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Abstract

Opinion averaging is a common means of judgment aggre-
gation that is employed in the service of crowd wisdom ef-
fects. In this paper, we use simulations with agent-based mod-
els to highlight contexts in which opinion averaging leads to
poor outcomes. Specifically, we illustrate the conditions under
which the optimal posterior prescribed by a normative model
of Bayesian argument exchange diverges from the mean belief
that would be arrived at via simple averaging. The theoretical
and practical implications of this are discussed.

Keywords: opinion dynamics; averaging; argument; wisdom
of the crowd; agent-based simulation

Introduction
The idea that averaging judgments or opinions is beneficial
is both ubiquitous, and it can draw on multiple lines of sup-
port. Averaging seems to be a natural strategy for humans
both across multiple pieces of evidence or cues (Hogarth &
Einhorn, 1992; Hogarth & Karelaia, 2007) and in contexts of
social communication (e.g., Jönsson, Hahn, & Olsson, 2015;
Becker, Brackbill, & Centola, 2017). This prevalence is
matched with convergent indicators on the accuracy benefits
of averaging. For one, there are many contexts where a sim-
ple averaging strategy well approximates optimal Bayesian
inference (see e.g., Juslin, Nilsson, & Winman, 2009); like-
wise, there are many contexts where simple averaging mod-
els outperform more complex models (e.g., Dawes, 1979).
The benefits of averaging are also apparent from a sprawl-
ing, multi-disciplinary, literature on judgment and/or model
aggregation (e.g., Wallsten, Budescu, & Tsao, 1997). Finally,
the benefits of averaging are manifest in the demonstration of
wisdom of the crowd effects (e.g., Stroop, 1932; Surowiecki,
2004; Becker et al., 2017; Einhorn, Hogarth, & Klempner,
1977), whereby the accuracy of a group mean exceeds that
of the individual judgments. Such wisdom of the crowd ef-
fects are not a surprising empirical finding. Rather, there is
a well-developed, formal, mathematical basis that explains
their occurrence, as we detail below.

That mathematical basis also sheds light on a further, re-
lated phenomenon: In group contexts involving communica-
tion across individuals, it has long been known that commu-
nication may, in fact, serve to reduce wisdom of the crowd
effects because of the correlation communicative exchange
may induce (e.g., Hogarth, 1978). This in turn has prompted
an empirical and modelling literature that has sought to deter-

mine the implications of this for how best to structure com-
munication and communication networks so as to maximise
collective performance (e.g., Lorenz, Rauhut, Schweitzer, &
Helbing, 2011; Jönsson et al., 2015; Hahn, Hansen, & Ols-
son, 2018; Burton, Almaatouq, Rahimian, & Hahn, 2024; Al-
maatouq et al., 2020).

In this paper, we use an agent-based model to clarify dif-
ferent contexts of opinion/judgment heterogeneity and their
implications for the benefits that will accrue through averag-
ing. Through simulation, we illustrate the conditions under
which the optimal posterior prescribed by a normative model
of Bayesian argument exchange diverges from the mean be-
lief that would be arrived at via simple averaging. This serves
to clarify when communication is likely to hurt crowd wis-
dom, and when not. It serves also to clarify how useful a
strategy averaging is across different forms of disagreement.
Hence, our results have theoretical implications for the ratio-
nality of averaging and practical implications for the design
of collective intelligence processes.

The Benefits of Averaging: Formal Background
Multiple formal frameworks elucidate the benefits of averag-
ing and help explain when and why averaging will be bene-
ficial. For example, where a group of estimates is naturally
construed as noisy, independent estimates of a true underly-
ing quantity, error cancellation and the central limit theorem
(e.g., Surowiecki, 2004) clarify why the average of those es-
timates will be more accurate.

