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Every day, the world of media is at our fingertips, whether it is watching movies, 
listening to the radio, or browsing online media. On average, people spend over 
8 h per day consuming messages from the mass media, amounting to a total 
lifetime dose of more than 20 years in which conceptual content stimulates our 
brains. Effects from this flood of information range from short-term attention 
bursts (e.g., by breaking news features or viral ‘memes’) to life-long memories 
(e.g., of one’s favorite childhood movie), and from micro-level impacts on an 
individual’s memory, attitudes, and behaviors to macro-level effects on nations 
or generations. The modern study of media’s influence on society dates back to 
the 1940s. This body of mass communication scholarship has largely asked, “what 
is media’s effect on the individual?” Around the time of the cognitive revolution, 
media psychologists began to ask, “what cognitive processes are involved in media 
processing?” More recently, neuroimaging researchers started using real-life media 
as stimuli to examine perception and cognition under more natural conditions. 
Such research asks: “what can media tell us about brain function?” With some 
exceptions, these bodies of scholarship often talk past each other. An integration 
offers new insights into the neurocognitive mechanisms through which media 
affect single individuals and entire audiences. However, this endeavor faces the 
same challenges as all interdisciplinary approaches: Researchers with different 
backgrounds have different levels of expertise, goals, and foci. For instance, 
neuroimaging researchers label media stimuli as “naturalistic” although they are 
in many ways rather artificial. Similarly, media experts are typically unfamiliar with 
the brain. Neither media creators nor neuroscientifically oriented researchers 
approach media effects from a social scientific perspective, which is the domain 
of yet another species. In this article, we provide an overview of approaches and 
traditions to studying media, and we review the emerging literature that aims to 
connect these streams. We  introduce an organizing scheme that connects the 
causal paths from media content → brain responses → media effects and discuss 
network control theory as a promising framework to integrate media content, 
reception, and effects analyses.
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FIGURE 1

Connecting siloed fields of media effects, media processes, and media neuroscience. Traditionally, these topics have been studied by different 
academic disciplines.

1. Introduction

Media messages permeate our lives; they stimulate rich 
neurocognitive responses and serve important, much-debated 
functions within modern information societies. On average, we spend 
about 8 h per day consuming media (Twenge et al., 2019). Effects of 
exposure to media range from micro-level impacts on an individual’s 
memory, attitudes, and behaviors to macro-level effects on nations or 
generations (Bryant and Oliver, 2008; Larzabal et al., 2017). In short, 
we live in a world where media content flows through our brains much 
like blood through our veins.

In recent years, researchers have begun to use theories and 
methods from neuroscience to examine the neural mechanisms of 
media effects (Weber, 2013; Schmälzle and Grall, 2020a,b; Schmälzle, 
2022). This approach is motivated by the fact that the brain is the 
biological organ underlying all media effects, regardless of whether the 
study is about movies, narratives (books and audiobooks), or other 
media types. After all, if a message did not arrive in a recipient’s brain, 
it could not have any effect. This notion of the brain as the central 
processor of media content is undisputed. It is what motivates the use 
of neuroimaging to study brain responses to media in the hope of 
revealing the actual mechanisms that underlie media’s effects on 
perception, attention, comprehension, affect - or whatever the focal 
topic of a concrete neuroscientific investigation that uses 
media may be.

However, while the promise of neuroimaging in this area is 
generally recognized, the complexity of the enterprise cannot 
be underestimated. Media are a highly complex kind of ‘stimulus’, 
actually, they are a sequence of a multitude of individual stimuli. 
Moreover, media evoke multiplex brain responses. And finally, media 
result in a mosaic of consequences - from short-term to long-term 
effects and from individual to collective outcomes.

Given this complexity, it is no surprise that multiple disciplines exist 
at the nexus of media and the brain. Researchers in the fields of 
communication and media studies have largely focused on issues related 
to media content and the effects of exposure to such content (Figure 1, 
left; Riff et al., 2014; Neuendorf, 2017). By comparison, psychology and 
media psychology investigate the cognitive processes that subserve 
media processing and effects (Figure 1, middle; Weber et al., 2008; Lang 
and Ewoldsen, 2010). By comparison, the cognitive sciences and 
cognitive neurosciences primarily use media as a tool for studying 
cognition and the brain (Figure 1, right; Spiers and Maguire, 2007; 
Hasson and Honey, 2012; Sonkusare et al., 2019; Vanderwal et al., 2019).

Of course, these broad generalizations mask substantial 
disciplinary and topical heterogeneity such that inquiry surrounding 
media and the brain is a bit reminiscent of people feeling an elephant 
in a dark room (Figure 2): In this parable, each person brings their 
own experience and perspective to the endeavor of identifying the 
elephant, but each person is only able to feel just one small part of the 
large animal. In the same way, many different perspectives about 
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media and the brain coexist - all valuable in and of themselves - but 
there is a lack of integration and a lot of confusion. In fact, early career 
researchers who consider working at the intersection of media and the 
brain will find themselves in a complex theoretical and methodological 
landscape that spans disciplines and even paradigms from the 
humanities, traditional STEM disciplines, and the social sciences. This 
state of affairs can make it difficult to see the proverbial elephant in the 
room, and one can almost ask oneself: If “naturalistic neuroimaging” 
or “movie fMRI” is the answer, what is the question (see Kosslyn, 1999)?

With this in mind, this article suggests a conceptual framework to 
integrate these disparate research streams of media effects, media 
processing, and media neuroscience. We begin by introducing and 
discussing each area and provide the logical division into content 
analysis, reception analysis, and effects analysis as an organizing 
scheme. Then, we  suggest network control theory (NCT) as a 
framework with the potential for integrating these siloed traditions. 
We believe this framework can shed light on the elephant in the dark 
room and reveal causal mechanisms by which the content of media 
messages affects brain responses and how the resulting message effects 
in single individuals aggregate into media effects in large populations.

2. The arrow of causality: from media 
content to reception responses to 
media effects

So far, we  have discussed how different areas of disciplinary 
inquiry are largely organized around levels of analysis (media effects 
on individuals and society, media processing within individuals, neural 
responses within individuals). As this section will show, a framework 
organized around levels of analysis does not cleanly map onto a causal 
path that begins with exposure to media content and ends with media 

effects. In this section, we give an overview of our conceptual model 
that starts with media as a stimulus (a brief text message, an audiovisual 
movie, a social-media video clip, an audiobook) containing conceptual 
content that is analyzed by the brain and results in what has 
traditionally been called media or message effects (Figure 3).

2.1. Assaying the ingredients: media 
content analysis

Media are inherently content-rich and, therefore, complex. To 
demonstrate by selecting one possible example, consider movies. 
Among the most popular types of media, movies comprise multimodal 
content (images and soundtracks) that include a wealth of semantic 
and social-pragmatic dimensions that vary over time. The term movie 
emerged as a shortcut for moving images - essentially by stitching 
together photographs in rapid succession. For example, a typical 
Netflix HD movie streams about 3-7GB of data, containing over 
100,000 individual frames, each containing many pixels. It becomes 
clear that if we  consider the pixel-level information of any given 
movie, the information contained in a movie quickly reaches billions. 
These flickering pixels form the manifest content of the movie as it 
emerges from your TV screen.

Clearly, though, looking at movies as a multitude of pixels misses 
the point - just as it makes little sense to use a microscope to examine 
ink-saturated paper when reading a fiction book. Typically, when 
discussing movies, we mean their higher-order information, such as 
narrative and social-cognitive content. Clearly, we  also do not 
remember the surface-level information (the pixels), but we recall and 
retell what happens to characters and the overall trajectory of a plot 
(like heroes and villains, or a rags-to-riches story, etc.; see Kintsch, 
1998 for a similar argument about language comprehension).

