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Abstract: Non-global logarithms (NGLs) are the leading manifestation of correlations be-

tween distinct phase space regions in QCD and gauge theories and have proven a challenge

to understand using traditional resummation techniques. Recently, the dressed gluon ex-

pansion was introduced that enables an expansion of the NGL series in terms of a “dressed

gluon” building block, defined by an all-orders factorization theorem. Here, we clarify the

nature of the dressed gluon expansion, and prove that it has an infinite radius of conver-

gence as a solution to the leading logarithmic and large-Nc master equation for NGLs, the

Banfi-Marchesini-Smye (BMS) equation. The dressed gluon expansion therefore provides

an expansion of the NGL series that can be truncated at any order, with reliable uncer-

tainty estimates. In contrast, manifest in the results of the fixed-order expansion of the

BMS equation up to 12-loops is a breakdown of convergence at a finite value of αslog.

We explain this finite radius of convergence using the dressed gluon expansion, showing

how the dynamics of the buffer region, a region of phase space near the boundary of the

jet that was identified in early studies of NGLs, leads to large contributions to the fixed

order expansion. We also use the dressed gluon expansion to discuss the convergence of

the next-to-leading NGL series, and the role of collinear logarithms that appear at this

order. Finally, we show how an understanding of the analytic behavior obtained from the

dressed gluon expansion allows us to improve the fixed order NGL series using conformal

transformations to extend the domain of analyticity. This allows us to calculate the NGL

distribution for all values of αslog from the coefficients of the fixed order expansion.
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1 Introduction

Non-global logarithms (NGLs) [1] have proven to be an obstruction to understanding the

all-orders logarithmic structure of observables measured on jets or other restricted phase

space regions. Since their discovery, there have been significant advances in their cal-

culation [2–22], largely influenced by the development of the leading logarithmic (LL)

and large-Nc Banfi-Marchesini-Smye (BMS) equation [4]. The dressed gluon expansion of

ref. [18] proposed a method for reorganizing the degrees of freedom that contribute to NGLs

into an expansion in identified soft jets, referred to as dressed gluons.1 The dressed gluon

1Similar ideas in the context of rapidity gaps were presented in refs. [23–26].
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is defined by an all-orders factorization theorem, whose associated resummation, dictated

by renormalization group evolution, dresses the jet with an infinite number of unresolved

gluons. By summing over dressed gluons, it was hoped that a convergent expansion of

the NGL series could be obtained and that contained, at each order in the dressed gluon

expansion, information about the all-orders behavior in the αs expansion.

Ref. [18] did not, however, formalize the nature of the dressed gluon expansion. There,

the dressed gluon expansion was justified through numerical studies and comparison to the

fixed-order expansion of the BMS equation; whether the series could be reliably truncated

was never established, and its precise definition at higher orders was only guessed. A

reasonable criteria to judge an expansion of a series is that to reach any pre-defined accuracy

requires only calculating a finite number of terms in the expansion. Because NGLs can be

arbitrarily large, this requires the expansion to have an infinite radius of convergence if it is

to describe the physics of the distribution in all regions. Indeed, due to exponentiation, this

simple requirement is satisfied for the fixed-order expansion of familiar global logarithms

(perhaps in some conjugate space), because the exponential function has an infinite radius

of convergence. For the dressed gluon expansion to be useful operationally, it should

therefore have an infinite radius of convergence.

In this paper, we will prove that the dressed gluon expansion of the BMS equation

for summing NGLs has an infinite radius of convergence, and we will clarify the nature

of the expansion by relating the dressed gluon expansion to the method of successive

approximations, a technique for solving ordinary differential equations (see, e.g., ref. [27])

that produces convergent series as the solution. With a proof that the dressed gluon

expansion absolutely converges to the full solution of the BMS equation, this provides a

powerful analytic tool to investigate the structure of NGL series. Additionally, because the

dressed gluon expansion converges, the uncertainty introduced by truncating to a finite

accuracy is well-defined.

While the proof of the convergence that we present is quite technical, the physical

interpretation of the infinite radius of convergence is simple. Higher orders in the dressed

gluon expansion correspond to probing smaller infrared scales increasingly differentially.

For any fixed value of the NGL, including higher dressed gluons is necessary to span the

gap from the high energy scale down to the measured scale of the NGL. However, this

is only true to a point: eventually, sufficiently many dressed gluons will be included to

eliminate all large hierarchies. For any finite value of the NGL this saturation occurs

at a finite order in the dressed gluon expansion, and including higher order terms only

refines the result.

A remarkable feature of the dressed gluon expansion is that when expanded in αs, the

dressed gluon itself has a radius of convergence of |L| ≤ 1, where for the particular case of

NGLs in the heavy and light hemisphere masses mH and mL:

L =

mH∫
mL

dm

m

αs(m)

π
Nc '

αs
π
Nclog

mH

mL
, (1.1)

where the rightmost expression is the result for a fixed-coupling. This behavior arises due

to a singularity in the dressed gluon at L = −1 in the complex plane. Beyond L = 1, in

– 2 –
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the region where the NGLs are large and truly necessitate resummation, the dressed gluon

is capturing physics that cannot be reproduced by a fixed order expansion.2 We show that

this finite radius of convergence can be understood from the existence of the so called buffer

region of the BMS equation [2], where radiation near the jet boundary is prohibited. We

discuss in detail how the resummation associated with the dressed gluon expansion causes

a breakdown in the perturbative expansion, in particular quantifying growing contributions

at sub-leading logarithmic order. For the dressed gluon itself, no problems are found, since

all such terms are automatically resummed.

With an understanding of the analytic structure of the dressed gluon, we will then

argue that the fixed order αs expansion of the leading NGL series also has a finite radius

of convergence of L = 1. This implies that a reorganization of the expansion, for example

in terms of dressed gluons, is not only convenient, but necessary. We compare the known

Monte Carlo resummation [1] to the the explicit expansion of the BMS equation to 12-

loop order, finding a barrier to continuation beyond L = 1.3 Using our knowledge of the

singularity at L = −1, we are able to apply a conformal transformation to reorganize the

perturbative series, extending its domain of analyticity, and allowing us to calculate the

NGL distribution for all values of L from the coefficients of the fixed order expansion. We

also use the dressed gluon expansion to comment on the behavior of the next-to-leading

NGL series, in particular, focusing on the role of collinear logarithms.

The outline of this paper is as follows. We begin by briefly reviewing the physics

of NGLs and the BMS equation in section 2, setting up our notation and language for

the rest of the paper. In section 3, we review the method of successive approximations

for solving differential equations and relate it to the dressed gluon expansion. Our proof

that the dressed gluon expansion of the BMS equation converges is presented in section 4.

In section 5 we study the analytic structure of the dressed gluons, and show that when

expanded in αs, they have a radius of convergence of L = 1 due to the presence of the

buffer region. By comparison to the results of the expansion of the BMS equation up to

12-loop order, we show that this breakdown of convergence is also manifest in the behavior

of the perturbative series. Using an understanding of the analytic structure, obtained by

studying the dressed gluon expansion, we also show how conformal mappings can be used to

improve the behavior of the fixed order perturbative expansion. We conclude in section 6.

2 Physics of non-global logarithms and the BMS equation

To set the stage for establishing the convergence of the dressed gluon expansion, we re-

view the physics of NGLs and their leading-logarithmic and leading-color resummation as

described by the BMS equation. The BMS equation with full color is known to one- and

two-loops (see refs. [6, 17]), and in N = 4 Super Yang-Mills theory to three loops in the

large-Nc limit ref. [28].

2We emphasize that this is the radius of expansion in L, so that even expanding in L, but keeping

running coupling effects does not help the radius of convergence.
3We thank Simon Caron-Huot for providing us with the 12-loop perturbative expansion.
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n̄n

⌧ ⌧ 1

(a)

n̄n

mH � mL

(b)

Figure 1. A schematic comparison of global and non-global logarithms. In (a) a global measure-

ment is made, so that all real radiation is constrained by the measurement. No emissions occur

between the scales, and all soft radiation is sourced by the eikonal lines in the directions of the

original partons produced in the hard scattering. In (b), a measurement is made in the right hemi-

sphere. Real emissions in the left hemisphere are unconstrained. Due to non-abelian interactions,

the entire splitting history in the left hemisphere must be tracked to describe the distribution of

the observable measured in the right hemisphere.

The behavior of NGLs is distinct from that of familiar global logarithms, which we

review to emphasize essential differences. As illustrated in figure 1a, for an observable like

thrust τ [29] in e+e− collisions, enforcing τ � 1 restricts radiation throughout the entire

event. Large logarithms of τ are generated at every order in αs because of an incomplete

cancellation between virtual contributions (which contribute throughout phase space) and

real contributions (whose emissions are constrained by the value of τ). When contributions

from all-orders in αs are summed, these large infrared logarithms arrange themselves into

a Sudakov form factor [30] which exponentially suppresses the small-τ region. At double

logarithmic accuracy, this Sudakov form factor ∆(τ) is

∆(τ) = e−
αs
π
CF log2τ . (2.1)

As is well known, the Sudakov form factor expresses precisely the fact that there is no

dynamics between the scale of the hard scattering, and the scale of the measurement τ .

NGLs, on the other hand, are explicitly associated with dynamics occuring between

two distinct scales, enforced by two distinct measurements in different regions of phase

space. Such a configuration is illustrated in figure 1b: here, we separate the hadronic

final state of an e+e− collision event into hemispheres, and measure the mass of the two

hemispheres, mH and mL. We assume that the heavy hemisphere mass mH is larger than

the light hemisphere mass mL. By requiring mL � Q, the scattering energy, this restricts

the real radiation in the right hemisphere. However, if we consider the hierarchical case,

mH � mL, then emissions in the left hemisphere, which occur between the scales mH and

mL, and are therefore unrestricted by any measurement, can contribute to the final value

of mH due to non-abelian interactions. In particular, such configurations gives rise to large

– 4 –
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logarithms of the ratio of the two scales, log(mH/mL) in the perturbative expansion. The

resummation of these large logarithms requires tracking all emissions in the left hemisphere,

and therefore the NGLs do not organize themselves into a Sudakov.

A variety of approaches exist in the literature for the resummation of NGLs, each

of which requires in some form, the tracking of an infinite number of emissions to get

the complete leading logarithmic series. This was originally formulated in the leading

logarithmic Monte Carlo of Dasgupta and Salam [1], and the Banfi-Marchesini-Smye (BMS)

evolution equation [4]. More recently it has been studied in the context of effective field

theories and factorization from a number of different perspectives, namely the color density

matrix [17], the dressed gluon expansion [18], and the SCET based approach of [20, 22].

For the particular case of hemisphere masses, the leading-order BMS equation is

given by

∂Lgab =

∫
heavy

dΩj

4π
Wab(j) (Uabj(L)gajgjb − gab) , (2.2)

which is an integro-differential equation for the purely non-global contribution to the cumu-

lative cross section, gab, for a fundamental dipole along the directions a, b. Here, the angular

integral for the emission j is over the heavy hemisphere (out-of-jet region). The factor

Wab(j) =
1− cos(θab)

[1− cos(θaj)][1− cos(θjb)]
, (2.3)

which is the eikonal emission factor from the dipole with legs along the directions a, b, and

the resummation kernel is

Uabj(L) = exp

[
L

∫
light

dΩq

4π
(Waj(q) +Wjb(q)−Wab(q))

]
. (2.4)

Here we take L to be the non-global logarithm

L =
αs
π
Nclog

mH

mL
. (2.5)

The initial condition for the BMS equation is gab(0) = 1, ∀a, b. An analytic solution of the

BMS equation is not known, however, it can be solved numerically to study its physical

features, or expanded perturbatively in αs.

