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Abstract
An analytical formulation of the nodal forces induced by a dislocation segment
on a surface element is presented. The determination of such nodal forces is a
critical step when associating dislocation dynamics simulations with continuum
approaches to simulate the plastic behaviour of finite domains. The nodal
force calculation starts from the infinite-domain stress field of a dislocation and
involves a triple integration over the dislocation ensemble and over the surface
element at the domain boundary. In the case of arbitrary oriented straight
segments of dislocations and a linear rectangular surface element, the solution
is derived by means of a sequence of integrations by parts that present specific
recurrence relations. The use of the non-singular expression for the infinite-
domain stress field ensures that the traction field is finite everywhere even at
the dislocation core. A specific solution is provided for virtual semi-infinite
segments that can be used to enforce global mechanical equilibrium in the
infinite domain. The proposed model for nodal forces is fully analytical, exact
and very efficient computationally. A discussion on how to adapt the proposed
methodology to more complex shape functions and surface element geometry
is presented at the end of the paper.

Keywords: dislocation dynamics coupled with finite elements, tractions, forces
due to dislocations
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1. Introduction

Over the past several decades, discrete dislocation dynamics (DD) methods have been
developed into robust tools for simulating the evolution of dislocation structures in crystalline
materials [1–5]. With the recent interest of plasticity at interfaces and in finite crystals, DD
simulation methods have been applied to simulate the behaviour of finite domains. However,
classical DD methods rely on Green’s functions to quantify the elastic interaction between
elements of the dislocation microstructure in an infinite medium. If not modified, these
Green’s functions, derived for infinite homogeneous media and closed dislocation loops, are
not particularly well suited to plasticity problems associated in finite domains. Many analytical
expressions have been derived over the years to complement the ‘classical’ dislocation stress
expressions. Stress expressions have been derived for dislocations in half spaces [6–8].
Head [9] investigated the case of a straight dislocation contained in a ‘bimetallic’ medium
with various constraints at the boundary between the two solids. Khraishi and Zbib [10]
proposed a solution to ensure the traction free conditions associated with free surfaces in
DD simulations. A distribution of image dislocation loops is employed to annul tractions on
selected collocation points. Chu et al [11] reduced the problem of the stress field associated
with an polygonal dislocation loop, contained in an anisotropic elastic semi-infinite medium,
to line integrals that can be evaluated straightforwardly. Dundurs and Mura [12, 13] have
investigated the interaction between a straight dislocation and a circular elastic inhomogeneity
with different elastic constants than the surrounding matrix. Recently, Wang and Sudak [14]
considered the interaction of a screw dislocation with non-spherical inhomogeneities by means
of a complex variable approach and expansions in terms of Faber series.

For more general boundary-value problems and realistic dislocation microstructures,
Finite Element (FE) and Boundary Element (BE) methods have been coupled with DD [15–22]
to impose desired traction–displacement boundary conditions on simulations of finite domains
and to calculate the forces on the dislocations contained within the domain. Many of these
hybrid methods follow the general approach proposed by van der Giessen and Needleman [15]
based on the superposition principle and linear elasticity. The stress field of dislocations in
a bounded domain is decomposed into the contribution of the classical stress field due to
dislocation ensembles in the infinite medium, and a correction stress field that enforces the
prescribed boundary conditions on the domain limits. The correction field is resolved by
FE or BE methods for an elastic boundary-value problem and requires the determination of
the residual tractions [23] induced by the dislocation ensemble (obtained from the classical
infinite-domain stress field) on the boundary of the domain.

Two issues associated with such hybrid methods have been recently addressed in the
literature [23, 24]. The first issue occurs when dislocations terminate at the boundary of the
domain, the stress field calculated from the classical line integral over such open dislocation
loop may not be divergence free [23, 24], and the integration of the residual tractions on the
entire domain boundary may not cancel out [23]. In other words, mechanical equilibrium is
not satisfied. The divergence of the infinite-domain stress field can be removed by closing
the dislocation network with the help of virtual segments added outside from the bounded
domain [21, 23, 24], or through the use of rational stress expressions [25]. As the exact virtual
segment arrangement has little influence on the final solution of the boundary-value problem,
some authors [21, 23] prefer to close the dislocation network by simply extending segments,
that end at the boundary, to infinity. The second issue has to do with the fact that the classical
infinite-domain stress field is singular at the dislocation core. This poses some numerical
issues especially when evaluating the residual tractions due to segments in contact with the
domain boundary. To circumvent this difficulty, a number of authors [20, 21, 23] now use
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the non-singular expressions proposed by Cai et al [26] to express the infinite-domain stress
field.

The evaluation of the residual tractions on the domain boundary, which is a quantity that
is passed on to FE or BE simulations, constitutes a critical step of such mixed DD–continuum
approaches. This procedure, which requires the integration of the continuous infinite-domain
stress field due to the dislocation ensemble on surface elements and the proper transformation
into a force at FE or BE nodes, has been overlooked until now. To date, analytical expressions
have not been developed for the forces at FE or BE nodes due to a dislocation line (hereafter
referred simply to as nodal forces). Therefore the nodal forces on surface elements are evaluated
by means of a numerical integration on the surface of the element and the quality of this
integration will dramatically affect the precision of the FE or BE solve [24, 27].

The numerical cost associated with the evaluation of nodal forces on FE or BE is another
aspect to consider. For a start, the cost of a numerical integration grows linearly with the
number of quadrature points (QPs) required to achieve a given accuracy. Then, this numerical
procedure is performed for every dislocation segments constituting the microstructure and
every surface elements delimiting the domain. The evaluation of nodal forces on FE or BE
is thus often considered to be one of the most expensive procedures when combining DD
and continuum approaches. In the case of the interaction of two dislocation segments, the
separation distance between the two dislocations determines the spatial variation of the stress
field due to one dislocation onto the other. As a consequence, the number of QPs required
to achieve a given accuracy has to be dramatically increased when the two dislocations get
closer [4]. A similar behaviour can be expected when the dislocation ensemble approaches
a surface. It seems difficult to control integration errors and what the appropriate number of
QPs should be.

In this study, we show that the nodal forces induced by a dislocation segment of arbitrary
orientation on a surface element can be analytically expressed for linear elastic isotropic solids.
The model involves a sum of triple integrals (along the dislocation line and the surface element)
that are solved by means of a sequence of integrations by parts given as recurrence relations.
The proposed model exhibits the following advantages.

• The use of the non-singular continuum theory of dislocation [26] yields to stress and
traction fields that are defined and finite everywhere in the infinite domain, even at the
dislocation cores.

• The model is fully analytical and exact. The proposed formalism based on recurrence
relations makes it very easy to implement. It is also very efficient computationally.

• A specific solution has been derived for semi-infinite segments. The determination of
the asymptotic behaviour of the nodal forces at infinity is done analytically. This type of
segments can be used to extend open dislocation loops in the infinite domain.

• The adopted formalism and geometry are chosen to match most DD and FEM
implementations.

The second objective of this paper is to investigate the integration errors associated in the
numerical evaluation of the nodal forces. This study will be performed on a simplified surface
element geometry, and a discussion as to how the technique can be adapted to more complex
surface elements required by arbitrarily shaped finite domains will be offered at the end of the
paper.
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Figure 1. Illustration of the decomposition of the boundary-value problem (a). Two
slip families of Burgers vectors b1 and b2 are present in a body V , bounded by S

(displacement boundary conditions are disregarded). (b) First, the traction field due to
the dislocation ensemble in the infinite domain is evaluated on the domain boundary.
This calculation accounts for dislocations contained within the domain and virtual
segments used to close open dislocation loops. (c) Then, a FE or BE simulation of
a non-dislocated elastic medium gives the image stress field satisfying the boundary
conditions T0 − σ∞ · n.

2. Problem formulation

Consider a linear elastic body V containing a dislocation ensemble as illustrated in figure 1.
The body is subject to traction boundary conditions T = T0 on surface ST and displacement
boundary conditions: u = u0 on surface Su. Following the formulation proposed in [15] to
impose traction–displacement boundary conditions on a DD simulation within a finite domain,
the total displacement and stress fields are written as

u = u∞ + û (1)

σ = σ∞ + σ̂. (2)

The (∞) fields are elastic fields associated with the dislocation network in an infinite medium.
The (∞) fields are themselves a superposition of the fields of each individual dislocation.
These fields are governed by the standard equations of linear elasticity. The (ˆ) fields or
‘image fields’ are superimposed to enforce boundary conditions. To put it differently, a finite
domain simulation is equivalent to having an infinite domain with an internal surface where a
prescribed traction or displacement condition is applied.

The boundary conditions at the boundary S read [15]

σ̂ · n = T̂ = T0 − T ∞ on ST (3)

û = u0 − u∞ on Su, (4)

where n is the outer unit normal vector to S. This method, based on the superposition
principle [15], is therefore limited to small elastic strains. A discussion on the advantages
and drawbacks of this method can be found in [28].

Solving a boundary-value problem in the example of free surface boundary conditions
requires the following steps [15, 23].

• In these simulations, one must ensure that the dislocation microstructure provided by DD
is valid in the infinite system (associated to a divergence-free stress field) as it will be
used as a starting point for the finite domain simulation. This requires the introduction of
virtual segments: segments that exist in the infinite domain but not in the finite domain.
Semi-infinite virtual segments can be used to close loops between segments that intersect
the surface. The association of the dislocation microstructure contained within the domain
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and the virtual segments in the infinite domain is sometimes called ‘augmented dislocation
configuration’ [23].

• The unbalanced tractions due to the dislocation ensemble are evaluated at the domain
boundary. This calculation concerns dislocations contained within the domain and virtual
segments in the infinite domain. The sign of the resulting traction field is reverted and is
appropriately transformed into a set of nodal forces on nodes that are at the boundary of
the domain.

• Then, the classical system of elastic equations is solved by FE or BE methods for the
image displacement field, from which the strain tensor is determined and Hooke’s law
gives the image stress field.

• The image stress field is finally applied to the dislocation network and DD will simulate
the dislocation microstructure evolution.

Calculations in step 2 of the surface element nodal forces induced by the dislocation
microstructure are not straightforward. The stress field σ∞(x) due to the dislocation ensemble
is defined and finite everywhere in the infinite domain [26]. The resulting traction field
σ∞(x) · n(x) is defined and finite as well at the domain boundary. Therefore, the traction
field due to the dislocation ensemble can be seen as a distributed load on the surface (in that
case loads have units of pressure). To match the discrete formalism of FE or BE methods,
the traction field, or distributed load, must be appropriately transformed into a set of nodal
forces [29]. This is usually accomplished such that the mechanical work done by the distributed
load over the element is equivalent to the mechanical work performed by the nodal loads. The
equivalent nodal force on node n is thus written [29]

F(n) =
∫

S(E)

[σ∞(x) · n] N(n)(x) dS, (5)

where dS is an infinitesimal surface element and S(E) is the surface area of the surface element.
N(n)(x) are the so-called shape functions, which assure partition of the traction field among
the nodes of the surface element.