FIGURE 2

An elephant in a dark room. In this classic parable, people investigate an elephant in a dark room. Each can only feel part of the elephant and cannot 
identify the whole. Misunderstanding ensues.
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Between the pixels as the lowest-level content features and the 
macro- or plot-level content features lie numerous intermediary-level 
features. For example, consider now the soundtrack of a movie (instead 
of the video track containing the pixels). At a lower level, a movie’s 
soundtrack is characterized by physical properties like its constituent 
amplitude, frequency content, etc. However, this all is embedded in a 
nested, hierarchical structure: Stretches of sound encode particular 
phonemes, which in turn represent words, words are nested in 
sentences, and a couple of sentences by one speaker are typically 
followed by a response from another speaker, reflecting a dialogue in 
a scene. The same case can be made for visual content (e.g., Hasson 
et al., 2008a). Thus, it becomes clear that the content of a movie - a 
deceptively simple singular word  - actually encompasses multiple 
content elements that can be organized along a hierarchy of abstraction 
(see Figures 3, 4). Which specific content element is of interest to 
researchers often depends on their home discipline - just like in the 
elephant in the dark room parable. Arguably, since movies are largely 
created and consumed to entertain, the most relevant level is the plot 
level. Still, it is clear that all lower levels (sounds, words, sentences, 
paragraphs or pixels, images, scenes) are necessary to convey the plot-
level content of a movie (or a book or whatever the media format).1

1 Of note, while we believe that upper levels (i.e., beyond sensory-perceptual 

content) are important and largely understudied, at least when it comes to 

neuroimaging, this does not mean that it was not worthwhile to study lower 

levels. For instance, researchers in visual neuroscience and neurolinguistics 

One way of quantifying all this higher-order and often latent 
content (or subtext) is through a procedure known as content analysis 
(Krippendorff, 2004; Riff et al., 2014; Neuendorf, 2017). Historically, 
content-analyzing movies and media more broadly was an arduous 
task. For example, the famous National Television Violence Study 
(Federman, 1995) relied on manual labor from human coders to 
annotate over 10,000 h of content over a three-year period. Most 
content analyses are smaller in scale, but the effort required is still a 
key bottleneck (Greenberg and Atkin, 1980; Masters et al., 1991; Hahn 
et al., 2017). Consequently, classical content analyses usually feature 
sparse sampling frames (e.g., the first 10 min of content from a sample 
of movies) that often incompletely describe the entire media corpus. 
Another, not unrelated problem, is that there is often substantial error 
in human annotations, which can be quite difficult or even impossible 
to resolve in some circumstances (Weber et al., 2018).

Advances in computational analysis make this task much faster, 
scalable, feasible, and accurate. The catch, however, is that 
computational analyses are currently only able to quantify manifest 
lower- and mid-level features of the content-abstraction hierarchy. 
We assume that readers will be familiar with the explosion of research 
on natural language processing and computer vision. As of 2023, 
computers can automatically quantify many sound characteristics 

have both discovered the benefit of using movies as stimuli, and many other 

lower- and mid-level neurocognitive processes (e.g., event segmentation, 

situation model building, etc.) can be examined fruitfully using media.

FIGURE 3

The arrow of causality from media content to reception responses to media effects. The bottom left panel illustrates how content analysis quantifies 
content (e.g., for use as a design matrix), allowing to map out brain systems responding to specific content elements. These can then be linked to 
effects of media consumption. Of note, reception responses to an incoming (causal) media stimulus can also be modulated by receiver state, 
background knowledge, beliefs, and so forth.
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(such as energy and pitch) and even transcribe spoken content into 
writing (Radford et al., 2022), and in the visual domain, they excel at 
quantifying image properties, recognizing objects, or even detecting 
actions in image sequences (Rohrbach et al., 2017).

These advances can be leveraged to analyze media content in a 
rigorously quantitative fashion and at scale. For instance, researchers 
have used face-detection systems to detect characters in movies or 
natural language processing (NLP) techniques to identify characters 
from scripts, both of which can be used to create character networks 
(e.g., communities of characters that co-occur in the same scenes; 
Hopp et al., 2020; Baldwin and Schmälzle, 2022; Malik et al., 2022) or 
to create time-locked explanatory variables for neuroimaging analyses. 
Or researchers have used NLP techniques to study moral language in 
media (Weber et al., 2018). Perhaps the most systematic yet still young 
approach in this area is the NeuroScout platform and the related pliers 
python package (McNamara et al., 2017; De la Vega et al., 2022). 
NeuroScout provides easy access to machine-learning methods 
capable of automatically extracting hundreds of features that range 
from the very concrete (like root mean squared amplitude of the 
sound signal) to more abstract ones (like concept-level image tags 
from Google’s or Clarif.ai’s computer vision systems).

Overall, computational tools for extracting content features are 
immensely promising for studying content in a rigorously quantitative 
and automatic manner. However, we must acknowledge that even the 
most advanced machine-learning systems fail to achieve human-level 
understanding (Marcus and Davis, 2019; McClelland et al., 2020). In 
fact, even though impressive progress is made in modeling so-called 
common sense knowledge, current systems still fall short in many 
regards when it comes to coding abstract categories of content, such 
as sarcasm or humor, or detecting sequential narrative information 
related to story schemata or scripts, or visual action depictions (Vicol 
et al., 2018; Choi et al., 2021; Zellers et al., 2021). Taken together, 

automatic approaches can excel at quantifying lower- and mid-level 
properties of content, but they still face a barrier (Karpathy, 2012; 
Mitchell, 2020) when it comes to analyzing higher-order 
media content.

Said differently, the content of a movie (or other media) can 
be  analyzed very concretely and efficiently in terms of physical 
properties, such as brightness and contrast, and also for intermediate 
levels, like the presence of objects, such as guns and faces. At a yet 
more abstract level, however, the movie has an event structure 
(separated by cuts) and a plot that conveys the overall narrative. This 
type of abstract content is currently much harder to quantify, even 
with advanced machine learning and NLP techniques. Indeed, 
we often find ourselves resorting to psychological terms to describe 
content-level properties whose “ingredients” in content remain 
somewhat unclear, such as the ‘suspensefulnes’ of a movie to describe 
its potential to elicit suspense (see Cummins, 2000). However, it is 
clear that these content elements matter for a movie’s impact on 
viewers’ brain responses.2

2 In fact, they may matter even more than lower-level content features 

because we can easily turn any story into a movie and vice versa, which 

completely exchanges the lower-level content types, but keeps the higher-

level information intact (Honey et al., 2012; Regev et al., 2018). Likewise, one 

can also transform a given movie in many ways, like into a comic, or a reissue 

with newer actors, thus changing all lower-level features, yet it will still stay 

the same movie. However, we want to avoid creating the impression that 

we give priority to higher-level content elements or that we consider lower-

level elements as less important. This is not the case. For example, content 

creators (directors and camera operators) often make strategic use of lower-

level content elements (e.g., angle, shot sequence) to create specific 

FIGURE 4

Linking hierarchies of content with matching reception mechanisms and integration with media effects. Content is a deceptively singular word, but it 
encompasses multiple layers - from manifest (e.g., pixels) to latent content (e.g., subtext, story morals). Understanding content as a network of 
information layers (left panel) allows for its comprehensive quantification, facilitating the identification of corresponding reception mechanisms. In a 
similar fashion, we can also integrate individual-specific neurocognitive processes during media reception to media effects and social levels.
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The upshot of all this is that if our goal is to understand the effects 
of content of the brain, then a diverse and rapidly improving toolkit 
for quantifying media content already exists for more concrete 
features, and we can rely on traditional human content annotations to 
quantify higher-level aspects of content that are still beyond the 
capabilities of computational tools. In the next section, we discuss how 
this quantified content is the key to deciphering the brain responses.3

2.2. Reception analysis: how brains 
respond to media

It is clear that media content’s arrival in the brain sets forth a 
cascade of reactions (Kepplinger, 1989; Bryant and Zillmann, 1990; 
Potter and Bolls, 2012; Schmälzle and Grall, 2020a). Just like we started 
our analysis of movie content at the pixel level, we can begin our quest 
into the brain at what can be considered the neural counterpart of the 
pixel: an individual cell (rod/cone) in the receiver’s retina that gets 
stimulated by light and converts the televised movie’s signal into a 
neural impulse. Due to space limits, we  cannot trace this signal’s 
neural itinerary in fine detail, but a rough sketch goes like this: From 
the retina, information travels along the optic nerve into the thalamus, 
gets relayed in the lateral geniculate nucleus, and arrives via the optic 
radiation in the primary visual cortex (Mesulam, 1998; Chalupa and 
Werner, 2003; Fuster, 2003; Poeppel et al., 2020), and so forth. The 
seminal work by Hubel & Wiesel on receptive fields provides perhaps 
the most concrete examination of content-extractors (or feature 
detectors) in the brain; that is, neurocognitive mechanisms that match 
certain content elements, like oriented lines, edges, or motion (Hubel 
and Wiesel, 1962).