An important feature of NGLs which was first identified in early numerical studies, is

the behavior of emissions at the boundary between the in-jet and out-of-jet regions, the so

called buffer region of ref. [2]. We will review in some detail this behavior, as it will also

play an important role in the convergence properties of different approximations to the

NGL series. If the fat jet region is approximately circular with radius R, the resummation

factor in the BMS equation has the generic form

Uabj(L) =

(
1−

tan2 θj
2

tan2R
2

)L
fabj(L) . (2.6)

Here fabj is a smooth and finite function of j thoughout the jet region J for all L, and θj
is the angle of the fat jet axis to the emission j. The factor Uabj is bounded for a fixed L

for all dipoles

Uabj(L) ≤ 2L . (2.7)

– 5 –
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n

Jn̄Jn

S

jet axis

n̂sj

R

⌘bu↵er
mH � mL

decreasing m
L

(a) (b)

Figure 2. A schematic depiction of the buffer region, which causes the probability for a dipole

to emit to vanish as it approaches the edge of the jet region. The buffer region is captured in the

resummed calculation, but not at fixed orders in perturbation theory.

An important consequence of the form of eq. (2.6), is that it leads to the existence of

the buffer region. As θj → R, Uabj vanishes, and the probability to have an emission at

the boundary is zero. As L increases, the size of the buffer region grows, and eventually,

the only regions where emissions occur are in a small neighborhood of the initiating hard

partons. This is shown schematically in figure 2a. The physical intuition behind the buffer

region is also clear. Any energetic emission at the boundary could undergo a collinear

splitting, emitting a parton into the out-of-jet region, increasing the out-of-jet energy scale

to that inside the jet. There is a vanishing probability for such emissions to not occur.

Since we will often refer to the buffer region in this paper, we provide a precise def-

inition. Many definitions are of course possible, however, we prefer a definition based on

the Uabj factor, capturing the properties of the resummation factor U that will feature

prominently in the discussion of the fixed order series, and that always includes the a and

b legs. We therefore define the asymptotic buffer region, B as

B = {j ∈ J : Uabj(L) < 1} ,
B̄ = {j ∈ J : Uabj(L) ≥ 1} . (2.8)

We will refer to the complement of the buffer region, B̄ as the active jet region, since

it is the region where asymptotically one can expect emissions to populate. That the

region B exists is guaranteed by the form of the resummation factor in eq. (2.6). An

example showing the active and buffer regions for a schematic dipole configuration is given

in figure 2b, which represents a stereographic projection of figure 2a to better show the

active and buffer regions. Here, the orange region between the two dipole legs represents

– 6 –
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the active region, which is populated by emissions, while the dark green region represents

the buffer region.

However, we can also define the buffer region by any slice of the active jet region,

Bδ(L), defined by demanding that U remains less than some specified value within this

slice.4 This region will eventually grow to the size of B as L → ∞. Mathematically, we

have the statement that if we defined

Bδ(L) = {j ∈ J : Uabj(L) ≤ 1 + δ, 0 < δ < 1} , (2.9)

then we have

Bδ(L)→ B as L→∞ . (2.10)

The definition of B in eq. (2.8) therefore provides a natural definition for the buffer region.

As is well known, ignoring the jet integration regions, the kernel of the BMS equa-

tion including global logarithms in a conformal theory is equivalent [31] to the Balitsky-

Kovchegov (BK) equation [32, 33] describing unitarization and saturation effects in forward

scattering. However, the presence of the jet boundary in the BMS case, which leads to the

buffer region and its associated phenomena, gives rise to significantly different behavior for

the solution as compared with the case of forward scattering.

2.1 The dressed gluon expansion

In section 2, we found that for non-global observables, one must in general track the com-

plete splitting history in the unobserved region of phase space, as was illustrated in figure 1.

One can track this splitting history at the level of the individual partons themselves, trun-

cating the splitting history at a fixed number of partons. This is simply the fixed-order

expansion of the NGL series. An interesting question is therefore whether other expansions

can be formulated. In ref. [18] it was argued that one should organize this expansion not

in terms of individual partonic emissions, but in terms of identified subjets, referred to

as dressed gluons, in the unobserved region of phase space. Associated with each of the

identified subjets is an infinite number of unresolved gluons, captured by resummation.

The resummation factor is equivalent to the Uabj factor found in the leading-logarithmic

BMS equation, and dresses the parton initiating the jet.

The dressed gluon expansion is therefore naturally an expansion about gab = 1, or

L = 0, using a effective jet state instead of a partonic state, being distinguished by the

resummation. To describe the distribution at higher and higher values of L, more and more

dressed gluons must be included in the expansion, as shown schematically in figure 3. The

full NGL distribution is then given as a sum over all possible numbers of soft subjets, with

collinear overlap regions removed. In ref. [18], the dressed gluon factorization theorem was

derived, and then it was hypothesized summing over multiple dressed gluons could give

an expansion of the BMS equation with nice convergence properties. It was not, however,

4This is more in keeping with the buffer region analysis of ref. [18], which defined it as the full-width at

half-maximum of the U factor. However, since there can be regions where U is exponentially growing with

L, this definition can fail to capture the initial hard legs in an arbitrary geometry, where collinear emissions

can always populate.
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Jn̄Jn

S

jet axis

n̂sj

R

Strongly-Ordered Soft Subjets
mH � mL

(a)

p

p

q

n n̄

n̄

n̄n

n

L�

L

(b)

Figure 3. (a) Schematic depiction of the region of phase space defined by two strongly-ordered soft

subjets, which gives rise to the leading-logarithmic two-dressed gluon expansion. (b) Illustration of

the resolved subjets as a function of the resolution scale, as implemented by the matching procedure

in this region of phase space.

rigorously shown how the dressed gluons should be combined, nor that this was a valid

expansion that converged. The goal of this paper is to clarify this expansion, and discuss

some of its implications.

Although we will not describe in detail the structure of factorization theorem for the

soft subjet configuration or the construction of the dressed gluon, here we wish to emphasize

several features of the factorization and associated resummation. For a detailed discussion,

see ref. [18]. The schematic form of the factorization formula for a single soft subjet is

given by

dσ = H ·Hsj
nn̄ · Jn ⊗ Jn̄ ⊗ Snn̄nsj ⊗ Jnsj ⊗ Snsj n̄sj , (2.11)

which is illustrated in figure 4. Here we have suppressed all dependence on the resolution

variables. Each of the functions appearing in eq. (2.11) is associated with its own resum-

mation, which resums large logarithms of a particular scale. Of particular importance for

the discussion of this paper are the boundary soft modes, shown in red in figure 4, which

resolve the angle between the soft jet axis, and the boundary of the jet, which we will

denote ∆θsj . Large logarithms of the angle appear in the perturbative calculation, which

are resummed by the boundary soft function, and are incorporated into the emission factor

for the dressed gluon. As was discussed in ref. [18], this gives rise to an analytic realization

of the buffer region, and as will be discussed in sections 4 and 5, this will play an important

role in understanding the convergence of different expansions of the BMS equation.

In ref. [18] the dressed gluon expansion was studied using the energy correlation func-

tions [34] as a resolution variable, in the specific context of the D2 observable for jet

substructure [35, 36], giving rise to a precise form of the factorization formula of eq. (2.11)

derived in SCET [37–40]. However, the choice of resolution variable is immaterial. Indeed,

while the dressed gluon expansion can be formulated in terms of factorization theorems

identifying particular regions of phase space, ref. [18] also showed that the single dressed

gluon, when restricted to the leading logarithm at large Nc, could be directly obtained by

– 8 –
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Jn̄Jn

jet axis

R

n̂sj
Jnsj Snsj n̄sj

Snn̄nsj

�✓sj
Soft Subjet

mH � mL

Figure 4. A schematic depiction of the factorization theorem for a single dressed gluon, highlighting

the different modes discussed in the text. Of particular importance for the discussion of NGLs, are

the boundary soft modes, shown in red, which resolve the angle between the soft subjet axis, and

the boundary of the jet, and resum large logarithms of this angle.

expanding the BMS equation. To do this, we write the solution of the BMS equation as5

gab = 1 + g
(1)
ab . (2.12)

Substituting this expression into the BMS equation, and expanding, one finds that g
(1)
ab is

the one-dressed gluon. To make this explicit, substituting eq. (2.12) into the BMS equation,

and expanding, we find

∂Lg
(1)
ab =

∫
left

dΩj

4π
Wab(j) (Uabj(L)− 1) , (2.13)

which is equivalent to the expression for the factorization theorem describing the region of

phase space shown in figure 4, as was shown in ref. [18]. In section 3, we will generalize this

procedure, by relating it to the method of successive approximations for solving differential

equations, allowing us to give a precise definition of the dressed gluon expansion to all

orders. Furthermore, we will be able to show that this expansion converges.

3 Successive approximations and convergent expansions

In this section, we will review the method of successive approximations for solving differ-

ential equations and contrast this with the usual perturbative expansion. While these two

methods of expansion are identical for linear differential equations, such as those describing

global logarithms, they in general differ for non-linear differential equations, such as those

describing NGLs. After reviewing these different methods of expansion, we then show the

relation between the dressed gluon expansion and the method of successive approxima-

tions, and use the method of successive approximations to rigorously define the dressed

gluon expansion at LL order.

5In the context of forward scattering, the BK equation is traditionally linearized by writing gab = 1−φab.
Dropping non-linear terms, one recovers the BFKL equation [41, 42], with the solution φab being known as

the pomeron.
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3.1 Fixed order expansions versus successive approximations

Infrared logarithms can formally be arbitrarily large. This implies that to address their

behavior, one would like an expansion with an infinite radius of convergence. That is,

higher order terms in the expansion are smaller than lower order terms for arbitrary values

of the logarithm, in a precise and well-defined way. There are of course subtleties with

this convergence requirement in theories with a running coupling, but we can formally

require the systematic expansion to have an infinite radius of convergence, perhaps in

some appropriate conjugate space.

Näıvely, the fixed-order αs expansion for large global logarithms resummed to some

accuracy satisfies this requirement. For concreteness, we again consider calculating thrust

τ [29] in e+e− → hadrons to double logarithmic accuracy. Thrust is a global observable:

the measured value of thrust constrains all radiation throughout the entire, global, phase

space. The thrust distribution to this accuracy takes the form

1

σ0

dσ

dτ
= −2

αs
π
CF

logτ

τ
e−

αs
π
CF log2τ . (3.1)

The exponential function has an infinite radius of convergence, and so to approximate

this resummed cross section to any prescribed accuracy, one can expand in powers of

αs and terminate once the required accuracy has been reached. Equivalently, one could

systematically build up this resummed distribution by calculating the fixed-order cross

section in the double-logarithmic limit at higher and higher orders. Therefore, in this

example, the fixed-order expansion is a good expansion that can be used to approximate

to arbitrary accuracy the resummed distribution of eq. (3.1).

