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CHNS: A case study of turbulence in elastic media

Xiang Fan,1,a) P. H. Diamond,1 and L. Chac�on2

1Department of Physics, University of California at San Diego, La Jolla, California 92093, USA
2Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 15 November 2017; accepted 22 January 2018; published online 7 March 2018)

Recent progress in the study of Cahn-Hilliard Navier-Stokes (CHNS) turbulence is summarized.

This is an example of elastic turbulence, which can occur in elastic (i.e., self-restoring) media.

Such media exhibit memory due to freezing-in laws, as does MHD, which in turn constrains the

dynamics. We report new results in the theory of CHNS turbulence in 2D, with special emphasis

on the role of structure (i.e., “blob”) formation and its interaction with the dual cascade. The evolu-

tion of a concentration gradient in response to a single eddy—analogous to flux expulsion in

MHD—is analyzed. Lessons learned are discussed in the context of MHD and other elastic media.

Published by AIP Publishing. https://doi.org/10.1063/1.5016075

I. INTRODUCTION

The study of active scalar turbulence is a central focus

of research in theoretical plasma physics. Active scalar sys-

tems are ubiquitous. Examples include turbulent flow with

polymer additives (for drag reduction), flow with bubbles,

strong surface waves in the presence of surfactants, etc.

Examples in plasma physics include 2D MHD and reduced

MHD,1–18 and their generalizations to include ballooning

coupling,19,20 the Hasegawa-Wakatani model and related

fluid systems for drift wave and ITG turbulence,21–25 as well

as many other examples. Active scalar systems are logical

outcomes of the model reduction process used to simplify

the full 2-fluid Braginsky system26 in the case of strong mag-

netization and weakly compressible dynamics (i.e., which

excludes magnetosonic time scales). Of course, active scalar

problems are to be contrasted to the familiar case of a pas-
sive scalar, in that they involve feedback of the advected

fields on the fluid dynamics. Strongly magnetized active sca-

lar problems have the generic structure of:

1. A vorticity equation, with linear and/or nonlinear cou-

plings to the advected scalar. This follows from r � J ¼ 0

with r � Jpol ¼ �rk � Jk � r? � JPS. Here, Jpol is the per-

pendicular polarization current, Jk is the current parallel

to B0, and JPS is the Pfirsch-Schluter current, related to

curvature. For E� B velocity, r � Jpol reduces to vorticity

evolution. Note that all reduced fluid models contain an

equation of this form, as r � J ¼ 0 is fundamental.

2. A scalar advection equation. For 2D MHD, this is simply

the statement of conservation of magnetic potential A. For

the Hasegawa-Wakatani system, it is the density equation,

which involves linear coupling of density and potential.

Many reduced active scalar systems exhibit elasticity—

i.e., the tendency of the flow to be self-restoring (i.e.,

“springy”)—due to memory enforced by a freezing-in con-

straint. 2D MHD is a prime example of an elastic active

scalar system, in which the “springiness” is due to magnetic

tension, and memory follows from Alfv�en’s Theorem.

The Cahn-Hilliard Navier-Stokes (CHNS) model in 2D

is an active scalar system with many interesting similarities

to, and differences from, 2D MHD and other active scalar

systems relevant to MFE physics.27–30 The CHNS system

describes the motion and evolution of phase separation (spi-

nodal decomposition) of two immiscible fluids.31–53 The

CHNS system has applications to alloy, cell sorting, and

other dynamic phase separation phenomena. See Fig. 1 as an

illustration. The 2D CHNS equations are as follows:

@twþ v � rw ¼ Dr2ð�wþ w3 � n2r2wÞ; (1)

where the scalar field wðr; tÞ � ðqAðr; tÞ � qBðr; tÞÞ=q is the

normalized component density contrast, and

@txþ v � rx ¼ n2

q
Bw � rr2wþ �r2x; (2)

where x is the vorticity. Here, v ¼ ẑ �r/ defines a scalar

potential and Bw ¼ ẑ �rw. Also, � is the viscosity, D is the

scalar diffusivity, and n is a parameter characterizing the

width of the interface between “blobs” of phases A and B.

Note that w takes on values only in the range �1 � w � 1

by definition. The similarities and differences of the 2D

CHNS system and 2D MHD (the prototype of magnetized

active scalar systems) are evident. Note also that the negative

diffusivity in the scalar advection equation ensures the for-

mation of clusters or “blobs” of w! þ1 and w! �1 phase

domains in the system. The aim of this paper is to elucidate

the physics of active scalar turbulence by the study of the

new (to the plasma community) CHNS system, which mani-

fests both classic themes and new twists in active scalar tur-

bulence. A second aim of this paper is to extract the more

general lessons learned from this work and to indicate where

they might be applied to more familiar models of plasma

turbulence.