However, just like with the analogy of trying to read a book with 
a microscope, studying movies as purely visual stimuli that activate 
the retina and V1-edge-detectors runs the risk of missing the point: 
We clearly do not watch movies simply to obtain visual stimulation, 
and we do not read or listen to books solely because we like letters and 
sounds, or processing any of the intermediary representations like 
objects, action sequences, or speech. Instead, we typically use media 
to engage their higher-level, albeit more difficult to quantify, content.

Few researchers would question the statement that “content is 
key” for understanding how media impact the brain. However, 
looking into the emerging literature on media and neuroscience, it is 
apparent that content is often simply ignored. In some ways, this is 
understandable. Modern neuroscience already requires extensive 
training in neuroanatomy, physiology, physics, statistics, engineering 
and signal processing, psychology, philosophy, programming, high-
performance computing, and so on, such that there is little time left to 
also train in scholarship on complicated and sometimes even poorly 
specified content features that come with media stimuli (e.g., 
narratives, characters). Similarly, when using media as stimuli, it is not 
always so clear exactly what needs to be  accounted for in either 
experimental design or statistical analysis. Should we  account for 
luminance? Sound amplitude? The presence of faces? If so, how? The 

impressions. Studying these techniques, their impact on brain activity, and 

their effects on viewers is as valuable as analyzing, e.g., the plot narrative.

3 Via standard forward inference (Henson, 2006).

difficult answers and unappealing tradeoffs associated with these 
questions have spurred clever solutions optimized for designing 
around all of this complexity. Such approaches include calculating 
intersubject correlations (ISC; Hasson et  al., 2004, 2008b), or 
borrowing other methods from resting-state fMRI, dynamic causal 
analyses (e.g., Granger causality or DCM methods), or introducing 
other advanced tools to decipher entangled brain responses (Di and 
Biswal, 2020; Van Der Meer et al., 2020; Busch et al., 2022).

It is not our goal to criticize this research as it has already led to 
important new discoveries about the brain. Nevertheless, these 
approaches are largely content-blind. We argue that without an equal 
appreciation of the content, this endeavor will yield only limited 
insights (see Okdie et al., 2014, for a parallel argument about media 
psychology). After all, it is clearly the content where the causal arrow 
originates that evokes the brain responses. Thus one should devote 
equal sophistication to content analysis as to reception analysis (i.e., 
analysis of neural or other types of data).

Not all neuroimaging analyses are content-blind, though. In fact, 
some go to great lengths to quantify or manipulate content. However, 
we claim that even these approaches are still limited when it comes to 
identifying the kinds of higher-level content elements that prompt 
conceptual and affective reactions to media and drive media selection 
and consumption behavior. For example, in studies of natural vision, 
movies are increasingly adopted as stimuli because they depict 
relatively natural scenes (except for things like cuts and blends; Hasson 
et al., 2008c; Çukur et al., 2013). Such studies also tend to do a great 
job quantifying aspects of content that are relevant to their area of 
study, like meticulously annotating visual content properties such as 
contrast, individual objects, and so forth, or manipulating content via 
scrambling (Hasson et al., 2008c; Çukur et al., 2013; Huth et al., 2016b; 
Wen et al., 2017). Studies like these make great use of movies as an 
experimental stimulus, and they can serve as role models for how 
content analysis can inform reception analysis. These studies represent 
the kind of work that examines carefully one specific part of the 
proverbial elephant (e.g., visual processing). As such, they are 
extremely valuable for understanding vision. However, although 
vision clearly is central to movie viewing and the entertainment 
experiences it produces, vision alone is only one piece of a larger 
mosaic of movie-evoked brain responses. Moreover, to the extent that 
higher-level content properties (such as suspense fluctuations in a 
movie) impact attention, it is probably the case that the measurements 
might be biased (e.g., Van Berkum et al., 2009; Gantman and Van 
Bavel, 2014; Schmälzle and Grall, 2020a,b).

Much like the visual neurosciences have begun to adopt media as 
a more naturalistic alternative to traditional stimuli, neurolinguistics 
has also begun to embrace media (like stories, audiobooks, and movies 
with dialogue). In the early days of neuroimaging, language studies 
were notoriously artificial single-word studies (e.g., using sparse 
sampling event-related designs). The trend towards more naturalistic 
neuroimaging prompted an upsurge of studies using natural, running 
speech as stimuli - often taken from audiobooks and similar story-
based media formats. Like their counterparts in the visual domain, 
neurolinguistics studies do a great job at annotating word-level 
linguistic properties, such as word length, frequency, syntactic role, or 
even basic semantic aspects (e.g., GloVe or Word2Vec embeddings) 
and relating these to the stimulus-evoked brain activity in a forward-
inference manner (Lerner et al., 2011; Huth et al., 2016a; Broderick 
et al., 2018). As this trend advanced, the stimulus characteristics that 
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were coded became more nuanced; for instance, it has been 
demonstrated that decoding results become better if one uses 
sentence-based embeddings as opposed to word-level-only 
embeddings. However, the key point is that these neurolinguistic 
studies also struggle to consider content elements that go beyond the 
linguistic level (McClelland et al., 2020; Arana et al., 2023). However, 
just like reading a book with a microscope, we claim that we do not 
consume stories because they provide linguistic stimulation. Rather, 
it is the supralinguistic content and the responses this evokes that are 
critical: stories entertain, satisfy social needs, pique our curiosity, and 
so forth.4

A still small but growing number of studies attempt to link higher-
level media content, which influences post-perceptual processes like 
attention, semantic comprehension, and particularly affective and 
social-cognitive responses, to brain responses (Hasson et al., 2008b; 
Yeshurun et  al., 2017; Richardson et  al., 2018; Tikka et  al., 2018; 
Nguyen et al., 2019; Schmälzle and Grall, 2020a,b; Baek and Parkinson, 
2022; Grady et al., 2022). For example, it is well known that movies are 
highly social in content and that their social and affective content is 
key to why we engage with them in the first place. In fact, movies are 
bursting with depictions of social interactions, including love, 
aggression, betrayal, etc. - and viewers take an intense interest in the 
fate of characters (Bryant and Zillmann, 1990; Oatley, 2002; 
Tannenbaum, 2014). Because of this, movies and other fiction-based 
media are almost ideal tools for studying social cognitive processes 
like empathy, perspective-taking, trait inferences, and so on (Vorderer, 
1996; Klimmt et  al., 2006). These characteristics of movies are 
increasingly recognized by neuroimagers interested in the neural basis 
of such processes (Salmi et al., 2013; Byrge et al., 2015; Richardson 
et al., 2018; Nguyen et al., 2019; Broom et al., 2021; Chang et al., 2021), 
even beyond human neuroimaging (Mantini et al., 2012; Sliwa and 
Freiwald, 2017).