The Diversity Prediction Theorem (Page, 2006) relates the
accuracy of the mean of a group of estimates to the average
error of those estimates taken individually and the variance
of those estimates. The theorem shows that when accuracy is
measured by the squared distance of an estimate to the true
value (as with the Brier score, Brier (1950), which is used
widely to score the accuracy of probabilistic forecasts) the
average individual accuracy is equal to the accuracy of the
mean estimate plus the variance. This, in turn, implies the
existence of a ’wisdom of the crowd’ effect the moment there
is non-zero variance in the estimates as:

(x̄−θ)2 =
∑

n
i=1(xi −θ)2

n
− ∑

n
i=1(xi − x̄)2

n
(1)

where n is the number of group members, xi is the estimate
of the group member i, x̄ is the group’s mean estimate, and θ
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is the true value of whatever is being estimated. Put simply,
the theorem means that the squared error of the mean esti-
mate (i.e., the collective error) is equal to the difference be-
tween the average individual error squared and the variance of
the individuals’ judgements. This also makes clear that vari-
ance and individual error play an equal role in determining
the magnitude of the accuracy boost achieved by averaging.

Finally, Hogarth used a framework drawn from educational
testing (Ghiselli, 1964) to clarify performance in group judg-
ment tasks within social psychology (Hogarth, 1978). This
analysis considers the correlations between a target value and
estimates provided by individual raters, as well as the corre-
lation between target values and the mean ratings. It shows
that for k raters x and target values y:

ρyx̄ = k1/2 ∗ ρ̄yx/[1+(k−1)ρ̄xix j ]
1/2

(2)
where ρyx̄ is the correlation between the true values and

the group’s mean estimates, ρ̄yx is the average correlation be-
tween the true values and individuals’ estimates, and ρ̄xix j is
the average correlation between raters’ estimates.

In other words, the correlation between the average esti-
mates and the target values is a function of the number of
raters, the average individual correlation and the pairwise cor-
relations between the raters themselves.

In their own way, each of the formal results highlight the
possible negative impact of communication. Communication
undermines the independence of judgments, it is likely to re-
duce the variance within the group, and it is likely to increase
the degree of correlation between raters. From the perspec-
tive of error cancellation, this means the central limit theorem
no longer applies and convergence toward the true parameter
is undercut. In the context of the diversity prediction theo-
rem, reduced variance diminishes the gap between collective
and average individual judgments (all other things equal). In
the correlational framework of Hogarth/Ghiselli, finally, the
mean correlation between raters, together with the mean in-
dividual accuracy, determines the limit toward which the cor-
relation between mean (collective) judgment and true values
converges as the number of raters increases. This highlights
explicitly the cost to the wisdom of crowd effect that might
arise from communication. For communication to be ben-
eficial overall, that cost must be outweighed by a sufficient
increase in average individual accuracy.

The same fundamental dynamic emerges also from results
on judgment aggregation by voting (Ladha, 1992): the in-
crease to individual accuracy must outweigh the costs of the
increased dependence if communication is to be a net benefit
to collective accuracy (see also, e.g., Hahn, 2022). This has
prompted concern about negative impacts of communication
for crowd wisdom and experimental investigations probing
such negative effects (e.g., Lorenz et al., 2011; Jönsson et al.,
2015). The simulations presented in the present work seek to
illuminate further the contexts in which both averaging and
communication will and will not be beneficial.

Models and Simulations
For our agent-based model we used a recent modelling frame-
work called NormAN—short for ‘Normative Argument Ex-
change across Networks’ (Assaad et al., 2023). This frame-
work was created to facilitate agent-based models that involve
the exchange of individual arguments across a social network
instead of modelling communication simply as opinion aver-
aging (DeGroot, 1974; Lehrer & Wagner, 1981; Hegselmann
& Krause, 2002) or as a contagion process (e.g., Centola,
2018). In this it follows on from earlier models of argument
exchange such as Mäs and Flache (2013); however, it uses
Bayesian agents situated in a ground truth world so that ac-
curacy can be investigated (for discussion, see Assaad et al.,
2023).

We modified the publicly available Norman version 1.0
(available here) to include an alternative, opinion aver-
aging procedure based on the Hegselmann-Krause model
(Hegselmann & Krause, 2002)1. This allows us to compare
how opinion averaging would fare for the same initial belief
distribution as held by the Bayesian agents.

