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Abstract

The cell is a multi-scale structure with modular organization across at least four orders of 

magnitude1. Two central approaches for mapping this structure—protein fluorescent imaging and 

protein biophysical association—each generate extensive datasets, but of distinct qualities and 

resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images 

in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical 

map of human cell architecture. Integration is achieved by configuring each approach as a general 

measure of protein distance, then calibrating the two measures using machine learning. The map, 

known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which 

approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional 

affinity purifications and validate subunit associations for the majority of systems. The map 

reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern 

rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in 

splicing. By integration across scales, MuSIC increases the resolution of imaging while giving 

protein interactions a spatial dimension, paving the way to incorporate diverse types of data in 

proteome-wide cell maps.

Eukaryotic cells consist of large components, such as organelles, which recursively factor 

into smaller components, such as condensates and protein complexes, forming an intricate 

multi-scale structure6. Fundamental techniques for mapping subcellular structure are protein 

imaging and biophysical association, each of which has been extensively automated. In 

particular, advances in confocal microscopy and immunofluorescence have made it possible 

to scan the distribution of proteins in situ within single cells2. By combining these 

techniques with a library of antibodies, the Human Protein Atlas (HPA) has embarked 

on systematic studies to position human proteins into subcellular compartments4. As a 

parallel approach to cell mapping, mass spectrometry (MS) has been powerfully combined 

Qin et al. Page 2

Nature. Author manuscript; available in PMC 2022 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with affinity purification (AP–MS) and proximity-dependent labelling to enable rapid 

measurement of protein–protein associations3. Using AP–MS, the BioPlex project is 

generating comprehensive interaction maps for most human proteins5.

Given these efforts, akey question is how imaging and biophysical association should 

be combined to inform cell structure. We reasoned that the two platforms provide 

complementary measures of protein location, albeit of vastly different characters. Images 

position proteins relative to cellular landmarks such as the nucleus, whereas biophysical 

associations position proteins relative to nearby proteins. In both cases, such positioning has 

become increasingly quantitative due, in part, to the ability of machine learning systems to 

recognize complex patterns in data7,8.

Here we demonstrate a machine learning approach in which protein imaging and biophysical 

association are integrated to create a unified map of subcellular components (Fig. 1). First, 

we use neural networks to project proteins into a small number of dimensions on the basis 

of imaging or biophysical association. Once protein coordinates have been determined for 

each platform, pairwise distances among proteins are calibrated and combined to reveal 

assemblies at different scales, from the very small (less than 50 nm) to the very large (more 

than 1 µm).

Protein position and distance in two ways

We assembled a matched dataset of immunofluorescence images from HPA4 and AP–

MS data from BioPlex5. Both resources are partially based on human embryonic kidney 

(HEK293-derived) cells, yielding 661 proteins with compatible imaging (1,451 images 

including replicates) (Extended Data Fig. 1a–c) and biophysical association data (291 

proteins affinity-tagged as ‘baits’, 370 as interacting ‘preys’) (Supplementary Table 1). 

These proteins covered a wide distribution of subcellular locations similar to that seen for all 

human proteins (Extended Data Fig. 1d). Other proteins in HPA and BioPlex were measured 

in differing cell types that did not align; thus, we focused on the common HEK293-derived 

context for prototyping our approach.

We next used deep neural networks to embed each protein on the basis of its 

immunofluorescence and AP–MS data. An embedding is a low-dimensional representation 

of a complex input, in which each data point (here a protein) is assigned coordinates in 

the reduced dimensions. Much machine learning research has focused on creating a good 

embedding, in which similar inputs (here proteins with similar subcellular distributions or 

interactions) are close in the embedded space9. For image embedding we used DenseNet7, 

a convolutional neural network with superior performance in capturing protein locations 

relative to counter-stained cellular landmarks (Extended Data Fig. 2a–c). Similarly, the 

node2vec neural network8 was used to embed each protein using its extended AP–MS 

interaction neighbourhood (Extended Data Fig. 2d–g).

