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Unsupervised Segmentation of Polarimetric 
SAR Data Using the Covariance Matrix 

Eric Rignot, Member, IEEE, Rama Chellappa, Fellow, IEEE, and Pascale Dubois, Member, IEEE 

Abstract- This paper presents a method for unsupervised 
segmentation of polarimetric synthetic aperture radar (SAR) data 
into classes of homogeneous microwave polarimetric backscatter 
characteristics. Classes of polarimetric backscatter are selected 
based on a multidimensional fuzzy clustering of the logarithm 
of the parameters composing the polarimetric covariance matrix. 
The clustering procedure uses both polarimetric amplitude and 
phase information, is adapted to the presence of image speckle, 
and does not require an arbitrary weighting of the different 
polarimetric channels; it also provides a partitioning of each 
data sample used for clustering into multiple clusters. Given the 
classes of polarimetric backscatter, the entire image is classified 
using a Maximum A Posteriori polarimetric classifier. Four- 
look polarimetric SAR complex data of lava flows and of sea 
ice acquired by the NASNJPL airborne polarimetric radar 
(AIRSAR) are segmented using this technique. The results are 
discussed and compared with those obtained using supervised 
techniques. 

I. INTRODUCTION 

number of polarimetric SAR analysis techniques have A been reported in the literature to measure and character- 
ize the polarization response of natural targets [ l ] ,  to maximize 
the contrast between regions based on polarimetric filtering [2], 
or to classify data using Bayes’ classifier [3]-[7]. Most of these 
techniques are supervised and require selection of training 
areas for each class of terrain cover. The process is precise, 
reliable, and only is concerned about the classes of interest 
to the user. However, an accurate and detailed knowledge of 
the scene contents is required to select the appropriate classes, 
and training areas should be homogeneous and contain enough 
samples to estimate the polarimetric backscatter characteristics 
of each class with good accuracy. This is not always possible, 
e.g., in the case of sea ice studies where ground truth data 
are often sparse and time-limited (due to the cost of collecting 
extensive ground truth information and the rapid evolution 
of the ice), and sea ice features are difficult to characterize 
and extract (e.g., ridges, broken-up ice floes, and open leads). 
In addition, selecting training areas becomes costly and time 
consuming as the number of classes, the data volume, and the 
data rate increase. 
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Because of these limitations, there is a strong interest in 
developing unsupervised techniques analyzing polarimetric 
SAR data. Although the physical interpretation of the results 
can be more difficult, unsupervised techniques are complemen- 
tary to supervised techniques and also significantly decrease 
the operator-system interactions, an important advantage for 
the development of automatic and real-time classifiers for 
SAR data. One unsupervised technique was described in [B], 
which automatically classifies polarimetric SAR data into 
four categories of dominant scattering mechanisms: 1) single 
bounce scattering; 2) double bounce scattering; 3) diffuse or 
multiple bounce scattering; 4) nonclassified scattering. The 
results have a direct physical interpretability and greatly help 
to characterize the interactions between the electromagnetic 
signal and the natural media. In cases where the same type 
of scattering mechanism dominates the entire scene, however, 
that particular technique does not help to separate different 
types of natural surfaces. In this paper, a more discriminative 
method of unsupervised analysis for polarimetric SAR data 
is presented which segments the data into classes of homo- 
geneous microwave polarimetric backscatter characteristics. 
Classes of polarimetric backscatter are selected based on a 
multidimensional fuzzy clustering of the logarithm of the 
parameters composing the polarimetric covariance matrix. The 
advantages of operating in the log domain are outlined in the 
paper. The degree of discriminability of the cluster centers 
is fixed by three required user-input clustering parameters. 
These parameters are: 1) the expected number of clusters; 2) 
the minimum separation between cluster centers, and 3) the 
maximum size of each cluster. Given the classes of polarimet- 
ric backscatter, a Maximum A Posteriori (MAP) polarimetric 
classifier described in [7] is used to segment the entire polari- 
metric array. The potential and usefulness of the unsupervised 
technique is illustrated using fully polarimetric SAR complex 
data acquired by the NASAiJet Propulsion Laboratory airborne 
polarimetric radar (AIRSAR). The segmentation results are 
compared to those obtained from scattering mechanisms [SI 
and the supervised classification based on training areas [3]- 

The paper is organized as follows. In Section 11, the polari- 
metric feature vector used for clustering of the polarimetric 
SAR data and the clustering technique are defined. Section I11 
briefly introduces the MAP polarimetric classifier, more details 
being available in [7]. Section IV presents the segmentation 
results obtained using AIRSAR polarimetric data and com- 
pares them with those obtained from other techniques. Section 
V concludes the paper. 