More generally, logarithms that appear in the cross section of the measurement of

global, infrared and collinear safe observables can often be resummed by solving renormal-

ization group evolution equations. In an appropriate conjugate space, these are ordinary,

linear, homogeneous differential equations. For the case of thrust, by Laplace transform-

ing the cross section, for example, the renormalization group equations take the following

schematic form
d

d logµ
F = γF , (3.2)

where F represents a part of the (Laplace-transformed) cross section. The scale µ is the

renormalization scale and γ is the anomalous dimension of F . The anomalous dimension

can be calculated order-by-order in αs and for observables like thrust can be written as

γ = Γcusp(αs)log
µ

µ0
+ γn-c(αs) , (3.3)

where µ0 is a reference scale, Γcusp(αs) is called the cusp anomalous dimension and γn-c(αs)

is called the non-cusp anomalous dimension. The solution to eq. (3.2) is then

F (µ) = F (µ0)eL(µ,µ0) ,

L(µ, µ0) =

∫ µ

µ0

dµ′

µ′
Γcusp

(
αs(µ

′)
)

log
µ′

µ0
+ γn-c

(
αs(µ

′)
)
, (3.4)

where F (µ0) is a boundary condition.
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Here we must draw several distinctions regarding what is meant by expansion. The

expansion of F in the running coupling logarithm L has an infinite radius of convergence and

is a good expansion for approximating the full, resummed solution of eq. (3.4) to arbitrary

accuracy, where the global L is now analogous to the NGL defined with running coupling in

eq. (1.1). This property again results from the linear nature of the renormalization group

evolution equation, giving rise to the form of the solution as an exponential, eq. (3.4),

which has an infinite radius of convergence. The anomalous dimension γ is calculable

order-by-order in αs, but depending on the field theory may or may not have a finite

radius of expansion in αs. Indeed, the cusp anomalous dimension is known to all orders in

planar N = 4 SYM, where it is described by the BES equation [43]. There, the perturbative

expansion of the cusp anomalous dimension is known to have a finite radius of convergence.6

This has been argued to be generically true in planar theories [46], up to issues regarding

the use of renormalon free schemes. So in perturbation theory, L has the expression:

L(µ, µ0) =
Γ

(0)
cusp

4π

(∫ µ

µ0

dµ′

µ′
αs(µ

′)log
µ′

µ0

)
+

Γ
(1)
cusp

(4π)2

(∫ µ

µ0

dµ′

µ′
α2
s(µ
′)log

µ′

µ0

)
+ . . .

+
γ

(0)
n−c
4π

(∫ µ

µ0

dµ′

µ′
αs(µ

′)

)
+
γ

(1)
n−c

(4π)2

(∫ µ

µ0

dµ′

µ′
α2
s(µ
′)

)
+ . . . . (3.5)

To get to the strict fixed-order expansion of QCD, one typically also expands the running

coupling order by order in perturbation theory, with the coupling evaluated at a fixed renor-

malization scale. The expansion of the running coupling has a finite radius of convergence,

due to the Landau pole. However, this can be cured by simply leaving the fixed-order

theory improved with the running coupling.7 This would then be equivalent to treating

the Γ(i) and γ(i) as expansion parameters for the expression for F . What is important for

our purposes is that this expansion, with the anomalous dimensions truncated to a finite

order, but including the running coupling, has an infinite radius of convergence.

Without the explicit solution eq. (3.4), however, how do we know that the αs expansion

(even running coupling improved) is a systematic expansion of the cross section with an

infinite radius of convergence? Furthermore, can we identify other methods of systematic

expansion which go beyond the traditional expansion in αs? This question is of importance

in the study of NGLs, as the BMS evolution equation is non-linear.

An alternative approach to a standard fixed order expansion in αs, which allows for

the study of a more general class of differential equations is the method of successive

approximations, often also called Picard iteration [27].8 Using eq. (3.2) as an example, we

will construct an approximate solution F (n), where

F (n) =
n∑
i=0

f (i) , (3.6)

6For recent studies for convergence of N = 4 at the amplitude level, see e.g. refs. [44, 45].
7Throughout this paper, whenever we say “fixed-order expansion,” this can also be taken to mean

“fixed-order expansion improved with running coupling.”
8In the context of integral equations, particularly of the Fredholm type, such successive approximations

also go under the name of Neumann series.
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and iteratively insert it into the renormalization group equation, eq. (3.2). That is, the

equation for F (n+1) is
d

dlogµ
F (n+1) = γF (n) , (3.7)

or, in terms of the f (n),
d

dlogµ
f (n+1) = γf (n) . (3.8)

The boundary condition sets the value of F (0). Then, one looks for stationary solutions of

the iterative differential equation; namely,

lim
n→∞

F (n) = F . (3.9)

This limit is guaranteed to exist and is the unique solution if the differential equation

satisfies a Lipschitz condition. Practically, this states that variations of the derivatives

cannot be too large on any given interval. For an arbitrary first-order, ordinary differential

equation, which we can write as
dy

dx
= g(y, x) , (3.10)

where g is some function of the solution y and the independent variable x, the Lipschitz

condition is a constraint on the function g. With a metric || · || defined on the space of

continuous functions {g(y, x)}, a Lipschitz condition is

||g(y1, x)− g(y2, x)|| < K|y1 − y2| , (3.11)

where K is a constant. If this is satisfied, then the function g is called Lipschitz continuous,

K is the Lipschitz constant, and the Picard iteration is guaranteed to converge to the unique

solution in a neighborhood of x. This result is known as the Picard-Lindelöf theorem.

In the renormalization group evolution example, g = γF , and so we can just take the

metric || · || to be the absolute value. Then, the Lipschitz condition is

|γ||F1 − F2| < K|F1 − F2| , (3.12)

which is satisfied for any K > |γ|. Therefore, for all scales µ for which γ is finite the Picard

iteration eq. (3.6) converges to the unique solution of eq. (3.2). In particular, by solving

eq. (3.7), the approximation F (n) is

F (n) = F (µ0)

n∑
i=0

1

n!

(∫ µ

µ0

dµ′

µ′
γ

)n
. (3.13)

As n→∞, this converges to the solution of eq. (3.4), regardless of the size of the integrated

anomalous dimension. This Picard iterated solution simply corresponds to the fixed order

expansion, up to the determination of the anomalous dimensions themselves.

Generically, however, it is not true that Picard iteration corresponds to the Taylor

expansion/αs expansion of the solution of ordinary differential equations. In particular, this

is not true for non-linear differential equations, or equations with explicit non-polynomial
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dependence on the independent variable, where the method of successive approximations

provides a more versatile approach for identifying convergent expansions. For such non-

linear equations, one expects the fixed order expansion only to have a finite radius of

convergence, whereas the method of successive approximations often provides an expansion

with an infinite radius of convergence, by naturally incorporating branch cuts or other

singularities in its expansion.9

3.2 The dressed gluon expansion as successive approximations

For resummation of global logarithms, there is no distinction between the perturbative

expansion and the method of successive approximations, due to the linear nature of the

evolution equation. However, this is no longer true for NGLs, where the evolution equation

is non-linear. We can identify the dressed gluon expansion, as defined in eq. (2.12), as

the terms in a successive approximation about gab = 1. In particular, the one-dressed

gluon, g
(1)
ab which can be computed from a factorization theorem for a single resolved jet,

is exactly equivalent to the first Picard iteration of the BMS equation. This provides an

interesting mathematical interpretation of the nature of the dressed gluon expansion: to

describe a complicated branching history, such as that shown in the left of figure 1b, we

can successively approximate it with subjets of increasing resolution, namely the dressed

gluons. We find this correspondence between physical factorization theorems describing

the number of subjets, and the method of successive approximations for solving differential

equations to be quite remarkable. Moreover, if such an expansion converges, then one can

capture the physical intuition that for a fixed hierarchy of scales, an arbitrary number of

emissions is unnecessary for an accurate description of the distribution.

Using this equivalence between the first Picard iteration and the one-dressed gluon, we

can now use the method of successive approximations to the BMS equation to rigorously

define the dressed gluon expansion. We can define the LL dressed gluon expansion as the

Picard iteration starting from gab = 1 of the BMS equation. In particular, we define the

dressed gluon expansion as

gab = 1 + g
(1)
ab + g

(2)
ab + · · · , (3.14)

∂Lg
(n+1)
ab =

∫
left

dΩj

4π
Wab(j)

[
Uabj(L)

(
g

(n)
aj g

(n)
jb +g

(n)
aj

n−1∑
i=0

g
(i)
jb +g

(n)
jb

n−1∑
i=0

g
(i)
aj

)
−g(n)

ab

]
, (3.15)

where g
(0)
ab = 1 for any a, b. We therefore see that the dressed gluon can be interpreted

as the kernel of the BMS equation. Here the single dressed gluon acts as the building

block, and the iteration of the BMS equation defines the build up of additional dressed

gluons which approximate the arbitrarily complicated gluon state. It is then natural to

hypothesize that the factorization theorem for two soft subjets could act as a kernel for

the NLO BMS equation. We leave a study of this to future work.

9As an explicit example which clearly demonstrates this, and shares some features with the behavior of

the BMS equation, we invite the reader to compare the Taylor series and Picard iteration for the differential

equation y′ = y2/(1 + x)− y with y(0) = 1.
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Since the dressed gluon expansion is a form of successive approximations to a non-

linear differential equation, it is not an expansion in either αs, or αslog. If we expand the

dressed gluon expansion in terms of fixed order perturbation theory, it will reproduce the

fixed order series. However, it will do this in a highly non-trivial manner: the n-th dressed

gluon will exactly reproduce at fixed order all the NGLs up to n-loops, but will also contain

contributions to higher loops. Given that the dressed gluon expansion reorganizes the fixed

order expansion in terms of successive approximations, we can clarify the work in ref. [18],

where an expansion parameter was not identified. In a typical pertubative expansion, the

expansion parameter can immediately be identified either as αs, or αslog in a resummed

calculation. However, in the method of successive approximations, one can consider the

expansion parameter as effectively the Lipschitz constant, K, which bounds the derivatives,

as was discussed around eq. (3.11). This is a “worst case” expansion parameter, giving

strict upper limit on the size of the next term in the expansion, though the true size

can be much smaller. Indeed, in this case the expansion parameter will be derived from

bounding the kernel of the BMS equation, similar to the Lipschitz constant for ordinary

differential equations.

The dressed gluon expansion of eq. (3.15) is slightly different than that introduced in

ref. [18]. There, the dressed gluon expansion was defined similarly, as

gab = 1 + g
(1)
ab + g

(2)
ab + · · · , (3.16)

but with the recursion

∂Lg
(n+1)
ab =

∫
left

dΩj

4π
Wab(j)

[
Uabj(L)

(
n∑
i=0

g
(i)
aj g

(n−i)
jb

)
− g(n)

ab

]
. (3.17)

Each term on the right side of this expression is homogeneously the n-dressed gluon, with

one overall angular integral. While this form of the recursion was motivated by a possible

description by increasingly differential factorization theorems, this was not explicitly proved

in ref. [18]. Additionally, the 1-dressed gluon of both eqs. (3.15) and (3.17) are identical,

and so to distinguish them requires calculating 2- and higher dressed gluons. Because the

expansion of eq. (3.15) can be directly related to Picard iteration, it will be the central

focus of the remainder of the paper. The expansion of eq. (3.17), while similar, is more

challenging to formulate a proof of its convergence, and so we leave this to future work.

The fact that the dressed gluon expansion can be recast in the language of successive

approximations of the BMS equation is suggestive that it is in fact a convergent expan-

sion. Indeed, for general classes of both integral and differential equations, the method of

successive approximations is known to converge. Since the BMS equation is an integro-

differential equation, we will need to generalize slightly the well known convergence proofs.

In the following sections, we will show that the BMS equation does satisfy a bounding

condition, and so appropriately constructed successive approximations will converge to the

unique, exact solution. We will prove that the dressed gluon expansion of eq. (3.15) is such

a successive approximation scheme, and that it converges. The technical details of this

proof are given in section 4.
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4 Convergence of the dressed gluon expansion

In this section we prove the main result of this paper, namely that the dressed gluon expan-

sion of the BMS equation converges, and has an infinite radius of convergence. This section

is primarily of a technical nature, and therefore readers not interested in the details of the

proof can skip to the next section for applications of the dressed gluon in understanding

the analytic structure of NGLs. As discussed in section 3.2, from the point of view of

differential equations, the dressed gluon expansion is nothing other than a rearrangement

of the method of successive approximations, a standard technique for solving nonlinear

differential equations. Such successive approximation techniques are known to have good

convergence properties, and therefore, from this perspective, the convergence of the dressed

gluon expansion is not surprising. That is, the finite truncation of the successive approx-

imations describes the solution with a fixed accuracy within a given interval, and higher

order terms will give negligible contribution, regardless of how many are dropped. Indeed,

the next term in the approximation always gives an accurate assessment of the error of

truncating the rest of the terms. This is opposed to an asymptotic series, where eventually

higher order terms will swamp the lower order terms, and the series must be truncated at

finite order, or resummed by other means.10

The strategy of the proof is as follows. We introduce the space of mathematical

functions that the BMS kernel acts upon and maps to. Then we introduce a metric on

this space, and with this metric, derive a bounding condition for a collinearly regulated

BMS kernel, allowing us to define a Lipschitz constant. Using this, we are then able to

follow the standard logic for proving the convergence of successive approximations for a

bounded kernel, which allows us to show the series is absolutely convergent on an arbitrarily

sized interval [0, Lf ]. Then we prove that the removal of the collinear regulator poses no

difficulties for the expansion, since any solution for the BMS equation has a strict lower

bound that we derive.