Active scalar models present several challenges, the res-

olution of which are important for understanding the multi-

field turbulence in such systems. Three prominent physics
Note: Paper DI2 2, Bull. Am. Phys. Soc. 62, 107 (2017).
a)Invited speaker.
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issues here are (1) dual or multiple cascades, (2) the nature

of “blobby” turbulence and the scale selection problem

inherent to it, and (3) negative diffusion and up-gradient

transport. They are discussed below.

Regarding cascades, our present understanding of

plasma turbulence is the strongest for single equation/single

field models, like the Hasegawa-Wakatani system, or ITG

with Boltzmann electrons. Even MHD presents new prob-

lems, such as which cascade is “fundamental,” i.e., the

inverse hA2i (2D) or magnetic helicity hA � Bi (3D) cascade

or the forward energy cascade. The theoretical focus is pri-

marily on the inertial range for the latter, due to its being the

natural extension of the archetypical Kolmogorov cascade in

the 3D Navier-Stokes problem. However, the inverse mag-

netic cascades are closely related to the freezing-in law,

which exerts fundamental topological constraints and so are

at least of equal importance. Note that virtually all models

of electro-magnetic turbulence in magnetized plasmas are

built upon the foundation of 2D MHD and its close relative,

reduced MHD. Thus, all such systems will support dual (or

multiple!) cascades and so present to us questions like those

posed above.

“Blobby” turbulence refers to turbulence in which a gas

or “soup” of structures forms and influences the dynamics

and transport. Blobby turbulence is of great importance to

SOL and divertor physics.54–56 Indeed, the SOL density fluc-

tuation PDF manifests a striking positive skewness, sugges-

ting that ~n > 0 structures are somehow preferred and are a

significant component of the turbulence. However, despite

an uncountable number of impressive color view graphs

devoted to this subject, there is little understanding of “what

makes a blob a blob,” i.e., what sets the scale of a blob, or

how the blobs co-exist with, and influence, cascades.

Negative diffusion (i.e., “negative viscosity”) phenom-

ena and up-gradient transport are processes fundamental to

the formation of macroscopic flows in turbulence. Zonal

flow formation is a particularly important negative viscosity

phenomenon in magnetized plasmas.57,58 Indeed, zonal flow

formation closely resembles the process of phase separation

or spinodal decomposition, in which a mixture separates into

domains of different components. In this context, zonal flow

formation may be thought of as a spinodal decomposition

of a mixture of fluid elements with poloidal E� B flow

velocity > 0 or < 0 (but equal in magnitude) into neighbor-

ing bands (domains), with net momentum > 0 and < 0,

respectively. Such a decomposition requires up-gradient

momentum transport and so is a type of “negative viscosity”

process.

This paper argues that CHNS turbulence illuminates all

three of the challenges listed above. CHNS turbulence exhib-

its a dual cascade, where energy is scattered forward, while

hw2i undergoes inverse transfer. We shall see, though, that

the inverse cascade process is more robust and actually tends

to alter the forward cascade. CHNS is also elastic, due to sur-

face tension restoring forces, and this elasticity is the physi-

cal process underpinning the analogy between CHNS and

MHD. In addition, CHNS is intrinsically “blobby,” and

structures form and grow in time according to l � ta; a
� 2=3. However, we show that blob coalescence actually

reduces the region of elastic feedback on the flow and so

modifies the cascade and the energy spectrum power law.

Finally, negative viscosity phenomena are central to the

CHNS system, which is a prototype for spinodal decomposi-

tion. Scale selection in CHNS (for the Hinze scale) occurs

by the competition between blob growth and fluid straining.

Thus, the CHNS system offers a good opportunity to under-

stand the detailed physics of negative diffusion processes

and how to regulate them.

In this paper, we discuss and review computational and

theoretical progress toward understanding 2D CHNS

FIG. 1. w field evolution as an illustration of spinodal decomposition. Red and blue colors denote the two components of the binary fluid.
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turbulence and single eddy mixing, with the aim of extract-

ing general insights concerning elastic active scalar systems

in magnetized plasmas. As suggested by equilibrium statisti-

cal mechanics, 2D CHNS, with vorticity forced at large

scales, manifests a dual cascade of energy forward, hw2i
inverse. The eddy transfer couples to elastic waves, and an

elastic range forms from the emergent Hinze scale (where

Reynolds and elastic stresses balance) down to small scale

dissipation. The inverse cascade of hw2i is closely related to

the real space dynamics of blob formation and merger.

