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Abstract

Programmed death-1 (PD-1) is an inhibitory molecule expressed on activated T cells, however, the 

biological context in which PD-1 controls T cell tolerance remains unclear. Using two-photon 

laser-scanning microscopy, we showed that unlike naïve or activated islet antigen-specific T cells, 

tolerized islet antigen-specific T cells moved freely and did not swarm around antigen-bearing 

dendritic cells (DC) in pancreatic lymph nodes. Inhibition of T cell receptor (TCR)-driven stop 

signals depended on continued PD-1-PD-L1 interactions, as antibody blockade of PD-1 or PD-L1 

decreased T cell motility, enhanced T cell-DC contacts, and caused autoimmune diabetes. 

CTLA-4 blockade did not alter T cell motility or abrogate tolerance. Thus, PD-1-PD-L1 

interactions maintain peripheral tolerance by mechanisms fundamentally distinct from those of 

CTLA-4.
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Introduction

Autoimmunity results from the breakdown of processes designed to maintain self-tolerance. 

The growing list of co-stimulatory and inhibitory receptors that influence immune cell 

activation has been a central concern in immunology for over two decades. CTLA-4 (also 

called CD152) (http://www.signaling-gateway.org/molecule/query?afcsid=A000706) is a 

well established negative regulator of T cell function 1. CTLA-4 is rapidly expressed on the 

surface of T cells following activation and is highly upregulated by engagement of the co-

stimulatory molecule CD28 1. CTLA-4 ligation antagonizes early T cell activation leading 

to decreased interleukin 2 (IL-2) production, inhibition of cell cycle progression and 

modulation of TCR signaling 2,3. CTLA-4 and CD28 shares the ligands B7-1 (also called 

CD80) and B7-2 (also called CD86) 4. Mice deficient for CTLA-4 develop 

lymphoproliferative disease and die within 3-4 weeks of birth 5, adding further evidence for 

the critical role of CTLA-4 in controlling T cell responses and immune homeostasis.

Programmed death-1 (PD-1) is an inhibitory molecule found on the surface of activated B 

and T cells and has been implicated in immune tolerance 6. PD-1 (also called CD279) is a 

member of the CD28 and CTLA-4 immunoglobulin superfamily and interacts with two B7 

family ligands, PD-L1 (also called CD274) and PD-L2 (also called CD273) 4. PD-L1 is 

widely distributed on leukocytes, non-hematopoietic cells, and in non-lymphoid tissues 

including pancreatic islets, while PD-L2 is expressed exclusively on dendritic cells (DC) and 

monocytes 7,8. The PD-1 signaling pathway limits viral clearance during chronic infections 

by creating an unresponsive state in virus-specific CD8+ T cells termed “exhaustion” 9. In 

an autoimmune setting, PD-1 is essential for maintaining T cell anergy and preventing 

autoimmunity 10,11. Genetic deletion of PD-1 results in profound and complex multi-organ 

autoimmune destruction 4. Similarly, blocking PD-1-PD-L1 interactions accelerates 

spontaneous autoimmune diabetes 12 and reverses immune tolerance 10,11. Together these 

data support a central role for PD-1 as a major inhibitory pathway controlling immunity and 

suggest that exhaustion and peripheral tolerance are linked mechanistically.

Several theories have emerged to explain the mechanism through which PD-1 suppresses T 

cell activation. PD-L1 may act passively by competing directly with CD28 for B7-1 binding 

13. In addition, PD-1 may directly recruit phosphatases such as SHP-1, SHP-2 and PP2A, 

which interfere with TCR signaling 4,14-16. However, the effects of PD-1 engagement 

during T cell activation are unclear as in vitro models do not adequately demonstrate the 

inhibitory activity of PD-1 17. In vivo studies of PD-1–mediated inhibition have been 

limited to global effects on immunity with little direct evidence that PD-1 engagement 

directly controls T cell signaling.

Previously, we have used a well-defined, antigen-specific tolerance model to examine the 

cellular basis of immunological tolerance using antigen-pulsed and fixed antigen-presenting 

cells (APC) 10. We determined that the administration of islet antigen peptide mimic, p31, 

coupled to chemically fixed APCs reversed diabetes and induced a robust, long-term 

inactivation of islet-specific, BDC2.5 TCR transgenic T cells. Tolerized T cells did not 

proliferate or produce cytokines in response to TCR stimulation. Although both PD-1 and 

CTLA-4 interactions were critical for the induction of tolerance, the long term maintenance 
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of the anergic state depended on PD-1-PD-L1 interactions, but not CTLA-4 interactions 

within the inflamed tissue 10. These results implied that a cell-intrinsic mechanism 

maintains tolerance in the setting of continual exposure to autoantigen.

Recent imaging advances have allowed the use of multi-photon laser-scanning microscopy 

(MPLSM) to visualize T cells in lymph nodes (LN) and non-lymphoid tissues in vivo on the 

single cell level 18. Several groups have described the highly dynamic movement of CD4+ 

and CD8+ T cells, as well as DCs during T cell priming and tolerance induction 19-23. 

Naïve circulating T cells enter the LN through high endothelial venules and move on a 

network of stromal cells called fibroblastic reticular cells (FRCs), which define the potential 

location and migratory range of T cells 24. The FRC also provide a substrate for resident 

DCs to sample and display antigen to passing T cells. As T cells migrate along the FRC 

highway they probe DCs for signals and antigen 24. Initial interactions may be transient, but 

antigen recognition results in T cell swarming, formation of stable T cell-DC conjugates, 

and T cell arrest 25,26. TCR ligation results in ‘stop signals’ that decrease T cell motility 

and are required for stable T cell-DC conjugate formation and development of the 

immunological synapse 21,26. Prolonged T cell-DC interactions are critical for full T cell 

activation, proliferation and cytokine production 27-29. However, T cell movement and 

velocity during the long term maintenance of tolerance has not been well described.