Similarly, these social-cognitive responses to movies are intimately 
interwoven with affective reactions. For instance, viewer affect reliably 
tracks character victories and failures, good fortune and suffering, 
trials and tribulations such that audiences experience strong 
participatory responses (e.g., goosebumps during the hero’s victory at 
the end, crying during ‘all is lost’ moments when it seems that the hero 
is doomed to failure). In fact, it has been said that Hollywood is - at its 
core - a giant experimental psychology lab specializing in creating 
emotional stimuli that can effectively affect mass audiences. Likewise, 
Alfred Hitchcock, the famous master of suspense, described his 
profession as “based on an exact science of audience reactions” 

4 Again, we are not shy to admit that the content properties that cater to 

these processes are difficult to quantify: For example, computing a sound 

envelope/RMSE feature is easy. Nowadays, computing BERT-embeddings for 

every word of a story is also quite doable. However, even though these 

properties are relevant to understanding a story, they alone are insufficient. 

Parallel arguments about this exact issue are also made in the NLP community, 

where debate rages about the capabilities and limitations of large-language 

models (Bender and Koller, 2020). Yet, again, we want to emphasize that our 

goal is not to declare only the plot level as the only level worth quantifying. 

Rather, examinations of specific linguistic and sound features, their creation, 

their effects on the brain, and their impact on audiences are inherently relevant 

and worth studying.

(Hasson et al., 2008a). Because of this capacity, entire genres of movies 
are devoted to catering to certain segments of the affect spectrum, and 
a few neuroimaging studies have explored such phenomena. For 
instance, suspense movies take audiences on an emotional 
rollercoaster that blends future-oriented cognitions like hope and 
anxiety (Bezdek et  al., 2017; Schmälzle and Grall, 2020b). Action 
movies can stimulate intense bursts of arousal (Hermans et al., 2011; 
Kautonen et al., 2018). Comedy tickles our funny bone (Sawahata 
et al., 2013; Amir et al., 2015; Jääskeläinen et al., 2016; Schmälzle et al., 
2022), drama/tragedy deals with human responses to suffering (Raz 
et  al., 2014, 2016). And, while often hushed up, pornography is 
certainly quite powerful in stimulating experiences (Prause et  al., 
2015; Schmälzle et  al., 2017; Chen et  al., 2020; Grubbs and 
Kraus, 2021).

In sum, it is clear that media feature a host of content that can 
elicit and precisely steer social-cognitive and affective processes. In 
fact, due to this capacity, media are very promising to study the neural 
basis of these phenomena in a way that is more appropriate to their 
nature than, say, event-related studies of single words, affective images, 
and so forth (Hasson and Honey, 2012; Saarimäki, 2021).

The challenge, then, is to quantify the social and affective content 
characteristics to be  able to unlock its mechanism of action via 
neuroimaging. The studies presented above are in an advantageous 
position because the content properties that we  care about are 
relatively well understood and can be coded straightforwardly (as 
done in the NeuroScout system or via the Matlab vision toolbox or 
some natural language processing toolbox). By contrast, when the 
research focus is on social-cognitive and affective phenomena, the task 
of coding the conceptual content is considerably more difficult,5 
although some clever ways exist to attempt to parametrize these more 
challenging factors (Heider and Simmel, 1944; Meyer et al., 2019; 
Nguyen et  al., 2019). But it is clear that if we  ignore higher-level 
content altogether, then we cannot expect to meaningfully relate brain 
responses to their elicitors  - at least not beyond relatively simple 
sensory-perceptual brain responses, and if top-down attention comes 
into play, even these will get affected. This is the problem with ‘content-
blind’ neuroimaging.

2.3. Media effects: how media influence 
individuals and large-scale populations

The last link in the causal chain from content to reception is the 
question of how exposure to media changes memories, attitudes, or 
behaviors. The term media effects refers to these psychological or 
behavioral outcomes of stimulation with media. Of note, the term 
media effects is used to refer to individual-level as well as population 
effects (Bryant and Oliver, 2008). The latter clearly depend on the 

5 Researchers often rely on their intuition. In fact, most movies used in fMRI 

studies seem to be chosen for their social-affective elicitation potential. Movies 

that have been used include Bang Bang! And you are dead; The Present; Partly 

Cloudy; Curb your Enthusiasm; The Office; Sherlock; Memento. These are all 

great, and it seems clear that “researchers felt something” when they opted 

to use these movies. However, none of the papers devoted more than one or 

two sentences to the content and theoretical reasons why it was chosen.
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former, but in practice, they tend to be studied by different research 
communities who focus either on micro- (intraindividual) or macro 
(social) levels of analysis.

The origin of the field can be  traced back to social scientific 
research in the 1920s and 30s, which is the era when the first distant 
mass media (radio, TV) emerged. Historically, the field has swung 
back and forth between periods in which researchers postulated 
relatively strong media effects and those of weaker effects. For 
example, in the period between 1920 and 1950, much research 
attention centered on the putatively strong influence of propaganda 
(Hovland and Lumsdaine, 2017). Modern efforts showcase that media 
effects tend to be smaller in nature and more contextually dependent 
(Lang, 2013; Rains et al., 2018). Nevertheless, and despite substantial 
evidence to the contrary, today’s pressing topics like radicalization, 
fake news, deep fakes, and the influence of social media are often cast 
in overly simplistic terms and assume overly powerful effects. 
Neuroimagers looking to use media as stimuli should recognize that, 
contrary to common perceptions, media effects tend to be quite small 
in practice.

The list of media effects and media effects theories is too long to 
discuss here. Still, a partial list of interesting phenomena and theories 
includes, e.g., the third-person effect - the belief that media influence 
others more than oneself (Perloff, 2002). Readers are likely familiar 
with the famous Bobo Doll Study that helped give rise to Social-
Cognitive or Social Learning Theory (Bandura, 1977). Central to this 
theory is the notion of observational learning and role models - both 
of which can occur during media consumption - and therefore Social 
Cognitive Theory is widely used to explain social media effects 
(Bandura, 1994). Similarly, Affective Disposition Theory (Zillmann 
and Cantor, 1972; Raney, 2004) links characters and plot elements to 
affective audience responses. There are, of course, many other 
interesting effects and theories of media influence to highlight, but for 
the sake of space, we refer readers to key reference works (Zillmann 
and Vorderer, 2000; Bryant and Oliver, 2008; Littlejohn and Foss, 
2009; Nabi and Oliver, 2009; Dill, 2013; DeFleur, 2016).

In essence, any result of media stimulation could be considered as 
a media effect, whether it is short-term memory (e.g., recalling last 
night’s news), long-term memory (e.g., remembering a childhood TV 
show), a change in attitude, a belief (e.g., being more open to 
immigration after watching a refugee drama), or behavior (e.g., 
donating money to charity after viewing an ad). These effects are often 
linked to their elicitors in content, but how the brain mediates between 
content and effects has traditionally been ignored. Instead, because 
neuroimaging measures were unavailable until recently, researchers 
had to rely on self-report methods that were usually taken after the 
media consumption ended (Lang, 2014).

Critically, media effects are not only studied in single individuals 
but often with an eye toward aggregate audiences. The field most 
closely associated with this perspective is mass communication. In 
brief, mass communication describes a one-to-many mode of 
communication in which the same message is sent out to multiple 
recipients. For instance, early mass media were newspapers where the 
same article would be  read by all readers. Radio marked another 
milestone, then most notably followed by Television. And, although 
social media has now upended the traditional “one-to-many” model 
of mass communication, providing a many-to-many mode of 
communication instead, it is still true that a single social media 
message can be sent out to a large audience, and the brains of audience 

members would then still respond to the same message (Schmälzle 
and Grall, 2020a,b; Gong et al., 2022).