4.1 The space of dipole functions

To begin, we introduce an alternative form of the BMS equation, by writing gab = 1 +φab,

so that φab describes the departure from gab = 1. We then have

∂Lφab = dab(L) +

∫
J

dΩj

4π
Wab(j)

(
Uabj(L)

{
φaj + φjb + φajφjb

}
− φab

)
, (4.1)

where

dab(L) =

∫
J

dΩj

4π
Wab(j)

(
Uabj(L)− 1

)
. (4.2)

This form is convienent since the differential equation is now operating on what we term

as a dipole function. Loosely speaking, these are functions that map two null directions

to real numbers such that they vanish when these directions become collinear. Written in

this form, the BMS kernel maps dipole functions back to dipole functions. In what follows,

10This is not to disparage asymptotic series. These series satisfy a distinct reasonable goal: to quickly

approximate a function in some region at the cost of an upper bound of the achieveable absolute accuracy.
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we will restrict ourselves to a discussion of the BMS equation when the initial legs of the

dipole are both inside the jet region, and will restrict our notation to this case. The proof

with one leg inside, and one leg outside of the jet region proceeds analogously, but the

simultaneous treatment is cumbersome. It is therefore left as an exercise for the reader.
We define the space of dipole functions in a jet region J ⊂ S2

D = {φab : φab continuously maps J ⊗ J → R;φab = (a · b)f(a, b), |f(a, b)| <∞, ∀ a, b ∈ J} . (4.3)

These dipole functions always vanish in the collinear limit (a · b → 0) at least as fast as

a · b. This guarantees the collinear divergences cancel in the BMS equations. It is easy to

show that the space of dipole functions is also a vector space. Moreover, the function in

eq. (4.1) is a member of this dipole function space. In order to derive the convergence of

the successive approximations of the BMS equation, we must have a norm on this space to

judge how close two functions are. So we use essentially the standard uniform or supremum

metric on D, but with the collinear divergence factored into the norm itself

‖φ‖d = sup
{∣∣∣ φab
a · b

∣∣∣ : (a, b) ∈ J ⊗ J
}
. (4.4)

It is a simple matter to check that this definition satisfies all the properties expected of a

norm. This definition is possible since φab is always guaranteed to have a maximum on the

closure of J ⊗ J . This norm will be useful for our purposes, since it explicitly factors in

the collinear singularity, which dipole functions regulate naturally.

4.2 The collinearly regulated BMS equation

To allow for the definition of the Lipschitz constant for the BMS equation, we will work

with a collinearly regulated version of the equation, so that separate terms appearing in the

equation are themselves finite. To begin, we first reorganize the form of the BMS equation.

The BMS equation can be written as

∂Lφab = dab(L) +Gab(L, φ) (4.5)

= dab(L) + dab(L)φab +Bab

(
φ; J

)
+

∫
J

dΩj

4π
Wab(j)

(
Uabj(L)− 1

)(
φaj + φjb − φab

)
+

∫
J

dΩj

4π
Wab(j)Uabj(L)φajφjb .

We will call G the BMS kernel. The functional Bab is defined as

Bab

(
φ; J

)
=

∫
J

dΩj

4π
Wab(j)

(
φaj + φjb − φab

)
. (4.6)

We write the BMS equation as above to explicitly single out the B-functional. When

J = S2, the whole celestial sphere, then Bab is conformally related to the position space

form of the kernel of the BFKL equation; see refs. [31, 47–49], and also see ref. [50] for the

construction of solutions based on this kernel.

The BFKL kernel has unbounded eigenvalues when acting on the space of dipole func-

tions, rendering it impossible to directly bound Bab. Thus, it will be important to introduce
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(a) (b)

Figure 5. The geometry of a jet undergoing non-global evolution. We stereographically project a

circular hemisphere jet as in refs. [15, 31] onto a plane tangent to the celestial sphere at the jet axis.

The green region is the heavy jet region. The orange region is the interior away from the buffer

region, plotted for an example dipole given by the two dark blue points. The circles indicated the

region of integration removed in the collinearly regulated BMS equation.

the collinearly regulated BMS kernel, where we replace the jet region J by the jet region

with two small regions surrounding the legs of the dipoles removed, as shown in figure 5.

To discuss these configurations, we introduce the following notation. We define Dδ(p) to

be the open disc of radius δ about point p. The collinearly regulated jet region is then

defined as

Rδab = J −Dδ(a) ∪Dδ(b) ,

R
δ
ab = Dδ(a) ∪Dδ(b) . (4.7)

This allows us to define a collinearly regulated BMS equation

Gδab(L, φ) = dδab(L)φab +Bδ
ab

(
φ;Rδab

)
(4.8)

+

∫
Rδab

dΩj

4π
Wab(j)

(
Uabj(L)−1

)(
φaj+φjb−φab

)
+

∫
Rδab

dΩj

4π
Wab(j)Uabj(L)φajφjb ,

where

dδab(L) =

∫
Rδab

dΩj

4π
Wab(j)

(
Uabj(L)− 1

)
. (4.9)

This collinearly regulated version of the BMS equation will be our main focus of study, and

will allow us to prove convergence of the dressed gluon expansion. Cutting off the collinear

region explicitly makes the BFKL kernel’s contribution to the BMS equation a bounded

linear functional. Note that the BMS equation is collinear finite, however, this occurs due

to a cancellation of real and virtual terms. For the collinearly regulated BMS equation,

each term is separately bounded. In section 4.5, we will argue how the collinear regulator

can be removed.
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Having introduced the collinearly regulated BMS equation, we can now see why we

focused upon the class of dipole functions which vanish as fast as a · b in the collinear

limit of a and b. One may consider a broader class of dipole functions, where the function

vanishes as some power of a · b in the collinear limit, and indeed, such a class of functions

can serve as eigenfunctions for the unregulated BFKL kernel in eq. (4.6). We restrict

to the class we have explicitly because of the introduced collinear regulator. The BMS

kernel is explicitly proportional to a · b, so that naively iterating the kernel will produce

functions that are also proportional to a · b in the sense of eq. (4.3). One may fear that

the complicated integration may introduce some inverse powers of a · b, but this could only

arise in the region of integration where the additional emission is close to a or b. The

presence of the collinear regulator specifically smooths these regions out, guaranteeing we

remain within the class of dipole functions originally defined. This will be explicitly seen in

the construction of the Lipshitz condition below, which is constructed to bound the action

of the collinearly regulated BMS kernel point by point in the J ⊗ J active jet region by a

constant times a · b.

4.3 Bounding the collinearly regulated BMS kernel

Having defined a collinearly regulated version of the BMS equation, given in eq. (4.8), in

this section we derive a Lipschitz condition of the form∣∣∣Gδab(L, φ)−Gδab(L,ψ)
∣∣∣ ≤ (a · b)Kδ

∥∥∥φ− ψ∥∥∥
d

(4.10)

for the BMS kernel.

We will work with the space of bounded dipole functions near a specified dipole function

vab, defined as

DM (vab) = {φab ∈ D & ‖φ− v‖d ≤M} . (4.11)

Though on the space of dipole functions, no collinear regularization is necessary, we will

be able to show that the collinearly regulated BMS kernel obeys a Lipschitz condition on

DM (vab) if vab itself is bounded on the dipole jet region.

In bounding the difference of the BMS kernel acting on two dipole functions, we will

make use of the following functions, which we define for notation convenience

A = maxa,b∈J [a · b] ,

dmax(L) = maxa,b

∫
j∈J

Wab(j)

a · b

∣∣∣Uabj(L)− 1
∣∣∣ ,

A(J) =

∫
J

dΩj

4π
,

κδJ = A(J)

(
maxa,b∈Jmaxj∈Rδab

Wab(j)

a · b

)
. (4.12)

We note that ∣∣∣dδab(L)
∣∣∣ ≤ (a · b)dmax, ∀δ ≥ 0 , (4.13)

and therefore dmax is also a maximal estimate for any collinearly regulated jet regions, since

by construction it has no collinear divergences on J .
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We now examine the difference∣∣∣Gδab(L, φ)−Gδab(L,ψ)
∣∣∣ , (4.14)

which we would like to bound. Using the triangle inequality, it is sufficient to derive a

bound on each term in eq. (4.8). Beginning with the three linear terms, and proceeding in

the order that they appear in eq. (4.8), we have∣∣∣dδab(L)
∣∣∣φab ≤ (a · b)Admax‖φ‖d , (4.15)∣∣∣Bδ

ab

(
φ;Rδab

)
−Bδ

ab

(
ψ;Rδab

)∣∣∣ ≤ 3(a · b)AκδJ‖φ− ψ‖d , (4.16)∫
Rδab

dΩj

4π
Wab(j)

(
Uabj(L)− 1

)∣∣∣φaj + φjb − φab − ψaj − ψjb + ψab

∣∣∣
≤ 3(a · b)Admax‖φ− ψ‖d . (4.17)

The final nonlinear term can be bounded as∫
Rδab

dΩj

4π
Wab(j)Uabj(L)

∣∣∣φajφjb − ψajψjb∣∣∣
=
a · b

2

∫
Rδab

dΩj

4π
Uabj(L)

∣∣∣∣∣
(
φaj − ψaj

)
a · j

(
ψjb + φjb

)
j · b

+

(
φaj + ψaj

)
a · j

(
φjb − ψjb

)
j · b

∣∣∣∣∣
≤ (a · b)U(L)

∥∥∥φ+ ψ
∥∥∥
d

∥∥∥φ− ψ∥∥∥
d
, (4.18)

where we have defined

U(L) = maxa,b∈J

∫
J

dΩj

4π
Uabj(L) . (4.19)

Note that because Uabj(L) is positive definite, the integral over the full jet region J is

always larger than over the punctured jet region, Rδab. Collecting the different contributions,

we find∣∣∣Gδab(L, φ)−Gδab(L,ψ)
∣∣∣ ≤ (a · b)

(
4Admax(L) + 3AκδJ +U(L)

∥∥∥φ+ψ
∥∥∥
d

)∥∥∥φ−ψ∥∥∥
d
. (4.20)

Thus when L is restricted to a fixed interval [Li, Lf ], we can find the maximizing L, and if

φ, ψ ∈ DM (vab), we obtain the desired Lipschitz condition:∣∣∣Gδab(L, φ)−Gδab(L,ψ)
∣∣∣ ≤ (a · b)Kδ

∥∥∥φ− ψ∥∥∥
d
, (4.21)

where the Lipschitz constant Kδ is defined as

Kδ = 4A
(

maxL∈[Li,Lf ]dmax(L)
)

+ 3AκδJ + 2
(

maxL∈[Li,Lf ]U(L)
)(
M + ‖v‖d

)
. (4.22)

4.4 Proof of convergence

Having derived a Lipschitz constant for the collinearly regulated BMS equation, we now

proceed with a proof of convergence for the dressed gluon expansion. This will be done

in two steps. We first proof a local convergence of the solution, and then show that this

solution can be arbitrarily continued to any given fixed interval, completing the proof of

convergence for the regulated BMS equation.
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Local existence. We begin by proving local existence. For clarity, we write the proof in

the form of bulleted steps.