[71. 
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11. SELECTION OF THE IMAGE CLASSES 

In this section, the process of unsupervised selection of 
the classes of polarimetric backscatter is described. A clus- 
tering technique is used to make the selection. The process 
involves only a small percentage of data samples picked 
blindly across the whole image from a regular grid. Using more 
than 10% data samples would increase the computational cost 
of clustering without significantly improving the estimation 
accuracy of the cluster centers 191. Section 111 describes how 
to subsequently classify the entire image. 

Let X ,  denote the polarimetric vector of the complex 
measurements at pixel site s 

X, = [HH.HV.VV], (1) 

where, for instance, 

HV = I  HV I exp { z  &\’}. (2) 

HV is the complex amplitude of the V- (vertical) polarized 
return given that the transmitted signal is H- (horizontal) 
polarized. I HV I denotes its amplitude and &\. its phase. The 
complex amplitude VH, also acquired by the SAR receiver, is 
not present in (1) as VH and HV are symmetrized during 
compression and calibration of the polarimetric SAR data 
based on the reciprocity principle [lo]. 

In the absence of a textural modulation of the backscatter 
coefficient of the surface, the polarimetric measurement vector 
X ,  is multivariate Gaussian [4]. The conditional distribution 
of X ,  given its class label L,  = 1, with 1 E { 1. . . . . K }  where 
K is the number of classes in the image, is 

(3 )  

where the superscript * denotes complex conjugation, the su- 
perscript T denotes transposition, and < > denotes ensemble 
averaging. The matrix Cl =< X * T X  > l  is the polarimetric 
covariance matrix of the data in region 1. For azimuthally 
symmetric targets (see [ l l ]  for a discussion), applicable to 
a large number of natural surfaces, HV is uncorrelated with 
HH and VV 1121, and the Hermitian matrix Cl has four zero 
elements 

< I  HH 1 2 >  0 < H H V V * >  
c1=( 0 </  HV 1 2 >  0 ) (4) 

< HH*VV > 0 <IVV12> 

The polarimetric covariance matrix Cl completely charac- 
terizes the first order statistical characteristics of class 1 of 
polarimetric backscatter (3). Hence, a possible mode of un- 
supervised selection of the classes of polarimetric backscatter 
is to perform clustering on a feature vector that comprises 
all the parameters composing the matrix Cl. We choose the 
feature vector zc to be equal to ten times the logarithm of the 
parameters composing the polarimetric covariance matrix as 

10 logI0(<J HH I * > )  
10 loglo(<l HV 1 2 > )  
10 lOg.lO(<l VV 12>) 

where nr!] denotes the argument of a complex number. 
The first three coefficients represent the backscatter cross 
sections in dB of the surface element at three different linear 
polarizations. The fourth and fifth components correspond 
respectively to the real and imaginary parts of the logarithm of 
the < HHVV* > cross product multiplied by ten. The fourth 
component measures the magnitude of the HH-VV correlation 
function, and the fifth one is proportional to the HH-VV 
phase difference. The first four elements have typically a 
dynamic range of about 30 dB, and the fifth one of 27.2 
dB as ~ H H \  \. E [ -T .  + T I .  The polarimetric feature vector 
zc contains the complete polarimetric amplitude and phase 
information in the case of azimuthally symmetric targets. 

The advantages of operating in the log domain instead of 
the linear domain are two-fold: 

1. Traditional clustering techniques are mainly driven by 
the amplitude variance of the signal. In SAR data, 
because of image speckle, the amplitude variance is 
proportional to its mean for magnitude-squared detec- 
tion. As a result, more clusters are selected in the high 
backscatter regions than in the low backscatter regions, 
as noted in [13]. In the log domain, however, image 
speckle has the statistical characteristics of additive 
noise with the power level not varying much across the 
image, and therefore does not impair the selection of 
cluster centers across the dynamic range of backscatter. 
Operating in the log domain therefore renders clustering 
robust to the presence of image speckle. 