Interestingly, while the spectral exponent for hw2ik follows

standard scaling predictions, that for the energy spectrum

does not. We resolve this apparent puzzle by observing that

as blob merger progresses, thus forming larger blobs, the

extent of surface tension feedback on the flow decreases.

This is because the effective extent of jrwj 6¼ 0 regions

declines as blobs coalesce, thus reducing the “active region”

for feedback. Hence, the evolution of the vorticity more

closely resembles that of a simple 2D fluid.

We also discuss single eddy mixing, motivated by stud-

ies on the tendency of blobs to coalesce to form large struc-

tures. These studies explore the evolution of a jrwj 6¼ 0

layer in the presence of a single, sheared eddy, with negative

diffusion, positive hyper-diffusion, and dissipative nonline-

arity. The study of this system, which is the CHNS analogue

of the classic MHD paradigm of flux expulsion, offers basic

insights into mixing and the interaction of flow shear with

the dissipative evolution of the scalar field w. The character-

istic hybrid time scales for mixing are determined, and the

multi-stage evolution of mixing is elucidated. An interesting

outcome of this study is the observation that long lived target

patterns form in the w field. These exhibit progressive pair-

wise mergers on an exponentially long time scale, as do

“steps” in staircase layering structures.

The remainder of this paper is organized as follows.

Section II presents a comparison and contrast of 2D CHNS

and 2D MHD, two active scalar systems. Section III dis-

cusses CHNS turbulence as a case study in elastic active sca-

lar turbulence. We emphasize the complementary k-space

and real space description of the evolution. The mixing of

layers by a single eddy is analyzed in Sec. IV. The formation

of long lived target patterns is observed and discussed.

Section V presents conclusions, plans for future work, and

discusses the broader lessons learned in this research.

II. 2D MHD AND 2D CHNS: COMPARING
AND CONTRASTING

The 2D MHD system is

@tAþ v � rA ¼ gr2A; (3)

@txþ v � rx ¼ 1

l0q
B � rr2Aþ �r2x; (4)

where A is the scalar magnetic potential, B ¼ ẑ �rA is the

magnetic field, g is the resistivity, and l0 is magnetic perme-

ability. The 2D CHNS equations Eqs. (1) and (2) are men-

tioned in the introduction. The origin of these equations is

the Landau theory for second order phase transition. The

order parameter is the concentration w, and the free energy is

F w½ � ¼
ð
� 1

2
w2 þ 1

4
w4 þ n2

2
jrwj2

� �
dr: (5)

A graph of the first two terms has a “W” shape, with mini-

mums at w ¼ 61. Thus, the system tends to undergo a phase

separation process given a small initial perturbation around w
¼ 0. The CHNS equations do not prevent the values of w to go

beyond ½�1;þ1�; however, the “W”-shaped free energy con-

fines the value of w within ½�1;þ1�, without special numerical

treatment. Of course, the structure of the “W curve” implies

that w is attracted to the two minima at w ¼ 61. The third

term is a curvature penalty, and it means that the w field tends

to have zero gradient inside blobs and to minimize the length

of blob interfacial layers. The chemical potential is then given

by l ¼ dF=dw ¼ �wþ w3 �n2r2w. Combine it with Fick’s

Law J ¼ �Drl and continuity equation dw=dtþr � J ¼ 0,

it is straightforward to obtain the CHNS equations. As shown

in Fig. 1, the blobs in the CHNS system tend to aggregate. If

the system is unforced, the coalescence process will continue

until the blob size reaches the system size.

The comparison and contrast of the basic elements of

the two systems (2D MHD and CHNS) are summarized in

Table I, and the contents will be explained in the present sec-

tion and Sec. III. Comparing the 2D MHD system Eqs. (3)

and (4) and the 2D CHNS system Eqs. (1) and (2), it is easy

to find that both sets of equations contain an evolution equa-

tion for a scalar field and a vorticity equation. The magnetic

potential A in MHD is analogous to the concentration field w
in CHNS. Other analogues are shown in Table II. The back

reaction terms from the scalar field on the fluid motion have

the same form, up to a change of variable. 1
l0q

B � rr2A is

TABLE I. Comparison and contrast of the 2D MHD and the 2D CHNS

system.