Here we examined the biological roles of the PD-1 and CTLA-4 inhibitory pathways during 

autoimmunity using multi-photon imaging techniques. PD-1 suppressed TCR-driven stop 

signals in the pancreatic islets and blockade of PD-1 or PD-L1 inhibited T cell migration, 

prolonged T cell-DC engagement, enhanced T cell cytokine production, boosted TCR 

signaling, and abrogated peripheral tolerance. CTLA-4 blockade left T cell mobility and 

tolerance unaltered. Thus, these findings suggest that PD-1 and CTLA-4 play fundamentally 

distinct roles in the maintenance of peripheral tolerance and autoimmunity.

Results

PD-1–dependent islet antigen-specific tolerance

Insulin-coupled, ethylene carbodiimide (ECDI) fixed APCs have a profound effect on the 

development of spontaneous type 1 diabetes (T1D) in the non-obese diabetic (NOD) mouse 

10. A single injection of the antigen-pulsed fixed splenocytes prevents and even reverses 

T1D after disease onset. We previously identified a critical role for PD-1 but not CTLA-4 in 

the maintenance of tolerance induced by injection of insulin-coupled fixed splenocytes 10. 

Herein, we adapted this model using islet antigen-specific BDC2.5 TCR transgenic T cells 

to define the role of PD-1 and CTLA-4 in the maintenance of peripheral tolerance.

We tracked the movement of fluorochrome-labeled diabetogenic BDC2.5 CD4+ T cells in 

vivo by MPLSM. T1D was induced by the adoptive transfer of activated BDC2.5 T cells into 

naïve pre-diabetic NOD recipients. Control recipient animals injected with splenocytes 

coupled with an irrelevant antigen (SHAM-SP) developed severe T1D within 6 days of T 

cell transfer (Fig. 1a). Injection of splenocytes coupled to the p31 peptide (Ag-SP, p31-SP), 

an islet antigen mimetope recognized by the BDC2.5 TCR 30, prevented autoimmune 

diabetes and resulted in decreased T cell proliferation and cytokine production (Fig. 1a, data 
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not shown). To test if T cell unresponsiveness was consistent with T cell anergy, we 

measured calcium flux 1 week following p31-SP tolerance induction. Previous work 

demonstrated that TCR-induced calcium signals are associated with T cell motility and 

stable interactions with APCs 25. BDC2.5 T cells isolated from p31-SP-tolerized, but not 

SHAM-SP-injected mice, did not flux calcium in response to strong secondary TCR 

stimulation with anti-CD3 (Fig. 1b). Furthermore, phosphorylation of the TCR ζ-chain and 

the MAP kinase Erk was decreased in T cells isolated from mice treated with p31-SP 

compared to SHAM-SP (data now shown); these data provide evidence that exposure to 

p31-SP in vivo results in a TCR proximal signaling defect.

Next we investigated the role of PD-1 and CTLA-4 in the maintenance of this unresponsive 

state. p31-SP tolerized BDC2.5 TCR transgenic T cells were transferred into naïve 

recipients; these recipients were subsequently injected with anti-PD-L1, anti-CTLA-4 or 

isotype control antibody. Blocking PD-L1 led to the reversal of tolerance and rapid 

precipitation of clinical diabetes (Fig. 1c). In contrast, CTLA-4 blockade did not affect 

clinical disease (Fig. 1c). Anti– PD-L1, but not anti-CTLA-4, also led to an increase in 

antigen-specific BDC2.5 T cell accumulation in the pancreatic lymph node (PLN) (data not 

shown). Taken together, these results demonstrate that antigen-specific tolerance regulates 

autoimmune diabetes and that PD-L1, but not CTLA-4, plays a critical role for the 

maintenance of this anergic state.

PD-1 but not CTLA-4 prevents T cell stop signals

To ascertain the roles of PD-1 and CTLA-4 during the maintenance of tolerance, we 

developed a system to study the dynamic movement of tolerized T cells within intact mouse 

LNs by MPLSM. Since Ag-SP tolerance correlated with impaired calcium signaling and 

PD-1 but not CTLA-4 maintained this tolerant state, we tested the hypothesis that PD-L1 

prevents the TCR mediated T cell stop signal associated with T cell activation and T1D. 

Antigen-specific T cells swarm and cluster when they enter antigen-containing PLNs 31. 

Thus, we compared the migration behavior of activated control BDC2.5 T cells with that of 

tolerized BDC2.5 T cells. BDC2.5 Thy1.1 CD4+ T cells from SHAM-SP or p31-SP-treated 

mice were harvested, CMTMR-labeled and transferred into NOD mice expressing a 

transgene encoding yellow fluorescent protein (YFP) driven by the CD11c promoter. This 

CD11c-YFP mouse allowed tracking of the in vivo movements of CD11c+ DC 32. The 

velocity and displacement of control and tolerized T cells in islet antigen-bearing PLN 18-24 

hours following T cell transfer was compared. Control activated BDC2.5 T cells slowed 

down and swarmed in antigen-bearing PLN with a velocity of 2.2 ± 0.1 μm/min (Fig. 2a and 

Supplementary Movie 1), similar to what has been previously reported 31. In contrast, the 

tolerant T cells did not swarm in antigen-containing PLN, and exhibited a mean velocity of 

5.2 ± 0.4 μm/min (Fig. 2a and Supplementary Movie 2), similar to what has been observed 

in antigen non-bearing LN 31.