2. In the linear domain, the cross-polarized terms (i.e., 
HV) are often several orders of magnitude smaller than 
the copolarized terms (i.e., HH or VV), and clustering 
is mainly driven by the copolarized terms unless an 
arbitrary weighting of the different channels is used. 
The optimal weighting may vary with the type of target 
or the environmental conditions. In the log domain, 
the difference in backscatter between cluster centers is 
measured in dB, i.e., independent of the difference in 
absolute magnitude between each channel. Weighting of 
the different channels is not necessary. 

Logarithmic scaling is commonly used to represent radar 
backscatter values as the dynamic range of SAR data is large. It 
is therefore advantageous to use the same unit in selecting the 
clustering parameters. Note here that the 0 dB reference values 
implicitly used in each component of zc have no influence 
on clustering. It is only assumed that an “x” dB change in 
one component of zc (e.g., HH) carries the same weight as 
an “x” dB change in another component (e.g., HV) which, 
in the absence of any knowledge of the usefulness of each 
polarimetric channel in separating different types of natural 
targets, is a reasonable assumption. 

In the presence of nonazimuthally symmetric natural targets, 
the polarimetric feature vector zc must include four additional 
components. We did not investigate the usefulness of these 
additional components in our polarimetric data set. The AIR- 
SAR data have been calibrated using the procedure described 
in [ l l ]  which assumes azimuthal symmetry of at least one 
large distributed target and which produces calibrated images 



RIGNOT cr a1 ' SEGMENTATION OF SAR DATA 699 

where these four additional components are below the system 
noise level over the entire scene. 

To measure the separation between a polarimetric feature 
vector sc of the z t r L  sample and a cluster center CI (written 
as a vector similar to SC), an Euclidean distance may be 
used. The choice of this metric leads to the iterated k-means 
or ISODATA clustering algorithm [14] which minimizes the 
functional 

I=h %=\I 

E1 = E{ S k ( L ,  - I )  (SC~ - CiI2} (6) 

where S k  is the Kronecker delta (i.e. 6 k ( L ,  -1) is one if L,  = I ,  
and zero otherwise). The cluster centers are determined from 
the iterated sample means. In addition, ISODATA uses heuris- 
tics and a number of input parameters to split or lump clusters. 
It  provides information about the degree of homogeneity and 
separation of individual clusters via the size of each cluster 
and the distance between cluster centers. Yet. each sample 
used for clustering is assumed to be perfectly homogeneous 
and to belong to only one cluster. In many teal images, sample 
areas may contain a mixture distribution of various classes. 
This could be due to the limited spatial resolution of the 
polarimetric imager or to the scene inhomogeneity. To account 
for the partitioning of each sample element zc,, into several 
clusters Cl, instead of (6), the following objective function is 
used 

I=1 r=l 

/=1 2 = 1  

where is the number of sample points used for clustering 
(typically a few percentages of the total number of pixel 
elements in the image), m is a positive constant greater than 
one, and p is the partition function or probability of sample 
zc ~ to belong to cluster 1.  ISODATA corresponds to the case 
where p is a hard partition (i.e., p is equal to one when Z C , ~  

belongs to cluster 1, and zero otherwise), and m = 1. The 
minimization of the objective function E,,, corresponds to the 
fuzzy c-means algorithm [15], [16] and is achieved using 

and 

(9) 

in an iterative convergent process [16], [17]. In our experi- 
ments, m = 1.4, the initial configuration of the cluster centers 
is the ISODATA solution, and the fuzzy c-means optimization 
process is iterated until the number of sample points that 
change their partition function p by more than e = 0.01 is 
less than 4%. 

Most of the required user-input clustering parameters are 
not scene dependent, except the expected number of clusters, 
the minimum separation between cluster centers, and the 
maximum size of each cluster. These three parameters fix 
the degree of discriminability of the different classes. In 

that aspect, the method is never completely unsupervised. In 
some cases, the expected number of classes may be known 
in advance. For example, at the Alaska SAR Facility, the 
Geophysical Processor System must classify spaceborne SAR 
data of sea ice into four categories [18]: 1) multiyear sea ice; 
2 )  first year sea ice; 3)  thin ice; and 4) open water. Otherwise, 
the number of classes is limited by the finite dynamic range of 
the polarimetric measurements and the minimum separability 
between clusters. In our experiments, good results are obtained 
when the polarimetric distance between cluster centers is at 
least 3 dB and the size of each cluster is less than 3 dB. 
The radiometric fidelity of the image (typically 1 dB) and the 
inherent variability of the polarimetric characteristics of each 
area with the incidence angle (typically 1-3 dB) set limits on 
the minimum separability between clusters. 

