all mental processes likely involves the recruitment of many neural 

regions, and due to the great variety in reasons and contexts for mind wandering, many 

more regions are likely to follow. No studies yet examine how mind wandering while 

reading aloud may be related to resting state scans at another time period.  

Furthermore, to date, there are very few studies examining the temporal nature of 

mind wandering that do not rely on 0-lagged network analysis. The predominant method 

is to obtain resting state fMRI data and then use 0-lag methods to define networks or use 

a mask to define networks. These networks are then observed across time during resting 

state and their correlations across time are observed. This correlation is assumed to 

represent network coupling, how one network influences the other. However, there are 

problems with this approach as mentioned above. 

Mind wandering and mind-brain relation. However, there is a conceptual hurdle 

to discuss when it comes to studying mind wandering during resting state. One could say 

that resting state is a mind wandering task. In this approach we are not observing a 

relatively closed system during resting state, but we are observing an active task driven 

by the individual. In other words, when we ask the individual to keep their eyes open but 

just let their mind wander, we are giving them a task to perform. We clearly make that 

statement when placing someone in the scanner for resting state scans. This idea comes 

from a dualist perspective of mind wandering. In other words, somehow the mind is 

separate from the brain, but perhaps emergent from it, drives the state of the brain into a 

mind wandering state. As we took some pains to explain in the first part of this document, 
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this dualist approach is rejected on philosophical grounds and is rejected by the current 

metatheoretical approach. 

The approach taken here, is that when we isolate the neural system, ongoing 

dynamics will be the result of the organism’s history, stabilizing within-network 

dynamics that are based mainly on internal attractor states. When the system settles into 

these attractor states mind wandering emerges as a behavioral and mental product. What 

is brought to conscious awareness and reported later is a small part of the process only 

reveling how the individual made sense of the experience and how well they can 

reconstruct memories of that experience. As a side note, after resting state it is common 

to probe individuals for what they were thinking about. Through working with the 

participants in this study and others, I have anecdotally noticed that they frequently do 

not know what they were thinking about and the probing may be forcing them to make 

sense of the experience or reveal a fraction of it. This might be because of intentional 

forgetting as they shift back to daily activities and social interaction as reported by 

Delaney, Sahakyan, Kelley, and Zimmerman, 2010), but whether this is intentional or 

incidental is also a question of dualisms. In daily life mind wandering is the result of an 

interaction of external and internal events which result in relative external perceptual 

isolation which may be accompanied by a sense of control or not. A mind wandering state 

is a resting state, but in the scanner there is less likelihood of external events leading to 

externally focused attention. Therefore, I am taking the approach that resting state is a 

relatively closed system that will allow for the emergence of intrinsic system dynamic 

attractor states which will be indirectly observable. 
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In what follows, I shall seek to examine what the characteristics of the population 

are and the task materials as they pertain to oral reading. As we can clearly see from 

above, a host of internal and contextual factors frame the mind wandering experience; it 

is therefore essential to characterize these factors in detail for interpretation of findings. I 

will then relate these behavioral measures to mind wandering. Having characterized this 

particular mind wandering experience as it pertains to oral reading in the current 

population, we will then seek to identify those differences in lagged network dynamics 

that correlate with mind wandering.  

Oral reading and mind wandering. In this section, I shall examine the behavior 

of mind wandering as it correlates with comprehension, oral reading anxiety, and fluency; 

but, we also want to know the latent biological structure of knowledge which may 

correlate with these reading styles. Might an analysis of persistent representations of this 

skill in neural lag structures observed during rest reveal latent differences in the repertoire 

of stored knowledge worth exploring in readers whose minds wander more frequently 

while reading?  

As I shall discuss, literacy itself restructures our brains and leaves a neurological 

representation of the gained skill (Dehaene, Cohen, & Morais, 2015). It is not a far leap 

to assume that variations in literacy practices would lead to similar persistent 

restructuring. The current study examines oral reading practices as an entrenched skill in 

individuals which may be evaluated through connectivity studies of approximated neural 

patterns when an individual is not engaged in an external task. This part of the 

exploratory study will examine resting state network activity over time as one indicator 
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of structural and dynamic differences and how it correlates with the frequency of mind 

wandering while reading aloud. We will explore how identified differences might 

contribute to the frequency of mind wandering while reading aloud. 

Resting State and Reading. In an examination of mind wandering while reading 

aloud, it is also essential to review how resting sate correlates with reading in general. 

Mind wandering is potentially a difference in these network relations.  

A number of studies have begun to examine inter-individual resting state network 

configurations and reading skills with mixed results. One of the first exploratory studies 

on this front involved resting state analysis of previously implicated neurological regions 

implicated in reading to better understand the relationship between regions and networks. 

Koyama and colleagues (2010) examined the resting state patterns of 25 adult English 

language readers. Six ROIs were selected based on a series of task based studies involved 

in word reading in a variety of alphabetic languages. These included the left FFG, left 

superior temporal gyrus, left temporoparietal junction, left pre central gyrus, left inferior 

occipital gyrus, and the left inferior frontal gyrus.  

Particularly notable among these selections was the left FFG which has been 

identified as the “Visual Word Form Area” (Dehaene et al., 2010; 2015; Dehaene & 

Cohen, 2011; Dehaene, Le Clec'H, Poline, & Le Bihan, 2002). This region has been 

implicated as representing the orthography of a given language in a hierarchical fashion 

moving from single letter recognition to digraphs and whole words. Dehaene (2015) also 

suggested that the specialization of this area may be due to the adjacent fusiform face are 

and place areas allowing the reader to take advantage of evolutionarily established skills. 
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Other areas selected included traditional language areas of Wernicke’s and Broca’s areas 

implicated in speech perception and articulation respectively as described above. A region 

which was excluded from the data was the left angular gyrus which had been implicated 

in reading because of its hypoactive behavior in dyslexics; this region was excluded 

because it has not been implicated in fluent reading (Finn, Shen, Holahan, & Scheinost, 

2014).  In a connectivity analysis of these regions they were able to find strong 

connections between regions that were implicated in task based studies (Koyama et al., 

2010). Also, they found that the increased network connectivity of these regions was 

inversely related to DMN activation. This would be expected as readers must focus 

externally to decode words. Regions of the frontal networks were inversely activated with 

reading networks, this suggested that word decoding skills are automated and require 

little guidance from frontal regions involved in problem solving. Unexpected was the 

finding that reading networks were not left lateralized with the exception of the FFG and 

IFG which were left lateralized but not limited to the left. There was strong bilateral 

activation for these resting state networks implicated in reading. A clear short coming of 

this study is that it did not take any behavioral measures.  

In a later study, Koyama and colleagues (2011) examined differences across age 

groups. In this study 25 adults and 25 children were given subtests of the Wechler 

Abbreviated Scale of Intelligence (WASI) and the word reading section of the Wechler 

Individual Achievement Test (WIAT-II). Because general IQ and reading decoding skills 

highly correlate, general IQ scores were used as a between subject covariate to help 

identify difference sin resting state that were unique to word decoding skills. Correlation 
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matrices were constructed for each individual for all 11 ROIs giving 55 pairwise 

correlation coefficients each of which was then correlated with the reading scores from 

the WASI-II. Significant correlations were identified between reading competence and 

connectivity, the strongest of which was between the FFG and IFGop. This correlation 

was negative for children and positive for adults. This finding was interesting considering 

the FFG is important for visual word recognition. This suggests that the developed and 

integrated orthographic functions of the FFG become more important in reading for older 

adults who are better word decoders. For all groups stronger connections between motor 

regions and the classic language regions (Broca’s area and other areas implicated in 

phonology) correlated with word decoding ability. This reading network connectivity was 

inversely related to DMN activation, supporting later findings that DMN activation may 

be down regulated when paying close attention to a reading task (Smallwood, 2013). This 

study examined only children 8-14 years and adults of 20-46 years. It excluded the 

current groups of adolescents that are under examination in this study from 17-19 years. 

In any case, this study strengthened the use of resting state connectivity measures as a 

way of examining network availability for reading tasks by including a reading task 

(albeit a very limited one) and revealing age related differences in reading network 

connectivity.  