We then computed protein–protein distances for all protein pairs, separately in 

immunofluorescence and AP–MS embeddings. The closest pairs measured by one technique 

were enriched for pairs close in the other, showing that imaging and AP–MS share 
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substantial information (Extended Data Fig. 3a, b). To calibrate distances in the embeddings 

to physical distances in cells, we assembled a reference set of subcellular components with 

known or estimated diameters, from protein complexes of less than 20 nm to organelles of 

more than 1 µm (Extended Data Fig. 3c, Supplementary Table 2, Supplementary Methods). 

With these curated diameters as training labels, we taught a supervised machine learning 

model (random forest regression) to estimate the distance of any protein pair directly from 

its coordinates in the immunofluorescence and AP–MS embeddings (Extended Data Fig. 3d, 

e).

A multi-scale map of subcellular systems

We analysed all distances among the 661 proteins to identify communities of proteins 

in close mutual proximity, suggesting distinct components (Fig. 2). Communities were 

identified at multiple resolutions, starting with those that form at the smallest protein–

protein distances, then progressively relaxing the distance threshold (multi-scale community 

detection10Extended Data Fig. 4a, Supplementary Methods). Communities at smaller 

distances were contained, in full or part, inside larger communities as the threshold was 

relaxed, yielding a structural hierarchy (Fig. 3a). The sensitivity of community detection was 

tuned for best concordance with two independent datasets: protein interactions reported in 

the Human Cell Map11 using proximity biotinylation, also in HEK293 cells; and patterns 

of gene co-essentiality in the Cancer Cell Dependency Map12. Significant agreement with 

independent data-sets was observed for a wide range of community detection parameters 

and for both small and large communities (Extended Data Fig. 4b, e). The final hierarchy, 

MuSIC 1.0, contained 69 protein communities representing putative subcellular systems 

organized by 87 hierarchical containment relationships (Fig. 2, Supplementary Table 3). 

Sixteen systems were contained within multiple larger ones, suggesting multiple subcellular 

locations or pleiotropy. Approximately 46% had a substantial overlap with cellular 

components documented in Gene Ontology; we annotated the remaining 54% as putatively 

novel (Fig. 2).

Physical sizes of MuSIC systems were estimated from their pairwise protein distances 

(Fig. 2) and compared to known diameters of nine well-characterized cellular components 

not used earlier in calibration (Fig. 3b, Supplementary Table 4). One of these was the 

pre-catalytic spliceosome, for which support from both immunofluorescence and AP–MS 

data (Fig. 3c–f) had induced a protein community of 48 nm (95% prediction interval [26, 

90]), in agreement with its published diameter of 42 nm13,14 (Fig. 3a, g). Within this 

community, the analysis resolved smaller U1 and U2 subunits (U1: 8 nm, 95% prediction 

interval [4, 15]; U2: 33 nm, 95% prediction interval [17, 61]), again in agreement with the 

arrangement and distances measured by cryo-electron microscopy (Fig. 3g). For all nine 

components, estimated diameters were very close to actual measurements from the literature 

(Fig. 3b), validating that MuSIC captures and sizes biological systems across a wide range 

of scales.
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MuSIC needs and informs both data types

We found that the majority of systems were robust to minor disruptions in data (Fig. 

4a, jackknife resampling, Supplementary Methods). By contrast, alternative MuSIC maps 

constructed with only one data type dropped numerous systems. Immunofluorescence-only 

maps tended to identify large systems such as organelles but falter for small subcomponents 

such as protein complexes, whereas AP–MS maps had the opposite behaviour (Fig. 4b–d). 

Notably, 30% of AP–MS interactions fell within focused systems of fewer than 100 proteins 

(Fig. 4e), validating and providing location context for the interaction. Such context also 

increases the sensitivity of interaction detection: focusing on protein pairs not reported to 

interact in the previous BioPlex study5, pairs in smaller systems nonetheless had stronger 

AP–MS scores than pairs in larger systems (P < 0.0001; Fig. 4f), suggesting new bona fide 

physical interactions.