2D MHD 2D CHNS

Diffusion A simple positive diffu-

sion term

A negative, a self non-

linear, and a hyper-

diffusion term

Range of potential No restriction for range

of A
w 2 ½�1; 1�

Origin of elasticity Magnetic field induces

elasticity

Surface tension induces

elasticity

Waves Alfv�en wave CHNS linear elastic

wave

Ideal quadratic

conserved quantities

Conservation of E, HA,

and HC
Conservation of E, Hw,

and HC

The inverse cascades Inverse cascade of HA Inverse cascade of Hw

Origin of the

inverse cascades

The coalescence of

magnetic flux blobs

The coalescence of

blobs of the same

species

Inverse cascade spectra HA
k � k�7=3 Hw

k � k�7=3

The forward cascades Suggestive of direct

energy cascade

Suggestive of direct ens-

trophy cascade

Kinetic energy spectra EK
k � k�3=2 EK

k � k�3

Interface Packing Fraction Not far from 50% Small

Back reaction j� B force can be

significant

Back reaction is appar-

ently limited
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due to the j� B force in 2D MHD, and n2

q Bw � rr2w is the

surface tension force in 2D CHNS. The difference between

these two systems is in the dissipative part of the scalar evo-

lution equation. In 2D MHD, there is only a simple diffusion

of A; however, in 2D CHNS, the dissipative terms are more

complicated. CHNS has a negative diffusion term, a dissipa-

tive self nonlinear term, and a hyper-diffusion term.

The CHNS system supports a linear elastic wave, and its

dispersion relation is

xðkÞ ¼ 6

ffiffiffiffiffi
n2

q

s
jrw0 � kj � 1

2
iðCDþ �Þk2; (6)

where C ¼ ½�1� 6w0r2w0=k2 � 6ðrw0Þ
2=k2 � 12w0rw0

�ik=k2 þ 3w2
0 þ n2k2� is a dimensionless coefficient. This

wave is similar to a capillary wave at an interface between

two fluids, because surface tension generates the restoring

force. It only propagates along the interfaces between the

blobs, where jBwj is nonzero. This wave is also analogous to

an Alfv�en wave in 2D MHD. The two waves have similar dis-

persion relation, and they both propagate along Bw or B field

lines. Both surface tension and magnetic field act as elastic

restoring forces. Besides, the linear elastic wave leads to elas-

tic equipartition, and it further affects the spectra power law in

the same way as the Alfv�enic equipartition does in 2D MHD,

as discussed later in this paper. There are also important differ-

ences. The Bw field in CHNS is large only in the inter-facial

regions, but the magnetic field in MHD can be significant

everywhere. Therefore, the elastic wave activity in CHNS does

not fill the whole space, while Alfv�enic feedback does.

The ideal quadratic conserved quantities in 2D CHNS

are the same as those in 2D MHD, up to a change of variable.

The difference between these two systems is only in the non-

ideal terms. The three ideal quadratic conserved quantities

are as follows:

E ¼ EK þ EB �
ð

qv2

2
þ

n2B2
w

2

 !
d2x; (7)

Hw ¼ hw2i �
ð

w2 d2x; (8)

HC �
ð

v � Bw d2x; (9)

where E is the energy, EK and EB are the kinetic and elastic

energy, respectively, Hw is the mean square concentration,

and HC is the cross helicity. Hw is analogous to the mean

square magnetic potential HA �
Ð

A2 d2x in 2D MHD.

III. CHNS: A CASE STUDY IN ACTIVE SCALAR
TURBULENCE

As shown in Fig. 1, if the CHNS system is unforced, the

blob size will grow continuously until it reaches the system

size. More quantitatively, the length scale of the blobs grows

as a power law of time L � t2=3.27,40 If an external forcing at

large scales is imposed on the vorticity field, then the large

eddies will be broken up into smaller eddies. The blob coales-

cence process and fluid straining induced fragmentation will

compete with each other. When they balance, blob size

growth is arrested, and a statistically stable length scale for

the blob size emerges. See Fig. 2 as an illustration. The

TABLE II. The correspondence between the 2D MHD and the 2D CHNS

system.

2D MHD 2D CHNS

Magnetic potential A W
Magnetic field B Bw

Current j jw
Diffusivity g D

Interaction strength 1
l0

n2

FIG. 2. Top panels are w field evolution plots for an unforced run at various times; bottom panels are the ones for a forced run. Reprinted with permission

from Fan et al., Phys. Rev. Fluids 1, 054403 (2016). Copyright 2016 American Physical Society.
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estimation of this final length scale is similar to the estimation

of the typical size of a raindrop in a turbulent atmosphere. The

raindrop size can be estimated by the balance of turbulent

kinetic energy and surface tension energy. The scale at which

these two balance defines the scale of a droplet, and it is called

the Hinze scale.34,35,59 We can calculate the Hinze scale for

the CHNS system as well by balancing the turbulent kinetic

energy and the elastic energy. The result is

LH �
q
n

� ��1=3

�
�2=9
X : (10)

The range between the Hinze scale LH and the dissipa-

tion scale Ld is defined to be the elastic range. This is the

range where kinetic and elastic energy are exchanged, and

so, elastic effects are significant. In this range, the dynamics

is more MHD-like. LH 	 Ld is required for a long elastic

range, and this is the case of interest.