Given the important effects media can have on the masses and 
public opinion (Lippmann, 1922; Noelle-Neumann, 1991), it is clearly 
of interest to examine how reception responses relate to such large-
scale media effects. In other words, might media-evoked brain 
responses allow researchers to predict subsequent effects? Indeed, 
several emerging neuroimaging studies (and a large body of 
non-neuroimaging studies from the social sciences more broadly) 
have begun to examine this question. For instance, Hasson et  al. 
showed that brain imaging data captured during viewing could predict 
memory, a very concrete and clear-cut media effect (Hasson et al., 
2008a). Falk et al. showed that brain responses to health messages 
could predict message-consistent behavior change at later points (Falk 
et  al., 2010), and several other articles examine effects related to 
persuasion, broadly defined, or engagement with and sharing of 
messages in social networks (Weber et al., 2015a; Baek et al., 2017; 
Huskey et al., 2017; Coronel et al., 2021). These studies point to the 
potential of using brain imaging data to predict individual-level 
outcomes, that is, how to link reception responses captured in 
individuals to the ensuing media effects.

Another intriguing twist for using brain imaging data is to predict 
collective outcomes. By that, we mean that it is possible to record the 
brain’s responses during reception from a smaller test audience and 
link them to aggregate outcomes in larger groups (Berkman and Falk, 
2013). For example, in the neuroeconomics literature, researchers 
have predicted the cultural popularity of music from brain responses 
(Berns and Moore, 2012). Similarly, Dmochowski et al. (2012), used 
brain responses to SuperBowl commercials to predict online 
engagement (tweet volume; Dmochowski et al., 2014), and Falk et al. 
used brain responses to health messages to predict campaign success 
(call volume to an anti-smoking quitline; Falk et al., 2012).

The broader reasoning behind these efforts, which connect the 
brain responses of single individuals or small groups to large-scale 
population-level media effects, is based on the one-to-many mass 
communication logic: A message is sent out and processed by multiple 
individuals comprising an audience. If a given test audience is 
representative of a larger population, their brain responses can serve 
as a potential predictor of aggregate outcomes. That this works is just 
as logical as it is logical to use self-reports from samples to forecast 
larger outcomes (Knutson and Genevsky, 2018). At present, this 
approach has been used only in a few studies. Still, given the 
desirability of movies and media as stimuli, we can expect that many 
others will follow: After all, movies often even galvanize culturally 
shared, long-lasting collective memories (e.g., the famous shower 
scene in Hitchcock’s Psycho), suggesting that these effects have a 
shared basis in the brains of people who saw the specific footage (see, 
e.g., Kauttonen et al., 2018 for a neuroimaging study of key-frames). 
The same logic can also be  applied to study how movie content 
produces any kind of convergent audience response, from collective 
suspense and fear during a horror movie to collective laughter during 
comedy (Schmälzle, 2022; Schmälzle et al., 2022).

Taken together, media effects are clearly consequential, of 
enormous interest to social scientists, and one of the most attractive 
areas that neuroscience researchers would like to seize. Especially the 
widespread ability of digital data (e.g., time-locked comments during 
movies and shows, social network metrics; Dmochowski et al., 2014; 
O’Donnell and Falk, 2015; Ni and Coupé, 2023) increases, there are 
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unprecedented opportunities to link neural data to media effects. 
However, doing so in a meaningful way will - again - require keeping 
an eye on the content that starts the logical sequence from media 
content to brain responses to media effects. Said differently, we can 
only hope to explain media effects if we  trace them back to the 
preceding brain responses and these, in turn to their elicitors 
in content.

To summarize, the previous section presented content analysis 
(2.1), reception analysis (2.2), and effects studies (2.3), arguing that 
these domains stand in a logical relationship with each other. And in 
each of these sections, we have pointed to the ways researchers have 
typically engaged in linking media, neural responses, and effects. 
These projects, while groundbreaking in their own right, often only 
investigate a subset of the causal chain from media content to 
reception responses to media effects. In what follows, we introduce 
Network Control Theory (NCT, Liu et al., 2011) as an integrative 
analytical framework that is well-suited to help further integrate 
these domains.

3. Network control theory: examining 
how media bring brains into specific 
states

In this article (and the special issue in which it appears), the brain 
takes center stage as the organ of media reception; that is, the site of 
action where complex content sets forth the activities that ultimately 
produce media effects. However, it is clear then that quantifying 
content is only half the battle - the other half deciphering the brain’s 
reactions to it. This, in turn, requires a general theory of brain function 
to motivate an analytical framework for studying content-brain 
relationships. Our model of brain function is based on current 
cognitive neuroscience research that views the brain as a complex, 
hierarchical network (Mesulam, 1998; Fuster, 2003).6 Entry-points 
into the network and its lower-level nodes (the eye, retina, optic nerve, 
LGN, and V1+; or the ear, cochlea, auditory nerve, olivary colliculi, 
and A1+) are relatively localized, and they correspond rather directly 
to specific lower-level content features (e.g., Hubel & Wiesel-type 
feature detectors). Subsequent layers of neural processing, however, 
tend to be  more distributed, which calls for more multivariate 
analysis methods.

6 Network science is an application of graph theory where systems of 

information can be grouped into nodes (specific elements) and edges (the 

relationships between those elements). The beauty of network science is its 

domain generality. Network systems can be constructed to represent social 

organization (e.g., each node is an individual, each edge represents if individuals 

are friends or not), information on the internet (e.g., nodes represent a webpage, 

edges represent hyperlinks between websites), civil infrastructure (e.g., nodes 

represent cities, edges represent highways connecting cities), biological systems 

(e.g., nodes represent gray matter corresponding to specific brain structures, 

edges represent white matter fiber tracts connecting gray matter), and more 

(for a review, see Newman, 2010). The constellation of edges connected by 

nodes describes a network’s organization. This organization is commonly 

referred to as a network’s topology.

Over the past decade, network-based multivariate methods have 
been applied to neuroimaging data, and several large-scale brain 
networks have been identified (e.g., Medaglia et al., 2015). However, 
much of this work has been based on data captured in the so-called 
resting state, i.e., with participants only lying in the scanner. While this 
work has led to substantial and important insights, it is clear that the 
unconstrained nature of the resting state task is a limiting factor. By 
contrast, movies and media more broadly are ideal candidates to 
advance this research: They provide a rich and relevant stimulus for 
participants and one that is controlled insofar as it provides exactly the 
same input for everyone. Moreover, media can steer neurocognitive 
responses related to perception, attention, memory, and emotion, and 
it is this property that makes them ideally suited for studying cognitive 
neuroscience but also relevant for social science research trying to 
understand their mechanisms of influence. With this in mind, we will 
next introduce a mathematical framework - Network Control Theory - 
that uses external control forces (here: a movie and its content) to steer 
networked systems (here: the brains of audiences exposed to 
the movie).

3.1. What is network control theory?

Network control theory is a branch of control theory in 
engineering and a subfield of the larger network sciences (Gu 
et  al., 2015). It deals specifically with the question of how 
networked systems can be controlled. What does it mean to control 
a network? Simply put, network control theory is a computational 
model that specifies if and how interventions, and their 
corresponding energetic costs, drive complex systems between 
different topological organizations with different energetic 
requirements (Muldoon et al., 2016; Tang and Bassett, 2018; Kim 
and Bassett, 2020; Lydon-Staley et al., 2020). More specifically, a 
given network topology requires energy costs to maintain.7 
Networks can shift between different topological organizations, 
each with a different energetic requirement and these topological 
shifts can have their own energetic requirements, as well (see 
Figure 5).