Next, we designed experiments to test the role of PD-1 and CTLA-4 on T cell motility 

during the maintenance phase of tolerance. As PD-L1, but not PD-L2, is required for the 

maintenance of tolerance, we injected PD-L1-blocking antibodies 10. PD-L1 blockade led 

the tolerant T cells to slow and swarm with a velocity of 1.4 ± 0.1 μm/min, as compared to 
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the 5.2 μm/min velocity observed after isotype control antibody treatment (P<0.0001) (Fig. 

2a and Supplementary Movie 3). PD-1 blockade gave similar results with respect to effects 

upon T cell swarming and stop signals (data not shown). Together, these data support the 

notion that PD-1–PD-L1 interactions are required to mediate tolerance and prevent T cell 

stop signals.

CTLA-4 blockade, on the other hand, did not affect tolerized T cell movement, as tolerized 

T cells maintained a mean velocity of 5.4 ± 0.4 μm/min after CTLA-4 blockade (Fig. 2a and 

Supplementary Movie 4). We next measured T cell motility by measuring the displacement 

of T cells plotted against the square root of time [M=motility coefficient]. This measurement 

reflects not simply the total distance traveled, but rather displacement from the point of 

origin. Consistent with previous reports, antigen encounter resulted in low displacement of 

control T cells (Fig. 2b, M = 0.32 ± 0.16 μm2 min-1) 22,33,34. In contrast, the displacement 

of tolerized BDC2.5 T cells was significantly higher (M = 6.65 ± 0.21 μm2 min-1, Fig. 2b, 

P<0.0001), indicative of a process wherein activated antigen-specific T cells stop and are 

engaged in stable interactions with antigen-presenting cells while the tolerized T cells move 

freely in the PLN. As suggested by the change in velocity, blockade of PD-1-PD-L1 

interactions resulted in decreased displacement and arrest of tolerant T cells (M = 0.19 ± 

0.06 μm2 min-1; Fig. 2b). CTLA-4 blockade, on the other hand, did not decrease T cell 

displacement (Fig. 2b, M = 7.0 ± 4.6 μm2 min-1). Tracking individual cells and plotting the 

superimposed tracks from the origin for each group illustrates distance traveled and further 

demonstrated the limited movement of activated compared to tolerant T cells (Fig. 2c,d). 

PD-L1 but not CTLA-4 blockade induced T cell arrest and limited displacement (Fig. 2e,f), 

similar to that of activated T cells (Fig. 2c). These results demonstrate a fundamental 

distinction between the functions of PD-1 and CTLA-4, and suggest that PD-L1 blockade 

enhances T cell stop signals.

To investigate if PD-1-PD-L1 interactions function in an antigen-dependent or antigen-

independent manner, we investigated the migration behavior of the BDC2.5 T cells in the 

antigen-deficient inguinal lymph nodes (ILN). The velocity and displacement of control and 

tolerized T cells 18-24 hours following T cell transfer were compared. In all cases, T cells 

migrated freely in the ILN with similar velocities, displacement and motility, and migration 

was independent of T cell activation or tolerance and the presence or absence of PD-L1 or 

CTLA-4 blockade (Fig. 3a-f and Supplementary Movies 5-8). Thus, the enhanced stop 

signal and confined displacement required TCR engagement with islet antigen(s) (PLN vs. 

ILN) as well as the disruption of PD-L1 ligation. It is important to note that anti-PD-L1 

administration did not affect naïve, non-tolerant polyclonal T cell movement 

(Supplementary Movie 9). This is likely due to the fact that tolerized T cells express high 

amounts of PD-1 on their surface, while naïve T cells do not 10,35. These results reinforce 

the notion that antigen is required for the stop signal and that PD-1 normally functions to 

inhibit T cell activation by preventing T cell arrest.

PD-1 inhibits T cell movement within the islets

PD-1–mediated control of immune responses depends on interactions between PD-1 on T 

cells and PD-L1 ligand in tissues 10,11. Thus, we sought to determine if the effects of PD-1-
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PD-L1 blockade had similar effects in the autoimmune target tissue, the pancreatic islets, as 

was the case in antigen draining PLN. To accomplish this we developed a system to analyze 

T cell motility in vivo within pancreatic islets of Langerhans using MPLSM. Islets from 

NOD.MIP-GFP mice were transferred under the kidney capsule of recipient NOD.SCID 

mice. These transgenic mice express green fluorescent protein (GFP) under the control of 

mouse insulin 1 promoter. After 1 week these mice received CMTMR-labeled (red) 

tolerized BDC2.5.Thy1.1 T cells. Following T cell transfer, recipient mice received anti-PD-

L1, anti-CTLA-4 or isotype control antibody and cell movement was tracked. As was the 

case in the antigen-containing PLN, tolerized BDC2.5 T cells moved rapidly within the islet 

transplants in isotype control antibody-treated mice (velocity = 6.2 ± 0.3 μm/min) (Fig. 4a, 

Supplementary Movie 10). PD-L1 blockade resulted in decreased velocity (3.3 ± 0.2 μm/

min) (Fig. 4a, Supplementary Movie 11) whereas CTLA-4 blockade did not affect 

previously tolerized T cell migration despite the presence of antigen (velocity = 6.6 ± 0.3 

μm/min) (Fig. 4a, Supplementary Movie 12). We also measured the T cell displacement of 

previously tolerized T cells within the islet transplants. We observed free and apparently 

unconstrained migration of tolerized T cells in recipient mice treated with isotype control 

antibody or anti-CTLA-4 (isotype control M= 15.8 ± 5.3 μm2 min-1, CTLA-4, M = 10.1 ± 

2.3 μm2 min-1). The slope of these two curves is a straight line representing free and random 

walking within the target tissue and does not correspond to directed migration 33. PD-L1 

blockade, however, attenuated T cell motility and decreased T cell displacement when 

compared to isotype control antibody-treated animals (Fig. 4b, M= 0.5 ± 0.3 μm2 min-1). 