Evidence, Arguments, and Beliefs in NormAN
In keeping with the NormAN framework, our model involves
an underlying ‘world’ represented by a Bayesian belief net-
work (BN) that is used to specify the true state of the target
claim at issue, and to initialise the arguments that are avail-
able in principle (Figure 1). To this end, the simulation ran-
domly selects a truth value for the target hypothesis. In other
words, it is determined whether in the simulated ‘world’ of
this model run, the target hypothesis is true or false. The
value of the hypothesis node in the world BN is then set to
that value. This leads to new, revised, (marginal) probabili-
ties for the evidence nodes (the orange nodes in Fig. 1). These
probabilities are then used by a random binomial process to
determine the state of that evidence node on this particular
model run. In other words, the fact that, say, the left-most
evidence node (labelled ‘one’) has a .8 probability of being
true given the truth of the hypothesis, means that, on average,
80% of model runs will have this piece of evidence be true in
the ground truth world.

Across different model runs, a single underlying ‘world’
BN will consequently give rise to many different combina-
tions of truth or falsity of the target hypothesis and possible
evidence, both for and against. To illustrate further with a
simple example. Imagine that the BN in Fig. 1 represents ev-
idence in a criminal trial. The target hypothesis (blue) repre-
sents whether Bob committed the crime. The orange evidence
nodes represent nine pieces of evidence of varying diagnostic
value, such as witness reports or physical evidence that might
(or might not) tie Bob to the crime. On a given model run, the
value of “Bob committed the crime” is randomly set to true
or false, and all possible evidence is randomly generated ac-
cordingly: e.g., on this run, witness 1 says he saw Bob in the

1Our model code, simulation data, and analysis scripts are pub-
licly available on The Open Science Framework (Link)
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vicinity of the crime (i.e., evidence node 1 is set to true). On a
different run, however, witness 1 might assert that he did not
see Bob at the scene of the crime (i.e., evidence node 1 is set
to false), and so on. In short, an underlying BN such as that of
Fig. 1 will generate different possible ground truth ‘states of
the world’ across different runs. Crucially, however, the dis-
tribution of these will be determined by the structure of the
world as set out by the BN. The point of this, in NormAN, is
that the nature of the available evidence—that is, how many
arguments for and against might, in principle, be found with
respect to an empirical claim—is constrained by the nature of
the world. It is not arbitrary. In keeping with this, it is less
likely (though possible) that there exist more and stronger ar-
guments in favour of a claim that is ultimately false, than in
favour of the claim that is ultimately true (for further discus-
sion of this point, see Assaad et al., 2023; Hahn, 2023). We
return to the significance of this for our results below.

Having assigned a truth value to both the hypothesis and
all possible pieces of evidence at the beginning of the run,
those pieces of evidence then form the possible arguments
(e.g., ‘witness 1 saw Bob at the scene of the crime’) that the
individual agents in the model can exchange over the course
of the simulation.

At the start of a run, agents are randomly assigned indi-
vidual pieces of evidence. How many such pieces of initial
evidence is a free parameter in the model. They then use
their own copy of the underlying Bayes’ net to update their
belief in the target hypothesis in light of the evidence they
have received. When communicating with their neighbours—
where the probability of communication at each time step is
again a free parameter in the model—the agents choose a
(single) piece of evidence from their memory according to
a communication rule, and communicate that piece of evi-
dence faithfully to their neighbour(s). ‘Arguments’ in this
model are thus communications about evidentially relevant
states of the world. Of the pre-configured communication
rules in NormAN 1.0, we only use the ‘random share’ rule in
the simulations reported here. As the name suggests, this rule
has agents simply randomly choose a piece of evidence from
memory to communicate as an argument. That communica-
tion, finally, happens across a small-world network (Watts &
Strogatz, 1998) in the present simulations. All of this, so far,
corresponds to the basic NormAN model as set out in (Assaad
et al., 2023).