The current study examined network connectivity in bilingual individuals, 

therefore, it is essential to show that these results can be extended to bilinguals. Resting 

state functional connectivity analysis was carried out on 43 Chinese-English bilinguals 

aged 19-24 years (M. Zhang et al., 2014). They were able to show similar results with 
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this bilingual population even though one of the languages was not a traditional 

alphabetic language. (Although it has been reported elsewhere that both iconic and 

alphabetic languages rely on statistical mappings related to phonological representations 

and are not, therefore mutually exclusive systems (Dehaene et al., 2010). In this 

particular study an additional reading evaluation was used: the Test of Word Reading 

Efficiency (TOWE-SWE) and the Chinese Character Reading Efficiency (CCRE). Both 

tests were word recognition tests basically counting the number of words that could be 

read correctly in 45 seconds with test items arranged from easy to hard. Like Koyama 

(2011) a general intelligence measure was taken and used as a covariate. In this case 

Ravens Advanced Progressive Matrices (RAPM) was used. From the list of 11 ROIs in 

Koyama(2011), 8 ROIs were selected each with a 6 mm sphere. There was no significant 

relationship found between resting state connectivity measures and RAPM, but there 

were correlations found between reading scores and reading network connectivity. Of 

particular note, there was no significant difference between resting state connectivity 

maps associated with Chinese and those associated with English. These results bolster the 

validity of using resting state analysis to examine neurological foundations of reading 

ability. They are particularly important for the current study because they show that 

resting state connectivity results correlate with reading scores regardless of bilingual-

monolingual status. 

Important limitations of all these studies is that reading ability is simply defined 

as word recognition ability and decoding. However, as discussed above reading has many 

more skills involved than simple decoding. 
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It is hypothesized that some of these regions may be important in describing the 

resting state findings in lagged structure. Perhaps differences in the lag networks related 

to these other regions may be the foundations for mind wandering while reading aloud. 

However, I shall not be using general intelligence as a covariate as was done in the 

studies above. General intelligence is a combination of many skills and by regressing out 

this feature, it may actually remove regions of particular interest in this study. There is 

also no theoretical reason for doing so because we do not know how general intelligence 

correlates with lagged networks. 

Aims. The basis for this particular study is based on the foundations built in Part 1 

of this dissertation whereby sequential neural activity recorded in the brain at rest is a 

persistent representation of knowledge or a repertoire of available skills. In this vein, we 

shall attempt to use the regressors for the projection lag vector and the principle 

component model with 5 components. This assumes that these lagged networks are 

persistent representations of skilled engagement with the world. Although we are 

theorizing that the representation in Part 2 are perceptual in nature, perception is also a 

learned skill and part of the knowledge framework with which we engage the world. A 

more detailed analysis of higher component models should be the study of future 

investigations. 

Methods 

Participants. From the study used above to generate group level representations 

only a subset of 38 participants were used for this analysis. All participants were self-

identified fluent bilinguals as described above. All were born in the United States. Their 
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ages ranged from 16 to 20 (m=17.65, SD 1.07) years. All participants were neurologically 

normal with no reported psychiatric or neurological disorders. All reported being able to 

read with minimal help from corrected lenses. None were under the influence of 

psychotropic drugs. Ethnic makeup consisted of (27) Latinos, (2) Filipino, and (9) 

Chinese. There were (18) boys and (12) girls from a series of high-schools in the Los 

Angeles area.  

Procedure. The oral reading procedure took place in the afternoon approximately 

2 hours after the fMRI scanning procedures. No assumption is made that the oral reading 

procedure affected the resting state scan, instead the assumption is that the scan captured 

persistent neural representations of knowledge during resting state that were available for 

the later reading task. The reading task uses non standard measures with an attempt to 

capture a specific type of behavior which was produced in Feng, D’Mello, Graesser 

(2013) and Franklin, Mooneyham, Baird, & Schooler (2014), both studies which 

examined mind wandering during reading. Therefore an extensive discussion will be 

included to describe the features of the reading material in the current study. 

Preparation. The reading procedure took place in a small bare office with a small 

window at the participant’s back. All instructions and debriefings were conducted by the 

same experimenter who sat next to the participant for the preparation and debriefing.  

To introduce the participants to the task they were told the purpose of the task was 

to “assess reading patterns” and given a definition of mind wandering and a brief 

discussion verified their understanding of the concept. They were asked if they ever 

experienced the sensation of having read a passage but not paying any attention to the 
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text because they were either “zoning out, thinking of something related to the text, or 

thinking of something unrelated”. They were then introduced to the scale of mind 

wandering and it was verified that they understood this scale before continuing. The 

participants were then given task instructions.  

Participants were told that they were going to be presented with a story across a 

series of slides and were told that following this presentation, they would be asked what 

they remembered from the story. They were instructed to read the slides aloud; they were 

told that no silent reading was permitted, and they should refrain from reading sections 

multiple times to remember the content. Participants were asked to sit upright and tilt the 

laptop screen to a comfortable angle. Proper posture was ensured before participants 

began to limit any effects poor posture would have on oral reading practice; this was then 

verified in the video recording. They were asked to read in as natural a voice as possible 

and read the text as they felt “the author intended it to be read”. They were told that after 

reading a slide they would press the spacebar to advance to the next slide where they 

would make a mind wandering rating and then continue to read the next section of text. 

Oral Reading Task. The oral reading task took place only after the experimenter 

left the room; this was in effort to minimize oral reading anxiety and a sense of social 

awkwardness. The participants were instructed to press the space bar when they were 

ready to begin. The participant was then presented with the first screen of text from the 

story. When they pressed the spacebar to advance to the next slide, they would be 

presented with the mind wandering scale. Once participants made a rating, by depressing 

the corresponding number on the keyboard, the screen advanced to the next sections of 
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text. The final slide told the participant to leave the room and get the experimenter who 

was not observing but was in an adjacent room. 

Debrief. After the experimenter returned, the participant was asked a series of 

questions. The first question asked the participant about the content of their mind 

wandering. They were then asked to make an aggregate rating of how much mind 

wandering they think they did and the final mind wandering question asked participants 

to reflect on their general frequency of mind wandering while reading for school or 

recreation. 

Following this, the participants were probed for comprehension of the story. They 

were asked to retell the story in as much detail as possible, then probed once more for 

additional information. When no more information was given, participants were asked 18 

open ended questions for an additional comprehension check. 

Finally, participants were asked a series of likert style questions to explore how 

much anxiety they experience when being asked to read aloud. These questions were 

adapted from Saito (1999) and are available in Appendix D. Anxiety endemic to the task 

of oral reading may lead to differences in mind wandering.  

After completing the reading tasks in a subsequent debrief, all participants 

informally reported feeling engaged by the reading task and not feeling exhausted from 

other tasks in the day. The entire time for the oral reading task and debrief lasted 

approximately 17 minutes. 
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Behavioral Measures  

Mind Wandering Probes.  In Franklin et al. (2014) mind wandering probes were 

presented to participants at predetermined points in the text. The current study differed 

from Franklin et al. (2014) in that it attempted to get at mind wandering as a continuous 

variable as opposed to a categorical. Mrazek, Smallwood, & Schooler (2012) similarly 

assessed mind wandering by using a 7-point scale ranging from one to seven 

(“completely off task” and “completely on task”). However, it was recognized during 

piloting that these ratings may be confusing to the rater as thoughts about the story may 

be interpreted as on-task although they may remove attention from the current practice of 

reading. Thus, the scale used here asked only for amount of general mind wandering 

which included both on- and off-task thoughts that interrupted the flow of reading. The 

rating scale was from 1-5 with one being no mind wandering and perfect attention to text, 

and 5 being so much mind wandering that they are not sure what they just read. This 

construct was general enough that participants could easily recognize whether it occurred. 

Participants in this study were presented with this mind wandering probe 17 times during 

the oral reading session at predetermined intervals avoiding breaking the story mid-

sentence or paragraph. Intervals did not vary between participants. The time it took 

participants to make the rating was usually less than one half a second indicating that the 

process was a minimal interruption to the reading task.  

The content of their mind wandering was probed immediately afterwards during 

the debriefing session by asking them the question “What did you mind wander about?” 

This allowed for validation of the type of the construct and later qualitative exploration. 
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To verify that they followed directions for the rating scale correctly, they were also asked 

how much mind wandering they thought they did during the task additionally this offered 

an aggregate metacognitive measure of mind wandering awareness.  

A likert scale was used to assess how much the participants perceive that they 

mind wander on a daily basis while reading texts for school and for recreation. This 5-

point scale ranged from “I never mind wander while reading” to “I struggle with mind 

wandering every time I read.” 