The danger of operating in the log-domain is that loga- 
rithmically transformed cross-section and cross-product values 
have different statistics [19]. As a result, conversion of the 
characteristics of the cluster centers from a dB scale back to 
a linear scale must be done carefully. When the equivalent 
number of looks of the iterated sample means is high enough, 
a direct conversion is possible as the bias introduced by the 
logarithmic transformation will be small [ 191. 

Finally, a known inconvenience of the fuzzy c-means/ 
ISODATA clustering algorithm is that i t  is not adapted to the 
situation where natural clusters are elongated in one direction. 
In the case of polarimetric SAR data, at a given incidence 
angle, the variability of the cluster elements can be modeled 
as resulting from three different sources: 1) image speckle; 
2) system noise; and 3) texture [20]. In the log-domain, the 
variance of the signal due to image speckle and system noise is 
the same at all polarizations (system noise, however, biases the 
value of the cluster centers and affects their separability at low 
signal-to-noise ratios (SNR's)). Furthermore, in all the four- 
look AIRSAR data used in this study, the variance of texture 
was always found to be small in magnitude compared to the 
intracluster distances and not varying much with polarization. 
As a result, it is reasonable to assume that the clusters are 
nearly spherical in the polarimetric feature space. 

111. MAP POLARIMETRIC CLASSIFIER 

In Section 11, we showed how to determine the polarimetric 
cluster centers of the image from a small subset of the data 
samples. In this section, we describe how a MAP classifier [7] 
is used to classify the entire image given the cluster centers. 

A model of the conditional distribution of the polarimetric 
data samples (3) is combined with a Markov random field 
representing the distribution of the class labels L, to obtain 
an expression for the posterior distribution of the class labels 
given the polarimetric SAR observations [7]. In a Bayesian 
framework, the most likely class labeling of the data is the 
one which maximizes the posterior distribution of the class 
labels and is called the MAP estimate. 

The computation of the MAP solution is more demanding 
than that of the Maximum Likelihood (ML) solution de- 
scribed in [3], but new computational techniques have been 
developed recently to speed up the estimation process [7]. 
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(b) 

Fig. 1. (a) Color overlay at three polarizations (HH is red, VV is green, and HV is blue) and L-band frequency of a four-look AIRSAR image of the Pisgah 
lava flows in the Mojave Desert, CA. The image is in slant-range and covers a 12 kmx5  km area. The incidence angle varies between 3 8 O  (top in the figure) 
and 53' (bottom in the figure). (b) Unsupervised MAF' segmentation map of Fig. l(a) using six classes and the complete polarimetry. Class one (phase I1 
lava) is colored white, class two (phase 111 lava) is colored brown, class three (phase I lava) is colored red, class four (alluvial fan and cobble) is colored 
light green, class five (alluvial fan) is colored dark green, and class six (dry lake bed) is colored dark blue. 

Results obtained using AIRSAR polarimetric SAR complex 
data indicate that the MAP classifier improves classification 
accuracy by 1 G 2 0  percentage points compared to the ML 
classifier which assumes equal a priori probabilities for the 
classes and no spatial correlation between the polarimetric 
measurements. 

IV. RESULTS USING AIRSAR DATA 

A. Images of Lava Flows 

Fig. l(a) shows a color overlay at L-band frequency ( 
X = 23.98 cm) and three different polarizations (HH is red, VV 
is green, and HV is blue) of a four-look AIRSAR image of the 
Pisgah lava flows in the Mojave Desert, CA [21]. In this figure, 
near range is on top and the aircraft is flying from right to left. 
The image is 1024 pixels by 512 records in size. The incidence 
angle varies between 38 and 53". The original image has 750 
records. The first records of the data take, corresponding to 

smaller incidence angles, are not used as they correspond to a 
portion of the image where the incidence angle effects on the 
backscatter characteristics of the SAR data cannot be ignored 
as they would cause significant variations within each intended 
cluster. Pixel spacing is 12.1 m in azimuth and 6.66 m in slant- 
range. The data have been calibrated using the procedure for 
polarimetric SAR data described in [ l l ] .  The scene contains 
various geological surfaces [13], [21], [22], which can be 
divided into six classes of terrain cover: phase I lava, phase 
I1 lava, phase I11 lava, cobble, alluvial surface, and dry lake 
bed. Table I lists the polarimetric backscatter characteristics of 
these six classes based on the selection of six training areas. 

