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Abstract

We investigate the feasibility of production from a layered marine gas 

hydrate reservoir using the properties and conditions corresponding to 

the UBGH2-6 site of the Ulleung Basin in the Korean East Sea. The 

work expands and furthers previous investigations in support of a 

proposed field test. The target system is location in deep water and 

consists of 13 m of alternating hydrate-bearing sand and soft mud 

layers and will be produced using a vertical well. We assess production

potential during a 14-day field test, examine sensitivity to 

heterogeneity in permeability, porosity, and initial hydrate saturation, 

and assess the geomechanical response of the system to short-term 

production. Producing gas from the system appears to be technically 

feasible, however, low production rates and relatively large water 

production rates are expected during the field test. Expected 

subsidence and reservoir compaction is limited given the current data 

and the short timeframes of the production test.

Keywords: Ulleung Basin, Gas Hydrates, Reservoir Simulation, 

Geomechanical Simulation

1. Introduction

This study is a continuation and expansion of earlier studies by 

Lawrence Berkeley National Laboratory (LBNL) and the Korea Institute 
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of Geoscience and Mineral Resources (KIGAM) in support of a planned 

short-term field test (Moridis et al., 2009; 2013). We use the most 

recent flow and geomechanical properties of the sediments at the 

UBGH2-6 site, as gleaned from core analyses and advanced 

geophysical surveys. The objective of this study is to quantify by 

means of numerical simulation the response of the hydrate 

accumulation at the UBGH2-6 site during a short-term field test (14-

day long) and determine the feasibility of gas production through 

depressurization-induced dissociation. In contrast to the earlier studies 

that assumed homogeneous hydrate-bearing formations and mud 

interlayers, the current study considers a heterogeneous system, 

which requires a complex, three-dimensional simulation. The study 

assesses gas production performance of the accumulation and 

estimates the sensitivity of production on the parameters that earlier 

studies identified as having the most pronounced effects on the 

system behavior and response. In addition, when CH4 is produced from 

the hydrate reservoirs, flow is tightly coupled to mechanics because 

the changes of P and T strongly affect the effective stresses acting on 

the porous media of the reservoir (Kim et al., 2012a;b; Rutqvist and 

Moridis, 2009; Rutqvist et al. 2009). Thus, we also investigate the 

geomechanical response of the reservoir during production, and the 

connection between production and geomechanical response. 
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2. System Description and Production Strategy

The discussion and analysis in this section hews very closely to an 

earlier study (Moridis et al., 2013). Although the basic geological model

and the production strategy remain the same as in the earlier study, 

new data, the consideration of heterogeneity, and the use of a 3D 

domain results in a drastically different reservoir simulation, with 

different grid geometry and different porous media properties.

2.1. System description and geometry

This study focuses on the oceanic hydrate deposits located in the 

Ulleung basin, continuing the previous studies of Moridis et al. (2013). 

The basin is located in the Korean East Sea, between the Korean 

Peninsula and Japan. A map of the region is shown in Figure 1. The 

depth of the seafloor is between 1,500m and 2,300m, and the depth at

the site in question, the UBGH2-6 site, is 2,157m. 
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Figure 1. Bathymetry, 2-D seismic track lines, 3-D survey area 
(blocked) and drilling sites during the UBGH1 and UBGH2 scientific 
expeditions (from Matsumoto et al. 2011).

Surveys and analysis have indicated the layered sedimentary structure

illustrated in Figure 2. The 12.7 m-thick hydrate reservoir is located 

140m below the seafloor, spanning an area of 12 km2. Above and 

below the hydrate bearing layers are very low permeability mud layers.

The reservoir itself features layers of hydrate-free clays and hydrate-

rich sands. The gas hydrate stability zone (BGHSZ) is 22.3m below the 

reservoir.

The reservoir can be described as a hybrid of a Class 2 reservoir and 

Class 3 reservoir (Moridis et al., 2007a; 2007b; 2011a; 2013). The Class

2 behavior is owed to the section with an overlying mobile water zone, 
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and the Class 3 behavior to the layers confined between low-

permeability zones. The UBGH2-6 site is expected to manifest mostly 

Class 3 characteristics, as limited water mobility in the mud layers has 

been predicted (Moridis et al., 2013).