The blob coalescence process in the elastic range of the

CHNS system is analogous to magnetic flux cell coalescence

in MHD. Magnetic cell coalescence is the physical process

which underlies the inverse cascade of mean square mag-

netic potential HA in 2D MHD. This suggests that the inverse

cascade of mean square concentration Hw in 2D CHNS is

due to hierarchical blob merger. This conclusion is also sup-

ported by statistical mechanics studies. Based on the ideal

quadratic conserved quantities, absolute equilibrium distri-

butions can be obtained. The real turbulent systems with

finite dissipation are of course different from ideal systems,

but the ideal conserved quantities still reflect important con-

straints on the nonlinear dynamics. The directions of the tur-

bulent cascades are suggested. An inverse cascade of Hw and

a forward cascade of energy are expected for 2D CHNS, by

analogy with 2D MHD. The inverse cascade of Hw is a for-

mal expression of the blob coalescence process. The forward

cascade of energy is as usual, since the elastic force breaks

enstrophy conservation.

Our simulation27,60,61 also verified the inverse cascade

of Hw, as shown in Fig. 9 (right) in Ref. 27. In this simula-

tion, there is no external forcing on the w field, and there

is a homogeneous isotropic forcing at wave number k¼ 4

on the / field. The Hw
k flux is defined to be PHwðkÞ

¼
P

k<k0 THwðk0Þ, where THwðkÞ ¼ hw
kðv � rwÞki. The flux

is negative, thus verifying that the direction of the cascade is

indeed to large scales. In 2D MHD, the inverse cascade of

HA is observed only if the A field is perturbed at small scales.

However, in 2D CHNS, a small scale perturbation of the w
field is not necessary (for the inverse cascade of Hw) because

fluctuations in w to tend to aggregate.

The spectrum of Hw exhibits a k�7=3 power law, as

shown in Fig. 10 (right) in Ref. 27. This power law is the

same as this for HA in 2D MHD. The derivation of this k�7=3

power law is essentially the same for 2D MHD. The major

assumptions are that there is an elastic equipartition qhv2i
� n2hB2

wi analogous to the Alfv�enic equipartition and that

the mean square magnetic potential spectral transfer rate �Hw

is constant.

The k�7=3 spectrum is robust. Different magnitudes of

external forcing result in different Hinze scales and thus in

different extents of the elastic range. But within the elastic

range, the power is still k�7=3, as shown in Fig. 12 in Ref. 27.

One may guess that the kinetic energy power law for

CHNS is k�3=2, as is in 2D MHD. However, the actual power

law is more close to k�3, as shown in Fig. 13 (left) in Ref.

27. Note that the energy power law for the 2D Navier-Stokes

turbulence in the range of the forward enstrophy cascade is

also k�3.62 This suggests that the back reaction of the w field

to the fluid motion is not as significant as for 2D MHD.

An obvious question now arises, which is very much the

crux of the issue concerning 2D CHNS dynamics. The ques-

tion is why does the CHNS$MHD correspondence apply so

well for Hw
k � HA

k � k�7=3, yet break down drastically for

energy? This initially surprising result can be understood by

examining the real space structure of the Bw field, as shown

in Fig. 3. The distribution of jBwj is significantly different in

the regions of density contrast and inside the blobs. Note that

elastic back-reaction in CHNS is limited to regions of density

contrast, where jBwj is significant. As blobs coalesce, the

extent (i.e., length) of the A-B interfacial region decreases, so

the “Active region” for elasticity drops as well. On the other

hand, in MHD, magnetic fields pervade the system. More

quantitatively, we define the interface packing fraction P as

P �
# of grid points where jBwj > Brms

w

# of grid points
: (11)

Loosely put, P may be thought of as the volume fraction

where jBwj is strong enough to generate appreciable elastic

back reaction. As shown in Fig. 15 in Ref. 27, P for CHNS

decays, while P for MHD remains stationary. Smaller P
means a smaller region where the back reaction is signifi-

cant, so the fluid dynamics is closer to simple Navier-Stokes.

