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Abstract: We present a method for designing non-absorbing optical
diffusers that, when illuminated by a converging beam, produce a specified
intensity distribution along the optical axis. To evaluate the performance
of the diffusers in imaging systems we calculate the three-dimensional
distribution of the mean intensity in the neighborhood of focus. We
find that the diffusers can be used as depth-of-focus extenders. We also
propose and implement a method of fabricating the designed diffusers on
photoresist-coated plates and present some experimental results obtained
with the fabricated diffusers.

© 2007 Optical Society of America
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1. Introduction

In many applications, it is desirable to increase the focal depth of an imaging system with-
out sacrificing its resolution and light-gathering capabilities. This has been a subject of long-
standing interest in optics.

It is well-known that the use of annular apertures slows the decay of the axial intensity as
one moves away from focus and, thus, that such masks can be used to extend the depth of
focus [1]; the core of the Airy pattern also becomes narrower, transferring light to the outer
rings of the point spread function. This fact, together with the reduction in the light throughput
of the system, limit the usefulness of this approach. Consequently, there have been numerous
investigations on the design of phase-only masks for improving the depth of focus (for some
recent references see, e.g., [2, 3, 4, 5, 6]). Approaches as varied as spatial filtering [7], digital
post-processing [8], and polarization coding [9] have been reported.

A common criterion employed in the evaluation of optical elements for improving the focal
depth is the rate of decay of the axial intensity of the Point Spread Function (PSF) as one
moves away from the focus: the slower the decay the better. Not surprisingly, the design of
optical elements that produce a prescribed axial intensity distribution has been the subject of
some studies. We can mention reports on computer generated holograms designed by iterative
techniques [10, 11], and more recent mathematical studies based on the superposition of Bessel
beams [12, 13].

Although many of the strategies to extend the depth of focus base their operation on inter-
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ference and diffraction, refractive methods have also been explored. Perhaps the most notable
example of an optical element for producing an extended axial intensity distribution is the axi-
con [14, 15]. In particular, generalized axicons [16] can produce a fairly constant axial intensity
within some predefined limits. However, the usefulness of these optical elements in imaging
systems is compromised because, on the one hand, the transverse distribution is not constant in
the region of uniform axial intensity [17] and, on the other, axicons tend to suffer from off-axis
aberrations.

In this paper, we consider the design of circularly-symmetric random phase diffusers that,
when illuminated by a converging beam, produce a specified distribution of intensity along the
optical axis. The designed diffusers have the following characteristics: i) they are random, ii)
their operation is based on refraction and, iii) they have good lateral confinement properties.
The performance of these diffusers is relatively insensitive to wavelength changes and, thus,
can be used in applications that require broad-band illumination, such as in Optical Coherence
Tomography (OCT) and white light profilometry.

The approach is motivated by previous work on the design of randomly rough surfaces with
prescribed angular scattering properties [18, 19, 20, 21]. Basically, the diffusers proposed here
consist of arrays of concentric elements with randomly varying power that focus light with
equal probability within the design region. The boundaries of these annular elements are similar
in their definition to those of the Fresnel zones. Although the design is based on geometrical
optics, calculations based on scalar diffraction theory show that the designed surfaces have
the expected properties and can extend the focal depth substantially. We also describe in some
detail a method for fabricating these rotationally-symmetric random diffusers on photoresist,
and present experimental results with a model imaging system.

2. Design of the diffusers

In designing a random surface that produces a specified distribution of intensity along the op-
tical axis, we assume that we are dealing with a circularly symmetric aberration-free imaging
system. For a point source object the system produces a converging spherical wave. After pass-
ing through a diffuser with rotationally-symmetric amplitude transmittance function t(r), the
complex amplitude in the neighborhood of focus can be expressed as [22] (see Fig. 1)

ψ(z0,r0) = −ik0
A0

R2 eik0z0

a∫

0

t(r)J0

(
k0r0

R
r

)
exp

{
−ik0

z0r2

2R2

}
rdr. (1)