Tracking individual cells confirmed these results (Fig. 4c-e). These data show that PD-L1-

PD-1 interactions modulate TCR-induced swarming and arrest behaviors in autoimmune 

target tissues.

PD-L1 blockade enhances T cell-DC stable interactions

The studies described above suggest that blocking PD-1-PD-L1 interactions leads to 

decreased T cell movement and thus may provide the opportunity for extended interactions 

between antigen-specific T cells and antigen-bearing APCs. Prolonged interactions between 

T cells and DCs is critical for full T cell activation 27,29. We hypothesized that PD-1 

normally functions to prevent the stable T cell-DC contacts that are required for full T cell 

activation. To test this notion, we used the adoptive transfer and imaging system described 

above to measure the dwell time of antigen-specific T cells with DCs. BDC2.5 T cells were 

labeled red with CMTMR and transferred to NOD.CD11c-YFP recipient mice; T cell-DC 

interaction times were determined in antigen containing (PLN) and antigen-deficient (ILN) 

sites. Tolerized T cells did not slow down or form stable contacts with tissue DCs (Fig. 5a 

and Supplementary Movie 13 and 15). In sharp contrast, numerous stable conjugates 

between T cells and CD11c+ DCs were observed following PD-L1 blockade (Fig. 5b and 

Supplementary Movie 14 and 16). PD-L1 blockade was associated with increased duration 

of T cell–DC contacts (Fig. 5c). Notably, the majority of T cells from anti-PD-L1-treated 

mice interacted with tissue specific DCs for the entire duration of the imaging experiment 

(30 minutes) with a mean of 26.6 ± 6.8 minutes compared to a mean dwell time of 9.2 ± 8.5 

minutes for tolerized T cells in isotype control-treated mice (Fig. 5c, P<0.0001). In addition, 

approximately 75% of labeled tolerized T cells that made contact with DCs maintained these 

contacts for the entire imaging sequence of 30 min in anti-PD-L1 treated mice, whereas only 
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8% of tolerized T cells maintained DC interactions in isotype control antibody treated mice 

(Fig. 5d). Stable conjugates in the ILN were not readily detected in either group, consistent 

with the idea that antigen is required for these interactions (data not shown). Together, these 

data suggest that PD-1-PD-L1 blockade fundamentally altered the way that diabetogenic T 

cells interacted with antigen-bearing CD11c+ DCs.

PD-L1 blockade promotes T cell activation

Anergy induced in BDC2.5 T cells exposed to the p31-pulsed fixed APCs led to a defect in 

early TCR signaling events including Ca2+ flux (Fig. 1) and Erk phosphorylation 10,36. 

However, treatment of anergic T cells with PMA and ionophore can reverse tolerance and 

promote T cell activation (Fig. 1 and data not shown). Thus, any therapy that would break 

tolerance in this system would be expected to reverse this TCR signaling defect. To correlate 

our single cell imaging data with functional measures of T cell activation, we assayed Erk 

phosphorylation in tolerized BDC2.5 T cells using flow cytometric analysis. Antigen-

specific tolerized BDC2.5 T cells were harvested 5 hours after in vivo anti-PD-L1 or isotype 

control antibody injection and stained for pErk activity both immediately and after PMA 

stimulation (Fig. 5e). Tolerized T cells did not exhibit Er phoksphorylation after in vivo 

APC engagement 36-38 (Fig. 5e). In contrast, treatment with anti-PD-L1 but not isotype 

control antibody during exposure of the tolerized T cells to antigen-bearing APCs resulted in 

substantial Erk phosphorylation in tolerized T cells (Fig. 5f). These results indicate that 

proximal TCR signaling components including Erk phosphorylation are restored following 

PD-1-PD-L1 blockade.

Effective TCR signaling culminates in the production of effector cytokines. Ag-SP tolerance 

resulted in a decrease in inflammatory cytokines including IL-2 and IFN-γ within the PLN 

10. Here we bred antigen-specific NOD.BDC2.5 TCR transgenic mice to Yeti mice, which 

express a YFP reporter cassette under the control of the IFN-γ promoter 31. Tolerized 

BDC2.5.Thy1.1.Yeti T cells were transferred to recipient NOD mice and received isotype 

control antibody, anti-PD-L1, or anti-CTLA-4. PD-L1 blockade abrogated tolerance, and the 

majority of CD4+ T cells isolated directly from the islets of anti-PD-L1 injected mice 

produced IFN-γ (57.8 ± 5.5 %) (Fig. 5g). These results demonstrate a T cell-intrinsic 

abrogation of anergy, and this effect was not observed when anti-CTLA-4 or isotype 

antibodies were administered (6.3 ± 1.8%, 5.5 ± 1.3% P<0.0001) (Fig. 5g). Taken together, 

these findings indicate that PD-L1 blockade restored the ability of anergic T cells to engage 

in prolonged DC interactions, produce inflammatory cytokines and induce rapid 

development of T1D.