To avoid the core singularity associated with the classical Volterra dislocation, the non-
singular formulation proposed by Cai et al [26] is used to express the stress field σ∞(x) of
the dislocation ensemble in the infinite domain. In an homogeneous and infinite linear elastic
medium, the stress field associated to a dislocation loop can be expressed as a contour integral
along the loop [13]:

σ∞
ij (x) = Cijkl

∮
εlnh Cpqmn

∂Gkp(x − x′)
∂xq

bm dx ′
h, (6)

where Cijkl is the elastic stiffness matrix, εlnh the permutation operator, b the Burgers vector
and x′ is the coordinate that spans the dislocation. Gkp(x − x′) is the Green’s functions of
elasticity [13]. Gkp(x − x′) is defined as the displacement component in the xk direction at
point x due to a body force applied along the xp direction at point x′. The singularity of the
conventional stress field of dislocations is due to the fact that the Burgers vector distribution
is taken as a delta function. Cai et al replaced the sharp delta distribution by a wider-spread
distribution. As a realist Burgers vector distribution would be material dependent and has yet
to be determined, i.e. from atomistic calculations, Cai et al proposed a simple but practical
isotropic spread mainly contained in a radius a about every points of the dislocation5. In the
case of isotropic elasticity, the Green’s function now takes the following form:

Gij (x − x′) = 1

8πµ

[
δij ∂p∂p − 1

2(1 − ν)
∂i∂j

]
Ra, (7)

5 The Burgers vector distribution is actually not bounded in space, but it decreases as fast as 1/R7 and therefore
becomes quickly negligible far from the dislocation. This will be discussed in detail in a forthcoming paper.
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Figure 2. Definition of the considered geometry and associated variables. The surface
element, of rectangular shape, is delimited by four nodes of Cartesian coordinates: x3,
x4, x5, x6. p and q are unit vectors used to define any points x on the surface element.
The dislocation segment is described by a line vector t and Burgers vector b, and is
spanned by coordinate x′.

where R = ||x − x′||, and µ and ν are the isotropic shear modulus and the Poisson’s ratio,
respectively. Ra is the convolution of R with the Burgers vector distribution. Ra is simply√

R2
k + a2 in the case of the isotropic distribution proposed in [26].
In DD, the dislocation microstructure is commonly discretized into straight segments. The

contour integral of equation (6) becomes for a straight segment of non-singular dislocation
(omitting the ∞ superscript for now) [26]:

σ(12)(x) = − µ

8π

∫ x2

x1

(
2

R3
a

+
3a2

R5
a

) [
(R × b) ⊗ dx′ + dx′ ⊗ (R × b)

]
+

µ

4π (1 − ν)

∫ x2

x1

(
1

R3
a

+
3a2

R5
a

) [
(R × b) · dx′] I2

− µ

4π (1 − ν)

∫ x2

x1

1

R3
a

((
b × dx′)⊗ R + R ⊗ (

b × dx′))
+

µ

4π (1 − ν)

∫ x2

x1

3

R5
a

[
(R × b) · dx′]R ⊗ R. (8)

The superscript 12 refers to the end nodes delimiting the dislocation segment. x1, x2 are
Cartesian coordinates delimiting the dislocation segment. This equation is presented in a
form independent of any coordinate system (‘dyadic’ form). The analytical solutions of these
integrals are given in [26] and are recalled in appendix C. In principle, a can be defined
from atomistic calculations to match the core size of the dislocation structures. In practice, a

is typically small (and positive), of the order of one b magnitude. When a equals zero, the
well-known singular stress expressions are recovered.

In this study, we show that the nodal force F(n) in equation (5) that is required to solve the
boundary-value problem can be analytically evaluated using the non-singular stress expression
σ∞(x) of equation (8) provided by Cai et al [26]. However, as this study represents a first
attempt of this kind, we first consider a simple surface element geometry and simple shape
functions. The surface element has a rectangular shape and is delimited by its Cartesian
coordinates x3, x4, x5 and x6 as shown in figure 2. x is the coordinate that spans the surface of
the element. Recalling that x′ is the coordinate that spans the dislocation segment delimited by
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x1, x2. Vector R = ||x − x′|| can also be written as R = yt +rp+sq, with t the dislocation line
vector and p = x4−x3

||x4−x3|| and q = x5−x3
||x5−x3|| (see figure 2 and appendix A). For a rectangular surface

element, p · q is obviously null. The decomposition of R = yt +rp+sq is valid for dislocation
segments that are non-parallel to the surface element: t · (p × q) must be different from zero. A
different decomposition of R could be formulated for the case when the dislocation is parallel
to the surface element. However, this represents a lot of effort to derive one specific solution.
A more practical solution is proposed instead. The nodal force for a segment parallel to the
surface can be approximated from the present work by averaging the nodal forces obtained for
a set of situations where the dislocation is slightly tilted from the parallel case.

Functions N(n)(x) are chosen as linear shape functions. Taking node 6 as an example,
N(6) is defined as

N(6)(r, s) = r − r1

r2 − r1

s − s1

s2 − s1
, (9)

where r1, r2 and s1, s2 are the lower and upper limits of the r and s scalars, respectively.
Inserting equation (9) into equation (5), the nodal force at node 6 becomes

F(6) =
∫ r2

r1

∫ s2

s1

[σ(12) · n]
r − r1

r2 − r1

s − s1

s2 − s1
dr ds. (10)

Finally, replacing the stress field σ(12) by its non-singular expression of equation (8) and
recalling that R = yt + rp + sq leads to

F(6) = µ

8π
{(t × b) (t · n) + t [(t × b) · n]}

∫ ∫ ∫ (
2

R3
a

+
3a2

R5
a

)
y

r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

+
µ

8π

{
(p × b) (t · n) + t

[
(p × b) · n

]} ∫ ∫ ∫ (
2

R3
a

+
3a2

R5
a

)
r

r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

+
µ

8π

{
(q × b) (t · n) + t

[
(q × b) · n

]} ∫ ∫ ∫ (
2

R3
a

+
3a2

R5
a

)
s

r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

− µ

4π (1 − ν)

[
(p × b) · t

]
n
∫ ∫ ∫ (

1

R3
a

+
3a2

R5
a

)
r

r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

− µ

4π (1 − ν)

[
(q × b) · t

]
n
∫ ∫ ∫ (

1

R3
a

+
3a2

R5
a

)
s

r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

+
µ

4π (1 − ν)
{(b × t) (t · n) + t [(b × t) · n]}

∫ ∫ ∫
1

R3
a

y
r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

+
µ

4π (1 − ν)
p [(b × t) · n]

∫ ∫ ∫
1

R3
a

r
r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

+
µ

4π (1 − ν)
q [(b × t) · n]

∫ ∫ ∫
1

R3
a

s
r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

− µ

4π (1 − ν)

[
(p × b) · t

]
(t · n) p

∫ ∫ ∫
3

R5
a

r2y
r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

− µ

4π (1 − ν)

[
(q × b) · t

]
(t · n) q

∫ ∫ ∫
3

R5
a

s2y
r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

− µ

4π (1 − ν)

[
(p × b) · t

]
(t · n) t

∫ ∫ ∫
3

R5
a

ry2 r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

− µ

4π (1 − ν)

[
(q × b) · t

]
(t · n) t

∫ ∫ ∫
3

R5
a

sy2 r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy
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− µ

4π (1 − ν)

[
(p × b) · t

]
(t · n) q

∫ ∫ ∫
3

R5
a

rsy
r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy

− µ

4π (1 − ν)

[
(q × b) · t

]
(t · n) p

∫ ∫ ∫
3

R5
a

rsy
r − r1

r2 − r1

s − s1

s2 − s1
ds dr dy. (11)

It becomes clear that finding an analytical solution for the nodal force means solving all the
triple integrals that are introduced in equation (11). This is the subject of the next section.

3. Analytical expressions for the nodal force due to a dislocation segment on a
surface element

3.1. The finite segment

In this section, we first present the analytical integration of the stress field induced by a
segment of finite length. The segment can be part of closed loops that are entirely contained
inside the body or in contact with the surface element for opened dislocation geometries. The
configuration for the dislocation segment and the surface element as depicted in figure 2 is
reused here.

The nodal force expression as derived in equation (11) is a sum of 44 triple integrals of
the form ∫ r2

r1

∫ s2

s1

∫ y2

y1

risj yk

Rl
a

dr ds dy (12)

with l integer = 3 or 5

and i, j, k integers ∈ [0, 3].

We show next that these triple integrals can be obtained by a sequence of integrations by

parts that present specific recurrence relations. First, we recall that Ra =
√

R2
k + a2 and

R2
k = R · R = r2 + s2 + y2 + 2cry + 2 dsy where c = p · t and d = q · t. Then, the following

partial derivatives of ri sj yk

Rl
a

are introduced and will be the starting point of the future integrations
by parts:

∂

∂r

(
risj yk

Rl
a

)
= i

ri−1sj yk

Rl
a

− l
risj yk(r + cy)

Rl+2
a

(13)

∂

∂s

(
risj yk

Rl
a

)
= j

risj−1yk

Rl
a

− l
risj yk(s + dy)

Rl+2
a

(14)

∂

∂y

(
risj yk

Rl
a

)
= k

ris1yk−1

Rl
a

− l
risj yk(cr + ds + y)

Rl+2
a

. (15)

Three successive integrations over r , s, y of these partial derivatives lead to (omitting integral
bounds for clarity)

ri

∫ ∫ (
sj yk

Rl
a

)
ds dy = i

∫ ∫ ∫
ri−1sj yk

Rl
a

dr ds dy − l

∫ ∫ ∫
ri+1sj yk

Rl+2
a

dr ds dy

− cl

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy (16)

sj

∫ ∫ (
riyk

Rl
a

)
dr dy = j

∫ ∫ ∫
risj−1yk

Rl
a

dr ds dy − l

∫ ∫ ∫
risj+1yk

Rl+2
a

dr ds dy

− dl

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy (17)

8
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yk

∫ ∫ (
risj

Rl
a

)
dr ds = k

∫ ∫ ∫
risj yk−1

Rl
a

dr ds dy − cl

∫ ∫ ∫
ri+1sj yk

Rl+2
a

dr ds dy

− dl

∫ ∫ ∫
risj+1yk

Rl+2
a

dr ds dy − l

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy. (18)

Equations (16) through (18) contain two different forms of integrals: integrals of type∫∫∫
ri sj yk

Rl+2
a

dr ds dy and integrals of type
∫∫∫

ri sj yk

Rl
a

dr ds dy. Therefore, assuming that double

integrals in the left-hand side of the equations and integrals of the type
∫∫∫

ri sj yk

Rl
a

dr ds dy are
known from previous integration by parts, equations (16)–(18) constitute a set of recurrence
relations to express integrals of ‘rank l+2’:

∫∫∫
ri sj yk

Rl+2
a

dr ds dy as functions of integrals of ‘rank

l’:
∫∫∫

ri sj yk

Rl
a

dr ds dy. It can be noted further that only three different
∫∫∫

ri sj yk

Rl+2
a

dr ds dy

integrals appear in the right-hand side of equations (16), (17) and (18). Therefore, these
equations also constitute a system of three linear equations with three unknowns: the integrals
of type

∫∫∫
ri sj yk

Rl+2
a

dr ds dy. Solving the system of equations (16)–(18) by substitution leads to∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy = 1

l(1 − c2 − d2)

[
k

∫ ∫ ∫
risj yk−1

Rl
a

dr ds dy

− ic

∫ ∫ ∫
ri−1sj yk

Rl
a

dr ds dy − jd

∫ ∫ ∫
risj−1yk

Rl
a

dr ds dy

− yk

∫ ∫
risj

Rl
a

dr ds + cri

∫ ∫
sj yk

Rl
a

ds dy

+ dsj

∫ ∫
riyk

Rl
a

dr ds dy
]

(19)

∫ ∫ ∫
ri+1sj yk

Rl+2
a

dr ds dy = 1

l

[
i

∫ ∫ ∫
ri−1sj yk

Rl
a

dr ds dy − ri

∫ ∫
sj yk

Rl
a

ds dy

]

− c

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy (20)

∫ ∫ ∫
risj+1yk

Rl+2
a

dr ds dy = 1

l

[
j

∫ ∫ ∫
risj−1yk

Rl
a

dr ds dy − sj

∫ ∫
risj yk

Rl
a

dr dy

]

− d

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy. (21)

Here, we chose to always solve the system of equations (16)–(18) for the unknown∫∫∫
ri sj yk+1

Rl+2
a

dr ds dy first.
In addition to these three equations, a fourth recurrence relations can be obtained from

the definition of R2
a = r2 + s2 + y2 + 2cry + 2dsy + a2 and is as follows:∫ ∫ ∫

risj yk

Rl+2
a

dr ds dy = 1

la2

[
(l − i − j − k − 3)

∫ ∫ ∫
risj yk

Rl
a

dr ds dy

+ ri+1
∫ ∫

sj yk

Rl
a

ds dy + sj+1
∫ ∫

riyk

Rl
a

dr dy

+ yk+1
∫ ∫

risj

Rl
a

dr ds

]
. (22)

The recurrences relations (19) through (22) are functions of double integrals of the form∫∫
sj yk

Rl
a

ds dy,
∫∫

riyk

Rl
a

dr dy and
∫∫

ri sj

Rl
a

dr ds that are seen in the right-hand side of these
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equations. It can be noted that monomials are present in front of the double integrals. These
double integrals need to be found as well and this can be achieved by a procedure identical to
the one proposed for triple integrals. That is to say, the partial derivatives of equations (13)–
(15) are integrated twice over r and s or r and y or s and y to obtain recurrence relations for
double integrals. This second sequence of integrations by parts introduces, this time, single
integrals. The single integrals are also obtained by recurrence relations derived from one single
integration of the partial derivatives of equations (13)–(15). The development is detailed in
appendix A.