A set of 101x51 polarimetric data samples were clustered 
into six classes separated by more than 4 dB. The polarimetric 
characteristics of the resulting cluster centers are given in 
Table 11. All clusters have a good degree of homogeneity 
as the variance of their elements is less than 1 dB (not 
shown in Table 11), and are well separated as the distance 
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TABLE I 
POLARIMETRIC CHARACTERISTICS OF THE SIX TRAINING AREAS OF THE PISGAH SCENE AT L-BAND 

Training Area O H H  OHV OVV ~ H H V V  ~ H H V V  

(dB) (dB) (dB) (dB) (rad) 
Phase I1 lava -8.0 -17.7 -8.5 -9.8 0.0 
Phase I11 lava -9.5 -22.2 -10.2 -10.7 0.0 

Phase I lava -16.0 -26.9 -15.3 -16.9 -0.2 

Cobble -19.0 -31.7 -17.8 -19.2 -0.4 

Alluvial fan -23.8 -34.4 -22.8 -24.7 -0.0 

Dry Lake Bed -29.2 -41.6 -28.0 -29.6 -0.1 

TABLE I1 
POLARIMETRIC CHARACTERISTICS OF THE SIX CLUSTER CENTERS OF THE PISGAH SCENE AT L-BAND 

Cluster Number OHH OHV uvv ~ H H V V  ~ H H V V  Target Type 

(dB) (dB) (dB) (dB) (rad) 
Phase I1 lava 1 -8.9 -19.4 -9.4 -10.4 0.0 

2 -13.2 -24.2 -13.2 -14.5 0.1 Phase 111 lava 
3 -17.7 -29.1 -17.1 -18.6 0.2 Phase I lava 
4 -20.9 -32.7 -20.1 -21.7 0.1 Alluvial fan 1 
5 -23.7 -36.3 -22.9 -24.4 0.0 Alluvial fan 2 
6 -28.3 -41.0 -27.0 -28.8 0.1 Dry lake bed 

between cluster centers is more than 4 dB. Clustering appears 
to be mainly driven by the radiometric information contained 
in the first three components of ZC. In effect, the HH-VV 
phase difference is zero almost everywhere in the image 
and does not help to separate the different types of terrain 
cover. The fourth comoonent of ZP corresoonds to a HH-VV - 
correlation coefficient (i.e., I pHHVV I= ' < H H V V * > l  1 <I  HH I > < IVV I > 
between 0.7 and 0.8 for all cluster centei ,  which indicates 
little discriminability between the natural surfaces for this 
parameter. By comparing Tables I and 11, one sees that the 
backscatter characteristics of the cluster centers are consistent 
with the backscatter characteristics of the different types of 
terrain obtained from training areas. Note that the cobble 
site is classified in the same cluster as the alluvial surface, 
as expected, since they have similar polarimetric backscatter 
characteristics at L-band frequency (Table I). 

The unsupervised MAP classification map is shown in 
Fig. l(b). There is a good agreement between this map and 
the geological map [22] or the supervised classification map 
in [lo]. However, in both the supervised and unsupervised 
maps, topography causes some misclassification in the near- 
range (top of the figure). This problem is characteristic of the 
sensitivity of SAR data to relief and illustrates that for any 
classifier to work in a mountainous area the incidence angle 
effect must be included. The division of the alluvial surface 
into two image classes in Fig. l(b) is also due to the presence 
of relief. 

Unsupervised classification by scattering mechanisms [8] 
shows that the dominant form of scattering is single bounce 
over the entire image except in the two areas corrupted 
by interferences with unknown sources (rectangular patterns 
colored in pink in the bottom center of Fig. l(a)). Hence, this 
type of classification scheme does not separate the different 
types of terrain in this example at L-band frequency. 