Figure  2. Geology,  stratification,  texture,  dimensions  and  initial
conditions in the subsurface at the UBGH2-6 site. The –M suffix in the
layer description indicates mud; the –SS suffix indicates sand (Moridis
et al., 2013).

2.2. Well design and production methodology

Depressurization is expected to be the most promising strategy for this

site as with other Class 3 reservoirs (Moridis and Reagan, 2007a). 

Thermal stimulation has been explored in Moridis and Reagan (2007a) 

and shown to be an ineffective production strategy. The presence of 

low permeability layers in the region precludes the use of horizontal 

wells through the layer. Thus, in this study as in Moridis et al. (2013), 

6



we use a simple vertical well with a perforated interval spanning the 

entire extent of the hydrate-bearing layers (Figure 3).

3. The Numerical Model and Simulation Approach

3.1. The numerical simulation codes

The TOUGH+Millstone suite was used to perform the coupled thermal, 

flow, and geomechanical analysis (Moridis et al., 2017). The first 

component of the suite is the extensively used TOUGH+HYDRATE 

simulator (Moridis et al., 2017), which has been used for numerous 

investigations of gas production from hydrates (Moridis et al., 2007; 

Moridis and Reagan, 2007b; Moridis and Reagan, 2011a; 2011b; 

Moridis and Reagan, 2007a; Moridis et al., 2011a; 2011b; Moridis and 

Sloan, 2007; Li et al., 2010).  Due to the size and computational 

requirements of this system, the MPI-parallel pT+H simulator (Zhang et

al., 2008) was used for the reservoir-scale simulations.

Millstone is a newly developed finite-element geomechanical simulator 

(Moridis et al., 2017) that offers the unique capability of both 3D and 

2D axisymmetric formulations. It provides the functionality of 

automatically interpolating between different flow and geomechanical 

meshes to allow the use of unstructured grids without any adverse 

numerical problems. The TOUGH+Millstone suite can either be run fully

coupled, in which the geomechanical response is calculated every 
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Newton iteration of the flow time stepping, or in a one-way coupled 

scheme, in which the geomechanical response is post-processed from 

snapshots of the flow simulation.

Figure 3. Description  and  dimensions  of  the  3D  Cartesian  domain
used in the simulations. (Only the half-domain is shown, although the
mesh includes the full domain. Not to scale)

3.2. Domain discretization

Very fine discretization was used near the wellbore and throughout the

hydrate-bearing zones to capture the evolution of gas, water, and 

hydrate phases during production (Moridis et al., 2007). The two 

meshes used by TOUGH+ and Millstone are shown in Figure 4.  The 

geomechanical domain is chosen to extend 300 m beyond the flow 
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mesh in x and y to minimize boundary effects, but has the same height

in z. The 3D Cartesian domain of the single vertical well problem (see 

Figure 3) was discretized into 70 x 72 x 107 = 539,280 gridblocks in (x,

y, z).  Using equilibrium hydrate dissociation (Kowalsky and Moridis, 

2007) and accounting for salinity, resulted in a system of about 2.16 x 

106 equations. The geomechanical problem required linear systems 

with 50,313 equations for displacements and an additional 575,316 

stress unknowns. Due to this size, the flow problem was simulated 

using MPI-parallel version of pT+H, and the geomechanical response 

was evaluated using a one-way coupling, where Millstone parsed the 

output flow fields from pT+H and solved the quasistatic evolution as a 

post-processing phase.

Discretization along the x- and y-directions was non-uniform, 

increasing logarithmically from the center of the system (x = y = 40 

m) using a starting value of Δx0 = Δy0 = 0.05 m. Discretization along 

the z-axis was almost uniform (with Δz = 0.1-0.15m within the HBL) 

within the 12.67m of sand and clay/mud interlayers (Figure 2), as well 

as in the overburden and the underburden adjacent to the HBL. The 

discretization was non-uniform (with Δz increasing) in the overburden 

and underburden away from the HBL, with larger Δz near the top and 

bottom of the domain. 
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Figure 4.  Domain of the flow problem as a TOUGH+ mesh domain
(black, centered) inset in a larger geomechanical domain with a finite
element  mesh  solved  by  Millstone  (blue,  cut  halfway  with  extent
outlined). Both meshes are unstructured, with more fine spacing near
the center of the domain that is  below the resolution of the image.
Axes are in meters.