After the complete sequence of integrations by parts, only a few integrals cannot be
expressed by any of the recurrence relations proposed and need to be formally expressed.
They correspond to three single integrals, three double integrals and one triple integral without
any polynomial in their numerator:∫

1

Ra

dr;
∫

1

Ra

ds;
∫

1

Ra

dy;∫ ∫
1

R3
a

dr dy;
∫ ∫

1

R3
a

ds dy;
∫ ∫

1

R3
a

dr ds;∫ ∫ ∫
1

R3
a

dr ds dy. (23)

This set of integrals constitutes seed functions, from which all other integrals are constructed.
Analytical solutions were successively obtained for all the linear and the double integrals but
not for the triple integral of the form

∫∫∫
1

R3
a

dr ds dy. Any first two integrations of 1
R3

a
leads to a

convoluted arctangent function. Since this function is continuous and well behaved (if a > 0),
its antiderivative must exist. However, we were not able to find an analytical expression for it,
even with the help of the main softwares for symbolic calculation. Because of the recurrence
relations, this integral appears in many other triple integrals. Fortunately, the terms that are
function of

∫∫∫
1

R3
a

dr ds dy all cancel out perfectly in the nodal force expressions.

Since the nodal force is a vector, proving that F(n) is independent of
∫∫∫

1
R3

a
dr ds dy is

equivalent to show that every components of this vector are independent of
∫∫∫

1
R3

a
dr ds dy.

To facilitate the demonstration, the basis made of unit vectors p, q and n = p × q is used
to express the components of the nodal force components. By developing the triple integrals
recurrence expressions in the definition of the nodal force given by equation (11), one can show
that all terms that are function of

∫∫∫
1

R3
a

dr ds dy exactly cancel out for the three nodal force
components. The details of this demonstration are given in appendix B. As a consequence,
there is no need to numerically integrate

∫∫∫
1

R3
a

dr ds dy, and its contribution is set to 0. The
present model for nodal forces is therefore fully analytical and exact.

In practice, the various steps presented above are done in a different order. The six seed
functions of equations (23) are calculated first, and then are used to build the single integrals.
The single integrals are themselves used to built the double integrals and the double integrals
are used to build the triple integrals that are the objects actually required in the nodal force
expression of equation (11).

3.2. The semi-infinite segment

This semi-infinite segment can be used to extend open dislocation loops in the infinite domain.
The configuration under consideration is now as follows. Node x1 of the dislocation segment
is put in contact with the surface of the element and the other end node x2 is taken to +∞, as
depicted in figure 3.

10
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x1

x
x

p

q

x3

x4

x5

x6

t

y
r

s

b

Ra

x2 → ±∞

Figure 3. Definition of the considered geometry and associated variables. The surface
element, of rectangular shape, is delimited by four nodes of Cartesian coordinates: x3,
x4, x5, x6. p and q are unit vectors used to define any points x on the surface element.
The dislocation segment is described by a line vector t and Burgers vector b, and is
spanned by coordinate x′.

Dealing with a semi-infinite dislocation is equivalent to having one of the integral bounds,
here y2, set to +∞ in the stress expression of equation (8) or the nodal force on a surface
element of in equation (11). However, attention must be paid when dealing with such infinite
integrals, and one has to verify that the integration result will be finite. So, we first express
analytically the stress field due to a semi-infinite dislocation starting with the non-singular
equation (8) and taking x2 (and y2) to +∞:

σ(1+∞)(x) = − µ

8π

∫ +∞

x1

(
2

R3
a

+
3a2

R5
a

) [
(R × b) ⊗ dx′ + dx′ ⊗ (R × b)

]
+

µ

4π (1 − ν)

∫ +∞

x1

(
1

R3
a

+
3a2

R5
a

) [
(R × b) · dx′] I2

− µ

4π (1 − ν)

∫ +∞

x1

1

R3
a

((
b × dx′)⊗ R + R ⊗ (

b × dx′))
+

µ

4π (1 − ν)

∫ +∞

x1

3

R5
a

[
(R × b) · dx′]R ⊗ R. (24)

Limits of the antiderivatives solution of the integrals shown in the previous equation are
obtained and detailed in appendix C. The resulting stress field σ(1+∞) for a semi-infinite
dislocation is defined and finite everywhere in the infinite domain, the associated traction
field σ(1+∞) · n is defined and finite for any surface element at the boundary of the body.
Consequently, as the integrand ([σ(1+∞) · n] × N(n)) in the nodal force expression of
equation (11) is continuous and finite, the nodal force expression as given in equation (11)
is still valid and constitutes the starting point for the derivation of expressions specific to the
semi-infinite segment. We recall that equation (11) is composed of a sum of 44 triple integrals
of the form

∫∫∫
ri sj yk

Rl
a

dr ds dy. Let us call F(r, s, y) the antiderivative of f (r, s, y) = ri sj yk

Rl
a

along y. In the case of a semi-infinite segment, they can be written∫ r2

r1

∫ s2

s1

∫ +∞

y1

f (r, s, y) dr ds dy =
[∫ s2

r1

∫ s2

s1

F(r, s, ∞) dr ds

]
+∞

−
[∫ s2

r1

∫ s2

s1

F(r, s, y1) dr ds

]
y1

. (25)

The second term in the right-hand side of equation (25), corresponds to the ‘finite end node’
of the dislocation segment. Therefore, use can be made of the same integrations by parts and
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analytical functions as in the case of the finite segment. Now considering the first term of the
right-hand side of equation (25) and recalling that the limit of a (converging) sum is the sum of
the limits, we simply need to find the limits of the few analytical seed function in equations (23),
while preserving the recurrence relations to build the semi-infinite nodal traction. This does
not introduce any new integration constant of the type C(r, s) as the integration path for y1

and y2 remain essentially identical. Therefore, only limits limy→+∞ for the set of six seed
functions that are analytically solved in equation (23) need to be formally expressed.

Attention has been paid to the determination of the asymptotic behaviour at infinity of
the seed functions of equation (23). Because these functions are convoluted functions of y,
they are systematically approximated by a Taylor series of the order of n associated with an
error of the form O( 1

ym ) with m a positive integer. The order of the Taylor series is chosen
so that the error exponent m is always bigger than 1. To illustrate this point, we consider the
seed function

∫∫
1

R3
a

dr ds. This double integral enters for instance in the construction of triple

integrals of the form
∫∫∫

yk

R5
a

dr ds dy. In that case, the seed function
∫∫

1
R3

a
dr ds is multiplied

by a monomial of the form yk that can be seen when considering equation (21) with r = 0,
s = 0 and l = 3. The exponent k is contained in [0, 3]. Therefore, depending on if

∫∫
1

R3
a

dr ds

is used alone or with monomials yk of increasing exponent k, the order of the Taylor expansion
is increased until the error follows O( 1

y
) or O( 1

y2 ). Appendix D gives all Taylor expansions
and limits as y → +∞ for the set of seed functions. Because errors associated with the Taylor
expansions O( 1

y
) are vanishing as y2 → +∞, the model we propose for the nodal forces due

to the semi-infinite segment can be considered as an exact solution in the sense of limiting
behaviour. Limits limy→+∞ for the set of seed functions now accounting for monomials of the
form yk are also provided in appendix D.

4. Comparison with a numerical evaluation of nodal forces

In this section, the proposed analytical expressions for the nodal force induced by a dislocation
segment on a surface element is compared with a conventional numerical integration for
two purposes. First, our analytical work constitutes a clear reference to evaluate how fast
a numerical integration converges as the number of QPs is increased. Second, the numerical
cost of the two methods will be quantified in order to evaluate when it is preferable to use one
technique over the other.

The numerical quadrature is performed with the help of two Gauss–Legendre schemes
[30, 31], the nodal force at node n is approximated as follows:

F(n) ≈
M∑
i=1

wi

M∑
j=1

wj [σ(12)(ri, sj )·n] N(n)(ri, sj ), (26)

where ri and sj are abscissa locations where the function [σ(12)(x)·n] × N(n)(x) is to be
evaluated and wi and wj are weighting functions. M is the number of function evaluations,
the total number of QPs is M2. Relations to determine abscissas ri , sj and weights wi , wj

from the desired number of function evaluations M can be found in [30]. When N(n) are linear
shape functions, equation (26) becomes, i.e. for node 6,

F(6) ≈
M∑
i=1

wi

M∑
j=1

wj [σ(12)(ri, sj )·n]
ri − r1

r2 − r1

sj − s1

s2 − s1
. (27)

In the last equation, σ (12) corresponds to the stress field induced by a finite or semi-infinite
dislocation segment. The double Gauss–Legendre integration (simply referred to as ‘Gaussian
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0 b

10 b

100 b

1↪ 000 b
10↪ 000 b

Figure 4. Relative error in the nodal force approximated by a double Gauss quadrature
on the surface of the element. The relative error is averaged over the four nodes of
surface. The nodal force is due to a finite segment placed at various distances from the
surface element (from right to left): 0; 10; 100; 103; 104 b. The surface element is of
square shape and a size of 4000×4000 b2. The dislocation segment is of edge character,
its line direction corresponds to the surface normal, the segment length is of 400 b.

quadrature’ later in the text) is thus carried out only on the surface element and not along the
dislocation line.

The configuration considered to achieve the comparison is as follows. The dislocation
segment has a size of 400 b (||b||) which is a typical discretization length for a density a
1012 m−2. The surface element is taken as 4000 × 4000 b2. Interestingly and for a given
number of QP, only two parameters seem to affect in practice the numerical error in the
Gaussian quadrature: the distance D between the centre of the dislocation and the centre of
the surface, and the dislocation character. Indeed, the numerical error is smaller for screw
dislocation as it is for edge, probably because the stress field of screws is simpler. Therefore,
for the purpose of the comparison, we will be varying the dislocation/surface distance, and the
dislocation chosen to be of edge character.

The relative error associated with the Gaussian quadrature is shown in figure 4 as function
of the number of QP for various dislocation–surface spacings. This relative error is calculated
in taking the result of our analytical nodal force expressions as reference values. Every curve
in figure 4 exhibits the same behaviour, with a ‘slow’ then ‘fast’ decrease of the relative error
as the number of QP used in the Gauss quadrature increases. Then the numerical error reaches
a plateau at about 10−12, which is close to the precision limit allowed by the double precision
floating point that is used for our numeric values (12 digits after decimal point). The rate
at which the relative error decreases with the number of QP is strongly dependent upon the
dislocation–surface separation distance. For instance, the relative error in the Gauss quadrature
is still about 1% with 106 QP when the dislocation is in contact with surface, whereas only
49 QP are sufficient to reach the maximum numerical precision of 10−12 when the separation
distance is now of 10 000 b.

A similar evaluation of the numerical error associated with the Gaussian quadrature is
now performed in the case of a semi-infinite segment for which the finite end node x1 is placed
on one of the surface node, i.e. x6, the other end node of the segment x2 is sent to +∞. It can
be noted that this configuration would constitute the most challenging geometry to properly
described with the classical singular theory of dislocation. The line direction t coincides with
the surface normal, and the dislocation exhibits again an edge character. The integrand used
in the Gauss quadrature [σ(1+∞)(ri, sj )·n] N(n)(ri, sj ) is now a function of the stress field for
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Figure 5. Relative error between a numerical integration of the nodal forces associated
with a piercing semi-infinite dislocation segment and the analytical integration proposed
in this work. The dislocation, in contact with the surface in x6, is normal to the surface
and has an edge character. The surface element has a square shape and a size of 400×400
b2. The error is given as a function of the number of QPs used.

a semi-infinite segment σ(1+∞) given in appendix C. As before, the double Gauss–Legendre
integration is carried out only over the surface element and not along the dislocation line.

The relative error in the nodal force calculation obtained by a Gauss quadrature for the
semi-infinite segment is displayed in figure 5. The curve exhibits a behaviour similar to the
one obtained for finite segments. As expected, the relative error decreases as the number of
QP is increased. The negative slope is at first relatively small and increases with the number
of QP until the error plateaus at a value close to 10−12 at about 4 × 104 QP. Surprisingly, the
Gaussian quadrature for the piercing semi-infinite segment converges towards our analytical
solution much faster than the piercing finite segment shown in figure 4 (curve in red).

To compare the computational cost of these two approaches on equal footing, an
independent cost reference is introduced. It is chosen to be the cost associated to one single
stress at a point σ(12) evaluation using equation (8). For this calculation, the segment length
(finite or semi-infinite) and position x1, x2 will be the same as those used for nodal force
calculations; the point at which the stress is evaluated is now fixed in the centre of the surface
element.

Figures 6 present the cost comparison for, respectively, a finite and semi-infinite segment.
Our analytical model is 14 times more computationally expensive than a single stress at point
calculation for a finite segment, and only 4 times more expensive in the case of a semi-
infinite dislocation. As expected, the computational cost associated with the Gauss quadrature
increases considerably with the number of QP independently of the distance from the surface;
it rapidly becomes several orders of magnitude more computationally expensive than a single
stress at point calculation. Finally, the domain where a Gauss integration is less expensive than
the proposed analytical model is very narrow and corresponds to configurations for which less
than 9 QP are sufficient to evaluate the traction.