Global validation of MuSIC by new AP–MS

Of the 661 MuSIC proteins, 370 had not yet been affinity-tagged as baits in AP–MS 

experiments. Rather, they had appeared in the list of prey proteins isolated by another 

affinity-tagged protein. As an immediate means of validating candidate systems, we affinity-

tagged 134 former prey proteins and performed AP–MS, resulting in the identification 

of 339 physical interactions (Supplementary Table 1). Forty-four MuSIC systems were 

specifically enriched for new interactions (64%; false discovery rate (FDR) < 0.1) (Fig. 5a), 

including 23 putative candidates.

Ribosomal systems at multiple scales

Among candidates validated by the additional AP–MS data was a seven-protein assembly 

with an estimated diameter of 81 nm (95% prediction interval [43, 151]). We tentatively 

named this system ‘pre-ribosomal RNA processing assembly’ (PRRPA) on the basis of 

established pre-rRNA roles for two of its proteins15,16 (NVL, RPL13A), support from 

genetic screens17 (KRI1, NOC2L) and orthology to a pre-rRNA factor in yeast18 (REXO4). 

These proteins formed a system due to image similarity, with nucleolar localizations, and 

similarity of AP–MS network neighbourhoods (Fig. 5b, c, Extended Data Fig. 5a). Our new 

affinity purifications targeted five PRRPA proteins, and recovered interacting partners highly 

specific to this system (Fig. 5c, Extended Data Fig. 5b). To explore the function of PRRPA 

in pre-rRNA processing, we used small interfering RNAs (siRNAs) to knock down each 

protein; all knockdowns perturbed ribosomal RNA maturation to some extent (Extended 

Data Fig. 5c–i). We then used RNA immunoprecipitation and quantitative PCR (RIP–qPCR) 

to find that these proteins bind 45S pre-rRNA, again supporting a pre-rRNA processing role 

(Fig. 5d).

We also examined the larger-scale system containing PRRPA, ‘ribosome biogenesis 

community’ (347 nm, 95% prediction interval [186, 646]). This system contained additional 

proteins not associated with ribosome biogenesis (Extended Data Fig. 6a), seven of which 

we knocked down with targeted Dicer-substrate siRNAs (DsiRNAs). All seven had effects 

on pre-rRNA processing, stratified by the specific pre-rRNA affected (Fig. 5e, Extended 
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Data Fig. 6b, c). Three of these proteins were targeted in our new AP–MS experiments 

(LIN28B, PRR3, ZNF689); each was shown to bind a substantial number of proteins within 

this same community (Extended Data Fig. 6d).

Another notable finding within ribosomal systems was abundant cross-talk between 

cytoplasmic and mitochondrial ribosomes (‘mito-cyto ribosomal cluster’; 20 nm, 95% 

prediction interval [11, 38]) (Extended Data Fig. 6e–h). Several of these proteins were 

tagged in the new AP–MS experiments (two cytoribosomal, two mitoribosomal), recovering 

four new physical interactions between cytoplasmic and mitochondrial factors (Extended 

Data Fig. 6i). Such cross-talk may have a role in mitoribosome biogenesis, a poorly 

understood process19.

Chromatin and splicing

SRRM1 is an established splicing factor20 that, in addition to its canonical placement 

in ‘RNA splicing complex 3’ (71 nm, 95% prediction interval [38, 133]), participated 

in additional systems that were unexpected. ‘Chromatin regulation complex’ (211 nm, 

95% prediction interval [113, 393]) included three histone acetyltransferases (HATs) 

(DMAP1, JAZF1 and MORF4L121) and SATB1, which remodels chromatin through HAT 

recruitment22 (Fig. 5f, Extended Data Fig. 7a, b). These functions suggested that SRRM1 

and FAM120C, the remaining proteins in this system, also regulate chromatin. In support 

of this, we found that SRRM1 and FAM120C strongly associate with chromatin by in situ 

fractionation (Extended Data Fig. 7c).