Discussion

In this study, we sought to determine the roles of the inhibitory receptors, PD-1 and 

CTLA-4, on T cell migration during the maintenance of tolerance. The results indicate that 

the disruption of PD-1-PD-L1 but not CTLA-4-B7 interactions enhances tolerized T cell 

interactions with antigen-bearing DCs, and facilitates the phosphorylation of key TCR 

signaling molecules. This T cell engagement with antigen-bearing DCs ultimately results in 

the production of effector cytokines and rapid progression of autoimmunity.
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The duration of T cell-DCs contacts and its influence on T cell activation and the induction 

of tolerance has been a topic of great interest. Several other reports illustrated that during the 

induction of T cell tolerance both transient and stable DC interactions can occur 20,23. 

During the process of T cell activation the duration of T cell-DC contacts is highly variable 

in vivo, ranging from minutes to several hours 39. Early reports suggested that initial 

interactions during the first phase of T cell activation tend to be transient [5-10 minutes 

during the first 3-15 hours 20,21,40]. However, a more recent report found that long lived T 

cell-DC interactions could occur following the initial T cell-DC contact and that prolonged 

interactions were required for T cell activation 41. In this study, Erk phosphorylation 

occurred early after stable T cell-DC conjugates were formed, and IFN-γ production 

increased with longer T cell-DC interactions 41. These interactions required TCR 

engagement of peptide-MHCII complexes, as MHCII blockade in vivo terminated stable 

contacts, increased T cell motility, decreased T cell proliferation and prevented IFN-γ 

production. The second phase subsequently results in longer lived contacts where T cells 

form stable conjugates and begin to secrete cytokines which transitions into a third phase of 

high motility and rapid proliferation 21. Our studies demonstrated that PD-1 blockade 

restored stable T cell-DC contacts, Erk phosphorylation, IFN-γ production and, most 

importantly, T1D. These findings suggest that PD-1 normally functions to prevent the T cell 

stop signal and the formation of stable conjugates with antigen bearing DCs.

Anergic T cells have been shown in vitro to form unstable immunological synapses with 

allogeneic APCs and failed to recruit the signaling proteins necessary to initiate T-cell 

activation 42. We suggest that these transient interactions are required in our system (but 

impossible to discern in vivo), since the breakdown of tolerance following PD-1-PD-L1 

blockade only occurs when antigen is present, as in the case of PLN and pancreas, and does 

not occur in the ILN. Thus, abrogation of tolerance allows the stabilization of these 

interactions allowing full T cell activation and clinical disease.

Recent reports suggested that B7-1 and PD-L1 interact directly with each other to negatively 

regulate T cells 13. Thus far, however, in vivo data to support the functionality of this 

interaction have not been reported. Our data do not suggest that this interaction was 

responsible for the tolerant phenotype observed in this study, as administration of anti-B7-1 

had no effect on T cell velocity, track displacement, or movement trajectories when 

compared to isotype control antibody (data not shown). In addition, PD-1 blocking 

antibodies induced effects similar to those induced by PD-L1 blockade (data not shown). 

Finally, tolerized BDC2.5 T cells arrested and stopped when transferred to the PD-L1 

deficient (PD-L1-/-) recipients similar to that observed in experiments presented here using 

PD-L1 antibody blockade, supporting the critical role for PD-1-PD-L1 interactions for 

tolerance (data not shown).

Blockade of CTLA-4–B7 interactions can prevent induction of tolerance by peptide-pulsed 

fixed APCs but could not reverse tolerance once established 10. It is important to note that 

the same dose of blocking CTLA-4–specific antibody was used in these MPLSM 

experiments as in a previous study that documented a critical role for CTLA-4 during the 

induction of tolerance 10. We detected no influence of CTLA-4 in the migratory behavior of 

tolerized T cells. Due to the complex nature of lattice formation with B7-1, we have also 

Fife et al. Page 8

Nat Immunol. Author manuscript; available in PMC 2010 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



explored anti-CTLA-4 Fab fragments with similar results as shown using intact anti-

CTLA-4. The results presented here suggest that CTLA-4 inhibition had different qualitative 

and quantitative biological consequences than PD-1-PD-L1 blockade.

Although CTLA-4 and PD-1 both limit T cell signaling, cytokine production, cell cycle 

progression, and may share potential targets, some key biochemical differences have been 

reported. Upon PD-L engagement, PD-1 can bind SH2-domain containing tyrosine 

phosphatase 1 (SHP-1) and SHP-2 4,43. The binding of SHP-1 and SHP-2 can terminate 

early TCR signals by dephosphorylating key signaling intermediates including the kinases 

Akt, PI3K, ZAP-70, and PKC-θ. Like PD-1, CTLA-4 can interact with SHP-1 and SHP-2 

14. Unlike PD-1, CTLA-4 can also interact with the phosphatase PP2a 15. Another 

difference between these two inhibitory receptors is the structural motif used to bind 

phosphatases. CTLA-4 interacts through the immunoreceptor tyrosine-based inhibitory 

motifs (ITIM) while PD-1 contains an additional motif, the immunoreceptor tyrosine-based 

switch motif (ITSM) 43. Mutation of the ITIM motif had little effect on signaling, while 

ITSM mutations abrogated the ability of PD-1 to limit T cell population expansion 43. This 

suggests that PD-1 and CTLA-4 use different structural motifs to bind and recruit 

phosphatases for signal blockade. Future work is necessary to determine the precise 

biochemical relationship between these two potent negative regulatory molecules.