5. Discussion and concluding remarks

In this study, we propose an analytical expression for the nodal forces associated with the
tractions generated by straight dislocation segments on a rectangular surface element. The
determination of these nodal forces is a critical step in hybrid methods associating DD and
FE or BE techniques to solve boundary-value problems. The starting point of the nodal
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Figure 6. Computational cost comparison between the proposed analytical expressions
for the nodal forces induced by a dislocation on a surface (black horizontal lines) and a
conventional Gaussian quadrature (red curves). The cost reference is a single stress at a
point evaluation.

force derivation is the non-singular stress at a point formulas proposed in [26] that present
the advantage to be defined and finite everywhere in the infinite domain even at the core of
dislocations. In the case of linear isotropic elasticity and simple linear shape functions, nodal
forces are derived as sums of triple integrals of the form

∫∫∫
ri sj yk

Rl
a

dr ds dy that need to be

obtained. Partial derivatives of ri sj yk

Rl
a

dr ds dy with respect to r, s and y are the starting point
of a sequence of integrations by parts to solve the required triple integrals. The proposed
model for nodal forces is analytical solely, which makes it exact and very computationally
efficient. The solution of the required triple integrals, obtained by recurrence relations, is also
straightforward to implement in a program.

Despite a formulation that can seem complicated, based on a hundred or so integrals, the
analytical surface integration proposed in this work is very advantageous from a computational
point of view. In addition to this benefit in term of performance, it is clear from figures that
the analytical integration of stress fields is the only solution capable of providing a precise
traction measure when dislocations get close to the surface element. When considering a
realistic microstructure, the closest segments can represent the biggest contribution to the total
traction on a surface element. It is clear from figures 4 and 5 that the error in a conventional
numerical integration would be difficult to control as it depends on the dislocation–surface
distance and on the character. Adapting the number of QP targeting a given precision can be
easy to achieve for simple dislocation configuration, but is probably more difficult when the
dislocation microstructure evolve and discretization becomes finer. For segments very far from
the surface element, a numerical integration could be used as an alternative, as the number
of necessary QPs becomes minimum. However, for segments that are that far away, it might
be beneficial not to perform an N2 calculation at all but use instead Taylor expansions of the
stress following a fast multipole method framework [32, 33].

Since this work is our first attempt to solve the surface integral problem, the shape functions
and the surface geometry considered remain simple and below general FEM standards. We
discuss next how to adapt the present analytical work to consider quadratic shape functions and
various surface elements. First, let us consider a eight-node rectangular surface elements. This
type of elements contains four mid-side nodes x7, x8, x9, x10 in addition to the four corner
nodes already present in a simple linear rectangular element. The nodal forces N(n) become
for a corner node, i.e. x6 [29],
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N(6) = 1
4 (1 + r)(1 + s)(r + s − 1),

and for a mid-side node, i.e. x9 (centre, top),

N(7) = 1
2 (1 − r2)(1 + s).

In these equations, r and s ∈ [−1, 1] and a proper rescaling would be required for a general
configuration. Replacing the linear shape functions by these quadratic functions in the nodal
force expression of equation (11) simply leads to higher polynomials of r and s. In other
words, the determination of the nodal force requires that we solve triple integrals of the form∫ ∫ ∫

risj yk

Rl
a

dr ds dy (28)

l and k remain unchanged, with l = 3 or 5 and k ∈ [0, 3] (29)

but now i, j ∈ [0, 4]. (30)

Few new integrals are required and are associated with higher exponents i and j for r and
s, but the recurrence relations that were used to obtained all the other

∫∫∫
ri sj yk

Rl
a

dr ds dy

integrals are still valid and can be used for these additional triple integrals required for the
high-node rectangular element. Also, because the recurrence equations express integrals with
polynomials of a given order risj yk as functions of integrals with polynomials of low order,
solving these new triple integrals will not introduce any new seed functions.

Going from a rectangular surface element towards a parallelogram element involves a bit
more modification. Since the definition of p = x4−x3

||x4−x3|| and q = x5−x3
||x5−x3|| are preserved, p · q

now differs from 0. Ra becomes (y2 + r2 + s2 + 2cry + 2 dsy + 2(p · q)rs + a2)1/2, where an
additional cross-term 2(p · q)rs can be seen. Additional terms are also obtained in the partial
derivatives of equations (15)–(17), that now read

∂

∂r

(
risj yk

Rl
a

)
= i

ri−1sj yk

Rl
a

− l
risj yk(r + cy + es)

Rl+2
a

∂

∂s

(
risj yk

Rl
a

)
= j

risj−1yk

Rl
a

− l
risj yk(s + dy + er)

Rl+2
a

∂

∂y

(
risj yk

Rl
a

)
= k

ris1yk−1

Rl
a

− l
risj yk(cr + ds + y)

Rl+2
a

,

where e = (p · q). Three consecutive integrations over over r , s, y of these partial derivatives
lead to

ri

∫ ∫ (
sj yk

Rl
a

)
ds dy = i

∫ ∫ ∫
ri−1sj yk

Rl
a

dr ds dy − l

∫ ∫ ∫
ri+1sj yk

Rl+2
a

dr ds dy (31)

− cl

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy − el

∫ ∫ ∫
risj+1yk+1

Rl+2
a

dr ds dy

sj

∫ ∫ (
riyk

Rl
a

)
dr dy = j

∫ ∫ ∫
risj−1yk

Rl
a

dr ds dy − l

∫ ∫ ∫
risj+1yk

Rl+2
a

dr ds dy (32)

− dl

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy − el

∫ ∫ ∫
ri+1sj yk+1

Rl+2
a

dr ds dy

yk

∫ ∫ (
risj

Rl
a

)
dr ds = k

∫ ∫ ∫
risj yk−1

Rl
a

dr ds dy − cl

∫ ∫ ∫
ri+1sj yk

Rl+2
a

dr ds dy

− dl

∫ ∫ ∫
risj+1yk

Rl+2
a

dr ds dy − l

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy. (33)
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When comparing to the rectangular surface element (p · q = 0), only the first two equations (34)
and (35) contain an additional integral. However, these equations still contain only three
different integrals of the form

∫∫∫
ri sj yk

Rl+2
a

. Assuming that all other integrals are known from
previous integrations by parts, these three equations constitute again a linear system of
equations with three unknowns that can be easily solved by substitution. Nodal forces on
a parallelogram surface element can be found following the same treatment as the rectangular
element, but every recurrence relations must be reworked to account for the additional cross-
terms. This procedure should not introduce any new seed function, however, because the
definition of Ra has changed (but not R), the analytical solutions obtained for the seed function
need to be reworked as well.

Integration of the traction field over a general triangular surface element introduces other
modifications to the formulation proposed in this work. First, taking a linear triangular element
as an example, the shape functions N(n) slightly differ from the linear shape functions used for
the linear rectangular element [29]: N(n) = A + Br + Cs, where A, B and C are now constants
that depends on the geometry of the triangle. Second, since p and q are taken as unit vectors
aligned with two sides of the triangular element, p · q �= 0 like in the case of the parallelogram.
Ra includes again an additional cross term 2(p · q)rs. Third, the integral bounds r1, r2 and
s1, s2 are not constant any more and are linear functions of s and r , respectively: r1 = f (s),
r2 = g(s), s1 = h(r) and s2 = j (r) (in the most general case). The order of the sequence
of integration over r and s now becomes important. Consequently, two different analytical
solutions are now required for every seed function depending on the lower and upper bounds of
the integral (over r or s) that is performed first. All other integrals are still build by integration
by parts and starting from the seed functions, although the order of integration needs to be
memorized. It must be noted that any quadrilateral element can be built from the combination
of two triangular elements.

The feasibility of applying similar methodology to obtain nodal forces on a non-planar
surface elements is finally discussed. In the case of non-planar surface element, the surface
normal n now varies spatially. One of the conditions to solve analytically the nodal forces
was to provide a rather simple expression for vector R. For some specific types of non-planar
surface element, it may still be possible to decompose or approximate R by a sum of elements,
and recurrence relations may even be obtained. It is expected that the number of recurrence
relations and seed functions to obtain will greatly increase with the complexity of the geometry
of the surface elements under investigation. Eventually, some of the seed integrals may require
an approximation by a numerical integration procedure. The cost associated with the evaluation
of seed functions is a small cost to pay in comparison to the gain associated with the analytical
work done thanks to the recurrence relations. Therefore, the proposed methodology has a good
chance to be still advantageous computationally and in terms of precision when compared to
a numerical integration of the nodal forces over the surface element.
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Appendix A. Nodal forces induced by a finite segment on a rectangular linear
element of surface

In this section, we provide analytical expressions for the nodal forces due to a finite segment
on a planar surface element. The configuration under investigation is depicted in figure 2. The
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dislocation segment has a Burgers vector b and a line vector t and is associated with an infinite
domain stress field σ∞(x). The variable x′ spans the segment between x1 and x2. We consider
a surface element that is one of the element describing the boundary of a finite domain. The
rectangular surface element has a constant normal n over its surface and is delimited by nodes
x3, x4, x5 and x6. Variable x spans the surface element.

The continuous traction field σ∞(x) · n, due to the dislocation segment, is
transformed into a set of nodal forces F(n) on node n of the surface element as
follows:

F(n) =
∫

S(E)

[σ∞(x) · n] N(n)(x) dS, (A.1)

where S(E) is the surface of the element and dS is an infinitesimal surface element. N(n)(x) are
the so-called shape functions associated with node n. In the case of a linear surface element,
N(n) is defined as (i.e. of node 6)

N(6)(r, s) = r − r1

r2 − r1

s − s1

s2 − s1
, (A.2)

where r and s are scalars that span the surface of the element. r1, r2 and s1, s2 are lower and
upper bounds of r and s, respectively. The infinite-domain stress field σ∞(x) is expressed
following the non-singular framework proposed by Cai et al [26]. In the case of linear elastic
isotropy, the stress field σ∞(x) is as follows:

σ∞(x) = − µ

8π

∫ x2

x1

(
2

R3
a

+
3a2

R5
a

) [
(R × b) ⊗ dx′ + dx′ ⊗ (R × b)

]
+

µ

4π (1 − ν)

∫ x2

x1

(
1

R3
a

+
3a2

R5
a

) [
(R × b) · dx′] I2

− µ

4π (1 − ν)

∫ x2

x1

1

R3
a

((
b × dx′)⊗ R + R ⊗ (

b × dx′))
+

µ

4π (1 − ν)

∫ x2

x1

3

R5
a

[
(R × b) · dx′]R ⊗ R, (A.3)

where

R = x − x′ (A.4)

Ra =
√

R · R + a2 (A.5)

the vector R can be written in a coordinate-independent manner:

R = yt + rp + sq (A.6)

with:

y = R · n
t · n

(A.7)

r = R · (q × t)
p · (q × t)

(A.8)

s = R · (p × t)
q · (p × t)

(A.9)

dx′ = − dy t (A.10)

Inserting the expression of the stress field of equation (A.3) and the shape function of
equation (A.2) into the nodal force expression leads to
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F(n) = µ

8π

∫ r2

r1

∫ s2

s1

∫ y2

y1

(
2

R3
a

+
3a2

R5
a

)
{(R × b) (t · n) + t [(R × b) · n]}

×
(

r − r1

r2 − r1

s − s1

s2 − s1

)
ds dr dy

− µ

4π (1 − ν)

∫ r2

r1

∫ s2

s1

∫ y2

y1

(
1

R3
a

+
3a2

R5
a

)
[(R × b) · t] n

(
r − r1

r2 − r1

s − s1

s2 − s1

)
ds dr dy

+
µ

4π (1 − ν)

∫ r2

r1

∫ s2

s1

∫ y2

y1

1

R3
a

{(b × t) (R · n) + R [(b × t) · n]}
(

r − r1

r2 − r1

s − s1

s2 − s1

)
ds dr dy

− µ

4π (1 − ν)

∫ r2

r1

∫ s2

s1

∫ y2

y1

3

R5
a

[(R × b) · t] (R · n) R
(

r − r1

r2 − r1

s − s1

s2 − s1

)
ds dr dy. (A.11)

The nodal force becomes when using the definition of R of equation (A.6):

F(n) = µ

8πA
{(t × b) (t · n) + t [(t × b) · n]}

∫ ∫ ∫ (
2

R3
a

+
3a2

R5
a

)
y (r − r1) (s − s1) ds dr dy

+
µ

8πA

{
(p × b) (t · n) + t

[
(p × b) · n

]} ∫ ∫ ∫ (
2

R3
a

+
3a2

R5
a

)
r (r − r1) (s − s1) ds dr dy

+
µ

8πA

{
(q × b) (t · n) + t

[
(q × b) · n

]} ∫ ∫ ∫ (
2

R3
a

+
3a2

R5
a

)
s (r − r1) (s − s1) ds dr dy

− µ

4πA (1 − ν)