• Focus on L in an interval IAL0
= [L0 − A,L0 + A], and we examine the initial value

problem stated as an integral equation:

φδab = vab +

∫ L

L0

dL′Gδab(L
′, φδ). (4.23)

We seek to find the solution φδab within the space DM (vab) for |L − L0| sufficiently

small.

• Define the successive approximations:

φδ0;ab = vab ,

φδn;ab = vab +

∫ L

L0

dL′Gδab(L
′, φδn−1) . (4.24)

• Let λ = min{A, MC }, C = sup|Gδab(L,ψ)|, for L ∈ IAL0
, a, b ∈ J , and ψ ∈ DM (vab).

From the Lipschitz condition (4.21), such a C exists, and C ≤ AKδ(M + ‖v‖d). We

now restrict to the subinterval IλL0
⊂ IAL0

. Note that we have maximized with respect

to the opening angle also with the factor of A.

• The successive approximations remain within DM (vab). We show this by induction:

– The first approximation is in DM (vab):

|φδ1;ab − φδ0;ab| ≤ C|L− L0| ≤M . (4.25)

Since this is true for all a, b ∈ J , we have φδ1;ab ∈ DM (vab) for L ∈ IλL0
.

– Assume φδk;ab ∈ DM (vab) for k < n. Then from (4.24):

|φδn;ab − φδ0;ab| ≤ C|L− L0| ≤M . (4.26)

So φδn;ab ∈ DM (vab).

• We can show inductively that

‖φδn;ab − φδn−1;ab‖d ≤
C

Kδ

(
Kδ|L− L0|

)n
n!

. (4.27)

The proof of this proceeds as follows:

|φδn;ab − φδn−1;ab| =
∣∣∣ ∫ L

L0

dL′Gδab(L
′, φδn−1)−

∫ L

L0

dL′Gδab(L
′, φδn−2)

∣∣∣
≤ (a · b)Kδ

∫ L

L0

dL′
∥∥∥φn−1 − φn−2

∥∥∥
d

(4.28)
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Now using the induction hypothesis:∥∥∥φn−1(L′)− φn−2(L′)
∥∥∥
d

=
C

Kδ

(Kδ)n−1|L′ − L0|n−1

(n− 1)!
(4.29)

we achieve eq. (4.27). The first step in the induction was already established in

eq. (4.25).

• Thus by the Weierstrauss M-test, the series:

φδab(L) = vab +
∞∑
n=1

(
φδn;ab(L)− φδn−1;ab(L)

)
, (4.30)

converges. The n−th partial sum of this series is just the φδn;ab.

• We now show φδab solves the BMS equation. This follows from:

|Gδab(L, φδn)−Gδab(L, φδ)| ≤ AKδ‖φδn − φδ‖ . (4.31)

This implies the application of Gδab on the sequence {φδn;ab} converges since the se-

quence itself does. Thus we can take the limit n → ∞ on both sides of (4.24), and

substitute in φδab:

φδab = vab +

∫ L

L0

dL′Gδab(L
′, φδ) . (4.32)

With more work, one can also show uniqueness.

Global existence. Now we fix an interval [Li, Lf ] and an M . We wish to show a solution

exists on this predefined interval. We start with the initial value problem with:

φδab = vab +

∫ L

Li

dL′Gδab(L
′, φδ) . (4.33)

The idea of the proof is to keep continuing the local solution given above until we cover

the whole interval.

• First interval.

We construct the Lipschitz constant Kδ
1 for the set L ∈ [Li, Lf ] and φ ∈ DM (v). We

can solve the BMS equation on the interval:

[Li, Li + λ1) (4.34)

Where:

λ1 = min

{
Lf − Li,

M

C1

}
, (4.35)

C1 = sup|Gδab(L, φ)|, L ∈ [Li, Lf ] and φ ∈ DM (v) . (4.36)

If λ1 = Lf − Li, we are done. Therefore, assume otherwise. We note that:

1

AKδ
1

≤ λ1 . (4.37)
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• Second interval.

We now take the limit, L→ L0 +λ1, and given that on the first interval, the solution

is bounded and a differentiable function of L, the limit to the endpoint exists and is

continuous. Let v
(2)
ab = φδab(L0 + λ1) and consider the new initial value problem:

φδab = v
(2)
ab +

∫ L

L0+λ1

dL′Gδab(L
′, φδ) . (4.38)

We construct the Lipschitz constant K2 for functions φ ∈ DM (v(2)), keeping in mind

we already maximized the functions U and dmax on the interval [Li, Lf ]. Now we can

solve the BMS equation on the interval:

[Li + λ1, Li + λ1 + λ2) (4.39)

Where:

λ2 = min

{
Lf − Li − λ1,

M

C2

}
, (4.40)

C2 = sup|Gδab(L, φ)|, L ∈ [Li, Lf ] and φ ∈ DM (v(2)) . (4.41)

If λ2 = Lmax−L0−λ1, we are done. Therefore, assume otherwise. Now again we have:

1

AKδ
2

≤ λ2 . (4.42)

Importantly,

Kδ
2 −Kδ

1 = 2
(

maxL∈[Li,Lf ]U(L)
)

(‖v(2)‖d − ‖v‖d) ≤ αM , (4.43)

where the constant α is defined as

α = 2
(

maxL∈[Li,Lf ]U(L)
)
. (4.44)

This is due to the fact that the dependence on DM (v) appears linearly in eq. (4.21),

and v(2) ∈ DM (v). We therefore conclude:

1

AKδ
1 + αAM

≤ λ2 . (4.45)

• n-th interval.

We continue constructing new intervals. Let v(n) be the initial value for the n-th

interval. Importantly, on every new interval, the new Lipschitz constant is related to

the old one by the inequality:

Kδ
n ≤ Kδ

n−1 + αM . (4.46)

We solve this recursion to conclude:

Kδ
n ≤ Kδ

1 + (n− 1)αM . (4.47)
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And, unless we hit Lf , the new interval is given by:

[
Li +

n−1∑
k=1

λk, Li +

n∑
k=1

λk

)
(4.48)

However, this sum is bounded from below by a harmonic sum:

n∑
k=1

1

AKδ
1 + (k − 1)αAM

≤
n∑
k=1

λk (4.49)

Such harmonic sums grow arbitrarily large. Thus we conclude after a finite number

of continuations, we will eventually hit Lf , and we now have a solution on the whole

interval [Li, Lf ]. This solution is also bounded, for if N is the integer such that∑N−1
k=1 λk < Lf − Li ≤

∑N
k=1 λk, then the continued solution is in the set DNM (v),

since the norm of each initial value v(k) for the k-th interval is bounded as ‖v(k)‖m ≤
M+‖v(k−1)‖m. It is interesting to note that the dependence on the collinear regulator

is entirely a feature of the first Lipschitz constant. This is essentially due to the fact

that the bound on the nonlinear terms do not depend on the collinear regularization.

4.5 Removing the collinear regulator

We now indicate how one can justify removing the collinear regulator. That the limit to

δ → 0 is smooth is entirely reasonable, since the regulator itself appears as a boundary of

an integral, and so its explicit functional dependence in the BMS kernel is differentiable.

First we will demonstrate the solutions to the BMS equation are bounded from below for all

values of the collinear regulator. Then if we remove the collinear regularization anywhere

the BMS solution is a decreasing function, the solutions will remain bounded, and we will

have a well-defined limit. Indeed, we find that one should expect faster decay of the BMS

solution for smaller values of the regulator.

To derive the lower bound, we make use of the comparison theorem for differential

equations (see for instance, ref. [27]), which states that if we have a differential inequality

ẋ ≥ w(t, x) , x(t0) = x0 , (4.50)

then solutions to the differential equation

ẏ = w(t, y) , y(t0) = x0 , (4.51)

will bound from below solutions to the differential inequality with identical initial condi-

tions. Thus if we have a differential equation

ẋ = f(t, x) . (4.52)

It suffices to construct an ω(t, x) that bounds from below the original f(t, x) to achieve

a lower bound on solutions. It is simple to show that φab = −1 is a fixed point for all
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values of δ in the regulated BMS equation (4.8). Thus we return to the original form of

the regulated BMS equation

∂Lg
δ
ab =

∫
Rδab

dΩj

4π
Wab(j)

(
Uabj(L)gδajg

δ
jb − gδab

)
. (4.53)

Noting that

Wab(j)Uabj(L)gajgjb ≥ 0 , (4.54)

we can drop the nonlinear term, cancel the explicit L dependence, and derive the differential

inequality

∂Lg
δ
ab ≥ −γab(δ)gδab , (4.55)

γab(δ) =

∫
Rδab

Wab(j). (4.56)

Our truncation of the regulated BMS equation now satisfies the conditions for the com-

parison theorem, so the solution to the differential equation

∂Lg
δ
ab = −γab(δ)gδab , (4.57)

will bound from below solutions to (4.53), as long as they have the same initial condition.

This then implies, if gδab(0) = 1,

gδab(L) ≥ exp [−Lγab(δ)] . (4.58)

We can compute the dependence of γab(δ) on the cutoff δ as it is determined by the collinear

divergences of gauge theories. When both a, b are in the jet we have

γab(δ) = −2 log δ +O(1), if θab > δ , (4.59)

where θab is the angle between directions a and b. When only one leg is inside the jet

we have

γab(δ) = −log δ +O(1) . (4.60)

As δ → 0, the logarithmic cutoff eventually dominates any dipole opening angle, and this

becomes a bound on the solutions of the unregulated BMS equation:

lim
δ→0

gδab(L) ≥ 0 , ∀L . (4.61)

As long as the solution to the BMS equation has a negative derivative, we can remove the

collinear regulator and ensure that the solutions to the BMS equation are bounded from

below for all δ and L. As this is the case for physical initial conditions, we can then take

δ → 0 in the above successive approximations, constructing a solution to the BMS equation

via a series with an infinite radius of convergence.
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Figure 6. The cutoff dependence of the Monte Carlo solution to the BMS equation. Displayed

are both the distribution and the logarithm of the distribution, with statistical uncertainties.

As an illustration of the effect of the collinear cutoff on the NGL distribution, we plot

the large-Nc Monte Carlo solution of ref. [1] in a hemisphere dijet geometry in figure 6.11

The collinear cut-off in the Monte Carlo represents the smallest angle an emission can

have in the event to another emission in the event in the lab frame. As is expected from

the behavior of the lower bound of eq. (4.58), the distribution decreases with decreasing

collinear cutoff. The fact that the bounding solution is always a simple exponential, and

goes to zero as δ → 0, indicates the behavior of the true distribution must decay more

strongly than a simple exponential.

5 Breakdown of the fixed-order expansion for non-global logarithms

Having established the dressed gluon as a convergent expansion of the BMS solution, we

can use the structure of the dressed gluons to deduce properties about the full solution

to the BMS equation. In particular, we show that the dressed gluons fulfill a necessary

condition for the existence of a singular structure in the complex plane at L = −1 in the

full solution of the BMS equation. If the BMS equation has such a singularity, and since

the dressed gluon expansion converges everywhere to the solution, then each dressed gluon

must exhibit singularities at the same point, in order for the singularities to not destroy the

11In general, we do not necessarily expect the spread of the Monte Carlo runs to be Gaussian distributed

in each bin. Thus, to estimate statistical errors, we split the Monte Carlo into a hundred runs for each

cut-off, where each run now has fewer events than the total collected. This gives us a distribution of runs

for each bin, with which we can directly determine the fluctuation width of 65% of the runs about the

mean. This was found to be close to the root-mean-squared (RMS) analysis of distribution of runs. We also

checked the same remained true when the Monte Carlo was divided into 50, 30, 25, and 15 runs, now with

each run containing more events. Further, a random sampling of merely six runs gave a decent estimate

of the total RMS. We then explicitly checked that the RMS estimate followed a N−1/2 law as the number

of events N in each run was increased. For the final estimate of the statistical uncertainties, we took the

RMS of the 100 run distribution, and rescaled it according to the N−1/2 law to the total number of events

collected. The total number events collected in each cut-off was greater than 4 × 106.
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radius of convergence. In section 5.1 we study the analytic behavior of the dressed gluons,

showing that the single dressed gluon has a singularity at L = −1 in the complex plane, and

therefore that its expansion in αs has a finite radius of convergence. We then argue that this

behavior persists for any number of dressed gluons. In section 5.2 we describe the physical

origin of this singularity as being due to the buffer region, and explicitly show how this

leads to coefficients of O(1) in the perturbative expansion of the dressed gluon. We then

review how the dressed gluon naturally resums these contributions through its “boundary

soft” mode, leading to a convergent expansion. In section 5.3 we use the dressed gluon to

study the behavior of the next-to-leading NGLs and show that collinear double logarithms

worsen the convergence of the perturbative expansion if they are not resummed to all

orders, as can be accomplished with the dressed gluons. This illustrates the importance of

analysizing the factorization structure of the subjet production cross-sections.