Comprehension measures. To check whether the participants attended to and 

understood the text, the reading task was followed by a free story retell. Participants were 

asked to “Retell this story to me in as much detail as you can.” Students were then 

encouraged one after a brief pause by saying “what else can you remember?” Although 

no retell procedure as of yet has been determined to be optimal, these prompting 

procedures are consistent with a wide variety of retell approaches (Reed, 2011; Reed & 

Vaughn, 2012). Retells were recorded in audio format and transcribed. In a meta study, 

Reed and Vaughn (2012) found that 41 of their 54 studies evaluating retells used some 

quantitative measure based on number of words or propositions. All retells were therefore 

divided into propositions and propositions were coded as correct, correct inferences, or 

incorrect. A number of scoring methods have been developed for recall. Several of these 

were used here to validate each other. The first of these was simply the total number of 

words recalled which has been shown to correlate with both interest and retention and is a 

rough estimate of number of propositions (Naceur & Schiefele, 2005) A second approach 

taken in scoring involved counting the number of propositions. For this method, 
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procedures outlined in Gambrell, Koskinen, and Kapinus (1991) were followed: each 

correct proposition or inference was given 1 point, and incorrect propositions earned a 

negative points; points were then summed. Propositions were counted only once if they 

were repeated and while proper nouns were counted propositions, referents were not. 

Additionally, an overall rating of the completeness of the “main idea” was included. This 

was a summary statement ranging from 1-3 (“none,” “some,” “all”), indicating that the 

retell demonstrated understanding of the gist or overall main idea of the passage. This is 

similar to what is found in Woods and Moe (2009).  

Finally, 18 open-ended questions were used to validate the retell measure. These 

questions addressed at least one proposition per slide. These answers were either marked 

as correct or incorrect. While retells indicate the number of propositions spontaneously 

recalled, questions about specific story elements may engage recognition of propositions 

understood, but not remembered. Thus, these additional questions further reveal the 

participant’s comprehension of the text. Each slide was represented at least once in these 

questions.  

Anxiety measure. Because anxiety may reduce the capacity of working memory 

(Darke, 1988) and therefore increase mind wandering (McVay & Kane, 2012), anxiety 

for oral reading was measured. There is no known measure for oral reading anxiety in 

first language, so one had to be adapted from previously used scales in foreign language 

reading performance. It is likely that there are some similar performance anxiety issues 

that the instrument would get at. Five likert style questions adapted for the oral reading 

performance anxiety were taken from the Foreign Language Reading Anxiety Scale 



203 

(FLRAS) (E. K. Horwitz, Horwitz, & Cope, 1986) and validated by Saito et al. (1999). 

The questions were adapted from the FLRAS which was found to have strong concurrent 

validity with the Foreign Language Reading Anxiety Scale (FLCAS) as shown in the 

Pearson product-moment correlation coefficient (r =.64, n=383). The FLRAS showed 

strong internal reliability of .86 (Chronbach’s alpha, n=383). It has been tested on 

Russian, Japanese, and French. However, we are using it with English which is the first 

language for the participants. Additionally, changes were made to the questions so that 

they related to oral reading in the first language and only a subset of questions were 

appropriate. The participants were asked whether they “strongly agree” to “strongly 

disagree” on a scale from 1 to 5 for the following four statements: “I start to panic when I 

have to read aloud without preparation,” “I can feel my heart pounding when I'm reading 

aloud,” “I feel very self- conscious about reading aloud,” and “I get nervous and 

confused when I am reading aloud.” At the time of this procedure no known oral reading 

instrument had been previously validated with the target population; while its validity in 

the current study can be questioned it is nonetheless a proxy for oral reading anxiety. 

Other cognitive measures. Cognitive measures were taken for two reasons, first 

they have historically been associated with neural connectivity in 0-lag studies, they 

appear to correlate with mind wandering frequency, and they also correlate with other 

reading measures. Two cognitive measures were taken. The Wechsler Adult Intelligence 

Scale-Third Edition (WASI-3) was administered to get a proxy of intelligence (D. 

WechslerPsychological Corporation, 1997). This has been used as a covariate in previous 

studies examining neural connectivity and reading comprehension (Horowitz-Kraus, 
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DiFrancesco, Kay, Wang, & Holland, 2015; Horowitz-Kraus, Vannest, & Holland, 2013). 

But, as mentioned above, these are not being used as covariates in the current study and 

only included to see if they correlate with reading. There are notable issues with this 

measure as it tends to only correlate weakly with other measures of working memory and 

so lacks convergent construct validity (Kane, Conway, & Miura, 2007). Vocabulary, full, 

and matrix results were taken. 

As a proxy for working memory capacity the N-back measure was used. Variance 

in N-back appears to vary independently from digit span measures, for example.  But, it 

still has some validity as a general measure of fluid intelligence and higher level 

measures of intelligence particularly in terms of individual differences (Jaeggi, 

Buschkuehl, Perrig, & Meier, 2010). The task was completed 4 times and results were 

averaged. The basic procedure involves displaying a number of items on the screen 

sequentially. As the items appear the participant is asked at random time points to identify 

the item that was presented two items back. Participants respond to this task using a 

keypress and then indicated their answer to the experimenter. To complete this task 

successfully, they must maintain information in their short-term memory buffer and then 

respond after a decision making process. It thus involves a variety of short term cognitive 

skills. Due to the wide variety of ways that the task is implemented there is no reliable 

psychometric data on the test. Because I am working with an existing data set, this 

measure was the only one available as a proxy. As mentioned above, working memory 

has been shown to correlate strongly with the amount of mind wandering (McVay & 

Kane, 2012). 
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Reading material. The reading material was selected specifically for its 

emotional range. It was meant to be both engaging and stimulate a strong emotional 

reaction in the participants. This material was read aloud with intermittent mind 

wandering ratings as described above. The procedure was similar to the mind wandering 

study conducted by Franklin et al. (2014), in which participants read a detective story 

aloud; however, the story here was selected to have a wide range of emotionally charged 

content to elicit emotion. The material was selected after piloting a series of randomly 

selected excerpts from similar reading material with a small group of undergraduates. 

This material was reported as most engaging out of a random selection of 5 excerpts, but 

also very likely to induce mind wandering. Previously standardized fluency texts 

typically used in oral reading measures (Rasinski, 2004; Rasinski, & Hoffman, 2003) 

were not used because they lacked the emotional variation and were not sufficiently long 

to lead to multiple instances of mind wandering. Additionally, the detective story, nor the 

previously standardized fluency measures contain material which would be read in 

standard reading encounters where in the public newspapers.  

As such, evaluating reading ability and mind wandering was done with an 

authentic and emotionally charged and ecologically valid reading sample, an excerpt of 

Ron Suskind’s widely read New York Times article (2014) was extracted discussing his 

relationship with his autistic son and his son’s developmental changes. The New York 

times was chosen due to its usual high level of readership and expected range in 

readability across the text. The New York Times tends to have articles ranging from 6th to 

14th grade reading level. Because of this wide range, the readability will be analyzed in 
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detail below. The total excerpt was 1601 words. The excerpt presented participants with a 

clear exposition, climax and resolution narrative devices. The complete excerpt of this 

article is included in appendix D.  

Presentation of text. The story was presented on a 12-inch laptop computer 

screen tilted so that it was a comfortable reading angle for the participants. Black text was 

presented on a white screen at a font size of 24 points, Ariel font, and no accompanying 

images. Slide presentation time was controlled by the participant who either pressed the 

spacebar or made a mind-wandering rating to advance to the next slide.  

Although Franklin (2014) presented one sentence per slide, this was less desirable 

in the current study because of the loss of visual structuring of the text available to the 

reader which offers important cues. Because the Franklin(2014) study presented one 

sentence at a time, there was no need for the participants to “chunk” the information and 

was therefore less like authentic reading experiences. Slides in the current study varied in 

length due to efforts to keep from breaking paragraphs or meaningful segments of text 

across screens so some artificial breaks still occurred. The presentation consisted of 32 

slides in alternating order beginning with story segment followed by a slide probing for 

mind wandering. The slides with story text displayed a mean of 104.56 (SD=33.32) 

words per slide.  

The 16 mind-wandering probe slides displayed a likert scale of 1-5 centered on 

the screen at 28 point Ariel font. Above the scale were the words “no MW” and “Greater 

MW” above the numbers 1 and 5 respectively from left to right. Once the participant 
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made a rating, by using the keys at the top of the keyboard, the next section of the text 

was automatically presented.  

MATLAB was used to present the stimuli and record keyboard responses and both 

audio and video format of the reader’s face. Participants were video recorded from the 

camera embedded at the top of the laptop screen, and the microphone embedded in the 

surface of the laptop.  

Story readability. This section will seek to answer two main questions about the 

selection of reading material: what is a holistic readability for the selected texts, and what 

is the ongoing dynamic readability measure to examine readability changes across the 

story. The first will address the appropriateness of the reading material and the second 

shall act as a dynamic variable compared to other ongoing measures.  