[
(p × b) · t

]
n
∫ ∫ ∫ (

1

R3
a

+
3a2

R5
a

)
r (r − r1) (s − s1) ds dr dy

− µ

4πA (1 − ν)

[
(q × b) · t

]
n
∫ ∫ ∫ (

1

R3
a

+
3a2

R5
a

)
s (r − r1) (s − s1) ds dr dy

+
µ

4πA (1 − ν)
{(b × t) (t · n) + t [(b × t) · n]}

∫ ∫ ∫
1

R3
a

y (r − r1) (s − s1) ds dr dy

+
µ

4πA (1 − ν)
p [(b × t) · n]

∫ ∫ ∫
1

R3
a

r (r − r1) (s − s1) ds dr dy

+
µ

4πA (1 − ν)
q [(b × t) · n]

∫ ∫ ∫
1

R3
a

s (r − r1) (s − s1) ds dr dy

− µ

4πA (1 − ν)

[
(p × b) · t

]
(t · n) p

∫ ∫ ∫
3

R5
a

r2y (r − r1) (s − s1) ds dr dy

− µ

4πA (1 − ν)

[
(q × b) · t

]
(t · n) q

∫ ∫ ∫
3

R5
a

s2y (r − r1) (s − s1) ds dr dy

− µ

4πA (1 − ν)

[
(p × b) · t

]
(t · n) t

∫ ∫ ∫
3

R5
a

ry2 (r − r1) (s − s1) ds dr dy

− µ

4πA (1 − ν)

[
(q × b) · t

]
(t · n) t

∫ ∫ ∫
3

R5
a

sy2 (r − r1) (s − s1) ds dr dy

− µ

4πA (1 − ν)

[
(p × b) · t

]
(t · n) q

∫ ∫ ∫
3

R5
a

rsy (r − r1) (s − s1) ds dr dy

− µ

4πA (1 − ν)

[
(q × b) · t

]
(t · n) p

∫ ∫ ∫
3

R5
a

rsy (r − r1) (s − s1) ds dr dy, (A.12)

with A = (r2−r1)(s2−s1). We can further rearrange the nodal force expression by introducing
the following vectors and integrals:
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I111−3 = µ

4πA
{(t × b) (t · n) + t [(t × b) · n]}

+
µ

4πA (1 − ν)
{(b × t) (t · n) + t [(b × t) · n]}

I210−3 = µ

4πA

{
(p × b) (t · n) + t

[
(p × b) · n

]}− µ

4πA (1 − ν)

[
(p × b) · t

]
n

+
µ

4πA (1 − ν)
p [(b × t) · n]

I120−3 = µ

4πA

{
(q × b) (t · n) + t

[
(q × b) · n

]}− µ

4πA (1 − ν)

[
(q × b) · t

]
n

+
µ

4πA (1 − ν)
q [(b × t) · n]

I111−5 = 3a2 µ

8πA
{(t × b) (t · n) + t [(t × b) · n]}

I210−5 = 3a2 µ

8πA

{
(p × b) (t · n) + t

[
(p × b) · n

]}− 3a2 µ

4πA (1 − ν)

[
(p × b) · t

]
n

I120−5 = 3a2 µ

8πA

{
(q × b) (t · n) + t

[
(q × b) · n

]}− 3a2 µ

4πA (1 − ν)

[
(q × b) · t

]
n

I311−5 = − 3µ

4πA (1 − ν)

[
(p × b) · t

]
(t · n) p

I131−5 = − 3µ

4πA (1 − ν)

[
(q × b) · t

]
(t · n) q

I212−5 = − 3µ

4πA (1 − ν)

[
(p × b) · t

]
(t · n) t

I122−5 = − 3µ

4πA (1 − ν)

[
(q × b) · t

]
(t · n) t

I221−5Ê = − 3µ

4πA (1 − ν)

[
(p × b) · t

]
(t · n) q − 3µ

4πA (1 − ν)

[
(q × b) · t

]
(t · n) p

J111−3 = H111−3 − r1H011−3 − s1H101−3 + r1s1H001−3

J120−3 = H120−3 − r1H020−3 − s1H110−3 + r1s1H010−3

J210−3 = H210−3 − r1H110−3 − s1H200−3 + r1s1H100−3

J111−5 = H111−5 − r1H011−5 − s1H101−5 + r1s1H001−5

J120−5 = H120−5 − r1H020−5 − s1H110−5 + r1s1H010−5

J210−5 = H210−5 − r1H110−5 − s1H200−5 + r1s1H100−5

J131−5 = H131−5 − r1H031−5 − s1H121−5 + r1s1H021−5

J311−5 = H311−5 − r1H211−5 − s1H301−5 + r1s1H201−5

J122−5 = H122−5 − r1H022−5 − s1H112−5 + r1s1H012−5

J212−5 = H212−5 − r1H112−5 − s1H202−5 + r1s1H102−5

J221−5 = H221−5 − r1H121−5 − s1H211−5 + r1s1H112−5.

The nodal force can thus be written in a compact form as

F(n) = I111−3 J111−3 + I211−3 J210−3 + I120−3 J120−3 + I111−5 J111−5

+I210−5 J210−5 + I120−5 J120−5 + I311−5 J311−5 + I131−5 J131−5

+I212−5 J212−5 + I122−5 J122−5 + I221−5 J221−5.
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The nodal force is thus a function of 44 triple integrals of the form

Hijk−l =
∫ r2

r1

∫ s2

s1

∫ y2

y1

risj yk

Rl
a

dr ds dy (A.13)

when l = 5 then i, j, ∈ [0, 3] k ∈ [0, 2] (A.14)

when l = 3 then i, j, ∈ [0, 2] k ∈ [0, 1] (A.15)

when l = 1 then i = j = k = 0. (A.16)

We show next that these triple integrals can be obtained by a sequence of integrations by parts
that present specific recurrence relations. To this aim, let us introduce the following partial
derivatives of ri sj yk

Rl
a

that constitute the starting point of the future integrations by parts:

∂

∂r

(
risj yk

Rl
a

)
= i

ri−1sj yk

Rl
a

− l
risj yk(r + cy)

Rl+2
a

(A.17)

∂

∂s

(
risj yk

Rl
a

)
= j

risj−1yk

Rl
a

− l
risj yk(s + dy)

Rl+2
a

(A.18)

∂

∂y

(
risj yk

Rl
a

)
= k

ris1yk−1

Rl
a

− l
risj yk(cr + ds + y)

Rl+2
a

. (A.19)

A.1. Recurrence relations for triple integrals

Three successive integrations over r , s, y of these partial derivatives lead to (omitting integral
bounds for clarity)

ri

∫ ∫ (
sj yk

Rl
a

)
ds dy = i

∫ ∫ ∫
ri−1sj yk

Rl
a

dr ds dy − l

∫ ∫ ∫
ri+1sj yk

Rl+2
a

dr ds dy

− cl

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy

sj

∫ ∫ (
riyk

Rl
a

)
dr dy = j

∫ ∫ ∫
risj−1yk

Rl
a

dr ds dy − l

∫ ∫ ∫
risj+1yk

Rl+2
a

dr ds dy

− dl

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy

yk

∫ ∫ (
risj

Rl
a

)
dr ds = k

∫ ∫ ∫
risj yk−1

Rl
a

dr ds dy − cl

∫ ∫ ∫
ri+1sj yk

Rl+2
a

dr ds dy

− dl

∫ ∫ ∫
risj+1yk

Rl+2
a

dr ds dy − l

∫ ∫ ∫
risj yk+1

Rl+2
a

dr ds dy.

Assuming that double integrals in the left-hand side of the equations and integrals of the type∫∫∫
ri sj yk

Rl
a

dr ds dy are known from previous integration by parts, these equation constitute a

set of recurrence relations to express integrals of ‘rank l+2’:
∫∫∫

ri sj yk

Rl+2
a

dr ds dy as functions of

integrals of ’rank l’:
∫∫∫

ri sj yk

Rl
a

dr ds dy. What is more, only three different
∫∫∫

ri sj yk

Rl+2
a

dr ds dy

are shown in these equations. Consequently, these equations also constitute a system of three
linear equations with three unknowns. The solution of this system is easily obtained by
substitution:

Hij(k+1)(l+2) = 1

l(1 − c2 − d2)

[
kHij (k−1)l − icH(i−1)jkl − jdHi(j−1)kl

−ykDijl + criFjkl + dsjEikl

]
(A.20)
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H(i+1)jk(l+2) = 1

l

[
iH(i−1)jkl − riFjkl

]− cHij (k+1)(l+2) (A.21)

Hi(j+1)k(l+2) = 1

l

[
jHi(j−1)kl − sjEikl

]− dHij (k+1)(l+2), (A.22)

where we are now using the short notation for the integrals and Dijl , Eikl and Fjkl are
double integrals defined latter. A fourth recurrence relations is obtained from the definition of
R2

a = r2 + s2 + y2 + 2cry + 2dsy + a2:

Hijk(l+2) = 1

la2

[
(l − i − j − k − 3)Hijkl + ri+1Fjkl + sj+1Eikl + yk+1Dijl

]
. (A.23)

The double integrals Dijl , Eikl and Fjkl are defined as

Dijl =
∫ r2

r1

∫ s2

s1

risj

Rl
a

dr ds; Eikl =
∫ r2

r1

∫ y2

y1

riyk

Rl
a

dr dy;

Fjkl =
∫ s2

s1

∫ y2

y1

sj yk

Rl
a

ds dy.

When considering double integrals, exponents i, j , k now take their values in different sets:

when l = 3 then i, j, k ∈ [0, 2]

when l = 1 then i, j, k ∈ [0, 1]

when l = − 1 then i = j = k = 0.

A.2. Recurrence relations for double integrals

A sequence of two integrations over r and s of the partial derivatives of equations (A.17) and
(A.18) lead to

riyk

∫ (
sj

Rl
a

)
ds = iyk

∫ ∫
ri−1sj

Rl
a

dr ds − lyk

∫ ∫
ri+1sj

Rl+2
a

dr ds

−clyk+1
∫ ∫

risj

Rl+2
a

dr ds

sj yk

∫ (
ri

Rl
a

)
dr = jyk

∫ ∫
risj−1

Rl
a

dr ds − lyk

∫ ∫
risj+1

Rl+2
a

dr ds

−dlyk+1
∫ ∫

risj

Rl+2
a

dr ds.

Assuming that the single integrals on the left-hand side and all the other double integrals are
known from previous integration by parts, these two equations constitute a set of recurrence
relations to express

∫∫
ri+1sj

Rl+2
a

dr ds and
∫∫

ri sj+1

Rl+2
a

dr ds as functions of integrals of rank ‘l’ and
rank ‘l + 2’ with low i and j . These two equations are also a system of two equations with two
unknowns that can be solve as follows:

D(i+1)j (l+2) = 1

l

[
iD(i−1)j l − riBjl

]− cyDij (l+2) (A.24)

Di(j+1)(l+2) = 1

l

[
jDi(j−1)l − sjAil

]− dyDij (l+2), (A.25)

where Ail and Bjl (and Ckl required latter) are single integrals. An additional recurrence
relation is again obtained from the definition of R2

a = r2 + s2 + y2 + 2cry + 2dsy + a2:

Dij(l+2) = 1

l(y2(1 − c2 − d2) + a2)

[
(l − i − j − 2)Dijl
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− icyD(i−1)j l − jdyDi(j−1)l + sj (s + dy)Ail

+ ri(r + cy)Bjl

]
. (A.26)

Similar recurrence relations can be obtained for Eikl and Fjkl by solving equations (A.17)
and (A.19) integrated over r and y, and equations (A.18) and (A.19) integrated over s and y,
respectively. Finally, we have

E(i+1)k(l+2) = 1

l(1 − c2)

[
iE(i−1)kl − ckEi(k−1)l + lcdsEik(l+2) + cykAil − riCkl

]
(A.27)

Ei(k−1)(l+2) = 1

l(1 − c2)

[
kEi(k−1)l − ciE(i−1)kl + ldsEik(l+2) − ykAil + criCkl

]
(A.28)

Eik(l+2) = 1

l
[(

1 − c2 − d2
)
s2 + (1 − c2)a2

][(1 − c2)(l − i − k − 2)Eikl

−kdsEi(k−1)l + cdisE(i−1)kl + ((1 − c2)y + ds)ykAil + [(1 − c2)r − cds]riCkl

]
(A.29)

F(j+1)k(l+2) = 1

l(1 − d2)

[
jF(j−1)kl − dkFj(k−1)l + lcdrFjk(l+2) + dykBjl − sjCkl

]
(A.30)

Fj(k−1)(l+2) = 1

l(1 − d2)

[
kFj(k−1)l − djF(j−1)kl + lcrFjk(l+2) − ykBjl + dsjCkl

]
(A.31)

Fjk(l+2) = 1

l
[(

1 − c2 − d2
)
r2 + (1 − d2)a2

][(1 − d2)(l − j − k − 2)Fjkl

−kcrFj(k−1)l + cdirF(j−1)kl + ((1 − d2)y + cr)ykBjl + [(1 − d2)s − cdr]sjCkl

]
. (A.32)

Single integrals Ail , Bjl and Ckl are defined as

Ail =
∫ r2

r1

ri

Rl
a

dr; Bjl =
∫ s2

s1

sj

Rl
a

ds; Ckl =
∫ y2

y1

yk

Rl
a

dy.