Genetic experiments may help to explain the different roles for PD-1 and CTLA-4 in 

immune homeostasis, breakdown of tolerance and establishment of autoimmunity. CTLA-4 

deficiency results in rapid multi-organ tissue inflammation and death within 3-4 weeks of 

age, regardless of mouse genetic background 5, whereas autoimmunity in PD-1-deficient 

mice is slower and tissue specific in a manner dependent on genetic background 4. These 

reports suggest that deficiencies in PD-1/PD-L1 pathway may potentiate tissue specific 

autoimmune predispositions. CTLA-4 on the other hand, controls multi-organ infiltrate and 

autoimmunity irrespective of genetic background. CTLA-4 and PD-1 ligand expression and 

distribution may help explain these differences. The fundamental difference between the 

effects of CTLA-4 and PD-1 on T cell migration as described here may also help to explain 

these differences.

Two recent reports investigated the role of CTLA-4 on T cell stop signals 44,45. One study 

found that CTLA-4 positive T cells failed to stop or slow down in response to in vivo 

peptide challenge, and anti-CTLA-4 increased T cell motility 44. A follow-up study reported 

that CTLA-4-deficient T cells showed a marked resistance to a stop-signal induced by anti-

CD3 45. It is difficult to explain the discrepancies between these previous studies, but it may 

be due to subtle differences between sorted T cell subpopulations, CTLA-4 surface stability, 

blocking antibodies, or use of knockout T cells. Here we found no influence of CTLA-4 

blockade on TCR-driven stop signals. In our study, CTLA-4 blockade did not alter the DC-

binding properties of the tolerant T cells, did not result in significant ERK phosphorylation, 

did not restore IFN-γ production, and did not result in the rapid development of autoimmune 

diabetes. One major difference is the previous reports tracked the migration of naïve T cells 

during primary stimulation 44,45 whereas the present studies focused on anergic T cells 

during the re-activation phase.
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Finally, it is interesting to note that PD-1-PD-L1 blockade resulted in increased 

accumulation and/or enhanced proliferation of antigen-specific T cells within the target 

tissue 10. This finding supports a key role for T cell-DC interactions during tissue-specific 

reactivation. Future work in this area will determine if CD4+ T cells interact directly with 

islet target cells or through a tissue-specific MHC II+ DC. Further investigation of the 

signals that maintain tolerance in this and similar settings will aid in our understanding of 

how to exploit the PD-1-PD-L1 pathway in efforts to prevent and treat autoimmunity, 

promote transplant acceptance, and limit tumor growth.

Methods

Mice

All mice were housed and bred in specific pathogen–free conditions in Animal Barrier 

Facilities at the University of California, San Francisco or the University of Minnesota. 

C57BL/6.MIP.eGFP mice were obtained from M. Hara and G. Bell (University of Chicago, 

Chicago, IL) 46 and were backcrossed for more than 12 generations to NOD mice. C57BL/6 

CD11c-YFP obtained from M. Nussenzweig (The Rockefeller University, New York, NY) 

32 mice were backcrossed for more than 10 generations to NOD. C57BL/6.PD-L1 KO mice 

were obtained from A. Sharpe (Harvard, Boston, MA) 11 and were backcrossed for 10 

generations to NOD. Female NOD mice were purchased from Taconic. NOD-BDC2.5 TCR 

Tg+ mice were provided by C. Benoist and D. Mathis (Harvard Medical School, Boston, 

MA) 47 and were crossed to NOD.Thy1.1. Interferon-γ reporter mice (Yeti) were provided 

by R. Locksley (UCSF) and were bred 10 generations to NOD and then crossed to 

NOD.BDC2.5.Thy1.1 TCR Tg+ mice to generate the NOD.BDC2.5.Thy1.1.Yeti mice 31. 

NOD.SCID mice were purchased from The Jackson Laboratory. Mice were 3–10 wk old at 

the initiation of the experiments. All animal experiments were approved by the Institutional 

Animal Care and Use Committee of the University of California, San Francisco and the 

University of Minnesota.

Antibodies

FITC-conjugated-anti-CD4 (RM4-5), PerCP-conjugated-anti-CD8a (Ly-2), APC-

conjugated-anti-CD90.1, PE-conjugated-anti-Vβ4 (KT4), APC-conjugated-anti-IFN-γ 

(XMG1.2), PE-conjugated-anti-Armenian hamster IgG1, PE-conjugated-anti-Armenian 

hamster control IgG2, PE-conjugated-anti-CD152 (UC10-4F10), PE-conjugated-anti-CD279 

(J43), and isotype controls were purchased from BD Biosciences. Anti-Phospho-p44/42 

MAPK (Thr202/Tyr204) (197G2) rabbit mAb was purchased from Cell Signaling 

Technology 48. Anti–PD-1 (RMP1-14), anti–PD-L1 (MIH5, MIH6), and anti–PD-L2 

(TY25) were made as described previously 7,10. Anti-CTLA-4 (UC4F10), and anti-CTLA-4 

Fab fragments were made as described previously 1. Mice were injected intraperitoneally 

with 250 μg anti–PD-L1, anti–PD-L2, anti-B7-1, anti-PD-1, or anti-CTLA-4 as indicated.

Antigens

1040-p31 peptide (YVRPLWVRME) was purchased from Genemed Synthesis Inc. The 

amino acid composition was verified by mass spectrometry, and purity (>98%) was assessed 

by HPLC.
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Cell culture, transfer, and induction of tolerance

NOD.BDC2.5.Thy1.1 TCR Tg+ lymphocytes were harvested and pooled from brachial, 

axillary, peri-aortic, pancreatic and inguinal LN, and from the spleen. Cells were activated in 

vitro in the presence of 0.5 μM 1040-p31 peptide in complete DMEM containing 5 × 10−5 

M 2-ME, 2 mM L-glutamine, 100 U/ml penicillin-streptomycin, 0.1 M nonessential amino 

acids (Invitrogen), and 10% FCS (Hy-clone). Cells were incubated at 37°C in a humidified 

atmosphere containing 5% CO2. The cells were harvested after 96 h and washed, and 5 × 

106 T cells were transferred i.v. to naive pre-diabetic NOD recipients. Tolerance was 

induced using i.v. injections of 50 × 106 chemically treated antigen-coupled syngeneic 

splenocytes (p31 or SHAM control), as described previously 10.