Returning to RNA splicing complex 3, this system brought SRRM1 and other splicing 

factors (SNRNP7023, U2AF224) together with a ribosomal protein that was not previously 

associated with major RNA splicing (RPS3A21) (Extended Data Fig. 7d, e). However, 

analysis of published transcriptomic profiles25 indicated that knockdown of RPS3A had 

very similar transcriptional effects to knockdown of these splicing factors (Extended Data 

Fig. 7f, g). To test for a role in splicing, we subjected RPS3A to an enhanced ultraviolet 

cross-linking and immunoprecipitation assay26 (eCLIP, Extended Data Fig. 7h), which 

identifies and characterizes RNA transcripts bound by a protein. Indeed, RPS3A bound 

to many intronic RNA sequences (601 eCLIP peaks) (Supplementary Table 5) with a pattern 

very similar to that of canonical splicing regulators (Fig. 5g). Moreover, when clustering 

the RPS3A profile with 223 eCLIP profiles from the public domain25, RPS3A robustly 

clustered with canonical splicing regulators (92% recovery in jackknife resampling) (Fig. 

5h), providing further support for an alternative role of this protein in splicing regulation.

Discussion

In classical image analysis, protein proximity is measured by fluorescently labelling 

multiple proteins in the same image27, a combinatorial process that is difficult to scale. 

Here we have developed a systematic means of measuring proximity through neural network 

embeddings of each protein. In turn, systematic accumulation of protein proximities moves 

us from a fixed list of predefined subcellular components to an open approach in which 

components are defined by inherent structure in the imaging data. Such analysis also 
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integrates with other types of information, demonstrated here with AP–MS, and recovers 

components at multiple scales (Fig. 3b), including novel systems that can be physically 

and functionally validated (Fig. 5). Although imaging research is accustomed to thinking 

about physical sizes and intracellular distances, the notion that protein interactions provide a 

complementary measure of intracellular distance is, to our knowledge, new to this study.

Although nearly a third of AP–MS interactions link proteins within a focused system of 

fewer than 100 proteins, more than two thirds do not (Fig. 4e, Extended Data Fig. 8a). Such 

discrepancies may indicate transient protein interactions. Alternatively, discrepancies might 

derive from errors or biases, such as the fact that immunofluorescence detects endogenous 

proteins whereas AP–MS detects overexpressed tagged proteins. Some disagreement 

between data types can be tolerated, such as the correct assignment of GEMIN7 and 

SNRNP70 to the U1 snRNP (Fig. 3g), despite only a partial overlap in their images 

(Extended Data Fig. 8b). Here, correct assignment was facilitated by physical interaction 

from AP–MS.

Systems in MuSIC reside at multiple scales, bridging and exceeding the ranges of 

immunofluorescence and AP–MS (Fig. 4a–d). Here the scale of a component is determined 

by the estimated nanometre proximities among its members; this measurement of scale 

only partially correlates with the component’s number of proteins. Analysis of protein 

proximities at broad scale identified the pre-catalytic spliceosome, whereas decreasing the 

distance threshold recovered smaller sub-components, the U1 and U2 snRNPs (Fig. 3a, g). 

As physical proximity increases, one would expect the same for functional association. To 

this point, gene co-essentiality—a measure of joint function28—was strongest among genes 

in the same small systems, weaker within larger systems that contain them and near zero for 

unrelated genes (Extended Data Fig. 8c, d). Components at different scales map naturally to 

different types of assays for functional exploration. For example, we used 28S/18S rRNA 

ratio as a general readout affected by proteins in the ribosome biogenesis community. 

More specific probes implicated specific subfunctions, such as the binding of a protein to 

45S pre-rRNA (suggesting early-stage ribosome biogenesis) (Fig. 5d) or changes in 34S 

pre-rRNA that result from protein knockdown (suggesting maturation defect associated with 

small-subunit processome17) (Fig. 5e). We expect future validation of MuSIC systems to 

draw from a range of functional assays at the molecular, pathway and cellular level.

As the map is developed to cover all human proteins, key questions relate to cellular 

heterogeneity and dynamics; for example, whether it is preferable to work towards a 

unified map of subcellular components or to create separate maps cataloguing different cell 

types and states. An attractive middle road may be to create a small library of reference 

maps for major cell types, with context-specific differences indicated as annotations. 