5.1 Logarithmic singularities in the NGL distribution

In this section, we will consider the analytic structure of a single dressed gluon off of the

nn̄ dipole with hemispherical jet regions, which we will already find to be quite interesting.

This configuration has been studied in detail and high-order perturbative results exists to

which we can compare. We have from ref. [18]∫ L

0
dL′ dnn̄(L′) = −γE

2
L− 1

2
log Γ(1 + L) . (5.1)

From this expression, one notes that there is a logarithmic singularity at L = −1. In

particular, this implies that the fixed order expansion of the dressed gluon has a radius of

convergence of L = 1. Indeed, the Taylor expansion of the logarithmic factor entering the

expression for the single dressed gluon is found to be

− γE
2
L− 1

2
log Γ(1 + L) = −1

2

∞∑
i=2

ψ(i−1)(1)

i(i− 1)!
Li , (5.2)

where ψ(i)(z) is the poly-gamma function

ψ(i)(z) =
di+1

dzi+1
log Γ(z) . (5.3)

For large i,
ψ(i−1)(1)

i(i− 1)!
∼ O(1) , (5.4)

which explicitly exhibits this finite radius of convergence. This fact alone is quite remark-

able, and shows that the dressed gluon expansion is capturing physics that is not described

in fixed order perturbation theory to any order. In section 5.2 we will discuss the physics

behind the finite radius of convergence for the expansion of the single dressed gluon in more

detail, and how it is cured by the resummation included in the dressed gluon. Here we

will show that this singularity arises mathematically from the behavior of Unn̄j factor as L

becomes negative. At negative L, the Unn̄j factor no longer vanishes at the jet boundary in
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a power law fashion, suppressing emissions, but diverges instead. This leads not to a buffer

region, but to a region with an unregulated number of emissions.12 We then generalize this

argument to the kth dressed gluon.13

The integral expression for the derivative of the first dressed gluon for an arbitrary

initial dipole ab is

∂Lg
(1)
ab (L) =

∫
J

dΩj

4π
Wab(j) (Uabj(L)− 1) . (5.5)

Recalling the form of Uabj(L) in eq. (A.6) for the hemisphere case, we can write as the

emission approaches the jet boundary, j → ∂J , for an arbitrary initial dipole ab

Uabj(L) ∼
(π

2
− θj

)L
fabj(L) . (5.6)

Here fabj is a smooth and finite function of j throughout the jet region J for all L. As

long as L > −1, the integral over the jet region can be performed; otherwise, we have an

unbounded result. As L→ −1 in the complex plane, the boundary of the jet will dominate

the integration in eq. (5.5), and we can deduce the nature of the singularity by taking a

small region around the jet boundary,14 and integrating. The rest of the jet region will

give a subleading result. In the integrand, we can set θj = π/2, except for the singular

behavior in eq. (5.6), and integrate over φj and θj to find

∂Lg
(1)
ab =

c

L+ 1
+O(1), L→ −1 , (5.7)

c is some constant. We then integrate over L to conclude that there will be generically a

logarithmic singularity at L = −1 for the first dressed gluon off any dipole, namely

g
(1)
ab ∼ log(L+ 1) +O(1), L→ −1 . (5.8)

While we cannot compute the higher dressed gluon contributions analytically, the

recursive nature of the dressed gluon expansion, eq. (3.15), naturally sets up an inductive

argument. It is straightforward to show, due to the non-linear term in the Picard iteration

of eq. (3.15), that

g
(k)
ab ∼ log2k−1(L+ 1) + · · · , L→ −1 , (5.9)

where the dots represent subleading logarithms in this limit. Therefore, at each order, the

k-th dressed gluon exhibits a logarithmic singularity to the 2k − 1-th power as L→ −1 in

the complex plane.

12Amusingly, this flip of suppression and enhancement of emissions as the sign of L is flipped is reminiscent

of Dyson’s argument for the divergence of the perturbative expansion in QED [51]. However, in this case

the divergence does not become sufficiently bad until L = −1, leading to a finite radius of convergence

instead of zero radius of convergence.
13Though we restrict ourselves here to back-to-back hemisphere jets, the logarithm of the angle of the

soft-jet to the jet boundary is a generic feature of any jet region. This follows from the fact that boundary

soft modes which are introduced to resum this angle enjoy a collinear factorization, sensitive to the angular

distance to the jet boundary. Indeed, one can check from calculations in ref. [52], that these logarithms are

present in a “swiss cheese” region jet region with arbitrary hard jets, and that they factorize collinearly

from the soft color structure.
14In particular, the region must be within the buffer region, excluding the initial dipole points.
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Figure 7. The convergence of the fixed order expansion of the BMS equation for hemisphere mass

to 12 loops. In (a) we show the distribution, and in (b), the ratio to the Monte Carlo fit. Even

orders in the expansion are solid, odd orders are dashed. The behavior of the series is suggestive of

a series with radius of convergence L = 1.

It is important to emphasize that the presence of these logarithmic singularities does

not effect the radius of convergence of BMS solution in terms of the dressed gluons them-

selves, since each dressed gluon itself has the logarithmic singularity fully constructed, as is

necessarily the case if the full BMS solution has such a singularity. Indeed, this is what al-

lows for the dressed gluons to provide an expansion with an infinite radius of convergence.

Effectively, one is not expanding in L near the logarithmic singularity, as is happening

with the fixed order series, but in log(1 + L). This is a highly non-trivial rearrangement

of the standard fixed order expansion. Indeed, this is one of the advantages of the more

general method of successive approximations, as compared with a more standard fixed

order expansion.

Given these singularities, and the fact the dressed gluons converge to the full solution,

we expect that the radius of convergence of the fixed order expansion of the BMS equation

is |L| = 1. As numerical evidence of this claim, in figures 7a and 7b we plot the fixed

order expansion of the leading order BMS equation to twelve loops for hemisphere jet

mass [53]. In the ratio to the Monte-Carlo solution to the BMS equation, one can clearly

see that regardless of the number of terms included in the fixed order expansion, the leading

logarithmic series begin to diverge from the Monte Carlo solution at L = 1. Thus while

the series converges nicely for L ≤ 1, above this value, the fixed order expansion does

not describe the NGL distribution. Furthermore, in figure 8 we plot the absolute value

of the coefficient of the leading logarithms up to 12 loops, and compare with that for the

leading global logarithm, which has a infinite radius of convergence. For a general series

with radius of convergence of R, the coefficients of the expansion, denoted here as cn, obey

lim
n→∞

cn+1

cn
=

1

R
. (5.10)

Unlike the coefficients of the global logarithmic series, up to 12 loops, the coefficients of the

leading non-global logarithms are quite flat, supporting that the series indeed has a radius

– 28 –



J
H
E
P
1
1
(
2
0
1
6
)
0
8
9

� � � � � �� ��

��-�

��-�

��-�

�����

�����

���� ������

�
�
��
��
��
��
�

����� ����� ������������

������� ������ ��� ������
������� ���-������ ��� ������

Figure 8. The absolute value of the coefficients of the leading logarithmic, fixed-order expansion

as a function of the order of the perturbative expansion for both global and non-global logarithms.

The constant magnitude of the coefficient for the case of non-global logarithms supports a radius

of convergence of the series of L = 1.

of convergence of L = 1. Since this is a system where high perturbative orders can be

computed, it would of course be interesting to test this to higher orders in the perturbative

expansion.

5.2 The role of the buffer region and boundary soft resummation

It is enlightening to examine exactly how the buffer region is responsible for the finite

radius of convergence of the fixed-order expansion. Studying the buffer region will allow us

to quantify how the coefficients of the fixed-order expansion grow as the number of loops

increases, and highlights the contribution from logarithms sensitive to the angle to the

jet boundary of the emission which are resummed in the dressed gluon approach. Since

the angle of the dressed gluon is integrated over, these logarithms do not appear in the

final result. Nevertheless, we show that they drive the breakdown of convergence of the

fixed order expansion by contributing large coefficients to the perturbative expansion at

each order.

As in the previous section, we again consider the behavior of the Uabj factor as an

emission approaches the boundary of the jet. We restrict to hemisphere jets, in this case

Uabj is exactly known, and is given in appendix A, and further take a = n, b = n̄. We have

Unn̄j =

(
1− tan2 θj

2

)L
. (5.11)

In a perturbative expansion in αs (which we recall is absorbed into L), this term is

expanded as (
1− tan2 θj

2

)L
=

∞∑
i=0

logi
(

1− tan2 θj
2

)
Li

i!
(5.12)
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Importantly, this expansion is performed before integration over the phase space region of

the jet. In this expansion, one sees logarithms of the angle of the dressed gluon (or subjet)

to the jet boundary, that appear at each order in perturbation theory.

An important feature in the construction of the dressed gluon that was emphasized

in ref. [18], and reviewed in section 2.1, is the “boundary soft” mode which achieves a

resummation of these logarithms. This was also required in the analytic calculation of the

D2 observable [36]. The size of the logarithms depends on the location in the phase space;

however, these logarithms are large in the region of phase space that contributes to the

NGLs, namely

log

(
1− tan2 θj

2

)
→∞ as θj →

π

2
. (5.13)

The manifestation of these logarithms in the final NGL series, is however, more subtle.

Indeed, performing the marginalization over the dressed gluon phase space, one finds that

these logarithms are integrable ∫ 0

dx logix ∼ i! , (5.14)

leading not to a large logarithm, but to a large constant. However, it is precisely the

factorial growth of these terms that will lead to a finite radius of convergence of the αs
expansion of the dressed gluons. Note that this is independent of the other endpoint of the

integral (at sufficiently large i), and only depends on the fact that one must integrate to

the boundary of the jet, which is the origin of the logarithmic divergence.15

To see this, we examine the fixed order expansion of g
(1)
ab (L), the first dressed gluon

g
(1)
ab (L) =

∞∑
i=0

diL
i . (5.15)

Higher order emissions come with their own resummation factor Uabj , and it is straightfor-

ward to extend the argument to such terms. If we expand the Uabj factor in the dressed

gluon perturbatively before performing the integration, as in eq. (5.12), then we have, using

eq. (5.14),

di ∼
∫
J

dΩj

4π
Wab(j)

log
(

1− tan2 θj
2

)i
i!

∼ 1 , (5.16)

since all other terms are order 1 throughout the jet region in the anomalous dimension, and

the eikonal factor is also generically order 1 at the jet boundary. We therefore conclude

that in eq. (5.15)

di ∼ O(1) , ∀ i , (5.17)

which implies a radius of convergence of L = 1. It is important to emphasize that the

behavior of the integral comes only from the endpoint of the integral, namely the boundary

of the jet.