In that case, exponents i, j , k and l now take the following values:

l = 1 or l = −1

i, j, k ∈ [0, 1].

A.3. Recurrence relations for single integrals

Finally, one integration of equations (A.17)–(A.19) gives directly a set of recurrence relations
for linear integrals:

A(i+1)(l+2) = 1

l

[
iA(i−1)l − ri

Rl
a

]
− cyAi(l+2) (A.33)

B(j+1)(l+2) = 1

l

[
jB(j−1)l − sj

Rl
a

]
− dyBj(l+2) (A.34)

C(k+1)(l+2) = 1

l

[
kC(k−1)l − yk

Rl
a

]
− (cr + ds)Ck(l+2). (A.35)
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Once more, the definition of Ra gives a last set of recurrence relations:

Ai(l+2) = 1

l[(1 − c2)y2 + s2 + 2dsy + a2]

[
(l − i − 1)Ail − ciyA(i−1)l

+
ri(r + cy)

Rl
a

]
(A.36)

Bj(l+2) = 1

l[(1 − d2)y2 + r2 + 2cry + a2]

[
(l − j − 1)Bjl − djyB(j−1)l

+
sj (s + dy)

Rl
a

]
(A.37)

Ck(l+2) = 1

l[r2 + s2 + a2 − (cr + ds)2]

[
(l − k − 1)Ckl − k(cr + ds)C(k−1)l

+
yk(y + cr + ds)

Rl
a

]
. (A.38)

A.4. Analytical solutions for the seed integrals

A small number of integrals cannot be obtained from any recurrence relations of
equations (A.20)–(A.38). They correspond to integrals with no polynomials in the numerator
(i = j = k = 0):∫

1

Ra

dr;
∫

1

Ra

ds;
∫

1

Ra

dy;∫ ∫
1

R3
a

dr dy;
∫ ∫

1

R3
a

ds dy;
∫ ∫

1

R3
a

dr ds;∫ ∫ ∫
1

R3
a

dr ds dy.

These integrals constitute a set of seed functions from which all other integrals are built. These
integrals are simple enough to be analytically solved as follows:

A0−1 = ln[Ra + R · p] (A.39)

B0−1 = ln[Ra + R · q] (A.40)

C0−1 = ln[Ra + R · t] (A.41)

D00−3 = 2√
a2 + y2

[
1 − d2 − c2

] tan−1




Ra − R · p + R · q√
a2 + y2

[
1 − d2 − c2

]



for a2 + y2
[
1 − d2 − c2

]
> 0

D00−3 = − 2√∣∣a2 + y2
[
1 − d2 − c2

]∣∣ tanh−1




Ra − R · p + R · q√∣∣a2 + y2
[
1 − d2 − c2

]∣∣



for a2 + y2
[
1 − d2 − c2

]
< 0 (A.42)

E00−3 = 2√[
1 − c2

]
a2 + s2

[
1 − c2 − d2

] tan−1




(1 − c)(Ra − r + y) + ds√[
1 − c2

]
a2 + s2

[
1 − c2 − d2

]



for
[
1 − c2

]
a2 + s2

[
1 − d2 − c2

]
> 0
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E00−3 = − 2√∣∣[1 − c2
]
a2 + s2

[
1 − c2 − d2

]∣∣ tanh−1




(1 − c)(Ra − r + y) + ds√∣∣[1 − c2
]
a2 + s2

[
1 − c2 − d2

]∣∣



for
[
1 − c2

]
a2 + s2

[
1 − d2 − c2

]
< 0 (A.43)

F00−3 = 2√[
1 − d2

]
a2 + r2

[
1 − c2 − d2

] tan−1


 (1 − d)(Ra − s + y) + cr√[

1 − d2
]
a2 + r2

[
1 − c2 − d2

]



f or
[
1 − d2

]
a2 + r2

[
1 − d2 − c2

]
> 0

F00−3 = − 2√∣∣[1 − d2
]
a2 + r2

[
1 − c2 − d2

]∣∣ tanh−1




(1 − d)(Ra − s + y) + cr√∣∣[1 − d2
]
a2 + r2

[
1 − c2 − d2

]∣∣



for
[
1 − d2

]
a2 + r2

[
1 − d2 − c2

]
< 0. (A.44)

We were unable to solve analytically the last seed integral of the form
∫∫∫

1
R3

a
dr ds dy. Indeed,

any first two integrations lead to a convoluted arctangent or hyperbolic arctangent function.
For example, in the case of two successive integrations over r and s:

H000−3 =
∫

2√
a2 + y2

[
1 − d2 − c2

] tan−1




Ra − R · p + R · q√
a2 + y2

[
1 − d2 − c2

]

 dy

for a2 + y2
[
1 − d2 − c2

]
> 0 (A.45)

H000−3 = −
∫

2√∣∣a2 + y2
[
1 − d2 − c2

]∣∣ tanh−1




Ra − R · p + R · q√∣∣a2 + y2
[
1 − d2 − c2

]∣∣

 dy

for a2 + y2
[
1 − d2 − c2

]
< 0. (A.46)

These arctangent functions are continuous, finite and well-behaved. Consequently, by virtue
of the first fundamental theorem of calculus, an antiderivative should exist. However, we
were unable to find any analytical antiderivatives for these arctangent functions. A numerical
integration procedure could easily provide an approximate solution for this integral, but this
is actually not required in practice as all terms that are dependent of

∫∫∫
1

R3
a

dr ds dy exactly
cancel out in the final nodal force expression (see appendix B). Consequently, H000−3 is simply
set to zero.

Appendix B. Proof that the present model is fully analytical

In appendix A, we showed that the nodal forces due to a finite segment on a rectangular surface
element, that involve triple integrals (along the surface and the dislocation), can be analytically
solved using a set of recurrence relations and seven seed integrals. One of the seed integrals
of the type H000−3 = ∫∫∫

1
R3

a
dr ds dy cannot be analytically solved. We show next that all the

terms that are function of this integral actually cancel out in the final nodal force summation.
Let us recall that the nodal force on node n due to a finite segment on a rectangular surface

element as depicted in figure 2 can be expressed in a compact form as
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F(n) = I111−3 J111−3 + I211−3 J210−3 + I120−3 J120−3 + I111−5 J111−5

+ I210−5 J210−5 + I120−5 J120−5 + I311−5 J311−5 + I131−5 J131−5

+ I212−5 J212−5 + I122−5 J122−5 + I221−5 J221−5,

where Iijkl are constant vectors that are functions of the dislocation Burgers vector b and line
vector t and the surface element geometry: p, q and normal n. Jijkl are defined as sums of∫∫∫

ri sj yk

R3
a

dr ds dy triple integrals including H000m3.

Because the nodal force is a vector, proving that F(n) is independent of H000m3 is equivalent
to show that the three components of the vector are independent of H000m3. The choice
concerning the basis of vectors used to define the nodal force components is open. The use of
the unit vectors p, q and n = p × q as a basis will reduce the length of the demonstration. To
start, we consider the component F(n)·p of the nodal force along the p axis.

First, let us show the list of triple integral
∫∫∫

ri sj yk

Rl
a

dr ds dy that contain integral H000m3:

H000−1 = a2

2
H000−3 + K000−1

H101−3 = a2

2

c

1 − c2 − d2
H000−3 + K101−3

H011−3 = a2

2

d

1 − c2 − d2
H000−3 + K011−3

H110−3 = − a2

2

cd

1 − c2 − d2
H000−3 + K110−3

H200−3 = − a2

2

1 − d2

1 − c2 − d2
H000−3 + K200−3

H020−3 = − a2

2

1 − c2

1 − c2 − d2
H000−3 + K020−3

H002−3 = − a2

2

1

1 − c2 − d2
H000−3 + K002−3

H101−5 = − 1

3

c

(1 − c2 − d2)
H000−3 + K101−5

H011−5 = − 1

3

d

(1 − c2 − d2)
H000−3 + K011−5

H110−5 = 1

3

cd

(1 − c2 − d2)
H000−3 + K110−5

H200−5 = 1

3

1 − d2

(1 − c2 − d2)
H000−3 + K200−5

H020−5 = 1

3

1 − c2

(1 − c2 − d2)
H000−3 + K020−5

H112−5 = − a2

2

cd

(1 − c2 − d2)2
H000−3 + K112−5

H211−5 = a2

6

d(1 + 2c2 − d2)

(1 − c2 − d2)2
H000−3 + K211−5

H121−5 = a2

6

c(1 − c2 + 2d2)

(1 − c2 − d2)2
H000−3 + K121−5
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H202−5 = − a2

6

1 + 2c2 − d2

(1 − c2 − d2)2
H000−3 + K202−5

H022−5 = − a2

6

1 − c2 + 2d2

(1 − c2 − d2)2
H000−3 + K022−5

H301−5 = a2

2

c(1 − d2)

(1 − c2 − d2)2
H000−3 + K301−5

H031−5 = a2

2

d(1 − c2)

(1 − c2 − d2)2
H000−3 + K031−5,

where Kijkl gather all other terms appearing in Hijkl integrals that are not functions of H000−3.

It can be noted that H000−3 only appears in integrals
∫∫∫

ri sj yk

Rl
a

dr ds dy for which the sum of
exponents i + j + k equals 2 or 4. c, d and e are dot products introduced earlier t · p, t · q and
t · n, respectively. Integrals Jijkl now become

J111−3 = − ri

a2

2

d

1 − c2 − d2
H000−3 − si

a2

2

c

1 − c2 − d2
H000−3 + risiL111−3

J120−3 = ri

a2

2

1 − c2

1 − c2 − d2
H000−3 + si

a2

2

cd

1 − c2 − d2
H000−3 + risiL120−3

J210−3 = ri

a2

2

cd

1 − c2 − d2
H000−3 + si

a2

2

1 − d2

1 − c2 − d2
H000−3 + risiL210−3

J111−5 = ri

1

3

d

(1 − c2 − d2)
H000−3 + si

1

3

c

(1 − c2 − d2)
H000−3 + risiL111−5

J120−5 = − ri

1

3

1 − c2

(1 − c2 − d2)
H000−3 − si

1

3

cd

(1 − c2 − d2)
H000−3 + risiL120−5

J210−5 = − ri

1

3

cd

(1 − c2 − d2)
H000−3 − si

1

3

1 − d2

(1 − c2 − d2)
H000−3 + risiL210−5

J131−5 = − ri

a2

2

d(1 − c2)

(1 − c2 − d2)2
H000−3 − si

a2

6

c(1 − c2 + 2d2)

(1 − c2 − d2)2
H000−3 + risiL131−5

J311−5 = − ri

a2

6

d(1 + 2c2 − d2)

(1 − c2 − d2)2
H000−3 − si

a2

2

c(1 − d2)

(1 − c2 − d2)2
H000−3 + risiL311−5

J122−5 = ri

a2

6

1 − c2 + 2d2

(1 − c2 − d2)2
H000−3 + si

a2

2

cd

(1 − c2 − d2)2
H000−3 + risiL122−5

J212−5 = ri

a2

2

cd

(1 − c2 − d2)2
H000−3 + si

a2

6

1 + 2c2 − d2

(1 − c2 − d2)2
H000−3 + risiL212−5

J221−5 = − ri

a2

6

c(1 − c2 + 2d2)

(1 − c2 − d2)2
H000−3 − si

a2

6

d(1 + 2c2 − d2)

(1 − c2 − d2)2
H000−3 + risiL221−5,

where Lijkl gather all other terms appearing in Jijkl integrals that are not function of H000−3;
and ri = r1 or = r2 and sj = s1 or = s2 depending on the surface node under consideration.