In this expression A0 is a constant amplitude and k0 = 2π/λ = (ω/c) is the wave number
in vacuum where, as usual, ω is the frequency, λ is the wavelength, and c the speed of light
in vacuum. The length a is the radius of the circular aperture, R is the distance from the pupil
plane to the best focus, z0 is the defocus distance, r0 = (x2

0 + y2
0)

(1/2) is the transverse radial
coordinate, J0(z) is a Bessel function of the first kind and order zero, and t(r) is a complex
function of the form

t(r) = exp{−iv3H(r)},

where H(r) represents the surface profile function of the diffuser. We assume that H(r) is a
single-valued function of r that is differentiable, and constitutes a random process, but not nec-
essarily a stationary one. Assuming only small angles of incidence and scattering, we adopt the
thin phase screen model and set v3 = 2(ω/c) for a reflection geometry, and v3 = (ω/c)Δn for
a transmission one [23, 24, 25], where Δn is the difference between the refractive indices of the
material from which the diffuser is made and that of the surrounding medium. For definiteness,
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Fig. 1. Diffraction of a converging spherical wave transmitted through the rotationally-
symmetric diffuser.

we consider here a transmission geometry, but the results can be applied equally well to a reflec-
tion geometry. We also assume that the phase excursions introduced by the diffuser are much
greater than 2π and, thus, that the coherent component of the transmitted field is negligible.

Let us consider then the complex amplitude along the optical axis, which is given by

ψ(z0,0) = C0

a∫

0

exp{−iv3H(r)}exp
{−iκz0r2}rdr, (2)

where C0 = −ik0(A0/R2)exp(ik0z0) and κ = k0/2R2. With the change of variable

t = r2, (3)

we rewrite Eq. (2) as

ψ(z0,0) =
1
2

C0

a2∫

0

dt exp{−iv3h(t)}exp{−iκz0t}, (4)

where

h(t) = H(
√

t). (5)

The Fourier transform-like relationship between the radial amplitude transmitance function
and the axial complex amplitude given by Eq. (4) is a particular case of a more general result
obtained by McCutchen [26]. The similarities with a usual Fraunhofer diffraction problem [see
e.g. Eq. (11) in Ref. [19]] are evident. Thus, if one can design one-dimensional diffusers that
produce a prescribed angular distribution of the mean intensity [18, 19, 20], it should also
be possible to design diffusers that produce predefined axial distributions. The mean intensity
along the optical axis is

〈I(z0,0)〉 = 〈|ψ(z0,0)|2〉

=
1
4
|C0|2

a2∫

0

dt

a2∫

0

dt ′ 〈exp{−iv3[h(t)−h(t ′)]}〉exp{−iκz0(t − t ′)}, (6)
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where the angle brackets denote an average over the ensemble of realizations of the surface
profile function H(r).

Our aim is to obtain the surface profile function h(t), and hence H(r), for which the right-
hand side of Eq. (6) produces a mean intensity 〈I(z 0,0)〉 with a prescribed dependence on z0.
As it stands, Eq. (6) is too complicated for us to invert it to obtain h(t) in terms of 〈I(z 0,0)〉.
We therefore pass to the geometrical optics limit of the expression on the right-hand side of Eq.
(6) by expanding h(t) about t = t ′, h(t) = h(t ′)+ (t − t ′)h′(t ′)+ . . ., and retaining only terms
through the leading nonzero order in (t − t ′). The consequences of this approximation will be
discussed in the next section. In this way we obtain

〈I(z0,0)〉 =
1
4
|C0|2

a2∫

0

dt

a2∫

0

dt ′ exp[iκz0(t − t ′)]〈exp[−iν3(t − t ′)h′(t ′)]〉, (7)

where h′(t) is the derivative of h(t).
We now propose a particular form of h(t) that, as we will see, simplifies the design of the

diffusers. We first introduce a characteristic length b through the definition a 2 = Nb2, where N
is a large integer. We then represent the function h(t) in the form

h(t) =
αn

b
t + βn, nb2 ≤ t ≤ (n+1)b2, n = 0,1,2, . . . ,N −1. (8)