15From our working definition of the buffer region, eq. (2.8), one can see the lower limit of the polar

integration is set by the leg of the dipole closest to the boundary, since the resummation factor U always

goes to 1 at this leg. The closer this leg is to the boundary, the higher loop orders we expect one must

compute before the coefficients of the NGL series flatten out. We have checked in other dipole configurations

that the fixed order series does appear to lose convergence after L = 1.
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This clearly demonstrates the necessity of the resummation of the logarithms associated

with the boundary of the jet for achieving a convergent perturbative expansion, as is

achieved by the boundary soft modes in the dressed gluon expansion. It also emphasizes

subtleties in marginalizing over factorization theorems, and the resummation of logarithms

before and after marginalization.16

5.3 Collinear effects at next-to-leading logarithm

While we have so far focused in this paper on the leading logarithmic behavior of the

NGL series, as described by the BMS equation and for which high loop perturbative data

exists, it is also interesting to consider what happens at next-to-leading logarithmic (NLL)

accuracy. Since the dressed gluon is described by an all-orders factorization theorem, it is

systematically improvable, and allows such questions to be studied. The extension of the

dressed gluon to NLL was discussed in ref. [21].

At next-to-leading logarithmic order, collinear double logarithms become an important

feature of the NGL series.17 Again, their resummation can be achieved using the dressed

gluon expansion. In this case, one must include not only the boundary soft modes, but

another mode which is also sensitive to the boundary of the jet, referred to as the “edge

of jet” mode in ref. [21]. Ultimately, the effect of these modes is to modify the Uabj
resummation factors in eq. (2.2), introducing another evolution kernel

Uabj → U ci
abj = UabjU

E
abj . (5.18)

Here the “ci” superscript stands for “collinearly improved” and E denotes the evolution

kernel for the edge of jet mode. For our purposes here, we can simply expand out this re-

summation factor to find the impact on the NLL series. To the lowest orders for hemisphere

jets, we schematically have (see appendix B for relevant evolution equations and scales)

logU ci
abj(mH ,mL) = γabjL−

αsCA
4π

β0γabjL

(
log

(
mHmL∆θ2

j

Q2

)
+ 3γabj

)
+ · · · , (5.19)

where we have suppressed the scale at which αs is evaluated. Here, Q is the center of mass

energy of the event, β0 is the one-loop coefficient of the β-function, ∆θj = π
2 − θj is the

angle of the soft subjet to the jet boundary, and γabj is the one-loop anomalous dimension

of the boundary soft mode, proportional to the logarithm of the angle to the jet boundary.

For hemisphere jets with back-to-back dipoles,

γnn̄j = log

(
1− tan2 θj

2

)
. (5.20)

Additionally, we generically expect that there is observable dependence in the anomalous

dimension γabj at higher orders, but here we ignore it for simplicity.

16In the approach of refs. [20, 22] these logarithms are not resummed before marginalization.
17Such logarithms also have been argued to play an important role in the context of the BFKL [54–57]

and BK [58, 59] equations.
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Note that in this expression there is a genuine double logarithm of ∆θj = π/2 − θj .
To determine the evolution equation that includes splittings along the boundary accurate

to NLL, we must expand the kernel U ci
abj . From the expansion in eq. (5.19), we have

U ci
abj(mH ,mL) ' exp

[
γabjL−

αsCA
4π

β0γabjL

(
log

(
mHmL∆θ2

j

Q2

)
+ 3γabj

)]
(5.21)

=

∞∑
n=0

1

n!

[
γabjL−

αsCA
4π

β0γabjL

(
log

(
mHmL∆θ2

j

Q2

)
+ 3γabj

)]n

'
∞∑
n=0

(γabjL)n

n!

[
1− nαsCA

4π
β0

(
log

(
mHmL∆θ2

j

Q2

)
+ 3γabj

)]
.

Then, with the edge of jet modes included, in the fixed order expansion of the NGLs, we

will encounter integrals of the form

1

n!
· n ·

∫
J

dΩj

4π
Wab(j)logn+1∆θj ∼ n2 , (5.22)

and which therefore have a worse behavior than at LL. By the ratio test for series conver-

gence, one still expects an O(1) region of convergence; however, the coefficients of the NLL

series at each loop order are now growing quadratically. Indeed, it is straightforward to see

that these collinear logarithms at higher subleading logarithmic order (NNLL, N3LL, etc.)

will eventually drive a factorial growth in the coefficients of the fixed order perturbation

series if they are not resummed.

It is interesting to understand the role of the running coupling in generating these

contributions. To get the factorial growth, it is enough to truncate the running of the

coupling to its first perturbative order as in eq. (5.19). That is, the factorial growth is not

due to the all-orders running of the coupling probing a renormalon, as is the usual bubble

chain analysis; see ref. [60], but simply the chain of collinear splittings along the boundary.

The NLL series is significantly more complicated to calculate, as it cannot be computed in

the strong energy ordered limit. It would however, be extremely interesting to verify the

prediction of eq. (5.22) explicitly.

Due to the behavior of the NLL series, it is important to emphasize how this shows

that the standard logarithmic organization of the perturbative series that is traditionally

used for global observables is not appropriate for the case of NGLs. The standard counting

of logarithms used for global observables assumes that the coefficients of the logarithms

(neglecting the factors of αs) are O(1) numbers. In this case, there is a suppression between

LL and NLL due to the additional power of αs. However, in the NGL case, this suppression

by a factor of αs at NLL is accompanied by a quadratic growth of the coefficients, which will

overwhelm the suppression by αs at a certain loop order. This implies that the standard

logarithmic counting used for global observables is not appropriate, and that these effects

due to the buffer region and collinear divergences associated with the edge of the jet must

be resummed to all orders to have a convergent perturbative expansion. This is naturally

achieved by the dressed gluon expansion.
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As a further comment, one might expect a cancellation of the collinear resummation,

since näıvely, the resummation of NGLs should be driven by soft physics. The collinear

splittings in the heavy hemisphere are at the energy scale mH and are required to always

remain within that hemisphere, and thus are sensitive to the scale ∆θj . Collinear splittings

in the other hemisphere are at amuch lower scale, mL, and can only approach to within ∆θj
of the soft subjet axis. Thus the collinear splitting angle is independent of the hemisphere,

and because the corresponding anomalous dimensions have opposite sign, one might expect

such a cancellation. Indeed, in a conformal theory, collinear splittings are not sensitive to

the absolute energy of the parent parton, and so one would expect the collinear scale (the

angle to the edge of the jet) to cancel between the in-jet and out-of-jet splittings, and

one can adopt a scheme between the LO and NLO kernels such that such logarithms are

canceled automatically in the evolution. Thus the coefficients of the NLL series would

remain O(1) numbers in a conformal theory.

5.4 Improving the fixed order perturbative convergence

A number of techniques exist for improving the behavior of poorly convergent expansions,

such as Borel resummation, Padé approximants, or order-dependent mappings [61]. Given

an understanding of the analytic structure of the solution, one approach is to use conformal

transformations to extend the domain of analyticity. This has been explored in the context

of QCD in refs. [62–64]; see also ref. [65] for a pedagogical review.18 Given our under-

standing of the analytic structure obtained from the study of the dressed gluon expansion,

namely that we suspect that there is a branch cut singularity at L = −1, we can apply a

conformal transformation [65]

L→ u(L) , (5.23)

and derive from the original power series for the BMS equation in L an improved power

series in the variable u.19 The function u must be a function that has a common domain

of analyticity as the original power series in L. Put simply, u must also have a power series

at L = 0 in terms of L, and thus within this domain defines a conformal mapping. We now

write an expansion:

gab(u) =

∞∑
i=0

c
(i)
abu

i . (5.24)

The coefficients c
(i)
ab are fixed by requiring that the power series in L is reproduced after

substituting the explicit L dependence in. Importantly, the new power series in u can have

a much larger domain of analyticity as a function of u than the original power series in L.

In general, we can go to the same order in the conformally mapped distribution as we can

18We are grateful to Martin Beneke for suggesting this approach to us, and for directing us to the relevant

literature.
19Note that this approach has typically been applied to improve the radius of convergence in the Borel

plane for factorially divergent series. Since we have argued that the expansion of the BMS equation has a

finite radius of convergence, we can directly apply the mapping to the series, and do not first apply a Borel

transform.
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Figure 9. The conformal improvement of the fixed order expansion of the single-dressed gluon

using both the disc and log mappings described in the text. A zoomed in version is shown in (a),

and a zoomed out version in (b). While the fixed order expansion has a radius of convergence of

L = 1, the conformally improved expansions have an infinite radius of convergence. The expansion

using the log mapping is particularly fast.

in the original series. We consider two such mappings:

u(L) =


√

1+L−1√
1+L+1

,

log(1 + L) .
(5.25)

The first is commonly used in renormalon analysis, and conformally maps the L plane

to a disc, whereas the second is motivated by the fact that the dressed gluon expansion

explicitly indicates a series of logarithmic singularities at L = −1. Both have the feature

that the singularity at L = −1 is pushed to the boundary of the domain of the mapping, far

from u = 0. We will refer to these as the disc mapping and the log mapping, respectively.20

We begin by testing these approaches on the single dressed gluon for back-to-back

dipoles in the hemisphere mass case, for which the analytic expression is known (eq. (5.1)).

In figure 9 we show a comparison of the fixed order expansion, compared with the two

different conformal improvements. Here we have chosen to work to 12th order in the

expansion, simply for illustrative purposes, as this is the order that the NGL series is known

to. While the fixed order expansion has a radius of convergence of L = 1, as illustrated

by the divergence of the 12th order expansion at this point, both conformal improvements

have an infinite radius of convergence. The two conformally improved series do illustrate

different rates of convergence. For the log mapping, the convergence is remarkably fast, as

is perhaps expected, as it was inspired by the form of the dressed gluon.

20These mappings give rise to series which are obviously not series in αs, but are series in functions of αs.

It is perhaps interesting that one of the early examples in jet physics where an expansion in a non-trivial

function of αs appeared was in the anomalous dimension for multiplicity, which is proportional to
√
αs at

lowest order [66–68]. As is well known (see e.g. ref. [69]) the anomalous dimension admits an expansion in

αs, but with a radius of convergence of |αs| < π
8CA
|j − 1|2, where j is the order of the Mellin moment. To

extend the radius of convergence, one can perform a remapping (resummation) similar to those presented

here, which leads to the
√
αs behavior.
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Figure 10. A comparison of the 12-loop fixed order expansion for the NGL distribution with the

conformally improved fixed order expansion using both the disc mapping and the log mapping in

(a). A significant improvement in the convergence is seen for both conformally improved series,

well beyond L = 1. In (b) we show the absolute values of the coefficients in the expansion for the

log mapping.

Given the perturbative expansion of the BMS equation, which is known to 12-loops, we

can test this resummation approach. In figure 10 we show a comparison of the perturbative

expansion at 12-loop order, with the two conformally improved series. While the perturba-

tive expansion diverges at L ' 1, the conformally improved solution, which was obtained

only from the coefficients of the fixed order expansion, and the assumption of a branch cut

at L = −1, exhibits considerably improved convergence. With the 12-loop results, excellent

agreement is seen out to L ' 2. This is well beyond the apparent radius of convergence

of the fixed order expansion. Unlike for the case of the single dressed gluon, comparable

convergence is seen for the two different mappings. This is perhaps not surprising. For

the case of the single dressed gluon, we knew not only the presence of a branch cut, but

that it was logarithmic. Much better convergence was then seen with the logarithmic map-

ping. However, for the full NGL series, from the arguments in section 5.1, we know that

the nature of the singularity is more complicated. Both expansions we considered there-

fore only incorporate the location of the singularity. This illustrates that having a better

understanding of the analytic structure can lead to considerably more rapid convergence.