Second, the component of the nodal force F(n)·p along the p axis is written as

F(n)·p = (I111−3·p) J111−3 + (I211−3·p) J210−3 + (I120−3·p) J120−3

+ (I111−5·p) J111−5 + (I210−5·p) J210−5 + (I120−5·p) J120−5

+ (I311−5·p) J311−5 + (I131−5·p) J131−5 + (I212−5·p) J212−5

+ (I122−5·p) J122−5 + (I221−5·p) J221−5.
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Replacing vectors Iijkl by their expressions leads to

F(n)·p = µ

4πA
{[(t × b) · p] (t · n) + (t · p) [(t × b) · n]} J111−3

+
µ

4πA (1 − ν)
{[(b × t) · p](t · n) + (t · p)[(b × t) · n]}J111−3

+
µ

4πA
{[(p × b) · p](t · n) + (t · p)[(p × b) · n]}J210−3

− µ

4πA (1 − ν)
{[(p × b) · n](n · p)}J210−3

+
µ

4πA (1 − ν)
{[(b × t) · n](p · p)}J210−3

+
µ

4πA
{[(q × b) · p](t · n) + (t · p)[(q × b) · n]}J120−3

+
µ

4πA (1 − ν)
{(q · p)[(b × t) · n] − [(q × b) · t](n · p)}J120−3

+ 3a2 µ

8πA
{[(t × b) · p](t · n) + (t · p)[(t × b) · n]}J111−5

+ 3a2 µ

8πA
{[(p × b) · p](t · n) + (t · p)[(p × b) · n]}I210−5

− 3a2 µ

4πA (1 − ν)
{[(p × b) · t](n · p)}I210−5

+ 3a2 µ

8πA
{[(q × b) · p](t · n) + (t · p)[(q × b) · n]}J120−5

− 3a2 µ

4πA (1 − ν)
{[(q × b) · t](n · p)}J120−5

− 3µ

4πA (1 − ν)

[
(p × b) · t

]
(t · n) (p · p)J311−5

− 3µ

4πA (1 − ν)

[
(q × b) · t

]
(t · n) (q · p)J131−5

− 3µ

4πA (1 − ν)

[
(p × b) · t

]
(t · n) (t · p)J212−5

− 3µ

4πA (1 − ν)

[
(q × b) · t

]
(t · n) (t · p)J122−5

− 3µ

4πA (1 − ν)

[
(p × b) · t

]
(t · n) (q · p)J221−5

− 3µ

4πA (1 − ν)

[
(q × b) · t

]
(t · n) (p · p)J221−5.

It yields after some simplifications and rearrangements,

F(n)·p = µ

4πA
{[(t × b) · p] e + [(t × b) · n] c} J111−3

+
µ

4πA
{[(p × b) · n] c} J210−3

+
µ

4πA
{[(q × b) · p] e + [(q × b) · n] c} J120−3

+ 3a2 µ

8πA
{[(t × b) · p] e + [(t × b) · n] c} J111−5

+ 3a2 µ

8πA
{[(p × b) · n] c} I210−5
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+ 3a2 µ

8πA
{[(q × b) · p] e + [(q × b) · n] c} J120−5

+
µ

4πA (1 − ν)
{[(b × t) · p] e + [(b × t) · n] c} J111−3

+
µ

4πA (1 − ν)
{[(b × t) · n]} J210−3

− 3µ

4πA (1 − ν)

[
(p × b) · t

]
eJ311−5

− 3µ

4πA (1 − ν)

[
(p × b) · t

]
e cJ212−5

− 3µ

4πA (1 − ν)

[
(q × b) · t

]
e cJ122−5

− 3µ

4πA (1 − ν)

[
(q × b) · t

]
eJ221−5.

It can be easily seen from the definitions of Jijkl that the H000−3 terms cancel out two by two
in the first six lines. F(n)·p reduces to

F(n)·p = µ

4πA
{[(t × b) · p] e + [(t × b) · n] c} riL111−3

+
µ

4πA
{[(p × b) · n] c} risiL210−3

+
µ

4πA
{[(q × b) · p] e + [(q × b) · n] c} risiL120−3

+ 3a2 µ

8πA
{[(t × b) · p] e + [(t × b) · n] c} risiL111−5

+ 3a2 µ

8πA
{[(p × b) · n] c} risiL210−5

+ 3a2 µ

8πA
{[(q × b) · p] e + [(q × b) · n] c} risiL120−5

+
µ

4πA (1 − ν)
{[(b × t) · p] (e J111−3 − 3e J311−5 − 3ec J212−5)}

− µ

4πA (1 − ν)

{[
(b × t) · q

]
(3ecJ122−5 + 3eJ221−5)

}
+

µ

4πA (1 − ν)
{[(b × t) · n] (c J111−3 + J210−3)} .

We now focus onto the last three lines that are still function of H000−3. The following dot
products of b are introduced:

f = b · p; g = b · q; h = b · n.

Replacing the mixed products [(b × t) · p], [(b × t) · q] and [(b × t) · n] by functions of f ,
g and h into F(n)·p leads to

F(n)·p = MF·p +
µ

4πA (1 − ν)
(dh − eg) (eJ111−3 − 3e J311−5 − 3ec J212−5)

+
µ

4πA (1 − ν)
(ef − ch) (−3ecJ122−5 − 3eJ221−5)

+
µ

4πA (1 − ν)
(cg − df ) (c J111−3 + J210−3) ,

where MF·p contain all terms of F(n)·p that are not functions of H000−3. The last Jijkl integrals
are now developed:
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F(n)·p = MF·p +
µ

4πA (1 − ν)
ri(dh − eg)H000−3

[
− e

a2

2

d(1 − c2 − d2)

(1 − c2 − d2)2

+ e
a2

2

d(1 + 2c2 − d2)

(1 − c2 − d2)2
− 3ec

a2

2

cd

(1 − c2 − d2)2

]

+
µ

4πA (1 − ν)
si(dh − eg)H000−3

[
− e

a2

2

c

1 − c2 − d2
+ 3e

a2

2

c(1 − d2)

(1 − c2 − d2)2

− 3ec
a2

6

1 + 2c2 − d2

(1 − c2 − d2)2

]

+
µ

4πA (1 − ν)
ri(ef − ch)H000−3

[
− 3ec

a2

6

1 − c2 + 2d2

(1 − c2 − d2)2

+ 3e
a2

6

c(1 − c2 + 2d2)

(1 − c2 − d2)2

]

+
µ

4πA (1 − ν)
si(ef − ch)H000−3

[
− 3ec

a2

2

cd

(1 − c2 − d2)2

+ 3e
a2

6

d(1 + 2c2 − d2)

(1 − c2 − d2)2

]

+
µ

4πA (1 − ν)
ri(cg − df )H000−3

[
−c

a2

2

d

1 − c2 − d2
+

a2

2

cd

1 − c2 − d2

]

+
µ

4πA (1 − ν)
si(cg − df )H000−3

[
−c

a2

2

c

1 − c2 − d2
+ si

a2

2

1 − d2

1 − c2 − d2

]

F(n)·p = MF·p +
µ

4πA (1 − ν)
si(dh − eg)H000−3

[
a2

2

ec

(1 − c2 − d2)

]

+
µ

4πA (1 − ν)
si(ef − ch)H000−3

[
a2

2

ed

(1 − c2 − d2)

]

+
µ

4πA (1 − ν)
si(cg − df )H000−3

[
a2

2

]
.

Recalling that e2 = 1 − c2 − d2, the final sum for the si terms is

F(n)·p = MF·p +
µ

4πA (1 − ν)
siH000−3

a2

2

[
ec(dh − eg)

e2
+

ed(ef − ch)

e2
+

e2

e2
(cg − df )

]
= MF·p.

The component along p of the nodal force is therefore independent of H000−3. This
independence can be obtained in a similar way for the two other components F · q and F · n
of the nodal force. Consequently, the nodal force is independent of the integral H000−3.

Appendix C. Stress at a point induced by a semi-infinite straight segment

In this section, non-singular stress expressions for a semi-infinite dislocation in an isotropic
medium are given. The dislocation segment is described by a Burgers vector b and a line
vector t and is delimited by nodes x1 and x2. Following the formulations given in [26], the
stress at a point x associated to a finite segment is
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σ (12)(x) = − µ

8π

∫ y2

y1

(
2

R3
a

+
3a2

R5
a

)
[(R × b) ⊗ t + t ⊗ (R × b)] dy

+
µ

4π (1 − ν)

∫ y2

y1

(
1

R3
a

+
3a2

R5
a

)
[(R × b) · t] I2 dy

− µ

4π (1 − ν)

∫ y2

y1

1

R3
a

((b × t) ⊗ R + R ⊗ (b × t)) dy

+
µ

4π (1 − ν)

∫ y2

y1

3

R5
a

[(R × b) · t] R ⊗ R dy, (C.1)

where

R = x − x′ (C.2)

Ra =
√

R · R + a2 (C.3)

=
√

y2 + d · d + a2 (C.4)

x′ = x0 + ty (C.5)

x = x0 + d (C.6)

d = x − x′ − [(
x − x′) · t

]
t (C.7)

y1 = (x1 − x0) · t (C.8)

y2 = (x2 − x0) · t. (C.9)

Replacing R by its definition into the stress field expression leads to

σ (12)(x) =
{
− µ

4π
[(d × b) ⊗ t + t ⊗ (d × b)]

+
µ

4π (1 − ν)
[(d × b) · tI2 + (t × b) ⊗ d + d ⊗ (t × b)]

}∫ y2

y1

1

R3
a

dy

− µν

4π (1 − ν)
[(t × b) ⊗ t + t ⊗ (t × b)]

∫ y2

y1

y

R3
a

dy

+

{
−3µa2

8π
[(d × b) ⊗ t + t ⊗ (d × b)]

+
3µ

4π (1 − ν)

[
(d × b) · t

(
a2I2 + d ⊗ d

)]} ∫ y2

y1

1

R5
a

dy

+

{
3µa2

8π
[(t × b) ⊗ t + t ⊗ (t × b)]

− 3µ

4π (1 − ν)
[(d × b) · t (t ⊗ d + d ⊗ t)]

}∫ y2

y1

y

R5
a

dy

+
3µ

4π (1 − ν)
(d × b) · t (t ⊗ t)

∫ y2

y1

y2

R5
a

dy. (C.10)

Five integrals are required and are solved analytically as follows:∫ y2

y1

1

R3
a

dy = y(
d · d + a2

)
Ra

∣∣∣∣∣
y2

y1

(C.11)

∫ y2

y1

y

R3
a

dy = − 1

Ra

∣∣∣∣
y2

y1

(C.12)
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∫ y2

y1

1

R5
a

dy = 2y

3
(
d · d + a2

)2
Ra

+
y

3
(
d · d + a2

)
R3

a

∣∣∣∣∣
y2

y1

(C.13)

∫ y2

y1

y

R5
a

dy = − 1

3R3
a

∣∣∣∣
y2

y1

(C.14)

∫ y2

y1

y2

R5
a

dy = y

3
(
d · d + a2

)
Ra

− y

3R3
a

∣∣∣∣∣
y2

y1

. (C.15)

As y2 goes to infinity, the definite integrals become∫ ∞

y1

1

R3
a

dy = 1(
d · d + a2

) (1 − y1

Ra [y1]

)
(C.16)

∫ ∞

y1

y

R3
a

dy = 1

Ra [y1]
(C.17)

∫ ∞

y1

1

R5
a

dy = 2

3
(
d · d + a2

)2

(
1 − y1

Ra [y1]

)
− y1

3
(
d · d + a2

)
R3

a [y1]
(C.18)

∫ ∞

y1

y

R5
a

dy = 1

3R3
a [y1]

(C.19)

∫ ∞

y1

y2

R5
a

dy = 1

3
(
d · d + a2

) (1 − y1

Ra [y1]

)
+

y1

3R3
a [y1]

, (C.20)

where

y1 = − (x − x1) · t (C.21)

d = x − x1 + y1t (C.22)

Ra [y1] =
√

(x − x1) · (x − x1) + a2. (C.23)

Appendix D. Limits of the seed functions for the semi-infinite segment

In this section, we provide limits of the seed functions that are required for the nodal force due
to a semi-infinite segment. The configuration under investigation is depicted in figure 3, where
x1 remain a finite end note and x2 is sent to infinity. All the recurrence relations derivated for
the finite segment can be reused for the semi-infinite segment, only the set of seed functions
will be different for y1 or y2.