To make this idea concrete via example, imagine a system of 
highways connecting several cities. The topological organization of 
this series of highways requires energy to construct and requires 
energy to maintain. Imagine now that the topology is updated; a new 
highway is built and added to the existing network. Constructing the 
new highway will also require energy, as will maintaining that new 

7 There is the energy necessary to maintain a given topological organization. 

In the case of brains and brain networks (both structural and functional), this 

is associated with energetic costs, most notably metabolic costs (Bullmore 

and Sporns, 2012). There is also the energy that is necessary to transition a 

system into, and maintain, a given topological organization. In neurscientific 

contexts, this includes things external energy sources such as an experimental 

task, a pharmacological intervention, a specific stimulus, and so on, that drive 

the brain from one functional topological organization to another. Network 

control theory can be used to account for both cases (see, e.g., Gu et al., 2015; 

Lydon-Staley et al., 2020, respectively). In our application, we are particularly 

focused on the latter case without denying the former.
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highway. Introducing the new highway might also alter the energetic 
maintenance costs of the highways that already existed in the network 
(e.g., the new highway may increase or decrease traffic flows on 
preexisting highways). Similar ideas can be applied to the brain as a 
network, although empirical evidence about energetic costs and 
network structure is less robust. For instance, the creation and 
maintenance of specific connections (white matter pathways) in the 
brain’s network are associated with energetic costs, and the 
topological structure is associated with the kinds of states and 
functions that the network can settle into and perform (e.g., 
Margulies et al., 2016).

Network control theory can be  used to calculate a number of 
metrics that describe these energetic costs. Importantly, some network 
topologies are easier to reach - requiring less energy to obtain - than 
others. How can these energetic requirements be quantified? One of the 
most common approaches is known as controllability. Controllability is 
the ability to transition a network from one topological organization to 
another via external energetic input (Kalman, 1962). This controllability 
metric can be further subdivided into average controllability, modal 
controllability, and boundary controllability.

Average controllability (Shaker and Tahavori, 2013) describes how 
much energy needs to be applied to the system to transition the system 
into a different topological organization. Higher average controllability 
means that less energy input is necessary to drive the system to 
different topological organizations. One constraint on average 
controllability is that it only captures how much energy it takes to 
move the system into easily reached topological organizations. Modal 
controllability (Hamdan and Nayfeh, 1989) accounts for circumstances 
where it takes substantial energy to transition the system into a 

hard-to-reach topological organization. Finally, boundary 
controllability (Bassett et al., 2013) identifies nodes within a network 
that, when targeted with energy, can elicit connection or disconnection 
among other nodes in the network. Together, these metrics provide 
insight into the energetic costs and target nodes necessary to drive a 
network from one topological organization to another.

3.2. How has network control theory 
already been applied?

Network control theory has been increasingly applied to study the 
controllability of structural and functional brain networks (Medaglia 
et al., 2017), but it is not confined to brains alone. Instead, it is also 
perfectly feasible to apply network control theory to social or 
psychological networks (Abelson, 1964; Cremonini and Casamassima, 
2017; Borsboom et  al., 2021). For example, in neurology and 
neuropsychology, one can use network control theory to examine how 
strokes at specific anatomical (structural) sites affect cognitive 
(functional) processes (Popova et al., 2022). Similarly, in the case of 
social networks, it becomes possible to ask how structural changes 
affect function (Proskurnikov and Tempo, 2017, 2018). For instance, 
how do changes in leadership structure impact a group, its 
communication, and ultimately performance? Finally, turning to 
psychological networks such as attitude and belief networks, network 
control theory enables simulating how targeted influence (e.g., 
message-based persuasion attempts geared towards a specific belief) 
would impact the targeted belief, its associates, and the belief network 
as a whole (Schlicht-Schmälzle et al., 2018; Chambon et al., 2022).

FIGURE 5

Network Control Theory. Left panel: Movie events are the causal forces that push the brain (or brains of entire audiences) into different states. For 
instance, the sudden reveal of a betrayal will likely engage theory-of-mind processes associated with social-cognitive brain networks. The depiction of 
a potential shooter approaching an innocent victim will engage affective systems. In this particular example, brightness and threat could be used as a 
time varying energetic source to use in a control theoretic analysis. The idea being, that each is analogous to an energetic source that should impact 
specific nodes (visual cortex, PFC, respectively) differently, and have different cascading impacts on time-varying network topology. Middle panel: A 
snapshot of network states in a single individual. As the individual views the movie, their brain responds to the time-varying content. Visual changes will 
prompt visual networks to come online and reconfigure (the example focuses only on brightness, but other visual features could be modeled, such as 
the presence or number of faces, contrast, objects, etc.). In parallel, higher-level content elements (though conveyed via the concrete sensory-
perceptual features) prompt changes in networks related to executive control, salience processing, etc. Right panel, top: Example of an energy 
landscape in which valleys represent equilibrium states. By application of control energy, the brain can be pushed to leave one state and settle down in 
another. Note that the actual landscape has a higher dimensionality. Right panel, bottom: Example of a multivariate brain activity trajectory from actual 
movie-viewers. The input movie was Bang-Bang! You’re dead by Alfred Hitchcock. Brain activity from different regions (268-dimensional) is embedded 
in a lower-dimensional (3-dimensions) space (Heusser et al., 2018). Color represents time. As can be seen, the time-varying movie content steers brain 
activity into different positions.
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Turning specifically to brain organization, network control theory 
has revealed some crucial findings about brain structure and function. 
Possibly most important is that the brain’s intrinsic architecture, that is, 
the white matter fiber tracts connecting gray matter structures, facilitate 
controllability in different ways. In a pathbreaking study, Gu et al. (2015) 
demonstrated that different neural subnetworks had different levels of 
controllability. For instance, the default mode network has a topological 
organization that facilitates transitions into other easily reached 
topological organizations. By comparison, other subnetworks (e.g., 
fronto-parietal control networks) are better suited to facilitate transitions 
into difficult-to-reach topological organizations. These controllability 
characteristics appear to guide high-level cognitive and behavioral 
responses within organisms (Rouse et al., 2021).

3.3. How can network control theory 
integrate media content with reception 
responses and media effects?

How can network control theory be applied to the media content 
→ brain reception mechanism → media effects framework presented 
above, and what can we gain from it? In a nutshell, our core argument 
is that under a normal mass communication regime (i.e., one-to-
many: same message, many recipients), the arrow of causality starts 
with the message content. Therefore, understanding the content is the 
key to understanding downstream effects.8

To give an example, consider the case of a movie that contains a 
morally evocative event, such as an innocent person being shot and 
killed.9 Such key moments of the story (Wilensky, 1983) evoke 
predictable audience reactions that are highly consistent across 
viewers (Hasson et al., 2008a; Dmochowski et al., 2012; Naci et al., 
2014; Schmälzle and Grall, 2020a,b). It is clear that flickering pixels, 
moving images, and so forth are required to transmit the movie into 
peoples’ brains. However, the main “effective ingredient” of this 
content sits at a higher level of plot abstraction. We also know that 
filmmakers, screenwriters, and fiction authors are very skilled at 

8 We thank a reviewer for pointing out that based on the picture presented 

here (content → brain → effects), readers may infer that media reception is a 

strictly passive process, which we ultimately do not believe to be correct. 

Rather, there are additional receiver-sided factors that can affect the reception 

process. For example, the degree of interest among receivers can modulate 

how people respond to the same incoming message content; the same is true 

for the belief-consistency of a message, the background knowledge audiences 

have about a topic, or simply their degree of vigilance. Thus, in reality, the way 

in which audiences select and engage with media content is going to be more 

dynamic, creating message-receiver interactions beyond simple message main 

effects, potential dynamic feedback loops, and other audience effects (e.g., 

during co-viewing vs. individual viewing). In sum, real audiences are more 

active (e.g., Biocca, 1988; Huskey et al., 2020) and these factors must be taken 

into account. Nevertheless, even if these (or other) additional external or internal 

factors come into play, it is clear that the proximal causal role of media content 

is critical and must be quantified.