Assessment of diabetes

Blood glucose concentrations were measured from female NOD mice with OneTouch 

glucose meters (Lifescan, Inc.). Mice were considered diabetic with two consecutive 

readings of >250 mg/dL.

Flow cytometry and cell sorting

For assessment of surface molecule and cytokine expression, cells were labeled with 

predetermined optimal antibody concentrations according to the manufacturer's staining 

protocol and 0.5 × 106 events in the CD4+ gate were acquired, as described previously 10. 

Data acquisition was performed on an LSRII flow cytometer and analyzed using FACSDiva 

software (Becton Dickinson). NOD.BDC2.5.Thy1.1 LN cells and splenocytes were stained 

with FITC-conjugated-anti-CD4 and APC-conjugated-anti-CD90.1 and were sorted using a 

MoFlo cytometer high speed cell sorter (DakoCytomation). All sorted populations had ≥ 

98% cell purity.

Pancreatic Islet Isolation and Transplantation

Islets were isolated as previously reported 49. Briefly, a 3-ml collagenase P (Roche) solution 

(0.75 mg/ml) was injected into the pancreatic duct of 4-wk-old NOD.MIP-eGFP mice. The 

distended pancreases were removed and incubated at 37°C for 17 min. The liberated free 

islets were purified by centrifugation on a Eurocollin-Ficoll gradient. 400-500 handpicked 

islets were transplanted beneath the left renal capsule of each recipient 50.

Multi-photon laser scanning microscopy acquisition and analysis

A custom built resonant-scanning instrument based on published designs containing four–

photomultiplier tubes operating at video rate was used for multi-photon microscopy 31. For 

imaging of T cells, BDC2.5 CD4+ CD90.1 T cells were sorted and labeled with Cell 

Tracker™ Orange CMTMR (5-(and-6)-(((4-chloromethyl) benzoyl) amino) tetramethyl 

rhodamine) (Invitrogen) and transferred to recipient mice. Inguinal or pancreatic LNs were 

harvested from recipients and immobilized on coverslips with the hilum facing away from 

the objective. Lymph nodes were maintained at 36 °C in RPMI medium bubbled with 95% 

O2 and 5% CO2 and were imaged through the capsule distal to the efferent lymphatic. 

Transplanted islets were imaged under the exposed kidney capsule maintained at 36 °C in 

RPMI medium bubbled with 95% O2 and 5% CO2. Samples were excited with a 10-W 
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MaiTai TiSaphire laser (Spectra-Physics) tuned to a wavelength of 800-810 nm, and 

emission wavelengths of 500–540 nm (for CFSE), 567–640 nm (for CMTMR) and 380–420 

nm (for detection of second-harmonic emission) were collected. Each xy plane spanned 192 

μm by 160 μm at a resolution of 0.4 μm per pixel and images of 44-46 xy planes with 2 μm z 

spacing were formed by averaging 10-12 video frames every 30 s for 10-30 min. Images 

acquired were between 70-250μm below the LN capsule identified by the second harmonic 

signal. Images were acquired by Video Savant software (IO Industries). The maximum 

intensity z-projection time-lapse image sequences were generated with MetaMorph software 

(Molecular Devices). 3-D rotations and time-lapse image sequences were generated in 

Imaris 5.7.2 ×64 (Bitplane). Semi-automated cell tracking in 3-D was verified manually. 

Tracking data were analyzed in Microsoft Excel with a custom macro written in Microsoft 

Visual Basic for Applications. The motility coefficient M=x2/6t was calculated from the 

slope (x/t1/2) obtained by regression analysis of the mean displacement (x) versus the square 

root of time (t1/2) as described previously 33.

Statistical analysis

Statistical analysis of the data was done with Graphpad Prizm software for comparisons of 

two groups, P values were calculated by the unpaired Student's T-test. For comparisons of 

multiple groups, P values were calculated by one-way ANOVA in GraphPad Prism. Values 

of P ≤0.05 were considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Antigen-specific tolerance blocks diabetes, TCR signaling and Ca++ flux in a PD-L1-
dependent manner
(a) p31-SP tolerance prevents T1D induced by BDC2.5 T cell adoptive transfer. Activated 

BDC2.5 T cells were transferred to NOD mice followed with p31-SP (p31 Tolerized) or 

SHAM-SP (Activated control) treatment the same day. The percentages of diabetic mice 

receiving SHAM-SP (n=8) compared to p31-SP protected mice are shown (n=8). (b) p31-SP 

tolerized cells have decreased ability to flux calcium upon TCR ligation. BDC2.5 TCR 

CD4+ T cells treated in vivo with p31-SP (p31-Tolerized) or SHAM-SP (Control) were 

purified and loaded with Indo-1. Cells were activated with anti-CD3 (5μg/ml) and cross-

linking antibody or ionomycin as indicated, and calcium flux was measured. (c) PD-L1 

blockade breaks tolerance. 2×106 p31-SP tolerized BDC2.5 TCR transgenic T cells were 

transferred to naïve recipients followed by anti-PD-L1, anti-CTLA-4 or isotype control 

antibody treatments. Recipient mice were monitored for the development of T1D by blood 

glucose measurements. The percentage of diabetic mice receiving anti-PD-L1 (n=5), isotype 

control (n=5) and anti-CTLA-4 (n=5) are shown. Data are representative of three or more 

independent experiments except (c) which was from two independent experiments.
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Figure 2. PD-1-PD-L1 but not CTLA-4 prevents the T cell stop signal
Dynamic migration of BDC2.5 diabetogenic CD4+ T cells in PLN. CMTMR-labeled control 

or tolerized BDC2.5 T cells were injected into NOD.CD11c-YFP recipient mice. (a-f) Multi-

photon image analysis of T cells in islet antigen-containing PLN. (a) Mean velocity of 

adoptively transferred BDC2.5 T cells in mice subsequently injected with anti-PD-L1, anti-

CTLA-4 or isotype control antibody. Horizontal lines illustrate the mean velocity for each 

group. (b) Mean displacement of BDC2.5 T cells plotted against the square root of time. 