3.3. Baseline system properties and well description

The baseline hydraulic and thermal of the various geological media in 

the various layers of the geologic model in Figure 2, derived from 

laboratory studies and the literature, and the corresponding 

geomechanical properties are listed in Table 1. For the reference case, 

isotropic permeability conditions were assumed. The relative 

permeability and capillary pressure relationships and corresponding 

parameters were approximated based on similarly textured media. 

Note that the thermal conductivity values measured from samples 

from the UBGH2-6 site were very low, possibly due to the “watery” 

texture of the samples and their abnormally high porosity. We used 
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reasonable specific heat values for the various geologic media as 

direct measurements were unavailable. 

The set of simulations included (a) a reference case based on the 

assumption of homogeneity and using the property values of Table 1, 

and (b) multiple realizations that involved statistical heterogeneity in 

the following key parameters: 

o The intrinsic permeability k of the hydrate-bearing layers 

o The porosity 

o The hydrate saturation SH

An extensive literature study indicated that heterogeneity in the (a) 

thermal and (b) geomechanical properties of geological media is far 

less pronounced than that of hydraulic properties, and that the thermal

and geomechanical properties of formations vary within a remarkably 

narrow range. In the all the models of the heterogeneous distributions 

of the parameters discussed above, the mean values were those listed 

in Table 1. The statistical heterogeneity models and the standard 

deviations σ were as follows:

o The intrinsic permeability k of the HBL: lognormal distribution, 

σ = 1  

o The porosity : normal distribution, σ = 0.1 

o The hydrate saturation SH: normal distribution, σ = 0.1
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We approximated flow through the wellbore by Darcian flow through a 

pseudo-porous medium, as validated in previous studies (Moridis and 

Reagan, 2007b,c). This pseudo-medium has a porosity  = 1, a very 

high permeability k = 5x10-9 m2 (= 5,000 Darcies), a capillary pressure 

Pc = 0, relative permeability as a linear function of the phase 

saturations in the wellbore, and a low irreducible gas saturation SirG = 

0.005 (to allow the emergence of a free gas phase in the well). 

3.4. Flow and thermal initial and boundary conditions

We determined the initial conditions in the reservoir by following the 

initialization process described by Moridis and Reagan (2007a,b). 

Direct measurements at the site indicate that te geothermal gradient is

dT/dz = 0.112 oC/m. The uppermost and lowermost gridblock layers 

(i.e., at the ocean floor and at the bottom of the underburden) were 

treated as constant-pressure/constant-temperature open boundaries. 

The temperatures at the upper and lower boundaries, determined from

field data, were TU = 0.482 oC and TL = 51.180 oC, respectively. 

Using the known depth at the base of the hydrate system, and a 

hydrostatic pressure gradient, we calculated the pressure PT using the 

P-, T-, and salinity-adjusted water density. Then, using PT, the boundary

temperatures, the hydrostatic gradient, and representative thermal 

conductivity values, we performed  preliminary simulations to 
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determine the equilibrium P- and T-profiles and the initial state of the 

system.

Reservoir Porous Media Properties 
Overburden thickness 140 m
Underburden thickness 147 m
Layer thicknesses, porosities, SH As in Figure 2
Initial pressure at top of domain (PT) 22.261 MPa

Initial temperature at top of domain (TT) 0.482 oC

Initial temperature at base of domain (TB) 51.18 oC

Gas composition 100% CH4

SH in the hydrate-bearing sands As in Figure 2
Intrinsic permeability of sand kr 1.78x10-13 m2 (= 0.18 D)
Intrinsic permeability of clay/mud 

overburden kr

2e-18 m2

Intrinsic permeability of clay/mud 
underburden kr

2e-19 m2 

Intrinsic permeability of clay interlayers kr 2e-16 m2 

Grain density ρR (all formations) 2620  –  2660  kg/m3  (mud);  2650  kg/m3

(sand)
Wet thermal conductivity (kΘRW)
(all formations)