The coefficients {αn} in Eq. (8) are assumed to be independent identically distributed random
deviates. The probability density function (pdf) of α n,

f (γ) = 〈δ (γ −αn)〉 (9)

is therefore independent of n. Its definition indicates that f (γ)dγ is the probability that α n lies
in the interval (γ,γ +dγ) in the limit as dγ → 0. In order that the surface be continuous at, say,
t = (n+1)b2, the condition

βn+1 = βn − (n+1)(αn+1−αn)b (10)

must be satisfied. From this recurrence relation the {βn} can be determined from a knowledge
of the {αn}, provided that an initial value, e.g. β0, is specified. It is convenient to choose β0 = 0,
and we will do so in what follows. The solution of Eq. (10) is then

βn = [α0 + α1 + · · ·+ αn−1−nαn]b, n ≥ 1, (11)

The reasons for our choice of this form for h(t) will become clear below.
With the representation of h(t) given by Eq. (8) the double integral in Eq. (7) becomes

a2∫

0

dt

a2∫

0

dt ′ exp[−iκz0(t − t ′)]〈exp[−iν3(t − t ′)h′(t ′)]〉

=
a2∫

0

dt
N−1

∑
n=0

(n+1)b2∫

nb2

dt ′ exp[−iκz0(t − t ′)]〈exp[−iν3(t − t ′)(αn/b)]〉

=
a2∫

0

dt
N−1

∑
n=0

(n+1)b2∫

nb2

dt ′ exp[−iκz0(t − t ′)]
∞∫

−∞

dγ f (γ)[−iν3(t − t ′)(γ/b)],
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where we have used the independence of the {αn} and the fact that they are identically distrib-
uted in the last step. Since the integrands in this expression now are independent of n, the sum
on n can be carried out immediately, with the result that the double integral becomes

∞∫

−∞

dγ f (γ)

∣∣∣∣∣∣
a2∫

0

dt exp{−i[κz0 +(ν3γ/b)]t}
∣∣∣∣∣∣

2

= 4

∞∫

−∞

dγ f (γ)
sin2[κz0 +(ν3γ/b)] a2

2

[κz0 +(ν3γ/b)]2
. (12)

This simple result is a consequence of our assumption of a linear dependence of h(t) on t in the
interval (nb2,(n+1)b2), so that its derivative h′(t) is a constant, h′(t) = αn, in this interval.

Equations (7) and (12) together give us

〈I(z0,0)〉 = |C0|2 a4

4

∞∫

−∞

dγ f (γ)sinc2
(

κa2

2
z0 +

v3a2γ
2b

)
, (13)

where sincx = sinx/x.
Note that the condition Nb >> λ implies that a2v3/(2b)>> 1, and that in the limit as A→∞,

sinc2Ax → π
A

δ (x), (14)

where δ (x) is the Dirac delta function. With the aid of this result Eq. (13) becomes

〈I(z0,0)〉 = πa2|C0|2 b
2v3

f

(
−κb

v3
z0

)
. (15)

Thus, the mean intensity along the optical axis is given in terms of the pdf of α n. On inverting
Eq. (15) we find that

f (γ) =
1

πa2

1
|C0|2

2v3

b

〈
I
(
− v3

κb
γ,0

)〉
. (16)

From the result given by Eq. (16) a long sequence of {α n} is generated by the rejection
method [27], and the surface profile function is constructed on the basis of Eqs. (8), (11), and
the fact that t = r2. Thus, the surface profile function H(r) can be written as

H(r) =
αn

b
r2 + βn,

√
nb ≤ r ≤√

n+1b, n = 0,1,2, . . . ,N −1. (17)

In what follows we consider the design of a diffuser that produces a uniform axial intensity
in the interval −zm < z0 < zm, and zero axial intensity for |z0|> zm, and evaluate the possibility
of employing it to extend the depth of focus of imaging systems. The mean axial intensity we
seek the diffuser to produce is therefore