Here, we focused on HEK293-derived cells, a widely used model for gaining general 

biological insights4,5,11. Previous studies have shown that approximately 70% of proteins 

have consistent localization across cell lines4 and about 50% maintain their physical 

interactions29; thus, we expect that the current map will partially generalize to other 

contexts, with attention paid to communities prone to dynamics. Notably, the proteins of 

many MuSIC systems are co-regulated in expression across diverse cell types (Extended 

Data Fig. 8e), suggesting that these systems are indeed relevant to other contexts.
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Finally, we note the synergy achieved in integrating HPA and BioPlex, two large-scale 

mapping efforts that might have progressed independently. Such coordination should 

continue and encompass collaborative dataset design; for instance, by adopting common 

cell lines and proteins targeted across projects. Furthermore, new protein systems might 

arise with the inclusion of additional data modalities, such as proximity-dependent labelling, 

cross-linking mass spectrometry or cryo-electron microscopy. It will be interesting to 

explore synergies among these platforms, all of which might be calibrated to measure 

molecular distances and, in turn, contribute to maps of the multi-scale cell.

Extended Data

Extended Data Fig. 1 |. Characterization of image data used in this study.
a, Histogram showing distribution in number of antibodies per protein over 661 proteins 

included in MuSIC. b, Histogram showing distribution in antibody quality scores over 
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antibodies used in this study. c, Immunofluorescence images for alternative antibodies 

(columns) targeting the same protein (rows). Colours represent immunostained protein 

(green), cytoskeleton (red), or nucleus (blue). Images show high reproducibility for different 

antibodies against the same protein. d, Comparison of localizations for proteins in MuSIC 

(HEK293 cells, red) versus all proteins assayed by HPA in any cell line (grey). Localizations 

as defined by the HPA project4.

Extended Data Fig. 2 |. Embedding immunofluorescence images and AP–MS data.
a, Embedding immunofluorescence (IF) images using DenseNet. The 1024-dimension 

feature vector for each IF image was extracted from a DenseNet-12131 model trained to 

classify the IF image into one or several of 28 pre-defined protein localization classes 

from HPA. b, Two-dimensional visualization (UMAP, n_neighbours = 5) for the 1,451 

image embeddings associated with the 661 proteins in MuSIC. c, Ability of different 

Qin et al. Page 9

Nature. Author manuscript; available in PMC 2022 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



image embedding methods (coloured curves) to generate image-image similarities (cosine 

similarity) in agreement with protein-protein interactions in BioPlex 2.0. d, Node2vec8 

workflow. The feature vector generated by node2vec captures the pattern of interaction 

neighbourhood for the respective node in input network. e, Embedding AP–MS data using 

node2vec. The input network to node2vec was constructed by treating each protein as a node 

and assigning edges between protein pairs that were identified as physically interacting in 

the AP–MS data. The two-dimensional visualization (UMAP, n_neighbours = 5) for AP–MS 

embeddings associated with 661 proteins in MuSIC is shown at right. f, Network showing 

all proteins (grey) that physically interact with SNRPC and SNRPB2 (blue) in BioPlex 2.0. 

SNRPC and SNRPB2 do not physically interact, but the cosine similarity of their embedded 

features is 0.93 due to shared interaction neighbourhood. In many cases of two proteins 

with high node2vec similarity but without direct interaction in AP–MS data, we found 

that neither protein had yet been tagged as bait for an affinity purification experiment. In 

these cases, the node2vec embedding suggests gaps in existing AP–MS data. g, Ability 

of different AP–MS embedding methods to generate protein-protein similarities (cosine 

similarity) in agreement with protein pairwise similarities computed from HPA images.
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Extended Data Fig. 3 |. Fusing protein distances from immunofluorescence and affinity 
purification.
a, b, Protein pairs ranked by similarity in AP–MS embedding enrich for the most similar 

protein pairs in IF (a), and vice versa (b). c, Calibrating physical diameter, D, of subcellular 

components against the number of proteins, C, assigned to the corresponding Gene 

Ontology (GO) terms. d, Supervised model (random forest) estimates physical proximity 

(nm) of all pairs of proteins from their IF and AP–MS embeddings. e, Performance of model 

in recovering protein-protein distances in GO in five-fold cross validation (red, Pearson’s r). 
Equivalent calculation for random feature sets (grey). Statistics calculated using two-sided 

paired t-test. Data are presented as mean values +/− standard deviation.
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Extended Data Fig. 4 |. Selection of parameters for community detection.
a, Using multi-scale community detection, protein systems of increasing sizes are 

discovered as the threshold for protein-protein distance is progressively increased. b, CliXO 

community detection has four parameters (depth α, y-axis; breadth β, x-axis; minimum 

modularity m and modularity significance z, red circle backslash) that affect the sensitivity 

with which communities are identified and thus the size of the hierarchy. c, d, Dot plots 

in which each dot is a community hierarchy generated with a particular set of parameters. 