1.45 W/m/K (sand), 1 W/m/K (muds)

Composite thermal conductivity
model (Moridis et al., 2008c)

kΘC  = kΘRD  +(SA
1/2+SH

1/2) (kΘRW – kΘRD) + φ SI

kΘI

Capillary pressure model
(vanGenuchten, 1980)
SirA 1
λ  0.45 (sand); 0.15 (clay/mud)
P0  104 Pa (sand); 105 Pa (clay/mud)

Relative permeability model - EPM
(Moridis et al., 2008a)

krA = (SA*)n

krG = (SG*)m

SA*=(SA-SirA)/(1-SirA)
SG*=(SG-SirG)/(1-SirA)

n; m 3.5; 2.5 (sand)
5.0; 3.0 (clay/mud)

SirG 0.01 (sand); 0.05 (clay/mud)
SirA 0.25 (sand); 0.55 (clay/mud)

Constant bottomhole pressure BHP (Pw) 9 MPa
BHP rate of decline to final level (dPw/dt) 1 MPa/hr

Reservoir Material Geomechanical Properties
Layers Young’s modulus Bulk density Poisson ratio
Overburden  (Mud 

A)
E=14 MPa 2620 kg/m3 0.35

Hydrate zone E=40 MPa (at SH=0)
E=1.4GPa (at SH=1)

2650 kg/m3 0.25

Underburden (Mud
B)

E=20 MPa 2660 kg/m3 0.35

Interlayer mud 
zones

E=18 MPa 2640 kg/m3 0.35

Table 1. Physical properties used in the study of the UBGH2-6 deposit.
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The numerical representation of a constant well Pw involves an internal 

boundary (an inactive element) at the uppermost element of the well. 

Here we impose a constant Pw, a thermal conductivity kΘ = 0 W/m/K, 

and a constant temperature Tw, resulting in a constant bottomhole Pw 

In our study, the system behavior and performance was evaluated at a 

single value of Pw (= 9 MPa). Based on the results of earlier UBGH 

studies, this bottomhole pressure was the most desirable and 

practically attainable under the conditions of the UBGH2-6 deposit. 

Constant-condition boundaries were placed on the y-z vertical planes 

at x = 0 and x = 80 m, and the x-z vertical planes at y = 0 and y = 80 

m. The well radius in all studies was rw = 0.1 m, and the well was 

centered about the x = y = 40 m axis. 

3.5. Geomechanical initial and boundary conditions

Roller boundary conditions are set at the x and y sides and the bottom 

side. The overburden pressure of 23.13 MPa is applied as the traction 

on the top boundary. The flow fields (P and SH) at the beginning of 

production are used as the inputs to solve the initial static stress field 

of the mechanical system.

3.6. Simulation process
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Following the methodology of previous studies in Moridis et al. (2013), 

the feasibility of the field test were evaluated by taking into account: 

1) an absolute production criterion i.e. a potential for significant gas 

production; 2) a relative production criterion, seeking a low water/gas 

ratio; and 3) a geomechanical criterion, seeking a minimal degree of 

subsidence and preservation of the structural integrity of the well. 

Each simulated case was run for 14 days, the proposed length of the 

field test.

3.7. Simulation cases

A total of 8 different cases of various types and combinations of 

heterogeneity were investigated. These were the following:

(1) The reference (homogeneous) case with the properties of Table 1

(2) Three cases that each involved heterogeneity in a single 

parameter: k, φ and SH, referred to as Cases k, , and S, 

respectively

(3) Three cases involving simultaneous heterogeneity in two 

parameters, i.e., k and , k and SH, and φ and SH, referred to as 

Cases k, kS, and S, respectively

(4) A case involving heterogeneity in all three parameters, i.e., k,  

and SH, referred to as Case kS

We considered two material groups: a sandy (hydrate-bearing) 

medium, and a clay (mud) medium of the overburden, underburden 
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and of the interlayers between the sandy hydrate-bearing sediments 

(HBS). The relevant geomechanical properties are listed in Table 1. For 

Young’s modulus we used linear functions of SH in the hydrate-bearing 

media. We used a constant Poisson’s ratio and the Biot coefficient was 

b = 0.8. (Rutqvist and Moridis, 2009; Rutqvist et al., 2009). 