〈I(z0,0)〉 = I0 θ (zm −|z0|), (18)

where I0 is a constant, and θ (z) is the Heaviside unit step function. We obtain from Eqs. (16)
and (18) the result

f (γ) =
2
π

v3I0
a2b|C0|2 θ

(
κb
v3

zm −|γ|
)

. (19)
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The constant I0 is obtained from the normalization of f (γ), with the result that

I0 =
π
4

a2|C0|2
κzm

. (20)

It therefore follows that

〈I(z0,0)〉 =
π
4

a2|C0|2
κzm

θ (zm −|z0|) (21)

and

f (γ) =
v3

2b
1

κzm
θ

(
κb
v3

zm −|γ|
)

. (22)

3. Three-dimensional distribution in the neighborhood of focus

If we intend to use the diffuser in an imaging system, the axial intensity distribution is not
the only function of interest: it is also important to know the intensity distribution in the ra-
dial direction away from the optical axis. Consequently, in this section, we calculate the mean
intensity in the focal region. We write the expression for the field in the form

ψ(z0,r0) = C0

a∫

0

J0

(
k0r0

R
r

)
e−iv3H(r)−iκr2z0rdr. (23)

With the form of H(r) given by Eq. (17), this expression can be written in the form

ψ(z0,r0) = C0

N−1

∑
n=0

e−iv3βn ψn(z0,r0;αn), (24)

where

ψn(z0,r0;αn) =

√
n+1b∫

√
nb

rdr J0

(
k0r0

R
r

)
exp

{
−i

(
κz0 + v3

αn

b

)
r2

}
. (25)

The field ψn(z0,r0;αn) represents the diffraction pattern of an annular pupil function with
defocus z0 + v3αn/(bκ), where αn is a random quantity. Diffraction integrals like the one rep-
resented by Eq. (25) have been well-studied in the past [1, 22]. Here, we evaluate them using
the Nijboer expansion [22, 28].

The mean intensity obtained from Eq. (24) is

〈I(z0,r0)〉 = 〈|ψ(z0,r0)|2〉

= |C0|2
N−1

∑
m=0

N−1

∑
n=0

〈
e−iv3(βm−βn) ψm(z0,r0;αm)ψ∗

n (z0,r0;αn)
〉

. (26)

Recall that we are assuming that the random numbers {αn} are statistically independent. If
we further assume that the coherent component is negligible (i.e. that 〈ψ n(z0,r0;αn)〉 = 0), the
expression for the mean intensity simplifies to

〈I(z0,r0)〉 = |C0|2
N−1

∑
n=0

〈|ψn(z0,r0;αn)|2〉. (27)
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The results of calculations not presented here show that the relative error made in using Eq.
(27) instead of (26) is of the order of one part in 10 4 for all the parameters and values of z0 and
r0 assumed in this work. Consequently, in what follows we will use the simpler expression (27)
in calculating the mean intensity 〈I(z0,r0)〉.

Let us consider first the mean axial intensity obtained from this expression. The axial ampli-
tude produced by the n-th ring is given by

ψn(z0,0;αn) =

√
n+1b∫

√
nb

rdr exp
{
−i

(
κz0 + v3

αn

b

)
r2

}
. (28)

After integration we obtain

ψn(z0,0;αn) =
b2

2
exp

{
−i

(
κz0 + v3

αn

b

)
b2

(
n+

1
2

)}
sinc

[(
κz0 + v3

αn

b

) b2

2

]
, (29)

which yields for the mean axial intensity

〈I(z0,0)〉 = |C0|2 a4

4N

〈
sinc2

[
1
N

(
k0a2

4R2 z0 +
v3a2

2b
αn

)]〉
, (30)

where we have used the relation a2 = Nb2 and the fact that the width of the diffraction structure
obtained in Eq. (29) does not depend on the order of the ring. We note that the first term in the
argument of the sinc function is a deterministic defocus term, while the second one contains
the random numbers αn. Apart from this random term, the result agrees with the well-known
expression for the axial intensity produced by an annular aperture [1, 29].