As the seed functions are convoluted function of y, the asymptotic behaviour at infinity of
these functions is determined by means of Taylor series expansions. For a given seed function,
Taylor series expansions are employed until the functions of y that are obtained cannot be
decomposed any further. The order of the Taylor series expansions is chosen with care so that
the error follows O( 1

y
). As can be seen from the recurrence relations given in appendix A, the

seed functions are often multiplied by a monomial of r , s or y to build other integrals. If these
integrals are single or double integrals, they can themselves be used to build other integrals and
other monomials can be introduced. The complete list of monomials for every seed functions
is as follows:

rαsβyγ Ra with α ∈ [0, 1]; β ∈ [0, 1]; γ ∈ [0, 2] (D.1)

sβyγ A0−1 with β ∈ [0, 1]γ ∈ [0, 2] (D.2)

rαyγ B0−1 with α ∈ [0, 1]; γ ∈ [0, 2] (D.3)
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rαsβC0−1 with α ∈ [0, 2]; β ∈ [0, 2] (D.4)

yγ D00−3 with γ ∈ [0, 4] (D.5)

rαE00−3 with α ∈ [0, 4] (D.6)

sβF00−3 with β ∈ [0, 4]. (D.7)

Monomials of yγ are obtained in the case of A0−1, B0−1 and D00−3. Consequently, the order
of the Taylor series expansions for these seed functions must be increased when they are used

with monomials of yγ to maintain an error of the type O
(

1
y

)
.

D.1. Taylor expansions of the seed functions

We introduce the following variables:

d = R − (R · t).t

= rp + sq + yt − (y + rp · t + sq · t)t

d · d = (1 − c2)r2 + (1 − d2)s2 − 2cdrs

= er2 + f s2 − 2grs

R · p = r + cy

R · q = s + dy

R · t = y + cr + ds.

For practical reasons, we focus on configurations associated with y → −∞. The limits of the
seed functions in the case when y → +∞ can be derived by symmetry from the case when
y → −∞. We pose

x = 1

y
.

Obviously, x goes to 0− when y goes −∞. The following classical Taylor series
expansions will be used:
√

1 + x2|x→0 = 1 +
1

2
x2 + O(x4)

−1

1 + x
|x→0 = −1 + x + O(x2)

ln(1 + x)|x→0 = x − 1

2
x2 + O(x3)

ln(1 + Cx + Dx2)|x→0 = Cx +
2D − C2

2
x2 + O(x3)

tan−1(A + Bx +
Cx2

1 + Dx
)
∣∣
x→0 = tan−1(A) +

B

1 + A2
x +

(
2C

1 + A2
− 2AB2

(1 + A2)2

)
x2

2

+

(
− 6CD

1 + A2
− 12ABC + 2B3

(1 + A2)2
+

8A2B3

(1 + A2)3

)
x3

6

+O
(
x4
)
.

By using up to three of the previous Taylor series expansions, the seed functions are
approximated as follows:

Ra|y→∞ = |y + cr + ds| +
1

2

d · d + a2

|y + cr + ds| + O

(
1

y3

)
(D.8)
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A0−1|y→∞ = ln((c − 1)y) +
cr + ds

y
− 1

2

(cr + ds)2

y2
+

C

|y + cr + ds|
+

1

2

2D − C2

(y + cr + ds)2
+ O(

1

y3
) (D.9)

with C = er − gs

(1 − c)
; D = 1

2

d · d + a2

(1 − c)

B0−1|y→∞ = ln((d − 1)y) +
cr + ds

y
− 1

2

(cr + ds)2

y2
+

C

|y + cr + ds|
+

1

2

2D − C2

(y + cr + ds)2
+ O(

1

y3
) (D.10)

with C = f s − gr

(1 − d)
; D = 1

2

d · d + a2

(1 − d)

C0−1|y→∞ = ln

(
d · d + a2

2

)
− ln(|y|) + O

(
1

y

)
(D.11)

D00−3|y→∞ = − 2√
1 − c2 − d2

tan−1(A)

y
− 2√

1 − c2 − d2

B

1 + A2

1

y2

− 2√
1 − c2 − d2

(
2C

1 + A2
− 2AB2

(1 + A2)2

)
1

2y3

− 2√
1 − c2 − d2

(
8A2B3

(1 + A2)3

)
1

6y4
+ O

(
1

y5

)
(D.12)

with A = 1 + c − d√
1 − c2 − d2

; B = (1 + c)r + (d − 1)s√
1 − c2 − d2

and C = 1

2

d · d + a2

√
1 − c2 − d2

; D = cr + ds

E00−3|y→∞ = 2√
(1 − c2)a2 + s2(1 − c2 − d2)

× tan−1

{
(c2 − 1)r + cds√

(1 − c2)a2 + s2(1 − c2 − d2)

}
+ O

(
1

y

)
(D.13)

F00−3|y→∞ = 2√
(1 − d2)a2 + r2(1 − c2 − d2)

× tan−1

{
(d2 − 1)s + cdr√

(1 − d2)a2 + r2(1 − c2 − d2)

}
+ O

(
1

y

)
. (D.14)

D.2. Related limits

The limits of the seed functions with or without a monomial are thus (keeping all terms)

lim
y→−∞ rαsβRa = rαsβ |y + cr + ds|

lim
y→−∞ rαsβyRa = rαsβy|y + cr + ds| − rαsβ

(
d · d + a2

2

)

lim
y→−∞ rαsβy2Ra = rαsβy2|y + cr + ds| − rαsβ

(
d · d + a2

2

)
(y + cr + ds)
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lim
y→−∞ sβA0−1 = sβ ln((c − 1)y) with C = er − gs

(1 − c)
; D = 1

2

d · d + a2

(1 − c)

lim
y→−∞ sβyA0−1 = sβy ln((c − 1)y) + sβ(cr + ds) + sβC + sβ

(
2D − C2

2

)

lim
y→−∞ sβy2A0−1 = sβy2 ln((c − 1)y) + sβy(cr + ds) − sβ (cr + ds)2

2

+sβC(y + cr + ds) + sβ

(
2D − C2

2

)
(y − 2cr − 2 ds) + sβ 6CD − 2C3

6

lim
y→−∞ rβB0−1 = rα ln((d − 1)y)

with C = f s − gr

(1 − d)
; D = 1

2

d · d + a2

(1 − d)

lim
y→−∞ rαyB0−1 = rαy ln((d − 1)y) + rα(cr + ds) + rαC + rα

(
2D − C2

2

)

lim
y→−∞ rαy2B0−1 = rαy2 ln((d − 1)y) + rαy(cr + ds) − rα (cr + ds)2

2

+rαC(y + cr + ds) + rα

(
2D − C2

2

)
(y − 2cr − 2 ds) + rα 6CD − 2C3

6

lim
y→−∞ rαsβC0−1 = rαsβ ln

(
d · d + a2

2

)
− rαsβ ln(|y|)

lim
y→−∞ D00−3 = 0

lim
y→−∞ yD00−3 = − 2√

1 − c2 − d2
tan−1(A)

lim
y→−∞ y2D00−3 = −y

2√
1 − c2 − d2

tan−1(A) − 2√
1 − c2 − d2

B

1 + A2

with A = 1 + c − d√
1 − c2 − d2

; B = (1 + c)r + (d − 1)s√
1 − c2 − d2

and C = 1

2

d · d + a2

√
1 − c2 − d2

; D = cr + ds

lim
y→−∞ y3D00−3 = −y2 2√

1 − c2 − d2
tan−1(A) − y

2√
1 − c2 − d2

B

1 + A2

− 1√
1 − c2 − d2

(
2C

1 + A2
− 2AB2

(1 + A2)2

)

lim
y→−∞ y4D00−3 = −y3 2√

1 − c2 − d2
tan−1(A) − y2 1√

1 − c2 − d2

B

1 + A2

−y
1√

1 − c2 − d2

(
2C

1 + A2
− 2AB2

(1 + A2)2

)

− 1

3
√

1 − c2 − d2

(
8A2B3

(1 + A2)3

)

lim
y→−∞ sβE00−3 = 2sβ√

(1 − c2)a2 + s2(1 − c2 − d2)
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× tan−1

{
(c2 − 1)r + cds√

(1 − c2)a2 + s2(1 − c2 − d2)

}

lim
y→−∞ rαF00−3 = 2rα√

(1 − d2)a2 + r2(1 − c2 − d2)

× tan−1

{
(d2 − 1)s + cdr√

(1 − d2)a2 + r2(1 − c2 − d2)

}
.

Some of these limits are functions of polynomials of y or logarithm ln(|y|) that go to
infinity when y2 goes to infinity. Many of the terms that go to infinity are only functions of y,
y and r or y and s. These terms will cancel out when the seed integrals are calculated using
the integral bounds r1, r2 and s1 s2. Few terms in these limits contain monomials of the three
variables r , s and y. However, for reasons of symmetry, they exactly cancel out in the final
nodal force evaluation. Consequently, the nodal force of the semi-infinite segment is finite and
every terms that are functions of y2 could be removed or set to any finite values in the limits
expressions.
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[22] Vattré A, Devincre B, Feyel F, Gatti R, Groh S, Jamond O and Roos A 2014 Modelling crystal
plasticity by 3d dislocation dynamics and the finite element method: the discrete-continuous
model revisited J. Mech. Phys. Solids 63 491–505

[23] Deng J, El-Azab A and Larson B C 2008 On the elastic boundary value problem of dislocations in
bounded crystals Phil. Mag. 88 3527–48

[24] Weygand D, Friedman L H, Van der Giessen E and Needleman A 2002 Aspects of boundary-value
problem solutions with three-dimensional dislocation dynamics Modelling Simul. Mater. Sci.
Eng. 10 437–468

[25] Asano S 1968 Stress tensor of a finite dislocation J. Phys. Soc. Japan 25 220–30
[26] Cai W, Arsenlis A, Weinberger C R and Bulatov V V 2006 A non-singular continuum theory of

dislocations J. Mech. Phys. Solids 54 561–87
[27] El-Awady J A, Biner S B and Ghoniem N M 2008 A self-consistent boundary element, parametric

dislocation dynamics formulation of plastic flow in finite volumes J. Mech. Phys. Solids
56 2019–35

[28] Devincre B, Roos A and Groh S 2003 Boundary problems in DD simulations Thermodynamics,
Microstructures and Plasticity ed A Finel et al (NATO Science Series, Series Ii: Mathematics,
Physics and Chemistry vol 108) pp 275–84 (NATO Advanced Study Institute) Conf. NATO-
Advanced-Study-Institute on Thermodynamics, Microstructures and Plasticity (Frejus, France,
2–13 September 2002) (Dordrecht: Kluwer)

[29] Hutton D V 2004 Fundammentals of Finite Element Analysis (New York: McGraw-Hill Education)
[30] Davis P J and Rabinowitz P 1975 Methods of numerical integration Computer Science and Applied

Mathematics (New York: Academic)
[31] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1996 Numerical Recipes in Fortran

90 (Cambridge: Cambridge University Press)
[32] LeSar R and Rickman J M 2002 Multipole expansion of dislocation interactions: application to

discrete dislocations Phys. Rev. B 65 144110
[33] Zhao D, Huang J and Xiang Y 2010 A new version fast multipole method for evaluating the stress

field of dislocation ensembles Modelling Simul. Mater. Sci. Eng. 18 045006

37

http://dx.doi.org/10.1115/1.1421351
http://dx.doi.org/10.1115/1.1794167
http://dx.doi.org/10.1088/0965-0393/14/7/003
http://dx.doi.org/10.1088/0965-0393/17/7/075007
http://dx.doi.org/10.1016/j.jmps.2013.07.003
http://dx.doi.org/10.1080/14786430802558544
http://dx.doi.org/10.1088/0965-0393/10/4/306
http://dx.doi.org/10.1143/JPSJ.25.220
http://dx.doi.org/10.1016/j.jmps.2005.09.005
http://dx.doi.org/10.1016/j.jmps.2007.11.002
http://dx.doi.org/10.1103/PhysRevB.65.144110
http://dx.doi.org/10.1088/0965-0393/18/4/045006

	1. Introduction
	2. Problem formulation
	3. Analytical expressions for the nodal force due to a dislocation segment on a surface element
	3.1. The finite segment
	3.2. The semi-infinite segment 

	4. Comparison with a numerical evaluation of nodal forces
	5. Discussion and concluding remarks
	 Acknowledgments
	Appendix A. Nodal forces induced by a finite segment on a rectangular linear element of surface
	A.1. Recurrence relations for triple integrals
	A.2. Recurrence relations for double integrals
	A.3. Recurrence relations for single integrals
	A.4. Analytical solutions for the seed integrals

	Appendix B. Proof that the present model is fully analytical
	Appendix C. Stress at a point induced by a semi-infinite straight segment
	Appendix D. Limits of the seed functions for the semi-infinite segment
	D.1. Taylor expansions of the seed functions
	D.2. Related limits

	 References