Holistic readability measures. Measures of readability were applied to the text to 

determine an estimate of reading difficulty. In general readability metrics attempt to take 

into account both syntactic difficulty inferred through sentence length and semantic 

difficulty as inferred from the frequency word lists or the average number of syllables per 

word (Fry, 2002). Overall readability measures are preferred to leveling in the current 

study due to their reliable objectivity and application to older populations: grades 1-17 

(Clay, 1991). Here, six measures were applied to the text to determine its general 

accessibility to the age group in this study addressing readability from word familiarity 

lists, syllable counts, and/or sentence length. Unless otherwise indicated the readability 

formula was applied to the first 600 words of the text, a standard practice for assessing 

readability (Clay, 1991). All participants in this study were either in the 11th grade or 



208 

higher. The goal of any readability measure is to indicate the projected years of formal 

education required to easily read the text therefore readability below 11th grade should be 

appropriate. This is a measure of the text; and not a measure of individual skill, to be 

described with other measures in the measures section below.  

To obtain a reliable readability measure three approaches are used here to 

determine the appropriateness of the text for the participants under study: using 

previously established age level vocabulary lists, average word length, and a hybrid 

sentence length and number of syllables. Of the literally hundreds of readability measures 

the present measures are commonly used with the age group under current investigation, 

and are frequently used in the readability literature. Readability measures which are 

standardized only for younger age groups are not discussed. 

Dale-Chall’s index uses a list of “hard words” and sentence length to determine 

the difficulty of the text. This method was designed and tested on higher grade levels. A 

“hard word” is defined as any word not on a list of words easily readable to the average 

fourth grader. The number of words in the current material not found on the list was 88 

(13%). This gave a level of 2.518 for the material and the adjusted score (+3.637) for 

grades higher than third bringing the final raw score to a grade level of 6.2. This scale 

increases the difficulty based on absence from the list of words and each time the same 

words appear they are counted in the final raw score. Utilizing word frequency measures, 

the current text is below the grade level of the students in this study.  

Another approach is to evaluate the text based on the number of syllables in 

words as an indicator of word readability. These methods are applying Zipf’s principle of 
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abbreviation which has repeatedly shown that more frequently used and therefore more 

familiar words tend to be shorter in length (George, 1935). Thus, fewer syllables is an 

approximation of semantic specialization and word frequency as well as ease of 

production. It is of course true that syllable length can often be misleading but it does 

tend to be a good statistical indicator. The FORCAST-Strict 73 readability formula was 

designed to evaluate training material for newly enlisted members of the US armed forces 

which tend to be around the age of 18, similar to our current sample. It tends to err on the 

side of assigning a higher grade level due to the average education level of the enlisted 

member for which this measure was designed (Caylor & Thomas 1973). This readability 

formula evaluates a text’s readability by taking into account the number of 1 syllable 

words per 150. Averaging the 150 word segments from the 600-word selection resulted in 

118 one syllable words per 150 words in the text giving a readability index of grade 8.2. 

The opposite approach is to look at the number of polysyllabic words in a text. The 

Simple Measure of Gobbledygook (SMOG) readability index utilizes this approach 

(Laughlin, 1969); in the selected text of 600 words there were 56 polysyllabic words; by 

entering this into the SMOG formula we get a SMOG index of 6.1. This measure was 

validated with standard comprehension measure of the time requiring 100% 

comprehension for individuals in the associated grade level. These measures of 

readability by number of syllables also suggests the text is within the readability range for 

this set of participants. 

To attempt to account for syntactic complexity the length of sentences is also 

used. This relies on a supposition that longer sentences are more syntactically complex as 
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well as require maintaining more information in working memory while reading a 

sentence. This second point is supported by research demonstrating that “heavier” noun 

phrases require more working memory resources than light noun phrases (King, Just, 

1991). Three indexes are in regular use that evaluate text through a combination of 

sentence length and syllables. The Flesch-Kincaid formula used in a variety of settings 

indicating the general readability of informational pamphlets, resulted in a score of 78.8 

indicating a grade level of 5.5. This scoring method has been validated with older readers 

and has been adopted as a standard by the US army (Ley, & Florio, 1996). Fry’s 

readability index is an approximation of readability taking into account both the average 

syntactic complexity indicated by the number of sentences per 100 words, and the 

average semantic complexity indicated by the number of syllables per 100 words. The 

first 600 words of this passage had 136 syllables per 100 words and 8.4 sentences per 100 

words; when applied to Fry’s readability graph this indicated that the text was at a sixth-

grade reading level. Finally, the Gunning-fog formula which was originally designed to 

help evaluate the readability of newspaper writing also combines sentence length and 

syllable information. The Gunning-fog score includes the average number of words per 

sentence and the number of three or more syllable words out of the total number of words 

in a sample. The total number of words with 3 or more syllables was 46 and the average 

sentence length was 12; indicating a grade level of 7.6 again indicating that the reading 

level is below that predicted for this age group. (Note that in this index proper nouns, 

compound words and inflectional suffixes are not included in the syllable count). 
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Readability and comprehension scores. The Gunning-FOG formula, originally 

designed to help evaluate the readability of newspaper writing correlates high with 

comprehension (r=.91) This indictor takes into account both sentence length and 

percentage of “hard words” which are those with more than 2 syllables. The FORECAST 

readability index, has correlated poorly with comprehension, but was designed for young 

adult recruits in the US military. It correlates with comprehension at r=.66. However, the 

FORECAST formula correlated highly with the Felsch Reading Ease formula at r=.92. 

Another way to evaluate the two measures is through how much of the variance in text 

difficulty can be explained by the scores as measures with reading comprehension scores. 

The FOG index is determined by 90% comprehension. It has been cross validated with 

the Fry, Dale Chall and Flesch indices giving strong cross correlations of .95, .88, and .91 

(Meade and Smith 1991). The Gunning-FOG formula also has the added benefit of taking 

into account average sentence size. Thus is includes a measure of complexity and word 

difficulty.  

Holistic ratings of readability discussed above were between grade levels 5.5 and 

8.2, all of which are below the target population. On average, the readability across all 6 

measures is a grade level of 6.6. Table 2 summarizes the above information for the first 

600 words of Suskind (2014). The current participant group ranges from eleventh to 

thirteenth grade. All measures indicate that the readability should be appropriate for this 

age group.  

Fluency and readability. In addition to verifying the appropriateness of the level 

of the selected reading material, the current study does not only examine reading success 
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in terms of comprehension, but also fluency. While for the most part these scores are 

developed with comprehension in mind, limited work has been done to validate them 

with fluency scores. Because the current study also evaluates various indicators of 

fluency, a general caveat must be made regarding the use of readability indexes for 

difficulty of reading fluency. 

Because fluency measures are of central concerning in the current study it was 

important to find measures that correlate well with fluency and comprehension to rate the 

text. Overall, reliability of readability measures for predicting fluency is mixed. Ardoin, 

Suldo, Witt, and Aldrich (2005) indicated that these widely used measures were also not 

equally valid. They tested the association of these scores with WCPM on 99 third-grade 

students of varying academic ability. FOG, SMOG and Forecast were modestly related to 

WCPM. Overall, these showed the expected inverse relationship between increased 

difficulty and WCPM scores. Importantly, their study also examined the validity of using 

windows of analysis for 40, 100, and 150 words to predict reading fluency. Two measures 

stood out and will be used to evaluate these moving averages: the FORCAST and the 

Gunning-FOG index. Each of these was originally designed to assess adult reading 

material adding to their ecological validity in the current study. I will briefly mention 

their correlations with comprehension and fluency measures.  

Using a Kendall’s tau value to represented the association between WCPM and 

readability estimates, both Forecast and Gunning-Fog showed a medium correlation with 

WCPM (.46 and .41 respectively) such that increases in the number of words per minute 

correlate with increased grade level in readability. Importantly, these measures did not 
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vary appreciably between measures containing 40 words or 150 words, changing to .48 

and .34 respectively. Notably, this study also revealed that none of the measures of 

syllables per word, length of sentence, or usage of word lists alone out performed either 

Forecast or Gunning-Fog formulas. 

Ongoing readability. While these measures are used to sample the text’s 

readability as a whole, the current study also seeks to understand readability as a moving 

score across the text. Readability is thus seen as a dynamic measure changing over time. 