B. Images of Sea Ice 
Fig. 2(a) shows a color overlay at L-band frequency and 

three polarizations (HH is red, VV is green, and HV is blue) of 
a four-look AIRSAR image of sea ice acquired in the winter 
season over the Beaufort Sea, Alaska. The incidence angle 
varies between 37 and 52 '. The data have been relatively 
calibrated using the procedure described in [ l l ]  but could not 
be absolutely calibrated due to the absence of targets of known 
backscatter characteristics in the scene. An arbitrary gain factor 
was applied to obtain reasonable values of the backscatter 
cross-section of multiyear sea ice at L-band HH-polarization 
based on past scatterometer measurements. 

A visual inspection of the SAR data reveals that at least 
five different types of sea ice are present in the imagery: 1) 
multiyear sea ice (abreviated MY), an old ice that survived one 
or more summer melts, several meters thick, and which corre- 
sponds to large ice floes of rounded and smooth geometrical 
shape in Fig. 2(a); 2) first year smooth ice (abreviated FYS), 
about 1 m thick, with a smooth surface, which appears dark in 
Fig. 2(a) and constitutes the matrix of the MY ice floes; 3)first 
year rough (abbreviated FYR), less than a meter thick, with 
a rough surface and many ridges, which appears brighter than 
FYS ice in Fig. 2(a); 4) ridges, resulting from the continuous 
action of shear and compressing forces between sea ice floes, 
and which appear dominantly bright in Fig. 2(a); 5) thin ice 
(abreviated ThI), which appears the darkest in Fig. 2(a). 

A set of 101 x 51 polarimetric data samples were clustered 
into eight classes separated by more than 3 dB. The polarimet- 
ric characteristics of the resulting cluster centers are shown in 
Table 111. The corresponding MAP segmentation map is shown 
on Fig. 2(b). The first cluster corresponds to compressed FY 
surrounding MY floes and MY ridges within the MY ice 
floes. The next three clusters correspond to three different 
categories of FY ridge and rubble. Cluster five corresponds 
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Fig. 2. (a) Color overlay at three polarizations (HH is red, VV is green, and HV is blue) and L-band frequency of a four-look AIRSAR image of sea ice 
from the Beaufort Sea, Alaska. The image is in slant-range and covers a 12 kmx5 km area. The incidence angle varies between 3 7 O  (top in the figure) and 
52' (bottom in the figure). (b) Unsupervised MAP segmentation map of Fig. 2(a) using eight classes and the complete polarimetry. Class one (MY ridges and 
compressed FY) is colored white, class two (FY ridges I) is colored dark red, class three (FY ridges 111) is colored orange, class four (FY ridges 111) is colored 
yellow, class five (MY) is colored light blue, class six (FYR) is colored dark green, class seven (FYS) is colored dark blue, and class eight (ThI) is colored 
black. c) Unsupervised MAP segmentation of Fig. 2(a) using five classes and HH-polarization. Class one (MY and FY ridges) is colored white, class two (MY 
and FY ridges) is colored light blue, class three (MY and FY ridges) is colored dark blue, class four (FY) is colored green, and class five (ThI) is colored black. 
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TABLE I11 
POLARIMETRIC CHARACERISTICS OF THE EIGHT CLUSTER CENTERS OF THE BEAUFORT SEA SCENE AT L-BAND 

Cluster Number U H H  

(dB) 
1 -12.4 

2 -15.0 
3 -17.2 
4 -19.7 
5 -19.7 
6 -23.0 
7 -27.0 
8 -34.0 

UHV 

(dB) 
-20.7 

Compressed FY 

-24.7 -11.4 -14.4 0.0 FY ridgeirubble I 
-28.0 -13.5 -16.4 0.0 FY ridgeirubble I1 
-30.5 -15.9 -19.0 -0.1 FY ridgeirubble I11 

-34.0 -15.3 -17.9 0.0 MY 
-34.0 -19.0 -22.2 -0.1 FYR 

-40.0 -22.6 -26.2 -0.1 FYS 
-40.0 -28.0 -33.0 0.0 ThI 

to the MY ice floes. The boundaries of the MY ice floes are 
clearly distinguishable in Fig. 2(b). Cluster six, seven, and 
eight correspond to FYR, FYS, and ThI, respectively. 