The selection for MuSIC is highlighted in red. This selection was among several that were 

optimal based on enrichment for protein-protein interactions in Human Cell Map (c) and co-

essentialities from DepMap (d). Examples of other parameter sets are shown in blue. e, Map 

from Fig. 2 with system colour showing enrichment for co-essentialities among protein pairs 

that are specific to that system. Enrichment of each system is assessed empirically, using 
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1,000 randomized hierarchies, followed by Benjamini–Hochberg multiple test correction to 

obtain FDR (orange gradient).

Extended Data Fig. 5 |. Supporting analyses for PRRPA.
a, Distributions of protein-protein distance z-scores among the seven proteins in the PRRPA 

system for IF (top, red) or AP–MS (bottom, blue) modalities, calibrated to all such 

distances, respectively (grey). Statistics calculated using one-sided Mann–Whitney U test. 

b, Specific recovery of new AP–MS interactions within PRRPA is shown (dark blue bar), 

in comparison to interactions between proteins in PRRPA and other proteins organized 

under the same parent systems (“Ribosome” and “Ribosome biogenesis assembly”, light 

blue bar), or between proteins in PRRPA and those organized elsewhere in MuSIC (grey 

bar). c, Mature 28S/18S rRNA ratio under siRNAs targeting each PRRPA protein (green) 

versus scrambled siRNA (grey), n = 3 biological replicates. FDR from two-sided t-test with 

Benjamini–Hochberg correction. Data are presented as mean values +/− standard deviation. 

d–i, Western blot analysis (d, e, Simple western assay; f–i, SDS–PAGE) of target protein 

abundance after treating HEK293T cells with respective siRNA for 72 h (Supplementary 

Tables 6, 7). The siRNAs highlighted in red were selected to assess the perturbation of 

mature rRNA ratio (28S/18S rRNA) when knocking down target protein, with protein 

knockdown efficiency confirmed using western blot in three additional biological replicates. 

For source data, see Supplementary Fig. 1 (gel; d–i) and Supplementary Fig. 2 (total RNA 

profiles; c).
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Extended Data Fig. 6 |. Supporting analyses for ribosomal systems.
a, Categorization of proteins in “Ribosome biogenesis community” by whether they 

have been previously identified in human ribosome biogenesis. Excludes PRRPA proteins 

described in Fig. 5b–d. b, Structure of human pre-rRNA and probes used for northern 

blot. In eukaryotes, 3 out of 4 mature rRNAs (18S, 5.8S, and 28S rRNAs) are produced 

from a single long polycistronic precursor (47S) synthesized by RNA polymerase I. The 

mature rRNAs are interspersed with the 5′ and 3′ external transcribed spacers (ETS) and 

internal transcribed spacer (ITS) 1 and 2. The probes used in the northern blot (5′-ETS, 

ITS1, and ITS2) are indicated and colour-coded. c, Total RNA extracted from the indicated 

cell line, which was transfected with a DsiRNA specific to the target protein for 72 h 

and analysed by northern blotting with probes specific to the 5′-ETS, ITS1, and ITS2 

sequences (Supplementary Table 8). As controls, cells were either untreated, transfected 

with a scrambled silencer, or transfected with a silencer targeting UTP18 (positive control 
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involved in small ribosomal subunit biogenesis). Heat map colour shows the percentage 

of each pre-rRNA species with respect to the scramble control. For gel source data, 

see Supplementary Fig. 1. d, For protein baits in new AP–MS experiments (x axis), 

fraction of interacting preys that fall within the Ribosome biogenesis community (blue 

bars) versus elsewhere (grey bars). Only new AP–MS interactions are considered for this 