The moving reading difficulty level across the story was measured in two ways. First 

using a 100-150 word sliding window always rounding up to the nearest complete 

sentence and secondly the readability was rated for each slide in the presentation. It was 

important to get this moving average because each slide would have a measure of mind 

wandering and its relationship to reading difficulty had to also be assessed. The 

FORCAST index was designed for military recruits which are of young adult age. It was 

designed because the existing measures for elementary age readers showed large margin 

of error for older age groups. When cross validated against the Flesch and Dale-Chall 

formats it was found to have high correlations in the .98 and .95 range respectively. 

However for this older population it had a narrower standard deviation for grade level 

being 2 SD instead of the 4 SD found in the Flesch and Dale-Chall for this age group 

(Caylor and Sticht, 1973). 

FORCAST was shown to have the highest reliability for readability within 

subjects for a variety of reading materials (Ardoin, Suldo, Witt, and Aldrich, 2005). 

However, due to its lower correlation with comprehension, the Gunning-FOG index was 
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also used which has a modest correlation with WCPM in the Ardoin et al. (2005) study. 

The Gunning-FOG formula additionally evaluates syntactic complexity by sentence 

length. The Gunning-FOG formula requires full sentence segments so the moving 

average will always be broken at sentence boundaries.  

Settling on the Gunning-Fog and FORCAST formulas analysis will be completed 

by starting with the first 100 words rounding up to the next complete sentence. The 

FORECAST formula does not require complete sentences but I will use complete 

sentences to align it with the Gunning-fog index. A grade level is obtained for the first 

100 words, then I will slide the window by one sentence and recalculate and so on until 

the entire text is completed. By sliding the window in this way the score will either rise or 

fall based on the most recent sentence. This dynamic representation can be observed in 

figure 18. Trends in mind wandering, and fluency will be compared to this moving 

average for each participant. The mean FORECAST index per slide was 9.105 (SD 

0.654) and the mean Gunning-FOG index was 8.463 (SD 3.243). Wider SD is expected 

for this text in the Gunning-FOG formula due to the short length of sentences in some 

dialog.  

Thus measuring the readability of the text gives us two very important points of 

information: the text is below the assumed reading level for all participants; the reading 

difficulty changes across the text giving us a useful dynamic measure.  
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Figure 18. This was the graph which was used to examine ongoing readability. Mind 
wandering scores were overlaid for each participant, but no systematic relationship was 
discovered. This is only presented here as an illustration of the method. 
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Neural Analysis. All neural data for the current analysis was preprocessed using 

the methods described in Part 2. While the group analysis averaged and removed outliers 

as defined by the Tukey method, the individual maps were complete and unaltered. This 

was because it was not clear whether lag outliers may actually correlate with the 

behavioral variables of interest.  

Projection maps. The projection maps for individuals were prepared the same 

way as the group representation above. Basically the 18,715x18,715 matrix was averaged 

across rows resulting in a 1 x 18,715 vector for each participant which represented the 

comparative lag time at each vertex.  

The corresponding vertices were compared across participants using Pearson’s 

correlation. This resulted in a vector of Pearson’s correlation scores. However, because 

Pearson’s correlations are not normally distributed a fisher-z transform was applied to the 

vector before significance testing. 

Neural imaging involves many separate significance tests. Thus it is infeasible to 

conduct a Bonferroni on the 18,715 tests for each analysis not to mention the correction 

across analysis. While methods exist for controlling for multiple comparisons these were 

deemed inappropriate for the current data set due to the nature of the observed results.  

While Mitra, Snyder, Constantino, & Raichle (2015) used a cluster based 

permutation method, defining cluster size in these detailed non smoothed data is not a 

useful procedure. Furthermore, because this is an exploratory study with a small sample 

the preference was to err on the side of making a type one error as opposed to a type two 

error. It would be better to identify possible results that could be eliminated later through 
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hypothesis testing than to eliminate results when the known distribution of these types of 

data sets is unknown. Furthermore, the cluster based methods were designed with a 

different data type in mind. The current analysis is not comparing signal strength but 

relative timing of regions and no known correction for multiple comparison in fMRI data 

has been validated on the type of data set to date. Therefore, all displayed significance 

tests were uncorrected. 

 There were individual vertices which while not connected, appeared to follow a 

pattern along well recognized anatomical and functional landmarks. This can be seen in 

figure 19. Along the inferior surface of the temporal gyrus a pattern of positive 

correlations can be seen for the fourth component and mind wandering. While the 

significance of this is unclear and possibly only the result of noticing patterns is noise, the 

data were not screened out. No conclusions are made about this patterning except to note 

its placement and trajectory.  

The correlations and significance results of were mapped onto the cortical surface 

and are displayed in figure 19. The figure was thresholded to only display correlations 

which were above .40 and were statistically significant at a .05 p value. For display 

purposes all p values are in -log10 form. 
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Figure 19. The top image represents the correlation map for the projection vector with 
mind wandering scores. The bottom is the associated significance map (uncorrected).   
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ICA maps. The results of the ICA in Part 2 gave a series of reconstructed 

independent component signals. Through this process we were also able to obtain a 

transformation matrix allowing us to convert the observed group representations into 

these ICA components. Importantly, this transformation matrix can be applied to the TD 

matrices associated with each individual to determine how the independent components 

are represented in their lag structure. This methodology assumes that the anatomical 

regions are well aligned, an assumption further supported by our use of the surface based 

reconstruction method (Glasser et al., 2013; Beckmann, Mackay, Filippini, & Smith, 

2009).  

After reconstructing the component maps for each individual the vectors 

representing each component were separated out and correlation maps and significance 

maps were prepared using the method described in the previous section.  

To reconstruct the components for each individual subject for which a behavioral 

variable was obtained, the pseudo-inverse of the unmixing matrix (A) was computed. The 

product of the A inverse for the 5 component model and the subjects’ TD matrix resulted 

in subject specific signals representative of each of the 5 components. Typically, the 

resulting reconstructed signal has the mean signal added back into the signal to shift it to 

the correct mean. This was deemed unnecessary for the subsequent regression as it added 

little to the interpretability. For this step the TD matrix for each subject was unaltered. 

The results of these comparisons are displayed in figure 20 and 21. 

The resulting five component matrix was then regressed against the behavioral 

variable using Pearson’s correlation for each cell. This resulted in a separate correlation 
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map for each component. Before testing for significance a fisher z transform was 

completed on the resulting matrix. Pearson’s correlations are not normally distributed and 

therefore this transformation is necessary to compare correlations across the surface. The 

resulting matrix was projected on the surface and thresholded at a value of .4 which is a 

moderate correlation giving a sparse result with minimal clusters to interpret. A difficulty 

in the interpretation is that the sign of the correlation needs to be interpreted with caution. 

Remember that the sign of the component maps was uninformative except as similar 

distance from the center value of that component.  

The fisher z transformed matrix was then tested for significance. The resulting 

uncorrected significance values were converted to their -log 10 equivalents and 

thresholded at a p value of .01.  

Larger clusters were examined with behavioral variables and are discussed below.  
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Figure 20. Pearson’s Correlation with the 5-component model and mind wandering 
scores.  
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Figure 21. Significance Map for the previous Pearson’s Correlation with the 5-component 
model and mind wandering scores.  
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Results and Discussion 

Behavioral results. Mind wandering was recorded on a 5 point likert scale. Each 

participant made 18 mind wandering ratings during the reading task. During debrief it 

was discovered that some participants interpreted the mind wandering scale differently. 

They assumed that they were always mind wandering a little because their attention was 

not perfect. Thus a number of them consistently gave ratings above baseline. 

Additionally, some individuals gave the highest rating each time they mind wandered 

even the smallest amount. Based on these findings the attempt to get at subtle differences 

between degrees of mind wandering was largely unsuccessful. However, it was clear that 

mind wandering was occurring. The meta-awareness of the degree of mind wandering 

was too difficult for some of the participants. The scale was therefore transformed to a 

traditional binary choice. Any rating greater than 1 was considered mind wandering, 

unless the individual gave rating of 2 as the lowest and no ratings of one. In these cases 

the participant was asked about the scale after the task and corrections were made, this 

occurred for 4 participants. An additional 3 participants reversed the scale so a similar 

transformation was made so it aligned with other participants. The score was calculated 

by then counting the total number of mind wandering incidents from the 18 slides. Out of 

a maximum of 18, the mean was approximately centered (M=7.84, SD=5.40). While the 

data were not significantly skewed at -0.12 (SE=0.38) it did display a kurtosis of -1.18 

(SE=0.75). Overall, however the data showed acceptable distribution for within group 

comparisons. Thus mind wandering was successfully manipulated in terms of frequency 

but not degree. 
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General cognitive variables. Descriptive statistics are available in table 2 and the 

correlation between behavioral variables is available in table 3.  