Therefore, the energy spectrum for CHNS resembles 2D

Navier-Stokes turbulence more closely than it does 2D MHD

turbulence.

FIG. 3. The Bw field for CHNS. Reprinted with permission from Fan et al.,
Phys. Rev. Fluids 1, 054403 (2016). Copyright 2016 American Physical

Society.
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All told, our study of 2D CHNS turbulence strongly sug-

gests the importance of the study of real space structures on an

equal footing with the traditional focus on k-space power laws.

IV. RELAXATION AND MIXING: A STUDY OF A SINGLE
EDDY

As discussed above, understanding real space structures

evolution is the key to understand CHNS. Since the system

tends to evolve to an end state of a few large blobs, the abso-
lutely simplest problem which emerges is that of understanding

the competition of flow shearing and dissipation in the context

of a single cell structure (see Fig. 4). This study of single eddy

mixing in CHNS resembles the study of flux expulsion study

in MHD.63–66 The goals of the two studies are similar: to deter-

mine how the scalar field, and especially its spatial structure,

evolves in the background of a fixed convective eddy. Also,

the magnetic Reynolds number Rm and its analogue P�eclet

number Pe are	 1 in both cases, so advection dominates. The

analogous process for CHNS is the (kinematic) mixing of a

region of rhwi by a single, prescribed differentially rotating

eddy in (dissipative) CHNS. The analogy with flux expulsion

follows from the observation that Bw0 ¼ rhwi � ẑ.

When a convective eddy is imposed in a weak magnetic

field, the magnetic field is expelled and amplified outside the

eddy. This MHD phenomenon in MHD is called flux expul-

sion. Both simulation and analysis indicated that the final

value of hB2i can be estimated by hB2i � Rm1=2B2
0, where

Rm is the magnetic Reynolds number, and the time for hB2i
to reach a steady state is sMHD � Rm1=3s0. Rhines and

Young67,68 noted that the homogenization process (n.b. flux

expulsion is closely related to PV homogenization in a 2D

fluid) evolves through two stages: an initial rapid stage and a

later slow stage. The rapid stage dynamics is dominated by

shear-augmented diffusion, with time scale smix � Rm1=3s0.

The slow stage dynamics is simple diffusion, with time scale

sslow � Rm1s0. However, in CHNS, the single eddy mixing

exhibits more non-trivial evolutions.

In our simulation for the Cahn-Hilliard system,28,60,61

we set up the system in a way similar to the expulsion study

and solve the passive w scalar equation in the background of

a stationary eddy. The w field has a uniform gradient in the

initial state: w0ðx; yÞ ¼ Bw0ðxþ L0=2Þ, where Bw0 is a coeffi-

cient analogous to the magnitude of the external magnetic

field in MHD.

Three stages are observed. They are: (A) an (initial)

“jelly roll” stage, (B) the topological evolution stage, and

(C) the target pattern stage. In the “jelly roll” stage, the

stripes produced by spinodal decomposition (by negative dif-

fusion) are wound up into a spiral shape. In the stage of

topological evolution, the Bw lines “reconnect” and the spiral

stripes evolve to concentric annuli, called a target pattern.

See Fig. 5 for an illustration of the topological evolution.

The target pattern is meta-stable, so this stage is long lived.

The target bands merge on a time scale which is exponen-

tially long, relative to an eddy turnover time.

The band merger process is shown in Fig. 6. It is sim-

ilar to the step merger in drift-ZF staircases as shown in

Fig. 7.69,70 Both merger phenomena progress by pairwise

coalescence of stripes or steps, leading to progressive coars-

ening of the target or staircase patterns, as shown in Figs.

8(e)–8(h) and 6. Note that staircases occur in systems which

exhibit a roll-over in the flux-gradient relation, i.e., Fig.

9(a), 69–72 or bi-stability in that relation, i.e., Fig. 9(b). Flat

regions (i.e., “steps”) form where flux C increases rapidly

with concentration gradient �rc and steep gradient regions

(i.e., “jumps”) occur where C is low. For either case, the

crucial element is the presence of an interval of rc where

the effective diffusivity Deff ¼ �dC=drc goes negative,

suggesting negative diffusion. Indeed, such a domain of

negative diffusion seems unavoidable in a bi-stable system

where dC=drc is continuous. The dissipative operator on

the RHS of the Cahn-Hilliard equation indeed exhibits a

range of scales for which diffusion is negative. The range

of the negative diffusion is ultimately limited by the stabi-

lizing dominance of hyper-diffusion at smaller scales. Thus,

there is a non-trivial similarity between the flux vs. gradient

curve of systems in which staircase forms and the CH sys-

tem. Indeed, reduced models of staircases and layering bear

a resemblance to the CH equation.