We added to this setup the possibility of opinion averag-
ing between agents. Specifically, in order to assess the utility
of opinion averaging, we clone each agent in the model, pro-
viding that clone with the same initial (pre-communication)
degree of belief. That degree of belief forms the initial opin-
ion for an independent opinion dynamics process based solely
on averaging that unfolds in parallel: while NormAN agents
exchange evidence, the clones, at each time step, adopt the
average of their own belief and those of their link neigh-
bours. This setup allows us to compare the dynamics of the
averaging model with those of (initially perfectly matched)

Figure 1: The “big net” world: A Bayesian causal graph used
to generate an underlying ‘world’ for the simulations in Nor-
mAN. On a given run, the simulation generates a truth value
for a target hypothesis (blue) and truth values for the potential
evidence nodes 1 to 9 (orange). These evidence states consti-
tute the full set of potentially available evidence/arguments on
that simulation run. Image courtesy of Assaad et al. (2023).

Bayesian agents exchanging evidence, and to examine the ac-
curacy of both vis-à-vis the true state of the world.

Figure 2 shows a sample run of the model, where there
are three main things to note. First, the opinion averaging
agents end up a long way from the optimal posterior as deter-
mined by the underlying world model: the optimal posterior
given (all) evidence in the example is .965, whereas the av-
eraging agents, after 10 steps of exchange, have a mean be-
lief of .64. Second, after those 10 steps the averaging agents
also have a very different belief distribution to the argument-
exchanging agents who cluster around the optimal posterior
with no overlap to the averaging agents (see the output mon-
itor “Histogram of beliefs” in Figure 2), though both popula-
tions started with an identical belief distribution.

These divergences occur because exchanging evidence as
arguments pulls the Bayesian agents to the optimal posterior,
whereas averaging pulls agents to the initial mean belief.

These two very different points of asymptotic convergence
are wholly unsurprising as they are intrinsic to the respec-
tive models: the optimal posterior is defined as the poste-
rior degree of belief (formed on the Bayesian network) given
all available evidence, so Bayesian agents who (randomly)
exchange will converge to that posterior as their individual
knowledge of the evidence set expands. By contrast, averag-
ing models average, so inherently converge toward the pop-
ulation mean, with distortions arising only through differen-
tial weighting (whether these be through selective ‘trust’, net-
work effects, or other mechanisms).

The more interesting point is, consequently, understanding
when and why optimal posteriors and initial mean belief will
significantly diverge.
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Figure 2: The figure shows the NetLogo interface for a sample run of the model. Green boxes show parameter settings in
the model. Beige boxes are output monitors that provide information about a particular model run. The six output monitors
adjacent to the image of the communication network describe the evidence and hypothesis node in the simulation (see Fig. 1)
and their truth values on the given run, as well as the optimal posterior in light of all, in principle, available evidence. The
histogram of beliefs below shows the current belief distribution among the regular Bayesian agents. The output monitor to the
right with the red header “Averaging Model” shows how the beliefs of the individual agents develop across time. The optimal
posterior (black dashed line) and the mean belief of the agents (red line) are added for comparison.

Divergence Between Optimal Posterior and Initial
Mean Belief

To give an indication of the prevalence of substantial diver-
gence, we used one of the pre-defined ‘world models’ con-
tained in NormAN version 1.0, the “big net” world model of
Figure 1.

The first three of its evidence nodes, when true, provide
support for the hypothesis. The next three are neutral, and
the final three, when true, provide equally strong support
against the hypothesis. As outlined above, this network is
used to stochastically generate an evidence distribution for
each model run. The hypothesis node is initialised as true
with a probability determined by its base rate, and the evi-
dence nodes are set to true with a probability that corresponds
to their respective marginal conditional probabilities. Specif-
ically, when using “big net”, this means that H is true with a
probability of 0.5, making it true in about half of the model
runs. In the runs where H is true, evidence in favour of the hy-
pothesis (i.e., more likely given H) is likely to be true, while

evidence against it is more likely to be false (and vice versa).
This generates an overall set of evidence values (of the form
E1,¬E2, . . . ,¬E9) that are in principle available to agents.