analysis. RNPS1 does not belong to Ribosome biogenesis community and serves as a 

negative control. e, IF images showing similar cytoplasmic staining for proteins in “Mito-

cyto ribosomal cluster.” Cytoplasmic staining is dim for MRPS9, MRPS14 and MRPS31 

compared to their predominant mitochondrial locations. Colours represent immunostained 

protein (green), cytoskeleton (red) and nucleus (blue). f, g, Corresponding distributions of 

protein-protein distance z-scores for IF (f, red) or AP–MS (g, blue), calibrated to all such 

distances, respectively (grey). Statistics calculated using one-sided Mann–Whitney U test. 

h, Two-dimensional projection of proteins in Mito-cyto ribosomal cluster, as in Fig. 5f. 

Proteins coloured according to known affiliations to cytoplasmic ribosome or mitochondrial 

ribosome. i, Validated AP–MS interactions in Mito-cyto ribosomal cluster. Note that only 

one out of seven proteins was previously tagged as bait in BioPlex 2.0 (light blue node), thus 

most physical associations (dark blue edges) among protein pairs were newly identified in 

this study.
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Extended Data Fig. 7 |. Supporting analyses for chromatin regulation and splicing systems.
a, IF images showing similar nucleoplasm and nuclear speckles signals among proteins in 

the “Chromatin regulation complex.” Colours represent immunostained protein (green) and 

cytoskeleton (red). b, Distributions of pairwise protein distance z-scores among the proteins 

in the Chromatin regulation complex for IF (top, red) or AP–MS (bottom, blue) modalities, 

calibrated to all such distances, respectively (grey). Statistics calculated using one-sided 

Mann–Whitney U test. c, Immunofluorescent proteins (rows) imaged in HEK293 cells, 

untreated (left) or treated (right) with in situ fractionation to remove soluble cytoplasmic 

and loosely held nuclear proteins. Chromatin-binding proteins remain after treatment. Blue, 

nucleus; other colours as in a. For image source data, see Supplementary Fig. 3. d, IF 

images showing similar nucleoplasm signals among proteins in “RNA splicing complex 

3.” e, Similar display for RNA splicing complex 3 as in b. f, Comparison of 500 top 

differentially expressed mRNAs (absolute fold change) resulting from shRNA knockdown 
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of each of five genes (see Supplementary Table 9 for file accessions). Bar chart shows 

number of differential mRNAs shared by different gene groups indicated by black dots 

beneath each bar. One-sided one-sample t-test. g, Comparison among the top 10 pathways 

(Gene Ontology Biological Process) returned from Gene Set Enrichment Analysis using the 

top 500 differentially expressed transcripts. Bar chart shows number of enriched pathways 

shared by different gene groups indicated by black dots beneath each bar. One-sided 

one-sample t-test. h, eCLIP workflow. RBP, RNA-binding protein. NGS, next generation 

sequencing.

Extended Data Fig. 8 |. Supporting analyses for Discussion.
a, b, Examples of proteins with strong AP–MS protein interactions that have very different 

IF localization patterns. Colours represent immunostained protein (green) and cytoskeleton 

(red). c, Degree of co-essentiality for gene pairs within PRRPA (teal bar) shown in 
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comparison to remaining pairs of genes assigned to the more general system that contains 

it, “Ribosome biogenesis community” (green bar), as well as all other gene pairs in MuSIC 

(grey bar). d, Similar analysis as in (c) for “RNA splicing complex 3.” Parent systems are 

“RNA processing complex 1” and “RNA splicing complex family.” e, Protein co-abundance 

for MuSIC systems, calculated from the median Pearson correlation of pairwise protein 

abundance over 375 diverse cell lines32. The plot shows all systems with fewer than 