9 From the perspective of Moral Foundations Theory and the Model of 

Intuitive Morality and Media Exemplars, this could be considered a violation 

of the harm/care foundation (Tamborini, 2011; Graham et al., 2013).

“pushing” people into certain psychological states (see Figure 5). In 
fact, even the designation ‘director’ clearly alludes to the potential to 
exert control, that is, by influencing the content creation process in 
such a way that certain audience reactions follow predictably.

With neuroimaging, we can now capture how brain networks 
reconfigure dynamically during movie watching, such as how movie 
events trigger attentional reorienting responses, how close-up shots of 
protagonists are important events that evoke theory-of-mind 
processing, or how morality violations engage brain networks involved 
in emotion and socio-moral cognition. If we can successfully integrate 
these higher-level layers of the media’s content with the more easily 
quantifiable characteristics of content that engage sensory and 
perceptual brain systems, then we can hope to close the explanatory 
gaps between movie content, reception response, and media effects 
under one cohesive framework.

To make this all more concrete, consider the following example: 
We know that simple narratives are easier to follow than complex ones. 
From a cognitive perspective, we further know that following a complex 
narrative taxes working memory. Neurally, we  know that working 
memory is associated with (although not in a 1:1 fashion) activity in the 
executive control and default mode networks. Thus, at a very simple 
level, we might examine network controllability metrics for different 
narratives that vary in complexity, and we could expect that simple vs. 
complex narratives are associated with different controllability values.10 
Further, we might also ask if these controllability values can be used to 
predict box office revenues of a given narrative, much in the same way 
as Dmochowski and colleagues (Dmochowski et al., 2014) used neural 
reliabilities to predict audience preferences. In this case, we would link 
a high-level media content characteristic (plot complexity), with an 
equally high-level reception response (controllability), and media effect 
(box office revenue, a measure of popularity).

Of course, it should also be  possible  - and maybe more 
interesting - to apply the approach to a single movie to examine finer-
grained elements along the media content, reception response, and 
media effects pathway. In this case, the time-varying properties of the 
movie would comprise the input to the system, i.e., the energy that is 
applied to the network. Mathematically, this can be  modeled via 
impulse response models (Blaauw et al., 2017) when targeting a single 
node or more generalized control models (Tang and Bassett, 2018) 
that target multiple nodes in a network (for a review, see Lydon-Staley 
et al., 2020).

The question, then, is what type of media content we  should 
model, to what node or nodes (targets) in the network the resulting 
energy would get applied, and what sort of outcomes we might expect? 
Although answers to these questions remain speculative because - to 
our knowledge - NCT has yet to be applied to content-rich media (as 
opposed to simpler stimuli and tasks), the cumulative body of 
knowledge from sensory and cognitive neuroscience, combined with 
nearly six decades of entertainment research and mass communication 
research can offer direction.

10 Readers who are familiar with traditional approaches to fMRI data analysis, 

such as the GLM framework, will realize that this approach is conceptually 

similar, the main difference being that it is applied here to network metrics as 

the dependent variable rather than to the activity of individual voxels.
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Starting with basic sensory and perceptual features, we can extract 
these in much the same way as is currently done for topical studies of 
vision, audition, or language (e.g., Kauttonen et al., 2015; McNamara 
et al., 2017), and we can relate quantified content properties (e.g., over-
time variations in brightness, sound energy, etc.) to brain imaging 
measures. To the extent that the reception mechanisms that 
correspond to specific content properties are localized, one may not 
even need to resort to network-based analyses but could even rely on 
standard brain mapping-style analyses.

Then, as we move from simple features like brightness or sound 
energy to more complex media content, we need to not only adjust the 
kinds of content features that are quantified and used to model brain 
responses but also the kinds of brain response features that are 
modeled (i.e., moving from localized univariate response models to 
model networked responses and state-reorganizations, which is what 
network control theory excels in). With regard to the quantification of 
content, we argued above that it will no longer be sufficient to model 
pixels, brightness, or the occurrence of faces. Rather, media 
psychological research points to the importance of characters, the 
actions they perform and the outcomes that befall them, and so forth. 
Using this understanding (for a review, see Grizzard and Eden, 2022), 
the kinds of content we should attend to, and their putative brain 
targets become clearer. With regard to response features, we can rely 
on methods from network neuroscience, including parcellations of 
canonical brain networks, network estimation methods, and 
knowledge about structure–function relationships (e.g., between the 
TPJ, a core node of the DMN and social-affective processes, e.g.,  
Yeshurun et al., 2017).

Imagine a researcher interested in empathy. Two narratives could 
be constructed, one where a liked character suffers a dramatic setback 
(which should elicit an empathetic response), and one where the 
setback is edited out (which should not elicit an empathetic response). 
The timing of this empathy-inducing outcome could be used in an 
impulse response model that targets a specific node in the network, 
like the temporal–parietal junction, which has long been implicated 
in empathy processing (Saxe and Kanwisher, 2003; Decety and Lamm, 
2007; Alcalá-López et al., 2018).11 Then, one would analyze how this 
intervention (i.e., film event) changes the brain network topology and 
how this differs between the experimental and control version of the 
narrative. Moving onwards, if a negative event befalling a liked 
character changes the brain network into a state of empathy, then that 
change should be associated with a corresponding change in audience 
responses (e.g., self-reported empathy), thus completing the sequence 
from media content, reception response, to media effects.

Another example could be suspense: We know that suspense in 
media strongly affects the audience, and screenwriters and directors 
possess a lot of knowledge about how to elicit this phenomenon (e.g., 
Brewer and Lichtenstein, 1982; Douchet, 1985; Vorderer et al., 2006). 
Moreover, some prior work has focused on the brain mechanisms of 
suspense precisely because of its potential to take control of audiences 
(Bezdek et al., 2017; Schmälzle and Grall, 2020a,b). Much like in the 

11 Of course, this approach requires a strong a-priori hypothesis. Data-driven 

approaches are also available. For instance, a researcher could, one by one, 

apply the energy source to each node in the network in a round-robin style, 

and observe the outcome.

example about empathy above, it would be possible to create different 
branches of the same story that incorporate directing techniques, 
music, narrative devices, or other methods to increase suspense and 
examine their impact on brain systems.12 Again, one could then 
analyze how variations in suspense (either between experimental 
conditions or variations of suspense over time) impact the brain 
network topology. One broad prediction, for example, is that ebbs and 
flows in suspense should impact the saliency and executive control 
networks, which are associated with attention. Although more difficult 
to resolve with present-day functional neuroimaging methods 
(because of limitations in spatial and temporal resolutions), suspense 
should also impact ascending arousal networks and cortico-
subcortical loops associated with emotional arousal. Indeed, previous 
neuroimaging work points to such responses (e.g., Hermans et al., 
2011; Naci et  al., 2014; Young et  al., 2017; Schmälzle and Grall, 
2020a,b), but whereas much of this work is data-driven and more 
exploratory in nature, network control theory holds potential to 
integrate this research and provide a common platform for bringing 
together content (directors, creators), brain response (cognitive 
neuroscientists) and effects studies (media psychology and 
entertainment research).

These represent just a few possible examples that use network 
control theory as a framework that connects the domains of content 
analysis, reception analysis, and media effects. The appeal of network 
control theory is that it enables us to start from media-informed 
hypotheses about what will be driving brain network dynamics and 
how while honoring the complexity and hierarchical nature of the 
content (from simple objective features to more abstract semantic and 
pragmatic contents), brain responses (from evoked sensory responses 
to reorganization of higher-level brain systems), and media effects 
(from effects on individuals to populations, and from obligatory 
effects in all individuals to effects that could vary based on individual 
difference, cultural background, or an individual’s position in a larger 
social network topology).