So, apart from the random defocus, all the annular subapertures produce exactly the same
axial intensity distribution. It is also interesting to compare Eq. (30) with the expression for the
mean intensity obtained in Sect. 2. From Eq. (13), we can write

〈I(z0,0)〉 = |C0|2 a4

4

〈
sinc2

(
k0a2

4R2 z0 +
v3a2

2b
αn

)〉
. (31)

Forgetting for a moment the random defocus term, we immediately recognize in this expression
the axial response of an aberration-free optical system [22]. We observe that the parameter N
that appears in Eq. (30) is absent in Eq. (31). This is due to the fact that with the approxima-
tion employed in its derivation (geometrical optics limit) we have neglected diffraction effects
by the small scale of the diffuser, retaining only the diffraction effects of the whole pupil.
Consequently, the diffraction pattern obtained is related to the complete pupil, rather than the
individual annuli, as it should be. The use of relation (14), removes the remaining diffraction
effects, producing a final result that is consistent with geometrical optics [Eq. (15)]. So, the re-
sults obtained in Sect. 2 are useful in the design of the diffuser but cannot be used for diffraction
calculations.

The result given by Eq. (27), expresses the mean intensity as a sum of the intensity diffraction
patterns |ψn(z0,0;αn)|2 produced by different zones of the diffuser. To help in the visualization
of this result, in Fig. 2 we show two of these contributions for the particular case α n = 0. The
optical system has a = 2cm, R = 15cm, and λ = 0.633 μm. The circular aperture was divided
into N = 100 annular apertures, resulting in a value of b = a/

√
N = 0.2cm. The diffraction pat-

tern of Fig. 2(a) corresponds to the zone with n = 0, and is just the diffraction pattern produced
by a circular aperture of radius b. Figure 2(b) corresponds to the annular pupil with n = 25.
The figures represent meridional sections of the rotationally symmetric three-dimensional dif-
fraction patterns. These figures confirm our earlier remark that the distribution of the axial
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intensity is independent of the order of the ring. In this case, the first axial zeroes occur around
z0 = ±0.71cm. On the other hand, the transverse distribution decreases in size with the order
of the ring.
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Fig. 2. Intensity distribution produced by the zones with (a) n = 0 and (b) n = 25. The
parameters are: a = 2cm, R = 15cm, λ = 0.633 μm, N = 100, and αn = 0.

We consider now, as an example, the design of a diffuser that produces a uniform distribution
of intensity in the range −2cm ≤ z0 ≤ 2cm of the optical axis. The pdf of αn for this case is
given by Eq. (22), so that from Eq. (27) we have

〈I(z0,r0)〉 =
v3

2b
|C0|2
κzm

N−1

∑
n=0

κb
v3

zm∫

− κb
v3

zm

dγ|ψn(z0,r0;γ)|2. (32)

As before, we assume that a = 2cm, R = 15cm, λ = 0.633 μm, and N = 100. The parameter
Δn = 0.6.