FIG. 4. Understanding the competition of flow shearing and dissipation in

the context of a single cell structure.
FIG. 5. An illustration of the topological evolution from the jelly roll pattern

to the target pattern: the stripes break in the middle, and the outer parts

reconnect into a circle. Reprinted with permission from Fan et al., Phys.

Rev. E 96, 041101(R) (2017). Copyright 2017 American Physical Society.

FIG. 6. The evolution of w at x¼ 0 with time. The three stages are distin-

guished by black dashed lines and marked as A, B, and C, respectively. In

the target pattern stage (C), the merger process is shown as the corner of the

“>” shape. Reprinted with permission from Fan et al., Phys. Rev. E 96,

041101(R) (2017). Copyright 2017 American Physical Society.
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The three stages are also reflected in the plot of energy

v.s. time, shown in Fig. 10. In the “jelly roll” stage, the elas-

tic energy remains small as compared to the later stages.

Then, in the topological evolution stage, the elastic energy

rises. In the target pattern stage, the elastic energy decreases

slowly and episodically. The band mergers are reflected in

the plot as dips in the energy.

Analogous to the Rm1=3 time scale in MHD discussed in

Ref. 67, the mixing time scale of the shearþ dissipation hybrid

case is smix � Pe1=5Ch�2=5s0, where Ch � n=L0 is the Cahn

number, and Pe � L0v0=D is the Peclet number which is

analogous to Rm in MHD. We speculate that this time scale

represents the time for the topological change to occur. This

expression is obtained analytically by considering the synergy

of shearing and Cahn-Hilliard hyper-diffusion. Let dr be the

displacement in the radius direction and dy be the displacement

along the flow, as illustrated in Fig. 11. We have d
dt dy ¼ sdr,

where s is the shear, and thus, hdy4i � s4hdri4t4. According to

the Cahn-Hilliard Eq. (1) and assuming that the major process

here is the hyper-diffusion, we have hdri4 � Dn2t, and there-

fore, hdy4i � s4Dn2t5. Let hdy4i � L4
y , where Ly is the scale of

comparison, then the mixing time scale satisfies 1=smix

� s4 Dn2

L4
y

� �1=5

� Pe�1=5Ch�2=5=s0.

We also observe from simulations that the time to reach

the maximum elastic energy is sm � PeCh2s0, as shown in

Fig. 7 in Ref. 28. Clearly, single eddy mixing in CHNS is a

multiple stage process, occurring on several time scales.

Also, the formation of a meta-stable target pattern suggests a

significant memory and resilience to mixing. These are due

to the negative diffusion in the w equation.

V. CONCLUSION AND DISCUSSION

In this paper, we have discussed the physics of the 2D

CHNS system as a case study in elastic, active scalar dynam-

ics. The comparison and contrast with 2D MHD are empha-

sized, as are the general lessons learned. For CHNS

turbulence, the principle results of this paper are as follows:

FIG. 7. The staircase and step merger in confined plasma turbulence: con-

tour plot of the time evolution of jrnj along the plasma radius. Different

stages of evolution are (a) Fast merger of micro-steps and formation of

meso-steps. (b) Coalescence of meso-steps to barriers. (c) Barriers propagate

along the gradient and condense at boundaries. (d) Stationary profile.

Reprinted with permission from Ashourvan and Diamond, Phys. Rev. E 94,

051202(R) (2016). Copyright 2016 American Physical Society.

FIG. 8. The evolution of the w field. (a) The “jelly roll” stage, in which the stripes are spirals. (b)–(e) The topological evolution stage, in which the topology

evolves from spirals to concentric annuli in the center of the pattern. (f) and (g) The target pattern stage, in which the concentration field is composed of con-

centric annuli. The band merger progress occurs on exponentially long time scales; see (f) and (g) as an example. (h) The final steady state. Reprinted with per-

mission from Fan et al., Phys. Rev. E 96, 041101(R) (2017). Copyright 2017 American Physical Society.

FIG. 9. An eddy in a shear flow.
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1. The CHNS system supports elastic waves (at jrw 6¼ 0j
interfaces), as well as eddies.

2. Blobs emerge at small scales and merge to form fewer

progressively larger structures. The blob scale evolves as

l � t2=3.

3. CHNS turbulence, with vorticity forced at large scales,

manifests a dual cascade, with an inverse cascade of hw2i
and a forward cascade of enstrophy.