Although many unknowns and challenges remain,13 this approach 
holds the potential to integrate domains that have henceforth been 
studied separately. Viewed from afar, this endeavor is almost 
reminiscent of the seminal work of Penfield (1950), who used 
intracranial stimulation techniques to map out functional brain 
systems, but with the difference that movies now offer a way to 
influence brain systems and associated affective, social, and conceptual 
reactions, and not only in individuals but multiple brains comprising 
an audience.14

12 Of note, here we discuss only standard experimental paradigms, but it 

would not seem infeasible to even create closed-loop, neurofeedback-type 

systems that feedback audience activity into the creation process, thereby 

further enhancing collaboration and integration between filmmakers and 

neuroscience (e.g., Tikka et al., 2012; Raz and Hendler, 2014).

13 Especially regarding the quantification of content that lies at or behind 

the “barrier of meaning” and the accurate measurement of the networked 

structures.

14 We would like to thank a reviewer for suggesting that this all sounds a bit 

like a “content-powered TMS machine,” an idea that we find thought-provoking 

and appropriate. However, the reviewer is also right to warn against 

overstretching this analogy because current TMS methods allow causal 

targeting of single (or few) and localized brain functions. By contrast, when 
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4. Future directions

4.1. From traditional mass media to new 
media

We are not the first to make arguments about the necessity of 
quantifying naturalistic and multi-modal media stimuli for 
understanding the brain, or media effects (see, e.g., Weber et al., 
2006, 2015b; Spiers and Maguire, 2007; Dudai, 2012; Sonkusare et al., 
2019; Aliko et al., 2020; Finn et al., 2022). Important work headed in 
this direction already exists, and we  have worked to note these 
developments at relevant points in our manuscript. The point is, 
however, this approach has not yet reached widespread adoption. 
We think this is for two key reasons: (1) uncertainty about how to 
quantify media content, and (2) ambiguity about how to link 
content’s complex, hierarchically organized, and time-varying effects 
across complex, hierarchically organized, and time-varying brain 
systems. The approach outlined above, which advocates jointly 
studying media content, reception responses, and media effects and 
suggests NCT as a framework for doing so, addresses these two 
challenges and is directly applicable to a wide variety of traditional 
mass media, including TV, cinema, and written or spoken narratives.

However, the notion of mass media today is no longer quite what it 
was when relevant definitions and theories of mass media were first 
formulated. Rather, these days the media ecosystem is constantly in flux, 
and new ways to stimulate brains and entertain audiences are constantly 
invented. Traditional mass media, most notably radio and television, 
followed the classical one-to-many model in which a sender emitted the 
same message that was carried via a medium to a large audience, like 
when people listened to Orson Wells’ “War of the Worlds” broadcast that 
prompted them to fear an alien invasion. Similarly, TV and cinema movie 
viewing also fall under this kind of paradigm (same message, millions of 
simultaneous receivers), which is very compatible with neuroimaging and 
leads to a constant increase in papers and publicly available datasets 
featuring audiobooks and movies (Aliko et al., 2020; Willems et al., 2020).

The advent of streaming platforms (e.g., Netflix for movies and 
shows, YouTube for all kinds of content, Spotify for music) prompted 
a shift in the landscape because previously more homogenous mass 
audiences became increasingly fragmented and can now consume 
content at their own pace and via increasingly niche content. Despite 
the self-timed nature of such video streaming, however, the basic 
notion of same-message - many receivers still remains. Thus, these 
kinds of media models lend themselves exceptionally well to 
neuroscientific studies like the ones outlined above.

Social media add another layer of complexity, but we argue that key 
principles of mass communication still remain relevant. Modern social 
media, like Twitter and TikTok, can be characterized as instant mass 

content “targets” brain systems (such as the TPJ in the empathy example 

above), the TPJ would not receive direct input from content, but its input would 

consist of the preprocessed visual and auditory information conveying the 

empathy evoking narrative. Despite the caveats, we believe that the notion 

that media can precisely steer neurocognitive processes and evoke strong 

effects like emotional arousal, empathy, and so forth is convincing and that 

the NCT framework provides a way to examine how this is mediated by brain 

networks and their dynamic reconfigurations.

media; that is, they deliver the same messages to many recipients in a 
very swift manner. Moreover, they add novel affordances to engage with 
content via liking, sharing, and commenting. The resulting mode of 
communication has been called “masspersonal communication” 
because it blends elements of interpersonal communication into the 
mass communication model (O’Sullivan and Carr, 2018). Thus, the 
content of social media messages can still be studied and linked to brain 
reception responses, and the additional affordances of social media (like 
sharing, liking, commenting) can also be studied from a neuroscientific 
perspective (Meshi et al., 2015; Scholz et al., 2019).

4.2. Games and virtual reality as emerging 
trends

Reflecting on what the future may hold, we see two areas on the 
rise: Gaming and Virtual Reality (VR). Gaming and VR are both 
among the fastest-growing media types. Both offer interaction 
potential,15 distinguishing them from movies and stories (TV, radio, 
podcasts, etc.) that are consumed more passively, although even for 
the latter, audiences can vary in their level and degree of internal 
activity (e.g., interest, involvement, vigilance). At first glance, the 
interactive and thus constantly changing nature of gaming and VR 
media may seem incompatible with the “same stimulus sequence” 
notion that is so characteristic of movies, audiobooks, and other fixed-
type mass media. However, we note that even in games and VR, there 
are clearly shared aspects as well and that the experiences users have 
are far from idiosyncratic. In games, for instance, many sub-scenes are 
prerecorded and thus the same for all audience members, and the 
same holds true for VR. Moreover, for both games and VR experiences, 
it is exceptionally well possible to quantify and precisely time-lock 
contents (Bente et al., 2007; Huskey et al., 2018a; Lammers et al., 2019; 
Calcagnotto et al., 2021).

Thus, although studying brain responses during games and VR 
will require special consideration, we argue again that the basic model 
outlined above still applies: As long as fixed content is consumed, one 
can code it just like one would do for movies or narratives (see above), 
and to the extent that content varies by person, one can still content-
analyze each individual screen-recording using the same principles 
(Dmochowski et al., 2018; Huskey et al., 2018b, 2022; Ki et al., 2020).

5. Summary and conclusion

In sum, we have argued that the time is ripe for creating a new 
substantive science at the intersection of media and neuroscience. The 

15 Clearly, interactive media add immense complexity to the simple linear-

causal content-reception-effects perspective offered for movies and 

comparable consumption media. Note that even for these types, however, 

there is interaction potential insofar as exposure to movies can shape 

preferences, thereby affecting future selection decisions and so forth. Thus, 

the overall picture is clearly more dynamic than described here. Yet, even a 

complex, convoluted episode with interactive media can be disentangled and 

causally arranged along the ‘arrow of time’, for which the content, reception, 

response framework should still hold.
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neuroscientifically informed study of media reception processes 
provides the missing link between media content and media effects, 
enabling fascinating insights into the hidden mechanisms by which 
media affect us. However, to avoid reinventing the wheel or creating a 
mayfly-like field, neuroscientists should engage with research that has 
studied media content and media effects. The current article offers a 
springboard for doing so. We  have introduced an organizing 
framework that connects the domains of media content, media 
reception, and media effects in a logical, sequential manner. In that 
framework, content is the key to understanding brain responses and 
subsequent media effects. We then suggested network control theory 
as a way to link the domains of media content, media reception 
mechanisms, and media effects (in individuals and social networks) 
in one multi-layered (or multi-staged) network. This framework offers 
a clear agenda for future research that uses media in combination with 
neural or other reception response measures and applies to studies 
focusing on specific neurocognitive processes (e.g., vision, language, 
or memory) as well as more integrative investigations of audience 
responses to movies and narratives. The ideas articulated here are 
most directly applicable to one-to-many mass communication models 
(which include neurocinematics, neuroscience of stories, etc.) but can 
also be adapted to modern social and interactive media.
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