To evaluate intellectual ability the WASI-IV was administered to the participants. 

As a whole the participants scored within the average range for intelligence as measured 

with the WASI (M=103.97, SD=11.45). However, the results indicated a wide range of 

intellectual ability in the group ranging from 83 to 135. However, the distribution across 

participants was normally distributed with a skew of 0.48 (SE=0.38) and a kurtosis of 

0.83 (SE=0.76). The vocabulary and matrix subtests positively correlated at a moderate 

level, Pearson’s r(36)=.40, p<.05. The full score did not correlate with mind wandering 

scores, Pearson’s r(36)=.10, p=.57. It similarly did not correlate with either the 

vocabulary subtest r(36)=.14, p=.39 or matrix subtest r(36)=.05, p=.78 indicating that 

mind wandering while reading aloud was not related to general intelligence measures.  

However, as mentioned above, mind wandering has been found to correlate with 

working memory. Three scores were computed for each N-back session: the ratio of the 

times they correctly identified the target (hits), the ratio of times they incorrectly 

responded to the target (misses), and the response rate in seconds. The participants hit 

their targets more than half of the time (M=0.68, SD=0.20) but this was not significantly 

skewed at -0.76 (SE=0.39) with a moderate kurtosis of -0.56 (SE=0.76). The rate of false 

positives was also mediocre (M=0.15, SD=0.13). This also showed high but acceptable 

skew at 0.97 (SE=0.39) and a kurtosis of 0.17 (SE=0.76). The moderately high skew was 

likely due to floor effects. However, the measures of hits and misses showed enough 

distribution to warrant their comparison to the mind wandering scores.  
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Interestingly, there was also no relation between the frequency of mind wandering 

and the hits, r(36)=-.23, p=.18, or the misses, r(36)=-.07, p=.70, in the N-back task. There 

has been some research connecting n-back response time specifically to mind wandering 

(McVay & Kane, 2012). Here the response time was a mean of 0.87 seconds (SD=0.15) 

with relatively low skew of 0.27 (SE 0.15) and a moderate kurtosis of -0.84 (SE=0.21). 

There, however was similarly no relation between response rate and mind wandering 

frequency, r(36)=.18, p=.81. The N-back task is however testing a group of cognitive 

variables, so it is difficult to tell if it is accurately getting at the part of the working 

memory construct that tends to correlate with mind wandering. Overall, it is important to 

point out that the mind wandering scores reported here do not appear to be related to 

these general cognitive variables. 
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Comprehension and fluency. Reading comprehension of the specific test was 

conducted using a variety of methods described above. The utilization of comprehension 

questions, an overall rating of the main idea, the total number of word in the recall, and 

the total number of correct propositions showed strong convergent validity for reading. 

As can be seen in table 3, all the comprehension measures were at minimum moderately 

correlated at a p<.01 significance level. Many of these correlations were greater than .6 

indicating strong convergent validity across measures. The one measure which was not 

useful was the number of inferred propositions which is only an additional measure in 

case actual events in the story were not recalled. Because of the high convergent validity 

discussion shall be limited to the answers to the 18 open ended questions.  

Overall, the participants had a fairly good comprehension and memory for the 

story, with a mean of 11.86 (SD=2.27) out of a possible 18. This measure was not 

significantly skewed at -0.27 (SE=0.39) but had a moderate kurtosis of -0.92(SE=0.76). 

This shows that there were not ceiling or floor effects in this measure. We would expect 

based on previous research that mind wandering was going to be related to this 

comprehension measure, however this was not the case, r(36)=-.32, p=.06. This was the 

largest relationship between mind wandering and comprehension in the data. Why might 

this be the case? It is possible that while individuals may have a wandering mind, they 

are able to reconstruct the story from the bits that they are able to get. Another possibility 

is that the individuals perceived their mind wandering off task when they were simply 

imagining the story.  
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A second measure of reading skill was fluency. Only a single measure of fluency 

was used here and that was the total number of correct words per minute. In standard 

measures the participant reads for one minute then the number of correct words is 

counted. The correct words per minute was calculated here by taking the total number of 

words read correctly and dividing it by the number of minutes it took to read the passage. 

Reading rate was overall fairly fluid, with a mean of 115 words read correctly per minute 

(SD=29.37). However, the CWPM measure was not normally distributed with a positive 

skew of 1.46 (SE=0.38) and a similarly very high kurtosis of 5.63 (SE=0.75) indicating 

that most individuals were below that mean in a leptokurtic distribution. Comparisons are 

therefore questionable, but there was similarly no relation between mind wandering and 

this variable, r(36)=-.09, p=.75. 

Overall the reading rate and the fluency were not related to mind wandering. 

Dynamic and qualitative explorations. As described above a readability score 

was made for each slide. First, remember that readability formulas generally use sentence 

length and word length as indicators of grade level for the reading material. As can be 

seen in figure 18, syllable length and sentence length varied considerably throughout the 

story. Using the gunning fog and FORECAST method a sliding window was applied to 

the story of 100 words. In an exploration trying to discover what story feature may lead 

to mind wandering each participant rating were overlaid onto this graph. However, no 

systematic relation was discovered. Not a single participant’s mind wandering scores 

correlated significantly with any of the measures of readability. This indicates that the 

difficulty of the reading material may not account for the likelihood to mind wander 
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while reading aloud. It was additionally observed that mind wandering was not more 

frequent in any particular place.  

In an interest to better understand what textual factor may lead to mind wandering 

the debriefs were examined. There were rarely mentions of the story content or 

emotionality in the mind wandering explanations. 19% of the participants stated that they 

knew they mind wandered; they were not sure what they mind wandered about. This is 

interesting taking into account the theory presented by Delaney, Sahakyan, Kelley, and 

Zimmerman (2010) because if forgetting was part of the process of shifting back to task, 

we would expect these individuals to have low comprehension scores however this was 

not the case, although the group was so small statistical significance would have been 

difficult to reach. 

An additional feature of the debrief in regard to story content was that the story 

appeared to have differential relevance to different individuals. Two felt like they mind 

wandered more during moments where Disneyland was discussed and three felt like they 

mind wandered more where a Disney song was being discussed. A single participant 

mind wandered about a friend with autism and how their life might be similar. 

Interestingly during the debrief we checked whether they rated that they mind wandered 

there, and none of them actually did. They also got all the important points on the 

particular slide. This is interesting because it says multiple things about the meta-

awareness of mind wandering. Individuals may not know when they are not paying 

attention, they might confuse personal reflection with the story for not paying attention, 

and they did not even realize when they mind wandered. This is actually what may be 
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predicted by Kane and McVay (2012). Individuals with higher executive function may 

have mind wandered more because resources were available. This did not appear at the 

group level but there were likely a number of issues manipulating mind wandering 

frequency in the group. It would be interesting to see if mindfulness training, which is 

often associated with improvements in mind wandering, affects these meta-awareness 

abilities (Mrazek, Franklin, Phillips, Baird, & Schooler, 2013; Mrazek, Smallwood, & 

Schooler, 2012).  

Oral reading anxiety scale. As mentioned above this scale was adapted from 

other sources. The adapted scale for oral reading anxiety included 4 items which were 

rated on a 5-point likert scale ranging from “strongly agree” to “strongly disagree”. The 

items showed strong internal reliability .89 (Chronbach’s alpha, n=38). Table 4 shows the 

correlations between these items. 

In this measure, the higher the value, the more anxiety the individual reports 

experiencing while reading aloud. The mean score was 2.86 (SD=1.18). The results were 

normally distributed with a skew of -0.42 (SE=0.38) and with a kurtosis of 0.25 

(SE=0.75). This measure correlated with mind wandering moderately, r(36)=.36, p<.05. 

Additionally, debriefs indicated that these individuals who reported the highest anxiety 

reported mind wandering about that anxiety or events in the past where they experienced 

oral reading anxiety. 
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Summary of behavioral results. Overall, it was found that mind wandering 

during oral reading could not be explained by cognitive factors although executive 

function and working memory have been associated with mind wandering in previous 

studies (Levinson, Smallwood, & Davidson, 2012; McVay, & Kane, 2012; Feng, 

D’Mello, & Graesser, 2013). Similarly, extensive exploration was conducted examining 

the difficulty of the text and there was no relationship between moments when text 

difficulty increased and mind wandering that could be determined even though this was 

found in previous studies (Feng, D’Mello, & Graesser, 2013; Levinson, Smallwood, & 

Davidson, 2012).  