The result for the rotationally-symmetric mean intensity 〈I(z 0,r0)〉 is illustrated in Fig. 3.
From this meridional intensity map we see that the intensity is fairly constant in the design
region of the optical axis, and that it decreases rapidly outside it and for off-axis points. These
same data were used to generate Fig. 4, where we show the mean intensity distribution along
the optical axis (a) and the mean intensity in the transverse direction for the plane z 0 = 0 (b).
From Eq. (30), we observe that the mean axial intensity can be expressed as the convolution
of a sinc2 function with the desired distribution. Consequently, the axial intensity distribution
is not perfectly rectangular, but smoothed by diffraction effects whose extent depend on the
parameter 2λ (R/b)2. For reference, we mention that the first zeroes of the axial response of the
system without diffuser occur at z0 =±71 μm. Also, in Fig. 4(b), we show the Airy pattern that
corresponds to the transverse response of the system with a clear pupil function. We see that the
width of the central core is similar in the two cases and that the main difference is the relatively
slow decay of the tails in the response of the system with the diffuser. Summarizing, the mean
PSF consists of a bright central core with a broad halo, and its structure is fairly invariant within
the design region. A predictable consequence of the halo is that the high frequency components
will be transfered to the image with low contrast. Despite this, the sharpness of the central core
indicates that the diffusers can be useful in imaging applications.
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Fig. 3. Calculated mean intensity distribution in the focal region of an optical system with
a diffuser designed to produce uniform intensity along the optical axis in the region −2cm
≤ z0 ≤ 2cm, with a = 2cm, R = 15cm, λ = 0.633 μm, and N = 100.
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Fig. 4. Axial (a) and transversal (b) normalized intensities corresponding to the mean PSF
shown in Fig. 3. The axial response of the system with a clear aperture is too narrow to be
shown in (a). The lower (red) curve in (b) represents to the response of the system with the
clear aperture.
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It should be mentioned, however, that in normal circumstances, the estimation of the en-
semble average is not a practical proposition and one has to work with a single realization
of the diffuser. For a particular realization, different diffuser rings focus light on different ax-
ial points, with equal probability within the design region. This is illustrated in Fig. 5. For
monochromatic illumination, the interference between all these randomly phased contributions
produces speckle, which is manifested by random intensity variations in the axial intensity. At
the same time, due to the rotational symmetry of the system, the transverse intensity pattern
contains rings that change rapidly as one moves along z 0. As an example, we show in Fig. 6 (a)
and (b) the calculated transverse intensity images at z0 = −1 and z0 = 1cm.

R

Fig. 5. Illustration of the focusing behavior of different zones of the diffuser. The probabil-
ity of focusing on a point of the optical axis is uniform within the specified region and zero
outside.

(a) (b)

(c) (d)

Fig. 6. Transverse intensity distribution obtained with a single realization of a diffuser
whose mean intensity is shown in Fig. 3. In (a) and (b) the wavelength λ = 0.633 μm,
while in (c) and (d) the results represent an average over the intensities obtained for 400
equally spaced wavelengths in the region 450 μm to 650 μm. In (a) and (c) z0 =−1cm and
in (b) and (d) z0 = 1cm. The pictures show a region of 100×100 μm in the (x0,y0)-plane.
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These fluctuations can be smoothed through the use of broadband illumination. In Figs. 6
(c) and (d) we show the PSFs obtained at z0 = −1cm and z0 = 1cm by averaging over 400
different wavelengths in the visible region of the spectrum. One can see that the ring structure
has practically disappeared and that the shape of the PSFs approaches that of the ensemble-
averaged PSF. This resemblance improves with the number of independent patterns employed
and with the number of rings N.

4. Experimental techniques and results

Some surfaces of the type considered here have been fabricated by exposing photoresist-coated
plates to blue light (λ = 442nm) from a He-Cd laser transmitted through a rotating ground
glass (to reduce its coherence). A schematic diagram of the experimental setup employed in
the fabrication is shown in Fig. 7. An incoherent image of a disk-shaped mask is formed on the
rotating photoresist-coated plate by a well-corrected imaging system with magnification m. The
plate is exposed during a time Te, during which it executes a large number of revolutions. As
explained below, the arrangement is such that the total exposure of the plate is a scaled version
of the profile function employed in the generation of the mask.

Incoherent
illumination

Lens

Rotating
photoresist plate

AH(mr)

Average
mask
image

Δ  (r)H

Fig. 7. Schematic diagram of the setup employed for the fabrication of the circularly sym-
metric random diffusers.