Shown is the mean of multiple imaging data sets from PLN of mice receiving control T 

cells, tolerized T cells with isotype control antibody, tolerized T cells with anti-PD-L1, and 

tolerized T cells with anti-CTLA-4. Data show mean ± s.d.. A time-lapse recording 

corresponding to this region is shown for each group in Supplementary Movies 1-4. (c-f) 

Superimposed 10 min tracks of 40-60 randomly selected T cells from each treatment group 

in the xy plane, setting the starting coordinates from the origin 0,0. Units are in micrometers. 

Each line represents the path of one cell. Data are representative of three or more 

independent experiments.
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Figure 3. PD-L1 inhibition requires antigen
Dynamic migration of BDC2.5 diabetogenic CD4+ T cells in ILN. CMTMR-labeled control 

or tolerized BDC2.5 T cells were injected into NOD.CD11c-YFP recipient mice. (a-f) Multi-

photon image analysis of T cells in non-islet antigen-containing ILN. (a) Mean velocity of 

adoptively transferred BDC2.5 T cells in mice subsequently injected with anti-PD-L1, andi-

CTLA-4 or isotype control antibody. Horizontal lines illustrate the mean velocity for each 

group. (b) Mean displacement of BDC2.5 T cells plotted against the square root of time. 

Shown is the mean of multiple imaging data sets from ILN of mice receiving control T cells, 

tolerized T cells with isotype control antibody, tolerized T cells with anti-PD-L1, and 

tolerized T cells with anti-CTLA-4. Data show mean ± s.d.. A time-lapse recording 

corresponding to this region is shown for each group in Supplementary Movies 5-8c-f) 

Superimposed 10 min tracks of 40-50 randomly selected T cells from each treatment group 

in the xy plane, setting the starting coordinates from the origin 0,0. Units are in micrometers. 

Each line represents the path of one cell. Data are representative of three or more 

independent experiments.
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Figure 4. PD-L1 inhibits T cell movement within the islets
Dynamics and motility of BDC2.5 diabetogenic CD4+ T cells in the pancreatic islets. 

NOD.SCID mice were transplanted with MIP-eGFP (green) islets under the kidney capsule, 

and were subsequently injected with CMTMR-labeled tolerized BDC2.5 T cells (red) and 

the indicated antibodies. Transplanted islets were imaged by multi-photon microscopy. (a) 

Average velocity of tolerized BDC2.5 T cells transferred into mice treated with isotype 

control antibody, anti-PD-L1, or anti-CTLA-4. Mean velocity is represented by the 

horizontal lines. A time-lapse recording corresponding to this region is shown for each 

treatment group in Supplementary Movies 10-12. (b) Mean displacement of BDC2.5 T cells 

plotted against the square root of time. Shown is the mean of multiple imaging data sets 

from mouse islets receiving tolerized T cells with anti-PD-L1, anti-CTLA-4 or isotype 

control antibody. Data show mean ± s.d. (c-e) Superimposed 10 min tracks of 43-60 

randomly selected T cells from each treatment group in the xy plane, setting the starting 

coordinates from the origin 0,0. Units are in micrometers. Each line represents the path of 

one cell. Data are representative of at least three independent experiments.
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Figure 5. PD-L1 blockade promotes prolonged T cell-DC interactions and T cell activation
Time-lapse images of contacts between CD11c+ DC (green) and BDC2.5 T cells (red) from 

the PLN of (a) isotype control or (b) anti-PD-L1 treated recipients. Scale bars, 15 μm. 

Corresponding time-lapse recordings are shown in Supplementary Movies 13-16. (c) 

Contact times between antigen-specific tolerized T cells and antigen-bearing CD11c+ DCs 

following injection of isotype control antibody or anti-PD-L1. Each symbol represents an 

individual cell. The mean from each group is shown as a horizontal line. (d) Contact time 

decay curves illustrate the percentage of total T cell-DC contacts remaining after injection of 

isotype control or anti-PD-L1 antibody over time (min). (e) Intracellular phosphorylated Erk 

expression in tolerized BDC2.5 T cells that were isolated and left unstimulated or stimulated 

with PMA. (f) Intracellular phosphorylated Erk expression in tolerized BDC2.5 T cells 

directly ex vivo from mice treated with isotype control antibody or anti-PD-L1. (g) PD-L1 

blockade restores effector cytokine production within the pancreatic islets. Interferon 

reporter BDC2.5.Thy1.1.Yeti mice were injected with p31-SP followed by anti-PD-L1, anti-

CTLA-4, or isotype control antibody. Three days after antibody treatment, pancreas 

infiltrating CD4+IFN-γ+ (YFP+) cells were analyzed by flow cytometry. Shown is the 

percentage of CD4+IFN-γ+ BDC2.5 T cells. Data are representative from at least three 

independent experiments except (f) which was from two independent experiments.
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