4. Production Behavior

4.1. Gas releases from dissociation

Figure 5 shows the expected evolution of the release rate QR during 

the planned 14-day test as a result of the depressurization caused by 

the operation of a single vertical well at the center of the Cartesian 

domain. Figure 5 reveals that (a) the rates QR of all cases in the figures

increase monotonically during the duration of the test, but (b) the 

release rates are rather low during the production period. In terms of 

overall performance, the 8 cases we investigated can be classified in 

three general groups, with roughly the same QR for all cases in each 

group. The high-QR group includes only Case ; the average-QR group 

includes 3 cases (Cases k and k, as well the reference case); and the 

low-QR group is the largest, including 4 cases (Cases S, kS, S and kS).
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Figure  5. Expected  evolution  of  the  rate  of  gas  release  from
dissociation  (QR) over  time  during  the  planned  14-day  test  for
reference, k, S and  .cases (left),  and reference, k,  kS,  S and kS
(right).

The conclusions that can be drawn regarding the effects of statistical 

heterogeneity are the following:

o Heterogeneity in the porosity  is the only state that results in a 

mild increase in QR over than in the reference case. 

o Heterogeneity (a) in k and (b) simultaneously in both k and  

appear to have minimal to practically no effect on QR compared 

to the reference case.

o Heterogeneity (a) in S, (b) simultaneously in both k and S, (c) 

simultaneously in both  and S and (b) simultaneously in all three

variables (k,  and S) have a significant negative effect on QR 

compared to the reference case. Thus, , heterogeneity in which 
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by itself increases QR, does not enhance QR when combined in 

heterogeneity with the other variables.

Figure 6. Expected evolution of the rate of gas production (QP) over
time  during  the  planned  14-day  test  in  the  following  cases:
reference, k, S, and .(left), and k, kS, S and kS(right). Note the
modest production rates.

4.2. Gas production

Figure 6 shows the expected evolution of the production rate QP for all 

cases during the planned 14-day test. Note that the QP depicted in 

these figures represents the total gas production rate, including both 

CH4 in the gas phase and dissolved in the aqueous phase.

The production rates QP appear quite similar in pattern and magnitude 

to those in Figure 5 leading to similar observations and conclusions. 

We see that (a) the rates QP of all cases increase monotonically during 

the duration of the test, but (b) the rates are low during the early 
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production period. Compared to the QR curves, the corresponding QP 

curves are generally higher, indicating significant contributions of 

dissolved gas to total gas production. The three general groups into 

which we classified the QR behavior persist in QP: the higher-

performance group that includes only Case ; the average-

performance group that includes 3 cases (Cases k and k, as well the 

reference case); and the lower-performance group, which is the largest

and includes 4 cases (Cases S, kS, S and kS). 

The similarity of the QR and QP behavior leads to similar conclusions 

regarding the effects of statistical heterogeneity (as described by the 

statistical models, the means and standard deviations of the 

considered variables):

o Heterogeneity in the porosity φ is the only one that results in a 

mild increase in QR over than in the reference case. 

o Heterogeneity (a) in k and (b) simultaneously in both k and  

appear to have minimal to practically no effect on QP compared 

to the reference case.

o Heterogeneity (a) in S, (b) simultaneously in both k and S, (c) 

simultaneously in both  and S and (b) simultaneously in all three

variables (k,  and S) have a significant negative effect on QP 

compared to the reference case. Thus, , heterogeneity in which 
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by itself increases QP, does not enhance QP when combined in 

heterogeneity with the other variables.

The cumulative volumes VR of produced CH4 for all cases during the 

planned production 14-day test in Figure 7 confirm conclusively the 

groupings identified in the analysis of the QR and QP from Figures 4 and

5, and show low produced CH4 volumes for all cases. 