We emphasize that these conformal mappings are a form of resummation, similar in

spirit to the explicit resummation associated with the dressed gluon, but here captured

in a purely algebraic form. Just as in that case, it is this resummation which allows for

a radius of convergence beyond that of the fixed order expansion. We expect that, like

the dressed gluon expansion, the radius of convergence of the conformally improved NGL

series is infinite, but we do not have a proof of that fact.

As an example of other possible mappings that can be used to improve convergence,

we can also apply the conformal mapping approach to the logarithm of the NGL distri-

bution. Based on our above arguments, the logarithm of the NGL distribution also has a
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Figure 11. The convergence of the conformally improved NGL series using a disc mapping in the

logarithm of the distribution. Linear plot is shown in (a), and logarithmic plot in (b). Odd orders

in the expansion are dashed, even orders solid. Excellent convergence is observed. The fit to the

Monte Carlo should not be trusted beyond L ∼ 3 due to the effect of a finite collinear regulator.

finite radius of convergence, and therefore performing a strict fixed order expansion of the

logarithm of the NGL distribution does not improve convergence. However, performing the

conformal improvement in the logarithm of the distribution allows us to capture both the

analytic structure on the negative real axis, as well as the behavior at large L. In figure 11

we show the convergence of the NGL series using the conformal improvement of the loga-

rithm of the distribution based on the disc mapping. Remarkably good convergence is seen

for all L, and this convergence is extremely uniform. One should compare this with the

pure fixed order expansion in figure 7, which used the same color convention for the loop

orders. The control over the series obtained using the conformal mapping is evident.

In figure 11b the fit to the Monte Carlo should not be trusted beyond L ∼ 3.21 Indeed,

in this region the conformally improved result is slightly below the Monte Carlo fit, as

would be expected from a finite collinear regulator (see figure 6), as was discussed in

section 4.5. From the behavior of the series, we can expect that the conformally improved

result is more accurate than the Monte Carlo in this region. Under the assumption that

this series converges, this allows us to get precise analytic predictions in the large L region

using fixed order perturbation theory, and not relying on Monte Carlo simulations with a

finite collinear cutoff. This is not possible with fixed order perturbation theory alone, and

requires the use of a resummation, as provided by the conformal mapping.

The ability to improve the perturbative convergence using a mapping based on a branch

cut at L = −1 in the complex plane inferred from the structure of the dressed gluons pro-

vides further support that this feature is indeed present in the full BMS solution, as has

been argued above, and we expect that the conformally improved expansion converges. It

also emphasizes how insights into the analytic structure gained by studying the dressed

21This particular value is identified by varying the collinear cutoff about the minimal value at which we

ran the Monte Carlo.
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gluon can be used to improve the perturbative understanding of NGLs. It would be in-

teresting to study other approaches to reconstructing the full series from the perturbative

expansion, as well as to study these expansions at higher orders.

6 Conclusions

Non-global logarithms describe the entanglement due to soft emissions between distinct

regions of phase space where different measurements are made. Unlike global logarithms,

which exponentiate in a simple manner, non-global logarithms exhibit a much richer struc-

ture, being described by a non-linear integro-differential equation. This has made under-

standing their behavior, as well as performing their resummation, difficult. Recently, we

proposed a reorganiation of the degrees of freedom that contribute to the NGLs, called the

dressed gluon expansion.

In this paper, we have elaborated on many aspects of the dressed gluon expansion,

and used it to provide insights into the behavior of the NGL series. We gave a rigorous

definition of the dressed gluon expansion at LL order by relating it to the method of

successive approximations, and proved that it has an infinite radius of convergence as a

solution to the BMS equation. This implies that it can be reliably truncated, and that

its properties can be used to study the full solution of the BMS equation. The method of

successive approximations is more general than a strict perturbative expansion, particularly

in the case of non-linear equations, such as the BMS equation.

An interesting feature of the dressed gluon expansion is the analytic structure of the

dressed gluons and the relation to the buffer region, a region of phase space near the

boundary of the jet where emissions are suppressed. The single dressed gluon exhibits a

singularity at L = −1 in the complex plane, and therefore, its fixed order expansion in αs
has a finite radius of convergence, namely L = 1. In particular, this implies that the dressed

gluon captures physics which cannot be calculated at any order in perturbation theory. We

showed that this breakdown of the perturbative expansion is due to the dynamics of the

buffer region, which contributes O(1) coefficients to the perturbative expansion. In the

dressed gluon expansion, such contributions are resummed by the so called boundary soft

mode, leading to a convergent series, which can be reliably truncated at each order. We

have argued that such divergences are present in the full solution of the BMS equation, and

we have studied the behavior of the known perturbative expansion of the BMS equation

to 12-loop order, which exhibits the expected behavior for an expansion with radius of

convergence L = 1. We also discussed how at next-to-leading logarithm another class

of contributions, arising from collinear splittings along the boundary, further spoil the

perturbative convergence. These contributions can again be resummed using the dressed

gluon expansion.

Finally, we showed how an understanding of the analytic structure of the BMS solution,

obtained using the dressed gluon expansion, can be used to improve the perturbative

convergence of the fixed order expansion of the BMS equation using conformal mappings.

This allows the use of fixed order perturbation theory to predict the distribution at large

values of L, beyonds its näıve radius of convergence.
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From a formal perspective, the structure of NGL series reveals a limit to fixed order

perturbation theory in describing perturbative QCD. The BMS equation and its resumma-

tion of NGLs was originally derived based on the analysis of the most singular region of the

Feynman diagram expansion for the cross-section (see refs. [4, 70]) using the recursive inser-

tion of soft eikonal currents. It is important to emphasize the NGL distribution is collinear

and infrared safe, so that non-perturbative effects can be considered as power corrections

for much of the distribution. However, the BMS equation captures emergent dynamical

behavior about jets, the buffer region, that in turn places a limitation on simply summing

the Feynman diagram expansion to describe the distribution. This provides a precise defi-

nition of what is meant by emergent: in contrast to global logarithms, the resummation of

NGLs through evolution equations, Monte Carlo simulation, the dressed gluon expansion,

or conformal improvements of the series is not just helpful in stabilizing the perturbative

result, but necessary to be able to make predictions for all values of the observable.22

We believe that NGLs represent a fascinating playground for studying the perturbative

structure of QCD. On the one hand, the all-orders result is described a known non-linear

integro-differential equation, the BMS equation. On the other hand, the leading NGL series,

being simpler than a generic cross-section, can be computed to high orders in perturbation

theory, yet the coefficients exhibit similar structures to those found in N = 4 scattering

amplitudes. Due to its convergence, the dressed gluon gives an analytic handle on the BMS

equation, and the physics of non-global logarithms, which is not provided by the fixed order

expansion. We hope that it will continue to provide a useful tool both for incorporating

leading NGLs into factorization theorems for observables of phenomenological interest, as

well as for studying the analytic structure of the solution of the BMS equation.
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A Uabj for hemispherical jets

For convenience, in this appendix we summarize the explicit form of the resummation factor

Uabj for the case of hemispherical jets, which was given in ref. [15], and whose notation we

follow. Due to the symmetries of the BMS equation, we need only Uanj and Uabj , where

a, b, j go left. We will refer to these as the in-out and in-in case, respectively. We will write

the expressions in terms of round and square bracketed inner products

(ab) = 1− cos θab = 1− cos θa cos θb − cos(φa − φb) sin θa sin θa , (A.1)

[ab] = (āb) = 1 + cos θa cos θb − cos(φa − φb) sin θa sin θa , (A.2)

where here we have adopted the convention that θab is the angle between the spatial

components of the null vectors a and b, and we also take ā to be the reflection of the

spatial components of a into the other hemisphere.

For the in-in case, we have

Uabj(L) = 2L/2 cosL θj

(
[ab]

[aj][jb]

)L/2
, (A.3)

where θj is the angle of the soft jet j to the jet axis. We see explicitly that the cosL θj
factor reproduces the behavior of the buffer region discussed in the text. Similarly, for the

in-out case, we have

Uanj(L) = 2L/2 cosL θj

(
(an)

[aj](jn)

)L/2
. (A.4)

In the text, we also make use of γabj , defined by

Uabj(L) = exp
[
Lγabj

]
. (A.5)

Explicitly, we have, for the in-in case

γabj = −log
(

cos θj

)
− 1

2
log

(
[ab]

2[aj][jb]

)
= −log

(
1− tan2 θj

2

)
− log

(
1 + cos θj

2

)
− 1

2
log

(
[ab]

2[aj][jb]

)
. (A.6)

B Collinear resummation of angle to edge of jet

In this appendix we briefly summarize the kernels and scales appearing in the edge of jet

factorization theorem discussed in section 5.3. More details can be found in ref. [21].

The inclusion of the edge-of-jet and boundary soft modes effects the next-leading loga-

rithmic evolution. In the large-NC limit, and transforming to Laplace space, this amounts

to modifying the U evolution factor as

Uabj

(
τ−1
H , τ−1

L

)
→ U c.i.

abj

(
τ−1
H , τ−1

L

)
, (B.1)
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with the resulting collinearly improved BMS equation

τH∂τHgab =
αs(τ

−1
H )CA
π

∫
J

dΩj

4π
Wab(j)

(
U c.i.
abj

(
τ−1
H , τ−1

L

)
gajgjb − gab

)
. (B.2)

If we write the collinearly improved resummation factor with arbitrary endpoints for the

renormalization group, we have

U c.i.
abj

(
µBS, µDip., µE.o.J.;µi; τH , τL

)
=

UBS
nj

(
µBS, µi τH

)
UDip.
abj

(
µDip., µi; τL

)
UEnj

(
µE.o.J., µi; τL

)
. (B.3)

The anomalous dimension for each factor is written as follows

µ
d

dµ
ln UBS

nj

(
µ, µi τH

)
= γ∆θ(µ, τH) , (B.4)

µ
d

dµ
ln UEnj

(
µ, µi τL

)
= −γ∆θ(µ, τL) , (B.5)

µ
d

dµ
ln UDip.

abj

(
µ, µi τL

)
= −4CAΓcusp[αs(µ)]γabj + γ∆θ(µ, τL) . (B.6)

The anomalous dimension γabj is defined in eq. (A.5), and

γ∆θ(µ, τ) = 4CAΓcusp[αs(µ)]ln

(
eγEµτtanR2

tan2R
2 −

n·nq
n̄·nq

)
. (B.7)

Here we have made the assumption that we have a conical jet region of radius R. The

evolution factors result from evolving the boundary soft function, edge-of-jet soft function,

and the subtracted dipole soft function respectively. The Wab(j) hard kernel in the BMS

equation also has its own evolution equation that it implicitly obeys, but with appropriate

scale choices, the logarithms can be taken to be minimized. From the explicit calculations

of ref. [21], the appropriate scales are found to be

µi =
tan2R

2 −
n·nj
n̄·nj

τHeγE tanR2
eγabj , (B.8)

µDip. =
tan2R

2 −
n·nj
n̄·nj

τLeγE tanR2
eγabj , (B.9)

µBS =
tan2R

2 −
n·nj
n̄·nj

τHeγE tanR2
, (B.10)

µE.o.J. =
tan2R

2 −
n·nj
n̄·nj

τLeγE tanR2
. (B.11)

This assumes we have started the running at the common scale chosen to be the scale of

hard kernel of the BMS equation, with the boundary softs subtracted.23 Note that the

23In ref. [21], the boundary softs were not subtracted from the hard kernel, due to the form of the NLO

kernel written in ref. [17].
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scale choice µDip. is precisely where the anomalous dimension vanishes. For compactness

sake, when we have made these canonical scale choices, we write:

U c.i.
abj

(
τ−1
H , τ−1

L

)
= U c.i.

abj

(
µBS, µDip., µE.o.J.;µi; τH , τL

)
. (B.12)

We finally note that to mixed leading logarithmic order, we can swap τeγE ↔ m−1 to arrive

at the resummation in cumulant space.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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