Before proceeding further with the description of the experimental it is worth discussing the
consequences of scaling the profiles H(r) generated according to Eqs. (17), (22), and (11) in
both, the vertical and horizontal directions. That is, we are interested on the mean intensity
produced by a diffuser with a surface profile function AH(mr), where A and m are dimension-
less constants, with reference to the mean intensity obtained with the original function H(r).
From Eq. (17) we see that the transformation is equivalent to chosing new random deviates
α ′

n = Am2 αn. In consequence, the parameter that defines the new region of constant intensity
is z′m = Am2 zm. In other words, by scaling the function H(r) in the vertical or horizontal direc-
tion one changes the length of the region of constant intensity. These transformation are almost
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inevitable in our fabrication scheme and are defined by the exposure of the plate and by the
magnification of the optical system (see Fig. 7).

To produce a suitable mask, one first needs to generate a realization of a profile H(r). An
example is shown in Fig. 8(a). Then, we define the function Δ H(r) = KH(r) that, with an
appropriate choice of the units of the constant K, can be interpreted as an angle. For a given
radius, the angles θ that fall in the transparent section of the mask are defined by the condition
ΔH(r) > θ > Δ0, where Δ0 is a constant smaller than the minimum value of ΔH(r) [see Fig.
8(b)].

An incoherent image of the mask is formed on the surface of the rotating photoresist plate,
producing an exposure that is circularly symmetric with a radial dependence of the form E(r) =
IeTe[ΔH(mr)−Δ0]/2π , where Ie is a constant related to the intensity of the illumination. The
exposure of the plate can then be put in the final form E(r) = E 0 + AH(mr), where E0 and A
are constants that one can adjust by varying the intensity of the light reaching the plate, the
aperture of the mask and the exposure time. Assuming that the relation between exposure and
resulting height on the plate is linear, the developed surface will have the desired properties of
being proportional to AH(mr).
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Fig. 8. Realization of a random surface profile H(r) with 100 zones (a), and mask generated
from it (b).

A number of samples have been fabricated with the procedure described above. We present
some experimental results that illustrate the effects of using these diffusers on the formation
of extended images. Photographs of a wheel-like object taken under white light illumination
are shown in Fig. 9. The photographs on the top row correspond to the best-focus position.
The image on the left (a) was formed by an aberration-free optical system with a clear pupil
function. The one on the right (b) was formed by the same system, but with the inclusion of
a diffuser in the pupil plane. One can see that, due to the halo of the mean PSF, the edges of
the image show a reduction in contrast. Images corresponding to an out-of-focus situation are
shown on the bottom row of Fig. 9. The image on the left (c) is noticeably blurred and its quality
has been degraded with respect to the one on top. On the other hand, the image on the right (d),
obtained with the system that includes the diffuser, has changed only slightly. The resolution of
the images can be assessed by inspection of the fine details in the circled regions. These results
show that, as expected, the optical system with the diffuser has a greater depth of focus.

5. Summary and concluding remarks

In this paper, we have studied the problem of designing and fabricating optical diffusers that,
when illuminated by a converging beam, produce a uniform intensity along the optical axis
within a specified range.

The technique is also suited for the production of such surfaces in photoresist, and we have
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Fig. 9. Images of a wheel-like binary object under white light illumination in a well-
corrected 4 f imaging system with a = 0.5cm and f = 30cm. (a) Clear-aperture system
in the best-focus plane (z0 = 0). (b) System with diffuser in the best-focus plane. (c) Clear-
aperture system in an out-of-focus plane (z0 = 8mm). (d) System with diffuser in the same
out-of-focus plane. The images shows a region of about 4×4mm of the object.

implemented a procedure for their optical fabrication. The results indicate that good approxima-
tions to the desired uniform axial intensity distribution can be obtained with surfaces fabricated
with the proposed method.

Many of the techniques employed for extending the depth of focus have a preferred wave-
length of operation. In contrast, the performance of the optical elements studied here improves
with polychromatic light. The method is verified through calculations based on scalar diffrac-
tion theory. The results show that the mean intensity produced by these diffusers is indeed fairly
constant over the specified region and decays as the point of observation moves away from the
optical axis. The diffusers are potentially useful as focal depth extenders in imaging systems
that use broad band illumination.
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