This results in a plausible evidence distribution in as much
as there (likely) exists both evidence for and against the target
hypothesis with the preponderance of that evidence varying
across each run. Individual agents optimally combine what-
ever evidence they possess to calculate their current, posterior
degree of belief in the hypothesis given their own evidence
(and assuming the optimal prior, i.e., base rate with which the
hypothesis will be true).

The ‘best possible estimate’ that agents could achieve un-
der this set up, individually or collectively, corresponds to the
posterior given all, in principle, available pieces of evidence
in the simulated world, that is, the optimal posterior for a
given run.

We used the model to simulate worlds in which agents are
initialised with a random draw of either 1, 3, 5, or 7 pieces
of evidence each, out of the possible total of 9. We simulated
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200 instances of each for a total of 800 evidence distributions.
We then identified, for each run, the lowest degree of belief
amongst the agents in the set, the highest degree of belief
given the initial evidence, the mean belief in the population
of agents given their initial evidence, and the optimal pos-
terior. Results are shown in Figure 3. The main take-away
from these results is how likely it is that the optimal poste-
rior is more extreme than the most extreme initial belief. This
has the inevitable consequence that the collective mean is less
extreme. As a consequence, averaging will inevitably pull a
sizeable chunk of the population away from the best estimate.

Understanding better the reasons for this divergence pro-
vides further clues to how widespread this consequence might
be, including in real world contexts. The discrepancy arises,
fundamentally, because the integration of individual pieces
of evidence gives rise to discontinuous jumps and changes in
overall belief. Hearing a strong argument and revising one’s
beliefs accordingly may lead to large changes in belief. This
means, for one, that the belief dynamics of simulated soci-
eties that exchange arguments are fundamentally different to
those that will emerge in models based on averaging a single
opinion (for extensive discussion, see Mäs & Flache, 2013;
Assaad et al., 2023; Proietti & Chiarella, 2023). In particular,
beliefs may readily become more extreme (either for the pop-
ulation as a whole, or for different subgroups) than the initial
estimates—a dynamic that is antithetical to the notion of av-
eraging itself (see Mäs & Flache, 2013; Hahn, 2023; Assaad
et al., 2023).

To put it differently, the fundamental reason averaging
fails is because the total evidential value of three indepen-
dent pieces of evidence in favour of a claim is cumulative:
each piece of evidence adds weight. The combined evidential
value is not the average evidential value of the three individ-
ual arguments.

By the same token, the initial mean would be the optimal
posterior (or very close to it) only if arguments for and against
were roughly present in equal number and equal weight. For
matters of fact, such a distribution will very much be the ex-
ception not the rule. This follows directly from a Bayesian
perspective (see Hahn, 2023). However, it can readily be ap-
preciated with an intuitive example as well: if it is, in fact,
raining outside at present, it is extremely unlikely that there
would be equal amounts of evidence speaking for and against
the presence of rain. We consider evidence to be evidence
precisely because it has some degree of lawful relationship
to a hypothesis, so the true state of that hypothesis will, con-
versely, influence the (in principle) availability of evidence.

This means also that none of this hinges, fundamentally, on
whether one is or is not adopting a Bayesian perspective, or
modelling specifically Bayesian agents. It depends only on
the way ‘evidence’ is related to the world and how multiple
pieces of evidence plausibly combine. A pregnancy test, for
example, is considered evidence for pregnancy precisely (and
only) because it is more likely to indicate ‘pregnant’ than ‘not
pregnant’ when used by a pregnant woman; and further pos-

itive tests increase our belief in pregnancy above and beyond
just one. A Bayesian perspective is simply a particular for-
malisation of these more fundamental points.

Implications for the Utility of Averaging
All of this has implications for the utility of averaging as a
means of collective decision-making, not just as a putatively
rational strategy, but also as a practical tool for harnassing
crowd wisdom for prediction and estimation.