Figure 7. Evolution of cumulative volume of produced gas (VP) over
time  during  the  planned  14-day  test  (all  cases).  Note  the  modest
cumulative volumes. 

4.3. Water production

Figure 8 shows the evolution of the water production rate Qw at the 

well for all cases, and confirms the earlier groupings into which the 
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effects of heterogeneity have been classified (Sections 4.1 and 4.2). 

The higher- and lower-performance groups are shown to be associated 

with the higher Qw, and the mid-level Qw is associated with average-

performance group.

4.4. Water-to-Gas ratio

Figure 9 presents the instantaneous and cumulative water-to-gas 

ratios for the 14-day production period. The instantaneous water-to-

gas ratios, RWGi, (Figure 9 left) appear to stabilize early (after 2-3 days) 

to an average value of about 85. This indicates a negative production 

regime during the 14-day test because of the disproportionate large 

amount of produced water compared to the produced gas. It is possible

that the short duration of the planned test may not allow sufficient 

time for significant gas release and production and a longer test is 

necessary before conclusive evidence of the behavior of RWGi becomes 

apparent. For reference, promising (for production) hydrate deposits 

exhibit an initial RWGi of about 20, which is reduced asymptotically 

toward ~4 during long-term production.
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Figure 8. Expected evolution of the rate of water production (QW) over
time during the planned 14-day test in the following cases: reference,
k, S and  (left), and reference, k, kS, S and kS (right). 
 

In Figure 9 (right), the cumulative water-to-gas ratios RWGc (= MW/VP) 

exhibit different behavior. While cases in the lower-performance group 

show a distinctive pattern marked by a initial sharp drop (indicating 

higher initial gas releases, usually associated with a sharper initial 

pressure drop), followed by a slow rise and eventual stabilization after 

about 6 days, the higher- and average-groups have similar behavior 

that is characterized by an initial sharp decline followed by stabilization

(at about the same level as the lower-performance group). As in the 

RWGi case, the stable RWGc level is about 85, which is very high and does

not indicate a favorable production regime during the 14-day test.
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Figure 9. Evolution of the instantaneous (left) and cumulative (right)
Water-to-Gas Ratios (RWGi =  QW/QP) over time during the planned 14-
day test (all cases).

5. Spatial distributions

All the spatial distributions that we discuss in this Section are 

associated with Case kS, in which all three variables are 

simultaneously heterogeneous according to the specifics discussed in 

Section 3.3.

5.1. P-distribution

The pressure distributions at t = 1, 5, 10 and 14 days in Figure 10 

provide a clear depiction of the heterogeneous nature of the hydrate 

reservoir and confirms that the size of the domain was sufficient to 

capture the system behavior during the 14-day production test. As 

expected, the largest pressure drops occur close to the vertical well. 

Horizontal discontinuities in the P-distribution indicate the locations of 
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the low-k mud layers. Localized patches of higher pressure are due to 

heterogeneous regions of higher SH (exhibiting very low effective 

permeability). Because of the limited duration of the test, the pressure 

disturbance does not advance deep into the body of the hydrate. 

Actually, the pressure appears relatively undisturbed (from its original 

level) at x > 15 m. This has significant implications for the location of 

observation wells. 

Figure 10. Case kS: Pressure (in MPa) distributions on the x-z plane
at y = 40 m during the 14-day long production test (Pw = 9 MPa).
5.2. T-distribution

The temperature distributions in Figure 11 provide an indication as to 

the location of the maximum dissociation activity, where maximum 

cooling occurs as a result of the endothermic nature of hydrate 
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dissociation. The temperature distributions in Figure 11 also provide 

some insight as to the location of a possible observation well because 

no temperature disturbance (from its original level) is observed at x > 

15 m. This also highlights the limited extent of hydrate dissociation 

during the 14-day test.

Figure  11. Case  kS:  Temperature  (in  oC)  distributions  on  the  x-z
plane at y = 40 m during the 14-day long production test (Pw = 9 MPa).