In Table 111, clusters four and five have the same HH and 
VV backscatter characteristics which indicates that MY and 
FY ridges (which correspond to different sea ice conditions) 
cannot be separated using the HH or VV amplitude alone at 
L-band frequency. An example is given in Fig. 2(c), where 
the data have been segmented using only the HH-polarization 
information and ridges within the FY ice are systematically 
misclassified as MY (colored light blue in Fig. 2(c)). Table I11 
indicates that the parameters providing the best separability 
between clusters four (ridges) and five (MY) are HV, and, at 
a lesser degree, the correlation coefficient I PHHVV I between 
HH and VV. A higher HV return and a lower value of 
I p ~ ~ 1 . 1 .  1 in ridged ice compared to MY ice indicates a 
larger variability in orientation of the scatterers in ridged ice, 
a fact consistent with the more complex geometrical shape 
of the surface. Although HV offers a large contrast between 
cluster four and five, it does not separate cluster five and six, 
which indicates that MY and FYR cannot be well separated 
using the HV amplitude alone at L-band frequency. Similarly, 
cluster seven and eight have the same HV return, which is 
consistent with the fact that both surfaces (FYS and ThI) are 
smooth and are not expected to yield a significant amount of 
cross-polarized return. These results indicate that polarimetry 
significantly improves the capability of the radar imager to 
separate different sea ice conditions at L-band frequency. 
Small residual ambiguities are still visible in Fig. 2(b) as 
ridges within FY sea ice patches are sometimes misclassified 
as MY sea ice. These ambiguities are resolved when the L- 
band polarimetry is combined with the C-band polarimetry as 
shown in [9]. As in the previous example, the HH-VV phase 
difference is zero almost everywhere in the image and has 
no influence on the clustering results. Significant phase shifts 
between the HH and VV response have been detected when 
the electromagnetic wave double-bounces on the surface (e.g., 
man-made structures, tree-trunldground interaction in forested 
areas) as discussed in [SI but this was not the case of the 
examples studied in this work. 

Interestingly, the use of the complete polarimetry renders the 
unsupervised segmentation technique more robust to changes 
in backscatter cross section with incidence angle for this 

example. MY ice floes in the top portion of Fig. 2(c) are not 
classified in the same cluster as MY ice floes in the middle 
and bottom portion of the image. The incidence angle effect is 
substantially reduced when the complete polarimetry is used 
in Fig. 2(b). One possible reason is that the HV return of the 
different sea ice types varies less with incidence angle than 
the HH and VV returns. Another reason is that, in general, the 
probability of error of the Bayes classifier decreases when the 
number of polarimetric channels increases as discussed in [3]. 

In the presence of ridges, it is very difficult to select ho- 
mogeneous training areas containing enough sample elements. 
For that reason, it was not possible to obtain a segmentation 
map similar to Fig. 2(b) using supervised techniques. As 
discussed in the previous paragraphs, the clustering results 
also provide very useful information about the organization 
of the polarimetric feature space that would be difficult to 
obtain using supervised techniques. 

Results from the unsupervised classification technique based 
on scattering mechanisms [8] show that the dominant form 
of scattering over the entire scene is single bounce. Again, 
in this particular example and at this frequency, this type of 
unsupervised classification does not help to separate different 
sea ice types. 

V. CONCLUSION 

The unsupervised segmentation technique for polarimetric 
SAR data presented in this paper uses both polarimetric 
amplitude and phase information, is adapted to the presence 
of image speckle, and requires minimal operator interventions. 
Its potential has been illustrated using polarimetric radar 
images from AIRSAR. The polarimetric clusters detected by 
the unsupervised technique are in good agreement with the 
natural classes present in the scene. In one example (sea ice), 
the clustering technique is found even more powerful than a 
supervised technique based on the selection of training areas. 
Further work is however needed to develop a technique which 
accounts for significant incidence angle effects, e.g., due to 
terrain or imaging geometry. 

In future, SAR sensors will be capable of gathering a large 
volume of data at various polarizations and different frequen- 
cies. To analyze these data, it is desirable to developautomatic 
systems that require little or no operator supervision. We 
have presented in this paper a technique for unsupervised 
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segmentation of polarimetric SAR data. The next step in the 
automatic classification of polarimetric SAR data would be to 
automatically relate each cluster to characteric features of the 
natural target. This could be done using a look up table of the 
expected backscatter characteristics of natural targets. In the 
case of a single polarization radar system, the process has been 
implemented on an operational basis to classify sea ice types 
using SAR data acquired by the the European First Remote 
Sensing Satellite (E ERS-1) at the Alaska SAR Facility [18]. 
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