If we consider again the sample run of Figure 2, averag-
ing does improve accuracy. There is a ‘wisdom of crowds
effect’ in as much as the squared error (i.e., the squared de-
viation from the optimal posterior) of the initial population
mean is lower than the average accuracy across individuals
in that population. By the same token, the average individual
error decreases as the population converges. This is because
squared error, like other proper scoring rules such as the loga-
rithmic scoring rule (Carvalho, 2016), penalises the large dis-
tances of the beliefs on the far side of the population mean
more than it rewards the short distances of the beliefs that are
on the near side to the optimal value. The accuracy gains that
result, however, seem limited in light of the overall error.

The discrepancy between the population average and the
optimal posterior will, of course, decrease the more evidence
individuals in the population have initially. Unfortunately,
however, those will also be the circumstances in which the
magnitude of the boost over average individual accuracy de-
creases.

To put all of this more generally, averaging boosts accu-
racy by eliminating variance. How useful that is depends on
the source of that variance. Where it reflects random error,
eliminating that variance will be extremely powerful and lead
to estimates that are almost spookily accurate (Galton, 1907).
Where that variance reflects unique knowledge, by contrast,
the effects will likely be far less profound.

Crowd Wisdom and Communication
This, finally, has implications for research on crowd wisdom
and the benefits (or harms) of communication. Motivated
by formal results such as those discussed above (e.g., Equa-
tions 1-2), research has examined potential negative impacts
of communication on crowd wisdom (Lorenz et al., 2011;
Jönsson et al., 2015; Hahn, von Sydow, & Merdes, 2019;
Zollman, 2010). What the discussion in this paper indicates
clearly, however, is that it would be a mistake to use such
results to caution against communication in contexts where
crowd wisdom is the target more generally.

Specifically, the preceding discussions suggest that the na-
ture of the estimate, and with it the nature of the variance,
matters fundamentally. Where fragmentation of evidence is
the underlying source of variance, promoting the exchange
of reasons seems quite likely to outweigh potential costs of
dependence. Experimental investigations with real communi-
cating groups should seek to probe these boundary conditions
further.
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Figure 3: Results of simulations comparing optimal posteriors following argument exchange to agents’ initial beliefs. A. The
probability of the optimal posterior lying outside of the range of initial beliefs. Results are split by the number of initial draws
parameter, which indicates whether the agents start with 1, 3, 5, or 7 pieces of initial evidence (out of a possible 9). B. Mean
distance of the optimal posterior from the range of beliefs following averaging (i.e., how far below the minimum belief or how
far above the maximum belief the optimal posterior is if it is outside the range of initial beliefs). Results are again split by
the number of initial draws parameter. C. All 800 runs (iterations) of our model, ordered by the initial mean belief, with each
iteration represented as a grey vertical bar (the range of initial beliefs), a green point (the mean initial belief), and red point
(optimal posterior following argument exchange).

Conclusions

This paper compared argument exchange and opinion aver-
aging as strategies of belief aggregation. We extended and
analyzed an agent-based model (NormAN) of argument ex-
change and illustrated belief dynamics in comparison to a
group of averaging agents. We then used simulations of ini-
tial belief distributions in that framework to illustrate the lim-
its of averaging for attaining ’wisdom of crowd effects’ and,
by the same token, the limits of averaging models, given that
(unrestricted) averaging will lead agents to converge toward
the initial population mean. In circumstances where vari-
ance depends on differences in underlying information direct
argument and evidence exchange facilitates convergence to-
wards the optimal posterior belief. Opinion averaging, by
contrast, will lead to an estimate that is insufficiently ex-

treme. While averaging may enhance accuracy in groups with
noisy, independent estimates, it fares poorly when agents’
pre-deliberation beliefs are based on different pieces of spe-
cific evidence—all the more so if the body of available ev-
idence unambiguously supports (or refutes) the hypothesis.
These findings highlight the potential benefits of argument
exchange on group accuracy and motivate further empirical
and theoretical research into the merits and demerits of com-
munication.
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