20 proteins and co-abundance measurements for >50% of protein pairs. Significance is 

assessed empirically (one-sided), using 1,000 randomized MuSIC hierarchies, followed 

by Benjamini–Hochberg multiple test correction to obtain FDR (colour of bar). Protein 

co-abundance for a system provides evidence for its presence in cell types beyond HEK293.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Overview of data fusion strategy.
Protein images and interaction data are analysed to generate neural network embeddings 

for each protein. These embeddings reveal communities of proximal proteins at multiple 

resolutions to create a multi-scale integrated map of the cell. DNN, deep neural network.
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Fig. 2 |. The multi-scale integrated cell.
Nodes indicate systems; arrows indicate containment of lower system by upper. Node size, 

number of system proteins. Node colour, known (gold) versus novel (purple). Teal boxes 

denote systems detailed in the text and figures. Elevation of system (size ladder) determined 

by predicted diameter.
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Fig. 3 |. MuSIC captures subcellular components and diameters.
a, Hierarchical community detection. As distance threshold increases (bottom to top), 

strong communities (systems) are detected first, then expanded to include moderate-to-

weak associations. Dark circles, systems; edge colours, association stringency. b, Predicted 

versus actual diameter of components detailed in literature and not used for calibration. c, 

Biophysical interaction data for pre-catalytic spliceosome. AP–MS interaction (path-length 

= 2) indicates protein pairs that interact with common affinity-tagged bait(s) outside the 

complex. d, Same proteins immunostained (green) with cytoskeleton counterstain (red). 

Scale bar, 10 µm. e, Histogram of protein–protein distances in AP–MS embedding (z-

scores). Blue, pre-catalytic spliceosome; grey, all protein pairs. One-sided Mann–Whitney 

U test. f, As in e for image rather than AP–MS data. Red, pre-catalytic spliceosome; grey, 

all protein pairs. g, Hierarchy of spliceosome systems in MuSIC (left) versus 3D structural 

model (right; Protein Data Bank 6QX914). * indicates a pre-catalytic spliceosome protein13 

captured by MuSIC but not included in structural model; ** indicates a protein important for 

small nuclear ribonucleoprotein (snRNP) assembly. Proteins are assigned the same colours 

in both maps. SNRPB2 (orange) is in both U1 and U2 subunits in MuSIC, as suggested 

previously30; the structural model places it in U2 only.

Qin et al. Page 23

Nature. Author manuscript; available in PMC 2022 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4 |. Different data informs different scales of information.
a–c, MuSIC map from Fig. 2, coloured with system robustness when built using imaging 

and AP–MS data (full MuSIC (a)), imaging only (b) or AP–MS only (c). d, Number 

of systems for which highest robustness comes with imaging, AP–MS or both types. e, 

Cumulative fraction of AP–MS interactions within MuSIC systems (red) versus random 

protein pairs (grey; 1,000 randomizations). f, Distribution of AP–MS scores for protein pairs 

not labelled as interacting by BioPlex. P values calculated against general systems (at least 

100 proteins); one-sided Mann–Whitney U test.
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Fig. 5 |. Exploration of MuSIC using physical and functional assays.
a, Map from Fig. 2 with system colour showing enrichment for new AP–MS interactions 

(blue gradient, FDR). b, c, Images (b) and AP–MS interactions (c) for PRRPA proteins, 

displayed as in Fig. 3c, d. Scale bar, 10 µm (b). d, Enrichment of 45S pre-rRNA 

bound by FLAG–HA-tagged proteins (x axis), measured using RIP–qPCR normalized to 

DMAP1 (n = 2 stable cell lines). e, Heat map summarizing northern blot analysis of 

intermediate RNA products during pre-rRNA processing (rows), under DsiRNAs targeting 

candidate genes (columns). Heat map colour shows the percentage of pre-rRNA versus non-

targeting scramble silencer control. UTP18 is a known ribosome biogenesis positive control. 

Independent silencers (#1–3) were highly consistent. f, Two-dimensional projection (spring 

embedding) of distances among proteins in chromatin regulation and splicing complexes. 

g, Pie charts categorize significant eCLIP peaks by genomic region (coloured slices). CDS, 

coding sequence; miRNA, microRNA; UTR, untranslated region. h, Clustering of RPS3A 

eCLIP profile (dashed line) with 223 eCLIP profiles25. Proteins robustly clustering with 

RPS3A (1,000 jackknife resamplings) enrich for splicing regulators (hypergeometric test, 

Benjamini–Hochberg correction). Colour consistent with g. RBP, RNA-binding protein.
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