5.3. SH and SG distributions

The evolution of the SH (Figure 12) and SG (Figures 13) distributions 

show the limited dissociation of the sandy HBS, and the corresponding 

evolution and distribution of gas. Hydrate dissociation extends only 
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about 5 m from the well, with the exception of thin layers adjacent to 

the mud interlayers (which provide a source of heat to create upper 

and lower hydrate dissociation interfaces). Local heterogeneity in SH 

results in isolated patches of hydrate that remain for some time after 

the main dissociation front passes, and the effect of the three-

parameter heterogeneity is apparent in the irregular patterns of 

dissociation. The evolution of free gas is limited, SG is relatively low 

after 14 days, and the gas is confined to a region within a short 

distance around the well. 

Figure 12. Case kS: Hydrate saturation (SH) distributions on the x-z
plane at y = 40 m during the 14-day long production test (Pw = 9 MPa).
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Figure 13. Case kS: Gas saturation (SG) distributions on the x-z plane
at y = 40 m during the 14-day long production test (Pw = 9 MPa).

6. Geomechanical system behavior

To evaluate the geomechanical stability of the reservoir, the 

possibilities of subsidence or uplift are analyzed. The displacements 

are probed at the seafloor (z = 0 m), top of the HBS (z = -140 m), and 

base of the HBS (z = -153 m). The time response of the vertical 

displacements are plotted in Figure 14 for both the homogeneous 

reference case and heterogeneous kS case, yielding similar results at 

each of the locations. The subsidence at the seafloor is minimal in both

cases, less than 2 cm, though the reference case is noticeably larger. 
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Figure 14: Vertical displacement history of the system of both cases 
at the seafloor (z = 0 m), top of the reservoir (z = -140 m), and bottom
of the reservoir (z = -153 m).

The displacement field at the end of production for the heterogeneous 

kS case is rendered on a cross section through the vertical well along 

the y-z plane and shown in Figure 15. The maximum displacements are

observed to be at the top and bottom of the HBS along the axis of the 

well. The base of the HBS registers a significant uplift in both cases 

with a value of and 0.159 m and 0.183 m in the kS case and reference

case, respectively. The maximum displacement is observed at the top 

of the reservoir, with a maximum value of 0.226 m in the uniform 
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reference case. It is additionally observed in Figure 15 that the 

reservoir contracts significantly into the well, with the maximum 

inward motion occurring in the bottom most interlayer. 

Figure 15. Displacement field at the well center at the end of 
production for the heterogenous kS case. The mesh is colored by the 
magnitude of the displacement through the cross section, and the 
arrows indicate direction of the displacement. The horizontal axis grid 
passes through the top of the producing layers (z = -143 m) and the tic
marks are every 5 m.

7. Conclusions and Discussion

We draw the following conclusions from this study:
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● Gas production from a hydrate accumulation with the 

characteristics of the UBGH2-6 site is technically feasible. 

● The analysis of the impact of statistical heterogeneity was 

focused on three parameters: HBS intrinsic permeability k, 

porosity φ and initial hydrate saturation SH. The effects of 

heterogeneity, in terms of overall performance, can be classified 

in three general groups: the higher-performance group that 

includes only Case φ; the average-performance group that 

includes 3 cases (Cases k and kφ, as well the reference case); 

and the lower-performance group, which includes 4 cases 

(Cases S, kS, φS and kφS). The behavior of each member of 

these groups is otherwise similar.

● The gas release and production rates are generally low and the 

affected region of the reservoir is limited. Water production 

appears manageable (in terms of absolute rates and volumes) 

under all of the scenarios investigated in this study; however, in 

relative terms the water-to-gas ratio is very high during the 14-

day production test and stabilizes relatively early. 

● The maximum subsidence at the seafloor is predicted to be 

0.016m, but the maximum subsidence and uplift of the top and 

bottom of the reservoir, respectively, is predicted to have a 

magnitude of 0.22m.
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● Assumption of heterogeneity decreases the magnitude of the 

geomechanical response.

Areas for future research may include:

● Analysis of system performance and gas production predictions 

when more detailed information becomes available on the 

subsurface stratigraphy and porous media properties (flow and 

geomechanical) based on direct measurements and 

observations. 

● Evaluation of alternative sites within the Ulleung basin or in the 

wider Korean Exclusive Economic Zone.
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