Reflecting on debriefs and the interaction between the emotional content of text 

there was also no systematic relationship. The participants were not particularly good at 

remembering where they mind wandered, but they tended to assign reasons for their mind 

wandering in a post hoc fashion which did not agree with their online ratings. It is 

possible that the text brings up emotional and personal content unique to each individual 

and when their mind drifts they tend to think this is the reason for their mind wandering 

experience. This actually agrees somewhat with what we know about the way memory 

works. Emotions have a way of drawing our memory in unknown directions similar to 

what happens in eyewitness and flashbulb memory studies (Loftus, & Palmer, 1996; 

Migueles, & Garcia-Bajos, 1999). Christianson (1992) suggests that emotional moments 

lead to preferential processing of specific details and these details may assist in the 

reconstruction of the text not attended to while mind wandering. This could potentially be 

a very interesting area of study to explore through the use of emotionally charged texts. 
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There may even be an interaction with meta-awareness which would be a promising 

avenue. 

The only correlation with mind wandering during oral reading which reached 

significance was anxiety. There is a rich literature on the contents of mind wandering and 

negative self-thought (Smallwood, & Schooler, 2015). However, I do not want to put too 

much weight into this finding. It may be possible to think about oral reading anxiety not 

as something which causes or correlates with oral reading, but in fact is part of an 

identical construct (Poerio, Totterdell, & Miles, 2013). Using a slightly different neural 

methodology than the one below, which took into account the subcortical structures and 

had much lower spatial resolution, I did find an earlier activation of the insula in 

individuals who reported oral reading anxiety, however, as we shall see below, this did 

not appear in the current findings. 

It was clear that there were different aspects of task, memory, emotion, or skill 

that led different individuals to mind wander. A much more extensive dynamic systems 

analysis of mind wandering in emotionally charged texts is clearly needed to better 

characterize how mind wandering changes as a function of all of these factors interacting.  

Having attempted to characterize the current mind wandering phenomena in this 

group of adolescents we shall now turn to the neural data. First it is examined how the 

projection vector of lag structure correlates with mind wandering behaviors. Then we 

shall use the 5-component model representing underlying neurological processes that are 

ongoing at rest but readied for skilled engagements and how mind wandering while 

reading aloud might correlate. 
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Projection Maps. The projection map method described above was applied to 

each of the behavioral variables. In terms of mind wandering, the data is difficult to 

interpret. Some regions may have important findings and are mentioned here.  

To evaluate the effects of any behavioral variables, the original TD maps for each 

individual was entered into the regression. No data points were removed from this data 

set and extreme values of +/- 5 seconds were allowed to remain as they may have been 

important for variation across the behavioral variables.  

A Pearson’s correlation was calculated for each vertex independently to the 

behavioral variable. Because Pearson's correlations are not normally distributed they 

were transformed using fisher z transformation before significance testing. The 

correlations were projected onto the cortex and then thresholded so that only those values 

above .4 were displayed. As one can see, the results are noisy. However, a qualitative 

examination of the map shows regions which may be of import. First, it is worth noting 

that there is not symmetry between the hemispheres. Secondly, there are two visually 

interesting features. First there is some clustering, and second there appears to be some 

scattered but patterned differences. 

Note that in the posterior superior precuneus there is a cluster of negative 

correlation. This region is associated with autobiographical information, representations 

of self, social imagination and compassion (Immordino-Yang, McColl, Damasio, & 

Damasio, 2009; Yang, Bossmann, Schiffhauer, Jordan, & Immordino-Yang, 2012; 

Spreng, & Grady, 2010). There is also a region of positive correlation between the 

anterior and superior cingulate bisecting the frontal superior gyrus.  



236 

In the right hemisphere we see some patterning in two regions which stand out. 

There is a collection of positive correlation regions along the inferior surface of the 

superior temporal gyrus and some regions of negative correlation which appear to follow 

the middle occipital gyrus. Similar regions in the superior temporal gyrus have been 

associated with thought disorders and auditory hallucination implicating them in semantic 

and mental image formations (Takahashi et al., 2006; Takahashi et al. 2009). The 

relevance here is unclear but may have something to do with internal voice. The results 

however are so small that this is a large leap.  

A positive correlation means that as the mind wandering score increases, so too 

does the lateness of that region relative to other regions. A negative correlation would 

mean as the mind wandering score increases the region is active relatively earlier in the 

sequence. It does not mean that a region is late or early overall.  

These regions do not systematically fall within the DMN traditionally associated 

with mind wandering, nor are they associated with other resting measures which usually 

are associated with reading listed above. 

It is worth noting that if we relax the constraints to notice the spread of the 

correlations in general the right frontal region shows a negative correlation and the 

superior temporal gyrus shows a positive correlation. The occipital cortex shows a 

negative correlation. 
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ICA. The analysis comparing the 5-component model to mind wandering was 

more promising, but still had no correlations which were in regions typically associated 

with either mind wandering or reading skill. The most obvious correlations are with the 

third and second component assumed above to deal with streams in visual processing and 

emotional processing respectively.  

It is of interest that the third component shows some very clearly significant 

differences with bilateral symmetry. As we mentioned above, this component may reflect 

the two routes of early visual processing. The most prominent difference is the occipital 

cortex particularly the medial regions. These regions tend to be earlier in individuals with 

more mind wandering. Or put another way, the occipital regions typically associated with 

early visual processing are more temporally separated from the rest of the component. 

This result could actually account for findings that perception of external events 

decreases during mind wandering.  

This has not been a region of study in reference to mind wandering, however, it 

appears that evaluating the timing of this region in relation to other regions may be 

warranted. Remember that we are ordering the components here for convenience only 

and aligning them with the projection. An alternative analysis of the data may suggest 

that the order is in the opposite direction. It appears that the indicated regions of the 

occipital lobe are further from the center of the component. If as suggested this 

component comes first, then a late engagement of other neural regions may allow a 

window for other internal or external processes to capture attention. If, however, the 

occipital region is later than other regions this would suggest a top down approach to this 
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particular component whereby the preparedness of the region is too late in mind 

wandering.  

Another important feature is that this corroborates evidence given by temporal 

studies of attention. It was found that attention to a specific region of the visual field 

results in a heightened activation in peripheral visuals field 120-240 ms after. This timing 

difference could be part of the reason mind wandering individuals lose attention to task. 

Perhaps higher order cognition does not intervene early enough between foveal and 

peripheral processing enhancement (Woldorff, Liotti, Seabolt, Busse, Lancaster, & Fox, 

2002). 

Additionally, in experiments using-eye tracking with mindless reading, mindless 

reading is associated with longer fixations, increased blinking rates, and reduced 

sensitivity to lexical features (Reichle, Reineberg, & Schooler, 2010; Smilek, Carriere, & 

Cheyne, 2010). Other mindless reading tasks such as reading word by word has shown a 

reduction in awareness of lexical properties of words. The second component shows very 

clear bilateral symmetry in the precuneus. Individuals who mind wander more tended to 

show a later activation of the posterior precuneus. The left frontal cortex similarly shows 

a significantly later activation for those who mind wander more. These are more abstract 

cortical processing regions responsible for executive control and image of self and social 

emotions. The separation of these regions from the insula which is considered the core of 

this component may represent a differential in the timed control of noticing and managing 

emotions during a task.  
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The sensory motor regions show an earlier activation but this appears to be more 

prominent in the superior regions. This region typically has to do with the trunk of the 

body. Perhaps related to breathing and breath for this particular task.  

The fifth component shows some positive correlations with the activity in the 

occipital lobe. If this is associated with cognitive control, then this may affect how 

rapidly individuals can monitor internal thoughts. 

Overall, however, these components are very high level. Considering the 

complexity of the data an exploration with larger component models is warranted. As we 

increase the number of components the results are more detailed and so it would be better 

to do this with a much larger data set. The present reverse inference methods to explain 

the differences in component structure between individuals who mind wander are weak at 

best, but, they do offer a number of ideas which can be tested.  

Summary 

This dissertation began with a theoretical motivation for the current methods. It is 

clear that if we are looking for persistent representations of knowledge the system 

dynamics of the brain are the place to look. We then examined two methods of looking at 

these dynamics with fMRI resting state data finding that traditional 0-lagged analysis 

comes short of representing the dynamics in ways that our theory development would 

suggest that knowledge is stored. Settling on a lagged analysis of the data we then 

examined these dynamics in a group of adolescents. We explored a number of methods 

settling on Independent Component Analysis. Relying on reverse inference we 

interpreted these results to be representative of system dynamics in the brain that 
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represent knowledge in the sense of perceptual skill and neural preparedness for 

environmental engagement.  