4. An elastic range is observed for Ld < L < LH. Here, LH

� ðqnÞ
�1=3�

�2=9
X is the Hinze scale, at which the blob sur-

face tension and fluid Reynolds stress are equal. Ld is the

dissipation scale. In the elastic range, the turbulence

dynamics resemble those of MHD.

5. The hw2i inverse cascade spectrum follows hw2ik � k�a,

with a ¼ �7=3, consistent with expectations based on

scaling as in 2D MHD. The energy spectrum does not but

rather scales as Ek � k�3, which resembles the spectrum

in the enstrophy cascade range for a 2D fluid.

6. The resolution of the apparent paradox above is that, in the

CHNS, elastic back reaction on the flow is restricted to the

interfacial layers between blobs. As blobs coalesce, the

number of blobs and the effective length of the interface

decrease, thus weakening elastic back-reaction. In this

limit, the dynamics approach that of a simple 2D fluid.

For the study of single eddy mixing, the principal results

are as follows:

1. The close analogy between the dynamics of mixing by a

single eddy in kinematic 2D CHNS and flux expulsion in

kinematic 2D MHD was noted and elucidated.

2. Episodic evolution of the elastic energy was observed,

over multiple time scales. Elastic energy evolves through

an initial “jelly roll” stage of wind-up, a fast topological

stage of Bw reconnection, and a long time target pattern

stage.

3. Target pattern formation was observed on long time

scales. The bands of the target undergo pairwise mergers

on time scales which are exponentially long in Pe. This

sequence of mergers resembles that between stages in a

staircase.

The most compelling topic for future work is the study

of turbulent transport mixing of mean concentration contrast

(rhwi) in CHNS. The interesting question here is whether

transport will be suppressed for large PeðrhwiÞ2, much like

it is for large RehBi2 in 2D MHD.73–77 This would suggest

the existence of a self-stabilizing regime, where even strong

stirring would not effectively mix a mean gradient. In MHD

at large Re, only a moderate jrhAij ¼ jB0j is required, as it

is the small scale magnetic fields which hold memory and

inhibit mixing. Whether the analogy holds for the CHNS

remains to be seek, as the “Zeldovich relations,” connecting

flux to intensity, are different for the two systems. However,

note that the CHNS system manifests on intrinsic tendency

to undo mixing by phase separation.

As a response to the broader question of what general les-

sons we learned in the course of this research, we return to the

physics issues and challenges discussed in the introduction.

This study has illuminated several aspects of active scalar tur-

bulence beyond the confines of CHNS system. On the subject

of dual cascades, this study illustrates that while multiple cas-

cades can co-exist, some are more important than others. In

CHNS, the evidence suggests that the inverse cascade of hw2i
(i.e., due blob coalescence) is the dominant process. Indeed, a

major result of this work is the discovery that blob coales-

cence can modify the forward cascade by restricting elastic

back reaction. Regarding “blobby turbulence,” this study

clearly demonstrates the utility of a real space approach.

Here, real space is where we learn how blob structures modify

the cascades. It also shows that the natural competition

between eddy straining and droplet coalescence defines an

important emergent scale, the Hinze scale. Similar scales are

likely to emerge in other realizations of blobby turbulence.

Finally, we learn that the negative diffusion leads to the for-

mation of novel patterns in simple systems. Here, a good

example is the target pattern formed in single eddy mixing.

As to the question of “what do we learn from all this?,”

we offer the following answers:

1. Do not focus myopically on power laws! Real space quan-

tities like packing fraction P and interface structure are

crucial to understanding the key dynamics.

2. One player in a dual cascade can modify or constrain the

dynamics of the other.

3. Somewhat contrary to conventional wisdom, the hw2i
inverse cascade is the robust nonlinear transfer process in

CHNS. This raises the interesting question of what, really,

is the essential process in MHD? It also suggests the ques-

tion of whether 2D MHD turbulence can be approached as

a competition between flux aggregation and fragmentation.FIG. 11. Flux-gradient relation.

FIG. 10. The time evolution of elastic energy. Note that the logarithm scale

is used for the t axis. A: the jelly roll stage; B: the topological evolution

stage; C: the target pattern stage. The dips marked by orange arrows are due

to band mergers. Reprinted with permission from Fan et al., Phys. Rev. E

96, 041101(R) (2017). Copyright 2017 American Physical Society.
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More generally, the study supports the idea that explor-

ing differences and similarities between related, but distinct,

systems is a useful approach to understanding turbulence in

complex media.
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