Finally, the behavior known as mind wandering was examined. We characterized 

mind wandering while reading aloud as not correlating with classic cognitive variables. It 

was discovered that there was some correlation with anxiety but the separation of anxiety 

while reading aloud and mind wandering may not be actually from different constructs. 

Attempts were made at a dynamic analysis but no patterns were found. It initially 

appeared that the debrief included some individual responses which gave us more 

information; however, this was misleading and it was clear that individuals who 

experience strong emotion were unable to remember their mind wandering accurately. 

This last finding was only limited to a few individuals, and while not testable using 

quantitative method in the current data set suggest a promising idea for future research.  

Finally, to understand how mind wandering while oral reading related to existing 

dynamic knowledge structures in the brain we compared the projection and component 

maps from Part 2 to this behavioral variable. The most prominent finding was a 

separation in time of the occipital region and the core processes of a component we 

earlier associated with visual perception. This finding has not been reported elsewhere, 

however the current approach is exploratory and thus it may be that it is revealing a level 

of representation in the data not previously observed with other methods.  

Limitations 

In regards to the sampling of the cortical tissue. One very clear limitation is the 

omission of the subcortical structures in the analysis. The main reason for their 
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elimination was that there is little to no research on waves of activity across the 

subcortical structures and how to interpret them in fMRI resting state scans. Does slow 

wave activity in these regions similarly represent neural preparedness? Subcortical 

structures are essential to higher cognitive function, and they should be included in the 

analysis. Future simulations with different voxel sizes and surface based methods will 

have to be done to discover the appropriate comparative weight for each data type. 

Another approach would be to use the sub cortical structures as seeds as in Mitra et al., 

(2015). 

A second weakness of the current methods is the temporal resolution. Currently 

most fMRI research is done with a .8 second TR. The current methodologies used a data 

set from a longitudinal study therefore the TR was matched to earlier data collection 

procedures. This, however will offer another opportunity to conduct the same analysis 

across time to examine changes in lag structure as a function of age. 

Theoretically there is a larger issue that will involve additional exploratory 

research. As mentioned in Part 1 the assumption of neural networks as synchronous does 

not represent what we know about the temporal nature of knowledge in the brain. This 

paper attempts to fill this gap by proposing a method of analysis which examines neural 

representations of knowledge across time.  

These methods may be particularly useful in deriving resting state evidence of 

neural models of sensory processing and perception. The multiple waves model proposed 

by Pessoa, & Adolphs (2010) suggests that vision begins at a course level and then 

through repeated multiple paths involving the pulvinar and the amygdala which 
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coordinate cortical processing of visual information in emotionally relevant way. The 

methodology here may be one way to observe these entrained patterns of activity.  

Secondly many cognitive processes involve cascade dynamics at both the neuron 

and the neuronal population level (Fusi, Drew, & Abbott, 2005). These cascades of 

processes are thought to underlay memory storage that is a dynamic process unfolding 

and active over time. These methods described here may allow us to observe memory 

formation processes which use these very dynamics. Furthermore, cascades are also used 

in metaphor research in grammar to represent the multiple levels of a metaphor 

simultaneously where processing continues at all levels and interacts between them 

(David, Lakoff, & Stickles, 2017). These metaphor properties of language organization 

may be observed in vivo with ICA as described above. 

Furthermore, it must be acknowledged that this methodology captures only one 

direction of the activity. As mentioned in the MEG study of reading described above, the 

skill involves a sequence which moves information forward in the cortex in a 

predominantly bottom up fashion followed by a top down process moving backward 

along similar regions changing the representation in the occipital cortex. While this 

involves a wave of activity sequentially in both directions, the current methodology 

would only capture one direction of this activity. There needs to be a development of the 

ICA methodology to string together the resulting components into systems which allow 

multiple directions form information flow.  

A second more fundamental issue is that while neural signals are not synchronous 

and time locked, they also do not always show covariance in lagged structure. While the 
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dominant model is that the timing of one cell is dependent on the input of another, there 

are cells in the cerebellum which have been shown to have specially trained and 

differentially pattered response than their input. These cells appear important for the 

learning differentials of stimulus onsets (Johansson, Jirenhed, Rasmussen, Zucca, & 

Hesslow, 2014). Using methods proposed here this feature of neural activity would not be 

captured.  

Finally, the reduction of the data using ICA is questionable. While there are 

reasons to believe this is not coincidental, the methodology has not be used on a larger 

data set nor has it been repeated.  

Another aspect particular to the mind wandering phenomena is understanding the 

relation between 0-lag and lagged network analysis. Regions of the DMN which have 

been identified as important in both resting state and task based methodologies did not 

appear to be significant in this analysis. However, it was assumed that this methodology 

would reveal a different aspect of knowledge. Findings here are not expected to parallel 

findings in 0-lagged network analysis. There also were not differences in regions 

implicated in reading. Instead the major finding was only in the occipital lobe. Perhaps a 

deeper examination using tens to hundreds of components might allow the representation 

of more specific skills and the regions implicated in other functional studies listed above 

may revel themselves. It is likely that the high level of analysis examined here will only 

pickup large system-wide differences if those exist and thus we found a different in visual 

regions. 
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An analysis of the mind wandering behavior during oral reading especially as it 

pertained to an emotionally charged text reveled a number of interesting complexities. 

Future studies should seek to give a variety of texts each with specific differences such as 

charged positive and negative emotion.  

Future Directions 

Extended Neural Studies 

The first step is to attempt to repeat the findings of Part 2 with a larger data set 

with better temporal and spatial resolution. This will be completed using widely available 

data now available in the Human Connectome Project using thousands of participants 

instead of the handful used here. If we can reproduce the ICA findings with these larger 

data sets the current method may prove to be a powerful alternative to the PCA method 

described by Mitra et al. (2015) allowing for analysis of individual subject variances 

which correlate with skills in more realistic group sizes.  

As part of this approach, the HCP data set also includes limited behavioral data 

which could be regressed to analyze some of the theoretical ideas present in the current 

paper. 

Further work needs to be conducted to understand how the amplitude of the 

covariance may be related to the lag structure. This may help identify what is noise and 

where to limit the lag representation. While lag representations are expected to 

encompass the entire brain it is also recognized that as signal travels from its origin the 

signal degrades. When doing traditional connectivity analysis, a threshold is set and this 
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threshold is used to examine network connectivity. Should a similar threshold be set in 

lag analysis. Is it reasonable to use covariance amplitude to threshold the representation? 

Where is Knowledge? 

Also, because the current theory suggests that knowledge is buried in these lagged 

representations, groups of individuals who vary on expertise should be examined, such as 

chess players, video game players, computer programmers and many other expertise 

which may influence the way we interact with the world and the basic knowledge 

structures we use to navigate our lives. Additionally, there is great opportunity to examine 

knowledge structures in terms of learning and study skills. For example, procrastinators 

may show different lag structures than non procrastinators.  

Concurrent research during this dissertation exercise inspired the author to better 

understand how the stories we have about our learning, daily experience, and life project 

may guide our perception and behavior. If these stories are foundational for how we live 

our daily lives, they would be expected to have persistent neural representations 

observable during rest. The current methodologies, when coupled with 0-lag analysis may 

help us understand how these stories bias our internal systems to engage with the world. 

It is also well documented that rs-fMRI changes based on the conditions of image 

acquisition and the events immediately prior to the acquisition. This could be of 

particular interest in education and learning. After engaging in a task we may continue to 

mind wander about the task itself. For example, it has been suggested that at a 

subconscious level we continue to process information and forget our current problem 

solving approaches. Both this basic level of continual processing and the process of 
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integrating new ideas into existing systems of thought could be observed during resting 

state using this methodology. 

Questions About Mind Wandering 

Finally, in direct relation to Part 3, it would be useful to conduct the same analysis 

with a larger variation in mind wandering measures. It is accepted that there are great 

differences in mind wandering such as positive constructive day dreaming, obsessive 

thinking, ruminating, distractibility and more. What do these types of mind wandering 

have in common neurologically and behaviorally? The current method was only 

examining mind wandering during oral reading.  

In conclusion, while the current methods continue to show many limitations, they 

open doorways into new analytical procedures to further understand how we are 

persistently representing knowledge in neural system dynamics that unfold over time. 
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Appendix B: Pipeline for Lag Structure Analysis 
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Appendix C: Reading Comprehension Questions 
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Appendix D: Anxiety Questions 
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Appendix E: 10 Component Model 
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Appendix F: 20 Component Model 
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Appendix G: 40 Component Model 
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